

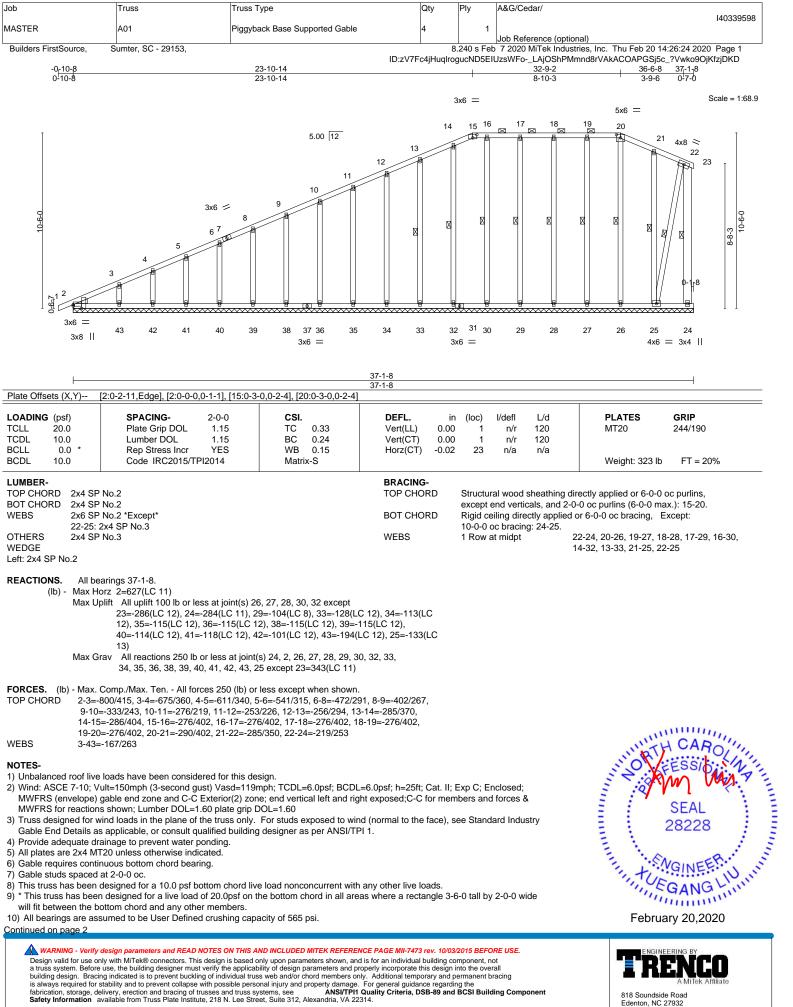
RE: MASTER - A&G/Cedar/ Trenco 818 Soundside Rd	
Site Information: Edenton, NC 27932	
Project Customer: H AND H Project Name: 2248142 MASTER OFA	
Lot/Block: Subdivision:	
Model:	
Address:	
City: State: NC	
General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):	
Design Code: IRC2015/TPI2014 Design Program: MiTek 20/20 8.2	
Wind Code: ASCE 7-10 Wind Speed: 150 mph Design Method: MWFRS (Envelope)/C-C hybrid Wind	ASCE 7-10
Roof Load: 40.0 psf Floor Load: N/A psf	IBCL / IO
Roof Load. 40.0 psi	
Mean Roof Height (feet): 25 Exposure Category: C	
No Scalt Truce Name Data No Scalt Truce Name Data	
No. Seal# Truss Name Date 1 I40339598 A01 2/20/20 35 I40339632 B02 2/20/20	
1 140339598 A01 2/20/20 35 140339632 B02 2/20/20 2 140339599 A02 2/20/20 36 140339633 B03 2/20/20 3 140339600 A03 2/20/20 37 140339634 2/20/20 4 140339601 A04 2/20/20 38 140339635 B05 2/20/20 5 140339602 2/20/20 39 140339636 B06 2/20/20 6 140339603 A06 2/20/20 40 140339637 B07 2/20/20 7 A07 2/20/20 41 140339638 B08 2/20/20 8 140339605 A08 2/20/20 43 140339639 B09 2/20/20 9 140339605 A08 2/20/20 43 140339639 B10 2/20/20	
3 140339600 A03 2/20/20 37 140339634 2/20/20 4 140339601 A04 2/20/20 38 140339635 B05 2/20/20	
5 140339602 2/20/20 39 140339636 B06 2/20/20 6 140339603 A06 2/20/20 40 140339637 B07 2/20/20	
6 140339603 A06 2/20/20 40 140339637 B07 2/20/20 7 A07 2/20/20 41 140339638 B08 2/20/20	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
13 I40339610 2/20/20 47 I40339644 C02 2/20/20 14 I40339611 A15 2/20/20 48 I40339645 CP01 2/20/20 14 I40339611 A15 2/20/20 48 I40339645 CP01 2/20/20	
14 140339611 A15 2/20/20 48 140339645 CP01 2/20/20 140339612 A16 2/20/20 49 140339646 CP02 2/20/20	
140339612 A16 2/20/20 49 140339646 CP02 2/20/20 16 A17 2/20/20 50 140339647 D01 2/20/20 17 140339614 A18 2/20/20 140339648 2/20/20	
17 140339614 A18 2/20/20 140339648 2/20/20 18 140339615 A19 2/20/20 52 140339649 D03 2/20/20 19 140339616 A20 2/20/20 53 140339650 D04 2/20/20 20 140339617 A21 2/20/20 54 140339651 D05 2/20/20 20 140339617 A21 2/20/20 54 140339651 D05 2/20/20	
18 140339615 A19 2/20/20 52 140339649 D03 2/20/20 19 140339616 A20 2/20/20 53 140339650 D04 2/20/20 20 140339617 A21 2/20/20 54 140339651 D05 2/20/20 21 140339618 A22 2/20/20 55 140339652 D06 2/20/20 22 140339619 2/20/20 56 140339653 D07 2/20/20 23 140339620 A24 2/20/20 57 140339654 D08 2/20/20	
20 40339617 A21 2/20/20 54 40339651 D05 2/20/20 21 40339618 A22 2/20/20 55 40339652 D06 2/20/20 22 40339619 2/20/20 56 40339653 D07 2/20/20	
22 140339619 2/20/20 56 140339653 D07 2/20/20 23 140339620 A24 2/20/20 57 140339654 D08 2/20/20	
23 140339620 A24 2/20/20 57 140339654 D08 2/20/20 140339621 A25 2/20/20 58 140339655 G01 2/20/20 25 A26 2/20/20 59 140339656 G02 2/20/20	
25 A26 2/20/20 59 140339656 G02 2/20/20 26 140339623 A27 2/20/20 140339657 G03 2/20/20	
26 I40339623 A27 2/20/20 I40339657 G03 2/20/20 27 I40339624 A28 2/20/20 61 I40339658 J01 2/20/20 28 I40339625 A29 2/20/20 62 I40339659 J02 2/20/20 28 I40339625 A29 2/20/20 62 I40339659 J02 2/20/20	
28 140339625 A29 2/20/20 62 140339659 J02 2/20/20 29 140339626 A30 2/20/20 63 140339660 J03 2/20/20	
25 A26 2/20/20 59 I40339656 G02 2/20/20 26 I40339623 A27 2/20/20 I40339657 G03 2/20/20 27 I40339624 A28 2/20/20 61 I40339659 J01 2/20/20 28 I40339625 A29 2/20/20 62 I40339659 J02 2/20/20 29 I40339626 A30 2/20/20 63 I40339660 J03 2/20/20 30 I40339627 A31 2/20/20 64 I40339661 J04 2/20/20 31 I40339628 2/20/20 65 I40339662 J05 2/20/20 32 I40339629 A33 2/20/20 66 I40339663 J06 2/20/20	
140339630 A34 2/20/20 67 140339664 J07 2/20/20 34 B01 2/20/20 68 140339665 J08 2/20/20	

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision based on the parameters

Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource-Sumter,SC. Truss Design Engineer's Name: Liu, Xuegang My license renewal date for the state of North Carolina is December 31, 2020 **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

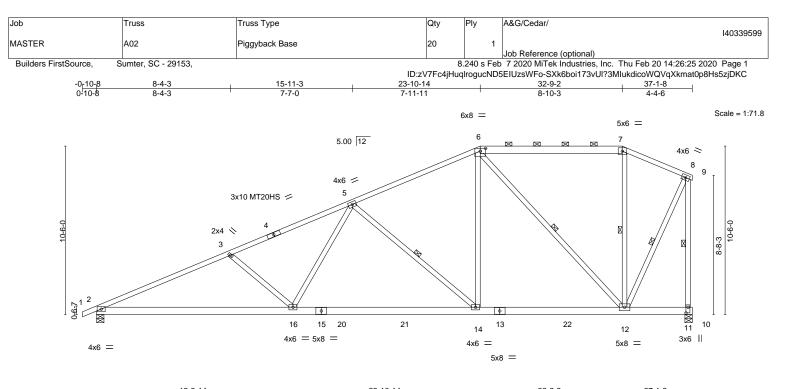
Liu, Xuegang


February 20,2020

RE: MASTER - A&G/Cedar/

Trenco 818 Soundside Rd Edenton, NC 27932

No. 67017737756778901234566789012345678	Seal# 140339666 140339669 140339670 140339670 140339672 140339673 140339674 140339674 140339675 140339676 140339677 140339678 140339680 140339680 140339684 140339684 140339684 140339685 140339687 140339687 140339689 140339689 140339689 140339691 140339691 140339693 140339695 14033965 14055 140555 140555555 14055555555555555555555555555555	Job ID# MASTER	Truss Nam J09 J10 J11 J12 J13 J14 J15 J16 J17 PB01 PB02 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19	2/20/20 2/20/20
96	140339693	MASTER	V17	2/20/20 2/20/20 2/20/20 2/20/20 2/20/20 2/20/20 2/20/20 2/20/20 2/20/20 2/20/20 2/20/20 2/20/20 2/20/20 2/20/20 2/20/20 2/20/20 2/20/20 2/20/20

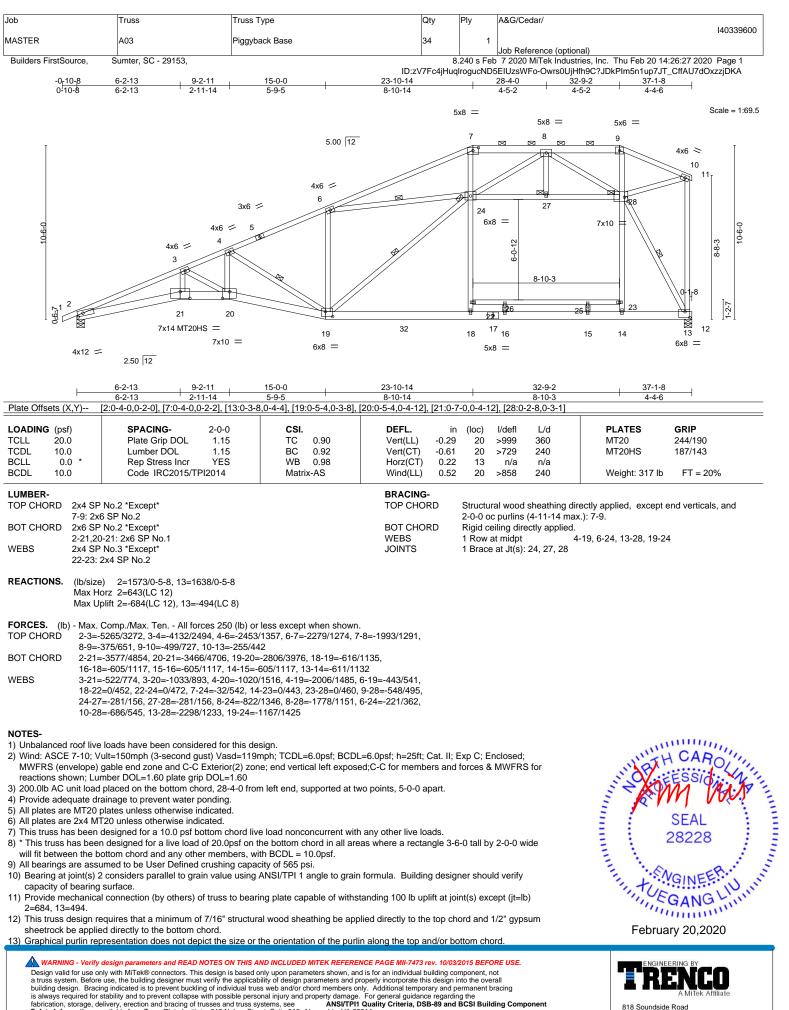


Job	Truss	Truss Type	Qty	Ply	A&G/Ceda	
						140339598
MASTER	A01	Piggyback Base Supported Gable	4		1	
					Job Refere	ence (optional)
Builders FirstSource,	Sumter, SC - 29153,			8.240 s	eb 7 2020 M	iTek Industries, Inc. Thu Feb 20 14:26:24 2020 Page 2
			ID:zV7Fc4jHu	qlrogucND	EIUzsWFoL	AjOShPMmnd8rVAkACOAPGSj5c_?Vwko9OjKfzjDKD

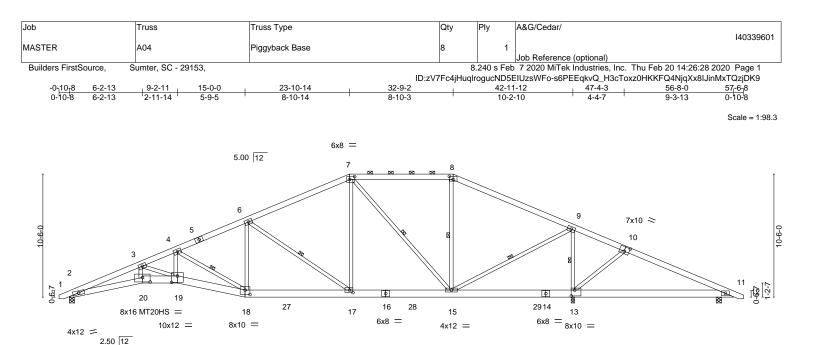
NOTES-

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 26, 27, 28, 30, 32 except (jt=lb) 23=286, 24=284, 29=104, 33=128, 34=113, 35=115, 36=115, 38=115, 40=114, 41=118, 42=101, 43=194, 25=133.
12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

F	<u>12-2-14</u> 12-2-14		23-10-14		32-9-2	37-1-8	
Plate Offsets (X,Y)	[6:0-4-0,0-2-2], [11:0-4-4,0-1-8]		11-8-1		8-10-3	4-4-6	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.72 BC 0.73 WB 0.96 Matrix-AS	Vert(LL) -0.23 Vert(CT) -0.40 Horz(CT) 0.07	n (loc) l/de 3 14-16 >99 0 14-16 >99 7 11 n 3 16-19 >99	9 360 9 240 /a n/a	PLATES MT20 MT20HS Weight: 262 lb	GRIP 244/190 187/143 FT = 20%
6-7: 2x BOT CHORD 2x6 SF WEBS 2x4 SF	2 No.2 *Except* 6 SP No.2 2 No.2 2 No.3 *Except* x4 SP No.2		BRACING- TOP CHORD BOT CHORD WEBS	2-0-0 oc pur	lins (6-0-0 max. directly applied		
Max H Max U	e) 2=1527/0-5-8, 11=1484/0-5-8 orz 2=643(LC 12) plift 2=-732(LC 12), 11=-647(LC 8) rav 2=1527(LC 1), 11=1486(LC 2)						
TOP CHORD 2-3=- 8-11= BOT CHORD 2-16= WEBS 3-16=	Comp./Max. Ten All forces 250 (lb) or -2974/1806, 3-5=-2600/1577, 5-6=-1525, 1470/1019 2145/2668, 14-16=-1541/2007, 12-14= 481/611, 5-16=-307/711, 5-14=-950/86 260/251, 8-12=-816/1286	992, 6-7=-552/491, 7-8= -882/1321	-624/453,				
 Wind: ASCE 7-10; W MWFRS (envelope) reactions shown; Lu Provide adequate di All plates are MT20 This truss has been * This truss has bee will fit between the b All bearings are ass 	e loads have been considered for this de (ult=150mph (3-second gust) Vasd=1191 gable end zone and C-C Exterior(2) zor mber DOL=1.60 plate grip DOL=1.60 rainage to prevent water ponding. plates unless otherwise indicated. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on t oottom chord and any other members, wi umed to be User Defined crushing capac connection (by others) of truss to bearin	nph; TCDL=6.0psf; BCDL e; end vertical left expose e load nonconcurrent with ne bottom chord in all are th BCDL = 10.0psf. city of 565 psi.	ed;C-C for members and h any other live loads. eas where a rectangle 3-	d forces & MW	FRS for -0 wide		SEAL

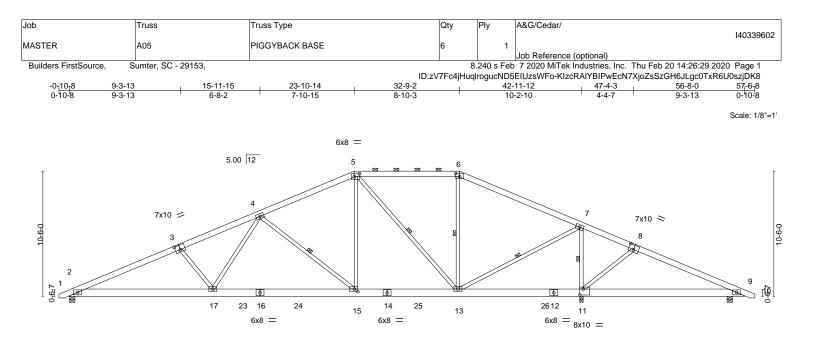

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



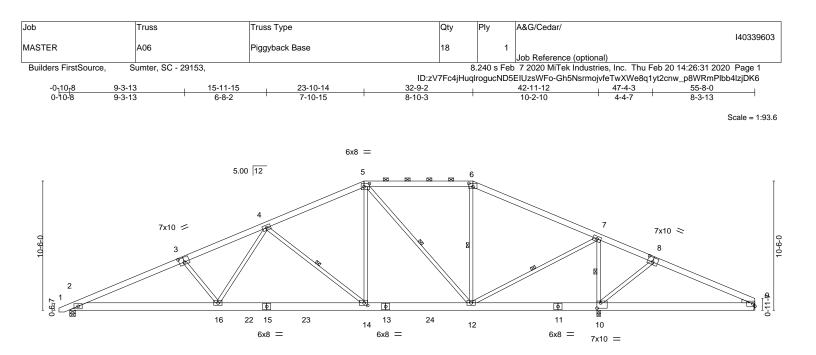
February 20,2020

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


	6-2-13	9-2-11	15-0-0	23-10-14	32-9-2			1-12		55-8-0	56-8- ρ
	6-2-13	2-11-14	5-9-5	8-10-14	8-10-3	1		2-10		12-8-4	1 ¹ 0-0
Plate Offs	sets (X,Y)	[7:0-5-4,0-3-0], [8	:0-4-0,0-3-4], [10:0-5	-0,0-4-8], [13:0-3-8,0-6-0]	, [17:0-3-8,0-2-8], [18:0-5-	0,0-4-8],	[19:0-6-	0,0-6-8], [2	20:0-8-0,0-4-8]	
LOADING	· · · ·	SPACING		CSI.	DEFL.		(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip		TC 0.55	Vert(LL)	-0.24	19	>999	360	MT20	244/190
TCDL	10.0	Lumber D0		BC 0.84	Vert(CT)	-0.49	19	>999	240	MT20HS	187/143
BCLL	0.0 *	Rep Stress		WB 0.89	Horz(CT)	0.17	13	n/a	n/a		
BCDL	10.0	Code IRC	2015/TPI2014	Matrix-AS	Wind(LL)	0.40	19	>999	240	Weight: 440 lb	FT = 20%
LUMBER	-			·	BRACING-						
TOP CHC	ORD 2x6 SP	No.2			TOP CHOP	RD	Structu	ral wood	sheathing	directly applied, except	
BOT CHC	DRD 2x8 SP	DSS *Except*					2-0-0 o	c purlins	(6-0-0 ma	x.): 7-8.	
	2-20: 2)	x6 SP No.1			BOT CHOF	RD	Rigid co	eiling dire	ectly applie	ed.	
WEBS	2x4 SP	No.3 *Except*			WEBS			at midpt	<i>·</i> · · ·	4-18, 6-17, 7-15, 8-15, 9	9-15, 9-13
		x4 SP No.2								, , , , .	
REACTIC	Max Ho Max Up	orz 2=-308(LC 13 plift 2=-759(LC 12	8, 13=2900/0-3-8, 11 3) 2), 13=-1047(LC 8), ⁻), 13=2900(LC 1), 11	11=-251(LC 13)							
FORCES. TOP CHC)RD 2-3=-	5748/3621, 3-4=-	4451/2858, 4-6=-261	or less except when show 6/1801, 6-7=-1716/1284,							
			661/1151, 10-11=-53								
BOT CHC				9=-2494/4288, 17-18=-126	64/2370,						
			5=-1007/979, 11-13		0.40.470/500						
WEBS				5/1567, 4-18=-2154/1388,							
				7/609, 8-15=-250/278, 9-	15=-1242/2158,						
	9-13=	-2297/1697, 10-1	3=-396/448								
NOTES-											
1) Unbala	anced roof live	loads have been	considered for this of	lesign.							
2) Wind: /	ASCE 7-10; V	ult=150mph (3-se	cond gust) Vasd=11	9mph; TCDL=6.0psf; BCD	DL=6.0psf; h=25ft; 0	Cat. II; E	Exp C; E	nclosed;			ATTURN .
				one; end vertical left and r							CAP
			DOL=1.60 plate grip		5 - 1 ,					A' OLT	
		ainage to prevent									ESSIC: MAY
		plates unless othe									ANA -
		120 unless otherw									
				ive load nonconcurrent wi	th any other live loa	ads.				5 5	N 1 E
				the bottom chord in all a			-0 tall by	/ 2-0-0 w	ide		SEAL : E
				with BCDL = $10.0psf$.		3.2.2.0					
			Defined crushing cap								28228 : =
				ANSI/TPI 1 angle to grain	formula Building	design	er should	l verify			1 3
	ty of bearing s		to grain value doing	, a con ri ri angio to grain	i ionnula. Duilding	assign	51 Should	, tony		The second se	1 1 1 E
			others) of truss to be	aring plate capable of with	standing 100 lb up	lift at ioi	nt(s) exc	ept (it=lt)	· · · · · · · · · · · · · · · · · · ·	IDWITER.
,	9, 13=1047, 1 ⁻								· /	3. +1.	SEAL 28228

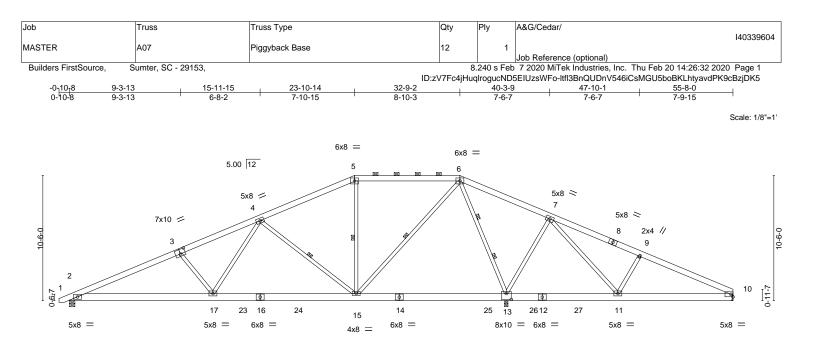
2=759, 13=1047, 11=251. 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



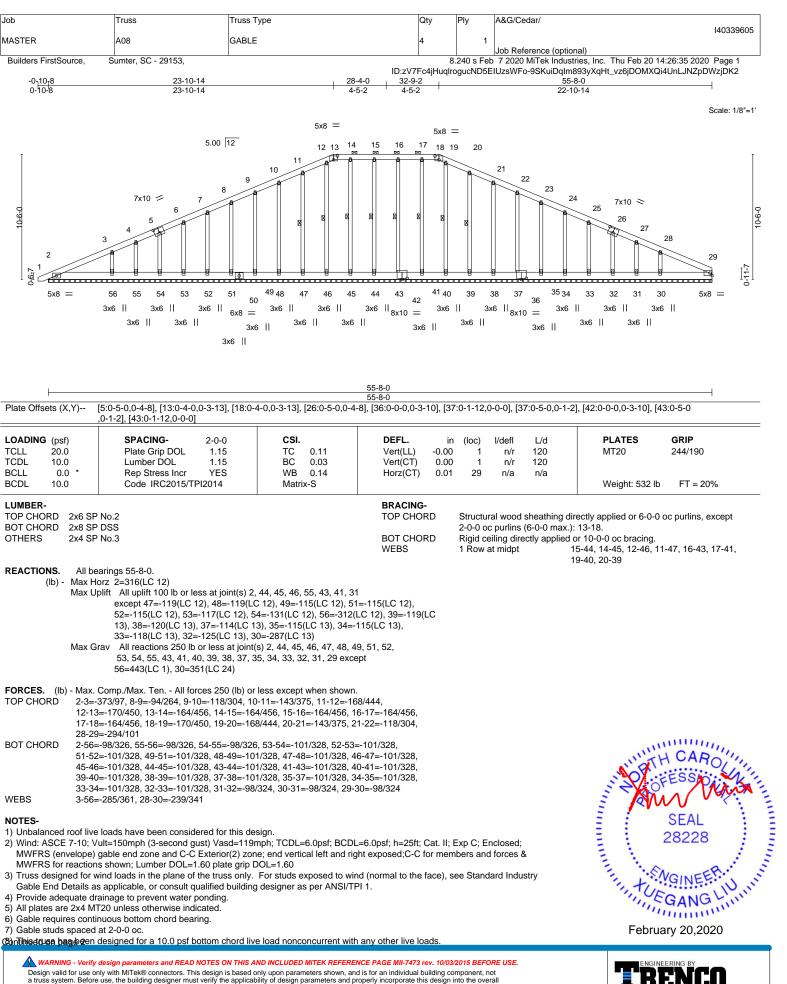
 		3-10-14 1-10-7	32-9-2 8-10-3	42-11-12		<u>55-8-0</u> 12-8-4	<u>56-8-</u> 0 1-0-0
Plate Offsets (X,Y)	3:0-5-0,0-4-8], [5:0-5-4,0-3-0], [6:0-4-					12-0-4	1-0-0
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.47 BC 0.29 WB 0.80 Matrix-AS		in (loc) l/defl -0.15 15-17 >999 -0.30 15-17 >999 0.05 11 n/a 0.21 17-19 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 433 lb	GRIP 244/190 FT = 20%
			BRACING- TOP CHORI BOT CHORI WEBS	2-0-0 oc purlins (6-0-0 max.): { tly applied.	ectly applied, except 5-6. 15, 5-13, 6-13, 7-13, 7	7-11
Max Ho Max Up) 2=1695/0-5-8, 11=2491/0-3-8, 9=4 prz 2=-308(LC 13) plift 2=-808(LC 12), 11=-949(LC 13), 9 av 2=1695(LC 1), 11=2491(LC 1), 9=	=-295(LC 13)					
TOP CHORD 2-3=-3 7-8=-2 7-8=-2 BOT CHORD 2-17= WEBS 3-17=	Comp./Max. Ten All forces 250 (lb) 6 3451/2240, 3-4=-3180/2138, 4-5=-196 218/426, 8-9=-224/299 -1871/3130, 15-17=-1327/2463, 13-18 -457/564, 4-17=-414/800, 4-15=-977/3 -985/1739, 7-11=-1951/1487, 8-11=-3	9/1432, 5-6=-1185/1097, 6 =-652/1761, 11-13=-357/5 386, 5-15=-437/979, 5-13=-	-7=-1406/1043, 68				
 Wind: ASCE 7-10; Vi MWFRS (envelope) (MWFRS for reactions) Provide adequate dra 4) All plates are 5x8 MT This truss has been will fit between the bo * This truss has been will fit between the bo All bearings are assus Provide mechanical of 2=808, 11=949, 9=25 This truss design req sheetrock be applied 	loads have been considered for this of JIt=150mph (3-second gust) Vasd=11 gable end zone and C-C Exterior(2) zo s shown; Lumber DOL=1.60 plate grip jinage to prevent water ponding. '20 unless otherwise indicated. designed for a 10.0 psf bottom chord I d designed for a live load of 20.0psf or ottom chord and any other members, med to be User Defined crushing cap connection (by others) of truss to bear 95. uires that a minimum of 7/16" structur directly to the bottom chord. resentation does not depict the size of	Pmph; TCDL=6.0psf; BCDL one; end vertical left and rig DOL=1.60 ve load nonconcurrent with the bottom chord in all are vith BCDL = 10.0psf. acity of 565 psi. ng plate capable of withsta al wood sheathing be applie	Int exposed;C-C fo any other live load as where a rectand anding 100 lb uplift ed directly to the to	Is. Is. Is 3-6-0 tall by 2-0-0 wid at joint(s) except (jt=lb) p chord and 1/2" gypsur			SEAL 28228

EGANG LUNIN



	12-0-7	23-10-14	32-9-2	42-11-12	55-8-0
	12-0-7	11-10-7	8-10-3	10-2-10	12-8-4
Plate Offsets (X,Y)	[3:0-5-0,0-4-8], [5:0-5-4,0-3-0], [6:0-	<u>1-0,0-3-4], [8:0-5-0,0-4-8], [1</u>	10:0-3-8,0-5-4], [14:0-3-8,	0-2-8]	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.47 BC 0.29 WB 0.80 Matrix-AS	Vert(LL) -0.15 Vert(CT) -0.30 Horz(CT) 0.05	n (loc) l/defl L/d 5 14-16 >999 360 0 14-16 >999 240 5 10 n/a n/a 1 16-18 >999 240	PLATES GRIP MT20 244/190 Weight: 426 lb FT = 20%
BODE 10.0		Matrix AG	Wind(EE) 0.2	1010 2333 240	
			BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing 2-0-0 oc purlins (6-0-0 ma: Rigid ceiling directly applie 1 Row at midpt	x.): 5-6.
Max H Max U	e) 2=1697/0-5-8, 10=2498/0-3-8, 9 prz 2=332(LC 12) plift 2=-807(LC 12), 10=-949(LC 13 rav 2=1697(LC 1), 10=2498(LC 1),	9=-216(LC 13)			
TOP CHORD 2-3=- 7-8=- BOT CHORD 2-16= WEBS 3-16=	Comp./Max. Ten All forces 250 (ll 3456/2245, 3-4=-3185/2143, 4-5=-1 221/421, 8-9=-262/314 1926/3135, 14-16=-1381/2467, 12 457/564, 4-16=-413/800, 4-14=-97 961/1729, 7-10=-1931/1464, 8-10=	972/1435, 5-6=-1190/1098, (14=-705/1764, 10-12=-375/4 7/885, 5-14=-440/981, 5-12=	6-7=-1411/1045, '474, 9-10=-253/217		
 2) Wind: ASCE 7-10; V MWFRS (envelope) reactions shown; Luu 3) Provide adequate dr 4) All plates are 5x8 MT 5) This truss has been 6) * This truss has been 6) * This truss has been 7) All bearings are asst 8) Refer to girder(s) for 9) Provide mechanical 2=807, 10=949, 9=2 10) This truss design re sheetrock be applied 	loads have been considered for thi ult=150mph (3-second gust) Vasd= gable end zone and C-C Exterior(2) mber DOL=1.60 plate grip DOL=1.6 ainage to prevent water ponding. I20 unless otherwise indicated. designed for a 10.0 psf bottom chor n designed for a live load of 20.0psf ottom chord and any other member umed to be User Defined crushing of truss to truss connections. connection (by others) of truss to be 16. aquires that a minimum of 7/16" stru ed directly to the bottom chord. presentation does not depict the size	19mph; TCDL=6.0psf; BCD zone; end vertical left expos l live load nonconcurrent wit on the bottom chord in all ar , with BCDL = 10.0psf. pacity of 565 psi. aring plate capable of withst	sed;C-C for members and th any other live loads. reas where a rectangle 3- tanding 100 lb uplift at joi	d forces & MWFRS for 6-0 tall by 2-0-0 wide nt(s) except (jt=lb) hord and 1/2" gypsum	SEAL 28228

February 20,2020


818 Soundside Road Edenton, NC 27932

L		23-10-14	36-7-12	46-0-2	55-8-0	
Plate Offsets (X,Y)	12-0-7 [3:0-5-0,0-4-8], [13:0-5-0,0-6-0]	11-10-7	12-8-14	9-4-6	9-7-14	<u> </u>
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.43 BC 0.25 WB 0.87 Matrix-AS	DEFL. in (loc) Vert(LL) -0.10 15-17 Vert(CT) -0.21 17-19 Horz(CT) 0.03 13 Wind(LL) 0.17 17-19	>999 360 >999 240 n/a n/a	PLATES MT20 Weight: 423 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x8 S WEBS 2x4 S 6-15:	P No.2 P DSS P No.3 *Except* 2x4 SP No.2 ze) 2=1320/0-5-8, 13=2770/0-3-8, 10		2-0-0 BOT CHORD Rigid WEBS 1 Rov	tural wood sheathing oc purlins (6-0-0 max ceiling directly applie v at midpt vs at 1/3 pts		
Max (Max (FORCES. (lb) - Max TOP CHORD 2-3= 7-9= BOT CHORD 2-17 WEBS 3-17	Horz 2=332(LC 12) Uplift 2=-674(LC 12), 13=-1011(LC 9), Grav 2=1344(LC 23), 13=2833(LC 2), :. Comp./Max. Ten All forces 250 (lb) :-2546/1618, 3-4=-2274/1515, 4-5=-10 :-394/369, 9-10=-606/381 ?=-1348/2296, 15-17=-816/1624, 13-15 :=-460/566, 4-17=-432/791, 4-15=-975 3=-777/807, 7-11=-522/758, 9-11=-439	10=508(LC 24) or less except when showr 37/790, 5-6=-886/834, 6-7= i=-229/435, 11-13=-483/533 /892, 6-15=-815/1383, 6-13	-340/945, 3, 10-11=-224/488			
 Wind: ASCE 7-10; MWFRS (envelope reactions shown; Li Provide adequate of This truss has beer This truss has beer will fit between the All bearings are ass Refer to girder(s) fc Provide mechanica 2=674, 13=1011, 1 This truss design re sheetrock be applied 	ve loads have been considered for this Vult=150mph (3-second gust) Vasd=1 a) gable end zone and C-C Exterior(2) is umber DOL=1.60 plate grip DOL=1.60 drainage to prevent water ponding. In designed for a 10.0 psf bottom chord en designed for a live load of 20.0psf of bottom chord and any other members, sumed to be User Defined crushing ca or truss to truss connections. Il connection (by others) of truss to bea 0=288. equires that a minimum of 7/16" structu ad directly to the bottom chord. epresentation does not depict the size	19mph; TCDL=6.0psf; BCD cone; end vertical left expos live load nonconcurrent wit n the bottom chord in all are with BCDL = 10.0psf. pacity of 565 psi. ring plate capable of withst ral wood sheathing be appl	ed;C-C for members and forces h any other live loads. eas where a rectangle 3-6-0 tall anding 100 lb uplift at joint(s) ex ied directly to the top chord and	& MWFRS for by 2-0-0 wide cept (jt=lb) 1/2" gypsum	And a state of the	SEAL 28228

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

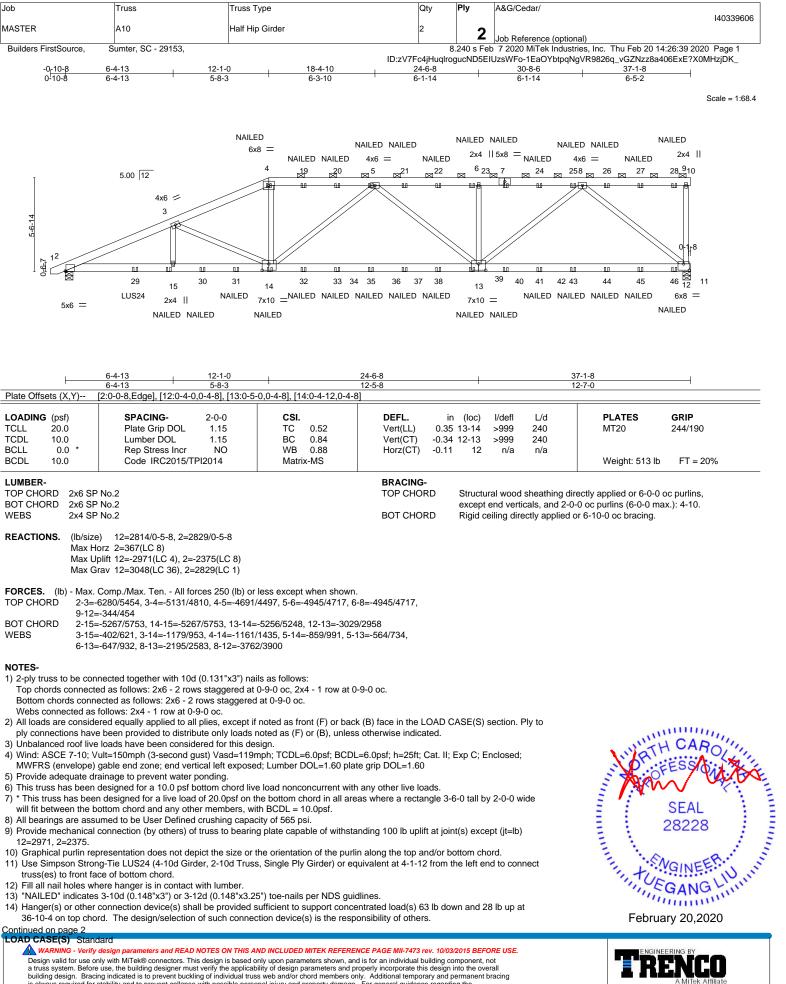
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component**

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	A&G/Cedar/
					140339605
MASTER	A08	GABLE	4	1	
					Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,		6	.240 s Feb	7 2020 MiTek Industries, Inc. Thu Feb 20 14:26:35 2020 Page 2
		ID:zV7	'Fc4jHuqIr	ogucND5E	IUzsWFo-9SKuiDqIm893yXqHt_vz6jDOMXQi4UnLJNZpDWzjDK2


NOTES-

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) All bearings are assumed to be User Defined crushing capacity of 565 psi.
11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 44, 45, 46, 55, 43, 41, 31 except (jt=lb) 47=119, 48=119, 49=115, 51=115, 52=115, 53=117, 54=131, 56=312, 39=119, 38=120, 37=114, 35=115, 33=118, 32=125, 30=287.

