

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 22020369-01 Carolina Seasons Lot 7-Ph2 S2-2131 Elev 'A' Permit-Roof Truss

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Lexington, NC).

Pages or sheets covered by this seal: T27211738 thru T27211772

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

March 23,2022

Lee, Julius

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

			<u>2-0-0</u> 2-0-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.12 BC 0.03 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 7 >999 240 Vert(CT) -0.00 7 >999 180 Horz(CT) -0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 8 lb FT = 20%

LUMBER-

REACTIONS.

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

(size) 3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=33(LC 12) Max Uplift 3=-6(LC 12), 2=-61(LC 12), 4=-5(LC 9)

Max Grav 3=36(LC 1), 2=186(LC 1), 4=30(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Pr. Open; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 1-11-14 zone; cantilever left and right exposed; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 23,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

I OADING (nsf)	SPACING-	2-0-0	CSI	DEEL	in (loc) l/defl	l /d	PLATES	GRIP	
Plate Offsets (X,Y)	[2:0-1-9,Edge]								
			2-0-0			2-0-0			
			2-0-0		1	4-0-0			

TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	TC 0.30 BC 0.77 WB 0.07 Matrix-MP	Vert(LL) 0.09 Vert(CT) -0.08 Horz(CT) 0.03	6 (66) 7/461 240 6 6 >967 240 3 6 >597 180 3 4 n/a n/a	MT20 244/190 Weight: 15 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	No.2 No.2 No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied	rectly applied or 4-0-0 oc purlins, except or 10-0-0 oc bracing.
REACTIONS. (size Max He Max U Max G	e) 4=Mechanical, 2=0-3-8, 5=Mechani orz 2=33(LC 8) plift 4=-20(LC 4), 2=-98(LC 4), 5=-56(LC rav 4=58(LC 1), 2=348(LC 1), 5=190(LC	ical C 5) C 1)			
FORCES. (lb) - Max. WEBS 3-6=-3	Comp./Max. Ten All forces 250 (lb) or 333/100	less except when shown.			
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V II; Exp B; Pr. Open; I DOL=1.60 plate grip 3) Provide adequate dri: 4) This truss has been 5) * This truss has been will fit between the bu 6) Refer to girder(s) for	loads have been considered for this de ult=120mph (3-second gust) Vasd=95m WWFRS (directional); cantilever left and DOL=1.60 ainage to prevent water ponding. designed for a 10.0 psf bottom chord liv designed for a live load of 20.0psf on to ottom chord and any other members. truss to truss connections.	sign. ph; TCDL=6.0psf; BCDL= right exposed ; end vertic e load nonconcurrent with he bottom chord in all are	6.0psf; h=25ft; B=45ft; al left exposed; porch l any other live loads. as where a rectangle 3-	L=24ft; eave=4ft; Cat. eft exposed; Lumber -6-0 tall by 2-0-0 wide	

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.

8) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 150 lb down and 47 lb up at 2-0-0 on top chord, and 51 lb down and 17 lb up at 2-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 5-7=-20 Concentrated Loads (lb) Vert: 3=-150(F) 6=-51(F)

818 Soundside Road Edenton, NC 27932

							4-0-0					
Plate Offset	ts (X,Y)	[2:0-0-5,Edge]										
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.18	Vert(LL)	0.03	4-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.20	Vert(CT)	0.03	4-7	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2018/TF	912014	Matri	x-AS						Weight: 14 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=49(LC 12)

Max Uplift 3=-23(LC 12), 2=-69(LC 12), 4=-11(LC 12)

Max Grav 3=96(LC 1), 2=251(LC 1), 4=69(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Pr. Open; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 3-11-4 zone; cantilever left and right exposed; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

March 23,2022

LUMBER-

	<u> 6-0-0</u> 6-0-0		0-0-0 4-0-0		<u>16-0-0</u> 6-0-0		———————————————————————————————————————
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL2-0-00Plate Grip DOL1.151Lumber DOL1.151Rep Stress IncrYESVCode IRC2018/TPI2014N	SI. C 0.46 C 0.54 B 0.08 atrix-AS	DEFL. in Vert(LL) 0.17 Vert(CT) -0.19 Horz(CT) 0.03	(loc) l/defl 8-11 >999 8-11 >999 5 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 58 lb	GRIP 244/190 FT = 20%
LUMBER-		I	BRACING-		I		

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied, except

2-0-0 oc purlins (5-2-5 max.): 3-4.

Rigid ceiling directly applied.

TOP CHORD

2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No 3

REACTIONS. (size) 2=0-3-8, 5=0-3-8 Max Horz 2=-22(LC 10) Max Uplift 2=-174(LC 12), 5=-174(LC 12) Max Grav 2=720(LC 1), 5=720(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-1319/1210, 3-4=-1226/1199, 4-5=-1319/1221

BOT CHORD 2-8=-1093/1218, 7-8=-1108/1226, 5-7=-1091/1218

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Pr. Open; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 6-0-0, Exterior(2E) 6-0-0 to 10-0-0, Exterior(2R) 10-0-0 to 14-2-15, Interior(1) 14-2-15 to 17-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 23,2022

	4-0-0		12-0-0		1	16-0-0		
	4-0-0		8-0-0		1	4-0-0		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2018/TPI2014	CSI. TC 0.45 BC 0.75 WB 0.20 Matrix-MS	DEFL.inVert(LL)0.18Vert(CT)-0.32Horz(CT)0.05	(loc) l/defl 8-9 >999 8-9 >606 6 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 67 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	No.2 No.1 No.3	BRACING- TOP CHORD BOT CHORD	BRACING- TOP CHORD Structural wood sheathing directly applied or 3-7-9 oc purlins, except 2-0-0 oc purlins (3-6-14 max.): 3-5. BOT CHORD Rigid ceiling directly applied or 7-7-9 oc bracing.					
REACTIONS. (size) 2=0-3-8, 6=0-3-8 Max Horz 2=16(LC 7) Max Uplift 2=-274(LC 4), 6=-274(LC 5) Max Grav 2=1049(LC 1), 6=1051(LC 1)								
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-9=- WEBS 3-9=-	Comp./Max. Ten All forces 250 (lb) c 2315/586, 3-4=-2225/576, 4-5=-2229/5 535/2177, 8-9=-675/2697, 6-8=-530/21 120/481, 5-8=-120/481, 4-9=-534/141,	r less except when shown. 77, 5-6=-2319/587 81 4-8=-529/140						
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V II; Exp B; Pr. Open; I exposed; Lumber DC 3) Provide adequate dr 4) This truss has been will fit between the b 6) One RT7A MiTek co uplift only and does n	e loads have been considered for this d ult=120mph (3-second gust) Vasd=95r MWFRS (directional); cantilever left an DL=1.60 plate grip DOL=1.60 ainage to prevent water ponding. designed for a 10.0 psf bottom chord li n designed for a live load of 20.0psf on ottom chord and any other members. nnectors recommended to connect true not consider lateral forces.	esign. nph; TCDL=6.0psf; BCDL= d right exposed ; end vertic ve load nonconcurrent with the bottom chord in all area ss to bearing walls due to U	6.0psf; h=25ft; B=45ft; L al left and right exposed any other live loads. as where a rectangle 3-6 IPLIFT at jt(s) 2 and 6. T	=24ft; eave=4ft; C ; porch left and rig 5-0 tall by 2-0-0 wi his connection is	cat. ght de for			

- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 39 lb down and 32 lb up at 2-0-12, 55 lb down and 44 lb up at 4-0-0, 38 lb down and 44 lb up at 6-0-12, 38 lb down and 44 lb up at 8-0-12, 38 lb down and 44 Ib up at 10-0-12, and 55 lb down and 44 lb up at 12-0-0, and 39 lb down and 32 lb up at 13-11-4 on top chord, and 170 lb down and 59 lb up at 2-0-12, 29 lb down and 21 lb up at 4-0-12, 29 lb down and 21 lb up at 6-0-12, 29 lb down and 21 lb up at 8-0-12, 29 lb down and 21 lb up at 10-0-12, and 29 lb down and 21 lb up at 11-11-4, and 170 lb down and 59 lb up at 13-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 5-7=-60, 10-13=-20

Continued on page 2

March 23,2022

Job	Truss	Truss Type	Qty	Ply	y	Carolina Seasons Lot 7-Ph2 S2-2131 Elev 'A' Permit-Roof Truss		
						T27211742		
22020369-01	H5GR	HIP GIRDER	1		1			
						Job Reference (optional)		
Carter Components (Lexington), Lexington, NC - 27295,		7295,	8.530 s Dec 6 2021 MiTek Industries, Inc. Tue Mar 22 15:00:18 2022 Page 2					
			ID:cAXIwBcFt	ID:cAXIwBcFhvIGNsOCDTPEKSyNyV8-7TcV9H0kYkaGsoBF6I?ATMTcZtUV2ljw7wBuIXzYLch				

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 3=-36(F) 5=-36(F) 9=-28(F) 8=-28(F) 4=-36(F) 18=-36(F) 19=-36(F) 22=-170(F) 23=-28(F) 24=-28(F) 25=-28(F) 26=-170(F)

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

March 23,2022

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (size) 1=5-8-2, 3=5-8-2 Max Horz 1=-23(LC 10)

Max Uplift 1=-1(LC 12), 3=-1(LC 12) Max Grav 1=187(LC 1), 3=187(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Pr. Open; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 5-9-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 23,2022

Max Uplift 1=-11(LC 12), 3=-11(LC 12)

Max Grav 1=164(LC 1), 3=164(LC 1), 4=365(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Pr. Open; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 4-10-8, Exterior(2R) 4-10-8 to 7-10-8, Interior(1) 7-10-8 to 9-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 23,2022

- forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8 and 6. This connection is for uplift only and does not consider lateral forces.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 23,2022

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 23,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek A 818 Soundside Road Edenton, NC 27932

LUMBER-	
---------	--

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2 *Except*

 3-7: 2x4 SP No.3
 3

 WEBS
 2x4 SP No.3

BRACING-TOP CHORD

Structural wood sheathing directly applied or 4-5-10 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 8=0-4-9, 4=Mechanical, 5=Mechanical

Max Horz 8=63(LC 8)

Max Uplift 8=-29(LC 17), 5=-23(LC 8)

Max Grav 8=162(LC 3), 4=98(LC 1), 5=172(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Pr. Open; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5.
- 6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1 lb down and 4 lb up at -1-10-10, and 1 lb down and 4 lb up at -1-10-10 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
- Vert: 2-4=-20(F=40)
- Concentrated Loads (lb) Vert: 1=7(F=3, B=3)

Trapezoidal Loads (plf)

Vert: 1=40(F=70, B=30)-to-2=0(F=50, B=10), 8=-48(F=-14, B=-14)-to-7=-97(F=-38, B=-38), 6=-97(F=-38, B=-38)-to-5=-121(F=-51, B=-51)

March 23,2022

		1	4-5-10	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.31 BC 0.53 WB 0.00 Matrix-MR	DEFL. in (loc) l/defl L/ Vert(LL) -0.05 4-5 >999 244 Vert(CT) -0.08 4-5 >664 18 Horz(CT) 0.03 3 n/a n/a	d PLATES GRIP 0 MT20 244/190 a Weight: 17 lb FT = 20%
LUMBER-			BRACING-	

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS

2x4 SP No 3

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 4-5-10 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-4-9, 3=Mechanical, 4=Mechanical

Max Horz 5=86(LC 7)

Max Uplift 5=-17(LC 17), 4=-33(LC 5)

Max Grav 5=162(LC 3), 3=65(LC 1), 4=210(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Pr. Open; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
- 6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1 lb down and 4 lb up at -1-10-10, and 1 lb down and 4 lb up at -1-10-10 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf) Vert: 2-3=-20(F=40) Concentrated Loads (lb) Vert: 1=7(F=3, B=3)
 - Trapezoidal Loads (plf)

Vert: 1=40(F=70, B=30)-to-2=0(F=50, B=10), 5=-48(F=-14, B=-14)-to-4=-121(F=-51, B=-51)

March 23,2022

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS

2x4 SP No.3

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 5=87(LC 12)

Max Uplift 5=-24(LC 12), 3=-26(LC 12)

Max Grav 5=232(LC 1), 3=73(LC 17), 4=55(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Pr. Open; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 3-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 3) will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5 and 4. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 3-3-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

REACTIONS. (size) 8=0-3-8, 4=Mechanical, 5=Mechanical Max Horz 8=87(LC 12) Max Uplift 8=-24(LC 12), 4=-13(LC 12), 5=-2(LC 12)

Max Grav 8=232(LC 1), 4=60(LC 1), 5=47(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Pr. Open; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 3-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

LOAD CASE(S) Standard

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 23,2022

Job	Truss	Truss Type	Qty	Ply	Carolina Seasons Lot 7-Ph2 S2-2131 Elev 'A' Permit-Roof Truss
					T27211752
22020369-01	T2GR	COMMON GIRDER	1	2	
				<u> </u>	Job Reference (optional)
Carter Components (Lexingt	on), Lexington, NC - 272	95.	8	.530 s Dec	c 6 2021 MiTek Industries, Inc. Tue Mar 22 15:00:51 2022 Page 2

ID:cAXIwBcFhvIGNsOCDTPEKSyNyV8-fp6_4ZQRntkaJsCaYA5wJJLA?BobHYJniYg8y7zYLcA

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-6=-60, 11-14=-20

Concentrated Loads (lb)

Vert: 7=-1198(B) 10=-1470(B) 13=-1470(B) 17=-1470(B) 18=-1470(B) 19=-1469(B) 20=-1468(B) 21=-1471(B) 22=-1198(B) 23=-1361(B)

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 7. This connection is for uplift only and does not consider lateral forces.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

March 23,2022

	I				21-0-0						
Plate Offsets (X,Y)	[8:0-3-0,Edge]										
LOADING (psf) TCLL 20.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC	0.15	DEFL. Vert(LL)	in -0.01	(loc) 15	l/defl n/r	L/d 120	PLATES MT20	GRIP 244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.04 0.08	Vert(CT) Horz(CT)	-0.01 0.00	15 16	n/r n/a	120 n/a		
BCDL 10.0	Code IRC2018/TP	12014	Matrix	∢- κ						Vveight: 128 lb	FT = 20%
LUMBER- TOP CHORD 2x4 S	P No.2				BRACING- TOP CHOF	RD	Structu	ral wood	sheathing di	rectly applied or 10-0-0	oc purlins,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 6-0-0 oc bracing.

