

RE: 20090081 A&G RESIDENTIAL - 20 Mitchell Manor Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: A&G Residential Project Name: 20090081 Lot/Block: 20 Model: Dorchester C Address: Subdivision: Mitchell Manor City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: N/A Roof Load: 40.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 21 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	E14785986	A01	9/23/2020	21	E14786006	V25	9/23/2020
2	E14785987	A02	9/23/2020				
3	E14785988	A03	9/23/2020				
4	E14785989	A04	9/23/2020				
5	E14785990	A05	9/23/2020				
6	E14785991	A06	9/23/2020				
7	E14785992	A07	9/23/2020				
8	E14785993	A08	9/23/2020				
9	E14785994	A09	9/23/2020				
10	E14785995	B01	9/23/2020				
11	E14785996	B02	9/23/2020				
12	E14785997	C01	9/23/2020				
13	E14785998	CJ01	9/23/2020				
14	E14785999	D01	9/23/2020				
15	E14786000	D02	9/23/2020				
16	E14786001	J01	9/23/2020				
17	E14786002	J02	9/23/2020				
18	E14786003	J03	9/23/2020				
19	E14786004	J04	9/23/2020				
20	E14786005	J05	9/23/2020				

The truss drawing(s) referenced above have been prepared by

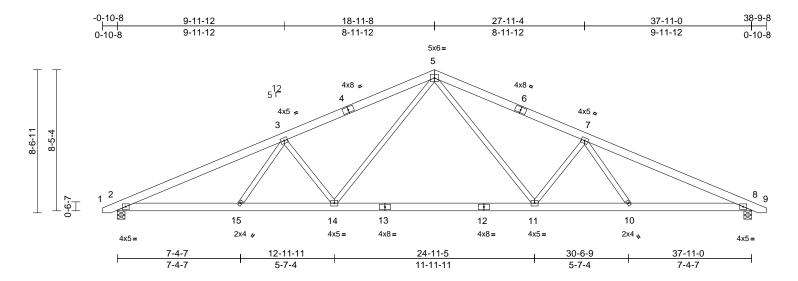
Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2020

North Carolina COA: C-0844


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the design for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 20 Mitchell Manor	
20090081	A01	Common	15	1	Job Reference (optional)	E14785986

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Tue Aug 25 17:20:42 ID:r4sjOxIvoXo7md1_dGHT3EykFYc-EGAabGGqeoHZXayL0H0g7FgszVrbWAemNb?K?7ykEl5

Page: 1

Scale = 1:68.9

_

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.49	Vert(LL)	-0.32	11-14	>999	240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.89	Vert(CT)	-0.58	11-14	>788	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.36	Horz(CT)	0.10	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 246 lb	FT = 20%
LUMBER 5) This truss has been designed for greater of min roof live TOP CHORD 2x6 SP No.2 load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on												

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

overhangs non-concurrent with other live loads.

This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6)

7)

LOAD CASE(S) Standard

TOP CHORD	2X0 SP NO.2
BOT CHORD	2x6 SP No.2
WEBS	2x4 SP No.3 *Except* 14-5,11-5:2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 3-5-10 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(size) 2=0-5-8, 8=0-5-8
	Max Horiz 2=-77 (LC 16)
	Max Grav 2=1687 (LC 3), 8=1687 (LC 3)
FORCES	(Ib) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/18, 2-3=-3450/0, 3-4=-2990/0,
	4-5=-2895/0, 5-6=-2895/0, 6-7=-2990/0,
	7-8=-3450/0, 8-9=0/18
BOT CHORD	2-15=0/3134, 14-15=0/3020, 13-14=0/1986,
	12-13=0/1986, 11-12=0/1986, 10-11=0/3020,
	8-10=0/3134
WEBS	3-14=-690/150, 5-14=0/1151, 5-11=0/1151,
	7-11=-690/151, 3-15=0/215, 7-10=0/215

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 20 Mitchell Manor	
20090081	A02	Common Supported Gable	1	1	Job Reference (optional)	E14785987

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Tue Aug 25 17:20:45 ID:kcZDFBIEGIyVDXHRMiLT9dykFQH-62Q5QeJLi1n_0BG6F74cH5rf86PrS0AMIDzY9uykEI1

38-9-8 0-10-8 18-11-8 37-11-0 18-11-8 18-11-8 5x6= 12 仚 4x8 🚅 11 13 4x8 👟 10 14 ¹⁵ 16 9 8 12 5 Г T IT 7 17 8-6-11 8-5-4 6 18 5 19 4 20 3 21 2223 0-6-7 驗 ***** ******* ***** \times XXX $\sim \sim \sim$ 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 26 25 24 27 4x5= 4x8= 4x8= 4x5 = 37-11-0 F