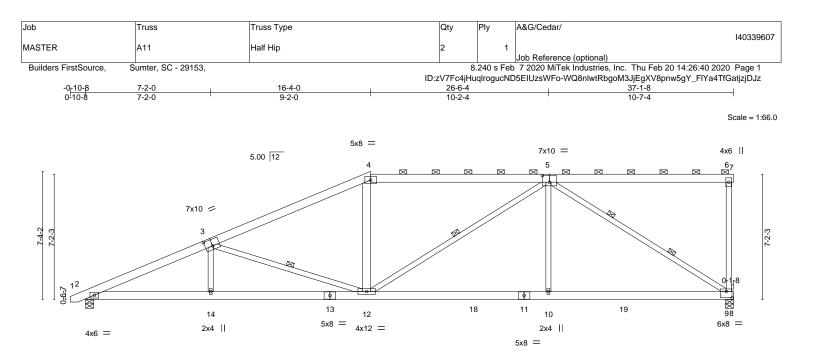
12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Truss	Truss Type	Qty	Ply	A&G/Cedar/
				140339606
A10	Half Hip Girder	2	2	
			_	Job Reference (optional)
Sumter, SC - 29153,		6	.240 s Feb	7 2020 MiTek Industries, Inc. Thu Feb 20 14:26:39 2020 Page 2
		A10 Half Hip Girder	A10 Half Hip Girder 2	A10 Half Hip Girder 2 2

ID:zV7Fc4jHuqlrogucND5EIUzsWFo-1EaOYbtpqNgVR9826q_vGZNzz8a406ExE?X0MHzjDK_

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-9=-60, 9-10=-20, 11-16=-20

Concentrated Loads (lb)

Vert: 4a-88(F) 7=-88(F) 14=-48(F) 15=-199(F) 5=-88(F) 19=-88(F) 20=-88(F) 21=-88(F) 22=-88(F) 23=-88(F) 24=-88(F) 25=-88(F) 26=-88(F) 27=-88(F) 28=-94(F) 29=-273(F) 30=-199(F) 31=-199(F) 32=-48(F) 33=-48(F) 35=-48(F) 37=-48(F) 38=-48(F) 39=-48(F) 40=-48(F) 41=-48(F) 43=-48(F) 44=-48(F) 45=-48(F) 46=-48(F) 45=-48(F) 46=-48(F) 45=-48(F) 46=-48(F) 45=-48(F) 46=-48(F) 45=-48(F) 46=-48(F) 45=-48(F) 46=-48(F) 45=-48(F) 45=-48(F)

F	7-2-0	16-4		26-6-			37-1-8	
Plate Offsets (X,	7-2-0 Y) [3:0-5-0,0-4-8], [5:0-5-0	9-2- 0,0-4-8], [9:0-4-0,0-4-4	-	10-2-	-4		10-7-4	
		<u> </u>	•					
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC 0.72	Vert(LL) -0.	12 10-12	>999 360	MT20	244/190
CDL 10.0	Lumber DOL	1.15	BC 0.59	Vert(CT) -0.	25 12-14	>999 240		
BCLL 0.0	* Rep Stress Incr	YES	WB 0.94	Horz(CT) 0.	08 9	n/a n/a		
BCDL 10.0	Code IRC2015/	TPI2014	Matrix-AS	Wind(LL) 0.	18 12-14	>999 240	Weight: 265 lb	FT = 20%
UMBER-				BRACING-				
OP CHORD	2x6 SP No.2			TOP CHORD	Structu	ral wood sheathii	ng directly applied, except e	end verticals, and
OT CHORD	2x6 SP No.2					c purlins (4-5-12		,
/EBS	2x4 SP No.3 *Except*			BOT CHORD		eiling directly app	,	
	4-12: 2x6 SP No.2. 5-12.5-9: 2	x4 SP No.1		WEBS	0	at midpt	3-12, 5-12	
						at 1/3 pts	5-9	
	(lb/size) 9=1485/0-5-8, 2=1	514/0-5-8						

Max Horz 2=481(LC 12) Max Uplift 9=-798(LC 8), 2=-654(LC 12) Max Grav 9=1486(LC 2), 2=1514(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3171/1909, 3-4=-2330/1402, 4-5=-2056/1420, 6-9=-264/265

BOT CHORD 2-14=-2152/2890, 12-14=-2152/2889, 10-12=-1129/1796, 9-10=-1130/1791

WEBS 3-14=0/306, 3-12=-872/779, 4-12=0/453, 5-12=-367/365, 5-10=0/533, 5-9=-2104/1328

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

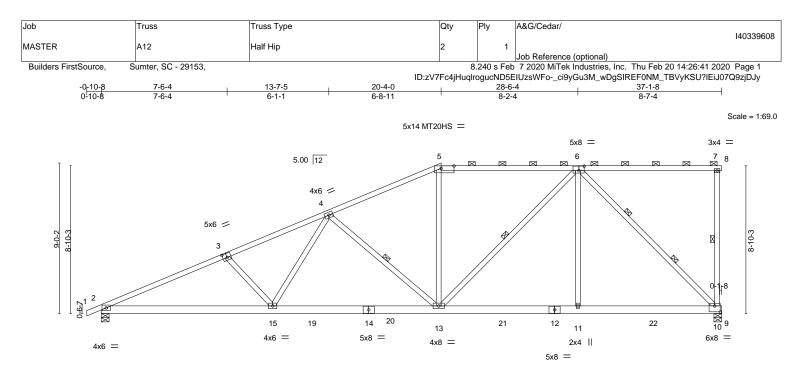
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=798, 2=654.


8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

February 20,2020

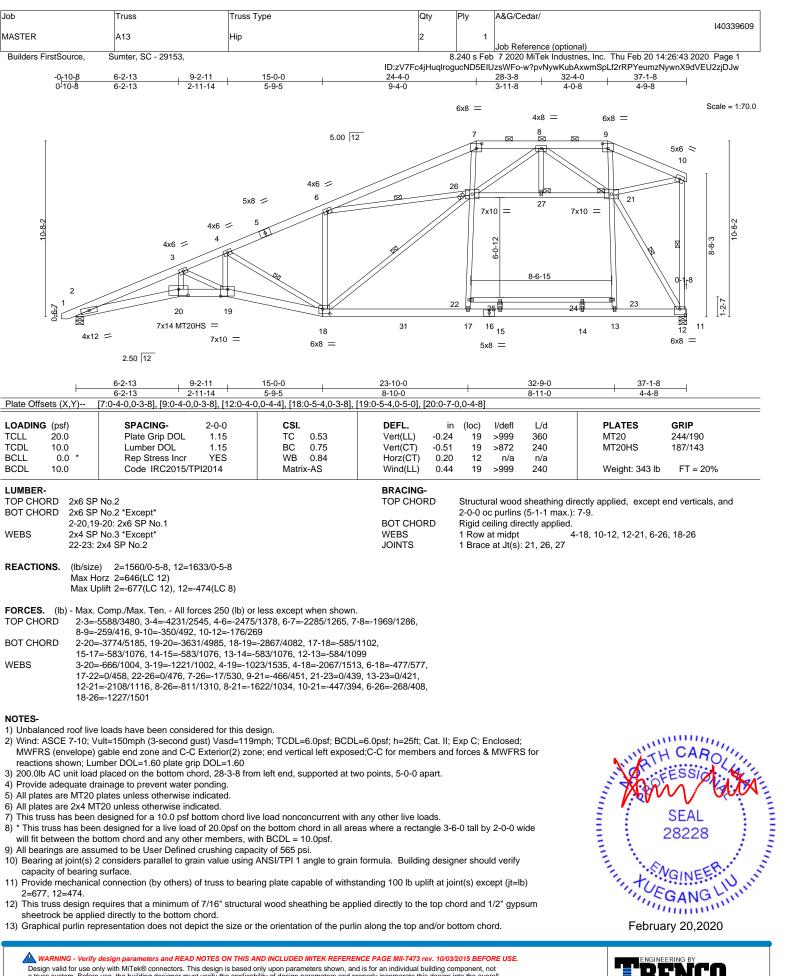
	<u> </u>	20-4-0 10-1-0	28-6-4	8-7-4
Plate Offsets (X,Y)			0-2-4	0-1-4
.OADING (psf)	SPACING- 2-0-0	CSI. DEFL	in (loc) l/defl L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.97 Vert(L	(,	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.59 Vert(C	T) -0.34 13-15 >999 240	MT20HS 187/143
CLL 0.0 *	Rep Stress Incr YES	WB 0.94 Horz(CT) 0.07 10 n/a n/a	
3CDL 10.0	Code IRC2015/TPI2014	Matrix-AS Wind(LL) 0.20 15 >999 240	Weight: 244 lb FT = 20%

TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing	directly applied, except end verticals, and
BOT CHORD	2x6 SP No.2		2-0-0 oc purlins (2-2-0 max	.): 5-8 .
WEBS	2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied	d.
		WEBS	1 Row at midpt	7-10, 4-13, 6-13
			2 Rows at 1/3 pts	6-10

REACTIONS. (Ib/size) 10=1484/0-5-8, 2=1527/0-5-8 Max Horz 2=601(LC 12) Max Uplift 10=-777(LC 8), 2=-700(LC 12) Max Grav 10=1545(LC 2), 2=1527(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

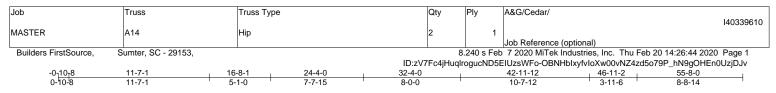
- TOP CHORD 2-3=-3023/1787, 3-4=-2749/1667, 4-5=-1840/1154, 5-6=-1643/1156
- BOT CHORD 2-15=-2143/2715, 13-15=-1683/2190, 11-13=-796/1250, 10-11=-797/1247
- WEBS 3-15=-374/485, 4-15=-291/599, 4-13=-759/708, 5-13=-6/364, 6-13=-506/625, 6-11=0/461, 6-10=-1752/1112


NOTES-

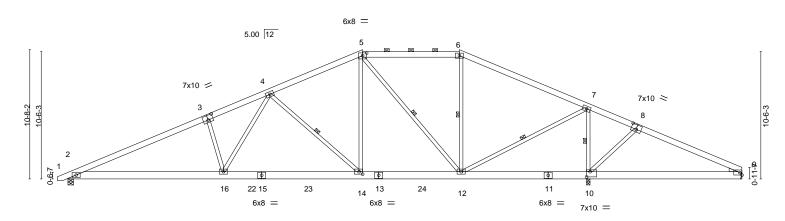
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=777, 2=700.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

February 20,2020

sheetrock be applied directly to the bottom chord.


13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

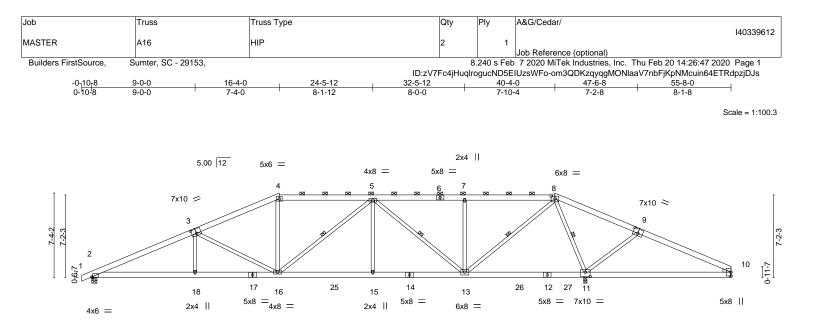
🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


February 20,2020

Edenton, NC 27932

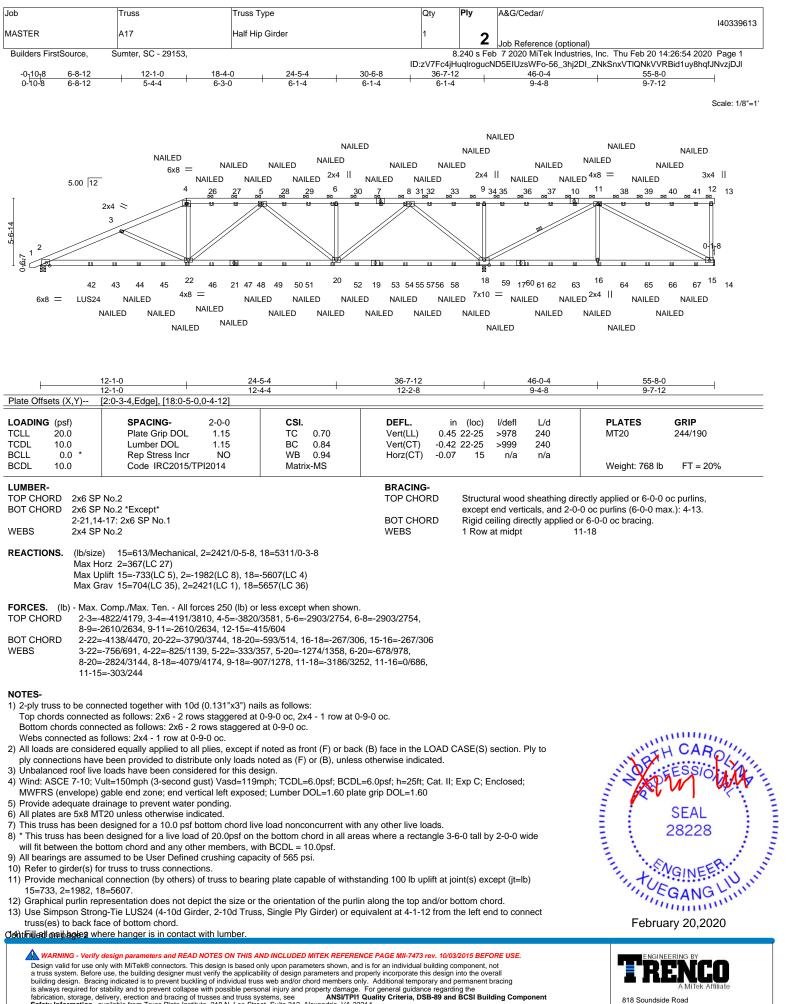
Scale: 1/8"=1'

	L	12-10-2	24-4-0	32-4-0	42-11-12	55-	
	()()()	12-10-2	11-5-14	8-0-0	10-7-12	12-	8-4 '
Plate Offsets	(X,Y) [;	3:0-5-0,0-4-8], [5:0-4-0,0-2-1	2], [8:0-5-0,0-4-8], [10:0-3-8,0-5-4]	, [14:0-3-8,0-2-8]			
TCDL 10 BCLL 0	osf) 0.0 0.0 0.0 * 0.0	Plate Grip DOL 1 Lumber DOL 1	0-0 CSI. .15 TC 0.62 .15 BC 0.34 ES WB 0.84 14 Matrix-AS	Vert(LL) -0.14 Vert(CT) -0.31 Horz(CT) 0.05	14-16 >999 3 16-18 >999 2 10 n/a i	/d PLATES 60 MT20 40 1/a 40 Weight: 426 I	GRIP 244/190 b FT = 20%
BCDL II	0.0	Code IRC2015/1FI20	14 Matrix-AS	VVIIId(LL) 0.20	10-10 >999 2	40 Weight: 4261	ID FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS WEDGE Right: 2x4 SP	2x8 SP 2x4 SP 5-12: 2x			BRACING- TOP CHORD BOT CHORD WEBS	Structural wood she 2-0-0 oc purlins (6-0 Rigid ceiling directly 1 Row at midpt		
REACTIONS	Max Ho Max Up	2=1701/0-5-8, 10=2482/(rz 2=334(LC 12) lift 2=-815(LC 12), 10=-944(av 2=1701(LC 1), 10=2482(LC 13), 9=-226(LC 13)				
FORCES. (I TOP CHORD	2-3=-3		250 (lb) or less except when show 4-5=-1954/1444, 5-6=-1213/1128,				
BOT CHORD WEBS) 2-16=- 3-16=-	1791/2997, 14-16=-1329/24	09, 12-14=-697/1733, 10-12=-353/ 14=-951/851, 5-14=-450/971, 5-12 , 8-10=-346/397				
NOTES-							
 Unbalance Wind: ASC MWFRS (e reactions s Provide ad All plates a This truss 	CE 7-10; Vu envelope) g shown; Lum dequate dra are 5x8 MT has been d	able end zone and C-C Extra ber DOL=1.60 plate grip DC inage to prevent water pono 20 unless otherwise indicate esigned for a 10.0 psf botto	Vasd=119mph; TCDL=6.0psf; BCE prior(2) zone; end vertical left expo IL=1.60 ing. d. n chord live load nonconcurrent wi	sed;C-C for members and the any other live loads.	forces & MWFRS for		H CARO
will fit betw	veen the bo		0.0psf on the bottom chord in all al embers, with BCDL = 10.0psf. bling capacity of 565 psi	reas where a rectangle 3-6	6-0 tall by 2-0-0 wide		SEAL 28228
8) Refer to gi	rder(s) for t	russ to truss connections.				E	28228
			s to bearing plate capable of withs	tanding 100 lb uplift at joir	nt(s) except (jt=lb)	E 1	20220
10) This truss			6" structural wood sheathing be ap	oplied directly to the top ch	ord and 1/2" gypsum	and the second se	NGINEER
			he size or the orientation of the pu	rlin along the top and/or b	ottom chord.	31. 11	GINE ON


818 Soundside Road Edenton, NC 27932

L	10-3-0	20-4-0	28-4-0	36-4-0		42-11-12	55-8-0	
Plate Offsets (X,Y)	10-3-0 [2:0-1-0,Edge], [3:0-5-0,0	10-1-0	4-8] [10:0-0-0 0-5-10]	<u>8-0-0</u>		6-7-12	12-8-4	·
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES	CSI. TC 0.51 BC 0.72 WB 0.86 Matrix-AS	DEFL. i Vert(LL) -0.1 Vert(CT) -0.3 Horz(CT) 0.0	3 16-18 > 5 16-18 > 3 11	/defl L/d -999 360 -999 240 n/a n/a -999 240	PLATES MT20 Weight: 396 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP WEBS 2x4 SP WEDGE Right: 2x4 SP No.3	No.2 No.2	I		BRACING- TOP CHORD BOT CHORD WEBS	Structural 2-0-0 oc p	l wood sheathing ourlins (4-10-5 m ing directly applie midpt	directly applied, except ax.): 5-7.	
Max Up Max G FORCES. (lb) - Max. TOP CHORD 2-3= BOT CHORD 2-18=- 11-13 11-13 WEBS 3-18=	orz 2=284(LC 12) plift 2=-761(LC 12), 11=- rav 2=1679(LC 1), 11=25 Comp./Max. Ten All for 3398/2157, 3-4=-3298/22 938/752, 8-9=-259/625, 9 1848/3076, 16-18=-142 =-574/581, 10-11=-385/2 =-574/581, 10-11=-385/2 =-439/549, 4-18=-540/793 =0/437, 6-13=-1491/854, #	579(LC 1), 10=3 ces 250 (lb) or le 72, 4-5=-2273/1 1-10=-193/480 6/2539, 14-16=- 32 6, 4-16=-719/665	28(LC 24) ess except when shown /597, 5-6=-2054/1562, 6 775/1832, 13-14=-775/1 9, 5-16=-176/496, 6-16=-	-7=-816/790, 832, 338/412,				
 Wind: ASCE 7-10; V MWFRS (envelope) reactions shown; Luu Provide adequate dr. Provide atequate dr. This truss has been will fit between the b All bearings are assu Refer to girder(s) for Provide mechanical 2=761, 11=1074, 10: This truss design rec sheetrock be applied 	loads have been conside ult=150mph (3-second g gable end zone and C-C mber DOL=1.60 plate grip ainage to prevent water p designed for a 10.0 psf b n designed for a 10.0 psf b n designed for a live load ottom chord and any othe umed to be User Defined truss to truss connection connection (by others) of =236. uires that a minimum of i directly to the bottom ch presentation does not dep	ust) Vasd=119m Exterior(2) zone > DOL=1.60 bonding. obtom chord live of 20.0psf on th er members, with crushing capaci s. truss to bearing 7/16" structural v ord.	ph; TCDL=6.0psf; BCDL e; end vertical left expose load nonconcurrent with e bottom chord in all are n BCDL = 10.0psf. ty of 565 psi. plate capable of withsta wood sheathing be appli	ed;C-C for members an any other live loads. as where a rectangle 3 anding 100 lb uplift at jo ed directly to the top ch	d forces & M 6-0 tall by 2 nt(s) except ord and 1/2	1WFRS for 2-0-0 wide : (jt=lb) ' gypsum		SEAL 28228

February 20,2020


TERENGINEERING BY A MITCH ATTILLE 818 Soundside Road Edenton, NC 27932

 	9-0-0 16-4 9-0-0 7-4-		<u>32-5-12</u> 8-0-0		42-11-12 10-6-0		<u> </u>	
Plate Offsets (X,Y)		[8:0-4-0,0-2-12], [9:0-5-0,0-4-8], [1:0-5-0,0-4-8			1201	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0 Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr YE Code IRC2015/TPI2014	5 TC 0.53 5 BC 0.67 S WB 0.97	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.15 15-16 -0.31 15-16 0.09 11 0.22 15-16	>999 >999 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 379 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP WEBS 2x4 SP WEDGE Right: 2x4 SP No.3	9 No.2		BRACING- TOP CHOR BOT CHOR WEBS	2-0-0 D Rigid		4-6-1 max.): tly applied.	ectly applied, except 4-8. -11, 8-13, 5-16, 5-13	
Max Ho Max Up	e) 2=1643/0-5-8, 11=2794/0- orz 2=240(LC 12) plift 2=-704(LC 12), 11=-1311(rav 2=1643(LC 1), 11=2794(LC	_C 9), 10=-191(LC 13)						
TOP CHORD 2-3= 8-9= BOT CHORD 2-18= 11-13 WEBS 3-18=	3312/2076, 3-4=-2577/1691, 4 549/1059, 9-10=-339/793 =-1783/3001, 16-18=-1784/300 3=-143/322, 10-11=-675/372 =0/321, 3-16=-785/694, 4-16=-2	50 (lb) or less except when showr 5=-2298/1649, 5-7=-1461/1085, 7 0, 15-16=-1133/2284, 13-15=-113 01/582, 8-11=-2261/1526, 9-11=- 13=-511/482, 5-15=0/375, 5-13=-	7-8=-1463/1088, 3/2284, 628/704,					
 Wind: ASCE 7-10; V MWFRS (envelope) reactions shown; Lur Provide adequate dr This truss has been This truss has been * This truss has been All bearings are assu Refer to girder(s) for Provide mechanical 2=704, 11=1311, 10: This truss design rec sheetrock be applied 	gable end zone and C-C Exter mber DOL=1.60 plate grip DOL ainage to prevent water pondir designed for a 10.0 psf bottom n designed for a live load of 20 ottom chord and any other mer umed to be User Defined crush truss to truss connections. connection (by others) of truss =191. quires that a minimum of 7/16" d directly to the bottom chord.	asd=119mph; TCDL=6.0psf; BCD or(2) zone; end vertical left expos =1.60 g. chord live load nonconcurrent wit 0psf on the bottom chord in all are nbers, with BCDL = 10.0psf.	ed;C-C for membe h any other live loa eas where a rectan anding 100 lb uplift lied directly to the to	rs and forces ds. gle 3-6-0 tall l at joint(s) exc op chord and	& MWFRS by 2-0-0 wid cept (jt=lb) 1/2" gypsur	de	In the top	SEAL 28228

February 20,2020

Edenton, NC 27932

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	A&G/Cedar/
					140339613
MASTER	A17	Half Hip Girder	1	2	
				_	Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,			.240 s Feb	7 2020 MiTek Industries, Inc. Thu Feb 20 14:26:55 2020 Page 2

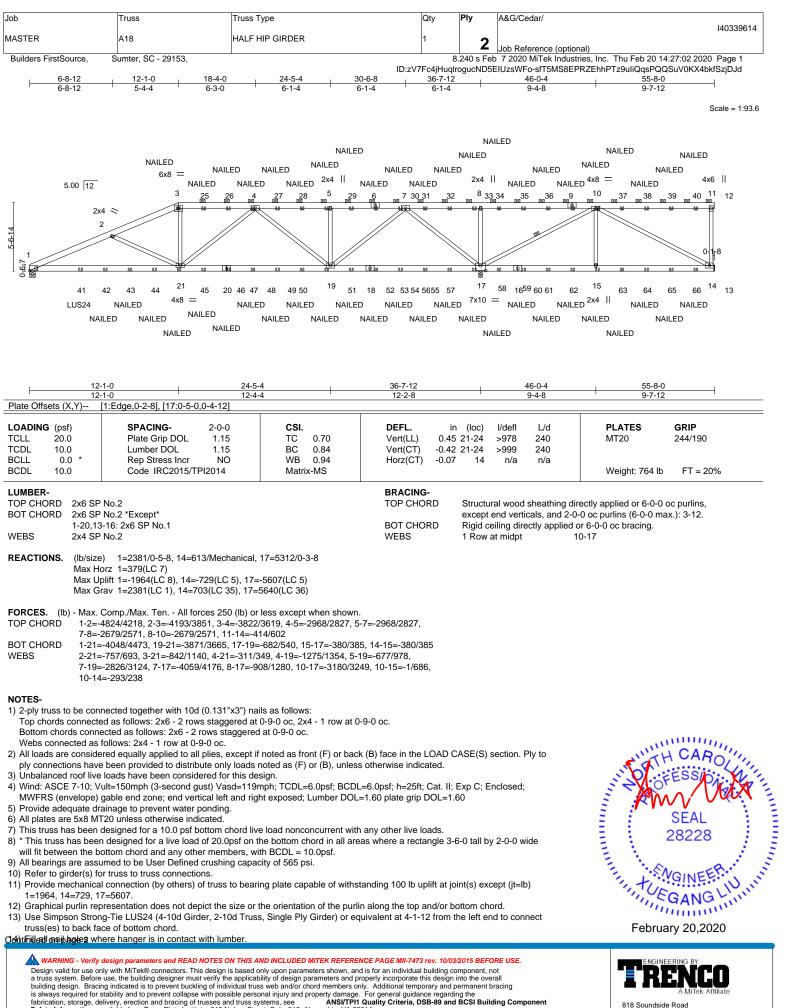
ID:zV7Fc4jHuqlrogucND5EIUzsWFo-ZJYRu33r3HhEMcM72BGfwx2gAb2smLClwUPsvMzjDJk

NOTES-

15) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 1-4=-60, 4-12=-60, 12-13=-20, 14-23=-20

Concentrated Loads (lb)

Vert: 4=-88(B) 7=-88(B) 21=-48(B) 22=-48(B) 5=-88(B) 20=-48(B) 6=-88(B) 16=-48(B) 11=-88(B) 10=-88(B) 26=-88(B) 27=-88(B) 28=-88(B) 29=-88(B) 30=-88(B) 31=-88(B) 32=-88(B) 32=-48(B) 52=-48(B) 52=-

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

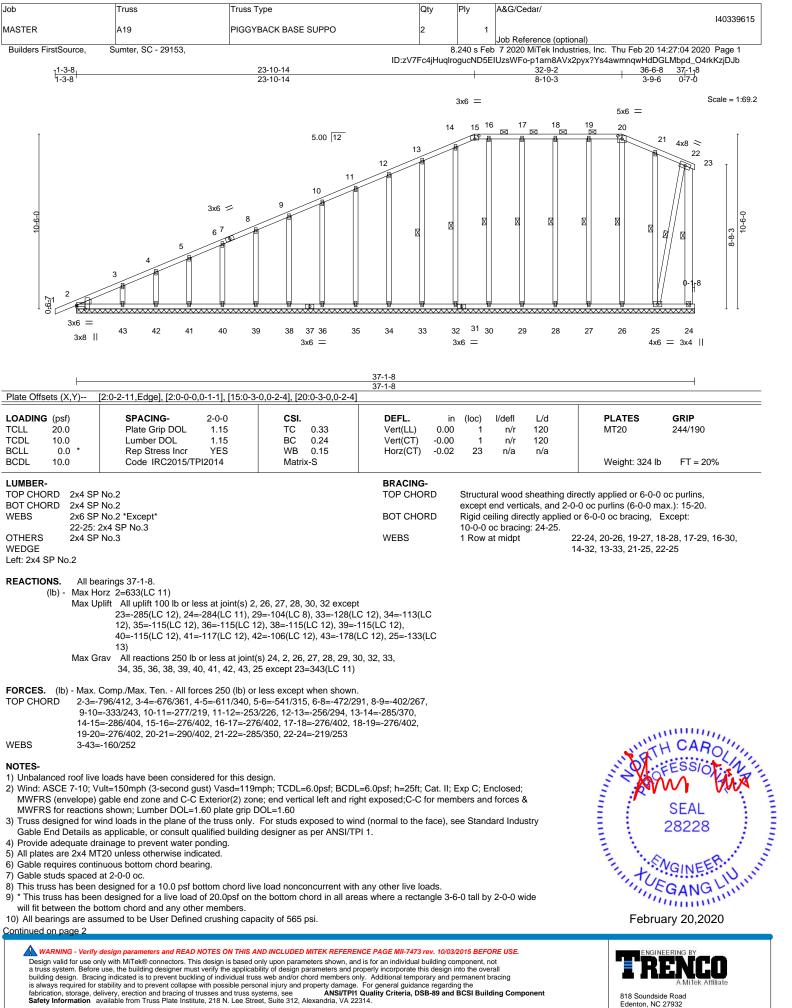
Job	Truss	Truss Type	Qty	Ply	A&G/Cedar/
					140339614
MASTER	A18	HALF HIP GIRDER	1	2	
				_	Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,		8	.240 s Feb	7 2020 MiTek Industries, Inc. Thu Feb 20 14:27:02 2020 Page 2

ID:zV7Fc4jHuqlrogucND5EIUzsWFo-sfT5MS8EPRZEhhPTz9uliQqsPQQSuV0KX4bkfSzjDJd

NOTES-

15) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

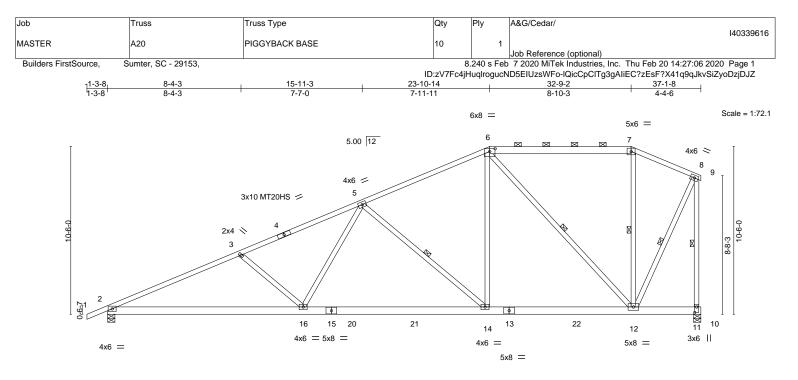
LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-11=-60, 11-12=-20, 13-22=-20

Concentrated Loads (lb) Vert: 3=-88(B) 6=-88(B) 20=-48(B) 21=-48(B) 4=-88(B) 19=-48(B) 5=-88(B) 15=-48(B) 10=-88(B) 9=-88(B) 25=-88(B) 26=-88(B) 27=-88(B) 28=-88(B) 29=-88(B) 30=-88(B) 30=-88(B) 31=-88(B) 32=-88(B) 32=-88(B)



Job	Truss	Truss Type	Qty	Ply	A&G/Cedar/
					140339615
MASTER	A19	PIGGYBACK BASE SUPPO	2	1	
					Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,			8.240 s Feb	7 2020 MiTek Industries, Inc. Thu Feb 20 14:27:05 2020 Page 2
			ID:zV7Fc4jHuqIroc	ucND5EIUz	sWFo-HE8D?UB7iMxpZ872eHR?K2SSNdca523mD2qOGmzjDJa

NOTES-

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 26, 27, 28, 30, 32 except (jt=lb) 23=285, 24=284, 29=104, 33=128, 34=113, 35=115, 36=115, 38=115, 40=115, 41=117, 42=106, 43=178, 25=133.
12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

late Offsets (X,Y)	[6:0-4-0,0-2-2], [11:0-4-4,0-1-8]							
OADING (psf)	SPACING- 2-0	-0 CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.1	15 TC	0.72	Vert(LL)	-0.23 14-16	>999	360	MT20	244/190
CDL 10.0	Lumber DOL 1.1	15 BC	0.73	Vert(CT)	-0.40 14-16	>999	240	MT20HS	187/143
BCLL 0.0 *	Rep Stress Incr YE	S WB	0.96	Horz(CT)	0.07 11	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	4 Matr	ix-AS	Wind(LL)	0.22 16-19	>999	240	Weight: 262 lb	FT = 20%

LUMBER-		BRACING-		
TOP CHORD	2x4 SP No.2 *Except*	TOP CHORD	Structural wood sheat	thing directly applied, except end verticals, and
	6-7: 2x6 SP No.2		2-0-0 oc purlins (6-0-0	0 max.): 6-7.
BOT CHORD	2x6 SP No.2	BOT CHORD	Rigid ceiling directly a	applied.
WEBS	2x4 SP No.3 *Except*	WEBS	1 Row at midpt	5-14, 6-12, 7-12, 8-11, 8-12
	6-12: 2x4 SP No.2			

REACTIONS. (lb/size) 2=1553/0-5-8, 11=1484/0-5-8 Max Horz 2=653(LC 12) Max Uplift 2=-753(LC 12), 11=-646(LC 8) Max Grav 2=1553(LC 1), 11=1485(LC 2)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

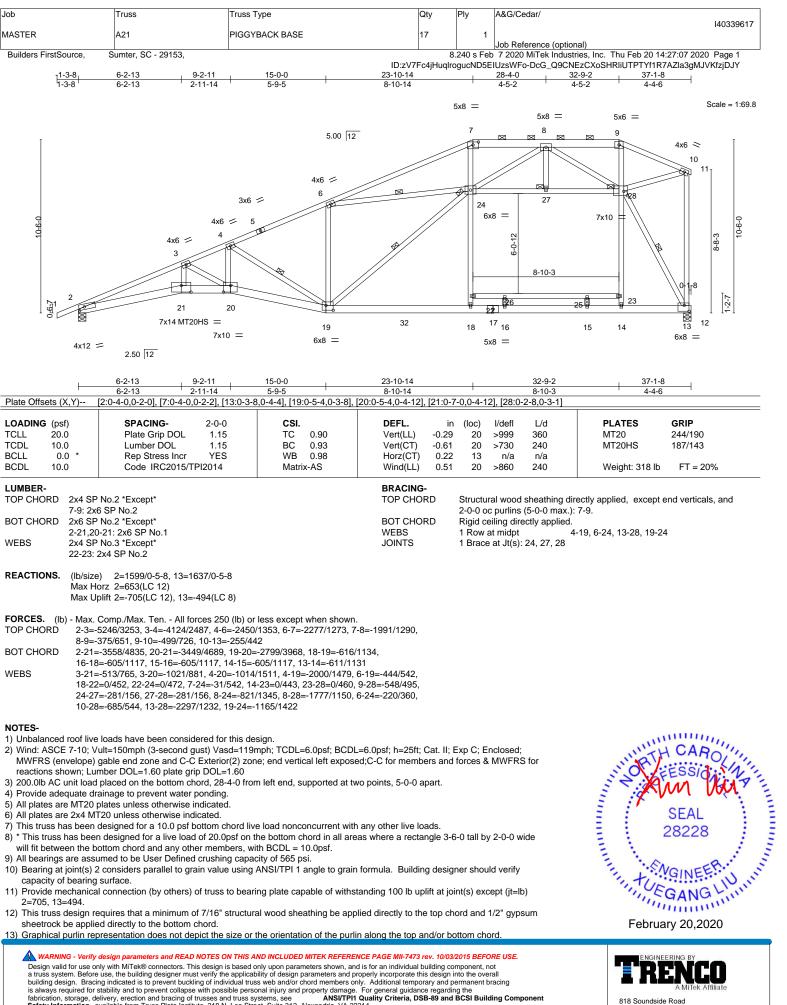
 TOP CHORD
 2-3=-2968/1800, 3-5=-2595/1571, 5-6=-1524/991, 6-7=-552/491, 7-8=-624/452, 8-11=-1469/1017

 BOT CHORD
 2-16=-2138/2662, 14-16=-1539/2005, 12-14=-881/1321

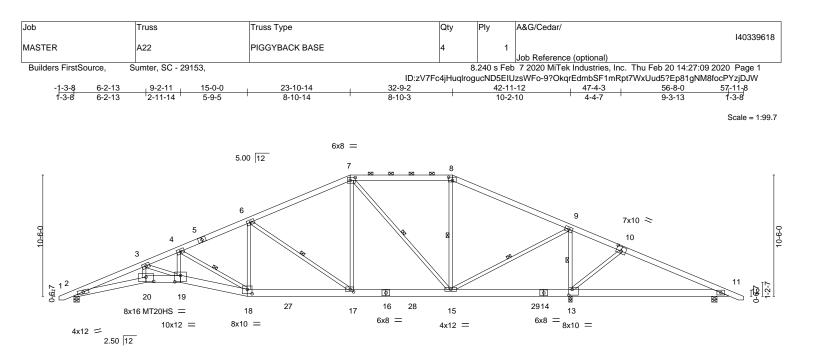
 WEBS
 3-16=-480/609, 5-16=-303/709, 5-14=-948/862, 6-14=-439/994, 6-12=-1169/791,

VEBS 3-16=-480/609, 5-16=-303/709, 5-14=-948/862, 6-14=-439/994, 6-12=-1169/7 7-12=-260/251, 8-12=-815/1286

NOTES-

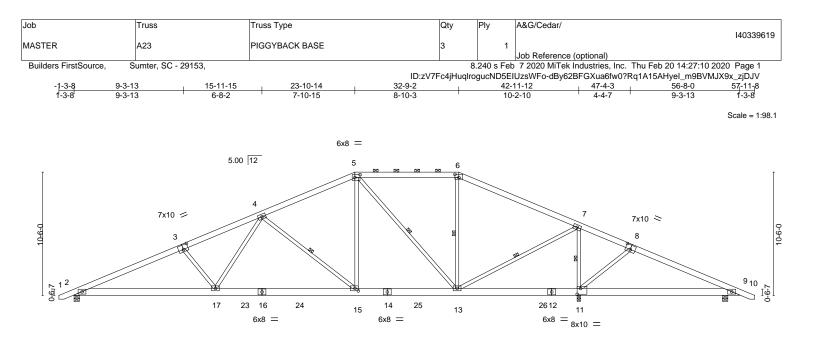

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=753, 11=646.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