21-0-0

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2

 WEBS
 2x4 SP No.3

 OTHERS
 2x4 SP No.3

REACTIONS. All bearings 21-0-0.

(lb) - Max Horz 28=-133(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 28, 16, 24, 25, 26, 27, 20, 19, 18, 17 Max Grav All reactions 250 lb or less at joint(s) 28, 16, 22, 24, 25, 26, 27, 21, 20, 19, 18, 17

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Pr. Open; MWFRS (directional) and C-C Corner(3E) -1-4-0 to 1-10-0, Exterior(2N) 1-10-0 to 10-6-0, Corner(3R) 10-6-0 to 13-6-0, Exterior(2N) 13-6-0 to 22-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 28, 16, 24, 25, 26, 27, 20, 19, 18, and 17. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 23,2022

	6-3-8 6-3-8	13-3-0 6-11-9	17-3-0 4-0-0	24-2-8 6-11-9	<u> </u>	—
Plate Offsets (X,Y)	[4:0-2-0,0-3-4], [5:0-4-0,0-1-11], [6:0	0-4-0,0-1-11], [7:0-2-0,0-3-4]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.83 BC 0.95 WB 0.60 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L -0.29 14-15 >999 24 -0.43 14-15 >852 18 0.10 9 n/a n	/d PLATES 10 MT20 30 /a Weight: 164 lb	GRIP 244/190 FT = 20%
LUMBER-			BRACING-			

LUMBER-		BRACING-	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied, except
BOT CHORD	2x4 SP No.2		2-0-0 oc purlins (4-11-12 max.): 5-6.
WEBS	2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied.
SLIDER	Left 2x4 SP No.3 1-6-0, Right 2x4 SP No.3 1-6-0		

REACTIONS. (size) 2=0-3-8, 9=0-3-8 Max Horz 2=-143(LC 10) Max Uplift 2=-42(LC 12), 9=-42(LC 12) Max Grav 2=1437(LC 17), 9=1437(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-2021/42, 4-5=-1567/91, 5-6=-1278/106, 6-7=-1567/91, 7-9=-2021/42

BOT CHORD 2-15=0/1765, 14-15=0/1756, 12-14=0/1328, 11-12=0/1649, 9-11=0/1657

WEBS 4-14=-499/72, 5-14=0/464, 6-12=0/464, 7-12=-499/72

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Pr. Open; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 13-3-0, Exterior(2E) 13-3-0 to 17-3-0, Exterior(2R) 17-3-0 to 21-5-15, Interior(1) 21-5-15 to 31-10-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 9. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 23,2022

 	<u>6-4-5</u> 11	3-0 15-10-0	19-3-0	28-2-8	30-6-0
Plate Offsets (X,Y)	[5:0-4-0,0-1-11], [7:0-4-0,0-1-11], [1	:0-0-11,0-1-12], [11:Edge,0-	-3-9], [14:0-2-8,0-2-8], [16	:0-7-12,0-3-0]	2-0-0
LOADING(psf)TCLL20.0TCDL10.0BCLL0.0*BCDL	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.77 BC 0.98 WB 0.70 Matrix-AS	DEFL. in Vert(LL) -0.24 Vert(CT) -0.48 Horz(CT) 0.15	(loc) l/defl L/d 14-15 >999 240 14-15 >764 180 11 n/a n/a	PLATES GRIP MT20 244/190 Weight: 187 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF 6-17: 2 WEBS 2x4 SF 10-14: SLIDER Left 2x	P No.2 P No.2 *Except* 2x4 SP No.3, 14-16: 2x4 SP No.1 P No.3 *Except* 2x4 SP No.2 4 SP No.3 1-6-0, Right 2x4 SP No.3	1-3-8	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir 2-0-0 oc purlins (4-0-14 max. Rigid ceiling directly applied.	rectly applied, except): 5-7.
REACTIONS. (siz Max H Max U Max C	e) 2=0-3-8, 11=0-3-8 lorz 2=124(LC 11) Jplift 2=-42(LC 12), 11=-42(LC 12) Grav 2=1430(LC 17), 11=1439(LC 18))			
FORCES. (lb) - Max. TOP CHORD 2-4= 9-10 BOT CHORD 2-19 11-1 WEBS 4-18 10-1	Comp./Max. Ten All forces 250 (lt -1975/43, 4-5=-1674/84, 5-6=-1703// =-3618/0, 10-11=-400/0 =0/1706, 18-19=0/1706, 17-18=-3/30 3=0/1185 =-325/57, 16-18=0/1193, 5-16=0/574 4=0/2785, 10-13=-1300/0	or less except when showr 5, 6-7=-1690/71, 7-8=-2010/ 4, 15-16=0/1718, 14-15=0/2 7-15=0/743, 8-15=-475/76,	n. /61, 8-9=-4029/0, 013, 13-14=0/1009, 8-14=0/1771,		
NOTES- 1) Unbalanced roof liv. 2) Wind: ASCE 7-16; V II; Exp B; Pr. Open; 15-8-4, Interior(1) 1: ; end vertical left an DOL=1.60 3) Provide adequate d 4) This truss has been 5) * This truss has been will fit between the t 6) One RT7A MITek cr uplift only and does 7) This truss is design referenced standarc 8) This truss design re sheetrock be applie	a loads have been considered for this /ult=120mph (3-second gust) Vasd= MWFRS (directional) and C-C Exter 5-8-4 to 19-3-0, Exterior(2R) 19-3-0 t d right exposed;C-C for members an rainage to prevent water ponding. designed for a 10.0 psf bottom chor n designed for a live load of 20.0psf bottom chord and any other members onnectors recommended to connect not consider lateral forces. ed in accordance with the 2018 Inter t ANSI/TPI 1. quires that a minimum of 7/16" struct d directly to the bottom chord.	design. 5mph; TCDL=6.0psf; BCDL or(2E) -1-4-0 to 1-8-0, Interior 23-4-9, Interior(1) 23-4-9 to I forces & MWFRS for reacti live load nonconcurrent wit on the bottom chord in all arr with BCDL = 10.0psf. "uss to bearing walls due to ational Residential Code se ural wood sheathing be appl	=6.0psf; h=25ft; B=45ft; L or(1) 1-8-0 to 11-3-0, Exte o 31-10-0 zone; cantilever ions shown; Lumber DOL h any other live loads. eas where a rectangle 3-6 UPLIFT at jt(s) 2 and 11. ctions R502.11.1 and R80 ied directly to the top choo	=24ft; eave=4ft; Cat. rior(2R) 11-3-0 to left and right exposed =1.60 plate grip -0 tall by 2-0-0 wide This connection is for 12.10.2 and rd and 1/2" gypsum	SEAL 035183

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 23,2022

mponent B18 Soundside Road Edenton, NC 27932

 	9-3-0	<u>15-10-0</u> 6-7-0	21-3-0		28-2-8	30-6	-0		
Plate Offsets (X,Y)	[5:0-4-0,0-1-11], [7:0-4-0,0-1-11], [9:0-0	-15,0-1-12], [10:Edge,0-3	-9], [13:0-2-12,0-0-0], [15	5:0-2-12,0-2-4]	0110	20	<u> </u>		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.78 BC 0.78 WB 0.62 Matrix-AS	DEFL. in Vert(LL) -0.15 Vert(CT) -0.34 Horz(CT) 0.16	(loc) l/defl 13-14 >999 13-14 >999 10 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 181 lb	GRIP 244/190 FT = 20%		
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP 6-16: 2 WEBS 2x4 SP 9-13: 2 SLIDER Left 2x	9 No.2 9 No.2 *Except* x4 SP No.3, 13-15: 2x4 SP No.1 9 No.3 *Except* x4 SP No.2 4 SP No.3 1-6-0, Right 2x4 SP No.3 1-3	-8	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood s 2-0-0 oc purlins (Rigid ceiling direc 1 Row at midpt	heathing directl 3-6-5 max.): 5-7 xtly applied. 8-14	y applied, except			
REACTIONS. (size) 2=0-3-8, 10=0-3-8 Max Horz 2=104(LC 11) Max Uplift 2=-42(LC 12), 10=-42(LC 12) Max Grav 2=1300(LC 1), 10=1300(LC 1)									
FORCES. (lb) - Max. TOP CHORD 2-4=- 9-10= BOT CHORD 2-17= 10-12 WEBS 15-17 9-12=	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-1789/57, 4-5=-1620/60, 5-6=-1972/70, 6-7=-1975/66, 7-8=-2058/34, 8-9=-3300/0, 9-10=-379/0 BOT CHORD 2-17=0/1461, 6-15=-419/77, 14-15=0/1686, 13-14=0/3336, 12-13=0/784, 8-13=0/589, 10-12=-0/1022 WEBS 15-17=0/1258, 5-15=0/775, 7-15=-9/493, 7-14=0/435, 8-14=-1648/90, 9-13=0/2546, 9-12=-1004/0								
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V II; Exp B; Pr. Open; 13-5-15, Interior(1) 1 exposed ; end vertic grip DOL=1.60 3) Provide adequate dr 4) This truss has been will fit between the b 6) One RT7A MiTek cc uplift only and does 7) This truss is designer referenced standard 8) This truss design rer sheetrock be applied 9) Graphical purlin reputation 	e loads have been considered for this de /ult=120mph (3-second gust) Vasd=95m MWFRS (directional) and C-C Exterior(2 I3-5-15 to 21-3-0, Exterior(2R) 21-3-0 to rail left and right exposed;C-C for member rainage to prevent water ponding. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on to ottom chord and any other members. onnectors recommended to connect trust not consider lateral forces. ed in accordance with the 2018 Internation I ANSI/TPI 1. quires that a minimum of 7/16" structural d directly to the bottom chord. resentation does not depict the size or th	sign. ph; TCDL=6.0psf; BCDL= 25-5-15, Interior(1) 25-5- rs and forces & MWFRS e load nonconcurrent with he bottom chord in all are s to bearing walls due to t onal Residential Code sec wood sheathing be appli ie orientation of the purlin	6.0psf; h=25ft; B=45ft; L r(1) 1-8-0 to 9-3-0, Exter 15 to 31-10-0 zone; cant for reactions shown; Lur n any other live loads. as where a rectangle 3-6 JPLIFT at jt(s) 2 and 10. ttions R502.11.1 and R8(ed directly to the top cho along the top and/or bot	=24ft; eave=4ft; Cr ior(2R) 9-3-0 to ilever left and right aber DOL=1.60 pla 5-0 tall by 2-0-0 wid This connection is 02.10.2 and rd and 1/2" gypsur tom chord.	at. ite for		EAL 5183		