Scale - 1:68 9

Scale = 1:68.9															-		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 20.0 3.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	018/TPI2014	CSI TC BC WB Matri	x-MSH	0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a 0.00		- r - r		L/d 999 999 n/a	PLATES MT20 Weight: 291 lb	GRIP 244/190 FT = 20%	
	33-12,34- x4 SP No Structura 6-0-0 oc p Rigid ceil bracing. (size)	0.2 0.3 *Excep 11,36-10,3 .2 I wood she burlins. ing directly 2=37-11-(24=37-11 26=37-11 30=37-11 30=37-11 36=37-11 40=37-11 40=37-11 40=37-11 2=-77 (LC 24=-19 (L 24=-19 (L 24=-12 (L 30=-16 (L 34=-4 (LC 37=-12 (L 39=-12 (L 39=-12 (L	athing directly applie applied or 10-0-0 or 0, 22=37-11-0, -0, 25=37-11-0, -0, 29=37-11-0, -0, 29=37-11-0, -0, 32=37-11-0, -0, 34=37-11-0, -0, 39=37-11-0, -0, 43=37-11-0, -0, 43=37-11-0,	ed or c	FORCES TOP CHORD BOT CHORD WEBS	(lb) - M: Tensior 1-2=0/1 4-5=-62 7-8=-54 10-11=- 12-13=- 14-15=- 12-21=- 2-42=-4 39-40=- 30-31=- 2-42=-4 39-40=- 33-34=- 12-33=- 10-36=- 13-42=-1 14-30=- 13-42=-1 14-30=- 17-28=- 21-24=-	24=233 26=165 28=160 30=185 33=146 36=185 38=160 40=165 42=233 46=146 aximum Cc 8, 2-3=-96 2/50, 5-6=-5 1/92, 8-9=-6 -84/122, 11 -97/129, 13 -60/85, 15- -39/44, 18- -50/14, 21- 40/79, 38- -40/79, 32- -40/79, 32- -40/79, 29- -40/79, 20- -105/39, 8- 122/36, 20- -153/39	(LC 36), (LC 36), (LC 36), (LC 32), (LC 22), (LC 22), (LC 22), (LC 22), (LC 2), (LC 2), (LC 35), (LC 3	7=-43/77, 10=-60/106, 133, 109, 7, 16-17=-5 9, 19-20=-3 6, 22-23=0/, , 40-41=-40 9, 37-38=-4 9, 34-35=-4 9, 34-35=-4 9, 28-29=-4 9, 25-26=-4 9 26, 7-38=-1 6, 4-41=-11 25, 1/36, D/36, D/36, J/35,	C 2), C 36), 2), C 23), C 22), C 22), C 2), 35), C 2), C 2), T 54/62, 37/18, 1/18 0/79, 10/79, 10/79, 10/79, 10/79, 10/79, 10/79,	3)	Vasd=10 Cat. II; E Exterior vertical I forces & DOL=1.1 Truss de only. Fo see Star or consu TCLL: A Plate DO DOL=1. Exp.; CoE Unbalan design. This trus load of 1 overhan All plate Gable st	03mp Exp B (2) z ² deft an MW/ 60 pla esignnor stu mdard ult quud SCE E SS has 12.0 p gs no s are equire tuds s	h; TC ; Enc cone; (and rigg FRS f tate gr ed for ds ex I Indu alified 1.15); I ate D ; Cs= snow s bee ssf or con-con 2x4 N ss cor space	Vult=130mph (3 DL=6.0psf; BCI losed; MWFRS antilever left an ht exposed;C-C for reactions sho ip DOL=1.33 wind loads in th posed to wind (r stry Gable End I building design Pr=20.0 psf; Pf= OL=1.15); Is=1.1 loads have beer n designed for g 2.00 times flat m futzo unless oth thitnuous bottom d at 2-0-0; q0, 11 WFAC	DL=6.0psf; h= (envelope) ard d right exposs for members wn; Lumber e plane of the ormal to the Details as apper as per ANS of LL: Lum DL (13.9 psf (Lur); Rough Cat n considered reater of min pof load of 13 er live loads. erwise indica chord bearing	25ft; d C-C ed; end and e truss face), blicable, SI/TPI 1. DL=1.15 n B; Fully for this roof live .9 psf on ted.
						Unbalanced roof live loads have been considered for this design.									201111		

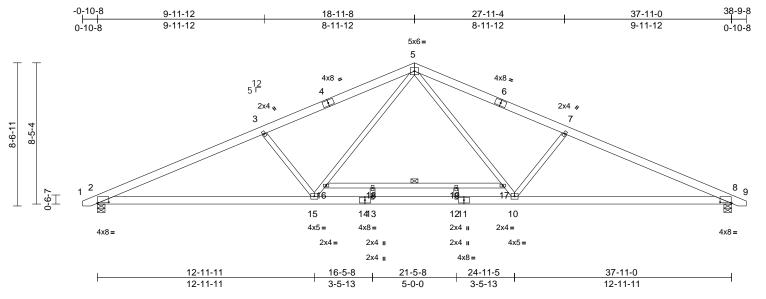
818 Soundside Road Edenton, NC 27932

August 26,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 20 Mitchell Manor	E4 (705007
20090081	A02	Common Supported Gable	1	1	Job Reference (optional)	E14785987

- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 34, 36, 37, 38, 39, 40, 41, 42, 32, 30, 29, 28, 27, 26, 25, and 24. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.


