

RE: J1020-4751 Lot 47 South Creek Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J1020-4751 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: N/A Roof Load: 40.0 psf Design Program: MiTek 20/20 8.3 Wind Speed: 120 mph Floor Load: N/A psf

This package includes 26 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	E14967274	A01	10/12/2020	21	E14967294	J07	10/12/2020
2	E14967275	A01A	10/12/2020	22	E14967295	J07GE	10/12/2020
3	E14967276	A01AG	10/12/2020	23	E14967296	M01	10/12/2020
4	E14967277	A02	10/12/2020	24	E14967297	M01SG	10/12/2020
5	E14967278	A02A	10/12/2020	25	E14967298	PB01	10/12/2020
6	E14967279	B01	10/12/2020	26	E14967299	PB01GE	10/12/2020
7	E14967280	B01GR	10/12/2020				
8	E14967281	B01SG	10/12/2020				
9	E14967282	C01	10/12/2020				
10	E14967283	C01GE	10/12/2020				
11	E14967284	C02	10/12/2020				
12	E14967285	C02GE	10/12/2020				
13	E14967286	D01	10/12/2020				
14	E14967287	D01GE	10/12/2020				
15	E14967288	D02	10/12/2020				
16	E14967289	D03	10/12/2020				
17	E14967290	E01	10/12/2020				
18	E14967291	E01SG	10/12/2020				
19	E14967292	G01	10/12/2020				
20	E14967293	G01GE	10/12/2020				

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Lassiter, Frank

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the design for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Design valid for use only with MiTeke connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highways, Suite 203 Waldorf, MD 20601

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highways, Suite 203 Waldorf, MD 20601

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qu** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 47 South Creek	
					E'	14967276
J1020-4751	A01AG	GABLE	1	1		
					Job Reference (optional)	
Comtech, Inc, Fayette	ville, NC - 28314,			.330 s Jul	22 2020 MiTek Industries, Inc. Mon Oct 12 12:36:04 2020 F	Page 2
-		ID:wAa	OiCu?enb	zDlvzeia6d	3zFzeT-lgSOHToT3nX76pT7K2AcAQLr7xZPC MCaXCan?	vU9Jv

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 16 except (jt=lb) 21=114, 17=559, 18=1306.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

15) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.

16) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 47 South Creek	
					E	14967277
J1020-4751	A02	ATTIC	1	2		
				–	Job Reference (optional)	
Comtech, Inc, Fayette	ville, NC - 28314,		8	3.330 s Jul	22 2020 MiTek Industries, Inc. Mon Oct 12 12:36:06 2020	Page 2

13) Attic room checked for L/360 deflection.

ID:wAaOiCu?enbzDlvzeiq6d3zFzeT-E3a8i9qjaOnrM7dWRTC4FrQ7jl5zgq5V1rhhrtyU9Jt

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 2-16=-155(F=-104), 14-16=-103, 13-14=-117(F=-65), 12-13=-52, 1-4=-155, 4-5=-207, 5-6=-155, 8-9=-155, 9-10=-207, 10-11=-155, 5-9=-52, 6-8=-155 Drag: 4-16=-26, 10-14=-26

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job		Truss	Truss Type	Qty	Ply	Lot 47 South Creek	
							E14967278
J1020-4751		A02A	ATTIC	1	2		
					_	Job Reference (optional)	
Comtech, Inc, F	ayettevi	lle, NC - 28314,		8	.330 s Jul	22 2020 MiTek Industries, Inc. Mon Oct 12 12:36:08 2020	D Page 2
			ID:wAa	aOiCu?ent	zDlvzeiq6	d3zFzeT-ASiu7rr_6?1ZbQnuZuEYLGWTEYnT8jOoV8Anv	wmyU9Jr

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

14) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 2-16=-155(F=-104), 14-16=-103, 13-14=-117(F=-65), 12-13=-52, 1-4=-155, 4-5=-207, 5-6=-155, 8-9=-155, 9-10=-207, 10-11=-155, 5-9=-52, 6-8=-155 Drag: 4-16=-26, 10-14=-26

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TRENCO A MITCH Affiliate 818 Soundside Road

Edenton, NC 27932

October 12,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 47 South Creek
					E14967280
J1020-4751	B01GR	COMMON	1	2	
				_	Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,			3.330 s Jul	22 2020 MiTek Industries, Inc. Mon Oct 12 12:36:10 2020 Page 2