minin March 23,2022

L	7-3-0	15-10-0	23-	-3-0	28-2-8 30-	6-0
	7-3-0	8-7-0	7-	5-0	4-11-8 2-3	3-8
Plate Offsets (X	(,Y) [4:0-4-0,0-1-11], [7:0-4-0,0-1	I-11], [9:0-0-15,0-1-8], [10:Edge,0-3-	9], [13:0-2-12,0-0-0], [15:0	-2-12,0-3-0], [16:Edge,0-3	-8], [17:0-2-5,0-1-8]	
LOADING (psf) TCLL 20.0 TCDL 10.0) SPACING- 2 Plate Grip DOL Lumber DOL	2-0-0 CSI. 1.15 TC 0.93 1.15 BC 0.91	DEFL. in Vert(LL) -0.18 Vert(CT) -0.42	(loc) l/defl L/d 16-17 >999 240 16-17 >872 180	PLATES MT20	GRIP 244/190
BCLL 0.0 BCDL 10.0	* Rep Stress Incr Code IRC2018/TPI20	YES WB 0.76 014 Matrix-AS	Horz(CT) 0.16	10 n/a n/a	Weight: 174 lb	FT = 20%
LUMBER- TOP CHORD	2x4 SP No.2 *Except* 4-7: 2x4 SP No.1		BRACING- TOP CHORD	Structural wood sheathing 2-0-0 oc purlins (2-11-0 m	directly applied, except ax.): 4-7.	
BOT CHORD	2x4 SP No.2 *Except* 6-16: 2x4 SP No.3		BOT CHORD	Rigid ceiling directly appli	ed.	
WEBS	2x4 SP No.3 *Except* 9-13: 2x4 SP No.2					
SLIDER	Left 2x4 SP No.3 1-6-0, Right 2x4 S	SP No.3 1-3-8				
REACTIONS.	(size) 2=0-3-8, 10=0-3-8 Max Horz 2=84(LC 11) Max Uplift 2=-42(LC 12), 10=-42(L Max Grav 2=1300(LC 1), 10=1300	C 12) (LC 1)				
FORCES. (Ib) TOP CHORD BOT CHORD	- Max. Comp./Max. Ten All forces 2-4=-1804/37, 4-5=-1485/60, 5-6= 9-10=-374/0 2-17=0/1469, 16-17=0/263, 6-15=	s 250 (lb) or less except when showr 2582/53, 6-7=-2657/54, 7-8=-2266/ -413/87, 14-15=0/1922, 13-14=0/30	n. /19, 8-9=-3200/0, /48, 12-13=0/1011,			
WEBS	8-13=0/511, 10-12=0/1077 4-17=0/628, 5-17=-948/21, 15-17 8-14=-1124/67, 9-13=0/2497, 9-1	=0/1824, 5-15=0/681, 7-15=-13/904, 2=-1229/0	, 7-14=0/443,			
NOTES- 1) Unbalanced r 2) Wind: ASCE II; Exp B; Pr. 11-4-12, Inteu exposed ; enu grip DOL=1.6	roof live loads have been considere 7-16; Vult=120mph (3-second gust) Open; MWFRS (directional) and C- rior(1) 11-4-12 to 23-3-0, Exterior(2) d vertical left and right exposed;C-C 30	d for this design. Vasd=95mph; TCDL=6.0psf; BCDL C Exterior(2E) -1-4-0 to 1-8-0, Interior R) 23-3-0 to 27-5-15, Interior(1) 27-5 C for members and forces & MWFRS	.=6.0psf; h=25ft; B=45ft; L= or(1) 1-8-0 to 7-3-0, Exteric 5-15 to 31-10-0 zone; cantil 5 for reactions shown; Lumi	=24ft; eave=4ft; Cat. or(2R) 7-3-0 to ever left and right ber DOL=1.60 plate		CARD WAY
 3) Provide adeq 4) This truss has 5) * This truss h will fit betwee 	uate drainage to prevent water pon s been designed for a 10.0 psf botto as been designed for a live load of on the bottom chord and any other n	ding. om chord live load nonconcurrent wit 20.0psf on the bottom chord in all are nembers.	th any other live loads. eas where a rectangle 3-6-	0 tall by 2-0-0 wide		SEAL 55183
6) One RT7A M uplift only and7) This truss is d	ITek connectors recommended to or d does not consider lateral forces. designed in accordance with the 20	onnect truss to bearing walls due to 18 International Residential Code se	UPLIFT at jt(s) 2 and 10. T ections R502.11.1 and R802	This connection is for 2.10.2 and		R
8) This truss des	tandard ANSI/TPI 1. sign requires that a minimum of 7/1 applied directly to the bottom chorc	6" structural wood sheathing be appl	lied directly to the top chore	d and 1/2" gypsum		GINEE
9) Graphical pu	rlin representation does not depict the	 he size or the orientation of the purlir	n along the top and/or botto	om chord	1111	03 5 111

- will fit between the bottom chord and any other members. 6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 23,2022

minin

818 Soundside Road Edenton, NC 27932

F	<u> </u>	8 15-10-0 8 5-3-8		<u>25-3-0</u> 9-5-0	<u>28-2-8</u> <u>30-6-0</u> 2-11-8 2-3-8				
Plate Offsets (X,Y)-	- [4:0-4-0,0-1-11], [9:0-2-12,0-1-0],	1:0-1-3,0-1-8], [12:Edge,0-3-9], [1	15:0-2-12,Edge], [17:0)-2-12,Edge], [19:0-2-0,0-1-8]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.76 BC 0.85 WB 0.97 Matrix-AS	DEFL. in Vert(LL) -0.28 Vert(CT) -0.70 Horz(CT) 0.18	(loc) l/defl L/d 16-17 >999 240 16-17 >525 180 12 n/a n/a	PLATES GRIP MT20 244/190 Weight: 170 lb FT = 20%				
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 2-1 WEBS 2x4 SLIDER Lef	SP No.2 SP No.2 *Except* 8,15-17: 2x4 SP No.1, 7-18: 2x4 SP N SP No.3 t 2x4 SP No.3 1-6-0, Right 2x4 SP No	.3 3 1-3-8	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire 2-0-0 oc purlins (2-8-5 max.): Rigid ceiling directly applied.	ectly applied, except 4-9.				
REACTIONS. Ma Ma Ma	REACTIONS. (size) 2=0-3-8, 12=0-3-8 Max Horz 2=64(LC 11) Max Uplift 2=-42(LC 12), 12=-42(LC 12) Max Grav 2=1300(LC 1), 12=1300(LC 1)								
FORCES. (lb) - M TOP CHORD 2-	ax. Comp./Max. Ten All forces 250 -4=-1824/32, 4-5=-2485/51, 5-7=-3779 0-11=-3131/0, 11-12=-338/0	b) or less except when shown. 31, 7-8=-3878/17, 8-9=-2197/0, 9-	-10=-3217/33,						
BOT CHORD 2 12	-20=0/1507, 19-20=0/1506, 7-17=-280 2-14=0/1050	62, 16-17=0/3344, 15-16=0/2245,	14-15=0/798,						
WEBS 4- 9-	19=-0/1222, 5-19=-983/56, 17-19=0/2 16=0/853, 11-15=0/2335, 11-14=-102	342, 5-17=0/1388, 8-17=0/634, 8- /0, 9-15=-102/714	16=-1328/81,						
NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Pr. Open; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 5-3-0, Exterior(2R) 5-3-0 to 9-5-15, Interior(1) 9-5-15 to 25-3-0, Exterior(2R) 25-3-0 to 29-4-14, Interior(1) 29-4-14 to 31-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60									