February 20,2020

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

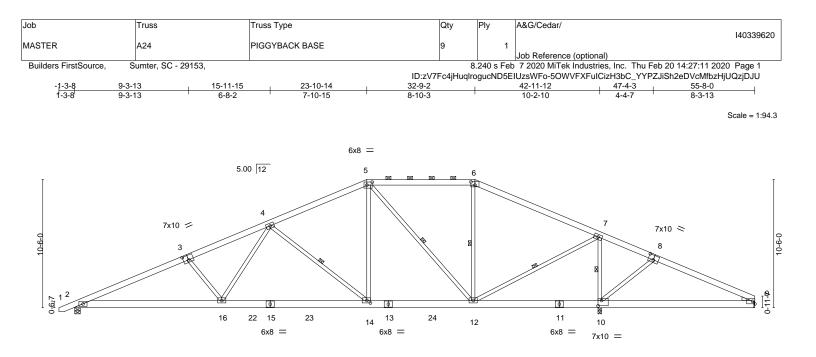
Edenton, NC 27932



6-2-13 9-2-11 15-0-0 6-2-13 2-11-14 5-9-5	23-10-14 8-10-14	32-9-2 8-10-3		-11-12		<u>55-8-0</u> 12-8-4	<u> </u>
Plate Offsets (X,Y) [7:0-5-4,0-3-0], [8:0-4-0,0-3-4], [10:0-5-					.0-6-81. [2		1-0-0
	,, [., <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , [-		
LOADING (psf) SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0 Plate Grip DOL 1.15	TC 0.55	Vert(LL)	-0.24 19	>999	360	MT20	244/190
TCDL 10.0 Lumber DOL 1.15	BC 0.84	Vert(CT)	-0.49 19	>999	240	MT20HS	187/143
BCLL 0.0 * Rep Stress Incr YES	WB 0.90	Horz(CT)	0.17 13	n/a	n/a		
BCDL 10.0 Code IRC2015/TPI2014	Matrix-AS	Wind(LL)	0.40 19	>999	240	Weight: 442 lb	FT = 20%
LUMBER-		BRACING				·	
TOP CHORD 2x6 SP No.2		TOP CHOR		tural wood	sheathing	directly applied, except	
BOT CHORD 2x8 SP DSS *Except*				oc purlins (
2-20: 2x6 SP No.1		BOT CHOP		ceiling dire			
WEBS 2x4 SP No.3 *Except*		WEBS	0	v at midpt		4-18, 6-17, 7-15, 8-15,	9-15, 9-13
7-15: 2x4 SP No.2						-,-, -, -, -, -,	,
REACTIONS. (lb/size) 2=1627/0-5-8, 13=2903/0-3-8, 11=	132/0-5-8						
Max Horz 2=313(LC 16)	074/10 40)						
Max Uplift 2=-779(LC 12), 13=-1045(LC 8), 1 Max Grav 2=1627(LC 1), 13=2903(LC 1), 11=							
Max Glav 2=1627(LC 1), 13=2903(LC 1), 11=	=343(LC 24)						
FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) o	r less except when showr	า					
TOP CHORD 2-3=-5725/3576, 3-4=-4438/2836, 4-6=-2609							
8-9=-1074/836, 9-10=-684/1167, 10-11=-540							
BOT CHORD 2-20=-3187/5311, 19-20=-3175/5307, 18-19	=-2461/4275, 17-18=-124	6/2364,					
15-17=-509/1513, 13-15=-1020/1021, 11-13	=-864/691						
WEBS 3-20=-473/925, 3-19=-1309/892, 4-19=-859/							
6-17=-1080/913, 7-17=-423/921, 7-15=-1016	6/611, 8-15=-252/281, 9-1	15=-1256/2167,					
9-13=-2307/1713, 10-13=-392/444							
NOTES-							
	aian						
 Unbalanced roof live loads have been considered for this de Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119 		A C Opoti h 25th		Enclosed			AMUTO
MWFRS (envelope) gable end zone and C-C Exterior(2) zo							CAD
MWFRS for reactions shown; Lumber DOL=1.60 plate grip		igni exposed, C-C i		nu loices a		1 ST	A CARO !!!
3) Provide adequate drainage to prevent water ponding.	DOL=1.00					S OV.	ESSIE A.
4) All plates are MT20 plates unless otherwise indicated.							EUODA
5) All plates are 5x8 MT20 unless otherwise indicated.							M W \sim \sim
6) This truss has been designed for a 10.0 psf bottom chord liv	e load nonconcurrent wit	th any other live lo	she			E 17	N 1 2
7) * This truss has been designed for a live load of 20.0psf on				by 2-0-0 wi	de	- E - E -	SEAL : E
will fit between the bottom chord and any other members, w			.g	-,		E E .	
8) All bearings are assumed to be User Defined crushing capa						5 1	28228 : 5
9) Bearing at joint(s) 2 considers parallel to grain value using	· ·	formula. Building	designer sho	uld verify			1.2
capacity of bearing surface.	5 0	0	5	•		5 · · ·	01 3
10) Provide mechanical connection (by others) of truss to bea	ring plate capable of with	standing 100 lb up	lift at joint(s) e	xcept (jt=lb)	12.	GINFER
2=779, 13=1045, 11=271.			/			1. 11.	
 This truss design requires that a minimum of 7/16" structu sheetrock be applied directly to the bottom chord. 	ral wood sheathing be ap	plied directly to the	top chord an	d 1/2" gyps	um	1,5	SEAL 28228
 12) Graphical purlin representation does not depict the size or 	the orientation of the pur	lin along the top a	nd/or bottom o	hord			unnin

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

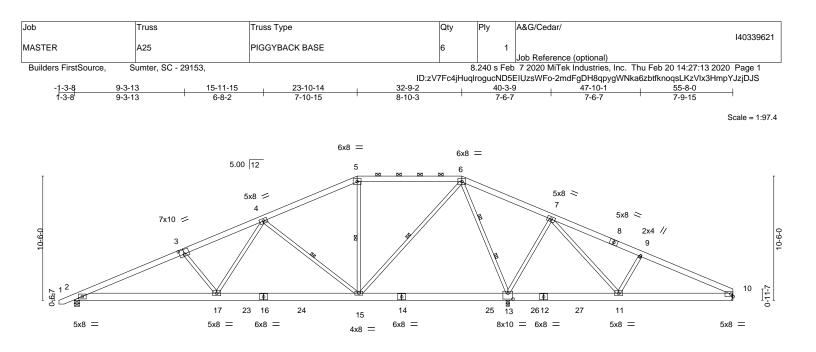
February 20,2020


 	12-0-7 12-0-7		10-14	<u>32-9-2</u> 8-10-3		<u>42-11-12</u> 10-2-10		<u>55-8-0</u> 12-8-4	<u> </u>
Plate Offsets (X,Y)	[3:0-5-0,0-4-8], [5:0-5-4,0				-3-8,0-2-8			12 0 1	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC 0.47 BC 0.28 WB 0.80 Matrix-AS		in (lo -0.15 15- -0.30 15- 0.05 0.21 17-	17 >999 17 >999 11 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 435 lb	GRIP 244/190 FT = 20%
				BRACING- TOP CHORI BOT CHORI WEBS	2-0 D Rig	uctural wood I-0 oc purlins Iid ceiling dire Row at midpt	(6-0-0 max. ectly applied		7-11
Max Ho Max U; Max G FORCES. (lb) - Max. G TOP CHORD 2-3=- 7-8=- BOT CHORD 2-17= WEBS 3-17=) 2=1719/0-5-8, 11=2- brz 2=-313(LC 13) bift 2=-828(LC 12), 11=- rav 2=1719(LC 1), 11=2 Comp./Max. Ten All fo 3441/2225, 3-4=-3170/2 249/445, 8-9=-203/305 -1845/3121, 15-17=-130 -456/563, 4-17=-411/79 -1003/1748, 7-11=-1962	951(LC 13), 9= 496(LC 1), 9=5 rces 250 (lb) or 125, 4-5=-1964/ 18/2456, 13-15= 7, 4-15=-976/88	-313(LC 13) 36(LC 24) less except when shov 1426, 5-6=-1178/1091 -635/1756, 11-13=-362 4, 5-15=-436/979, 5-13	, 6-7=-1399/1037, 2/616, 9-11=-246/303					
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) MWFRS for reaction 3) Provide adequate dra 4) All plates are 5x8 MT 5) This truss has been 6) * This truss has been 6) * This truss has been 7) All bearings are assu 8) Provide mechanical 2=828, 11=951, 9=3	loads have been consid ult=150mph (3-second g gable end zone and C-C s shown; Lumber DOL= ainage to prevent water 20 unless otherwise ind designed for a 10.0 psf t n designed for a live load ottom chord and any oth imed to be User Defined connection (by others) o	ered for this dei ust) Vasd=119r Exterior(2) zon 1.60 plate grip E ponding. icated. wottom chord live of 20.0psf on t er members, wi crushing capac f truss to bearin	sign. nph; TCDL=6.0psf; BC e; end vertical left and IOL=1.60 e load nonconcurrent w ne bottom chord in all a th BCDL = 10.0psf. ity of 565 psi. g plate capable of withs	right exposed;C-C fo vith any other live load areas where a rectand standing 100 lb uplift	r members ds. gle 3-6-0 ta at joint(s) (all by 2-0-0 w except (jt=lb)	&		SEAL 28228

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

SEAL 28228 February 20,2020

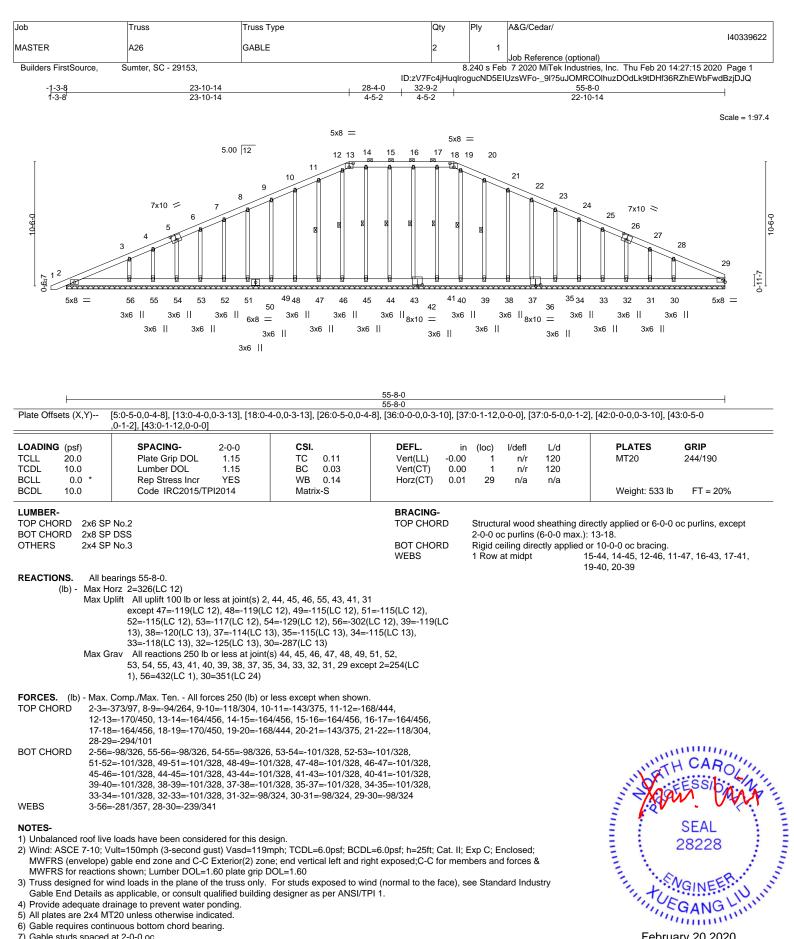
818 Soundside Road Edenton, NC 27932



F		12-0-7		23-10-14	32-9-2		42-11-1		55-8-0	
Plate Offsets	(V V) I	12-0-7	2 01 16:0 4 0	<u>11-10-7</u> ,0-3-4], [8:0-5-0,0-4-8], [10	8-10-3	0 0 2 01	10-2-1)	12-8-4	+
	5 (A, T) [5.0-5-0,0-4-6], [5.0-5-4,0	-3-0], [0.0-4-0	,0-3-4], [0.0-5-0,0-4-0], [10	0.0-3-6,0-5-4], [14.0-3	-0,0-2-0]				
.OADING (p	osf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
	0.0	Plate Grip DOL	1.15	TC 0.47		.15 14-16	>999	360	MT20	244/190
	0.0	Lumber DOL	1.15	BC 0.28		.30 14-16	>999	240	11120	211/100
	0.0 *	Rep Stress Incr	YES	WB 0.80		.05 10	n/a	n/a		
	0.0	Code IRC2015/TP		Matrix-AS		.21 16-18	>999	240	Weight: 427 lb	FT = 20%
JMBER-					BRACING-					
	2x6 SP	No 2			TOP CHORD	Structu	ral wood	sheathing (directly applied, except	
OT CHORE								6-0-0 max		
EBS		No.3 *Except*			BOT CHORD			ctly applied		
-00		4 SP No.2			WEBS		at midpt	cuy applied	4-14, 5-12, 6-12, 7-12, 1	7 10
EDGE	J-12. 27	4 01 N0.2			WEDS	TIXOW	armupi		4-14, 3-12, 0-12, 7-12,	7-10
ght: 2x4 SF	P No 3									
,										
EACTIONS) 2=1723/0-5-8, 10=24	97/0-3-8, 9=2	98/Mechanical						
		orz 2=342(LC 12)								
		olift 2=-828(LC 12), 10=-9								
	Max Gr	av 2=1723(LC 1), 10=24	97(LC 1), 9=3	391(LC 24)						
OP CHORE	7-8=-2 2-16= 3-16=	221/420, 8-9=-262/314 -1921/3130, 14-16=-1379 -456/562, 4-16=-410/797	/2465, 12-14 , 4-14=-975/8	/1434, 5-6=-1190/1098, 6 =-704/1763, 10-12=-374/4 83, 5-14=-439/980, 5-12=	173, 9-10=-252/216					
	7-12=	-959/1728, 7-10=-1930/1	403, 8-10=-3	0/425						
I OTES-) Unbalance	ed roof live	loads have been conside	red for this de	esian.						
				mph; TCDL=6.0psf; BCDI	L=6.0psf; h=25ft; Cat.	II; Exp C; E	nclosed;			
MWFRS (envelope) (gable end zone and C-C I	Exterior(2) zo	ne; end vertical left and rig	aht exposed;C-C for m	embers and	d forces 8			ATTICITY .
		s shown; Lumber DOL=1.			5 1 7					CAD "
Provide ad	dequate dra	ainage to prevent water p	ondina.						NOT	
		20 unless otherwise indic							NOV.	FSSIC
				e load nonconcurrent with	h any other live loads.					Will M
				the bottom chord in all are		3-6-0 tall by	y 2-0-0 wi	de	S IN	N WW
		ottom chord and any othe							5 1	
		med to be User Defined							2 1	SEAL 28228
		truss to truss connections							2 1	00000
				ng plate capable of withsta	anding 100 lb uplift at	joint(s) exce	ept (it=lb)		5 1	28228 :
	=948, 9=21			V 1 · · · · · · · · · · · · · · · · · · ·	3	,,	/		2 1	· · · · · · · · · · · · · · · · · · ·
			7/16" structu	al wood sheathing be app	blied directly to the top	chord and	1/2" gyps	um	5 N	
		d directly to the bottom cl		344-Pr	· · · · · · · · · · · · · · ·		378-		11111111111111111111111111111111111111	GINEER
				the orientation of the purl	in along the top and/o	r bottom cho	ord.		3 ti	GINE V

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932



	12-0-7	23-10-14	36-7-12	46-0-2	55-8-0	
	12-0-7	11-10-7	12-8-14	9-4-6	9-7-14	
Plate Offsets (X,Y)	[3:0-5-0,0-4-8], [13:0-5-0,0-6-0]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.43 BC 0.24 WB 0.87 Matrix-AS	DEFL. in (lo Vert(LL) -0.10 15-1 Vert(CT) -0.20 17-1 Horz(CT) 0.03 1 Wind(LL) 0.16 17-1	7 >999 360 9 >999 240 3 n/a n/a	PLATES MT20 Weight: 424 lb	GRIP 244/190 FT = 20%
			2-0- BOT CHORD Rigi WEBS 1 R	ctural wood sheathing 0 oc purlins (6-0-0 ma d ceiling directly applie ow at midpt ows at 1/3 pts		
Max Ho Max Uj Max Gi FORCES. (Ib) - Max. (Ib) TOP CHORD 2-3=-2	 2=1346/0-5-8, 13=2769/0-3-8, 10 orz 2=342(LC 12) plift 2=-695(LC 12), 13=-1010(LC 9), rav 2=1370(LC 23), 13=2832(LC 2), Comp./Max. Ten All forces 250 (Ib) 2542/1613, 3-4=-2270/1511, 4-5=-10 	10=-288(LC 13) 10=508(LC 24) or less except when shown				
BOT CHORD 2-17= WEBS 3-17=	394/369, 9-10=-606/381 1343/2292, 15-17=-814/1623, 13-1 459/565, 4-17=-428/788, 4-15=-973 -777/807, 7-11=-522/758, 9-11=-439	/890, 6-15=-814/1382, 6-13				
 Wind: ASCE 7-10; V MWFRS (envelope) MWFRS for reaction Provide adequate dri 4) This truss has been * This truss has been will fit between the bit 6) All bearings are assist 7) Refer to girder(s) for 8) Provide mechanical 2=695, 13=1010, 10 9) This truss design recomposition 	e loads have been considered for this ult=150mph (3-second gust) Vasd=1 gable end zone and C-C Exterior(2) : s shown; Lumber DOL=1.60 plate gri ainage to prevent water ponding. designed for a 10.0 psf bottom chord n designed for a live load of 20.0psf c ottom chord and any other members, uned to be User Defined crushing ca truss to truss connections. connection (by others) of truss to bea =288. quires that a minimum of 7/16" structu d directly to the bottom chord.	19mph; TCDL=6.0psf; BCDL cone; end vertical left and ric p DOL=1.60 live load nonconcurrent with n the bottom chord in all are with BCDL = 10.0psf. pacity of 565 psi.	ht exposed;C-C for members n any other live loads. has where a rectangle 3-6-0 ta anding 100 lb uplift at joint(s) e	and forces & Il by 2-0-0 wide except (jt=lb)	And a state of the	SEAL

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

SEAL 28228 February 20,2020

> 818 Soundside Road Edenton, NC 27932

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Provide adequate drainage to prevent water ponding.

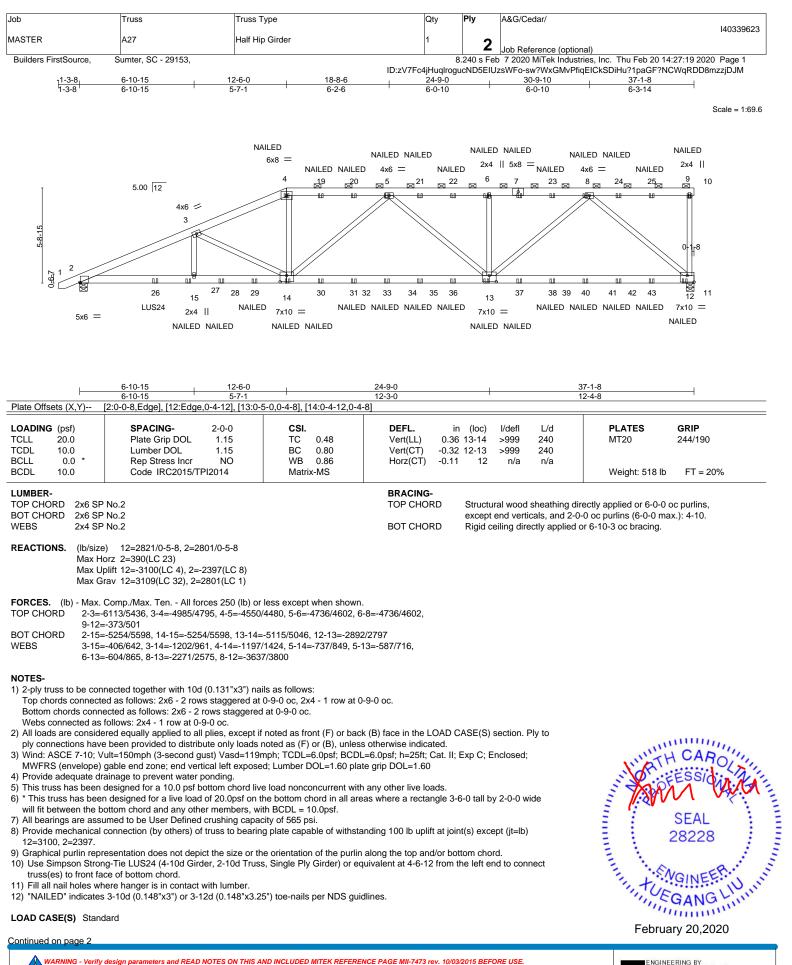
5) All plates are 2x4 MT20 unless otherwise indicated. 6) Gable requires continuous bottom chord bearing.

7) Gable studs spaced at 2-0-0 oc

Continisations based on the signed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	A&G/Cedar/
					140339622
MASTER	A26	GABLE	2	1	
					Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,			3.240 s Feb	7 2020 MiTek Industries, Inc. Thu Feb 20 14:27:16 2020 Page 2
		ID:zV	ID:zV7Fc4jHuqIrogucND5EIUzsWFo-SLJOIEJ06kKFNrT9n58aGMPO13PLA0wOIF_U9ezjDJP		


NOTES-

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) All bearings are assumed to be User Defined crushing capacity of 565 psi.
11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 44, 45, 46, 55, 43, 41, 31 except (jt=lb) 47=119, 48=119, 49=115, 51=115, 52=115, 53=117, 54=129, 56=302, 39=119, 38=120, 37=114, 35=115, 33=118, 32=125, 30=287.

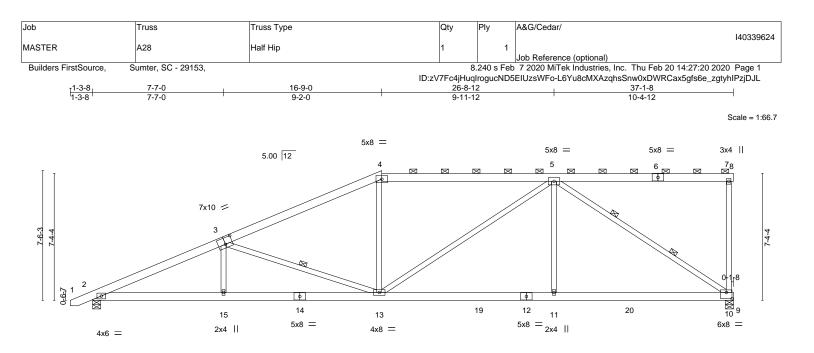
12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Design valid for use only with MiTeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

dof	Truss	Truss Type	Qty	Ply	A&G/Cedar/
					140339623
MASTER	A27	Half Hip Girder	1	2	
				_	Job Reference (optional)
Builders FirstSource, S	umter, SC - 29153,		8	.240 s Feb	7 2020 MiTek Industries, Inc. Thu Feb 20 14:27:19 2020 Page 2
					· · · · · · · · · · · · · · · · · · ·

ID:zV7Fc4jHuqlrogucND5EIUzsWFo-sw?WxGMvPfiqEICkSDiHu?1paGF?NCWqRDD8mzzjDJM

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-9=-60, 9-10=-20, 11-16=-20

Concentrated Loads (lb)

Vert: 4a-80(F) 7=-80(F) 9=-98(F) 12=-56(F) 14=-52(F) 5=-80(F) 13=-52(F) 6=-80(F) 8=-80(F) 19=-80(F) 20=-80(F) 21=-80(F) 22=-80(F) 23=-80(F) 24=-80(F) 25=-80(F) 26=-279(F) 27=-194(F) 28=-194(F) 29=-194(F) 30=-52(F) 31=-52(F) 33=-52(F) 35=-52(F) 35

	7-7-0	16-9-0 9-2-0	26-8-1 9-11-1		37-1-8 10-4-12	
Plate Offsets (X,Y)	[3:0-5-0,0-4-8], [10:0-4-0,0-4-	4]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Plate Grip DOL 1 Lumber DOL 1	0-0 CSI. .15 TC 0.69 .15 BC 0.57 ES WB 0.91 14 Matrix-AS	Vert(LL) -0.12 Vert(CT) -0.25 Horz(CT) 0.08	2 11-13 >999 30 5 13-15 >999 24 6 10 n/a r	/d PLATES 60 MT20 40 √a 40 Weight: 262 lb	GRIP 244/190 FT = 20%
			BRACING- TOP CHORD BOT CHORD WEBS	Structural wood she 2-0-0 oc purlins (4-6 Rigid ceiling directly 1 Row at midpt 2 Rows at 1/3 pts	,	end verticals, and
REACTIONS. (Ib/size Max H	e) 10=1484/0-5-8, 2=1540/0 orz 2=503(LC 12))-5-8		· · · · · · · · · · · · · · · ·		

Max Holz 2=505(LC 12) Max Uplift 10=-795(LC 8), 2=-679(LC 12) Max Grav 10=1490(LC 2), 2=1540(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-3138/1879, 3-4=-2276/1372, 4-5=-2009/1390, 7-10=-261/262

BOT CHORD 2-15=-2129/2856, 13-15=-2129/2855, 11-13=-1093/1731, 10-11=-1093/1731

WEBS 3-15=0/321, 3-13=-895/790, 4-13=0/441, 5-13=-371/392, 5-11=0/530, 5-10=-2060/1301

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

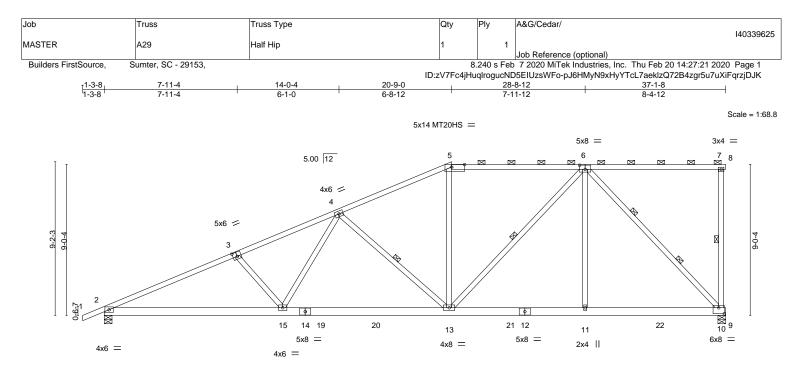
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=795, 2=679.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

February 20,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

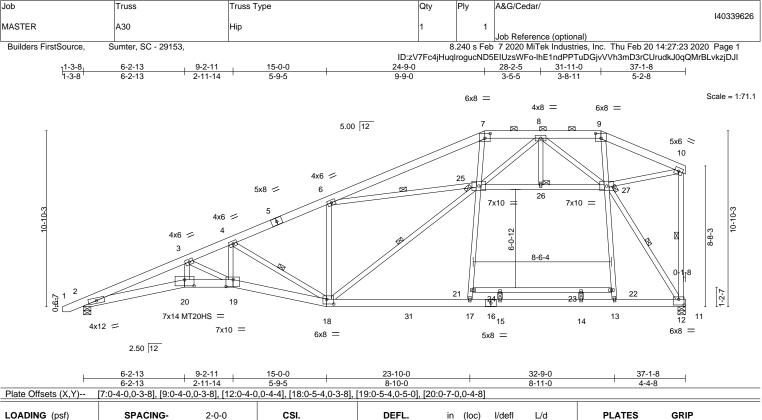
L	10-7-14	20-9-0	1	1	28-8-1	2	37-1-8	
	10-7-14	10-1-2			7-11-1	2	8-4-12	
Plate Offsets (X,Y)	[3:0-3-0,0-3-0], [5:0-9-4,0-1-12], [6:0-4-0,	,0-3-0], [10:0-4-0,0-4-4]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.92 BC 0.60 WB 0.93 Matrix-AS	- ()	in -0.18 13 -0.33 13 0.07 0.20	3-15 >99 3-15 >99	99 360 99 240 n/a n/a	PLATES MT20 MT20HS Weight: 246 lb	GRIP 244/190 187/143 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x6 SF WEBS 2x4 SF	° No.2		BRACING- TOP CHORI BOT CHORI WEBS	2 D R 1	-0-0 oc pu	rlins (2-2-0 max g directly applie idpt	,	end verticals, and

REACTIONS. (lb/size) 10=1484/0-5-8, 2=1553/0-5-8 Max Horz 2=624(LC 12) Max Uplift 10=-774(LC 8), 2=-723(LC 12) Max Grav 10=1547(LC 2), 2=1553(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-2992/1758, 3-4=-2714/1646, 4-5=-1798/1126, 5-6=-1605/1129
- BOT CHORD 2-15=-2121/2682, 13-15=-1656/2152, 11-13=-772/1206, 10-11=-772/1206
- WEBS 3-15=-386/499, 4-15=-310/619, 4-13=-775/717, 5-13=-3/354, 6-13=-516/641, 6-11=0/451, 6-10=-1729/1100

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=774, 2=723.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

February 20,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING	(pst)	SPACING- 2	2-0-0 C	SI.		DEFL.	ın	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15 T	C 0	.52	Vert(LL)	-0.24	19	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15 B	C 0	.75	Vert(CT)	-0.50	19	>882	240	MT20HS	187/143
BCLL	0.0 *	Rep Stress Incr	YES W	/B 0	.83	Horz(CT)	0.20	12	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI20	014 N	latrix-A	S	Wind(LL)	0.44	19	>999	240	Weight: 346 lb	FT = 20%
LUMBER-			ł			BRACING-						
TOP CHO	RD 2x6 SP	° No.2				TOP CHOR	D	Structu	Iral wood	sheathing c	directly applied, except e	end verticals, and
BOT CHO	RD 2x6 SP	No.2 *Except*						2-0-0 o	c purlins	(5-2-1 max.): 7-9.	
	2-20,19	9-20: 2x6 SP No.1				BOT CHOR	D	Rigid c	eiling dire	ectly applied	İ.	
WEBS	2x4 SP	No.3 *Except*				WEBS		1 Row	at midpt		4-18, 10-12, 12-27, 6-25	5, 18-25
	21-22:	2x4 SP No.2				JOINTS		1 Brace	e at Jt(s):	25, 26, 27		

REACTIONS. (lb/size) 2=1587/0-5-8, 12=1632/0-5-8 Max Horz 2=662(LC 12) Max Uplift 2=-700(LC 12), 12=-460(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-5576/3467, 3-4=-4225/2537, 4-6=-2476/1379, 6-7=-2175/1196, 7-8=-1854/1235, 8-9=-192/297. 9-10=-293/374 BOT CHORD 2-20=-3760/5172, 19-20=-3619/4973, 18-19=-2859/4075, 17-18=-577/1106,

15-17=-584/1069, 14-15=-584/1069, 13-14=-584/1069, 12-13=-576/1103 WEBS 3-20=-660/997, 3-19=-1215/998, 4-19=-1022/1534, 4-18=-2056/1499, 6-18=-459/574, 17-21=0/468, 21-25=0/484, 7-25=0/489, 9-27=-433/437, 22-27=0/432, 13-22=0/411, 8-25=-806/1258, 8-27=-1499/927, 10-27=-334/321, 12-27=-2024/1051, 6-25=-376/483, 18-25=-1230/1483

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) 200.0lb AC unit load placed on the bottom chord, 28-2-3 from left end, supported at two points, 5-0-0 apart.
- 4) Provide adequate drainage to prevent water ponding.

5) All plates are MT20 plates unless otherwise indicated.

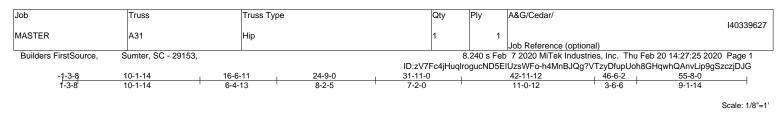
6) All plates are 2x4 MT20 unless otherwise indicated.

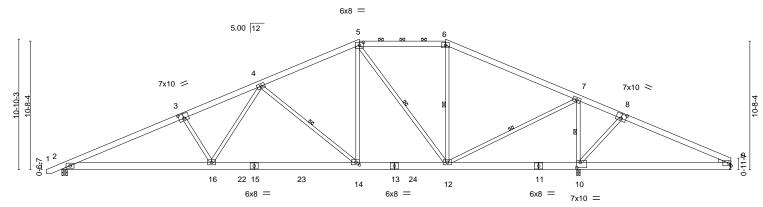
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 8) will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) All bearings are assumed to be User Defined crushing capacity of 565 psi.

10) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=700, 12=460.

12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every contractors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

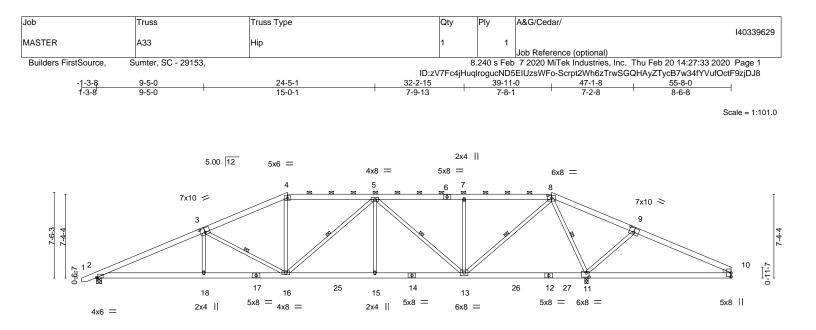
 	12-5-8 12-5-8	<u>24-9-0</u> 12-3-8	31-11-0	42-11-12	55-8-0	
Plate Offsets (X,Y)	[3:0-5-0,0-4-8], [5:0-4-0,0-2-12], [8:0-5-				1201	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.55 BC 0.31 WB 0.90 Matrix-AS	Vert(CT) Horz(CT)	in (loc) l/defl L/d -0.16 14-16 >999 360 -0.31 14-16 >999 240 0.05 10 n/a n/a 0.22 16-18 >999 240	MT20	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x8 SP WEBS 2x4 SP WEDGE Right: 2x4 SP No.3	DSS	1	BRACING- TOP CHORE BOT CHORE WEBS	2-0-0 oc purlins (6-0-0		-10
Max He Max U Max G) 2=1730/0-5-8, 10=2463/0-3-8, 9=3 orz 2=350(LC 12) blift 2=-841(LC 12), 10=-939(LC 13), 9= rav 2=1730(LC 1), 10=2463(LC 1), 9= Come (May, Tag. All (come 250 (lb.)c	237(LC 13) 116(LC 24)	_			
TOP CHORD 2-3=- 7-8=- 7-8=- BOT CHORD 2-16= WEBS 3-16=	Comp./Max. Ten All forces 250 (lb) o 3417/2223, 3-4=-3179/2182, 4-5=-1922 173/379, 8-9=-283/298 -1889/3090, 14-16=-1365/2434, 12-14 -462/572, 4-16=-470/859, 4-14=-994/9 -896/1676, 7-10=-1879/1425, 8-10=-32	/1433, 5-6=-1241/1162, 4 =-674/1693, 10-12=-328/3 01, 5-14=-466/982, 5-12=	6-7=-1471/1099, 387			
 Wind: ASCE 7-10; V MWFRS (envelope) reactions shown; Lur Provide adequate drr. All plates are 5x8 MT This truss has been will fit between the b This truss has been will fit between the b All bearings are assu Refer to girder(s) for Provide mechanical 2=841, 10=939, 9=2: This truss design re sheetrock be applie 	loads have been considered for this dult=150mph (3-second gust) Vasd=119 gable end zone and C-C Exterior(2) zo nber DOL=1.60 plate grip DOL=1.60 '20 unless otherwise indicated. designed for a 10.0 psf bottom chord lin o designed for a 10.0 psf bottom chord. The diffectly to the bottom chord.	mph; TCDL=6.0psf; BCD ne; end vertical left expose re load nonconcurrent wit the bottom chord in all ar ith BCDL = 10.0psf. city of 565 psi. ng plate capable of withst ral wood sheathing be ap	sed;C-C for members th any other live load eas where a rectang tanding 100 lb uplift a plied directly to the to	s and forces & MWFRS for s. le 3-6-0 tall by 2-0-0 wide at joint(s) except (jt=lb) op chord and 1/2" gypsum	N. T. EC	CARO ESSIC M SEAL 28228 GINEER GANG HUILING