ID:wAaOiCu?enbzDlvzeiq6d3zFzeT-7qpfYXtEedHHqkwHgJH0QhbwXMXyclj4ySfu_eyU9Jp

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-5=-60, 5-8=-60, 2-8=-20

Concentrated Loads (lb)

Vert: 9=-234(F) 13=-234(F) 15=-234(F) 16=-234(F) 18=-234(F) 19=-234(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	6-5-7 6-5-7	9-1-5 2-7-14	12-0-0 2-10-11	17-3-9 5-3-9	17 ₇ 5 ₇ 9 19-0-0 0-2-0 1-6-7	23-11-0 4-11-0
Plate Offsets (X,Y)	[2:0-0-11,Edge], [7:0-4-10,0-2-0], [12	:0-2-12,0-2-12]				
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) l/defl	L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.62	Vert(LL)	-0.23 12-13 >999	360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.60	Vert(CT)	-0.41 12-13 >690	240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.70	Horz(CT)	0.03 10 n/a	n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S	Wind(LL)	0.13 12-13 >999	240	Weight: 166 lb FT = 20%
LUMBER-			BRACING			
TOP CHORD 2x6 SP No.1				RD Structural woo	d sheathing directly	applied or 4-9-2 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

 BOT CHORD
 2x6 SP 1400F
 2.0E *Except*

 10-12:
 2x10 SP No.1

 WEBS
 2x4 SP No.2 *Except*

 5-12,6-8:
 2x4 SP No.1

- REACTIONS. (size) 10=0-3-8, 2=0-3-8 Max Horz 2=129(LC 9) Max Uplift 10=-4(LC 8), 2=-56(LC 8) Max Grav 10=1133(LC 2), 2=1112(LC 2)
- FORCES.
 (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-2641/455, 3-5=-1510/303, 5-6=-1334/330, 6-7=-199/968, 7-8=-117/682,
- 8-9=-1174/331, 9-10=-1925/339
- BOT CHORD 2-13=-385/2462, 12-13=-385/2462, 11-12=-153/1360, 10-11=-152/1354
- WEBS 3-13=0/371, 5-12=0/372, 6-8=-2351/561, 3-12=-1214/247, 9-11=-30/966

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-5 to 3-8-8, Interior(1) 3-8-8 to 17-3-9, Exterior(2R) 17-3-9 to 21-8-6, Interior(1) 21-8-6 to 23-9-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 2.
 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REFERENCE FROE INTERCENCE FROE IN