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 12. This connection is for uplift only and does not consider lateral forces.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 23,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qtv Plv	Carolina Seasons Lo	ot 7-Ph2 S2-2131 Elev 'A' Permit-Roof Truss
					T27211760
22020369-01	HIGRR	HIP GIRDER	1	1 Job Reference (optio	nal)
Carter Components (Lex	ington), Lexington, NC - 272	95,	8.530	s Dec 6 2021 MiTek Indus	ries, Inc. Tue Mar 22 14:59:55 2022 Page 1
			ID:cAXIwBcFhvIGNsOC	DTPEKSyNyV8-I2jpKPkIzg	gXbGwqGP5n2V0acccQ9CGXqr6A?NzYLd2 29-4-12
-1-4-0 3-3-0	7-5-5	<u>11-7-11</u> <u>15-10-0</u>	19-7-11	23-5-5 2	7-3-0 28-2-8 30-6-0 31-10-0
1-4-0 3-3-0	4-2-5	4-2-5 4-2-5	3-9-11	3-9-11 3	-9-11 0-11-8 1-2-4 1-1-4 1-4-0 Scale - 1-55 4
	4x8 =		3x5		
7.00 12	2x4	5x8 =	3x8 = 5x8 =	= 2x4	5x8 =
т					40 11 2x4
3x5 🛩					
8 3					
			21		
			46 47 ²⁰	48 19	
	25 44 24	42 4223 44	45 22 10x12 MT18HS = 2x4	6x10 =	$5x10 = $ \boxtimes \checkmark
5-0 H	2x4 5x8 =	42 43 $446x8 =$	45		3x6 $3x8 = 2x2 $
000			3x0 —		3X6
3-3-0	7-5-5	11-7-11 15-10-0	19-7-11	23-5-5 2	7-3-0 28-2-8 30-6-0
Blata Offacta (X V)	4-2-5	4-2-5 $4-2-5$		<u>3-9-11 3</u>	9-11 0-11-8 2-3-8 ¹
	4.0-0-4,0-1-12], [0.0-1-0,0-1-12	<u>j, [7.0-3-12,0-1-8], [11.0-0-0,0-2-0</u>	J, [13.0-0-11,0-1-0], [14.0-3	+,0-0-9], [17.0-4-0,0-3-4],	[21:0-3-4,Euge], [23:0-3-8,0-2-0]
LOADING (psf)	SPACING- 2-0-	csi.	DEFL. in (lo	oc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.1	5 TC 0.88	Vert(LL) -0.59 20-2	21 >621 240	MT20 244/190
BCU 0.0 *	Rep Stress Incr N	BC 0.86 WB 0.82	Horz(CT) -1.19 20-	21 >307 180 14 n/a n/a	MT18HS 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MS	11012(01) 0.20	in ind ind	Weight: 171 lb FT = 20%
			PRACING		
TOP CHORD 2x4 SP	No 2 *Except*		TOP CHORD Str	uctural wood sheathing di	rectly applied or 2-4-1 oc purlins, except
4-7,7-1	1: 2x4 SP 2400F 2.0E		2-0	-0 oc purlins (2-4-15 max	.): 4-11.
BOT CHORD 2x4 SP	2400F 2.0E *Except*		BOT CHORD Rig	id ceiling directly applied	or 10-0-0 oc bracing.
8-22,12 WEBS 2x4 SP	-16: 2x4 SP No.1 No 3 *Except*				
21-23:2	2x6 SP No.2, 6-21,13-17: 2x4 S	P No.2			
0-10 11					
5-13,11	-19,9-21: 2x4 SP No.1				
SLIDER Left 2x4	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I	No.3 1-3-9			
SLIDER Left 2x4	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I 2=0-3-8, 14=0-3-8	No.3 1-3-9			
REACTIONS. (size Max Ho	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 orz 2=46(LC 26)	No.3 1-3-9			
REACTIONS. (size Max Ho Max Uf	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 orz 2=46(LC 26) Vift 2=-147(LC 8), 14=-151(LC	No.3 1-3-9 8)			
REACTIONS. (size Max Ho Max Up Max G	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 orz 2=46(LC 26) Jift 2=-147(LC 8), 14=-151(LC av 2=1627(LC 1), 14=1627(LC	No.3 1-3-9 8) 1)			
REACTIONS. (size Max Hc Max Up Max Gi FORCES. (lb) - Max. 0	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 orz 2=46(LC 26) Jift 2=-147(LC 8), 14=-151(LC av 2=1627(LC 1), 14=1627(LC Comp./Max. Ten All forces 25	No.3 1-3-9 8) 1) 0 (lb) or less except when shown			
REACTIONS. (size Max Hc Max Up Max Gi FORCES. (lb) - Max. 0 TOP CHORD 2-4=-2	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 orz 2=46(LC 26) Jift 2=-147(LC 8), 14=-151(LC av 2=1627(LC 1), 14=1627(LC Comp./Max. Ten All forces 25 2258/186, 4-5=-3530/278, 5-6=	No.3 1-3-9 8) 1) 0 (lb) or less except when shown 3530/278, 6-8=-7554/554, 8-9=-7	7895/570,		
REACTIONS. (size Max He Max Up Max Gi FORCES. (lb) - Max. (TOP CHORD 2-4=-2 9-10= DOT CHORD 2-5	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 bit 2=-147(LC 8), 14=-151(LC av 2=1627(LC 1), 14=1627(LC Comp./Max. Ten All forces 25 2258/186, 4-5=-3530/278, 5-6= -5782/486, 10-11=-5782/486, 1 044056 40-57	No.3 1-3-9 8) 1) 0 (lb) or less except when shown 3530/278, 6-8=-7554/554, 8-9=-7 1-12=-4182/299, 12-13=-4043/28 0 -4-026(442), 02-20-20(3/28)	7895/570, 6, 13-14=-465/29		
REACTIONS. (size Max He Max Up Max Ge FORCES. (lb) - Max. (TOP CHORD 2-4=-2 9-10= BOT CHORD 2-25= 9-10= 19-20	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 brz 2=46(LC 26) Jift 2=-147(LC 8), 14=-151(LC av 2=1627(LC 1), 14=1627(LC Comp./Max. Ten All forces 25 2258/186, 4-5=-3530/278, 5-6= -5782/486, 10-11=-5782/486, 1 -101/1854, 24-25=-100/1859, 2 =-510/7437, 18-19=-237/3392	No.3 1-3-9 8) 1) 0 (lb) or less except when shown 3530/278, 6-8=-7554/554, 8-9=-7 1-12=-4182/299, 12-13=-4043/28 3-24=-265/4432, 22-23=-30/570, 17-18=-233/3339. 16-17=-44/104	'895/570, '6, 13-14=-465/29 20-21=-514/7411, 5. 14-16=-74/1377		
REACTIONS. (size Max He Max Up Max Ge FORCES. (lb) - Max. (TOP CHORD 2-4=-2 9-10= BOT CHORD 2-25= 19-20 WEBS 4-24=	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 brz 2=46(LC 26) Jift 2=-147(LC 8), 14=-151(LC av 2=1627(LC 1), 14=1627(LC Comp./Max. Ten All forces 25 2258/186, 4-5=-3530/278, 5-6= -5782/486, 10-11=-5782/486, 1 -101/1854, 24-25=-100/1859, 2 =-510/7437, 18-19=-237/3392, -138/1938, 5-24=-286/105, 6-2	No.3 1-3-9 8) 1) 0 (lb) or less except when shown 3530/278, 6-8=-7554/554, 8-9=-7 1-12=-4182/299, 12-13=-4043/28 3-24=-265/4432, 22-23=-30/570, 17-18=-233/3339, 16-17=-44/104 4=-1055/74, 6-23=-867/122, 21-23	8895/570, 16, 13-14=-465/29 20-21=-514/7411, 5, 14-16=-74/1377 3=-234/3921,		
FORCES. (b) BOT CHORD 2-4=-2 9-10e 9-10e BOT CHORD 2-4=-2 9-10e 9-10e BOT CHORD 2-25= 19-20 19-20 WEBS 4-24= 6-21= -21e	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 brz 2=46(LC 26) Jift 2=-147(LC 8), 14=-151(LC av 2=1627(LC 1), 14=1627(LC Comp./Max. Ten All forces 25 2258/186, 4-5=-3530/278, 5-6= -5782/486, 10-11=-5782/486, 1 -101/1854, 24-25=-100/1859, 2 =-510/7437, 18-19=-237/3392, -138/1938, 5-24=-286/105, 6-2 -243/3348, 9-19=-1758/113, 11 100/2000 41.47	No.3 1-3-9 8) 1) 0 (lb) or less except when shown 3530/278, 6-8=-7554/554, 8-9=-7 1-12=-4182/299, 12-13=-4043/28 3-24=-265/4432, 22-23=-30/570, 17-18=-233/3339, 16-17=-44/104 4=-1055/74, 6-23=-867/122, 21-23 -19=-223/2558, 11-18=-46/510, 1 0 -22/558, 11-18=-46/510, 1	8895/570, 16, 13-14=-465/29 20-21=-514/7411, 5, 14-16=-74/1377 3=-234/3921, 3-16=-1363/73,		
SLIDER Left 2x4 REACTIONS. (size Max He Max Up Max Gr FORCES. (lb) - Max. Gr TOP CHORD 2-4=-2 9-10= BOT CHORD 2-25= 19-20 WEBS 4-24= 6-21= 13-17	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 brz 2=46(LC 26) Jift 2=-147(LC 8), 14=-151(LC av 2=1627(LC 1), 14=1627(LC Comp./Max. Ten All forces 25 2258/186, 4-5=-3530/278, 5-6= -5782/486, 10-11=-5782/486, 1 -101/1854, 24-25=-100/1859, 2 =510/7437, 18-19=-237/3392, -138/1938, 5-24=-286/105, 6-2 -243/3348, 9-19=-1758/113, 11 =-190/3008, 11-17=-14/521, 9-	No.3 1-3-9 8) 1) 0 (lb) or less except when shown 3530/278, 6-8=-7554/554, 8-9=-7 1-12=-4182/299, 12-13=-4043/28 3-24=-265/4432, 22-23=-30/570, 17-18=-233/3339, 16-17=-44/104 4=-1055/74, 6-23=-867/122, 21-23 -19=-223/2558, 11-18=-46/510, 1 21=-32/525	8895/570, 16, 13-14=-465/29 20-21=-514/7411, 5, 14-16=-74/1377 3=-234/3921, 3-16=-1363/73,		
SLIDER Left 2x4 REACTIONS. (size Max He Max Up Max Gr FORCES. (lb) - Max Gr TOP CHORD 2-4=-2 9-10= BOT CHORD 2-25= 19-20 WEBS 4-24= 6-21= 13-17 NOTES- NOTES-	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 brz 2=46(LC 26) Jift 2=-147(LC 8), 14=-151(LC av 2=1627(LC 1), 14=1627(LC Comp./Max. Ten All forces 25 2258/186, 4-5=-3530/278, 5-6= -5782/486, 10-11=-5782/486, 1 -101/1854, 24-25=-100/1859, 2 =-510/7437, 18-19=-237/3392, -138/1938, 5-24=-286/105, 6-2 -243/3348, 9-19=-1758/113, 11 =-190/3008, 11-17=-14/521, 9-	No.3 1-3-9 8) 1) 0 (lb) or less except when shown 3530/278, 6-8=-7554/554, 8-9=-7 1-12=-4182/299, 12-13=-4043/28 3-24=-265/4432, 22-23=-30/570, 17-18=-233/3339, 16-17=-44/104 4=-1055/74, 6-23=-867/122, 21-23 -19=-223/2558, 11-18=-46/510, 1 21=-32/525	8895/570, 6, 13-14=-465/29 20-21=-514/7411, 5, 14-16=-74/1377 3=-234/3921, 3-16=-1363/73,		
REACTIONS. (size Max He Max Up Max Gr FORCES. (lb) - Max. (TOP CHORD 2-4=-2 9-10= BOT CHORD 2-25= 19-20 WEBS 4-24= 6-21= 13-17 NOTES- 1) Unbalanced roof live	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 brz 2=46(LC 26) Jift 2=-147(LC 8), 14=-151(LC av 2=1627(LC 1), 14=1627(LC Comp./Max. Ten All forces 25 2258/186, 4-5=-3530/278, 5-6= -5782/486, 10-11=-5782/486, 1 -101/1854, 24-25=-100/1859, 2 =-510/7437, 18-19=-237/3392, -138/1938, 5-24=-286/105, 6-2 -243/3348, 9-19=-1758/113, 11 =-190/3008, 11-17=-14/521, 9-	No.3 1-3-9 8) 1) 0 (lb) or less except when shown 3530/278, 6-8=-7554/554, 8-9=-7 1-12=-4182/299, 12-13=-4043/28 3-24=-265/4432, 22-23=-30/570, 17-18=-233/3339, 16-17=-44/104 4=-1055/74, 6-23=-867/122, 21-23 -19=-223/2558, 11-18=-46/510, 1 21=-32/525 r this design.	7895/570, 76, 13-14=-465/29 20-21=-514/7411, 5, 14-16=-74/1377 3=-234/3921, 3-16=-1363/73,		CAR BY
REACTIONS. (size Max He Max Up Max G FORCES. (lb) - Max. (TOP CHORD 2-4=-2 9-10 BOT CHORD 2-25= 19-20 WEBS 4-24= 6-21= 13-17 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V Ull EXP B- Dr. Over	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 brz 2=46(LC 26) Jift 2=-147(LC 8), 14=-151(LC av 2=1627(LC 1), 14=1627(LC Comp./Max. Ten All forces 25 2258/186, 4-5=-3530/278, 5-6= -5782/486, 10-11=-5782/486, 1 -101/1854, 24-25=-100/1859, 2 =-510/7437, 18-19=-237/3392, -138/1938, 5-24=-286/105, 6-2 -243/3348, 9-19=-1758/113, 11 =-190/3008, 11-17=-14/521, 9- Ioads have been considered for JIT=120mph (3-second gust) Va WEPS (directional) - castilizer	No.3 1-3-9 8) 1) 0 (lb) or less except when shown 3530/278, 6-8=-7554/554, 8-9=-7 1-12=-4182/299, 12-13=-4043/28 3-24=-265/4432, 22-23=-30/570, 17-18=-233/3339, 16-17=-44/104 4=-1055/74, 6-23=-867/122, 21-23 -19=-223/2558, 11-18=-46/510, 1 21=-32/525 r this design. sd=95mph; TCDL=6.0psf; BCDL= left and right expected and unit	- 7895/570, 16, 13-14=-465/29 20-21=-514/7411, 5, 14-16=-74/1377 3=-234/3921, 3-16=-1363/73, =6.0psf; h=25ft; B=45ft; L=24ft cal left and right expected by	it; eave=4ft; Cat.	CAR DUNK
REACTIONS. (size Max He Max Up Max Gr FORCES. (lb) - Max. (TOP CHORD 2-4=-2 9-10 BOT CHORD 2-4=-2 9-10 BOT CHORD 2-25= 19-20 WEBS 4-24= 6-21= 13-17 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; VI II; Exp B; Pr. Open; I plate orip DOL=1.60	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 brz 2=46(LC 26) Jift 2=-147(LC 8), 14=-151(LC av 2=1627(LC 1), 14=1627(LC Comp./Max. Ten All forces 25 2258/186, 4-5=-3530/278, 5-6= -5782/486, 10-11=-5782/486, 1 -101/1854, 24-25=-100/1859, 2 =-510/7437, 18-19=-237/3392, -138/1938, 5-24=-286/105, 6-2 -243/3348, 9-19=-1758/113, 11 =-190/3008, 11-17=-14/521, 9- loads have been considered for Jt=120mph (3-second gust) Va /WFRS (directional); cantileven	No.3 1-3-9 8) 1) 0 (lb) or less except when shown 3530/278, 6-8=-7554/554, 8-9=-7 1-12=-4182/299, 12-13=-4043/28 3-24=-265/4432, 22-23=-30/570, 17-18=-233/3339, 16-17=-44/104 4=-1055/74, 6-23=-867/122, 21-23 -19=-223/2558, 11-18=-46/510, 1 21=-32/525 r this design. sd=95mph; TCDL=6.0psf; BCDL= left and right exposed ; end vertic	7895/570, 16, 13-14=-465/29 20-21=-514/7411, 5, 14-16=-74/1377 3=-234/3921, 3-16=-1363/73, =6.0psf; h=25ft; B=45ft; L=24f cal left and right exposed; Lur	it; eave=4ft; Cat. nber DOL=1.60	CAR DU
REACTIONS. (size Max He Max Up Max Gr FORCES. (lb) - Max. (TOP CHORD 2-4=-2 9-10 BOT CHORD 2-4=-2 9-10 BOT CHORD 2-25= 19-20 WEBS 4-24= 6-21= 13-17 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; W II; Exp B; Pr. Open; N plate grip DOL=1.60 3) Provide adequate dra	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 brz 2=46(LC 26) Jift 2=-147(LC 8), 14=-151(LC av 2=1627(LC 1), 14=1627(LC Comp./Max. Ten All forces 25 2258/186, 4-5=-3530/278, 5-6= -5782/486, 10-11=-5782/486, 1 -101/1854, 24-25=-100/1859, 2 =-510/7437, 18-19=-237/3392, -138/1938, 5-24=-286/105, 6-2 -243/3348, 9-19=-1758/113, 11 =-190/3008, 11-17=-14/521, 9- loads have been considered for JIt=120mph (3-second gust) Va /WFRS (directional); cantileven ainage to prevent water ponding	No.3 1-3-9 8) 1) 0 (lb) or less except when shown 3530/278, 6-8=-7554/554, 8-9=-7 1-12=-4182/299, 12-13=-4043/28 3-24=-265/4432, 22-23=-30/570, 17-18=-233/3339, 16-17=-44/104 4=-1055/74, 6-23=-867/122, 21-2; -19=-223/2558, 11-18=-46/510, 1 21=-32/525 r this design. sd=95mph; TCDL=6.0psf; BCDL= left and right exposed ; end vertic 3.	7895/570, 16, 13-14=-465/29 20-21=-514/7411, 5, 14-16=-74/1377 3=-234/3921, 3-16=-1363/73, =6.0psf; h=25ft; B=45ft; L=24f cal left and right exposed; Lur	it; eave=4ft; Cat. nber DOL=1.60	H CAR BY
REACTIONS. (size Max He Max Up Max Gr FORCES. (lb) - Max. (TOP CHORD 2-4=-2 9-10= BOT CHORD 2-4=-2 9-10= BOT CHORD 2-25= 19-20 WEBS 4-24= 6-21= 13-17 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; VU II; Exp B; Pr. Open; N plate grip DOL=1.60 3) Provide adequate dra 4) All plates are MT20 p	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 brz 2=46(LC 26) Jift 2=-147(LC 8), 14=-151(LC av 2=1627(LC 1), 14=1627(LC Comp./Max. Ten All forces 25 2258/186, 4-5=-3530/278, 5-6= -5782/486, 10-11=-5782/486, 1 -101/1854, 24-25=-100/1859, 2 =-510/7437, 18-19=-237/3392, -138/1938, 5-24=-286/105, 6-2 -243/3348, 9-19=-1758/113, 11 =-190/3008, 11-17=-14/521, 9- loads have been considered for JIt=120mph (3-second gust) Va /WFRS (directional); cantileven ainage to prevent water pondim- lates unless otherwise indicate	No.3 1-3-9 8) 1) 0 (lb) or less except when shown 3530/278, 6-8=-7554/554, 8-9=-7 1-12=-4182/299, 12-13=-4043/28 3-24=-265/4432, 22-23=-30/570, 17-18=-233/3339, 16-17=-44/104 4=-1055/74, 6-23=-867/122, 21-23 -19=-223/2558, 11-18=-46/510, 1 21=-32/525 r this design. sd=95mph; TCDL=6.0psf; BCDL= left and right exposed ; end vertice 3.	7895/570, 16, 13-14=-465/29 20-21=-514/7411, 5, 14-16=-74/1377 3=-234/3921, 3-16=-1363/73, =6.0psf; h=25ft; B=45ft; L=24f cal left and right exposed; Lur	ít; eave=4ft; Cat. nber DOL=1.60	SEAL