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

SINEERING

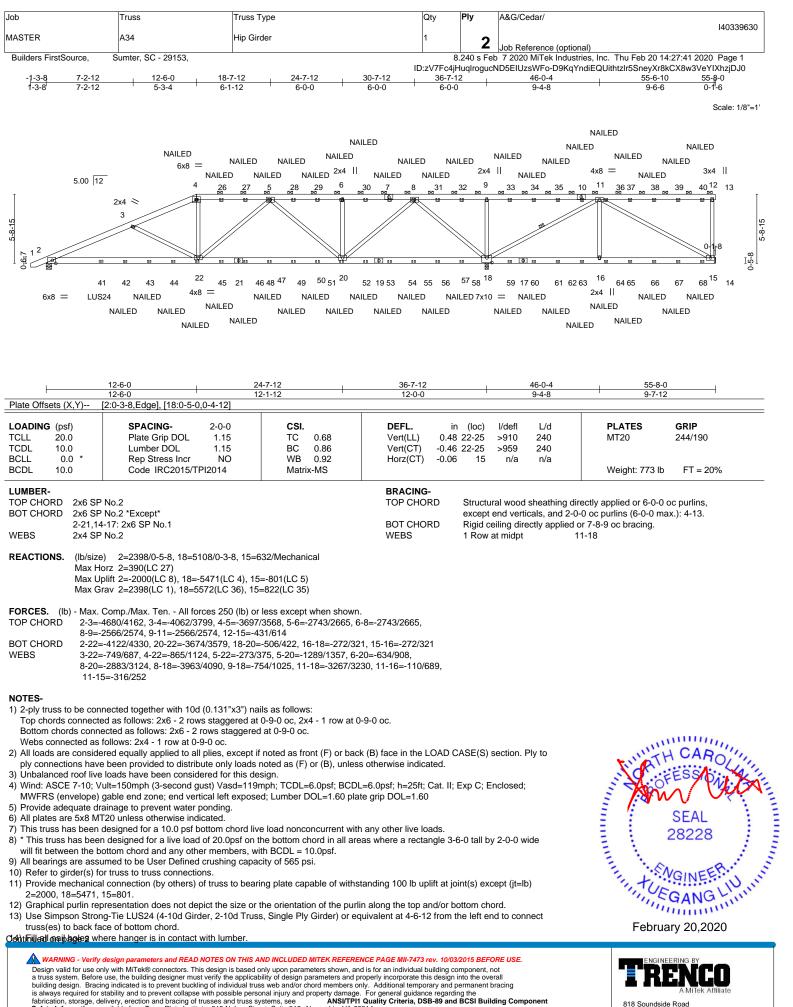
 	<u>10-10-8</u>	20-9-0		28-4-0		<u>35-11-0</u> 7-7-0		<u>42-11-12</u> 7-0-12	55-8	
Plate Offsets (X,Y)	[2:0-1-0,Edge], [3:0-5-0,0		-8], [10:0-0-0,0-{		-8,0-4-8]	1-1-0		7-0-12	12-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES PI2014	CSI. TC 0.42 BC 0.68 WB 0.94 Matrix-AS		DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.17 16-18 -0.33 16-18 0.08 11 0.20 18-21	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 400 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP SOT CHORD 2x6 SP WEBS 2x4 SP WEDGE Right: 2x4 SP No.3	9 No.2				BRACING- TOP CHOF BOT CHOF WEBS	RD Structu 2-0-0 c RD Rigid c	oc purlins	(5-0-3 max.) ectly applied.		8-11
Max Hi Max Uj Max G FORCES. (Ib) - Max. TOP CHORD 2-3=- 7-8=- 3OT CHORD 2-18= 11-13	e) 2=1689/0-5-8, 11=26 orz 2=300(LC 12) plift 2=-779(LC 12), 11=- rav 2=1689(LC 1), 11=26 Comp./Max. Ten All for 3415/2196, 3-4=-3134/20 936/716, 8-9=-425/732, 9 =-1909/3106, 16-18=-140 3=-627/692, 10-11=-384/2	1100(LC 9), 10=-1 645(LC 1), 10=282 rcces 250 (lb) or les 057, 4-5=-2193/15 9-10=-220/473 18/2525, 14-16=-68	87(LC 13) 2(LC 24) 36, 5-6=-1971/1! 39/1737, 13-14=-	505, 6-7=-80 689/1737,						
6-14= NOTES- I) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) reactions shown; Lur 3) Provide adequate dr. 4) All plates are 5x8 MT 5) This truss has been will fit between the b 7) All bearings are assu	-427/522, 4-18=-322/640 =0/414, 6-13=-1415/830, i e loads have been conside (ult=150mph (3-second gu gable end zone and C-C mber DOL=1.60 plate grij rainage to prevent water p T20 unless otherwise indi designed for a 10.0 psf b n designed for a live load vottom chord and any othe umed to be User Defined	8-13=-1071/1866, lered for this desig ust) Vasd=119mpl Exterior(2) zone; p DOL=1.60 ponding. icated. lottom chord live lot lof 20.0psf on the er members, with l crushing capacity ns.	8-11=-2114/153 n. n; TCDL=6.0psf; end vertical left e bad nonconcurre bottom chord in BCDL = 10.0psf.	4, 9-11=-553 BCDL=6.0ps exposed;C-C nt with any o	/579 f; h=25ft; 0 for membe her live loa	ers and forces &	& MWFR	S for		SEAL


11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

February 20,2020

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



	<u>9-5-0 16-9-0</u> 9-5-0 7-4-0	24-5-1	<u>32-2-15</u> 7-9-13	+ <u>42-11-12</u> 10-8-13	55-8-0	
Plate Offsets (X,Y)	[2:0-1-0,Edge], [3:0-5-0,0-4-8], [8:0-4				12-0-4	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.54 BC 0.69 WB 0.82 Matrix-AS	Vert(CT) -0 Horz(CT) 0	in (loc) l/defl L/ 0.15 15-16 >999 360 0.30 15-16 >999 240 0.09 11 n/a n/a 0.22 15-16 >999 240	D MT20 D a	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP WEBS 2x4 SP WEDGE Right: 2x4 SP No.3	2 No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood shea 2-0-0 oc purlins (4-7-3 Rigid ceiling directly a 1 Row at midpt		5-13
Max H Max U	 2=1665/0-5-8, 11=2749/0-3-8, 10 corz 2=250(LC 12) plift 2=-724(LC 12), 11=-1272(LC 9), rav 2=1665(LC 1), 11=2749(LC 1), 1 	10=-208(LC 13)				
TOP CHORD 2-3=- 8-9=-	Comp./Max. Ten All forces 250 (lb) 3309/2080, 3-4=-2556/1693, 4-5=-22 467/972, 9-10=-306/751 1779/2995, 16-18=-1779/2994, 15-1	76/1649, 5-7=-1506/1130, 7	7-8=-1508/1132,			
10-11 WEBS 3-18=	l=-639/346 =0/337, 3-16=-812/712, 4-16=-223/58 =-1157/1987, 5-16=-258/134, 7-13=-5	8, 8-11=-2220/1479, 9-11=-	618/701,			
 2) Wind: ASCE 7-10; V MWFRS (envelope) reactions shown; Lu 3) Provide adequate dr 4) This truss has been 5) * This truss has been will fit between the b 6) All bearings are assist 7) Refer to girder(s) for 8) Provide mechanical 2=724, 11=1272, 10 9) This truss design red sheetrock be applied 	e loads have been considered for this (ult=150mph (3-second gust) Vasd=1' gable end zone and C-C Exterior(2) z mber DOL=1.60 plate grip DOL=1.60 ainage to prevent water ponding. designed for a 10.0 psf bottom chord n designed for a live load of 20.0psf o ottom chord and any other members, umed to be User Defined crushing cap truss to truss connections. connection (by others) of truss to bea =208. quires that a minimum of 7/16" structud d inectly to the bottom chord. presentation does not depict the size of	9mph; TCDL=6.0psf; BCDl one; end vertical left expos live load nonconcurrent with n the bottom chord in all are with BCDL = 10.0psf. wacity of 565 psi. ring plate capable of withsta ral wood sheathing be appl	ed;C-C for members h any other live loads eas where a rectangle anding 100 lb uplift at ied directly to the top	and forces & MWFRS for 3-6-0 tall by 2-0-0 wide joint(s) except (jt=lb) chord and 1/2" gypsum	TUE TUE	SEAL 28228

February 20,2020

ENGINEERING BY AMITEK Atfiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	A&G/Cedar/
					140339630
MASTER	A34	Hip Girder	1	2	
				-	Job Reference (optional)
Builders FirstSource, S	umter, SC - 29153,		8	.240 s Feb	7 2020 MiTek Industries, Inc. Thu Feb 20 14:27:41 2020 Page 2

ID:zV7Fc4jHuqIrogucND5EIUzsWFo-D9KqYndiEQUithtzIr5SneyXr8kCX8w3VeYIXhzjDJ0

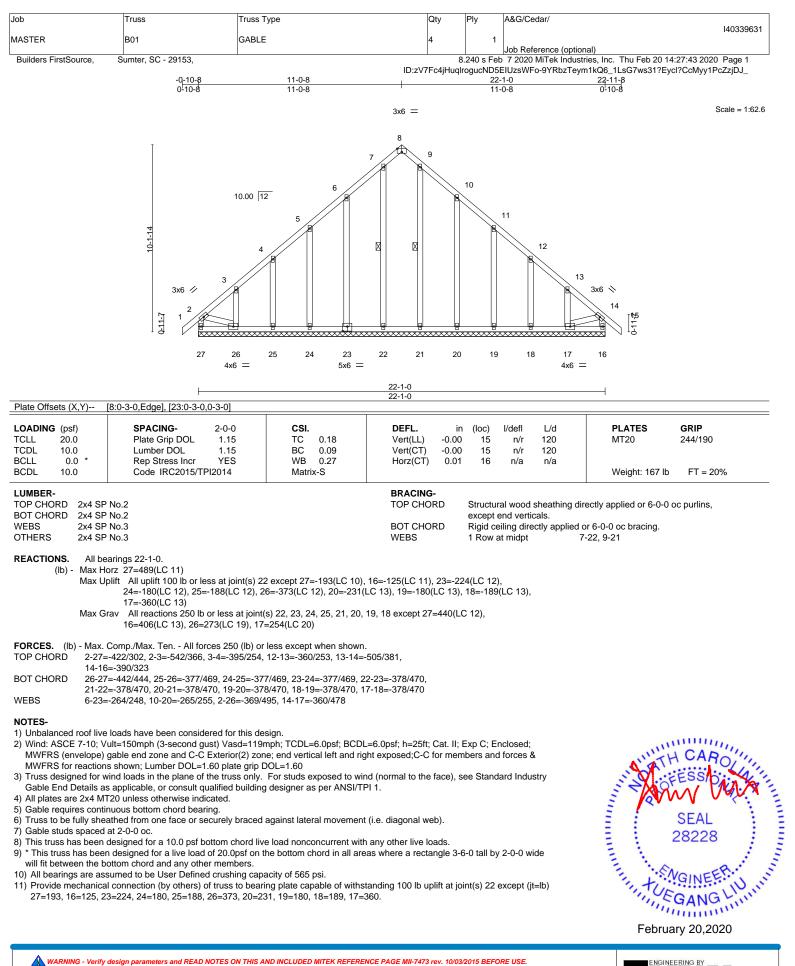
NOTES-

- 15) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 85 lb down and 24 lb up at 36-6-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

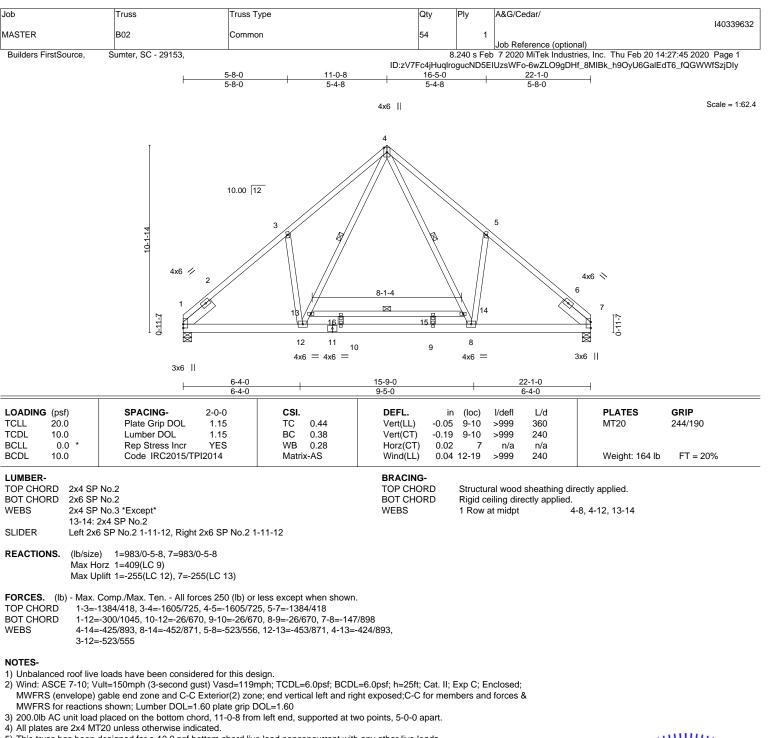
1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)


Vert: 1-4=-60, 4-12=-60, 12-13=-20, 14-23=-20

Concentrated Loads (lb)

Vert: 4=-80(B) 7=-80(B) 22=-52(B) 5=-80(B) 20=-52(B) 6=-80(B) 8=-80(B) 10=-80(B) 26=-80(B) 27=-80(B) 28=-80(B) 29=-80(B) 30=-80(B) 31=-80(B) 32=-80(B) 33=-80(B) 33=-80(B) 34=-80(B) 35=-80(B) 35=-52(B) 55=-52(B) 55=-5


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

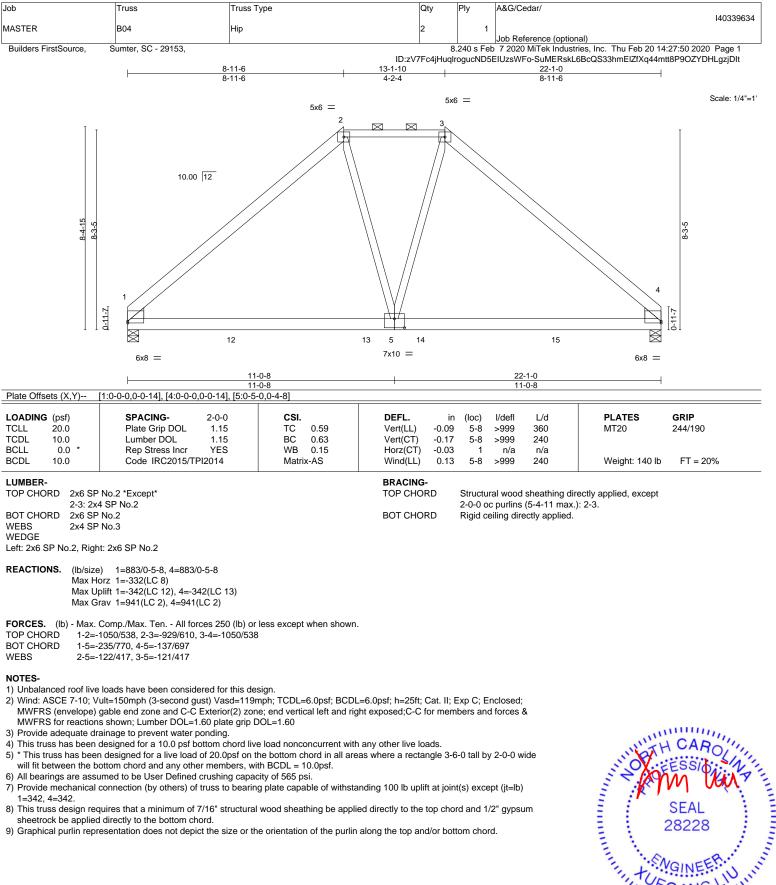
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) All bearings are assumed to be User Defined crushing capacity of 565 psi.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=255, 7=255.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

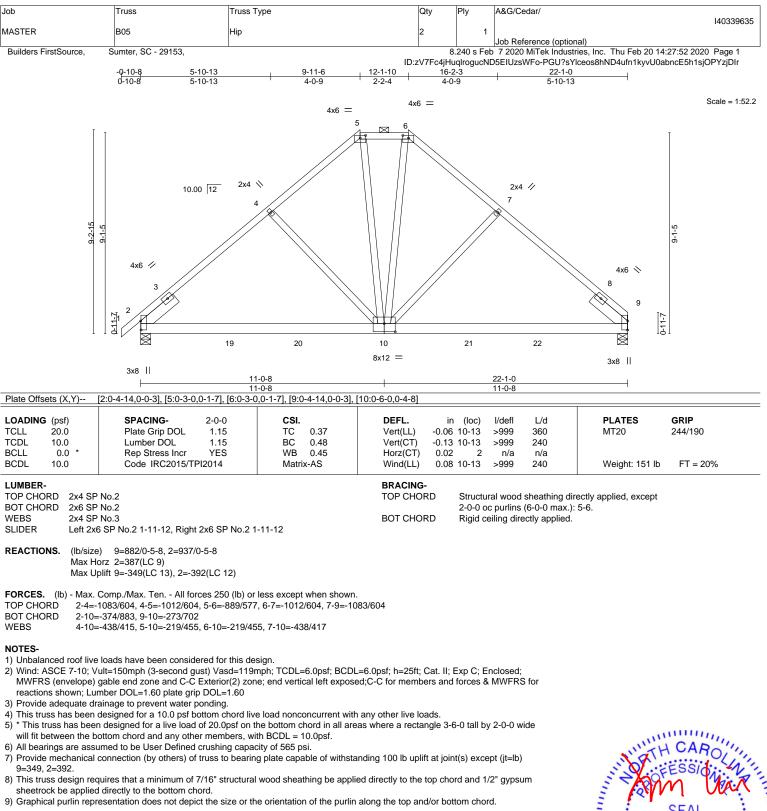
February 20,2020



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

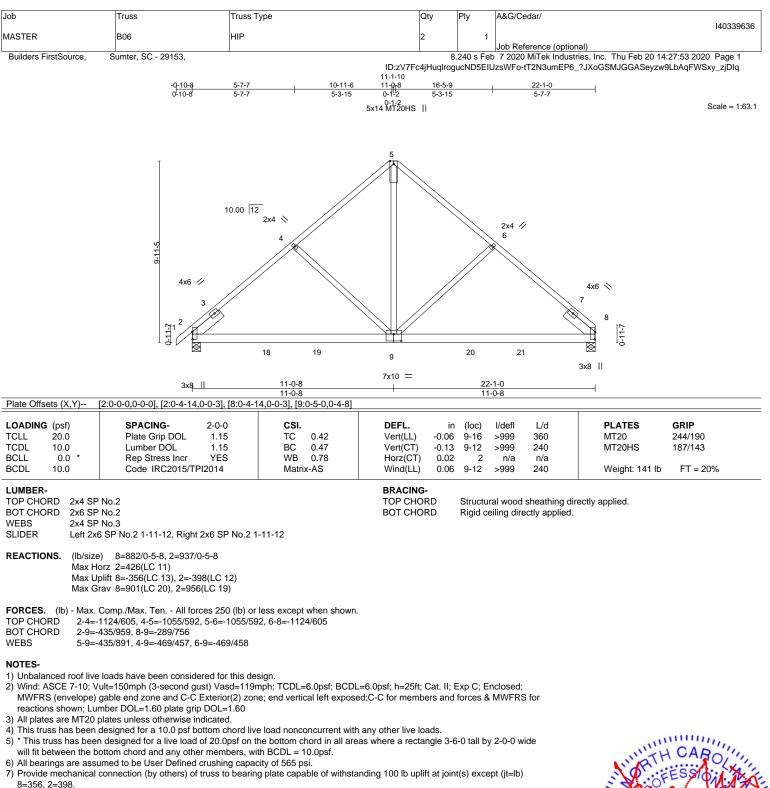
818 Soundside Road Edenton, NC 27932


9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

EGANG

February 20,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REFERENCE FACE INTERCISES. To according to the operation of a second sec fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

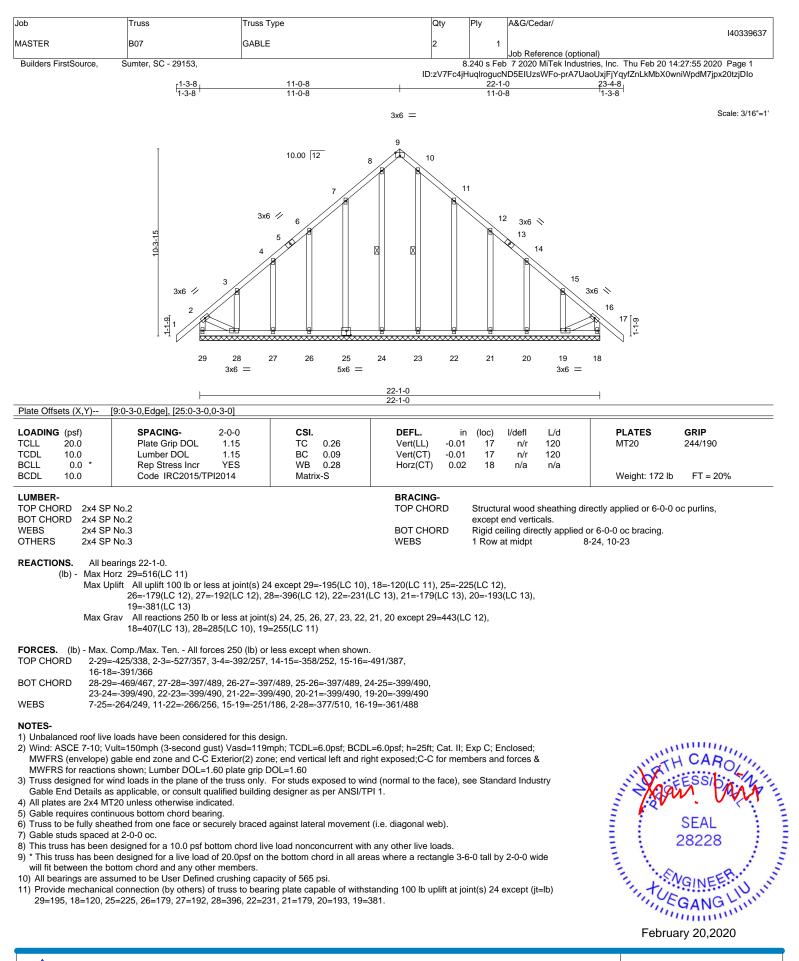


February 20,2020

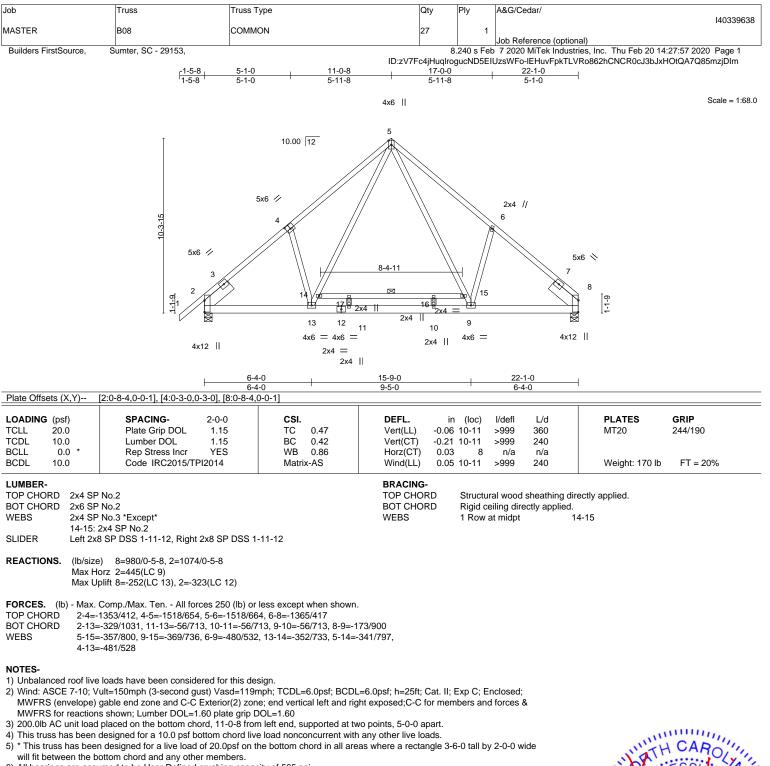
ENGINEERING BY REENCED A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

TRENCINE BY A MITEK Affiliate 818 Soundside Road


Edenton, NC 27932

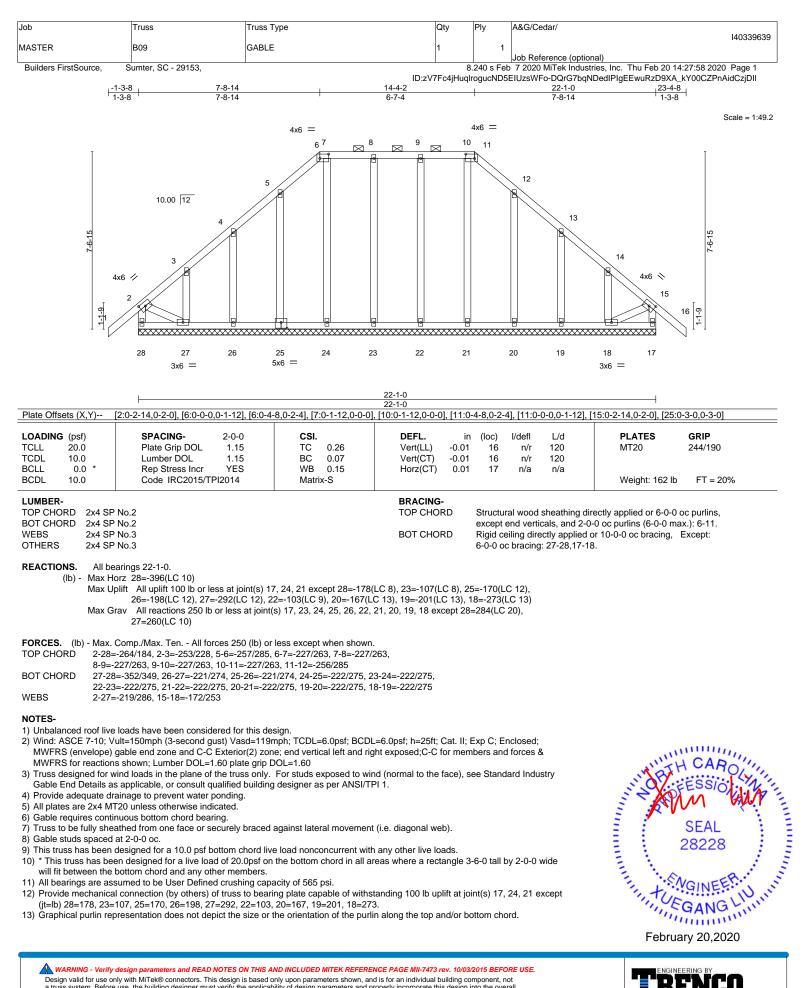
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

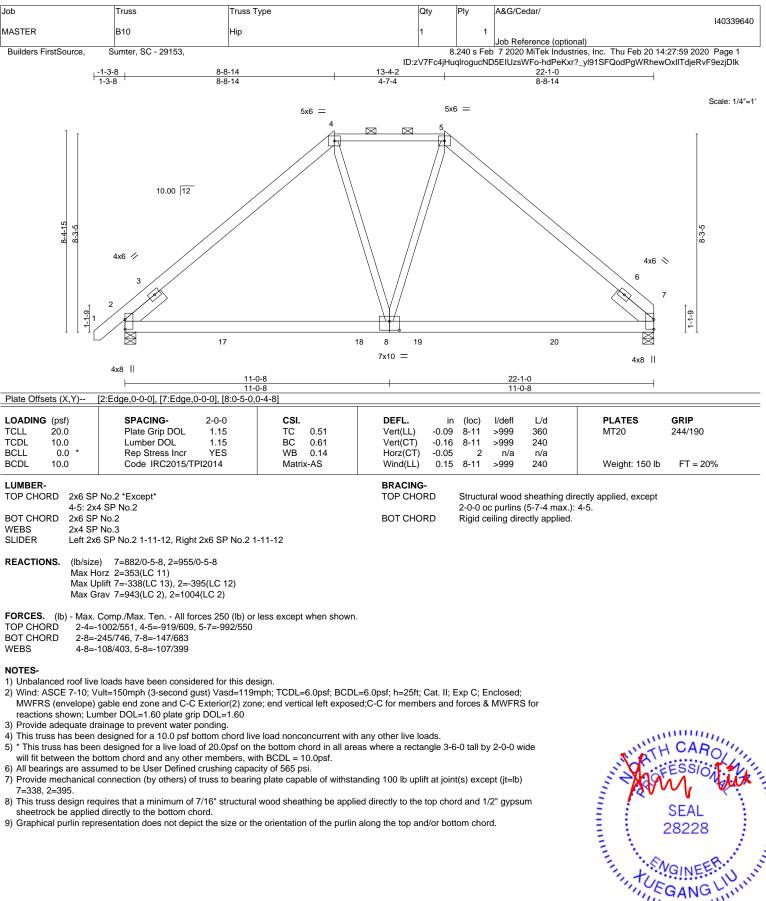
818 Soundside Road Edenton, NC 27932

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=252, 2=323.

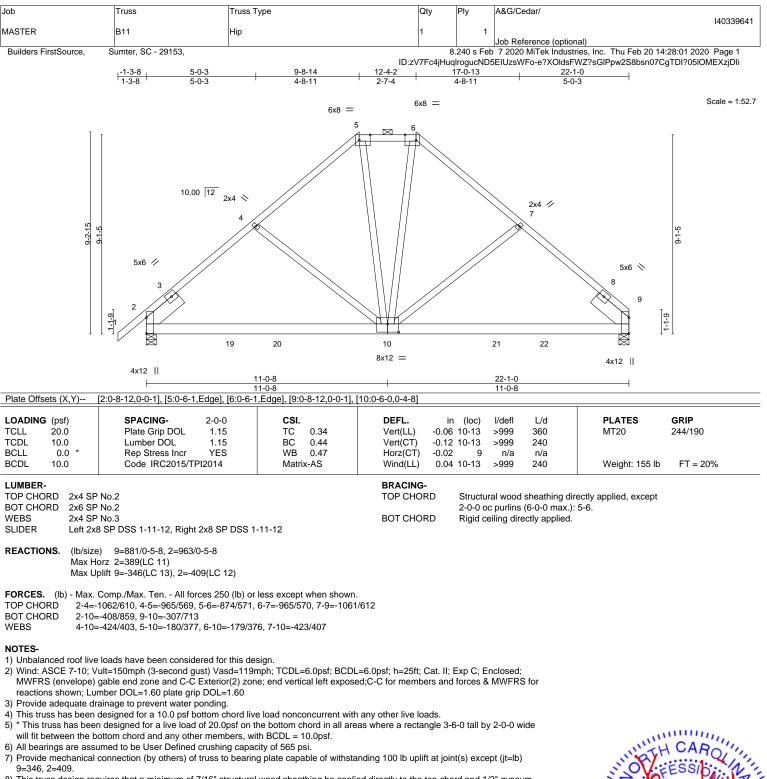

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

February 20,2020

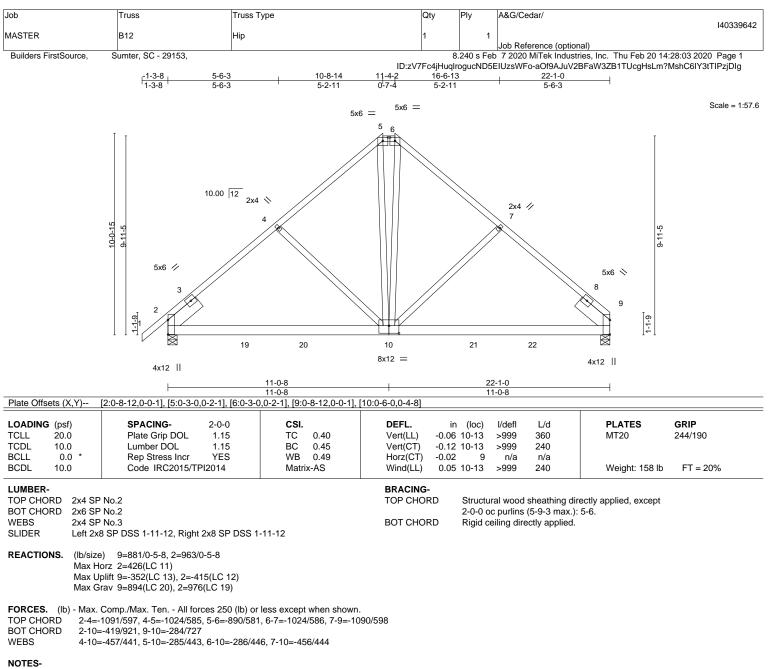


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


818 Soundside Road Edenton, NC 27932

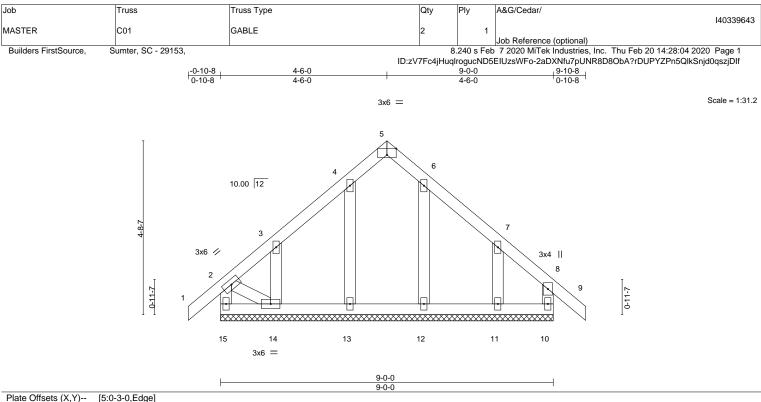
🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REFERENCE FACE INTERCISES. To according to the operation of a second sec fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=352, 2=415.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

February 20,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

CDL 10.0 Lumber DOL 1.15 BC 0.13 3CLL 0.0 * Rep Stress Incr YES WB 0.08	Vert(LL) -0.00 9 n/r 120 Vert(CT) -0.00 9 n/r 120 Horz(CT) 0.00 10 n/a n/a	MT20 244/190
SolutionRep stress inclPLSWB0.08SCDL10.0CodeIRC2015/TPI2014Matrix-S		Weight: 53 lb FT = 20%

BOT CHORD2x4 SP No.2Structural wood sheating directly applied of 0-0-0 oc bracing, ExceptWEBS2x4 SP No.3BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing, ExceptOTHERS2x4 SP No.36-0-0 oc bracing: 14-15.

REACTIONS. All bearings 9-0-0.

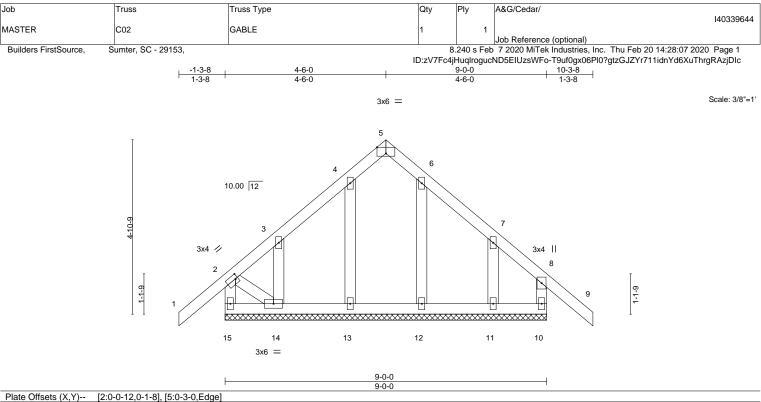
(lb) - Max Horz 15=-247(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 10, 13, 12 except 15=-105(LC 8), 14=-271(LC 12), 11=-293(LC 13) Max Grav All reactions 250 lb or less at joint(s) 15, 10, 13, 14, 12, 11

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 WEBS
 3-14=-258/212, 7-11=-287/278

NOTES-


1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
 Cable stude associate 2.0.0 ac
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 13, 12 except (jt=lb) 15=105, 14=271, 11=293.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) l/defl	L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.40	Vert(LL) -0.01	9 n/r	120	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.14	Vert(CT) -0.01	9 n/r	120	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.08	Horz(CT) 0.00	10 n/a	n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S				Weight: 56 lb FT = 20%

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

 BRACING

 TOP CHORD
 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 9-0-0.

(lb) - Max Horz 15=274(LC 11)

2x4 SP No.3

 $\begin{array}{ll} \mbox{Max Uplift} & \mbox{All uplift 100 lb or less at joint(s) 10, 13, 12 except 15=-146(LC 8), 14=-265(LC 12), 11=-282(LC 13) \\ \mbox{Max Grav} & \mbox{All reactions 250 lb or less at joint(s) 15, 10, 13, 14, 12, 11} \end{array}$

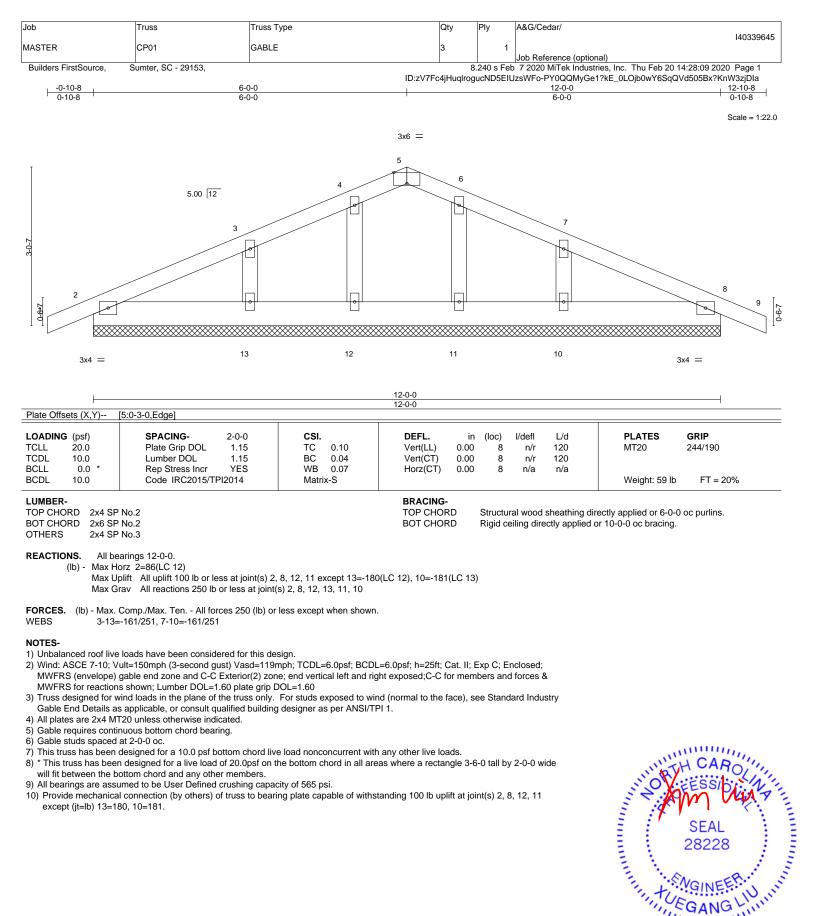
 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 WEBS
 3-14=-280/190, 7-11=-305/264

NOTES-

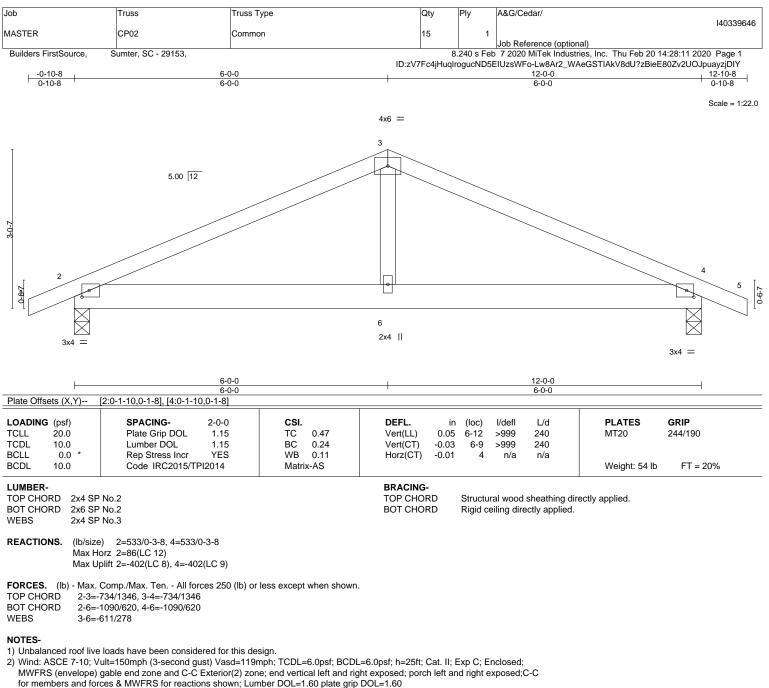
OTHERS

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 13, 12 except (jt=lb) 15=146, 14=265, 11=282.