 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road

Edenton, NC 27932

	6-5-7	9-1-5	12-0-0	17-3-9	17-5-9 19-0-0 21-4-0		
Plate Offsets (X)	Y) [2:0-0-11 Edge] [7:0-4-10 0-2-0] [13:0-:	<u>-2-7-14</u> 3-8 0-7-12] [14·0-2-12 0-2-1	121	5-3-9	0-2-0 1-6-7 2-4-0		
		, , , , , , , , , , , , , , , , , , , ,					
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) I/defl L/d	PLATES GRIP		
TCLL 20.0	Plate Grip DOL 1.15	TC 0.50	Vert(LL) -0.22	14-15 >999 360	MT20 244/190		
TCDL 10.0	Lumber DOL 1.15	BC 0.75	Vert(CT) -0.40	14-15 >632 240			
BCLL 0.0	* Rep Stress Incr YES	WB 0.71	Horz(CT) 0.02	12 n/a n/a			
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S	Wind(LL) 0.13	14-15 >999 240	Weight: 157 lb FT = 20%		
LUMBER-			BRACING-				
TOP CHORD 2	2x6 SP No.1		TOP CHORD	Structural wood sheathing di	rectly applied or 5-1-13 oc purlins.		
BOT CHORD 2	2x6 SP 2400F 2.0E *Except*			except end verticals.			
1	1-14: 2x10 SP No.1		BOT CHORD	Rigid ceiling directly applied	or 7-3-12 oc bracing.		
WEBS 2	2x4 SP No.2 *Except*			0 0 7 11	0		
1	0-12: 2x6 SP No.1, 5-14,6-8: 2x4 SP No.1						
REACTIONS.	(size) 2=0-3-8, 12=Mechanical						
Ν	Max Horz 2=126(LC 9)						
N	Max Uplift 2=-51(LC 8), 12=-17(LC 8)						
ſ	Max Grav 2=976(LC 2), 12=1045(LC 2)						
	May Camp (May Tap All farage 250 (lb) as						
FURCES. (ID) -	• Max. Comp./Max. Ten All forces 250 (ID) or	less except when shown.	4				
TOP CHORD	2-3=-2257/382, 3-5=-1074/215, 5-6=-936/258	, 0-7=-103/733, 7-8=-34/40 405	Ι,				
	2-15-413/2080 14-15-413/2088 13-14-17	405					
WEBS	3-15-0/408 5-14-0/265 6-8-1663/383 3-1/	-1238/256 0-13-0/536 1	0-13288/1500				
WEBS	3-13-0/400, 3-14-0/203, 0-0-1003/303, 3-1-	-1200/200, 9-10-0/000, 1	0-13-200/1330				
NOTES-							
1) Unbalanced ro	oof live loads have been considered for this de	sian.					
2) Wind: ASCE 7	7-16; Vult=120mph (3-second gust) Vasd=95m	oh; TCDL=6.0psf; BCDL=6.	.0psf; h=15ft; Cat. II; E	xp C; Enclosed;			
MWFRS (enve	elope) and C-C Exterior(2E) -0-8-5 to 3-8-8, Int	erior(1) 3-8-8 to 17-3-9, Ext	terior(2E) 17-3-9 to 20-	-11-12 zone;C-C for			
members and	forces & MWFRS for reactions shown; Lumbe	DOL=1.60 plate grip DOL	=1.60		-3111075		
3) This truss has	been designed for a 10.0 psf bottom chord live	load nonconcurrent with a	ny other live loads.				
4) * This truss ha	as been designed for a live load of 30.0psf on the	ne bottom chord in all areas	where a rectangle 3-6	6-0 tall by 2-0-0 wide	N'TH CAROUN		
will fit between	n the bottom chord and any other members, wit	h BCDL = 10.0psf.			Nos in the		
5) Refer to girder	r(s) for truss to truss connections.				ESON AND		
6) Provide mecha	anical connection (by others) of truss to bearing	g plate capable of withstand	ding 100 lb uplift at join	nt(s) 2, 12.	The house		
 This truss is de referenced sta 	esigned in accordance with the 2018 Internation and ard ANSI/TPI 1.	nal Residential Code section	ons R502.11.1 and R8	02.10.2 and	a contraction		
8) See Standard	See Standard Industry Pingyhack Trues Connection Detail for Connection to base trues as applicable or consult qualified building						

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[11:0-2-1,0-3-0]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.03 BC 0.01 WB 0.06 Matrix-S	DEFL. ir Vert(LL) -0.00 Vert(CT) 0.00 Horz(CT) 0.00	n (loc) l/defl L/d) 1 n/r 120) 1 n/r 120) 14 n/a n/a	PLATES GRIP MT20 244/190 Weight: 156 lb FT = 20%
LUMBER- TOP CHORD 2x6 S BOT CHORD 2x6 S 2-19: 2x6 S WEBS 2x6 S OTHERS 2x4 S	P No.1 P No.1 *Except* 2x6 SP 2400F 2.0E P No.1 P No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied	rectly applied or 6-0-0 oc purlins, or 10-0-0 oc bracing.
REACTIONS. All b	pearings 21-4-0.				

(lb) - Max Horz 2=171(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 2, 14, 17, 18, 20, 21, 22, 23, 24, 15 Max Grav All reactions 250 lb or less at joint(s) 2, 14, 16, 17, 18, 20, 21, 22, 23, 15 except 24=259(LC 25)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-8-5 to 3-8-8, Exterior(2N) 3-8-8 to 17-3-9, Corner(3E) 17-3-9 to 20-11-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14, 17, 18, 20, 21, 22, 23, 24, 15.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