REACTIONS. (size Max He Max Up Max G FORCES. (lb) - Max. (TOP CHORD 2-4=-2 9-10 BOT CHORD 2-4=-2 9-10 BOT CHORD 2-25= 19-20 WEBS 4-24= 6-21= 13-17 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V II; Exp B; Pr. Open; N plate grip DOL=1.60 3) Provide adequate dra 4) All plates are MT20 p 5) This truss has been of	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 brz 2=46(LC 26) Jift 2=-147(LC 8), 14=-151(LC av 2=1627(LC 1), 14=1627(LC Comp./Max. Ten All forces 25 2258/186, 4-5=-3530/278, 5-6= -5782/486, 10-11=-5782/486, 1 -101/1854, 24-25=-100/1859, 2 =-510/7437, 18-19=-237/3392, -138/1938, 5-24=-286/105, 6-2 -243/3348, 9-19=-1758/113, 11 =-190/3008, 11-17=-14/521, 9- Ioads have been considered for JIt=120mph (3-second gust) Va /WFRS (directional); cantileven ainage to prevent water pondinu- lates unless otherwise indicate lesigned for a 10.0 psf bottom -designed for a 10.0 psf bottom	 No.3 1-3-9 8) 0 (lb) or less except when shown 3530/278, 6-8=-7554/554, 8-9=-7 1-12=-4182/299, 12-13=-4043/28 3-24=-265/4432, 22-23=-30/570, 17-18=-233/3339, 16-17=-44/104 4=-1055/74, 6-23=-867/122, 21-2: -19=-223/2558, 11-18=-46/510, 1 21=-32/525 r this design. sd=95mph; TCDL=6.0psf; BCDL= left and right exposed ; end vertic 3. d. thord live load nonconcurrent with best on the bottom chord in all arc 	7895/570, 16, 13-14=-465/29 20-21=-514/7411, 5, 14-16=-74/1377 3=-234/3921, 3-16=-1363/73, =6.0psf; h=25ft; B=45ft; L=24ft cal left and right exposed; Lur h any other live loads.	it; eave=4ft; Cat. nber DOL=1.60	SEAL
REACTIONS. (size Max He Max Up Max G Max Up Max G FORCES. (lb) - Max. (TOP CHORD 2-4=-2 9-10 BOT CHORD 2-25= 19-20 WEBS 4-24= 6-21= 13-17 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V II; Exp B; Pr. Open; N plate grip DOL=1.60 3) Provide adequate dra 4) All plates are MT20 p 5) This truss has been (6) * This truss has been will fit between the bo	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 brz 2=46(LC 26) Jift 2=-147(LC 8), 14=-151(LC av 2=1627(LC 1), 14=1627(LC Comp./Max. Ten All forces 25 2258/186, 4-5=-3530/278, 5-6= -5782/486, 10-11=-5782/486, 1 -101/1854, 24-25=-100/1859, 2 =-510/7437, 18-19=-237/3392, -138/1938, 5-24=-286/105, 6-2 -243/3348, 9-19=-1758/113, 11 =-190/3008, 11-17=-14/521, 9- loads have been considered for JIt=120mph (3-second gust) Va/ /WFRS (directional); cantileven ainage to prevent water pondim- lates unless otherwise indicate fesigned for a 10.0 psf bottom idesigned for a live load of 20. totom chord and any other men	 No.3 1-3-9 8) 0 (lb) or less except when shown 3530/278, 6-8=-7554/554, 8-9=-7 1-12=-4182/299, 12-13=-4043/28 3-24=-265/4432, 22-23=-30/570, 17-18=-233/3339, 16-17=-44/104 4=-1055/74, 6-23=-867/122, 21-2: -19=-223/2558, 11-18=-46/510, 1 21=-32/525 r this design. sd=95mph; TCDL=6.0psf; BCDL= left and right exposed ; end vertic 3. d. chord live load nonconcurrent with 0psf on the bottom chord in all are ibers. 	7895/570, 16, 13-14=-465/29 20-21=-514/7411, 5, 14-16=-74/1377 3=-234/3921, 3-16=-1363/73, =6.0psf; h=25ft; B=45ft; L=24ft cal left and right exposed; Lur h any other live loads. eas where a rectangle 3-6-0 tage	ft; eave=4ft; Cat. nber DOL=1.60 all by 2-0-0 wide	SEAL 035183
REACTIONS. (size Max Ho Max Uf Max Uf 9-10 BOT CHORD 2-4=-2 BOT CHORD 2-4=-2 BOT CHORD 2-25= 19-20 WEBS 4-24= 6-21= 13-17 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; VI II; Exp B; Pr. Open; N plate grip DOL=1.60 3) Provide adequate dra 4) All plates are MT20 p 5) This truss has been will fit between the bo 7) One RT7A MiTek cou	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 brz 2=46(LC 26) Jift 2=-147(LC 8), 14=-151(LC av 2=1627(LC 1), 14=1627(LC Comp./Max. Ten All forces 25 2258/186, 4-5=-3530/278, 5-6= -5782/486, 10-11=-5782/486, 1 -101/1854, 24-25=-100/1859, 2 =-510/7437, 18-19=-237/3392, -138/1938, 5-24=-286/105, 6-2 -243/3348, 9-19=-1758/113, 11 =-190/3008, 11-17=-14/521, 9- loads have been considered for JIt=120mph (3-second gust) Va/ /WFRS (directional); cantileven ainage to prevent water pondim- lates unless otherwise indicate fesigned for a 10.0 psf bottom designed for a live load of 20. totom chord and any other men- nectors recommended to conr	 No.3 1-3-9 8) 0 (lb) or less except when shown 3530/278, 6-8=-7554/554, 8-9=-7 1-12=-4182/299, 12-13=-4043/28 3-24=-265/4432, 22-23=-30/570, 17-18=-233/3339, 16-17=-44/104 4=-1055/74, 6-23=-867/122, 21-2: -19=-223/2558, 11-18=-46/510, 1 21=-32/525 r this design. sd=95mph; TCDL=6.0psf; BCDL= left and right exposed ; end vertic 3. d. chord live load nonconcurrent with 0psf on the bottom chord in all are ibers. ect truss to bearing walls due to 0 	7895/570, 16, 13-14=-465/29 20-21=-514/7411, 5, 14-16=-74/1377 3=-234/3921, 3-16=-1363/73, =6.0psf; h=25ft; B=45ft; L=24f cal left and right exposed; Lur h any other live loads. eas where a rectangle 3-6-0 ta JPLIFT at jt(s) 2 and 14. This	ft; eave=4ft; Cat. nber DOL=1.60 all by 2-0-0 wide	SEAL 035183
REACTIONS. (size Max He Max Up Max G FORCES. (lb) - Max. (TOP CHORD 2-4=-2 9-10 BOT CHORD 2-4=-2 9-10 BOT CHORD 2-25= 19-20 WEBS 4-24= 6-21= 13-17 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V II; Exp B; Pr. Open; N plate grip DOL=1.60 3) Provide adequate dra 4) All plates are MT20 p 5) This truss has been will fit between the bu 7) One RT7A MiTek con uplift only and does r	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 brz 2=46(LC 26) Jift 2=-147(LC 8), 14=-151(LC av 2=1627(LC 1), 14=1627(LC Comp./Max. Ten All forces 25 2258/186, 4-5=-3530/278, 5-6= -5782/486, 10-11=-5782/486, 1 -101/1854, 24-25=-100/1859, 2 -510/7437, 18-19=-237/3392, -138/1938, 5-24=-286/105, 6-2 -243/3348, 9-19=-1758/113, 11 =-190/3008, 11-17=-14/521, 9- loads have been considered for JIt=120mph (3-second gust) Va /WFRS (directional); cantileven ainage to prevent water pondinu- lates unless otherwise indicate fesigned for a 10.0 psf bottom designed for a live load of 20. totom chord and any other men- nectors recommended to com-	No.3 1-3-9 8) 1) 0 (lb) or less except when shown 3530/278, 6-8=-7554/554, 8-9=-7 1-12=-4182/299, 12-13=-4043/28 3-24=-265/4432, 22-23=-30/570, 17-18=-233/3339, 16-17=-44/104 4=-1055/74, 6-23=-867/122, 21-2; -19=-223/2558, 11-18=-46/510, 1 21=-32/525 r this design. sd=95mph; TCDL=6.0psf; BCDL= left and right exposed ; end vertic j. d. shord live load nonconcurrent with ppsf on the bottom chord in all are ibers. ect truss to bearing walls due to le	7895/570, 16, 13-14=-465/29 20-21=-514/7411, 5, 14-16=-74/1377 3=-234/3921, 3-16=-1363/73, =6.0psf; h=25ft; B=45ft; L=24ft cal left and right exposed; Lur h any other live loads. was where a rectangle 3-6-0 ta JPLIFT at jt(s) 2 and 14. This	ft; eave=4ft; Cat. nber DOL=1.60 all by 2-0-0 wide	SEAL 035183
REACTIONS. (size Max Hu Max Gu FORCES. (lb) - Max. (TOP CHORD 2-4=-2 9-10= BOT CHORD 2-4=-2 9-10= BOT CHORD 2-25= 19-20 WEBS 4-24= 6-21= 13-17 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V II; Exp B; Pr. Open; N plate grip DOL=1.60 3) Provide adequate dra 4) All plates are MT20 p 5) This truss has been will fit between the bu 7) One RT7A MiTek con uplift only and does r 8) This truss is designe referenced standard	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 brz 2=46(LC 26) Jift 2=-147(LC 8), 14=-151(LC av 2=1627(LC 1), 14=1627(LC Comp./Max. Ten All forces 25 2258/186, 4-5=-3530/278, 5-6= -5782/486, 10-11=-5782/486, 1 -101/1854, 24-25=-100/1859, 2 -510/7437, 18-19=-237/3392, -138/1938, 5-24=-286/105, 6-2 -243/3348, 9-19=-1758/113, 11 =-190/3008, 11-17=-14/521, 9- Ioads have been considered for JIt=120mph (3-second gust) Va /WFRS (directional); cantileven ainage to prevent water pondinu- lates unless otherwise indicate lesigned for a 10.0 psf bottom designed for a live load of 20. yttom chord and any other men- nectors recommended to com- rot consider lateral forces. d in accordance with the 2018 I ANSI/TPI 1	No.3 1-3-9 8) 1) 0 (lb) or less except when shown 3530/278, 6-8=-7554/554, 8-9=-7 1-12=-4182/299, 12-13=-4043/28 3-24=-265/4432, 22-23=-30/570, 17-18=-233/3339, 16-17=-44/104 4=-1055/74, 6-23=-867/122, 21-2; -19=-223/2558, 11-18=-46/510, 1 21=-32/525 r this design. sd=95mph; TCDL=6.0psf; BCDL= left and right exposed ; end vertice j. d. shord live load nonconcurrent with ppsf on the bottom chord in all are ibers. ect truss to bearing walls due to bear international Residential Code sect	7895/570, 16, 13-14=-465/29 20-21=-514/7411, 5, 14-16=-74/1377 3=-234/3921, 3-16=-1363/73, =6.0psf; h=25ft; B=45ft; L=24f cal left and right exposed; Lur h any other live loads. eas where a rectangle 3-6-0 ta JPLIFT at jt(s) 2 and 14. This ctions R502.11.1 and R802.10	ft; eave=4ft; Cat. nber DOL=1.60 all by 2-0-0 wide connection is for 0.2 and	SEAL 035183
REACTIONS. (size Max Hu Max G Max U Max G Max U Max G FORCES. (lb) - Max. (TOP CHORD 2-4=-0 BOT CHORD 2-4=-0 BOT CHORD 2-25= 19-20 WEBS 4-24= 6-21= 13-17 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V II; Exp B; Pr. Open; N plate grip DOL=1.60 3) Provide adequate dra 4) All plates are MT20 p 5) This truss has been (6) * This truss has been will fit between the bo 7) One RT7A MiTek con uplift only and does r 8) This truss is designe referenced standard 9) Graphical purlin repro	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 brz 2=46(LC 26) Jift 2=-147(LC 8), 14=-151(LC av 2=1627(LC 1), 14=1627(LC Comp./Max. Ten All forces 25 2258/186, 4-5=-3530/278, 5-6= -5782/486, 10-11=-5782/486, 1 -101/1854, 24-25=-100/1859, 2 -510/7437, 18-19=-237/3392, -138/1938, 5-24=-286/105, 6-2 -243/3348, 9-19=-1758/113, 11 =-190/3008, 11-17=-14/521, 9- loads have been considered for JIt=120mph (3-second gust) Va/ /WFRS (directional); cantileven ainage to prevent water pondinu- lates unless otherwise indicate fesigned for a 10.0 psf bottom designed for a live load of 20. totom chord and any other men- nectors recommended to com- rot consider lateral forces. d in accordance with the 2018 I ANSI/TPI 1. ssentation does not depict the s	No.3 1-3-9 8) 1) 0 (lb) or less except when shown 3530/278, 6-8=-7554/554, 8-9=-7 1-12=-4182/299, 12-13=-4043/28 3-24=-265/4432, 22-23=-30/570, 17-18=-233/3339, 16-17=-44/104 4=-1055/74, 6-23=-867/122, 21-2; -19=-223/2558, 11-18=-46/510, 1 21=-32/525 r this design. sd=95mph; TCDL=6.0psf; BCDL= left and right exposed ; end vertic j. d. chord live load nonconcurrent with ppsf on the bottom chord in all are ibers. ect truss to bearing walls due to to international Residential Code sect ize or the orientation of the purlin	7895/570, 16, 13-14=-465/29 20-21=-514/7411, 5, 14-16=-74/1377 3=-234/3921, 3-16=-1363/73, =6.0psf; h=25ft; B=45ft; L=24f cal left and right exposed; Lur h any other live loads. was where a rectangle 3-6-0 to JPLIFT at jt(s) 2 and 14. This ctions R502.11.1 and R802.10 along the top and/or bottom	ft; eave=4ft; Cat. nber DOL=1.60 all by 2-0-0 wide connection is for 0.2 and chord.	SEAL 035183
REACTIONS. (size Max HG Max Uç Max G FORCES. (lb) - Max. (l Yop CHORD BOT CHORD BOT CHORD BOT CHORD CH	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 brz 2=46(LC 26) Jift 2=-147(LC 8), 14=-151(LC av 2=1627(LC 1), 14=1627(LC Comp./Max. Ten All forces 25 2258/186, 4-5=-3530/278, 5-6= -5782/486, 10-11=-5782/486, 1 -101/1854, 24-25=-100/1859, 2 =-510/7437, 18-19=-237/3392, -138/1938, 5-24=-286/105, 6-2 -243/3348, 9-19=-1758/113, 11 =-190/3008, 11-17=-14/521, 9- loads have been considered for JIt=120mph (3-second gust) Va/ /WFRS (directional); cantileven ainage to prevent water pondim- lates unless otherwise indicate fesigned for a 10.0 psf bottom adesigned for a live load of 20. totom chord and any other men- nectors recommended to com- rot consider lateral forces. d in accordance with the 2018 I ANSI/TPI 1. esentation does not depict the s	No.3 1-3-9 8) 1) 0 (lb) or less except when shown 3530/278, 6-8=-7554/554, 8-9=-7 1-12=-4182/299, 12-13=-4043/28 3-24=-265/4432, 22-23=-30/570, 17-18=-233/3339, 16-17=-44/104 4=-1055/74, 6-23=-867/122, 21-2; -19=-223/2558, 11-18=-46/510, 1 21=-32/525 r this design. sd=95mph; TCDL=6.0psf; BCDL= left and right exposed ; end vertice g. d. shord live load nonconcurrent with opsf on the bottom chord in all are ibers. ect truss to bearing walls due to to international Residential Code sector ize or the orientation of the purlin	7895/570, 16, 13-14=-465/29 20-21=-514/7411, 5, 14-16=-74/1377 3=-234/3921, 3-16=-1363/73, =6.0psf; h=25ft; B=45ft; L=24f cal left and right exposed; Lur h any other live loads. was where a rectangle 3-6-0 to JPLIFT at jt(s) 2 and 14. This ptions R502.11.1 and R802.10 h along the top and/or bottom	ft; eave=4ft; Cat. nber DOL=1.60 all by 2-0-0 wide connection is for 0.2 and chord.	SEAL 035183
REACTIONS. (size Max HG Max Uç Max G FORCES. (lb) - Max. (TOP CHORD 2-4=-2 9-10= BOT CHORD 2-25= 19-20 WEBS 4-24= 6-21= 13-17 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; VI II; Exp B; Pr. Open; N plate grip DOL=1.60 3) Provide adequate dra 4) All plates are MT20 p 5) This truss has been 6) * This truss has been will fit between the bo 7) One RT7A MiTek con uplift only and does r 8) This truss is designe referenced standard 9) Graphical purlin repro-	-19,9-21: 2x4 SP No.1 SP No.3 1-6-0, Right 2x4 SP I) 2=0-3-8, 14=0-3-8 brz 2=46(LC 26) Jift 2=-147(LC 8), 14=-151(LC av 2=1627(LC 1), 14=1627(LC Comp./Max. Ten All forces 25 2258/186, 4-5=-3530/278, 5-6= -5782/486, 10-11=-5782/486, 1 -101/1854, 24-25=-100/1859, 2 =-510/7437, 18-19=-237/3392, -138/1938, 5-24=-286/105, 6-2 -243/3348, 9-19=-1758/113, 11 =-190/3008, 11-17=-14/521, 9- loads have been considered for JIt=120mph (3-second gust) Va /WFRS (directional); cantileven ainage to prevent water pondinu- lates unless otherwise indicate designed for a 10.0 psf bottom designed for a live load of 20. totom chord and any other men- nectors recommended to com- rot consider lateral forces. d in accordance with the 2018 I ANSI/TPI 1.	No.3 1-3-9 8) 1) 0 (lb) or less except when shown 3530/278, 6-8=-7554/554, 8-9=-7 1-12=-4182/299, 12-13=-4043/28 3-24=-265/4432, 22-23=-30/570, 17-18=-233/3339, 16-17=-44/104 4=-1055/74, 6-23=-867/122, 21-2; -19=-223/2558, 11-18=-46/510, 1 21=-32/525 r this design. sd=95mph; TCDL=6.0psf; BCDL= left and right exposed ; end vertic g. d. shord live load nonconcurrent with psf on the bottom chord in all are ibers. ect truss to bearing walls due to to nternational Residential Code sect size or the orientation of the purlin		ft; eave=4ft; Cat. nber DOL=1.60 all by 2-0-0 wide connection is for 0.2 and chord.	SEAL 035183 MGINEEP