TERENCINEERING BY A Mi Tek Affiliate 818 Soundside Road

Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

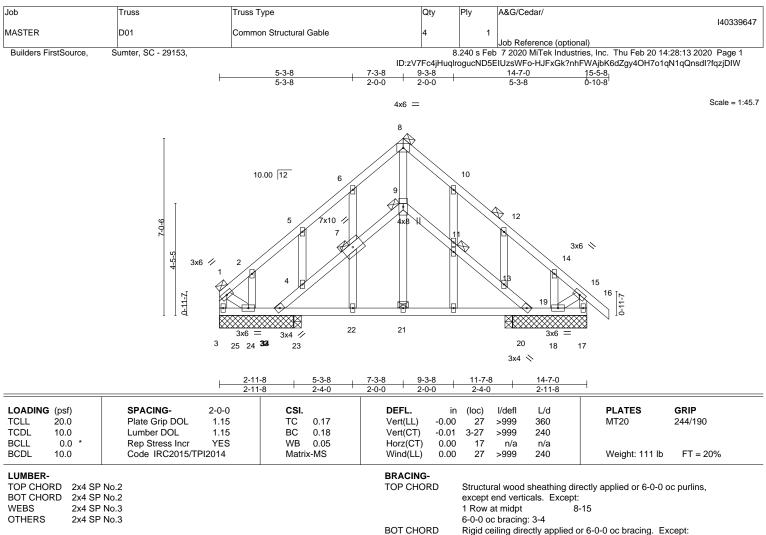
February 20,2020

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=402, 4=402.


7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

JOINTS

Rigid ceiling directly applied or 6-0-0 oc bracing. Except: 1 Row at midpt 17-27 1 Brace at Jt(s): 1, 8, 9, 7, 11

REACTIONS. All bearings 2-11-4 except (jt=length) 23=0-3-8, 20=0-3-8.

Max Horz 3=188(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 25, 17, 3, 19, 18, 20, 19 except 24=-261(LC 12), 23=-205(LC 12) Max Grav All reactions 250 lb or less at joint(s) 25, 17, 3, 19, 24, 18, 20 except 23=296(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

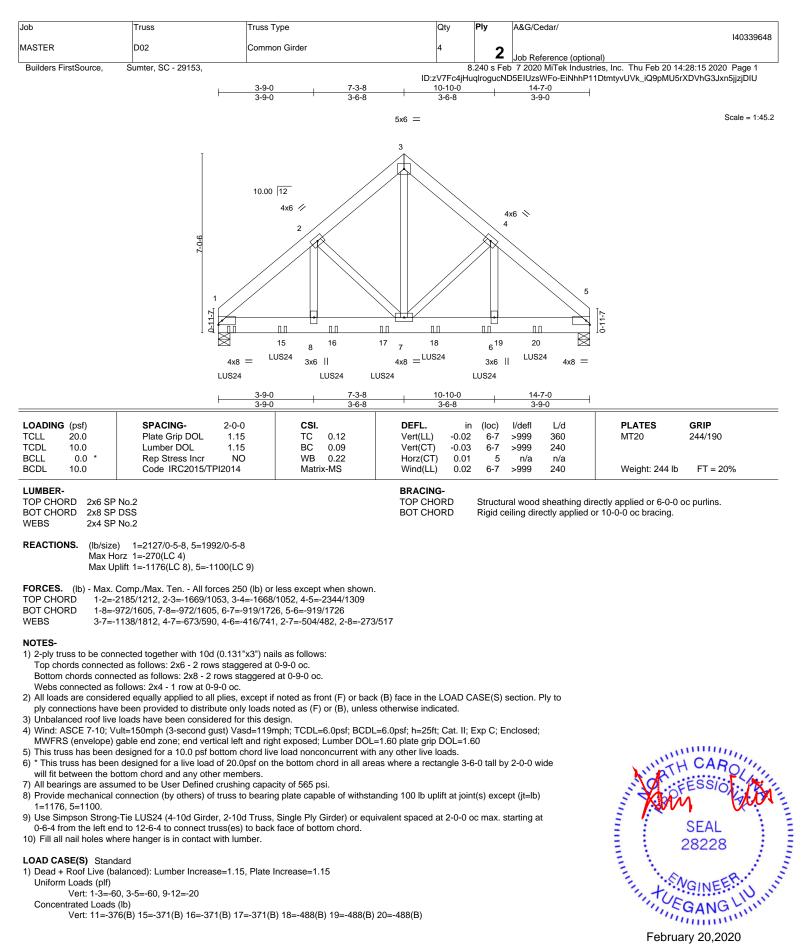
4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

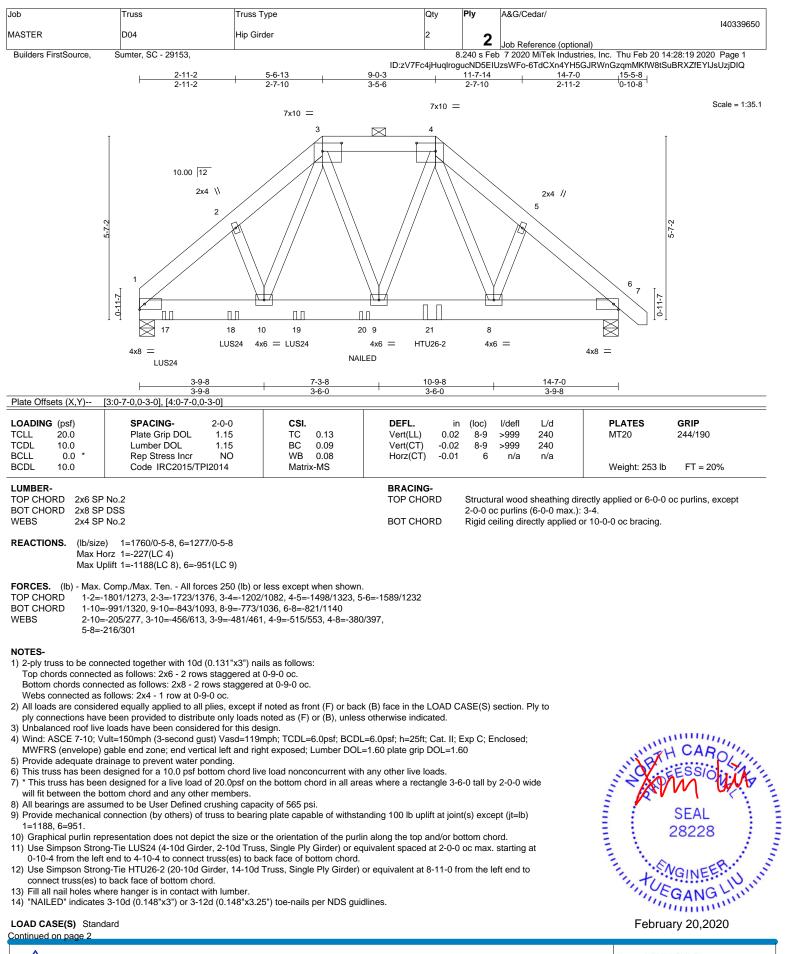
8) All bearings are assumed to be User Defined crushing capacity of 565 psi.


9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 17, 3, 19, 18, 20, 19 except (jt=lb) 24=261, 23=205.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REFERENCE FACE INTERCISES. To according to the operation of a second sec fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web snd/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



Edenton, NC 27932

NSTER D03 lep Structural Gable 1 lab Intervence (potonol) H0033866 huides PersBource, Summe, S0 - 29153. D240 Fbb 7200 Hbb 7200 Hb	Job	Truss	Truss Type	Qty	Ply A&G/Cedar/	
Later Fridound. Sumt SC - 2015. December 2016 Part Lineau Later The Part Lineau Later T	MASTER	D03			1	140339649
<pre></pre>	Builders FirstSource,	Sumter, SC - 29153,			8.240 s Feb 7 2020 MiTek Indust	tries, Inc. Thu Feb 20 14:28:17 2020 Page 1
<complex-block> Image: Contract of the second sec</complex-block>				9-4-11	14-7-0	15-5-8
<pre> def f f f f f f f f f f f f f f f f</pre>		5	-2-5			
<complex-block> with the second sec</complex-block>					4x6 =	Scale = 1:33.9
<complex-block></complex-block>	I		3		\mathbb{R}^{2}	Ī
<complex-block></complex-block>						
<complex-block></complex-block>		10.00 12 3x4	54		3x6 №	
<complex-block>All and a second se</complex-block>			2		5	
<complex-block>All and a second se</complex-block>	3-6	/				φ e
<complex-block> Image: Province of the state of</complex-block>	Ŀ.					ů .
<complex-block> Image: Contract of the /complex-block>		7x10 =				B
<form><pre> figure in the second of the secon</pre></form>						
A A A A A A A A A A A A A A A A A					, <u> </u>	
add = 12 10 add = 7.10 = 11 13 24.13 24.13 44.6 24.13 24.13 Inter Offstein (X-Y)- (11.68ga, 0-6.8] (20.44.0-2.9], (80-41-0.20-0.9], (80-41-0.20-0.9], (80-40-0.4.9], (12.41-12.0-0.9] PLATES GRUP OADIM (grup) Phate Grip D2, 1.15 BC 0.23 Vert(C) 0.00 H 10-11 .969 3.0 CCL 10.0 Lumber DOL 1.15 BC 0.23 Vert(C) 0.00 H 10-11 .969 3.0 CCL 0.00 Rep Stress for YES WB 0.15 WT20 244/190 Weight: 109 b FT = 20% Vert(CD) 0.00 Rumber DOL 1.15 BC 0.23 Weight: 109 b FT = 20% OP CHORD 24.45 P No.2 TOP CHORD Structural wood theathing directly applied, except end verticals, and 2.40 oc oup unifies (6-00 max): 2.4 2.45 P No.3 BOT CHORD Rigd celling directly applied, except end verticals, and 2.40 oc oup unifies (6-00 max): 2.4 2.45 P No.3 EACTONS All posing 2.1-4 except (9-Length) 12-0-3.8, 10-0-3.8. BOT CHORD Structural wood theathing directly applied, except end verticals, and 2.40 oc oup unifies (6-00 max): 2.4 2.45 P No.3 GP CHORD 2-3.93 PN S13 Str	1				20	
Line Line Line Line Line 111 112 2213 4243 1274 4213 111 112 1					-	
Image Offsets (X/). I 15 deg. 0-68 (10 - 44.0-20 (16 - 14.0-0.0) (15 - 14.0-0.0, 14.0-0.0) (15 - 14.0-0.0, 14.0-0.0) (15 - 14.0-0.0,		14 15				9 0
Inter Offsets (XY)- 1:Edge_0E-0E-8], [30-4-4.0-2-0], [80-1-12.0-0-0], [BE-dge_0-0-6B, [30-0-4-0], [13-(1-0-4)], [14-1-12.0-0-0] CADING (ps) Plate Eng OL 1:0						
CLL 20.0 Plate Grip DOL 1.15 BC 0.32 Vert(CI) 0.03 10.11 399 360 MT20 24/190 CLL 0.0 Lumber DOL 1.15 BC 0.23 Vert(CI) 0.00 8 n/n n/	late Offsets (X,Y)					
CDL 10.0 Lumber DOL 1.15 BC 0.23 Ver(CT) -0.04 10.1 N/A Weight: 100 lb FT = 20% UNBER. Code IRC2015/TPI2014 Matrix-AS Wind(LL) 0.01 1.1 398 2.40 Weight: 10.0 2.45 Pho.3 BRACING: TOP CHORD Structure word shashing directly applied, except end verticals, and 2.40-foc particle (6.40 max): 3.4. VERS 2.44 SP No.3 BOT CHORD Rigid ceiling directly applied, except end verticals, and 2.40-foc particle (6.40 max): 3.4. VERS 2.44 SP No.3 BOT CHORD Rigid ceiling directly applied, except end verticals, and 2.40-foc particle (6.40 max): 3.4. VERS 2.44 SP No.3 BOT CHORD Rigid ceiling directly applied, except end verticals, and 2.40-foc particle (6.40 max): 3.4. VERS 2.44 SP No.3 BOT CHORD Nigid ceiling directly applied, except end verticals, and 2.40-foc particle (6.40 max): 3.4. VERS 2.43 SP No.3 BOT CHORD Nigid ceiling directly applied, except end verticals, and 2.40-foc particle (7.40, Waiter Structure) Nigid ceiling directly applied, except end verticals, and 2.40-foc particle (7.40, Waiter Structure) Nigid ceiling directly applied, except (4-434) Nigid	.OADING (psf)	SPACING- 2-0	0-0 CSI .	DEFL. ir	n (loc) l/defl L/d	PLATES GRIP
CDL 10.0 Code IRC2015/TPI2014 Matrix-AS Wind(LL) 0.01 10-11 >99 240 Weight: 109 Ib FT = 20% UMBER- DOP CHORD 2x4 SP No.2 Structural wood sheathing directly applied, except end verticals, and 2-00 ce purinis (6-0-0 max.): 34. EASTIONS All bearings 2-11.4 except (ji=length) 12=0-3-8, 10=0-3-8. BOT CHORD Structural wood sheathing directly applied, except end verticals, and 2-00 ce purinis (6-0-0 max.): 34. EACTIONS. All bearings 2-11.4 except (ji=length) 12=0-3-8, 10=0-3-8. BOT CHORD Rigid celling directly applied. Except (ji=length) 12=0-3-8, 10=0-3-8. (ib) Max Motrix 14-2307LC 10) Max Upitit 100 ib ress at joint(s) 12 except 14=-377(LC 10), 8=-266(LC 2), 13=-678(LC 12), Max Grav All reactions 250 bot less as tipint(s) except 14=-434(LC 21), 8=-01(LC 22), 13=-406(LC 10), 9=415(LC 11), 12=-266(LC 22), 10=384(LC 18) ORCES. (ib)- Max. Comp.Max. Ten All forces 250 (B): or less except when shown. OR CHORD IS: 12=-3674(37, 12-365(37, 12-3724), 4-53-352/303, 56=-428/293, 1-14=-337/38, 1-13-181/244, 1-12-161/284, 10-11=-159/295 IS: 12=-3674(37, 12-18-161/284, 11-12-161/284, 10-11=-159/295 UMBAINCE Or or wind loads in the plane of the trus only. For stude seposed to wind (normal to the face), see Standard Industry Gravity and the plane of the trus only. Por stude seposed to wind (normal to the face), see Standard Industry Gravity and truss has been designed for a 10.0 pd botom chord. SEAL SEAL SEAL						MT20 244/190
WBRER. OP CHORD Zx4 SP No.2 OP CHORD Zx4 SP No.3 FILES Zx4 SP No.3 EACTIONS. All bearings 2-11-4 except (tillength) 12=0-3-8, 10=0-3-8. (b) Max Horz 14=-257(LC 10) Max Korz VI-4=-257(LC 13) BOT CHORD Max Korz VI-4=-257(LC 10) Max Korz VI-4=-257(LC 10) Max Grav All reactings 2016 or less at joint(s) 12 except 14=-377(LC 10), 8=-266(LC 9), 13=-678(LC 12), 9=-727(LC 13) Max Grav All reactings 2016 or less at joint(s) except 14=434(LC 21), 8=501(LC 22), 13=496(LC 10), 9=415(LC 11), 12=-268(JS 2), 10=3844(LC 18) OP CHORD 1-2-398/437, 26-3593002, 3-4-2732294, 4-5-3523008, 56428293, 11-4-434(JS 6, 6-3-362464, 5-3-3						Weight: 109 lb FT = 20%
OP CHORD 2:4 SP No.2 TOP CHORD 2:4 SP No.2 CTOP CHORD 2:4 SP No.3 CHORD 2:4 SP No.3 BOT CHORD 1:4 SP NO.3 BOT CHORD 1:4 SP NO.3 BOT CHORD 1:4 SP NO.3 BOT CHORD 2:4 SP NO.3 BOT CHORD 1:4 SP NO.3 BOT CHORD 2:4 SP NO.3 BOT CHORD 1:2 SP NO.4 SP NO.3 BOT CHORD 1:2 SP NO.4 SP NO.3 BOT CHORD 1:2 SP NO.4	UMBER-					
EES 24 49 PN 0.3 BOT CHORD Rigid ceiling directly applied. ITHERS 24 49 PN 0.3 BOT CHORD Rigid ceiling directly applied.	TOP CHORD 2x4 S					
 EACTIONS. All bearings 2-11-4 except (thelingth) 12-03-8, 10=0-38. (b) Max Horz 14-257/LC 10) May Diff All upfil 100 bor less at joint(s) 12 except 14=377/LC 10), 8=266/LC 9), 13=678/LC 12), 9-727/LC 13) Max Grav All reactions 250 bor less at joint(s) except 14=434(LC 21), 8=601(LC 22), 13=496(LC 10), 9=415(LC 1), 12=266(LC 2), 10=384/LC 18) OPC CHORD 12-395/497, 27-395/397, 23-4579, 23-4579, 23-2020, 5-6-428/293, 1:14=-391/393, 6-8=-423/296 OPC CHORD 11-14=-2308/497, 21-33=470/294, 14=12-816/294, 10-11=-159/295, 5-10=-159/295 CHOSD 11-14=-2398/497, 21-33=470/294, 14=3-362/404 OPC CHORD 11-14=-2308/497, 21-33=470/294, 14=-362/295, 5-10=-159/295 CHOSD 21-14=-2308/497, 21-33=470/294, 14=-324/495, 6-9=-362/464 OPC MOX 01-14=-2308/497, 21-33=470/294, 14=-324/495, 6-9=-362/464 OPC MOX 01-14=-5000000000000000000000000000000000000	WEBS 2x4 S	SP No.3		BOT CHORD	1 ()	
 (b) - Max Horz ¹/4257(LC 10) Max Uplif A.10 uplif 100 bor less at joint(s) 12 except 14377(LC 10), 8266(LC 9), 13678(LC 12), 9727(LC 13) Max Grav All reactions 250 bor less at joint(s) except 14434(LC 21), 8-501(LC 22), 13-496(LC 10), 9-415(LC 1), 11, 12266(LC 22), 10384(LC 18) ORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. OP CHORD 1-22395/302, 3-4-277294, 4-5-352/309, 5-6-428/293, 11-43-381/303, 6-8-423/296, 12-13-161/294, 10-11-159/295, 9-10-159/295 CEBS 2-13591/515, 5-9-459/302, 1-13-424/495, 6-9-362/464 OTES- Uhalanced roof live loads have been considered for this design. Uhalanced roof live loads have been considered for this design. Uhalanced roof live loads have been considered for this design. Uhalanced roof live loads have been considered for this design. Uhalanced roof live loads have been considered for this design. Uhalanced roof live loads have been considered for this design. Uhalanced roof live loads have been considered for this design. Uhalanced roof live loads have been considered for this design. Uhalanced roof live loads have been considered for this design. Uhalanced roof live loads have been considered for this design. Uhalanced roof live loads have been considered for this design. Uha to set the true to on the trues only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Detains as applicable, or consit qualified building designer as per ANSUTPI 1. Provide adequate drainage to prevent water ponding. This trues has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will it between the bottom chord and any other members, with BCDL= 10.0psf. Provide mechanical connection (by others) of trues to bearing plate capable			a) 12-0-3-8 10-0-3-8			
Max Grav All reactions 250 bor less at joint(s) except 14=434(LC 21), 8=501(LC 22), 13=496(LC 10), 9=415(LC 11), 12=266(LC 22), 10=384(LC 18) ORCES (b) - Max. Comp. Max. Ten All forces 250 (b) or less except when shown. OP CHORD 1-2=395(437, 2:3=359(302, 34=273/294, 4:5=352/309, 5:6=-428/293, 1-14=-381/393, 6:8=-428/293 1-14=-381/393, 6:8=-423/258 OT CHORD 1:14=-381/393, 6:8=-423/259 OT CHORD 1:14=-291/515, 5:=519520, 1:13=-424/495, 6:9=-362/464 OTES Unbalanced roof live loads have been considered for this design. Unvidenced roof live loads have been considered for this design. Unvidenced roof live loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry cable End Details as application, coronsult qualified building designer as per ANSI/TP1 1. Provide adequate drainage to prevent water ponding. 10 This truss has been designed for a 10.0 pt bottom chord in all areas where a rectangle 3:6-0 tall by 2:0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 11 Has truss has been designed for a 10.0 pt bottom chord in ebottom chord in all areas where a rectangle 3:6-0 tall by 2:0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 11 Has truss has been designed for a 10 to pt bottom chord in all areas where a rectangle 3:6-0 tall by 2:0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 11 Has truss has been designed for a 10 to the size or the orientation of the purinal on the top chord and 11/2" gypsum sheetrock be applied directly to the bottom chord. 2) Graphical purin representation does not depict the size or the orientation of the purinal ang the top and/or bottom chord. 2) Graphical purin representation does not depict the size or the orientation of the purinal ang the top and/or bottom chord. 2) Graphical purin representation does not depict the size or the orientation of the purinal ang the top and/or bottom chord. 2) Graphical puri	(lb) - Max	Horz 14=-257(LC 10)			(1 C 4 2)	
11), 12=266(LC 22), 10=384(LC 18) ORCES. (b) - Max. Comp./Max. Ten - All forces 250 (b) or less except when shown. OP CHORD 1-2=395(347, 2=3=59(302, 34=273/294, 4-5=-352/309, 5-6=-428/293, 1-14=-381/393, 6-6=-422/200 OT CHORD 13-14=-239/258, 12-13=-161/294, 10-11=-159/295, 9-10=-159/295 EES 2-13=-591/515, 5-9=-519/520, 1-13=-424/495, 6-9=-362/464 OTES Uhbalanced roof live loads have been considered for this design. UMMC ASCET 7-10; Vult=150mph (3-second guit) Vasc=11 Taymph; TCDL=6.0ps; BCDL=6.0ps; h=251; c-25, 12-650, 1		9=-727(LC 13)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
OP CHORD 1: 22-385/437, 2:33-359/302, 3:42-323/294, 4:53-352/309, 5:63-428/293, 1:14:381/393, 6:83-423/269 OT CHORD 1:3:14:2:39/258, 1:2:13:-61(294, 11:12:-161/294, 10:11:-159/295, 9:10:=159/295 2:13:-591/515, 5:9-519/520, 1:13:=424/495, 6:9=-362/464 OTES O Inductor of live loads have been considered for this design. Wind: ASCE 7:10; Vull=150mph (3:second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; MWFR8 (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed C-C for members and forces 8 MWFR8 for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable end zone and C-C Exterior(2) zone; end vertical left and right exposed.C-C for members and forces 8 MWFR8 for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Cable end Double, or consult qualified building designer as per ANSI/TPI 1. Provide adequate drainage to prevent water ponding. All plates are 2x44 MT20 unless otherwise indicated. Gable stud spaced 12:0-0 oc. This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3:6-0 tall by 2:0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Ol Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (it=lb) 1:4-377, 3=266, 13=678, 9=272. O Forvide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 1:4-377, 3=266, 13=678, 9=272. C Faphical purfin representation does not depict the size or the orientation of the purfin along the top and/or bottom chord. S	Max			1), 8=501(LC 22), 13=496	(LC 10), 9=415(LC	
 1-14=-381/393, 68=-423/269 OT CHORD 13-14=-239/258, 12-13=-161/294, 11-12=-161/294, 10-11=-159/295, 9-10=-159/295 2-13=-591/515, 5-9=-519/500, 1-13=-424/495, 6-9=-362/464 OTES- Uhbalanced roof live loads have been considered for this design. Wirk 3 SCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. Provide adequate drainage to prevent water ponding. All plates are 2x4 MT20 unless otherwise indicated. Gable studs spaced for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fibetween the bottom chord and any other members, with BCDL = 10.0psf. All bararing are assumed to be User Defined crussing capacity of 565 psl. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (it=lb) 14=37, 8=, 9=727. This truss has been design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 	FORCES. (Ib) - Ma>	κ. Comp./Max. Ten All forces ;	250 (lb) or less except when show	'n.		
 2-13=-591/515, 5-9=-519/520, 1-13=-424/495, 6-9=-362/464 OTES Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=Stopm (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed: MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studie exposed to wind (normal to the face), see Standard Industry Cable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Provide adequate drainage to prevent water ponding. All plates are 2x4 MT20 unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fib detween the bottom chord and any other members, with BCDL = 10.0 psf. All bearings are assumed to be User Defined crusshing capacity of 565 psi. Onvide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (tj=lb) 14=377, 8=,9=727. Storage designed for a live bottom chord. Carphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Carphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Carphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Carphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Carphical purlin representa			273/294, 4-5=-352/309, 5-6=-428/	/293,		
 OTES- Uhbalanced roof live loads have been considered for this design. Wint: ASCE 7-10; Vull=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; MWFRS (onvelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Cable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Provide adequate drainage to prevent water ponding. All plates are 2x4 MT20 unless otherwise indicated. Cable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a live load of 20.0psf on the bottom chord mil areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All platerings are assumed to be User Defined crushing capacity of 565 psi. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 14=377, 8=266, 13=678, 9=727. This truss design requires that a minimum of 7/16° structural wood sheathing be applied directly to the top chord and 1/2° gypsum sheeterock be applied directly to the bottom chord. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 				9-10=-159/295		
 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Zone and C-C External deviced left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Provide adequate drainage to prevent water ponding. All plates are 2x4 MT20 unless otherwise indicated. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All platerings are assumed to be User Defined crushing capacity of 565 psi. O Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (t=lb) 1.4=377, 8=266, 13=678, 9=727. This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. WINTENC - Verify design parameters and READ NOTES ON THIS AND MCLUDED MITEK REFERENCE PAGE MIF-773 rev. 100		,, -	,			
MVFRS (envelope) gable end zone and C-Č Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MVFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Provide adequate drainage to prevent water ponding. All plates are 2x4 MT20 unless otherwise indicated. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be User Defined crushing capacity of 565 psi. 0) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 14-377, 8=266, 13=678, 9=727. 1) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 2) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 2) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 2) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 3) Brows of the size on the orientation of the purlin along the top and/or bottom chord. 3) Brows of the size on the orientation of the purlin along the top and/or bottom chord. 3) Brows of the size on the orientation of the purlin along the top and/or bottom chord. 3) Brows of the size on the orientation of the purline top and/or bottom chord. 3	1) Unbalanced roof liv			N -6 Opef: h-25ft: Cat II:	Eve C: Enclosed	
) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Cable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1.) Provide adequate drainage to prevent water ponding.) All plates are 2x4 MT20 unless otherwise indicated.) Gable studs spaced at 2-0-0 oc.) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.) All bearings are assumed to be User Defined crushing capacity of 565 psi.) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 14=377, 8=266, 13=678, 9=727.) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 2) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 2) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 2) WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIN-773 rev. 10032015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not 	MWFRS (envelope	e) gable end zone and C-C Exte	rior(2) zone; end vertical left and i			
 Provide adequate drainage to prevent water ponding. All plates are 2x4 MT20 unless otherwise indicated. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be User Defined crushing capacity of 565 psi. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 14=377, 8=266, 13=678, 9=727. This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/032015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not 	Truss designed for	r wind loads in the plane of the t	russ only. For studs exposed to w		see Standard Industry	H CARO
2) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. February 20,2020 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not) Provide adequate of	drainage to prevent water pondi	ng.	TPI 1.		EESS/bar
2) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. February 20,2020 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not			1.			
2) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. February 20,2020 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not					6-0 tall by 2-0-0 wide	SEAL
2) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. February 20,2020 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not						28228
2) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. February 20,2020 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not	0) Provide mechanic	cal connection (by others) of true		nstanding 100 lb uplift at jo	pint(s) 12 except (jt=lb)	SAL 1.1
2) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. February 20,2020 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not	11) This truss design	requires that a minimum of 7/16		oplied directly to the top cl	hord and 1/2" gypsum	+ NGINEER.
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not				rlin along the top and/or b	ottom chord.	EGANGL
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not						
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not						February 20,2020
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not	WARNING - Veri	ify design parameters and RFAD NOTE	S ON THIS AND INCLUDED MITEK REFE	RENCE PAGE MII-7473 rev 10/0	3/2015 BEFORE USE.	
	Design valid for use	only with MiTek® connectors. This design	n is based only upon parameters shown, a	and is for an individual building c	omponent, not	TRENCO

Design valid for use only with MiTek® connectors. This design is based only upon parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

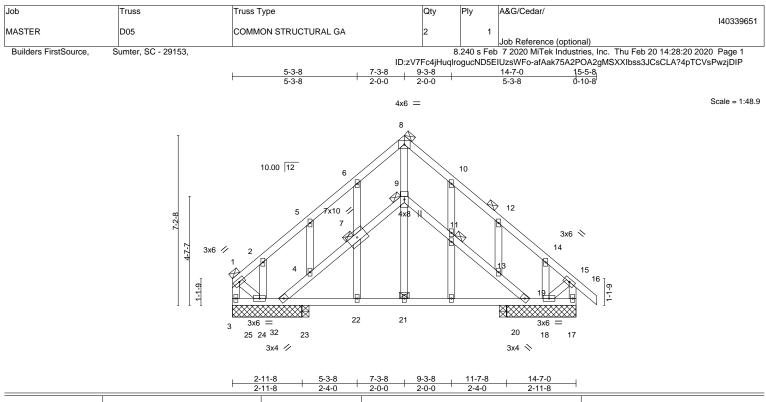
818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	A&G/Cedar/
					140339650
MASTER	D04	Hip Girder	2	ົ	
				2	Job Reference (optional)
Builders FirstSource, S	umter, SC - 29153,		8	240 s Feb	7 2020 MiTek Industries, Inc. Thu Feb 20 14:28:19 2020 Page 2

ID:zV7Fc4jHuqlrogucND5EIUzsWFo-6TdCXn4YH5GJRWnGzqmMKfW8tSuBRXZfEYIJsUzjDIQ

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)


Vert: 1-3=-60, 3-4=-60, 4-7=-60, 11-14=-20

Concentrated Loads (lb)

Vert: 17=-372(B) 18=-382(B) 19=-308(B) 20=-129(B) 21=-634(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		<u>-11-8 ' 2-4-0 '</u>	2-0-0 2-0-0	2-4-0		2-11-8		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.16	Vert(LL) -0.00	27	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.22	Vert(CT) -0.00	27	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.06	Horz(CT) 0.00	17	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MS	Wind(LL) 0.00	27	>999	240	Weight: 114 lb	FT = 20%

LUMBER-		BRACING-	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,
BOT CHORD	2x4 SP No.2		except end verticals. Except:
WEBS	2x4 SP No.3		1 Row at midpt 8-15
OTHERS	2x4 SP No.3		6-0-0 oc bracing: 3-4
		BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing. Except:
			1 Row at midpt 17-27
		JOINTS	1 Brace at Jt(s): 1, 8, 9, 7, 11

REACTIONS. All bearings 2-11-4 except (jt=length) 23=0-3-8, 20=0-3-8.

(lb) - Max Horz 3=201(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 17, 3, 19, 18, 20, 19 except 25=-106(LC 10), 24=-328(LC 12),

23=-177(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 25, 17, 3, 19, 18, 23, 20 except 24=347(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

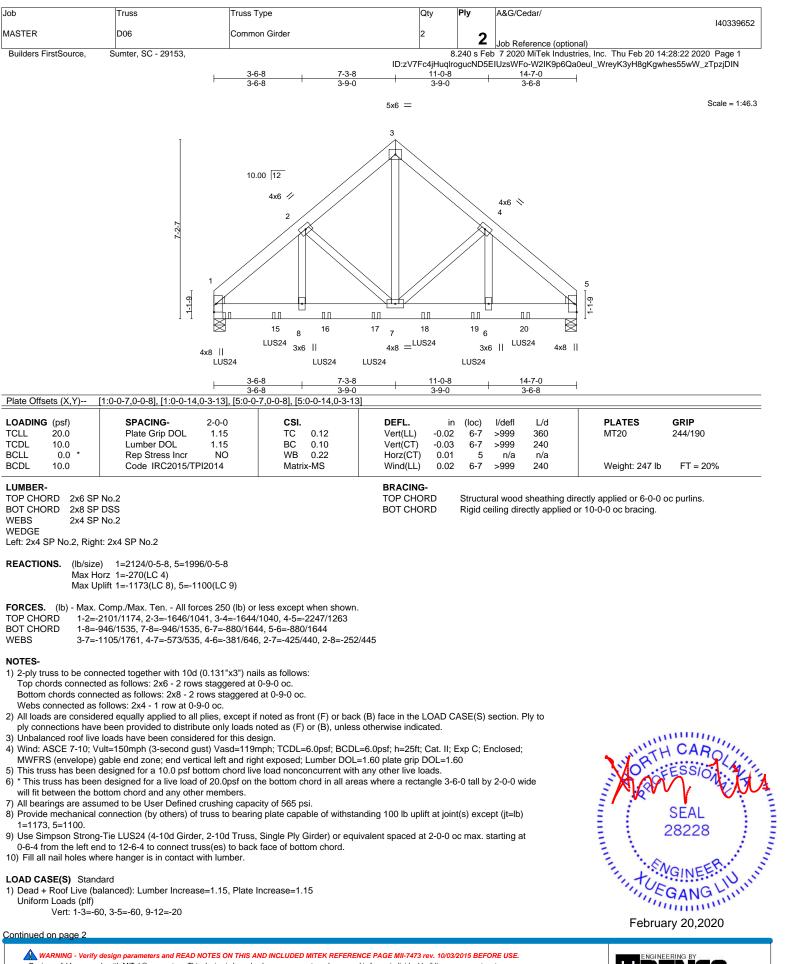
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable studs spaced at 2-0-0 oc.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) All bearings are assumed to be User Defined crushing capacity of 565 psi.