TREERING BY REENCO A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 47 South Creek		
J1020-4751	D01	COMMON	1	1			E14967286
Comtech. Inc. Favett	eville. NC - 28314.			.330 s Ju	Job Reference (option	ial) ies. Inc. Mon Oct 12 12:36:17 2	020 Page 1
,,,,,,	0.11.0 6	1.10 11_1.10	ID:wAaOiCu	?enbzDlv	zeiq6d3zFzeT-PBII0wyc	d?mAHApzdaHvfCAN?rAysIr76Z	ZrmkkyU9Ji
	0-11-0 6	-1-12 5-0-0	5-0-0		6-1-12	0-11-0	
			4x6 =				Scale = 1:61.5
	Ţ		5				
		2x4 =	2x4 =	=			
		4	6				
	10.	00 12	//				
		13			2x4 7		
	9	B		R	\mathbf{X}		
	6						
			10-0-0				
	2						
						9. ¹ ¹	
		12 2x4 2x4	11 2x4 1	10		4x8	
		6x6 =	8x8 =	6x6	=		
	6	-1-12 11-1-12	16-1-12	1	22-3-8		
Plate Offsets (X,Y) [2	6 0-0-12,0-5-5], [2:0-0-6,0-0-7],	-1-12 <u>5-0-0</u> 5:0-3-0,Edge], [8:0-0-6,0-0-7], [8:0-	<u> </u>	1	6-1-12		
			DEEL in	(loc)	l/defl L/d		
TCLL 20.0	Plate Grip DOL 1.15	TC 0.68	Vert(LL) -0.33	10-12	>802 360	MT20 244/1	90
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.56 WB 0.43	Vert(CT) -0.48 Horz(CT) 0.02	10-12 8	>544 240 n/a n/a		
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S	Wind(LL) 0.13	12	>999 240	Weight: 174 lb FT =	= 20%
			BRACING-	Christen	ol wood ob oothing dia		
BOT CHORD 2x6 SP N	lo.1		BOT CHORD	Rigid ce	eiling directly applied o	or 10-0-0 oc bracing.	ins.
WEBS 2x4 SP N 10-12: 2x	lo.2 *Except* 6 SP No.1						
WEDGE							
Len. 2x6 SP No.1, Right.	220 37 110.1						
REACTIONS. (size) Max Hor:	8=0-3-8, 2=0-3-8 z 2=-203(LC 10)						
Max Upli	ft 8=-1(LC 13), 2=-1(LC 12)	10)					
Max Gra	v 8=1169(LC 20), 2=1169(LC	19)					
FORCES. (Ib) - Max. Co TOP CHORD 2-3=-14	omp./Max. Ten All forces 250 51/123, 3-4=-868/212, 4-5=-5) (lb) or less except when shown. 9/428, 5-6=-59/428, 6-7=-868/212, 7	7-8=-1450/123				
BOT CHORD 2-12=0/	/937, 10-12=0/938, 8-10=0/937	7					
WEBS 3-12=0/	045, 7-10=0/045, 4-0=-1590/3	20					
1) Unbalanced roof live lo	bads have been considered for	this design.					
2) Wind: ASCE 7-16; Vult	t=120mph (3-second gust) Vas	d=95mph; TCDL=6.0psf; BCDL=6.0	0psf; h=15ft; Cat. II; E	xp C; En	closed;		
15-6-9 to 23-1-1 zone;	C-C for members and forces 8	MWFRS for reactions shown; Lum	ber DOL=1.60 plate g	rip DOL=	1.60	annun.	
 4) * This truss has been de 	esigned for a 10.0 pst bottom c	hord live load nonconcurrent with ar psf on the bottom chord in all areas	ny other live loads. where a rectangle 3-6	6-0 tall by	2-0-0 wide	TH CARO	ing
will fit between the both 5) Provide mechanical co	tom chord and any other mem innection (by others) of truss to	pers, with BCDL = 10.0psf.	ing 100 lb uplift at ioin	t(s) 8. 2.		NO TESTICI	Kin
6) This truss is designed	in accordance with the 2018 Ir	ternational Residential Code sectio	ns R502.11.1 and R80	02.10.2 a	ind S	ZPAR	
referenced standard A	NSI/TPLT.				E	SEAL	1 A E
					Ξ	030652	1 E
					1	030032	1.1
						TO AL A	123
						ANGINE	The second
						TR. LASS	1111
						in minine in the second	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 October 12,2020

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.04 BC 0.02 WB 0.14 Matrix-S	DEFL. ir Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.00	n (loc) l/defl L/d 14 n/r 120 14 n/r 120 14 n/a n/a	PLATES GRIP MT20 244/190 Weight: 208 lb FT = 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF OTHERS 2x4 SF	2 No.1 2 No.1 2 No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing di Rigid ceiling directly applied 1 Row at midpt 8	rectly applied or 6-0-0 oc purlins. or 10-0-0 oc bracing. -22