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Carolina Seasons Lot 7-Ph2 S2-2131 Elev 'A' Permit-Roof Truss	
					T27211760	
22020369-01	H1GRR	HIP GIRDER	1	1		
					Job Reference (optional)	
Carter Components (Lexingt	on), Lexington, NC - 272	95,	8.530 s Dec 6 2021 MiTek Industries, Inc. Tue Mar 22 14:59:55 2022 Page 2			
		ID:cAXIw	BcFhvIGN	ISOCDTPE	KSyNyV8-I2jpKPkIzggXbGwqGP5n2V0acccQ9CGXqr6A?NzYLd2	

NOTES-

- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 155 lb down and 46 lb up at 3-3-0, 63 lb down and 42 lb up at 5-2-4, 63 lb down and 42 lb up at 7-2-4, 63 lb down and 42 lb up at 11-2-4, 55 lb down and 42 lb up at 13-2-4, 55 lb down and 42 lb up at 15-2-4, 50 lb down and 30 lb up at 17-2-4, 50 lb down and 30 lb up at 19-2-4, 58 lb down and 30 lb up at 21-2-4, 58 lb down and 30 lb up at 23-2-4, and 58 lb down and 30 lb up at 25-2-4, and 102 lb down at 7-2-4, 19 lb down at 15-2-4, 19 lb down at 11-2-4, 19 lb down at 11-2-4, 19 lb down at 15-2-4, 24 lb down and 18 lb up at 17-2-4, 24 lb down and 18 lb up at 17-2-4, 24 lb down and 18 lb up at 11-2-4, 24 lb down and 18 lb up at 12-2-4, 24 lb down and 18 lb up at 12-2-4, 24 lb down and 18 lb up at 12-2-4, 24 lb down and 18 lb up at 12-2-4, 24 lb down and 18 lb up at 21-2-4, 24 lb down and 18 lb up at 21-2-4, 24 lb down and 18 lb up at 21-2-4, 24 lb down and 18 lb up at 21-2-4, 24 lb down and 18 lb up at 21-2-4, 24 lb down and 18 lb up at 21-2-4, 24 lb down and 18 lb up at 21-2-4, 24 lb down and 18 lb up at 21-2-4, 24 lb down and 18 lb up at 21-2-4, 24 lb down and 18 lb up at 21-2-4, 24 lb down and 18 lb up at 21-2-4, 24 lb down and 18 lb up at 21-2-4, 24 lb down and 18 lb up at 21-2-4, 24 lb down and 18 lb up at 21-2-4, 24 lb down and 18 lb up at 21-2-4, 24 lb down and 18 lb up at 21-2-4, 24 lb down and 18 lb up at 21-2-4, 24 lb down and 18 lb up at 21-2-4, and 24 lb down and 18 lb up at 25-2-4, and 159 lb down and 70 lb up at 27-2-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-60, 4-11=-60, 11-15=-60, 22-26=-20, 17-21=-20, 16-30=-20

Concentrated Loads (lb)

Vert: 4=-28(F) 7=-12(F) 11=-32(F) 25=-180(F) 24=-8(F) 5=-12(F) 9=-7(F) 19=-20(F) 10=-7(F) 18=-159(F) 34=-12(F) 35=-12(F) 36=-12(F) 37=-12(F) 38=-7(F) 39=-7(F) 40=-7(F) 41=-8(F) 42=-8(F) 44=-8(F) 45=-8(F) 45=-8(F) 45=-20(F) 47=-20(F) 48=-20(F) 49=-20(F) 49=

		L	10-1-2		13-3-0	17-3-0	20-4-14		30-6-0		
			10-1-2		' 3-1-14	4-0-0	3-1-14		10-1-2	1	
Plate Offse	ts (X,Y)	[6:0-8-8,0-2-0], [8:0-8-8,0)-2-0]								
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.84	Vert(LL)	-0.24 13-30	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.96	Vert(CT)	-0.54 14-19	>674	180	MT20HS	187/143
BCLL BCDL	0.0 * 10.0	Rep Stress Incr Code IRC2018/T	YES PI2014	WB Matrix	0.69 (-AS	Horz(CT)	0.10 12	n/a	n/a	Weight: 182 lb	FT = 20%

LUMBER-		BRACING-	
TOP CHORD	2x4 SP No.2 *Except*	TOP CHORD	Structural wood sheathing directly applied, except
	1-5,9-12: 2x4 SP No.1, 6-8: 2x4 SP 2400F 2.0E		2-0-0 oc purlins (4-0-3 max.): 6-8.
BOT CHORD	2x4 SP No.1 *Except*	BOT CHORD	Rigid ceiling directly applied. Except:
	15-20: 2x4 SP No.2		4-9-0 oc bracing: 15-20
WEBS	2x4 SP No.3 *Except*	JOINTS	1 Brace at Jt(s): 22, 23
	7-13,7-21: 2x4 SP 2400F 2.0E		
OTHERS	2x4 SP No 3		