 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17, 3, 19, 18, 20, 19 except (jt=lb) 25=106, 24=328, 23=177.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Pitate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

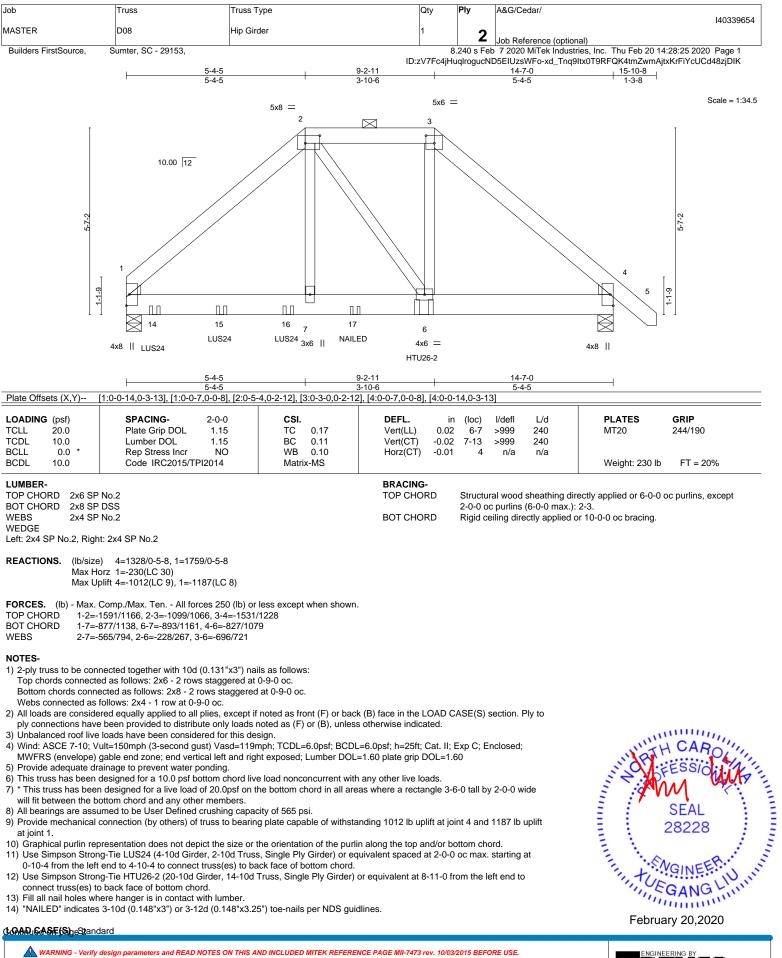
A MiTek Affilia 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	A&G/Cedar/		
MASTER	D06	Common Girder	2	_	140339652		
WASTER	000		2	2	Job Reference (optional)		
Builders FirstSource, S	umter, SC - 29153,		8	240 s Feb	7 2020 MiTek Industries, Inc. Thu Feb 20 14:28:22 2020 Page 2		
		ID:zV7Fc4jHuqIrogucND5EIUzsWFo-W2IK9p6Qa0eul_WreyK3yH8gKgwhes559W/_zTpzjDIN					

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 11=-376(B) 15=-371(B) 16=-371(B) 17=-371(B) 18=-488(B) 19=-488(B) 20=-488(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTPI1 Quality Criteria**, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


STER D7 He Binchard Gala Bold Field	ob	Truss	Truss Type	Qty	Ply A&G/Cedar/	
Lates Hildsone. Bures EC 2010. $\begin{array}{c} 1210 \\$	IASTER	D07		1	1	140339653
41113 073 413 15.03 1 073 440 15.03 50x - 130 1 070	Builders FirstSource,	Sumter, SC - 29153,			3.240 s Feb 7 2020 MiTek Industr	ies, Inc. Thu Feb 20 14:28:23 2020 Page 1
Image: Control of the second seco				9-7-3	14-7-0	15-10-8
Image: specific production of the specific p		4 11 10		47.0		Scale = 1:33.6
<pre>t u u u u u u u u u u u u u u u u u u u</pre>	_			5		
16 14 11 10 16 2113 117.3 14.7.0 2113 2113 117.3 14.7.0 2113 2113 117.3 14.7.0 2110 2113 11.0.3.8.0.3.0.1 14.7.0 2110 10.0 Place Grop C. 2.0.0 CSL 0.0.6.1 2110 10.0 Linther DOL 1.1.5 B.0.0.27 World(1) 0.0.6.1.7.13 3.999 3.00 Weight: 114 lb FT = 20% 2010 10.0.0 Linther DOL 1.1.5 B.0.0.27 Weight: 114 lb FT = 20% Weight: 114 lb FT = 20% Weight: 114 lb FT = 20% Weight: 114 lb FT = 20% MBERF. PC CHORD 24 SP No.3 BOT CHORD Structural wood shearbing directly applied. except end verticals, and 2.00 co putints (6-0.0 max), 4.6.6 10(b) Max for 3 Harce Structural wood shearbing directly applied. except end verticals, and 2.00 co putints (6-0.0 max), 4.6.6 10(b) Max for 3 Harce Structural wood shearbing directly applied. except end verticals, and 2.00 co putints (6-0.0 max), 4.6.6 10(b) Max Corep Max Tan - All (recss 250 (16) reless except We	3	3 3x6 1/2 3x4 1	22			
LL 20.0 Plate Grip DOL 1.15 TC 0.66 Vert(TL) -0.04 12:13 >>999 240 DL 10.0 Code IRC2015/TPI2014 Matrix-AS WB 0.14 Hord (CT) -0.00 10.0 Na na DD 10.0 Code IRC2015/TPI2014 Matrix-AS BRACINC- TOP CHORD Structural wood shashing directly applied, except end verticals, and 2.04 to printing (6-0 max); 4.8. MBER. DP CHORD 24.5 PN No.2 Structural wood shashing directly applied, except end verticals, and 2.04 to printing (6-0 max); 4.8. BSR CINC- TOP CHORD Structural wood shashing directly applied, except end verticals, and 2.04 to printing (6-0 max); 4.8. BOT CHORD Structural wood shashing directly applied. BOT CHORD ACTONS, All bearings 2-114 except (belength) 13:-0-3-8. BOT CHORD Rigid celling directly applied. Max Grav, All reactions 250 b to rises at joint(s) except 14=-509LC 13), 15=-457(LC 8), 10=-459(LC 9), 10=-459(LC 9), 10=-459(LC 9), 10=-459(LC 9), 10=-459(LC 9), 10=-459(LC 9), 10=-501(LC 2), 10=-500(LC 2),	late Offsets (X,Y)	15 14 <u>2-11-8</u> <u>2-11-8</u>	1	8-8-0	11	10 0
 PC CHORD 2:4 SP No.2 TOP CHORD 2:4 SP No.2 TOP CHORD 2:4 SP No.3 THERS 2:4 SP No.3 BOT CHORD 3:4 SP No.3 BOT CHORD 2:4 SP No.3 BOT CHORD 3:4 SP No.3 BOT CHORD 3:4 SP No.3 BOT CHORD 1:4 SP No.3 BOT CHORD 1:4 SP No.3 Max Horz 155-270(LC 10) Max Value actions 250 lb or less at joint(s) except 14=-709(LC 12), 11=-678(LC 13), 15=-457(LC 8), 10=-459(LC 9, 1) Max Gar All reactions 250 lb or less at joint(s) except 14=-598(LC 10), 11=-525(LC 11), 15=-475(LC 21), 10=-501(LC 22), 13=-449(LC 18), 12=-451(LC 18) PCCHORD 1:4-220275, 12-13=-2303/48, 3:4=-534/36, 5:4=-363/36, 5:6-7=368/461, 7:8=-7368/461, 7:8=	TCDL 10.0 BCLL 0.0 *	Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr YE	5 TC 0.66 5 BC 0.27 S WB 0.14	Vert(LL) -0.04 Vert(CT) -0.06 Horz(CT) -0.00	4 12-13 >999 360 5 12-13 >999 240) 10 n/a n/a	MT20 244/190
(Ib) - Max Hoz 15=-270(LC 10) Max Upit All upit 100 to ress at joint(s) except 14=-709(LC 12), 11=-678(LC 13), 15=-457(LC 8), 10=-459(LC 9), Max Grav All reactions 250 to ress at joint(s) except 14=-559(LC 10), 11=525(LC 11), 15=475(LC 21), 10=501(LC 22), 13=449(LC 18), 12=451(LC 18) RCES. (Ib) - Max. Comp. Max. Ten All forces 250 (Ib) or fess except when shown. DP CHORD 12-329/309, 2-3=363/468, 3-4=-354/365, 4-5=-296/353, 5-6=-353/325, 6-7=-368/461, 7-8=-270/250, 12-13=-220/275, 12-13=-220/275, 10-11=-385/329 DT CHORD 13-14=-220/275, 12-13=-220/275, 11-12=-220/275, 10-11=-385/329 DT CHORD 13-14=-424/4459, 7-10=-263/171, 6-11=-401/446 DTES- Unbalanced roof live loads have been considered for this design. Winci. ASCE 7-10: Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS for reactions shown; Lumber DDL=1.60 plate gift DDL=1.60 Truss designed for wind loads in the plane of the truss only. For studie exposed to wind (normal to the face), see Standard Industry Gable End Details as applicating designer as per ANSI/TP1 1. Provide mechanical connection, for a 10.0 pst bottom chord live load nonconcourrent with any other live loads. * This truss has been designed for a 10.0 pst bottom chord live load nonconcourrent with any other live loads. * This truss has been designed for a 10.0 pst bottom chord live load nonconcourrent with any other live loads. * This truss has been designed for a 10.0 pst bottom chord live load nonconcourrent with any other live load 1/2" gypsum sheetrock be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. SEEAL 28228 Disting a guarding take minimum of 716's tructural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Description of the size or the orientation of the purfin along the top and/or bottom cho	BOT CHORD2x6 SPWEBS2x4 SP	No.2 No.3		TOP CHORD	2-0-0 oc purlins (6-0-0 max.):	
RCES. (Ib) - Max. Comp. Max. Ten All forces 250 (Ib) or less except when shown. DP CHORD 1-2=-329/309, 2-3=-363/468, 3-4=-354/365, 4-5=-296/353, 5-6=-353/365, 6-7=-368/461, 7-8=-274/290 DT CHORD 13-14=-220/275, 12-13=-220/275, 10-11=-385/329 EBS 3-14=-424/459, 7-10=-263/171, 6-11=-401/446 DTES- Unbalanced rod live loads have been considered for this design. Wind: ASCE 7-10; Vult=150mpt (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces 8 MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry dable and to a suppression the date of the loads and the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry alplate are assumed to aloge on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be User Defined crushing capacity of 565 psi. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 709 lb uplift at joint 14, 678 lb uplift at joint 15 and 459 lb uplift at joint 10. Provide mechanical connection (does not depict the size or the orientation of the purflin along the top and/or bottom chord. Provide mechanical gomeetion does not depict the size or the orientatio	(Ib) - Max Ho Max Up	orz 15=-270(LC 10) blift All uplift 100 lb or less at j 9) rav All reactions 250 lb or les	oint(s) except 14=-709(LC 12), 11 s at joint(s) except 14=559(LC 10)			
Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Provide adequate drainage to prevent water ponding. All plates are 2x4 MT20 unless otherwise indicated. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 1.0. psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a 1.0. psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be User Defined crushing capacity of 565 psi.) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 709 lb uplift at joint 14, 678 lb uplift at joint 15 and 459 lb uplift at joint 10.) This truss design requires that a minimum of 7/16* structural wood sheathing be applied directly to the top chord and 1/2* gypsum sheetrock be applied directly to the bottom chord.	TOP CHORD 1-2=-3 7-8=- BOT CHORD 13-14	Comp./Max. Ten All forces 2 329/309, 2-3=-363/468, 3-4=-3 274/290 =-220/275, 12-13=-220/275, 1	50 (lb) or less except when shown 54/365, 4-5=-296/353, 5-6=-353/3 I-12=-220/275, 10-11=-385/329			
	 Wind: ASCE 7-10; Vi MWFRS (envelope) (MWFRS for reactions Truss designed for w Gable End Details as Provide adequate dra All plates are 2x4 MT Gable studs spaced a This truss has been of a trust has been of a trust has been the boot and the between the boot and /li>	ult=150mph (3-second gust) Va gable end zone and C-C Exteris s shown; Lumber DOL=1.60 pl vind loads in the plane of the tru s applicable, or consult qualified ainage to prevent water pondin '20 unless otherwise indicated. at 2-0-0 oc. designed for a 10.0 psf bottom o designed for a 10.0 psf bottom of designed for a live load of 20. bottom chord and any other mer imed to be User Defined crush I connection (by others) of truss t at joint 15 and 459 lb uplift at quires that a minimum of 7/16' ed directly to the bottom chord.	asd=119mph; TCDL=6.0psf; BCD or(2) zone; end vertical left and rig ate grip DOL=1.60 uss only. For studs exposed to wi d building designer as per ANSI/T g. chord live load nonconcurrent with 0psf on the bottom chord in all are nbers, with BCDL = 10.0psf. ng capacity of 565 psi. s to bearing plate capable of withs joint 10. structural wood sheathing be app	ght exposed;C-C for mer nd (normal to the face), s Pl 1. h any other live loads. eas where a rectangle 3- standing 709 lb uplift at jo plied directly to the top ch	nbers and forces & see Standard Industry 6-0 tall by 2-0-0 wide pint 14, 678 lb uplift at hord and 1/2" gypsum	GANG
	A					

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

6

RE

818 Soundside Road Edenton, NC 27932

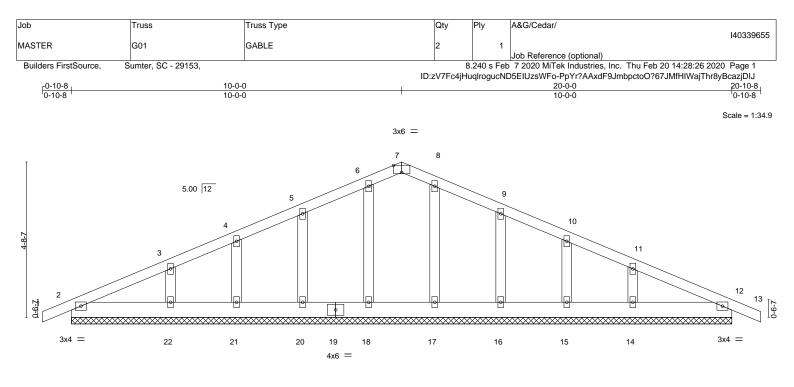
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	A&G/Cedar/
					140339654
MASTER	D08	Hip Girder	1	2	
				_	Job Reference (optional)
Builders FirstSource, S	umter, SC - 29153,		8	.240 s Feb	7 2020 MiTek Industries, Inc. Thu Feb 20 14:28:25 2020 Page 2

ID:zV7Fc4jHuqIrogucND5EIUzsWFo-xd_Tnq9Itx0T9RFQK4tmZwmAjtxKrFiYcUCd48zjDIK

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)


Vert: 1-2=-60, 2-3=-60, 3-5=-60, 8-11=-20

Concentrated Loads (lb)

Vert: 6=-656(B) 14=-373(B) 15=-396(B) 16=-262(B) 17=-164(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

\vdash					20-0-0						
Plate Offsets (>	(,Y) [7:0-3-0,Edge]				1					1	
LOADING (psf	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	0.00	12	n/r	120	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	12	n/r	120		
BCLL 0.0) * Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	12	n/a	n/a		
BCDL 10.0	Code IRC2015/1	PI2014	Matrix	(-S						Weight: 110 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2					BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.						oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2OTHERS2x4 SP No.3

REACTIONS. All bearings 20-0-0.

(lb) - Max Horz 2=-136(LC 17)

Max Uplift All uplift 100 lb or less at joint(s) 2, 18, 21, 17, 15, 12 except 20=-134(LC 12), 22=-177(LC 12),

16=-137(LC 13), 14=-175(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 18, 20, 21, 22, 17, 16, 15, 14, 12

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.

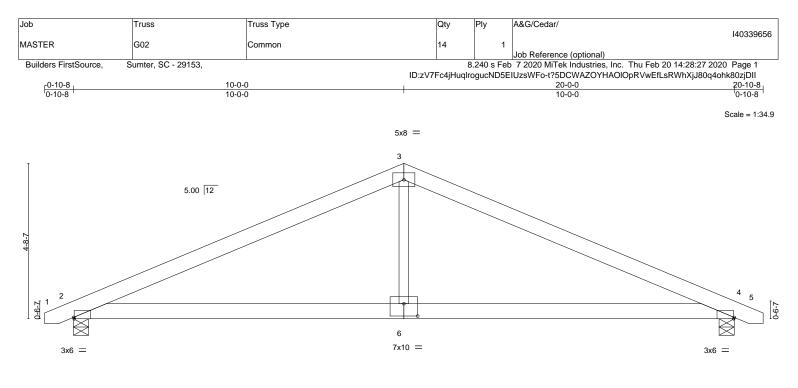
5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) All bearings are assumed to be User Defined crushing capacity of 565 psi.


10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 18, 21, 17, 15, 12 except (jt=lb) 20=134, 22=177, 16=137, 14=175.

February 20,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		10-0-0							20-0-0		
I		10-0-0			1				10-0-0		I
Plate Offsets (X,Y) [2	2:0-0-4,Edge], [4:0-0-4,E	dge], [6:0-5-0),0-4-8]								
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.47	Vert(LL)	-0.08	6-12	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.49	Vert(CT)	-0.16	6-9	>999	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.17	Horz(CT)	0.02	4	n/a	n/a		
BCDL 10.0	Code IRC2015/TF	912014	Matrix	AS	Wind(LL)	0.14	6-9	>999	240	Weight: 108 lb	FT = 20%
LUMBER-					BRACING-						

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (lb/size) 2=840/0-5-8, 4=839/0-5-8 Max Horz 2=133(LC 16)

Max Uplift 2=-397(LC 12), 4=-397(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1279/851. 3-4=-1279/851

BOT CHORD 2-6=-584/1119, 4-6=-584/1119

WEBS 3-6=0/453

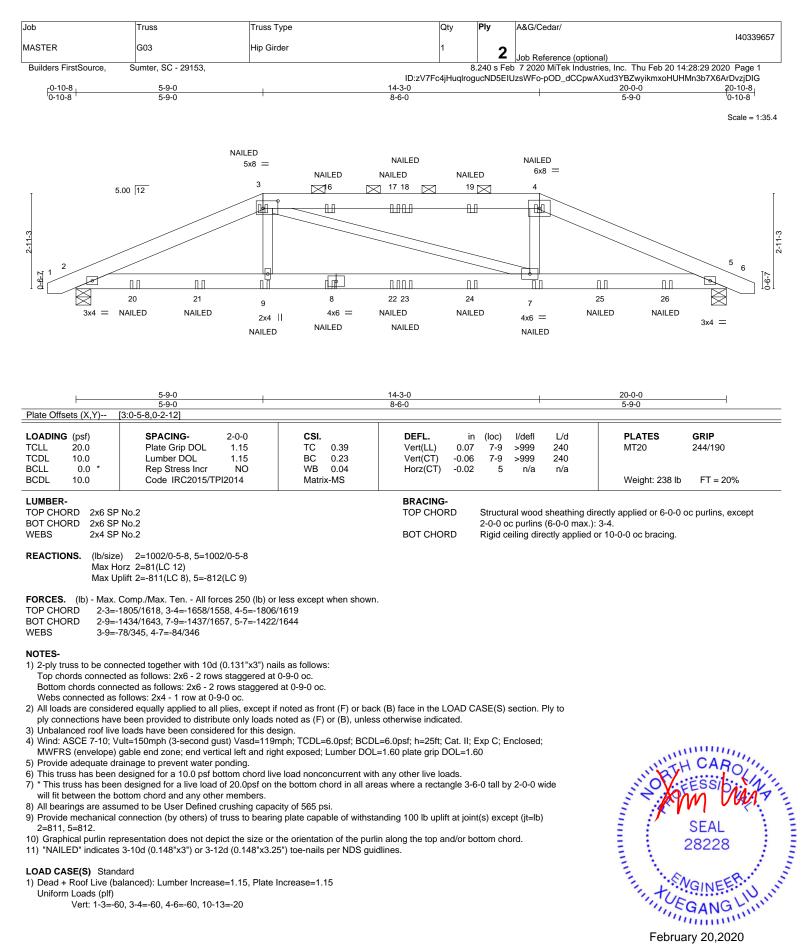
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

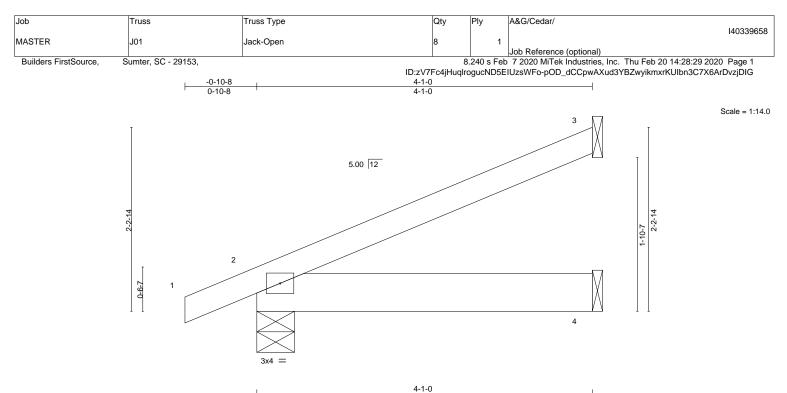
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=397, 4=397.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	A&G/Cedar/
					140339657
MASTER	G03	Hip Girder	1	2	
				2	Job Reference (optional)
Builders FirstSource, S	umter, SC - 29153,		8.	240 s Feb	7 2020 MiTek Industries, Inc. Thu Feb 20 14:28:29 2020 Page 2
		ID:zV7Fc	4jHuqIrog	ucND5EIU	zsWFo-pOD_dCCpwAXud3YBZwyikmxoHUHMn3b7X6ArDvzjDIG

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 3=-1(F) 4=-1(F) 8=-7(F) 9=-7(F) 7=-7(F) 16=-1(F) 17=-1(F) 18=-1(F) 19=-1(F) 20=-72(F) 21=-68(F) 22=-7(F) 23=-7(F) 24=-7(F) 25=-68(F) 26=-72(F) 26=-72(

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

				4-1-0	
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.20	Vert(LL) 0.01 4-7 >999 240	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.15	Vert(CT) -0.01 4-7 >999 240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 3 n/a n/a	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-AS		Weight: 18 lb FT = 20%

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2

REACTIONS. (Ib/size) 3=90/Mechanical, 2=219/0-5-8, 4=65/Mechanical Max Horz 2=138(LC 12) Max Uplift 3=-100(LC 12), 2=-109(LC 12), 4=-15(LC 12) Max Grav 3=90(LC 1), 2=219(LC 1), 4=84(LC 3)

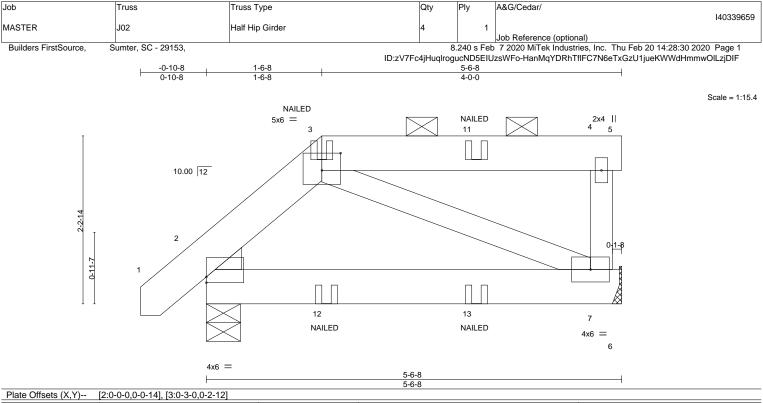
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 3=100, 2=109.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.15	Vert(LL) -0.01	7-10	>999 3	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.18	Vert(CT) -0.02	7-10	>999 2	240		
BCLL 0.0 *	Rep Stress Incr NO	WB 0.05	Horz(CT) 0.00	2	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP	Wind(LL) 0.01	7-10	>999 2	240	Weight: 38 lb	FT = 20%

TOP CHORD

BOT CHORD

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.2 WEDGE Left: 2x4 SP No.3

REACTIONS. (lb/size) 2=335/0-5-8, 7=293/Mechanical Max Horz 2=131(LC 8) Max Uplift 2=-189(LC 8), 7=-206(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)

2=189, 7=206.

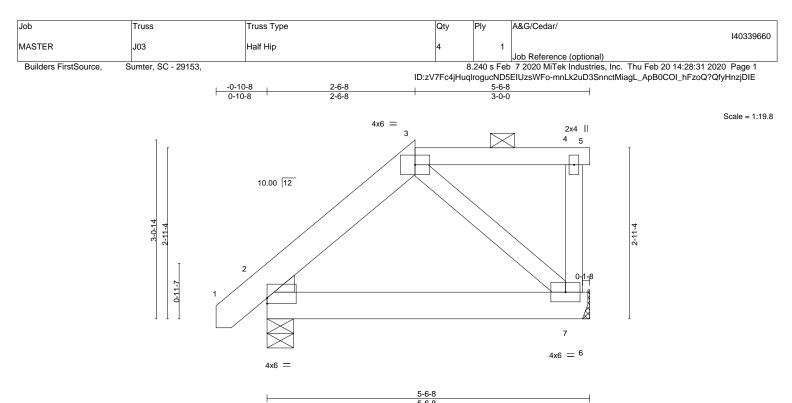
9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 4-5=-20, 6-8=-20 Concentrated Loads (lb)

Vert: 3=-30(F) 11=-30(F) 12=-45(F) 13=-45(F)


Structural wood sheathing directly applied or 5-6-8 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-5.

Rigid ceiling directly applied or 10-0-0 oc bracing.

February 20,2020

Plate Offse	ets (X,Y)	[2:0-0-0,0-1-2]		1		5-0-8						
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.16	Vert(LL)	-0.01	7-10	>999	360	MT20	244/190
CDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	-0.02	7-10	>999	240		
CLL	0.0 *	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	2	n/a	n/a		
CDL	10.0	Code IRC2015/TF	PI2014	Matrix	(-AS	Wind(LL)	0.00	7-10	>999	240	Weight: 37 lb	FT = 20%
UMBER-						BRACING-						

TOP CHORD

BOT CHORD

2-0-0 oc purlins: 3-5.

Rigid ceiling directly applied.

 TOP CHORD
 2x6 SP No.2 *Except*

 3-5: 2x4 SP No.2
 BOT CHORD
 2x6 SP No.2

 WEBS
 2x4 SP No.3
 WEDGE

Left: 2x4 SP No.3

REACTIONS. (lb/size) 2=258/0-5-8, 7=219/Mechanical Max Horz 2=185(LC 12) Max Uplift 2=-93(LC 12), 7=-135(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

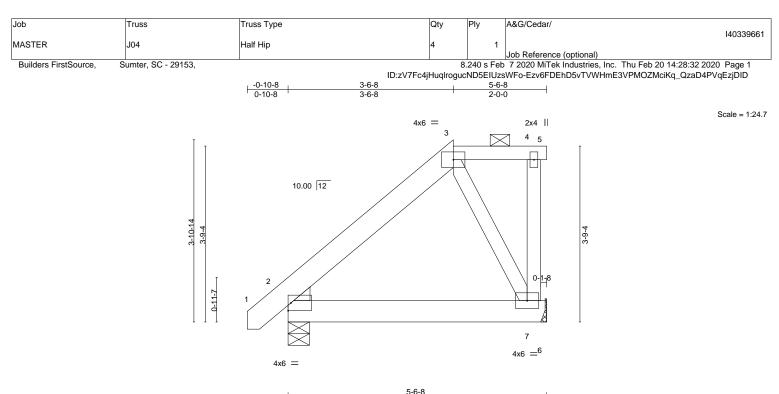
3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 7=135.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



Structural wood sheathing directly applied, except end verticals, and

February 20,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			5-6-8			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. i	n (loc)	l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.13	Vert(LL) -0.0	1 7-10	>999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.11	Vert(CT) -0.0	2 7-10	>999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.06	Horz(CT) 0.0	0 2	n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0.0	1 7-10	>999 240	Weight: 40 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

2-0-0 oc purlins: 3-5.

Rigid ceiling directly applied.

LUMBER-

 TOP CHORD
 2x6 SP No.2 *Except* 3-5: 2x4 SP No.2

 BOT CHORD
 2x6 SP No.2

 WEBS
 2x4 SP No.3

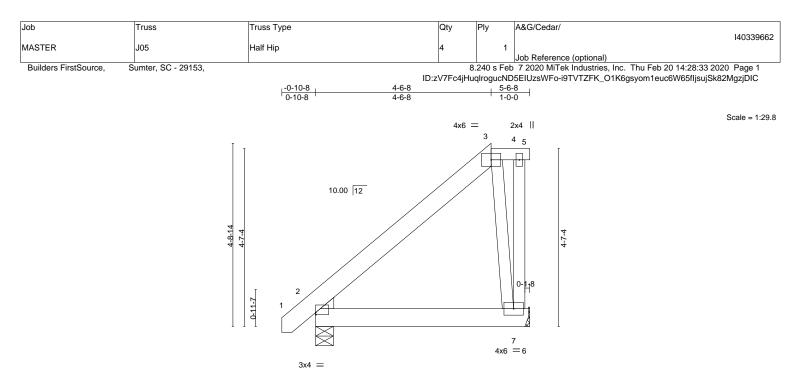
 WEDGE
 Left: 2x4 SP No.3

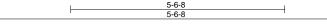
REACTIONS. (lb/size) 2=258/0-5-8, 7=219/Mechanical Max Horz 2=243(LC 12) Max Uplift 2=-73(LC 12), 7=-151(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 7=151.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.




Structural wood sheathing directly applied, except end verticals, and

February 20,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

.OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.21	Vert(LL) 0.02 7-10 >999 240	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.16	Vert(CT) -0.02 7-10 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.08	Horz(CT) -0.01 2 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS		Weight: 44 lb FT = 20%

CHOKE 3-5: 2x4 SP No.2 2-0-0 oc purlins: 3-5. BOT CHORD 2x6 SP No.2 BOT CHORD Rigid ceiling directly applied. WEBS 2x4 SP No.3 WEDGE

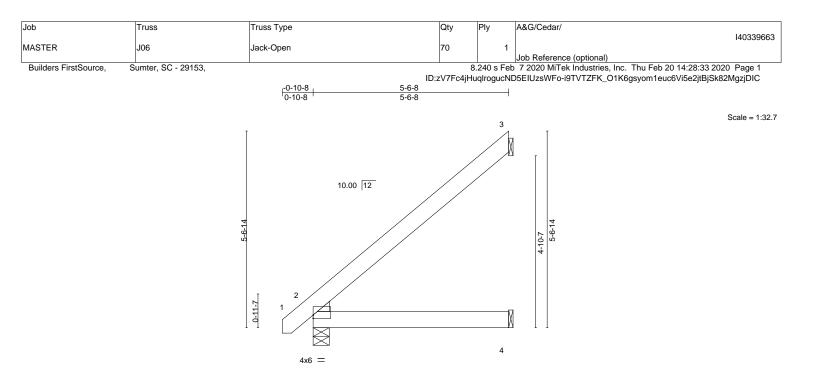
Left: 2x4 SP No.3

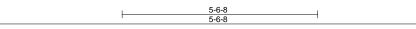
REACTIONS. (lb/size) 7=219/Mechanical, 2=258/0-5-8 Max Horz 2=301(LC 12) Max Uplift 7=-216(LC 12), 2=-39(LC 12) Max Grav 7=229(LC 19), 2=258(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 7=216.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

February 20,2020

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.30	Vert(LL) 0.03 4-7 >999 240	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.24	Vert(CT) -0.02 4-7 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.02 3 n/a n/a	
3CDL 10.0	Code IRC2015/TPI2014	Matrix-AS		Weight: 34 lb FT = 20%

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEDGE Left: 2x4 SP No.3

TOP CHORD BOT CHORD

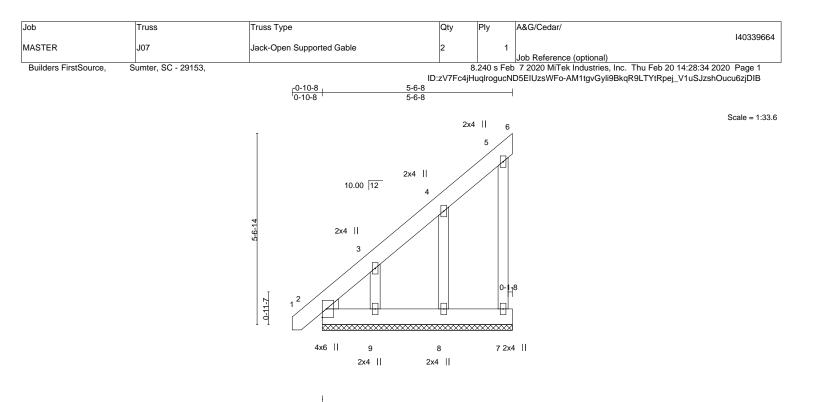
Structural wood sheathing directly applied. Rigid ceiling directly applied.

Plate Offsets (X Y)-- [2:0-0-0 0-1-2]

REACTIONS. (lb/size) 3=148/Mechanical, 2=267/0-5-8, 4=68/Mechanical Max Horz 2=354(LC 12) Max Uplift 3=-261(LC 12), 2=-5(LC 12), 4=-19(LC 12) Max Grav 3=204(LC 19), 2=267(LC 1), 4=104(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- 1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for
- reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4 except (jt=lb) 3=261.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

late Offsets (X,Y)	[2:0-0-10,0-0-12], [2:0-1-3,0-4-4]						
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.07	Vert(LL) -0.0	0 1 n/r	120	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.01	Vert(CT) -0.0	0 1 n/r	120		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.09	Horz(CT) -0.0	0 6 n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P				Weight: 46 lb	FT = 20%
LUMBER-			BRACING-		·		
TOP CHORD 2x6 S	P No.2		TOP CHORD	Structural wood s	sheathing dired	ctly applied or 5-6-8	oc purlins,
BOT CHORD 2x6 S	P No.2			except end vertic	als.		
WEBS 2x4 S	P No.3		BOT CHORD	Rigid ceiling dire	ctly applied or	10-0-0 oc bracing.	

2x4 SP No.3 OTHERS WEDGE

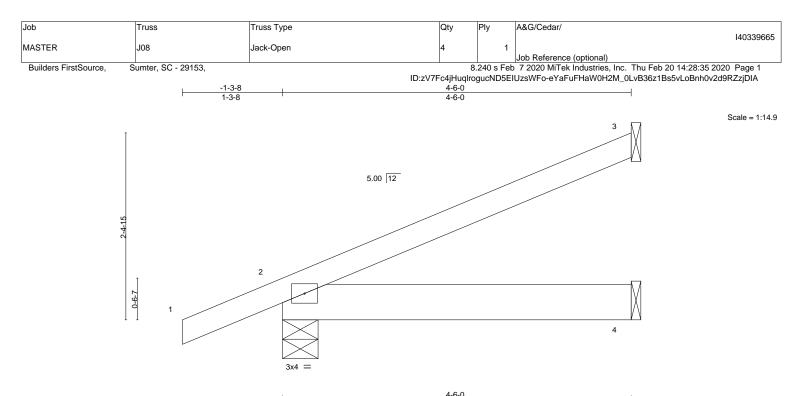
Left: 2x4 SP No.3

- REACTIONS. All bearings 5-6-8.
 - Max Horz 2=362(LC 12) (lb) -
 - Max Uplift All uplift 100 lb or less at joint(s) 6, 7, 2 except 8=-195(LC 12), 9=-265(LC 12)
 - Max Grav All reactions 250 lb or less at joint(s) 6, 7, 8, 9 except 2=260(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-491/408, 3-4=-257/208

WEBS 4-8=-253/246, 3-9=-328/318


NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 7, 2 except (jt=lb) 8=195, 9=265.

February 20,2020

						4-6-0 4-6-0					
LOADING	· · ·	SPACING- 2-0			DEFL.		(loc)	l/defl	L/d	PLATES	GRIP
TCLL :	20.0	Plate Grip DOL 1.	15 TC	0.24	Vert(LL)	0.01	4-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL 1.1	I5 BC	0.16	Vert(CT)	-0.01	4-7	>999	240		
BCLL	0.0 *	Rep Stress Incr YE	S WB	0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI201	4 Mat	rix-AS						Weight: 20 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2

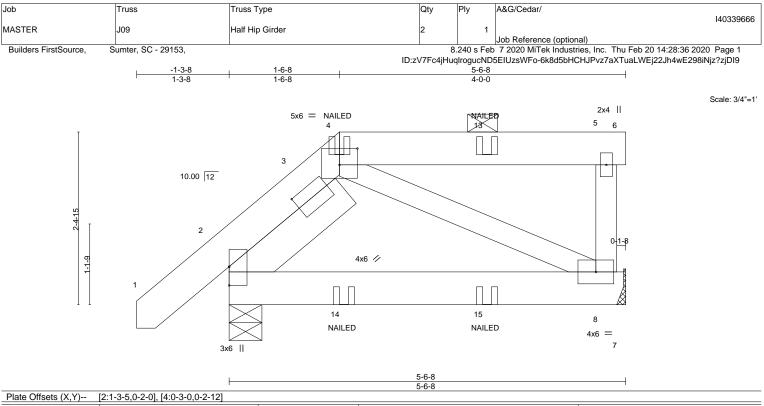
REACTIONS. (Ib/size) 3=99/Mechanical, 2=266/0-5-8, 4=67/Mechanical Max Horz 2=160(LC 12) Max Uplift 3=-111(LC 12), 2=-141(LC 12), 4=-11(LC 12) Max Grav 3=99(LC 1), 2=266(LC 1), 4=91(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.


- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 3=111, 2=141.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

February 20,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) l/defl	L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.16	Vert(LL) -0.01	8-11 >999	360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.16	Vert(CT) -0.01	8-11 >999	240	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.06	Horz(CT) 0.00	2 n/a	n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP	Wind(LL) 0.01	8-11 >999	240	Weight: 44 lb FT = 20%

LUMBER-

2x6 SP No.2 TOP CHORD BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.2 Left 2x6 SP No.2 1-11-12 SLIDER

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-6-8 oc purlins, except end verticals, and 2-0-0 oc purlins: 4-6. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=376/0-5-8, 8=299/Mechanical Max Horz 2=152(LC 8)

Max Uplift 2=-216(LC 8), 8=-213(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-277/191

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.

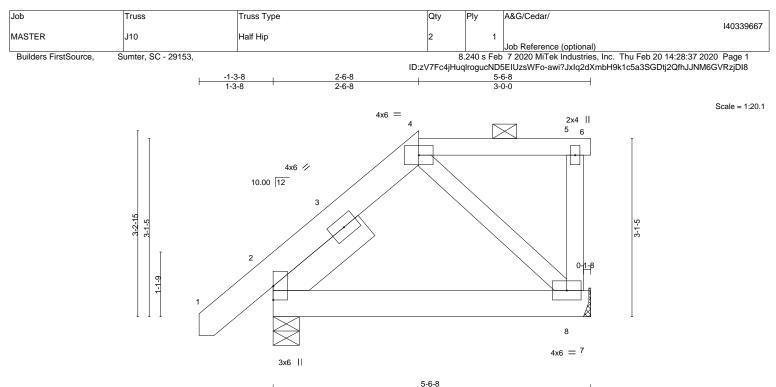
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=216.8=213.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf)

Vert: 1-4=-60, 4-5=-60, 5-6=-20, 7-9=-20 Concentrated Loads (Ib)


Vert: 4=-39(F) 13=-39(F) 14=-47(F) 15=-47(F)

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS ON TIPS REPREVED PAGE MIT-14/3 reference of the second secon fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

				5-6-8	
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) l/defl L/d P	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.16	Vert(LL) -0.01 8-11 >999 360 N	AT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.09	Vert(CT) -0.01 8-11 >999 240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.06	Horz(CT) 0.00 2 n/a n/a	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0.00 8-11 >999 240 V	Veight: 43 lb FT = 20%

- LUMBER-
- TOP CHORD
 2x6 SP No.2 *Except* 4-6: 2x4 SP No.2

 BOT CHORD
 2x6 SP No.2

 WEBS
 2x4 SP No.3

 SLIDER
 Left 2x6 SP No.2 1-11-12

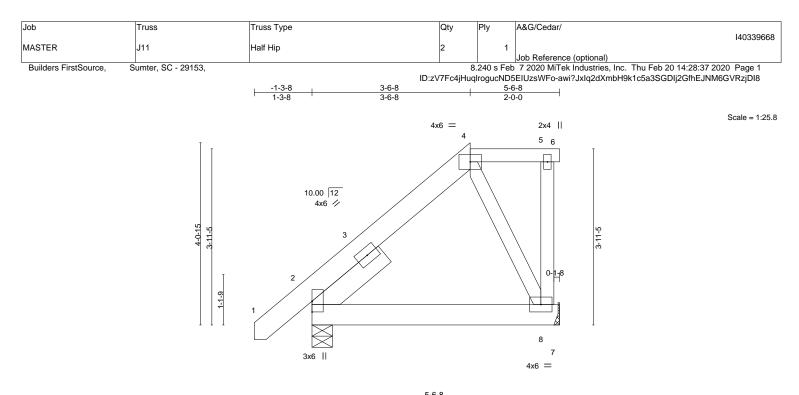
- BRACING-TOP CHORD
- BOT CHORD

Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins: 4-6. Rigid ceiling directly applied.

- REACTIONS. (lb/size) 2=288/0-5-8, 8=214/Mechanical Max Horz 2=206(LC 12) Max Uplift 2=-111(LC 12), 8=-136(LC 9)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-259/99

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=111, 8=136.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			5-6-8	
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.13	(,	L/d PLATES GRIP 360 MT20 244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.10 WB 0.06	Vert(CT) -0.01 8-11 >999	240 n/a
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS	- (-)	240 Weight: 46 lb FT = 20%

LUMBER-

 TOP CHORD
 2x6 SP No.2 *Except* 4-6: 2x4 SP No.2

 BOT CHORD
 2x6 SP No.2

 WEBS
 2x4 SP No.3

 SLIDER
 Left 2x6 SP No.2 1-11-12

- BRACING-
- BOT CHORD

Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins: 4-6. Rigid ceiling directly applied.

- REACTIONS. (Ib/size) 2=288/0-5-8, 8=214/Mechanical Max Horz 2=264(LC 12) Max Uplift 2=-90(LC 12), 8=-155(LC 12)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.

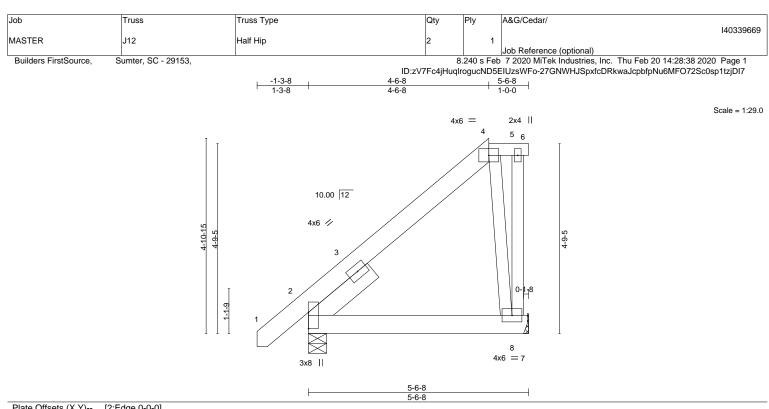
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.


- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 8=155.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

February 20,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

DADING (psf) CLL 20.0 CDL 10.0 CLL 0.0 CLL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.21 BC 0.18 WB 0.09 Matrix-AS	(-)	in (lo 0.02 8-7 -0.02 8-7 -0.01	11 >999	L/d 240 240 n/a	PLATES MT20 Weight: 49 lb	GRIP 244/190 FT = 20%
UMBER- OP CHORD 2x6 SP	No.2 *Except*		BRACING- TOP CHORI	D Stru	uctural wood	l sheathing di	rectly applied, excep	t end verticals, and

 4-6: 2x4 SP No.2
 BOT CHORD
 2x6 SP No.2
 BOT CHORD
 2x0 SP No.2

 WEBS
 2x4 SP No.3
 SLIDER
 Left 2x6 SP No.2 1-11-12

REACTIONS. (lb/size) 8=214/Mechanical, 2=288/0-5-8 Max Horz 2=321(LC 12) Max Uplift 8=-221(LC 12), 2=-53(LC 12) Max Grav 8=227(LC 19), 2=288(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

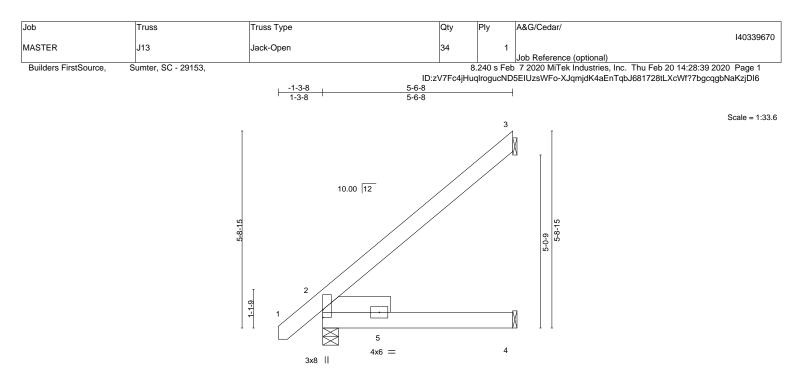
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 8=221.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

February 20,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

				Η		5-6-8 5-6-8						
LOADIN	u /	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.27	Vert(LL)	0.04	4-8	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.34	Vert(CT)	-0.04	4-8	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.02	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TP	912014	Matri	x-AS						Weight: 39 lb	FT = 20%

LUMBER-

 TOP CHORD
 2x6 SP No.2

 BOT CHORD
 2x6 SP No.2

 SLIDER
 Left 2x6 SP No.2 1-11-12

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied. Rigid ceiling directly applied.

REACTIONS. (lb/size) 3=140/Mechanical, 2=296/0-5-8, 4=72/Mechanical Max Horz 2=374(LC 12) Max Uplift 3=-245(LC 12), 2=-17(LC 12), 4=-42(LC 12) Max Grav 3=192(LC 19), 2=296(LC 1), 4=103(LC 3)

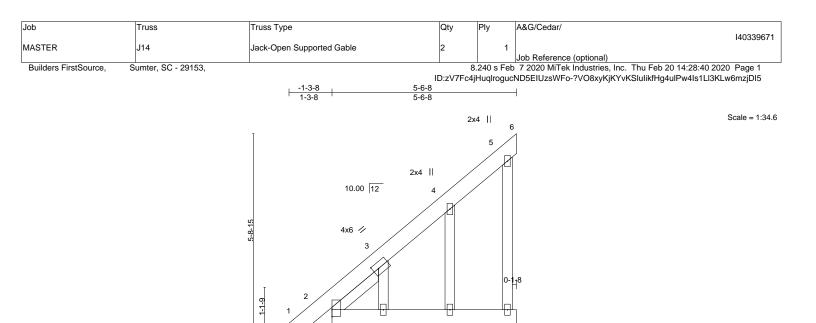
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. BOT CHORD 2-4=-689/677

NOTES-

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.


 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4 except (jt=lb) 3=245.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

9 8 2x4 || 2x4 || 7 2x4

Plate Offsets (X,Y)	[3:0-2-0,0-2-0]	1	1			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	n (loc) l/defl L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.08	Vert(LL) 0.0	0 1 n/r 120	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.01	Vert(CT) -0.0	0 1 n/r 120		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.10	Horz(CT) -0.0	0 6 n/a n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P			Weight: 51 lb	FT = 20%
LUMBER-			BRACING-			
TOP CHORD 2x6 SP	No.2		TOP CHORD	Structural wood sheathing dire	ectly applied or 5-6-8 c	oc purlins,
BOT CHORD 2x6 SP	No.2			except end verticals.		•
WERC 2v4 CD	No 2			Rigid ceiling directly applied o	r 10,0,0 oc bracing	

WEBS 2x4 SP No.3 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing OTHERS 2x4 SP No.3

3x6 II

REACTIONS. All bearings 5-6-8.

Max Horz 2=384(LC 12) (lb) -Max Uplift All uplift 100 lb or less at joint(s) 6, 7, 2 except 8=-198(LC 12), 9=-286(LC 12) Max Grav All reactions 250 lb or less at joint(s) 6, 7, 8, 9 except 2=264(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-515/445, 3-4=-259/209

Left 2x4 SP No.3 1-10-6

WEBS 4-8=-255/249, 3-9=-368/341

NOTES-

SLIDER

1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

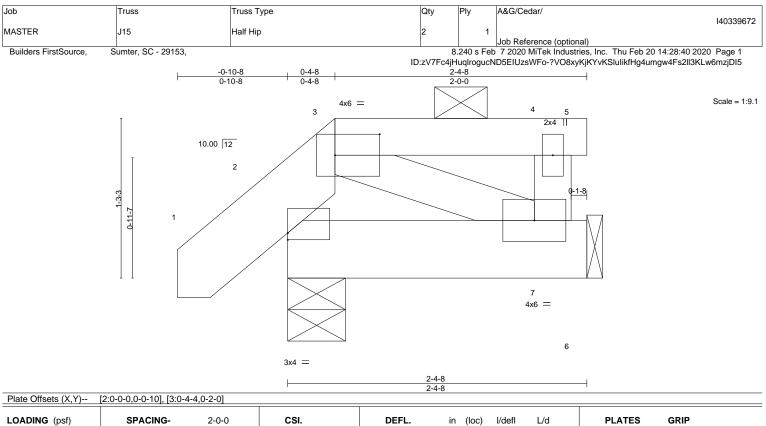
2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


7) All bearings are assumed to be User Defined crushing capacity of 565 psi.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 7, 2 except (it=lb) 8=198, 9=286.

February 20,2020

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.02 WB 0.01 Matrix-MP	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.00 10 >999 360 MT20 244/190 Vert(CT) -0.00 10 >999 240 MT20 244/190 Horz(CT) 0.00 2 n/a Na Veight: 16 lb FT = 20%
LUMBER- TOP CHORD 2x6 SP	No.2 *Except*		BRACING- TOP CHORD Structural wood sheathing directly applied or 2-4-8 oc purlins,

 TOP CHORD
 2x6 SP No.2 *Except*
 TOP CHORD
 Structural wood sheathing directly applied or 2-4-8 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-5.

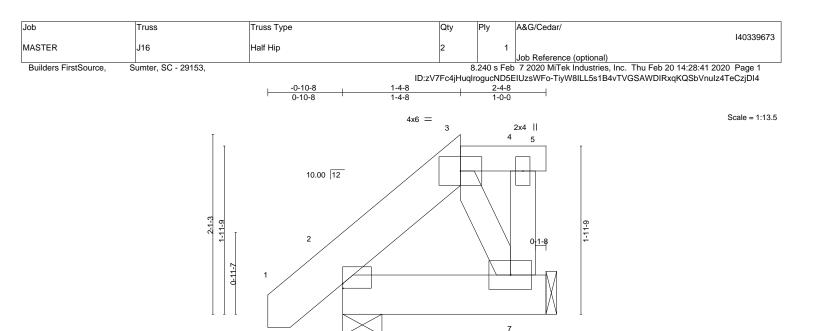
 BOT CHORD
 2x6 SP No.2
 BOT CHORD
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

 WEBS
 2x4 SP No.3
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 2=136/0-5-8, 7=88/Mechanical Max Horz 2=69(LC 12) Max Uplift 2=-56(LC 12), 7=-61(LC 9) Max Grav 2=136(LC 1), 7=92(LC 24)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

February 20,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

<u>2-4-8</u> 2-4-8

in (loc)

10

10

2

-0.00

-0.00

-0.00

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

4x6 =

6

l/defl

>999

>999

n/a

L/d

360

240

n/a

BCDL	10.0	Code IRC2015/TPI2014	Matrix-MP	Wind(LL) 0.0	0 10	>999	240	Weight: 18 lb	FT = 20%
				BRACING- TOP CHORD	Chryster		ah a a thin a div	anth, applied as 2.4.0 a	e eurliee
TOP CHO		PNo.2 *Except* 4 SP No.2		TOP CHORD			0	ectly applied or 2-4-8 o -0 oc purlins: 3-5.	c punins,
BOT CHO	RD 2x6 SP	9 No.2		BOT CHORD	Rigid c	eiling dir	ectly applied of	or 10-0-0 oc bracing.	
WEBS	2x4 SP	9 No.3							

3x4 =

0.03

0.02

0.03

CSI.

тс

BC

WB

REACTIONS. (lb/size) 2=136/0-5-8, 7=88/Mechanical Max Horz 2=118(LC 12)

[2:0-0-0,0-0-10]

SPACING-

Plate Grip DOL

Rep Stress Incr

Lumber DOL

Max Uplift 2=-45(LC 12), 7=-66(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

Plate Offsets (X,Y)--

20.0

10.0

0.0

LOADING (psf)

TCLL

TCDL

BCLL

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

2-0-0

1.15

1.15

YES

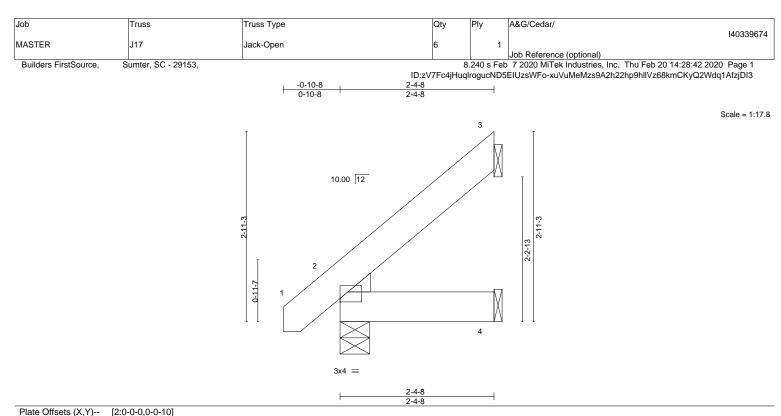
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

GRIP

244/190


PLATES

MT20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

¹⁾ Unbalanced roof live loads have been considered for this design.

LOADING (psf) SPACING- 2-0-0 CSI. ITCLL 20.0 Plate Grip DOL 1.15 TC 0.06 ITCDL 10.0 Lumber DOL 1.15 BC 0.05 ICCLL 0.0 * Rep Stress Incr YES WB 0.00 ICDL 10.0 Code IRC2015/TPI2014 Matrix-MP	DEFL. in (loc) I/defl L/d Vert(LL) 0.00 7 >999 240 Vert(CT) -0.00 7 >999 180 Horz(CT) -0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 17 lb FT = 20%
--	---	---

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEDGE Left: 2x4 SP No.3 BRACING-TOP CHORD BOT CHORD

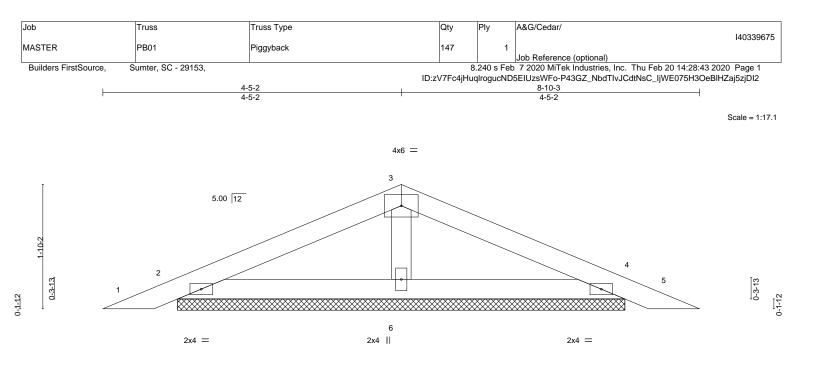
Structural wood sheathing directly applied or 2-4-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=59/Mechanical, 2=144/0-5-8, 4=27/Mechanical Max Horz 2=171(LC 12) Max Uplift 3=-114(LC 12), 2=-11(LC 12), 4=-15(LC 12) Max Grav 3=84(LC 19), 2=144(LC 1), 4=44(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4 except (jt=lb) 3=114.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

8-10-3 8-10-3									
OADING (psf)	SPACING- 2	2-0-0 CSI.	D	EFL. in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL	1.15 TC	0.25 Ve	ert(LL) 0.01	5	n/r	120	MT20	244/190
CDL 10.0	Lumber DOL	1.15 BC	0.12 Ve	ert(CT) 0.01	5	n/r	120		
BCLL 0.0 *	Rep Stress Incr	YES WB	0.07 H	orz(CT) 0.00	4	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI20	2014 Matri	x-P	()				Weight: 26 lb	FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

170/6 7 10 6 261/6 7 10

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=179/6-7-10, 4=179/6-7-10, 6=261/6-7-10 Max Horz 2=51(LC 12) Max Uplift 2=-124(LC 12), 4=-132(LC 13), 6=-67(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

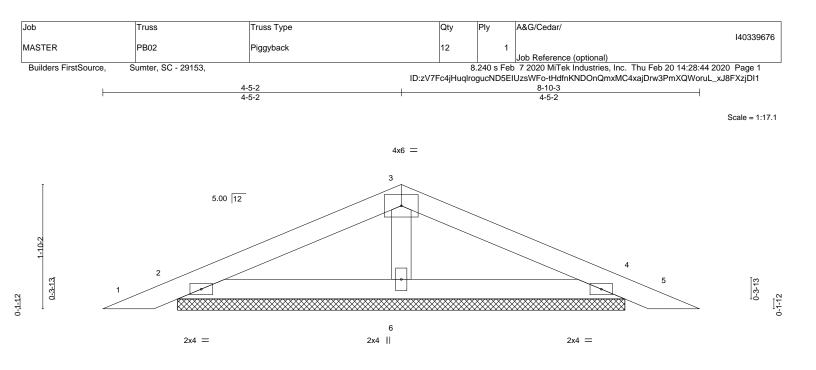
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 2=124, 4=132.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1			8-10-3				1	1
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (lo	c) l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.25	Vert(LL)	0.01	5 n/r	120	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.12	Vert(CT)	0.01	5 n/r	120		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.07	Horz(CT)	0.00	4 n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P					Weight: 26 lb	FT = 20%

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD OTHERS 2x4 SP No.3

REACTIONS. (lb/size) 2=179/6-7-10, 4=179/6-7-10, 6=261/6-7-10 Max Horz 2=51(LC 12)

Max Uplift 2=-124(LC 12), 4=-132(LC 13), 6=-67(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

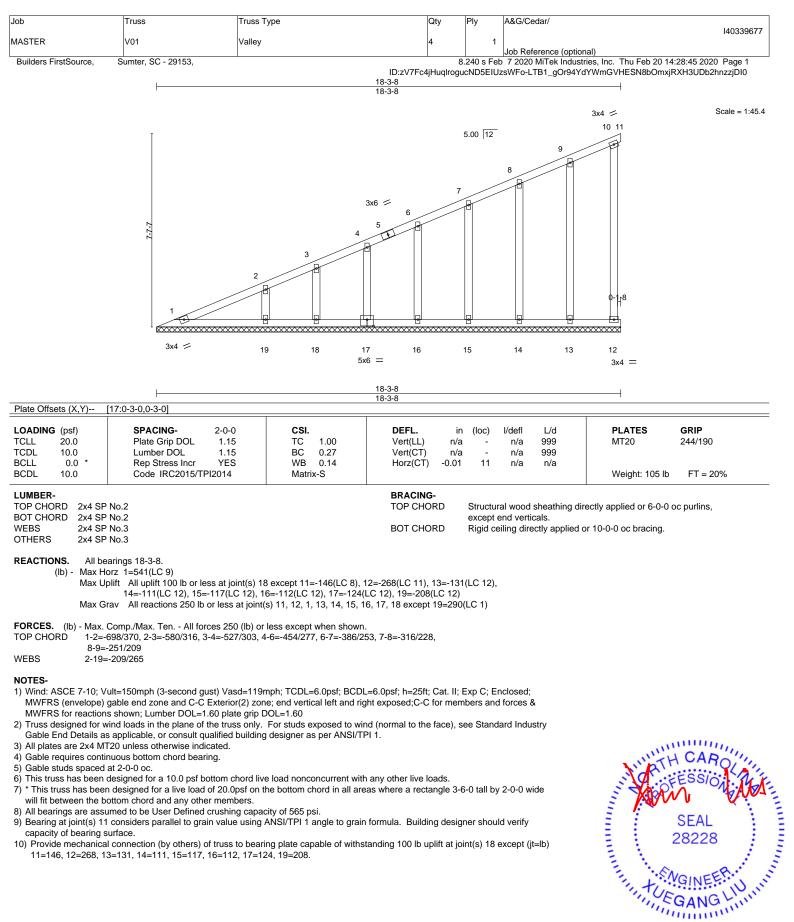
2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

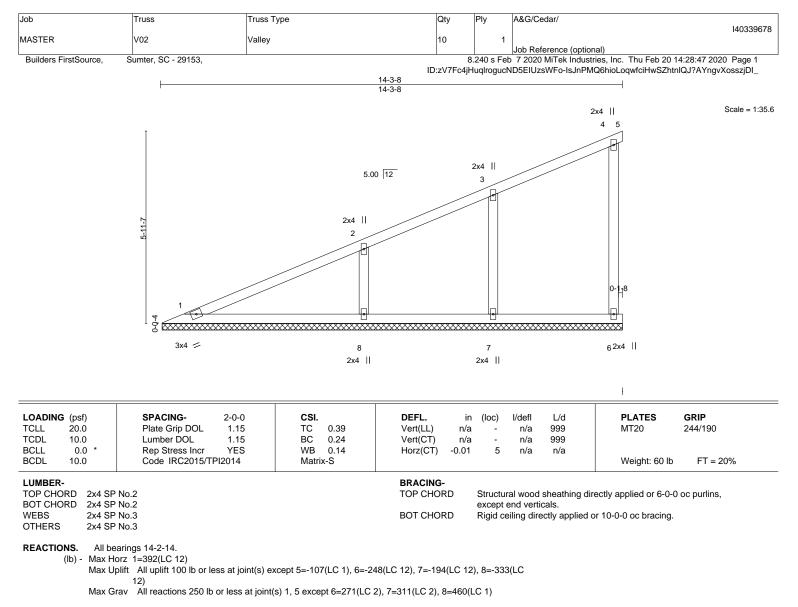
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (it=lb) 2=124, 4=132

8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.


Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


LUMBER-

February 20,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-415/164, 4-6=-229/318

WEBS 3-7=-211/297, 2-8=-335/457

NOTES-

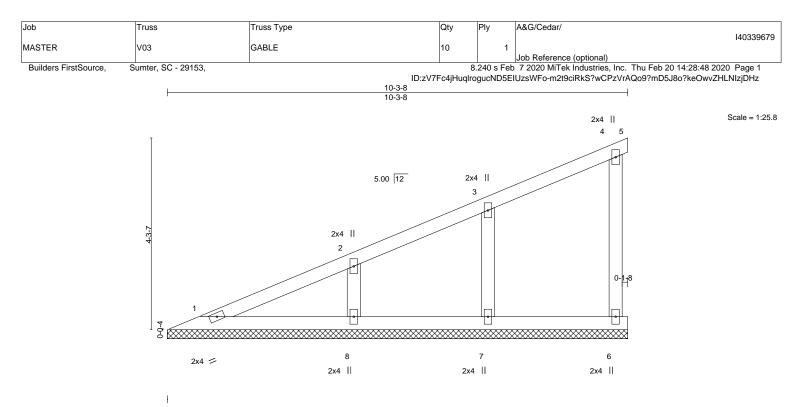
 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.


6) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 107 lb uplift at joint 5, 248 lb uplift at joint 6, 194 lb uplift at joint 7 and 333 lb uplift at joint 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matrix	0.15 0.09 0.10 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 41 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP					BRACING- TOP CHOF	RD		iral wood end verti		rectly applied or 6-0-0	oc purlins,

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

OTHERS 2x4 SP No.3

REACTIONS. All bearings 10-3-8.

(lb) -Max Horz 1=277(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 5 except 6=-150(LC 12), 7=-162(LC 12), 8=-214(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6, 7 except 8=295(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-328/128

WEBS 3-7=-174/272, 2-8=-215/329

NOTES-

1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

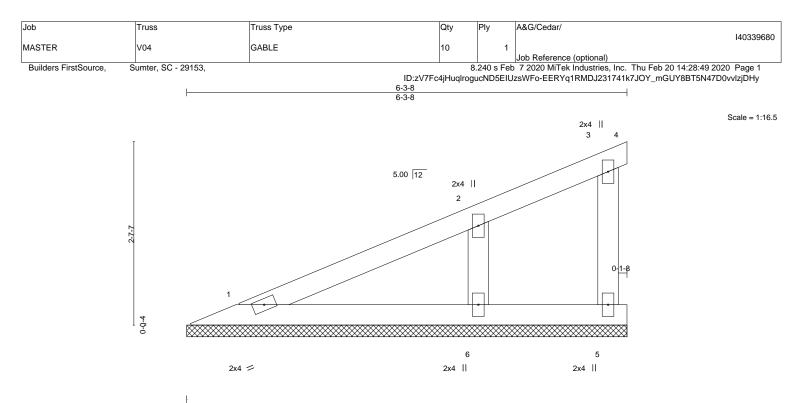
2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 6=150, 7=162, 8=214.

February 20,2020

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/T	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matrix	0.18 0.09 0.11 x-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF					BRACING- TOP CHOP	RD		ıral wood end verti	0	rectly applied or 6-0-0	oc purlins,

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3

REACTIONS. All bearings 6-3-8.

(lb) - Max Horz 1=161(LC 12)

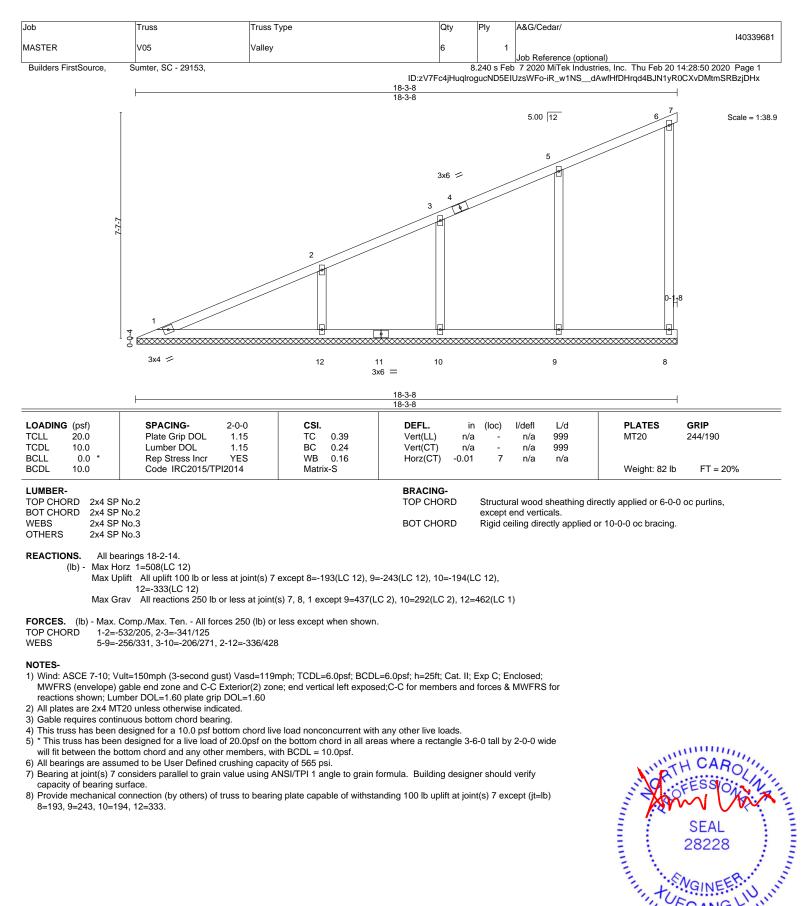
Max Uplift All uplift 100 lb or less at joint(s) 1, 4, 5 except 6=-207(LC 12)

- Max Grav All reactions 250 lb or less at joint(s) 1, 4, 5 except 6=286(LC 1)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.

WEBS 2-6=-226/384

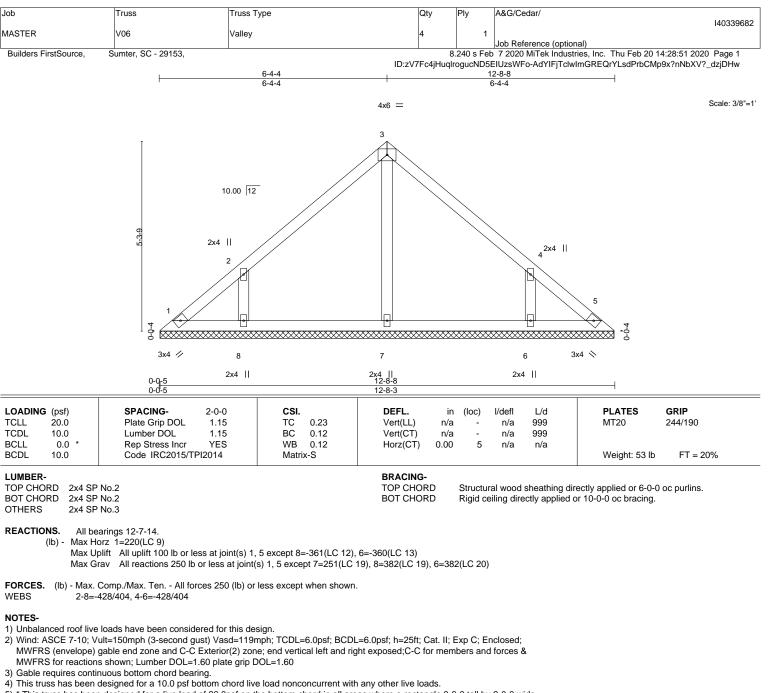
NOTES-

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4, 5 except (jt=lb) 6=207.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

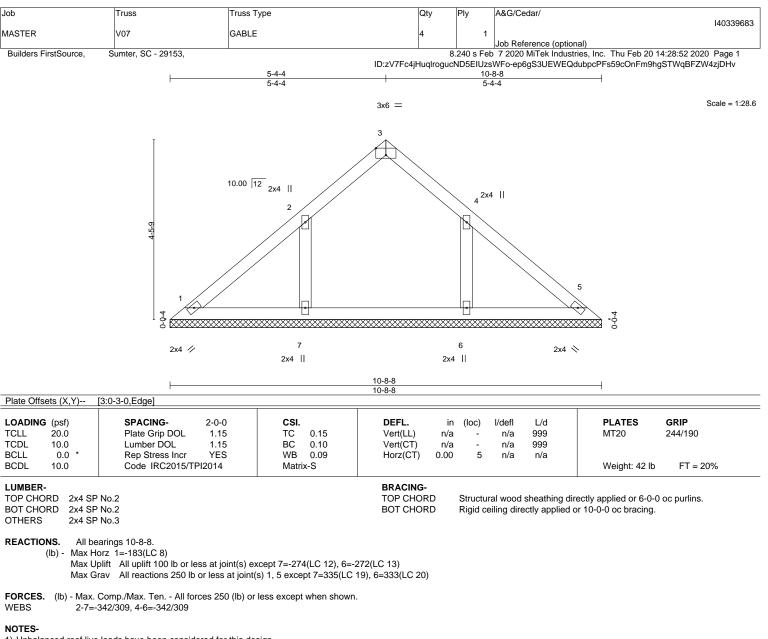


February 20,2020

818 Soundside Road

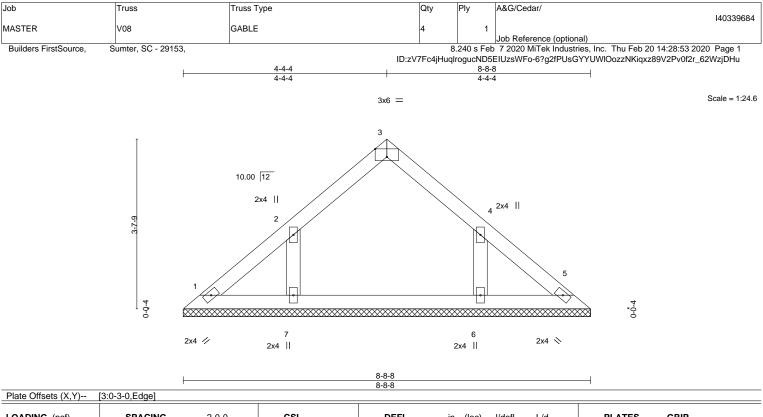
Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ roll ES UN THIS AND INCLODED INTER REFERENCE FACE INFERTOR TO THE INFERTOR OF THE fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=361, 6=360.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 274 lb uplift at joint 7 and 272 lb uplift at joint 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.08 BC 0.09 WB 0.07 Matrix-S		L/d PLATES GRIP 999 MT20 244/190 999 n/a Weight: 32 lb FT = 20%
LUMBER-			BRACING-	

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

REACTIONS. All bearings 8-8-8.

(lb) -Max Horz 1=-146(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 7=-202(LC 12), 6=-200(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=267(LC 19), 6=265(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

2-7=-263/244, 4-6=-263/244 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

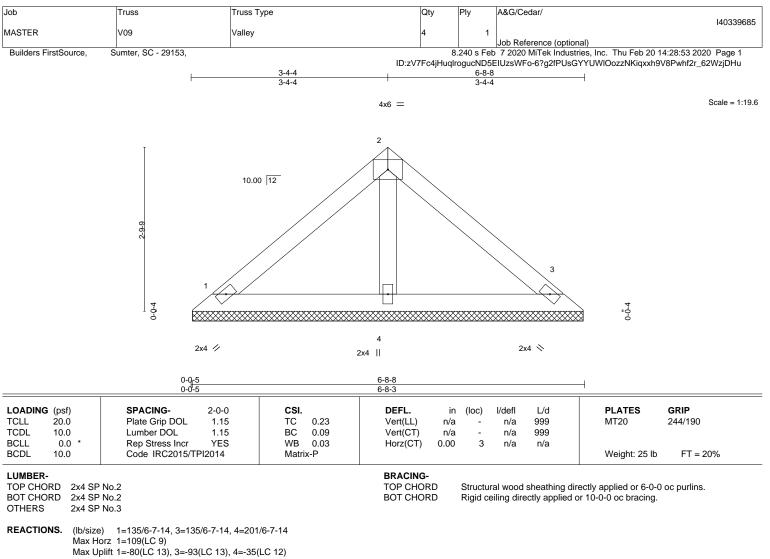
3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 7=202, 6=200.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

February 20,2020

818 Soundside Road Edenton, NC 27932

Max Grav 1=135(LC 1), 3=136(LC 20), 4=201(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

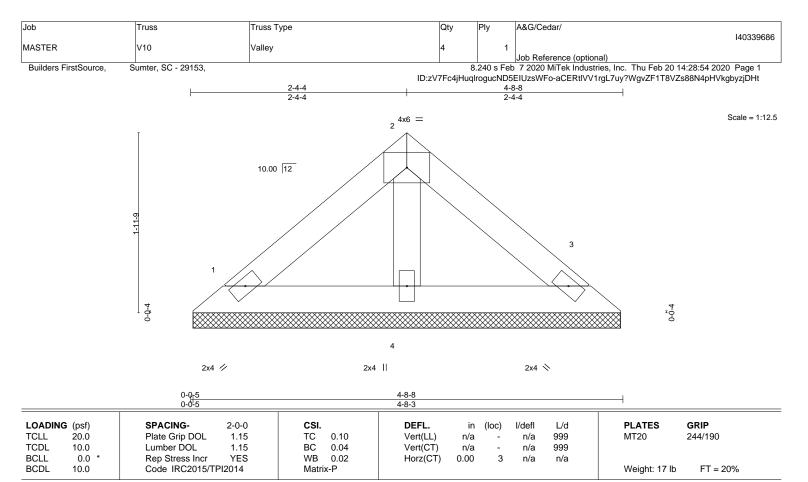
2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.


6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-8-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 1=90/4-7-14, 3=90/4-7-14, 4=133/4-7-14 Max Horz 1=-72(LC 8) Max Uplift 1=-53(LC 13), 3=-62(LC 13), 4=-23(LC 12) Max Grav 1=90(LC 1), 3=90(LC 20), 4=133(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

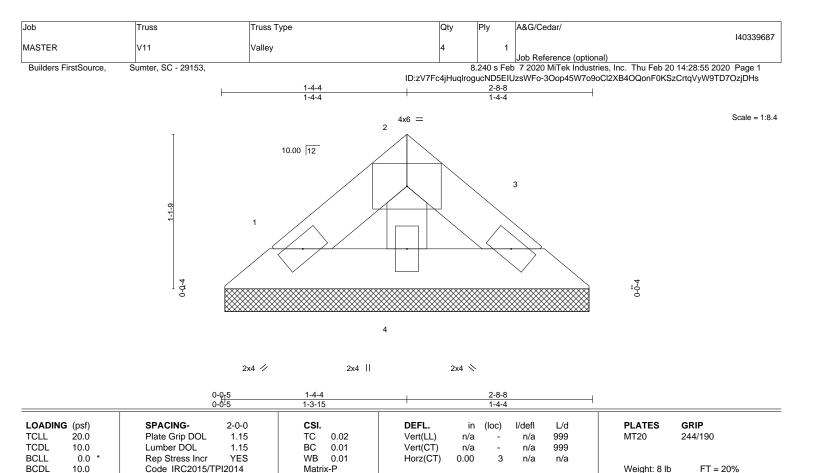
2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.


6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-TOP CHORD

BOT CHORD

LUMBER-	
---------	--

TOP CHORD 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.3

10.0

2x4 SP No.2

REACTIONS. 1=44/2-7-14, 3=44/2-7-14, 4=65/2-7-14 (lb/size) Max Horz 1=-35(LC 8) Max Uplift 1=-26(LC 13), 3=-30(LC 13), 4=-11(LC 12) Max Grav 1=44(LC 1), 3=44(LC 20), 4=65(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

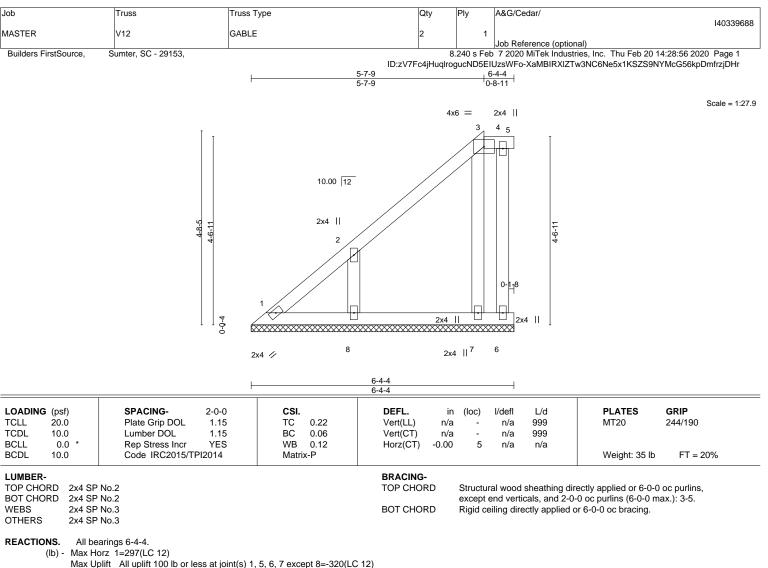
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.


Structural wood sheathing directly applied or 2-8-8 oc purlins.

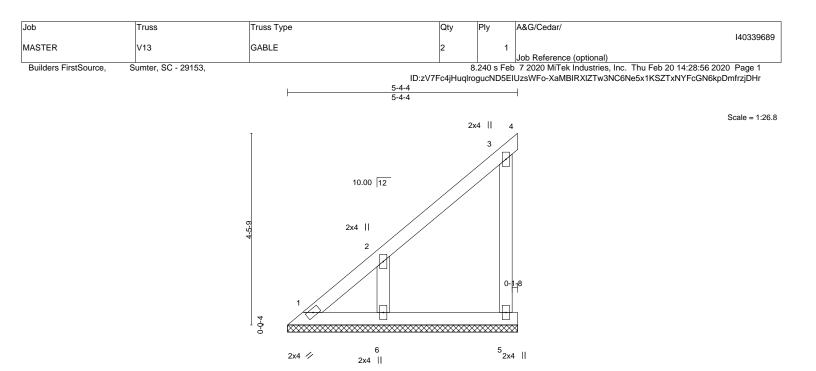
Rigid ceiling directly applied or 10-0-0 oc bracing

February 20,2020

HIN THE REAL PROPERTY OF THE P 0 The second se GANG

- Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6, 7 except 8=333(LC 12)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 1-2=-377/319
- WEBS 2-8=-405/388

NOTES-


1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 6, 7 except (jt=lb) 8=320.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TI	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matrix	0.17 0.06 0.10 k-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3			BRACING- TOP CHOF BOT CHOF	D	except	end verti	cals.	rectly applied or 5-4-4 or 10-0-0 oc bracing.	oc purlins,		

REACTIONS. All bearings 5-4-4.