Left: 2x6 SP No.1, Right: 2x6 SP No.1

(lb) - Max Horz 2=-203(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 23, 24, 25, 26, 27, 20, 19, 18, 17, 16, 14 Max Grav All reactions 250 lb or less at joint(s) 2, 22, 23, 24, 25, 26, 27, 20, 19, 18, 17, 16, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-279/181, 13-14=-271/133

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3E) -0-9-9 to 3-7-4, Exterior(2N) 3-7-4 to 11-1-12, Corner(3R) 11-1-12 to 15-6-9, Exterior(2N) 15-6-9 to 23-1-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 23, 24, 25, 26, 27, 20, 19, 18, 17, 16, 14.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

The Print Print 1111111111 SEAL 030652 mmm October 12,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. All bearings 22-3-8.

Job	Truss	Truss Type	Qty P	'ly Lo	ot 47 South Creek	54 4007000
J1020-4751	D02	соммол	6	1		E14967288
Comtech, Inc, Fayette	/ ville, NC - 28314,		8.3	Jo 30 s Jul 22	ob Reference (optiona 2 2020 MiTek Industri	al) es, Inc. Mon Oct 12 12:36:19 2020 Page 1
-	-0-11-0	ID:w.	AaOiCu?enb: 16-1-12	zDlvzeiq6o	d3zFzeT-MZs3Rc_tX0 22-3-8	DQ?Q660iix7HbTLB_dHDlaP1MKtpdyU9Jg
	0-11-0	6-1-12 5-0-0	5-0-0		6-1-12	
		4x6 =				Scale = 1:61.5
	I	5				
		2x4 =	2x4 =	=		
		4	6			
		10.00 12 2x4 II		10	04	
		12		13	7	
	-3-6	P		R	<u> </u>	
	1					
		10-0-0				_
	2					8
	11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1] @			
		11 2x4 2x4 ¹⁰	2x4	9		
		6x6 = 8x8	=	6x6 =	=	
		6-1-12 11-1-12	16-1-12	I	22-3-8	
Plate Offsets (X,Y) [2:0	-0-12,0-5-5], [2:0-0-6,0-0-7],	<u>6-1-12</u> <u>5-0-0</u> [5:0-3-0.Edge], [8:0-0-6,0-0-7], [8:0-0-12,0-5-5]	5-0-0		6-1-12	
			in	(loc) //	dofl I/d	
TCLL 20.0	Plate Grip DOL 1.15	TC 0.69 Vert(LL)	-0.33	9-11 >7	796 360	MT20 244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.57 Vert(CT WB 0.43 Horz(CT	-0.49) 0.02	9-11 >5 8	539 240 n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S Wind(LL) 0.13	11 >9	999 240	Weight: 171 lb FT = 20%
	4	BRACIN	G-	New		other analysis of 5 4 5 as purpling
BOT CHORD 2x6 SP No	.1	BOT CH	ORD R	Rigid ceilin	ng directly applied or	· 10-0-0 oc bracing.
WEBS 2x4 SP No 9-11: 2x6 S	.2 *Except* SP No.1					
WEDGE						
Len. 2x0 SF NO.1, Kight. 2	EXO SF NO.1					
REACTIONS. (size) Max Horz	2=0-3-8, 8=0-3-8 2=202(LC 11)					
Max Uplift	2=-1(LC 12)	20)				
	2=1170(LC 13), 0=1110(LC	20)				
TOP CHORD 2-3=-145	np./Max. Ten All forces 25(4/124, 3-4=-869/212, 4-5=-6) (lb) or less except when shown. 2/432, 5-6=-61/432, 6-7=-870/213, 7-8=-1443/12	21			
BOT CHORD 2-11=0/9	37, 9-11=0/937, 8-9=0/937 48, 7-9=0/633, 4-6=-1404/33	2				
	-0, 7 3-0,000, - 0- 1-0-,00	2				
1) Unbalanced roof live loa	ids have been considered for	this design.				
2) Wind: ASCE 7-16; Vult= MWERS (envelope) and	120mph (3-second gust) Vas	sd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; -7-4_Interior(1) 3-7-4 to 11-1-12_Exterior(2R) 1	Cat. II; Exp	C; Enclos	sed; rior(1)	
15-6-9 to 22-1-12 zone;	C-C for members and forces	& MWFRS for reactions shown; Lumber DOL=1	.60 plate gri	ip DOL=1.	.60	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
4) * This truss has been de	signed for a live load of 30.0	psf on the bottom chord in all areas where a rec	tangle 3-6-0) tall by 2-	0-0 wide	TH CARO
will fit between the botto5) Provide mechanical con	m chord and any other mem nection (by others) of truss to	pers, with BCDL = 10.0psf. b bearing plate capable of withstanding 100 lb u	olift at joint(s	s) 2.		NO SESSION IS
6) This truss is designed in	accordance with the 2018 Ir	ternational Residential Code sections R502.11.	1 and R802	.10.2 and		7999
Telefenceu Standard An	SI/1F11.				E	SEAL
					E	030652
						000002
						TO AN ARIAS
						ANGINEE
						THE R. LAS