SLIDER Left 2x4 SP No.3 1-6-0, Right 2x4 SP No.3 1-6-0

- REACTIONS. (size) 2=0-3-8, 12=Mechanical Max Horz 2=140(LC 11) Max Grav 2=1846(LC 17), 12=1772(LC 18)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown. TOP CHORD 2-4=-2630/0, 4-6=-2474/0, 8-10=-2480/0, 10-12=-2635/0, 6-7=-2089/0, 7-8=-2093/0 BOT CHORD 2-21=0/2259, 19-21=0/2776, 14-19=0/2776, 13-14=0/2776, 12-13=0/2168, 18-20=0/570, 16-18=-1224/0. 15-16=0/576 WEBS 7-23=0/603, 15-23=0/1029, 13-15=0/1185, 10-13=-255/165, 20-21=0/1175, 20-22=0/1020,
- 7-22=0/596, 14-16=0/254, 13-16=-1804/0, 18-21=-1803/0, 6-22=0/493, 8-23=0/498

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Pr. Open; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 13-3-0, Exterior(2E) 13-3-0 to 17-3-0, Exterior(2R) 17-3-0 to 21-5-15, Interior(1) 21-5-15 to 30-6-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) 350.0lb AC unit load placed on the bottom chord, 15-3-0 from left end, supported at two points, 4-0-0 apart.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Refer to girder(s) for truss to truss connections.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 23,2022

L	10-1-2	13-3-0	17-3-0	20-4-14		30-6-0		
	10-1-2	3-1-14	4-0-0	3-1-14		10-1-2		
Plate Offsets (X,Y)	[5:0-4-0,0-1-11], [7:0-4-0,0-1-11], [10:0-	3-8,Edge]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.83 BC 0.97 WB 0.98 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.20 11-24 -0.41 12-17 0.11 10	l/defl L/d >999 240 >889 180 n/a n/a	PLATES MT20 Weight: 183 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x4 S 5-7:2 BOT CHORD 2x4 S 13-18 WEBS 2x4 S 6-11, SLIDER Left 2 REACTIONS. (s	P No.1 *Except* 2x4 SP No.2 P No.1 *Except* 1: 2x4 SP No.2 IP No.3 *Except* 6-19: 2x4 SP No.1 x4 SP No.3 1-6-0, Right 2x4 SP No.3 1-6 ze) 10=Mechanical, 2=0-3-8	BRACING- TOP CHORI BOT CHORI WEBS	0 Structu 2-0-0 o Rigid ca 6-0-0 o 1 Row a	ral wood sheathing dir c purlins (4-0-0 max.): eiling directly applied. c bracing: 13-18 at midpt 6-	ectly applied, except 5-7. Except: -11, 6-19			
REACTIONS. (size) 10=Mechanical, 2=0-3-8 Max Horz 2=120(LC 11) Max Grav 10=1763(LC 18), 2=1836(LC 17) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. 10=1763(LC 18), 2=1836(LC 17) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-2619/0, 4-5=-2461/0, 7-8=-2467/0, 8-10=-2625/0, 5-6=-2087/0, 6-7=-2091/0 BOT CHORD 2-19=0/2238, 17-19=0/2662, 12-17=0/2662, 10-11=0/2162, 16-18=0/1046, 14-16=-772/0, 13-14=0/1049 WEBS 6-21=-274/43, 13-21=0/723, 11-13=0/1218, 18-19=0/1206, 18-20=0/713, 6-20=-278/45, 12-14=0/253, 11-14=-1733/0, 16-19=-1732/0, 5-20=0/1008, 7-21=0/1013								

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Pr. Open; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 11-3-0, Exterior(2R) 11-3-0 to 15-3-0, Interior(1) 15-3-0 to 19-3-0, Exterior(2R) 19-3-0 to 23-5-15, Interior(1) 23-5-15 to 30-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) 350.0lb AC unit load placed on the bottom chord, 15-3-0 from left end, supported at two points, 4-0-0 apart.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 23,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

16

5x8 WB =

18

19

20

4x8 =

37

38

12¹⁴

4x8 =

39

40

5x8 ||

4x5 =

13

Ŕ 5x8 ||

	L	10-1-2		1:	3-3-0	17-3-0	20-4-	14	_		30-6-0	
		10-1-2		3-	-1-14 '	4-0-0	' 3-1-1	4	1		10-1-2	
Plate Offsets (X	(,Y) [5:0-3-1	,Edge], [8:0-3-1	,Edge], [11:0-3-8,I	_dge]								
LOADING (psf	f) S	PACING-	2-0-0	CSI.	0.00	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0		late Grip DOL	1.15		0.83	Vert(LL)	-0.26 12	-27	>999	240	MI120	244/190
RCLL 0.0			VES		0.96		-0.55 15	11	>095	160		
BCDI 10.0		Code IRC2018/	TES FPI2014	Matrix.	0.76		0.11		n/a	n/a	Weight: 180 lb	FT – 20%
2022 1010				manna							Trongina 100 lb	
LUMBER-						BRACING-						
TOP CHORD	2x4 SP No.1 *E	Except*				TOP CHOP	RD St	ructu	ral wood	sheathing d	lirectly applied, except	
	5-8: 2x4 SP No	.2					2-	0-0 0	c purlins	(3-1-1 max.): 5-8.	
BOT CHORD	2x4 SP No.1 *E	Except*				BOT CHOP	RD Ri	igid ce	eiling dire	ectly applied	. Except:	
	14-19: 2x4 SP	No.2					4-	8-0 0	c bracing	j: 14-19		
WEBS	2x4 SP No.3 *E	Except*				JOINTS	1	Brace	at Jt(s):	19, 14, 21,	22, 23, 24	
	9-12,4-20: 2x4	SP 2400F 2.0E										
OTHERS	2x4 SP No.3											
SLIDER	Left 2x4 SP No	.3 1-6-0, Right 2	2x4 SP No.3 1-6-0									
REACTIONS.	(size) 11=	Mechanical, 2=	0-3-8									
	Max Grav 11-	-1718(I C 18) 2-	-1791(I C 17)									
		1110(2010), 2										
FORCES. (lb)) - Max. Comp./N	Max. Ten All fo	orces 250 (lb) or le	ess except v	vhen shown.							
TOP CHORD	2-4=-2515/0, 7-8=-2266/0	4-5=-2517/0, 8-	9=-2525/0, 9-11=	2521/0, 5-6	=-2262/0, 6-7=	=-2029/0,						
BOT CHORD	2-20=0/2125,	18-20=0/3434,	13-18=0/3434, 12	-13=0/3434	, 11-12=0/206	4, 17-19=0/300	,					
	15-17=-1352/	0, 14-15=0/296										
WEBS	7-24=-252/11	3, 14-24=-369/6	39, 12-14=-316/66	, 12-22=0/9	73, 9-22=0/313	3, 4-21=0/317,						
	20-21=0/977,	12-15=-1661/0	, 17-20=-1510/0, 5	5-21=0/833,	8-22=0/839, 1	9-20=-319/65,						
	19-23=-374/7	2, 6-23=-257/12	20, 23-24=-349/0									
NULES-	an of Barrier to a star to											
1) Unbalanced	7 16: Vult 120	ave been consid	dered for this desi	yn. N TODI - 6 (Onof: h 25ft: P	454.1 2	14.00		Cot	List.	CAP
2) WIND: ASCE	00000: MW/EPS	hph (3-second (gust) vasu=95mp	1; 1 CDL=0.0	PSI; BCDL=6.	Upsi; n=25ii; B:	=4511; L=24	4IL, ea	100 ± 410	Jal.	Nah	
13-5-15 Into	10 peri, NWFR3	to 21-3-0 Exteri	r(2R) 21-3-0 to 2) - 1 - 4 - 0 10 1 5 - 5 - 15 Into	rior(1) 25-5-15	to 30-6-0 zone	, Exterior(ZR) 9 vr loft	-3-0 l0 and right	•		Star IX 1/X
exposed : en	nor(1) 13-5-15 t	o z 1-3-0, Extern	C_{C} for members	and forces	& MWERS for	reactions show	vn· Lumhe		–1 60 n	late		NUNCYC
arin DOI =1 f	60	ia light exposed							00 p	late	-X :0	× : =
3) 350 0lb AC u	unit load placed	on the bottom c	hord 15-3-0 from	left end sur	ported at two	points 4-0-0 a	hart				z	i i i i i i
 Provide adec 	quate drainage t	o prevent water	ponding		spontoù at two		Juin.				- - (): S	EAL : =
5) All plates are	e 2x4 MT20 unle	ess otherwise in	dicated.								= 💛 🛛 🖓	5192 · ·
6) This truss ha	as been designe	d for a 10.0 psf	bottom chord live	load noncor	ncurrent with a	ny other live loa	ads.				- 00	5165
7) * This truss h	has been design	ed for a live loa	d of 20.0psf on the	e bottom che	ord in all areas	where a rectar	ngle 3-6-0	tall by	/ 2-0-0 w	vide	- E - N	1 - E -
will fit betwee	en the bottom ch	nord and any oth	ner members, with	BCDL = 10	0.0psf.		•				3	a: 5
8) Refer to girde	er(s) for truss to	truss connectio	ins.								· ····Vo	INEE
9) This truss is	designed in acc	ordance with the	e 2018 Internation	al Resident	ial Code sectio	ons R502.11.1 a	and R802.1	10.2 a	nd		11. JI.	EE IN
referenced st	tandard ANSI/T	PI 1.									11,021	JS LEIN
10) This truss d	design requires t	hat a minimum	of 7/16" structural	wood sheat	thing be applie	ed directly to the	e top chord	and	1/2" gyps	sum	1111	1111111 C
sheetrock b	pe applied direct	ly to the bottom	chord.									March 23 2022
11) Graphical p	ourlin representa	ition does not de	epict the size or th	e orientation	n of the purlin a	along the top ar	nd/or botto	m cho	ord.			
											1]
	NG - Verify design pa	arameters and READ	NOTES ON THIS AND	INCLUDED MI	TEK REFERENCE	PAGE MII-7473 rev	. 5/19/2020 B	EFORE	USE.		ENGIN	EERING BY
Design vali	id for use only with N	/iTek® connectors.	This design is based o	nly upon param	eters shown, and	is for an individual	building comp	onent,	not			CNCO I
a truss syst building de	esign. Bracing indica	ated is to prevent but	ckling of individual trus	s web and/or cl	arameters and pro	 Additional temporate tr 	rary and perr	nanent	bracing			Gi'lli
is always re	equired for stability a	and to prevent collar	se with possible perso	nal injury and p	property damage.	For general guidan	ce regarding	the				A MiTek Affiliate
safety Info	, storage, delivery, e ormation available	from Truss Plate Inc	or trusses and truss sy stitute, 2670 Crain High	stems, see way, Suite 203	ANSI/TPI1 (Waldorf, MD 206	Quality Critería, DS 01	5B-89 and B	CSI Bu	ilding Con	nponent	818 Soundsi	de Road
				,, 200							Eaenton, NC	21332

L	7-3-0	15-3-0		23-3-0	30-6-0	
	7-3-0	8-0-0	1	8-0-0	7-3-0	·
Plate Offsets (X,Y)	[4:0-4-0,0-1-11], [6:0-4-0,0-1-11], [10:0-	4-0,0-3-0]	1			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.94 BC 0.85 WB 0.35 Matrix-AS	DEFL. ir Vert(LL) -0.14 Vert(CT) -0.32 Horz(CT) 0.10	ı (loc) l/defl 9-10 >999 2 10-11 >999 1 0 8 n/a	L/d PLATES 240 MT20 180 n/a Weight: 147 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF 4-6: 2x BOT CHORD 2x4 SF WEBS 2x4 SF SLIDER Left 2x REACTIONS. (siz Max H Max U Max G	 No.2 *Except* 4 SP No.1 No.2 No.3 4 SP No.3 1-6-0, Right 2x4 SP No.3 1-6 e) 8=Mechanical, 2=0-3-8 orz 2=81(LC 11) plift 8=-8(LC 12), 2=-43(LC 12) irgav 8=1218(LC 1), 2=1302(LC 1) 	- 0	BRACING- TOP CHORD BOT CHORD	Structural wood she 2-0-0 oc purlins (3- Rigid ceiling directh	eathing directly applied, except 1-2 max.): 4-6. y applied.	
FORCES. (lb) - Max. TOP CHORD 2-4=- BOT CHORD 2-11= WEBS 4-11=	Comp./Max. Ten All forces 250 (lb) o .1819/40, 4-5=-2137/68, 5-6=-2137/68, =0/1488, 10-11=0/1484, 9-10=0/1492, 8 =0/274, 4-10=-0/842, 5-10=-578/104, 6-	r less except when shown 6-8=-1827/43 -9=0/1496 10=0/837, 6-9=0/275				
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V II; Exp B; Pr. Open; 11-5-15, Interior(1) - exposed ; end vertic grip DOL=1.60 3) Provide adequate di 4) This truss has been 5) * This truss has been 6) Refer to girder(s) for 7) Provide mechanical 8) One RT7A MiTek oc only and does not oc 9) This truss is designer referenced standard 10) This truss design r sheetrock be applied 11) Graphical purlin referenced	e loads have been considered for this de /ult=120mph (3-second gust) Vasd=95n MWFRS (directional) and C-C Exterior(11-5-15 to 23-3-0, Exterior(2R) 23-3-0 tr ial left and right exposed;C-C for member rainage to prevent water ponding. designed for a 10.0 psf bottom chord lin n designed for a live load of 20.0psf on vottom chord and any other members. truss to truss connections. connection (by others) of truss to bearin onnectors recommended to connect trus onsider lateral forces. ad in accordance with the 2018 Internati I ANSI/TPI 1. equires that a minimum of 7/16" structure ed directly to the bottom chord. presentation does not depict the size or	esign. https://tcDL=6.0psf; BCDL= 2E) -1-4-0 to 1-8-0, Interio 27-5-15, Interior(1) 27-5- ers and forces & MWFRS re load nonconcurrent with the bottom chord in all are ng plate capable of withsta s to bearing walls due to l onal Residential Code sec al wood sheathing be app the orientation of the purl	=6.0psf; h=25ft; B=45ft; I r(1) 1-8-0 to 7-3-0, Exter 15 to 30-6-0 zone; canti for reactions shown; Lur h any other live loads. eas where a rectangle 3- anding 100 lb uplift at join UPLIFT at jt(s) 2. This co ctions R502.11.1 and R8 blied directly to the top ch in along the top and/or b	.=24ft; eave=4ft; Cat. ior(2R) 7-3-0 to lever left and right nber DOL=1.60 plate 6-0 tall by 2-0-0 wide nt(s) 8. nnection is for uplift 02.10.2 and nord and 1/2" gypsun ottom chord.		CAR SEAL 35183 GINEER.