Max Uplift All uplift 100 lb or less at joint(s) 1 except 4=-103(LC 19), 5=-287(LC 12), 6=-260(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 4 except 5=256(LC 19), 6=290(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-367/302, 3-5=-346/334

WEBS 2-6=-341/329

NOTES-

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

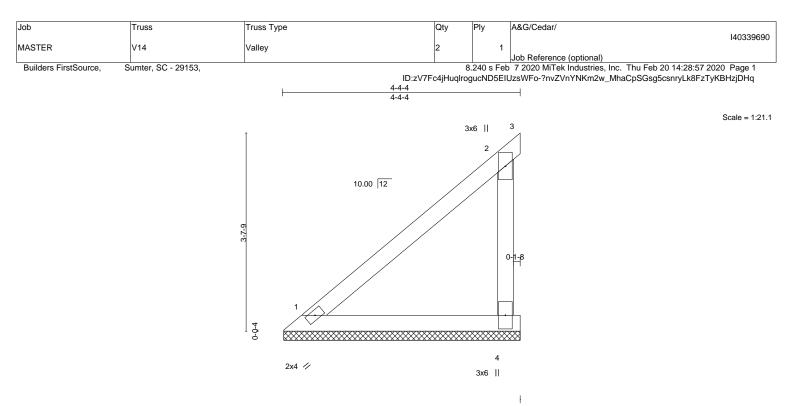
2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 4=103, 5=287, 6=260.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

⁽lb) - Max Horz 1=286(LC 12)

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.29	Vert(LL) n/a	-	n/a	999	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.16	Vert(CT) n/a	-	n/a	999		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00	3	n/a	n/a		
BCDL 10.0	DL 10.0 Code IRC2015/TPI2014						Weight: 18 lb	FT = 20%

```
LUMBER-
```

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-4-4 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 1=128/4-3-15, 3=-258/4-3-15, 4=441/4-3-15 Max Horz 1=229(LC 12) Max Uplift 3=-351(LC 19), 4=-688(LC 12) Max Grav 1=128(LC 1), 3=453(LC 12), 4=588(LC 19)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-338/323, 2-4=-819/793

NOTES-

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

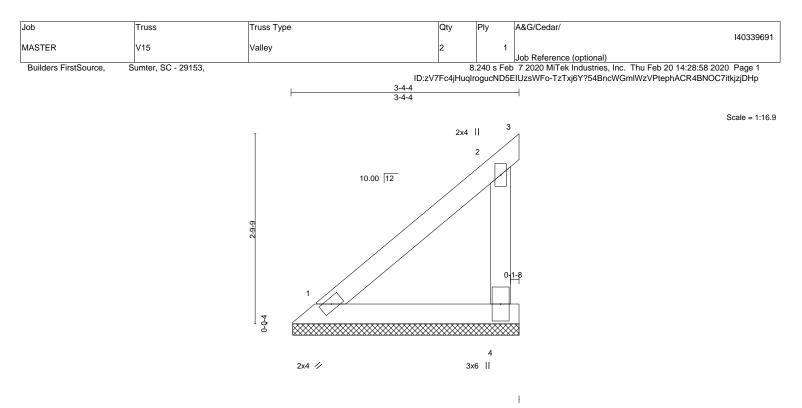
2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.


 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=351, 4=688.

February 20,2020

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.15	Vert(LL) n/a	-	n/a	999	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.08	Vert(CT) n/a	-	n/a	999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00	3	n/a	n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P					Weight: 14 lb FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 3-4-4 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 1=94/3-3-15, 3=-124/3-3-15, 4=261/3-3-15 Max Horz 1=171(LC 12) Max Uplift 3=-169(LC 19), 4=-395(LC 12) Max Grav 1=94(LC 1), 3=217(LC 12), 4=346(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-474/459

NOTES-

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

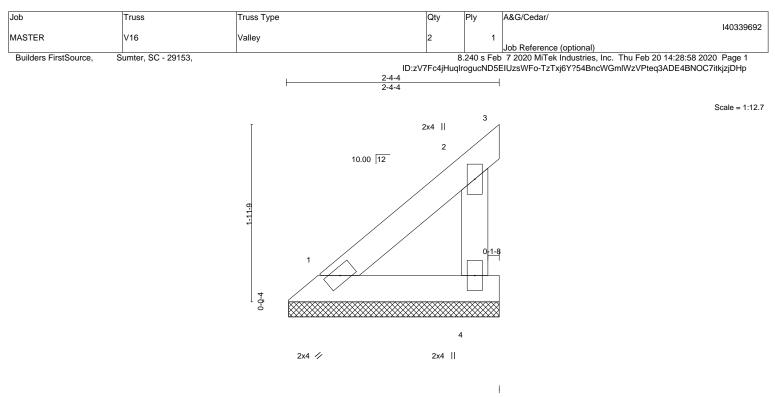
2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

 Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.


 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=169, 4=395.

February 20,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTPI1 Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI	2-0-0 1.15 1.15 YES I2014	CSI. TC BC WB Matri	0.06 0.03 0.00 x-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 S	P No.2				BRACING- TOP CHOF		Structu	ral wood	sheathing di	rectly applied or 2-4-	4 oc purlins,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.3

REACTIONS. 1=60/2-3-15, 3=-37/2-3-15, 4=127/2-3-15 (lb/size)

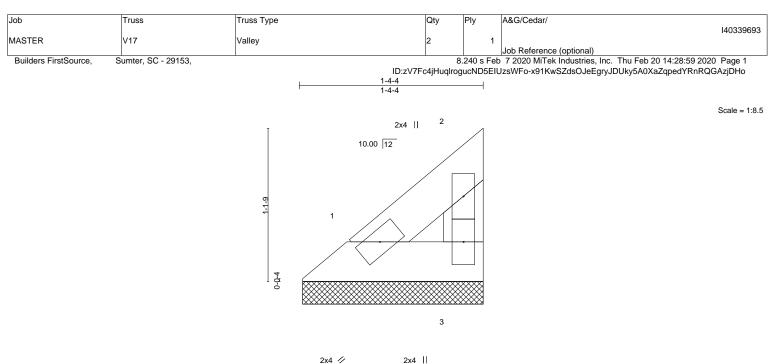
Max Horz 1=113(LC 12) Max Uplift 3=-49(LC 19), 4=-183(LC 12)

Max Grav 1=60(LC 1), 3=63(LC 12), 4=167(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 6) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3 except (jt=lb) 4=183.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-14's rev. Towasons beroke osc. Design valid for use only with MiTeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

ł

Rigid ceiling directly applied or 10-0-0 oc bracing.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.02 BC 0.01 WB 0.00 Matrix-P	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	a -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES GRIP MT20 244/190 Weight: 5 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP			BRACING- TOP CHORD		ural wood end verti	0	rectly applied or 1-4-4 oc purlins,

BOT CHORD

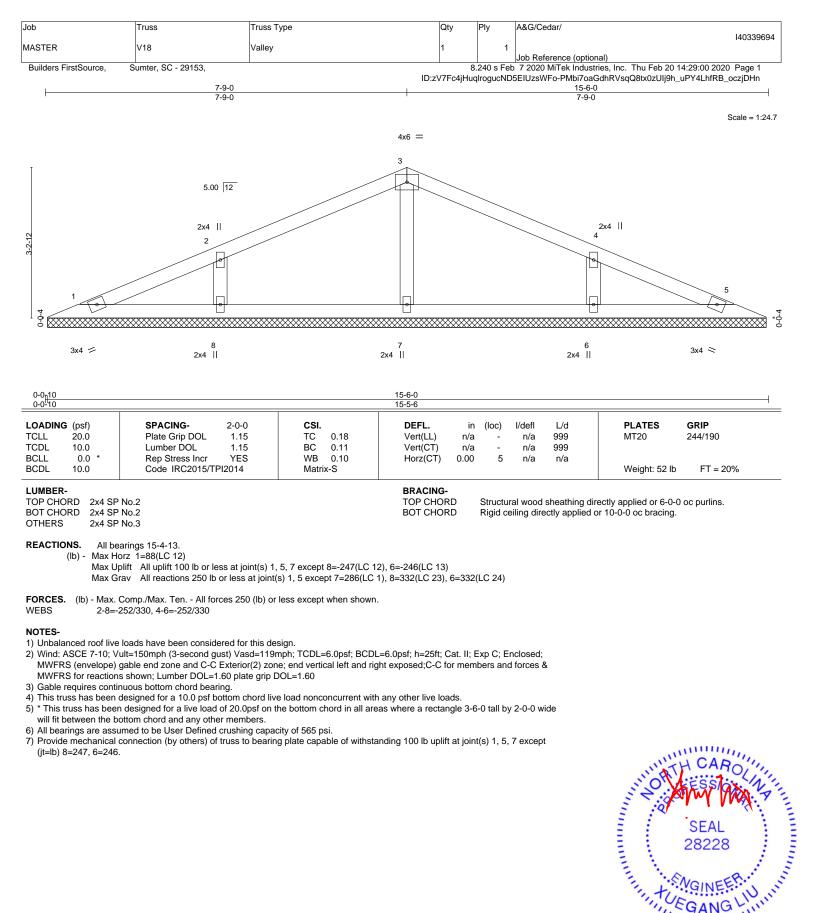
WEBS 2x4 SP No.3

REACTIONS. 1=32/1-3-15, 3=32/1-3-15 (lb/size) Max Horz 1=47(LC 12) Max Uplift 3=-38(LC 12) Max Grav 1=32(LC 1), 3=41(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

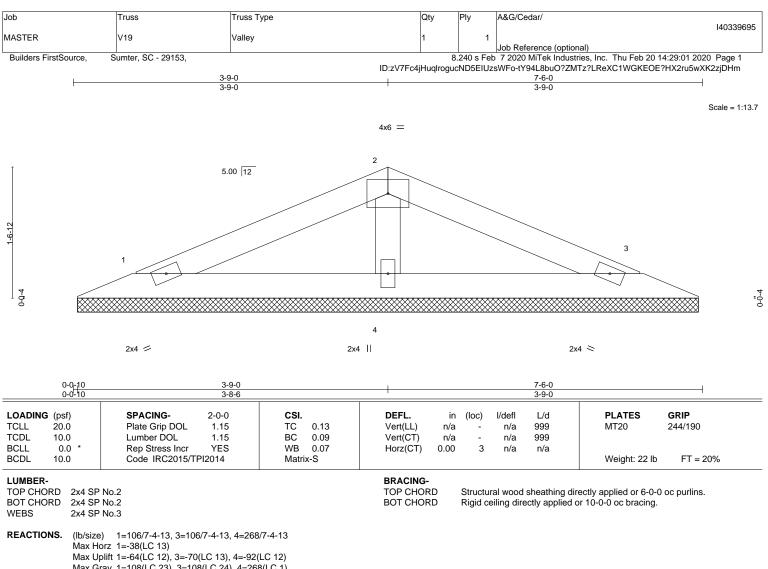
NOTES-

1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. 10/03/2013 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



February 20,2020

GANG

Max Grav 1=108(LC 23), 3=108(LC 24), 4=268(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

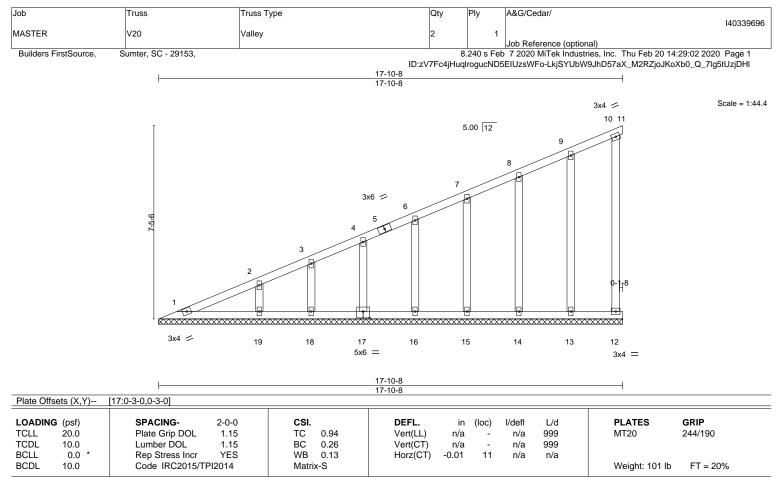
2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5)

will fit between the bottom chord and any other members.


6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

LUWBER-		
TOP CHORD	2x4 SP No.2	
BOT CHORD	2x4 SP No.2	
WEBS	2x4 SP No.3	
OTHERS	2x4 SP No.3	

 BRACING

 TOP CHORD
 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 17-10-8.

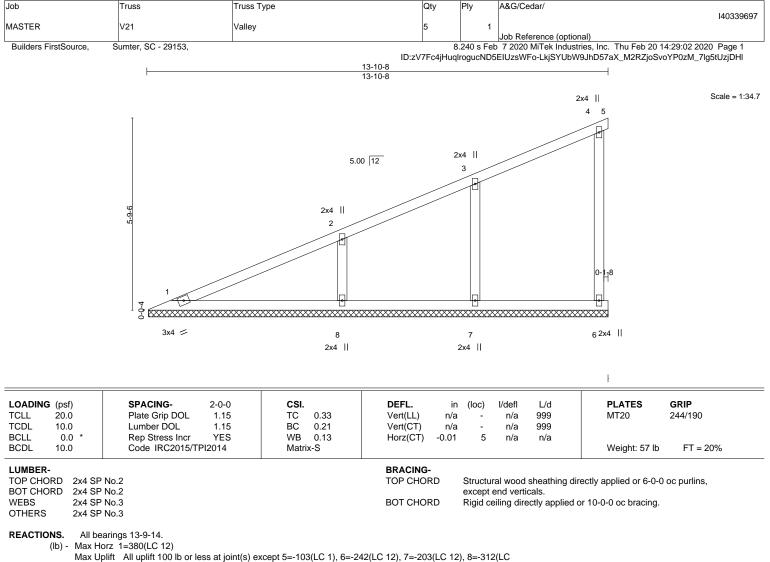
(lb) - Max Horz 1=528(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 18 except 11=-140(LC 8), 12=-257(LC 11), 13=-130(LC 12), 14=-111(LC 12), 15=-117(LC 12), 16=-113(LC 12), 17=-121(LC 12), 19=-185(LC 12) Max Grav All reactions 250 lb or less at joint(s) 11, 12, 1, 13, 14, 15, 16, 17, 18 except 19=258(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-687/362, 2-3=-582/316, 3-4=-524/300, 4-6=-452/274, 6-7=-383/250, 7-8=-313/225

NOTES-


- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 9) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18 except (jt=lb) 11=140, 12=257, 13=130, 14=111, 15=117, 16=113, 17=121, 19=185.

February 20,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

12)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 6=266(LC 2), 7=322(LC 2), 8=432(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-410/161, 4-6=-224/315

WEBS 3-7=-219/311, 2-8=-314/434

NOTES-

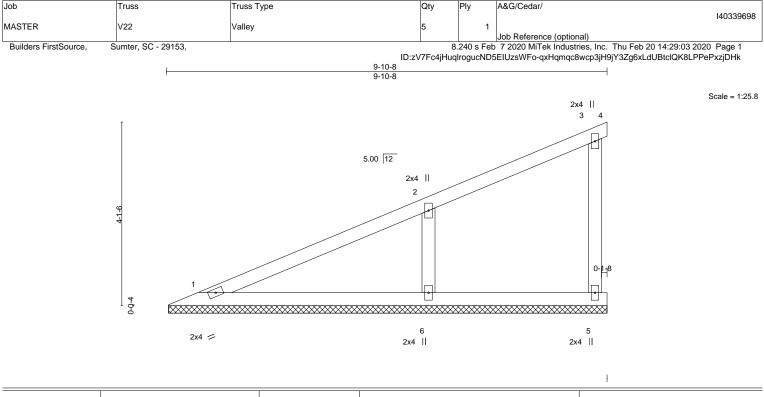
 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.


6) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 103 lb uplift at joint 5, 242 lb uplift at joint 6, 203 lb uplift at joint 7 and 312 lb uplift at joint 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

COADING (psf) "CLL 20.0 "CDL 10.0 3CLL 0.0 3CDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 YES 212014	CSI. TC BC WB Matrix	0.34 0.21 0.15 -S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
UMBER- OP CHORD 2x4 SP 30T CHORD 2x4 SP					BRACING- TOP CHOR	-		ral wood end verti	0	rectly applied or 6-0-0	oc purlins,
VEBS 2x4 SP	No.3				BOT CHOR	D	Rigid c	eiling dire	ectly applied	or 10-0-0 oc bracing.	

WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3

REACTIONS. All bearings 9-9-14.

(lb) -Max Horz 1=265(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 4 except 5=-146(LC 12), 6=-316(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 4, 5 except 6=443(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

1-2=-288/121 TOP CHORD

```
WEBS
              2-6=-322/495
```

NOTES-

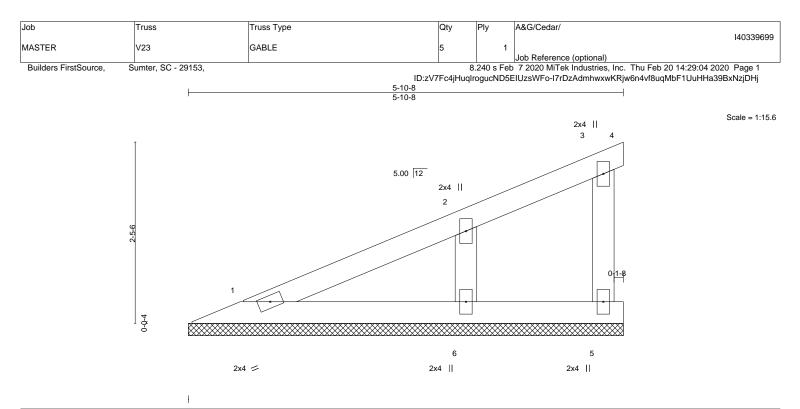
1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.


6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4 except (jt=lb) 5=146, 6=316.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.14 BC 0.07 WB 0.10 Matrix-P	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) -0.00	a -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP			BRACING- TOP CHORD		ural wood		rectly applied or 5-10-	8 oc purlins,

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3

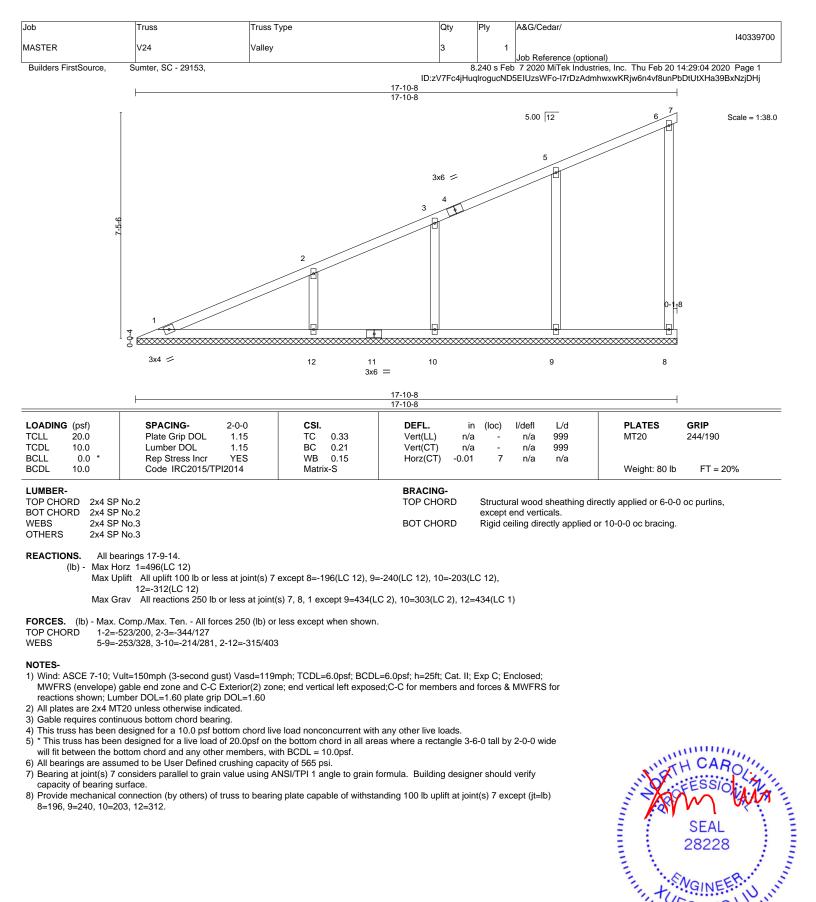
REACTIONS. All bearings 5-10-8.

- (lb) -Max Horz 1=149(LC 12)
 - Max Uplift All uplift 100 lb or less at joint(s) 1, 4, 5 except 6=-183(LC 12)
 - Max Grav All reactions 250 lb or less at joint(s) 1, 4, 5 except 6=254(LC 1)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown. 2-6=-202/345

WEBS

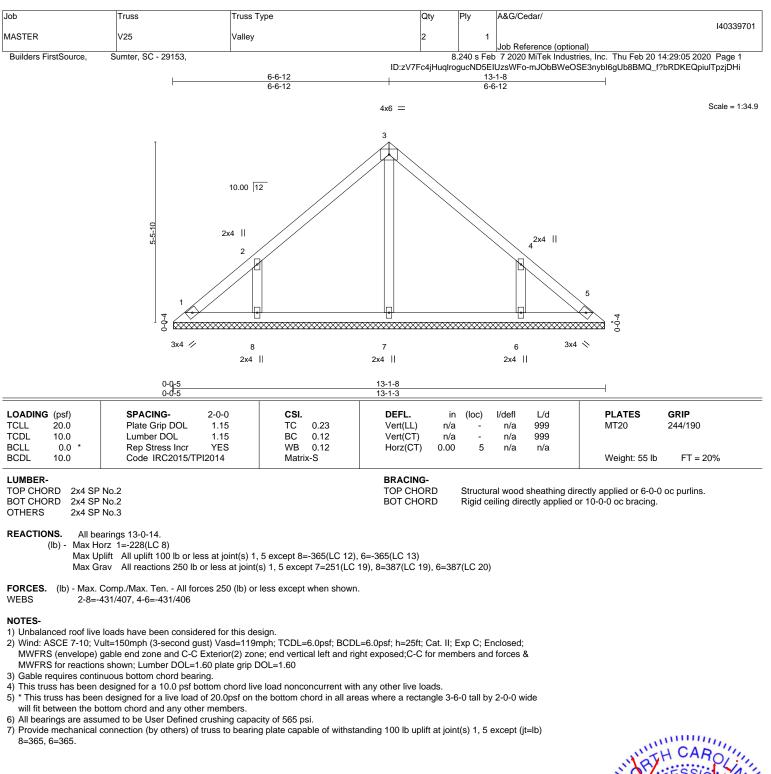
NOTES-

1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

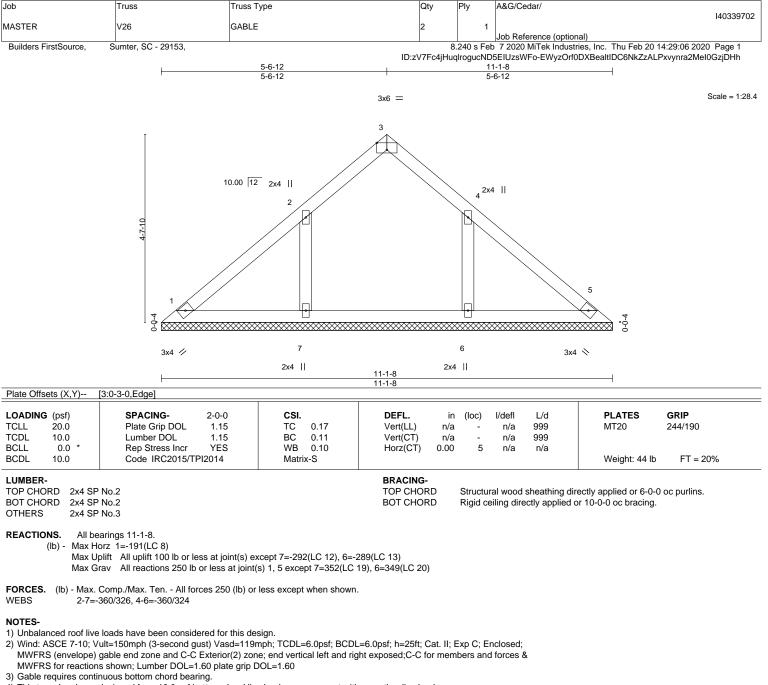

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4, 5 except (jt=lb) 6=183.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



February 20,2020

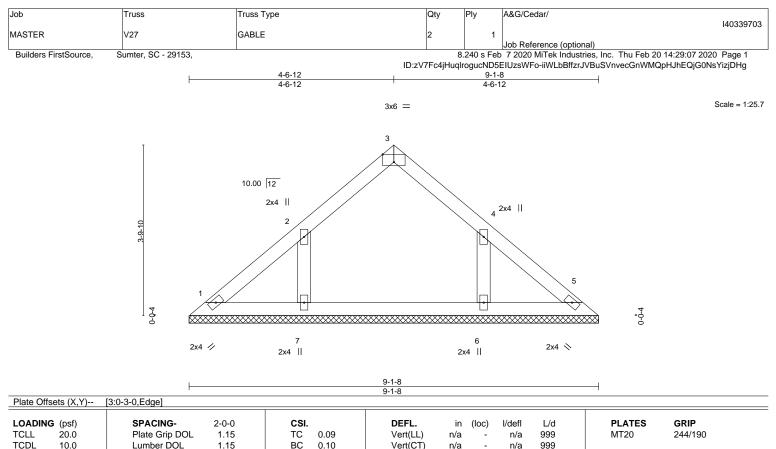
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 292 lb uplift at joint 7 and 289 lb uplift at joint 6.



February 20,2020

A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

0.00

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

5

n/a

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TCDL	10.0	Lumber DOL	1.15	BC	0.1
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.0
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	x-S
-		•			

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

REACTIONS. All bearings 9-1-8.

(lb) - Max Horz 1=-154(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 7=-216(LC 12), 6=-214(LC 13)

0.08

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=280(LC 19), 6=277(LC 20)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- WEBS 2-7=-278/256, 4-6=-278/256

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 7=216, 6=214.

FT = 20%

Weight: 34 lb

February 20,2020

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

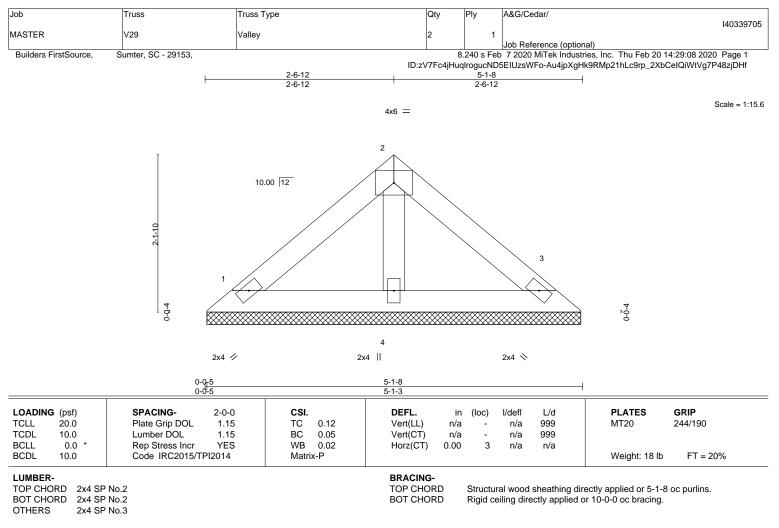
2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.


6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

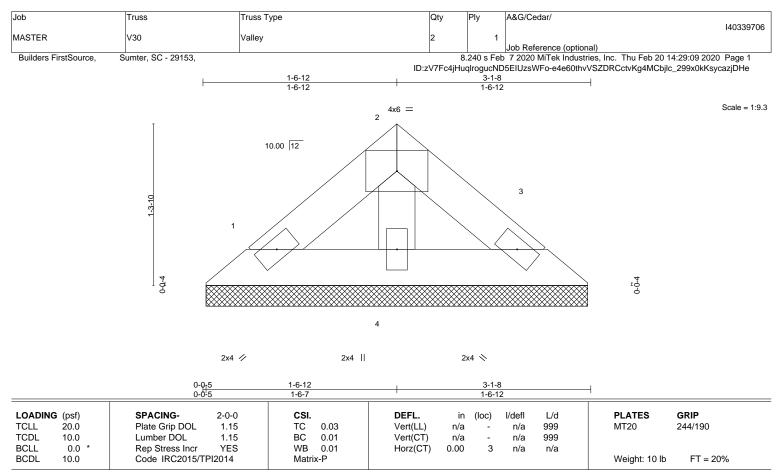
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (lb/size) 1=99/5-0-14, 3=99/5-0-14, 4=147/5-0-14 Max Horz 1=80(LC 9) Max Uplift 1=-58(LC 13), 3=-68(LC 13), 4=-25(LC 12) Max Grav 1=99(LC 1), 3=100(LC 20), 4=147(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.


6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


```
LUMBER-
```

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-1-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 1=53/3-0-14, 3=53/3-0-14, 4=79/3-0-14 Max Horz 1=-43(LC 8) Max Uplift 1=-31(LC 13), 3=-37(LC 13), 4=-14(LC 12) Max Grav 1=53(LC 1), 3=54(LC 20), 4=79(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

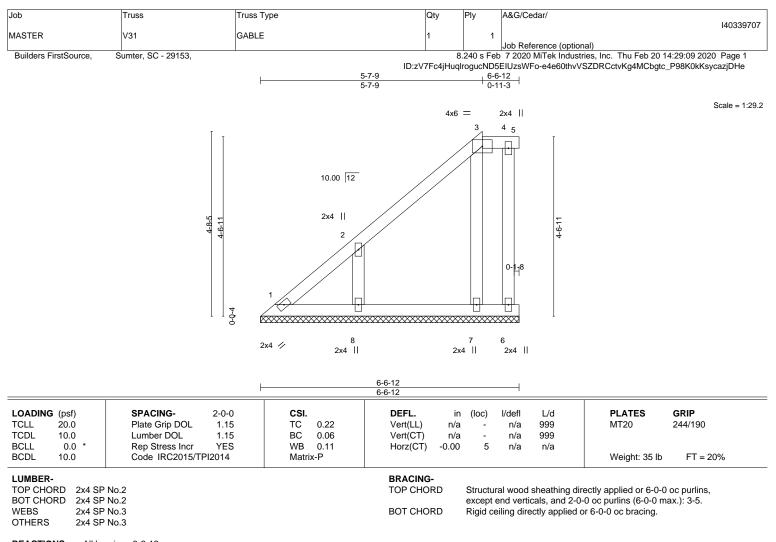
2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.


6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. All bearings 6-6-12.

(lb) - Max Horz 1=297(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 6 except 7=-104(LC 12), 8=-320(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6, 7 except 8=333(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

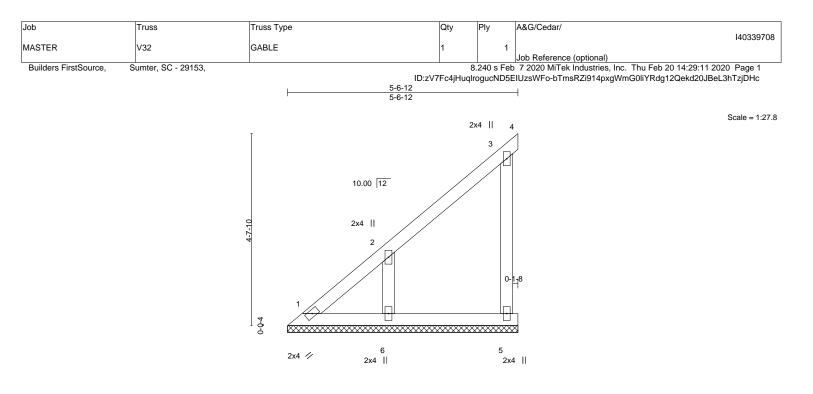
```
TOP CHORD 1-2=-377/319
```

WEBS 2-8=-404/386

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.


4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 6 except (jt=lb) 7=104, 8=320.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.18 BC 0.06 WB 0.10 Matrix-P	Vert(CT)	in (loc) n/a - n/a - 00 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP		,	BRACING- TOP CHORD		ural wood	0	rectly applied or 5-6-1	2 oc purlins,

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD2x4 SP No.2WEBS2x4 SP No.3OTHERS2x4 SP No.3

REACTIONS. All bearings 5-6-12.

(lb) - Max Horz 1=298(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 4 except 5=-278(LC 12), 6=-270(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 4, 5 except 6=300(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-374/308, 3-5=-335/323

WEBS 2-6=-353/340

NOTES-

1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4 except (jt=lb) 5=278, 6=270.

February 20,2020

Job	Truss	Truss Type	Qtv	Plv	A&G/Cedar/
			,	1	140339709
					140339709
MASTER	V33	GABLE	1	1	
					Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,			8.240 s Fe	b 7 2020 MiTek Industries, Inc. Thu Feb 20 14:29:11 2020 Page 1
				alroquoND	EII JzoW/Eo hTmoPZi014pygW/mC0liVPdg2yOf0d2 LIPol 2hTziDHo

4-6-12 4-6-12

4 2x4 11 3 10.00 12 2x4 || 3-9-10 2 0-1-8 0-0-4 6 5 2x4 1/ 2x4 Ш 2x4 ||

LOADING (psf) SPACING-2-0-0 CSI. DEFL. PLATES GRIP in (loc) I/defl L/d TCLL Plate Grip DOL 1.15 Vert(LL) 999 244/190 20.0 тс 0.12 n/a n/a MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.04 Vert(CT) 999 n/a n/a BCLL 0.0 **Rep Stress Incr** YES WB 0.08 Horz(CT) -0.00 n/a n/a 4 BCDL 10.0 Code IRC2015/TPI2014 Matrix-P Weight: 22 lb FT = 20% LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 4-6-12 oc purlins, 2x4 SP No.2 except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing

BOT CHORD

2x4 SP No.3 WEBS OTHERS 2x4 SP No.3

REACTIONS. All bearings 4-6-12.

(lb) -Max Horz 1=241(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 4 except 5=-110(LC 12), 6=-221(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 4, 5, 6

ł

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-284/234

WEBS 2-6=-288/279

NOTES-

1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

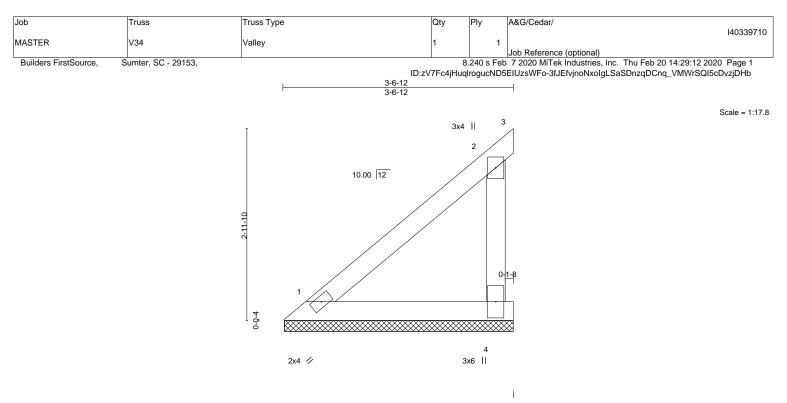
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4 except (jt=lb) 5=110, 6=221.



Scale = 1:22.0

February 20,2020

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-14's rev. Towards BEFORE OSE. Design valid for use only with MiTeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.18	Vert(LL) n/a	-	n/a	999	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.09	Vert(CT) n/a	-	n/a	999		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00	3	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P					Weight: 15 lb	FT = 20%
LUMBER-			BRACING-					

TOP CHORD

BOT CHORD

```
LUMBER-
```

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS

2x4 SP No.3

REACTIONS. 1=101/3-6-7, 3=-148/3-6-7, 4=295/3-6-7 (lb/size) Max Horz 1=183(LC 12) Max Uplift 3=-202(LC 19), 4=-449(LC 12)

Max Grav 1=101(LC 1), 3=260(LC 12), 4=391(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-4=-538/521

NOTES-

1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

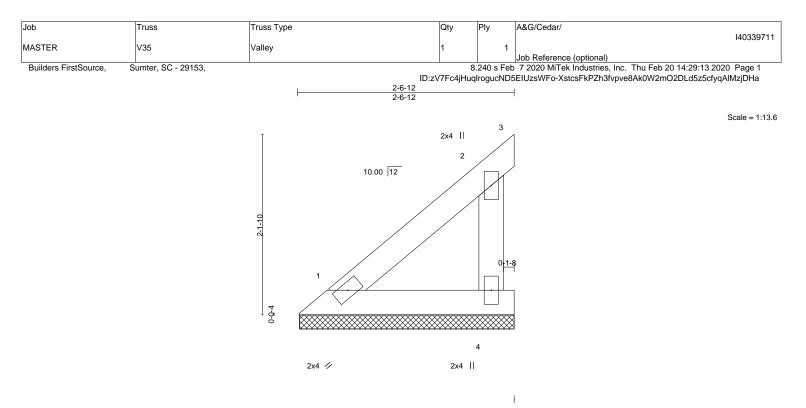
4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=202, 4=449.

Structural wood sheathing directly applied or 3-6-12 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing

except end verticals.

February 20,2020

818 Soundside Road Edenton, NC 27932

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)	l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.08	Vert(LL) n/a -	n/a 999	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.04	Vert(CT) n/a -	n/a 999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 3	n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P			Weight: 10 lb FT = 20%

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS

2x4 SP No.3

REACTIONS. 1=67/2-6-7, 3=-51/2-6-7, 4=151/2-6-7 (lb/size) Max Horz 1=125(LC 12) Max Uplift 3=-69(LC 19), 4=-220(LC 12) Max Grav 1=67(LC 1), 3=88(LC 12), 4=199(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-4=-267/258

NOTES-

1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

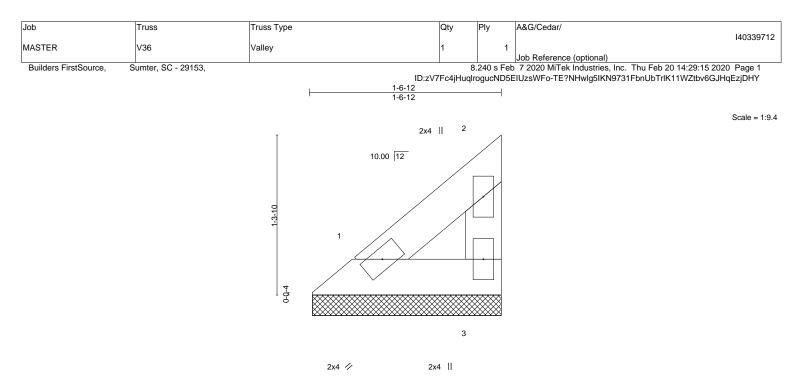
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

- 6) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3 except (jt=lb) 4=220.

Structural wood sheathing directly applied or 2-6-12 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

February 20,2020

ł

Rigid ceiling directly applied or 10-0-0 oc bracing

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.03 BC 0.01 WB 0.00 Matrix-P	DEFL. i Vert(LL) n// Vert(CT) n// Horz(CT) 0.00	a -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES GRIP MT20 244/190 Weight: 6 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF			BRACING- TOP CHORD		ural wood t end verti		irectly applied or 1-6-12 oc purlins,

BOT CHORD

WEBS 2x4 SP No.3

REACTIONS. 1=41/1-6-7, 3=41/1-6-7 (lb/size) Max Horz 1=59(LC 12) Max Uplift 3=-47(LC 12) Max Grav 1=41(LC 1), 3=52(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

February 20,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. 10/03/2013 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