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

October 12,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTel 818 Soundside Road Edenton, NC 27932

October 12,2020

- BOT CHORD 2-6=-106/492, 4-6=-106/492
- WEBS 3-6=-201/541

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) and C-C Exterior(2E) -0-9-1 to 3-7-12, Interior(1) 3-7-12 to 7-2-0, Exterior(2R) 7-2-0 to 11-6-13, Interior(1) 11-6-13 to 15-1-1 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Grav 2=919(LC 1), 6=919(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-3=-1047/183, 3-4=-816/199, 4-5=-816/199, 5-6=-1047/183

TOP CHORD

BOT CHORD 2-8=-41/781, 6-8=-30/739

WEBS 4-8=-109/637, 5-8=-303/204, 3-8=-303/204

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-1 to 3-7-12, Interior(1) 3-7-12 to 10-11-8, Exterior(2R) 10-11-8 to 15-4-5, Interior(1) 15-4-5 to 22-8-1 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIRS AND INCLODED MITER REFERENCE PAGE mit-143 a few of 3/3/2/00 BeFORE DSE. Design valid for use only with MITeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component**
 Satisfies
 Ansi/TPI Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

			21-11-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDI 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code. IRC2018/TPI2014	CSI. TC 0.04 BC 0.02 WB 0.13 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 14 n/r 120 Vert(CT) -0.00 14 n/r 120 Horz(CT) 0.00 14 n/a n/a	PLATES GRIP MT20 244/190 Weight: 195 lb ET = 20%
LUMBER-			BRACING-	

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. All bearings 21-11-0.

Max Horz 2=249(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 14, 22, 24, 25, 26, 27, 20, 19, 18, 17, 16

Max Grav All reactions 250 lb or less at joint(s) 2, 14, 21, 22, 24, 25, 26, 27, 20, 19, 18, 17, 16

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-311/193, 13-14=-265/125

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-9-1 to 3-7-12, Exterior(2N) 3-7-12 to 10-11-8, Corner(3R) 10-11-8 to 15-4-5, Exterior(2N) 15-4-5 to 22-8-1 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14, 22, 24, 25, 26, 27, 20, 19, 18, 17, 16.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 6-0-0 oc purlins.

8-21

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

À WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIRS AND INCLODED MITER REFERENCE PAGE mit-143 a few of 3/3/2/00 BeFORE DSE. Design valid for use only with MITeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component**
 Satisfies
 Ansi/TPI Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

-6-0

]-5-8

except end verticals.

1 Row at midpt

Structural wood sheathing directly applied or 6-0-0 oc purlins,

2-3

Rigid ceiling directly applied or 10-0-0 oc bracing.

3 4x6 =

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.15	TC	0.72	Vert(LL)	-0.02	3-4	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.15	Vert(CT)	-0.04	3-4	>999	240			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.16	Horz(CT)	-0.00	3	n/a	n/a			
BCDL	10.0	Code IRC2018/TP	12014	Matri	x-P	Wind(LL)	0.00	4	****	240	Weight: 68 lb	FT = 20%	
LUMBER	۶-					BRACING							

TOP CHORD

BOT CHORD

WEBS

6-8-8

LUMBER-

TOP CHORD	2x4 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2 *Except*
	2-3: 2x6 SP No.1