March 23,2022

<u>⊢</u>	5-3-0	15-3-0		25-3-0	30-6-0
	5-3-0 '	10-0-0	1	10-0-0	5-3-0
Plate Offsets (X,Y)	[4:0-4-0,0-1-11], [8:0-4-0,0-1-11], [12:0-	4-0,0-3-4]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.84 BC 0.86 WB 0.41 Matrix-AS	DEFL. ir Vert(LL) -0.24 Vert(CT) -0.57 Horz(CT) 0.11	n (loc) I/defl L/d 11-12 >999 240 7 12-13 >646 180 10 n/a n/a	PLATES GRIP MT20 244/190 Weight: 145 lb FT = 20%
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI WEBS 2x4 SI SLIDER Left 2	P No.2 P No.1 P No.3 x4 SP No.3 1-6-0, Right 2x4 SP No.3 1-6	-0	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing dii 2-0-0 oc purlins (2-7-3 max.): Rigid ceiling directly applied. 1 Row at midpt 5	ectly applied, except 4-8. -13, 7-11
REACTIONS. (siz Max H Max U Max 0	ze) 10=Mechanical, 2=0-3-8 Horz 2=61(LC 11) Jplift 10=-8(LC 12), 2=-43(LC 12) Grav 10=1218(LC 1), 2=1302(LC 1)				

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-1864/15, 4-5=-1514/39, 5-7=-2724/12, 7-8=-1527/43, 8-10=-1876/20

BOT CHORD 2-13=0/1541, 12-13=-12/2592, 11-12=-14/2596, 10-11=0/1554

WEBS 4-13=0/687, 5-13=-1273/53, 5-12=0/335, 7-12=0/333, 7-11=-1267/49, 8-11=0/686

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Pr. Open; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 5-3-0, Exterior(2R) 5-3-0 to 9-5-15, Interior(1) 9-5-15 to 25-3-0, Exterior(2R) 25-3-0 to 29-5-15, Interior(1) 29-5-15 to 30-6-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This trust has been designed for a too particulation of 20.0ps for the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10.
 One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 23,2022

- BOT CHORD 2-17=-149/1842, 16-17=-148/1850, 15-16=-270/4490, 13-15=-270/4490, 12-13=-209/2652, 11-12=-209/2652
- WEBS 4-16=-120/2161, 5-16=-403/133, 6-16=-741/40, 6-15=0/251, 6-13=-417/39, 8-13=-350/116, 9-13=-94/1594, 9-12=0/272, 9-11=-2846/207

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Pr. Open; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.

4) All plates are MT20 plates unless otherwise indicated.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=106.
- One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 23,2022

ENGINEERING BY REENCO A MiTek Affiliate 818 Soundside Road

Edenton, NC 27932

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Carolina Seasons Lot 7-Ph2 S2-2131 Elev 'A' Permit-Roof Truss
					T27211766
22020369-01	H1GRA	Half Hip Girder	1	1	
					Job Reference (optional)
Carter Components (Lexingt	on), Lexington, NC - 272	95,	8	.530 s Dec	c 6 2021 MiTek Industries, Inc. Tue Mar 22 14:59:52 2022 Page 2
		ID:cAX	wBcFhvIG	NsOCDTF	PEKSyNyV8-tT2giOiQgllykoCFbHX4QtP1kOYZyqN58tuWO2zYLd5

NOTES-

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 155 lb down and 46 lb up at 3-3-0, 63 lb down and 42 lb up at 4-11-4, 63 lb down and 42 lb up at 8-11-4, 58 lb down and 42 lb up at 10-11-4, 55 lb down and 42 lb up at 12-11-4, 55 lb down and 42 lb up at 14-11-4, 55 lb down and 42 lb up at 16-11-4, 63 lb down and 42 lb up at 14-11-4, 55 lb down and 42 lb up at 12-11-4, 63 lb down and 42 lb up at 14-11-4, 55 lb down and 42 lb up at 22-11-4, 63 lb down and 42 lb up at 12-11-4, 63 lb down and 42 lb up at 12-11-4, 63 lb down and 42 lb up at 24-11-4, and 63 lb down and 42 lb up at 26-11-4, and 63 lb down and 42 lb up at 28-11-4 on top chord, and 180 lb down and 61 lb up at 3-3-0, 19 lb down at 4-11-4, 19 lb down at 6-11-4, 19 lb down at 8-11-4, 19 lb down at 10-11-4, 19 lb down at 12-11-4, 19 lb down at 16-11-4, 19 lb down at 20-11-4, 19 lb down at 20-11-4,

13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-60, 4-10=-60, 11-18=-20 Concentrated Loads (lb)

Vert: 4=-28(B) 7=-12(B) 17=-180(B) 16=-8(B) 5=-12(B) 12=-8(B) 9=-12(B) 22=-12(B) 23=-12(B) 23=-12(B) 25=-12(B) 25=-12(B) 26=-12(B) 26=-12(B) 29=-12(B) 30=-12(B) 31=-12(B) 32=-12(B) 32=-12(B) 33=-8(B) 35=-8(B) 36=-8(B) 3

- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

And Antonio Antonio

March 23,2022

		10-1	10-1-2					30-6-0		
		10-1	-2		10-3-12			10-1-2		
LOADING	i (psf) 20.0	SPACING- 2 Plate Grip DOL	2-0-0 CS 1.15 TC	I. 0.59	DEFL. Vert(LL)	in (loc) -0.37 12-14	l/defl >992	L/d 240	PLATES MT20	GRIP 244/190
TCDL BCLL BCDL	10.0 0.0 * 10.0	Lumber DOL Rep Stress Incr Code IRC2018/TPI20	1.15 BC YES WE 014 Ma	0.83 0.24 trix-AS	Vert(CT) Horz(CT)	-0.59 12-14 0.07 10	>616 n/a	180 n/a	Weight: 154 lb	FT = 20%
LUMBER	-		I		BRACING-					

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-	
---------	--

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.1
WEBS	2x4 SP No.2 *Except*
	8-12,4-14: 2x4 SP No.3
SLIDER	Left 2x4 SP No.3 1-6-0. Right 2x4 SP No.

.3 1-6-0 REACTIONS. (size) 2=0-3-8, 10=0-3-8 Max Horz 2=164(LC 11)

Max Uplift 2=-42(LC 12), 10=-42(LC 12) Max Grav 2=1483(LC 17), 10=1483(LC 18)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-2023/79, 4-6=-1884/135, 6-8=-1885/135, 8-10=-2023/79

BOT CHORD 2-14=0/1779, 12-14=0/1200, 10-12=0/1659

WEBS 6-12=-11/869, 8-12=-396/146, 6-14=-11/869, 4-14=-396/146

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Pr. Open; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 15-3-0, Exterior(2R) 15-3-0 to 18-3-0, Interior(1) 18-3-0 to 31-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

March 23,2022

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.77 BC 0.67 WB 0.25 Matrix-AS	DEFL. in Vert(LL) -0.18 Vert(CT) -0.38 Horz(CT) 0.01	(loc) 5-8 5-8 5	l/defl L/d >666 240 >314 180 n/a n/a	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 20%			
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	No.2 No.2 No.3		BRACING- TOP CHORD BOT CHORD	Structura Rigid cei	al wood sheathing dii iling directly applied.	rectly applied, except	t end verticals.			
REACTIONS. (size) 2=0-3-8, 5=Mechanical Max Horz 2=80(LC 8) Max Uplift 2=-46(LC 8), 5=-21(LC 8) Max Grav 2=480(LC 1), 5=389(LC 1)										
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-710/185 BOT CHORD 2-5=-242/680 WEBS 3-5=-657/266										
NOTES- 1) Wind: ASCE 7-16; V II; Exp B; Pr. Open; right exposed ; end v DOL=1.60 2) This truss has been will fit between the b 4) Refer to girder(s) for 5) Provide mechanical 6) Two SBP4 MiTek co	ult=120mph (3-second gust) Vasd=95m MWFRS (directional) and C-C Exterior(2 vertical left exposed;C-C for members a designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on to ottom chord and any other members. truss to truss connections. connection (by others) of truss to bearin nnectors recommended to connect trus	uph; TCDL=6.0psf; BCDL= 2E) -1-4-0 to 1-8-0, Interio nd forces & MWFRS for re e load nonconcurrent with he bottom chord in all are ug plate capable of withsta s to bearing walls due to t	=6.0psf; h=25ft; B=45ft; L r(1) 1-8-0 to 9-10-4 zone eactions shown; Lumber n any other live loads. eas where a rectangle 3-6 anding 100 lb uplift at join JPLIFT at jt(s) 2. This co	=24ft; eav ; cantileve DOL=1.60 i-0 tall by t(s) 5. nnection i	ve=4ft; Cat. er left and 0 plate grip 2-0-0 wide is for uplift	(Print)	CAR d'm			

only and does not consider lateral forces. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1. 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

March 23,2022

818 Soundside Road Edenton, NC 27932

LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	0.00	1	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	0.01	1	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	7	n/a	n/a		
BCDL	10.0	Code IRC2018/T	PI2014	Matri	x-S						Weight: 41 lb	FT = 20%
LUMBER-						BRACING-						
TOP CHOP	RD 2x4 SP	No.2				TOP CHOR	D	Structu	iral wood	sheathing di	irectly applied or 6-0-0	oc purlins,
BOT CHOR	RD 2x4 SP	No.2						except	end verti	cals.		
WEBS	2x4 SP	No.3				BOT CHOR	D	Rigid c	eiling dire	ectly applied	or 10-0-0 oc bracing.	
OTHERS	2x4 SP	No.3							0		Ū.	

REACTIONS. All bearings 10-0-0.

(lb) - Max Horz 2=79(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 7, 2, 8, 9, 10

Max Grav All reactions 250 lb or less at joint(s) 7, 2, 8, 9 except 10=299(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Pr. Open; MWFRS (directional) and C-C Corner(3E) -1-4-0 to 1-8-0, Exterior(2N) 1-8-0 to 9-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 9) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7, 8, 9, and 10. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 23,2022

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.36 BC 0.30 WB 0.00 Matrix-AS	DEFL. in Vert(LL) 0.09 Vert(CT) -0.08 Horz(CT) -0.00	(loc) 4-7 4-7 2	l/defl >702 >855 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER-			BRACING-					

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=49(LC 8) Max Uplift 2=-90(LC 8), 4=-53(LC 8) Max Grav 2=304(LC 1), 4=204(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Pr. Open; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 5-4-4 zone; cantilever left and right exposed ; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 3) will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

March 23,2022

LOADING (ps TCLL 20 TCDL 10 BCLL 0 BCDL 10	osf) 0.0 0.0 0.0 * 0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matrix	0.36 0.30 0.00 x-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.09 -0.08 -0.00	(loc) 4-9 4-9 2	l/defl >702 >855 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%	
LUMBER-						BRACING-							

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 2x4 SP No.3 OTHERS

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=49(LC 8) Max Uplift 2=-90(LC 8), 4=-53(LC 8) Max Grav 2=304(LC 1), 4=204(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Pr. Open; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 5-4-4 zone; cantilever left and right exposed ; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 8) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

March 23,2022