REACTIONS. (size) 4=Mechanical, 3=0-1-8 Max Horz 4=144(LC 12) Max Uplift 3=-176(LC 12)

Max Grav 4=257(LC 21), 3=302(LC 19)

(Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. FORCES

	man oompin
TOP CHORD	2-3=-204/296
BOT CHORD	3-4=-328/127

WFBS 1-3=-158/405

NOTES-

1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-3-4 to 4-8-1, Interior(1) 4-8-1 to 6-5-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

4-8-11

5⁴

2x4 ||

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=176.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see AMS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Science (Integration Quillable from Zines Plate) between 2012 (Crite Highware Visite 2013 Waldoff MID 2001) fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI1 Qu** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

9 8 7 6 5x12 = 3x10 || 2x4 || 4x6 =

ł

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0))) *)	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.90 BC 0.14 WB 0.34 Matrix-R	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) -0.00	(loc) l/defl L/d - n/a 999 - n/a 999 6 n/a n/a	PLATES MT20 Weight: 91 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP 2400F 2.0E BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2 *Except* 5-6: 2x6 SP No.1 OTHERS 2x4 SP No.2				BRACING- TOP CHORD BOT CHORD WEBS	oc purlins,		

REACTIONS. All bearings 6-8-8.

Plate Offsets (X Y)-- [6:Edge 0-2-0]

(lb) - Max Horz 9=206(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) except 9=-139(LC 10), 6=-179(LC 12), 8=-638(LC 12) Max Grav All reactions 250 lb or less at joint(s) 6, 7 except 9=529(LC 12), 8=357(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-9=-860/1989, 1-2=-490/1138, 2-3=-792/346

WEBS 3-8=-509/1069, 2-9=-2806/1178

NOTES-

 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) 0-3-4 to 4-8-8, Exterior(2N) 4-8-8 to 6-5-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 139 lb uplift at joint 9, 179 lb uplift at joint 6 and 638 lb uplift at joint 8.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			12-0-0					
Plate Offsets (X,Y)	[2:1-0-15,0-0-13]	7-3-5					4-6-11	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.39 BC 0.29 WB 0.39 Matrix-S	DEFL. Vert(LL) -0.0 Vert(CT) -0.0 Horz(CT) 0.0 Wind(LL) 0.0	in (loc) 14 2-6 19 2-6 11 5 16 2-6	i //defl 5 >999 5 >999 5 n/a 5 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 60 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x6 SI WEBS 2x4 SI 4-5: 2:	BRACING- TOP CHORD BOT CHORD	Struc exce Rigid	Structural wood sheathing directly applied or 5-3-2 oc purlins, except end verticals. Rigid ceiling directly applied or 8-11-11 oc bracing.			oc purlins,		
REACTIONS. (size) 2=0-3-0, 5=0-1-8 Max Horz 2=76(LC 8) Max Uplift 2=-156(LC 8), 5=-138(LC 8) Max Grav 2=528(LC 1), 5=463(LC 1)								
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1094/659 BOT CHORD 2-6=-718/1030, 5-6=-718/1030 WEBS 3-6=-137/272, 3-5=-1056/733								
NOTES- 1) Wind: ASCE 7-16; MWFRS (envelope members and force	Vult=120mph (3-second gust) Vasd=95m) and C-C Exterior(2E) -0-10-8 to 3-6-5, Ir is & MWFRS for reactions shown; Lumbe	oh; TCDL=6.0psf; BCDL=6.0 hterior(1) 3-6-5 to 11-9-4 zon r DOL=1.60 plate grip DOL=	psf; h=15ft; Cat. II; e; porch left and rig 1.60	Exp C; I ht expos	Enclosed; sed;C-C for			

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 156 lb uplift at joint 2 and 138 lb uplift at joint 5.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

nt 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		7-3-5				12-0-0		
Plate Offsets (X,Y) [2	2:1-0-15,0-0-13]	7-5-5				4-0-11		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.39 BC 0.29 WB 0.39 Matrix-S	DEFL. in Vert(LL) 0.07 Vert(CT) -0.09 Horz(CT) 0.01	(loc) l/defl 2-6 >999 2-6 >999 5 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 64 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x4 SP I BOT CHORD 2x6 SP I WEBS 2x4 SP I 4-5: 2x6 OTHERS 2x4 SP I REACTIONS. (size)	No.1 No.1 No.2 *Except* SP No.1 No.2) 2=0-3-0, 5=0-1-8	BRACING- TOP CHORD BOT CHORD	Structural wood except end ver Rigid ceiling di	d sheathing dire ticals. rectly applied o	ectly applied or 5-3-1 r 8-0-15 oc bracing.	oc purlins,		
Max Up Max Gravest Max Cravest Max Gravest Max Gravest Max Gravest Max Cravest	lift 2=-236(LC 8), 5=-211(LC 8) av 2=528(LC 1), 5=463(LC 1) Comp./Max. Ten All forces 250 (lb) or 094/808 91/1030, 5-6=-891/1030 34/272, 3-5=-1056/903	less except when shown.						
 NOTES- 1) Wind: ASCE 7-16; Vu Roof; End Jack Truss porch left and right ex 2) Truss designed for wi Gable End Details as 3) All plates are 2x4 MT 4) Gable studs spaced a 5) This truss has been d 6) * This truss has been d 6) * This truss has been d 6) * This truss has been d 7) Bearing at joint(s) 5 c capacity of bearing st 8) Provide mechanical c 9) Provide mechanical c 10) This truss is designed 	Itt=120mph (3-second gust) Vasd=95m ; MWFRS (envelope) gable end zone a sposed;C-C for members and forces & N applicable, or consult qualified building 20 unless otherwise indicated. at 2-0-0 oc. lesigned for a 10.0 psf bottom chord live designed for a 10.0 psf bottom chord live designed for a 10 a live load of 30.0psf on th totom chord and any other members. onsiders parallel to grain value using Al urface. connection (by others) of truss to bearing connection (by others) of truss to bearing and in accordance with the 2018 Internati	bh; TCDL=6.0psf; BCDL= nd C-C Exterior(2E) -0-10 /WFRS for reactions sho For studs exposed to win designer as per ANSI/TP bload nonconcurrent with the bottom chord in all area NSI/TPI 1 angle to grain for g plate at joint(s) 5. g plate capable of withstar onal Residential Code se	6.0psf; h=15ft; Cat. II; E: D-8 to 3-6-5, Interior(1) 3 wn; Lumber DOL=1.60 p d (normal to the face), so d (normal to the face), so 1 1. any other live loads. as where a rectangle 3-6 pormula. Building designo nding 236 lb uplift at join ctions R502.11.1 and R8	xp C; Enclosed; -6-5 to 11-9-4 zc late grip DOL=1 ee Standard Ind -0 tall by 2-0-0 er should verify t 2 and 211 lb u 302.10.2 and	Gable one; .60 ustry wide	SE/ 0306	AROL AL 552	

referenced standard ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.15 BC 0.07 WB 0.02 Matrix-P	DEFL. in Vert(LL) 0.00 Vert(CT) 0.01 Horz(CT) 0.00	(loc) l/defl L/d 5 n/r 120 5 n/r 120 4 n/a n/a	PLATES GRIP MT20 244/190 Weight: 26 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF	2 No.1 2 No.1		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing din Rigid ceiling directly applied of	rectly applied or 6-0-0 oc purlins. or 10-0-0 oc bracing.

BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

REACTIONS. (size) 2=5-11-3, 4=5-11-3, 6=5-11-3

Max Horz 2=58(LC 11)

Max Uplift 2=-17(LC 12), 4=-23(LC 13) Max Grav 2=164(LC 1), 4=164(LC 1), 6=196(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 17 lb uplift at joint 2 and 23 lb uplift at ioint 4.
- 6) Non Standard bearing condition. Review required.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Statut Information Quileble from Tures Plate heating 2010 Crisp Highways. Suite 203 Waldord MD 20601 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI1 Qu** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-			42014	Matrix	<-Ρ	BRACING		<u> </u>			Weight: 28 lb	F1 = 20%	
BCLL	10.0	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.02 0.03	Vert(CT) Horz(CT)	-0.00 0.00	6 6	n/r n/a	120 n/a			
TCLL	20.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	-0.00	6	n/r	120	MT20	244/190	
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. All bearings 5-11-3.

(lb) - Max Horz 2=72(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 2, 6, 10, 8 Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6, 10, 8.
- 8) Non Standard bearing condition. Review required.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

TRENGINEERING BY AMITEKA ATIIIate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TP11 Quality criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Windr, MD 20601