LOAD CASE(S) Standard

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Tue Aug 25 17:20:45 ID:kcZDFBIEGIyVDXHRMiLT9dykFQH-62Q5QeJLi1n_0BG6F74cH5rf86PrS0AMIDzY9uykEI1 Page: 2

Job	Truss	Truss Type Qty Ply A&G RESIDENTIAL - 20 Mitchell		A&G RESIDENTIAL - 20 Mitchell Manor		
20090081	A03	Common	4	1	Job Reference (optional)	E14785988

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Tue Aug 25 17:20:45 ID:r4sjOxIvoXo7md1_dGHT3EykFYc-bEzTe_KzSLvrdLrIpqcrqJOi5WYIBP7VXtj5hKykEl0

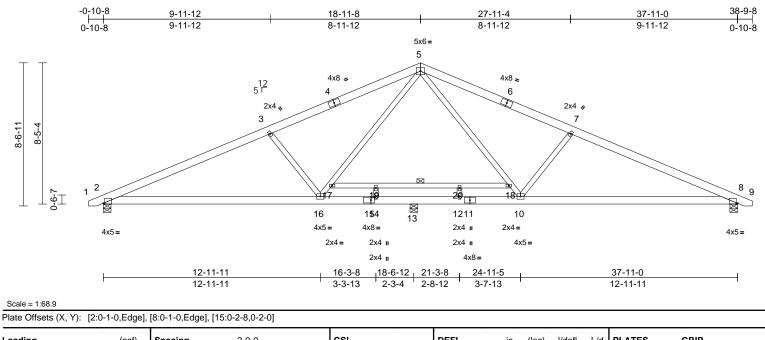
Scale = 1:68.9

Plate Offsets (X, Y): [2:0-8-4,0-0-12], [8:0-8-4,0-0-12]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.89	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 10-25 12-13 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 250 lb	GRIP 244/190 FT = 20%
	(size) 2=0-5-8, 8 Max Horiz 2=-77 (LC Max Grav 2=1654 (L (lb) - Maximum Com Tension 1-2=0/18, 2-3=-3319 4-5=-2869/0, 5-6=-2 7-8=-3319/0, 8-9=0/ 2-15=0/3009, 14-15- 12-13=0/2123, 11-12 8-10=0/3009 3-15=-614/177, 15-1 5-17=0/1106, 10-17	athing directly applie applied or 10-0-0 or 16-17 3=0-5-8 (16) .C 2), 8=1654 (LC 2 pression/Maximum 9/0, 3-4=-2986/0, 869/0, 6-7=-2986/0, 869/0, 6-7=-2986/0, 18 =0/2123, 13-14=0/21 2=0/2123, 10-11=0/2 6=0/1028, 5-16=0/1 =0/1028, 7-10=-614/	Plate DOL DOL=1.15 Exp.; Ce=(4) Unbalance design. 5) This truss load of 12. overhangs 6) 200.0lb AC 18-11-8 frc apart. 7) All plates a 8) * This truss on the bott 3-06-00 tal chord and 9) This truss Internation R802.10.2 23, 23, 2423, 106, 177,	CE 7-16; Pr=20.0 pr =1.15); Pg=20.0 ps Plate DOL=1.15); I 0.9; Cs=1.00; Ct=1. d snow loads have has been designed 0 psf or 2.00 times non-concurrent wit c unit load placed o m left end, support are 2x4 MT20 unless s has been designed om chord in all are: I by 2-00-00 wide v any other members is designed in acco al Residential Code and referenced sta 5) Standard	f; Pf=13.S Is=1.0; Ro 10 been cor for greate flat roof lo th other lin n the bott ted at two as otherwi ed for a liv as where vill fit betv s. grdance w e sections	p psf (Lum pugh Cat B; F nsidered for the er of min roof pad of 13.9 p re loads. om chord, points, 5-0-0 se indicated. e load of 20.1 a rectangle reen the bottw ith the 2018 R502.11.1 a	Fully his live sf on Dpsf om				NITH CA	ROUTIN
this design 2) Wind: ASC Vasd=103 Cat. II; Exp Exterior (2 vertical left forces & M	16-18=-137/0, 18-19 13-18=0/23, 12-19= d roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; B b B; Enclosed; MWFR b D; cone; cantilever left a t and right exposed;C- WFRS for reactions s plate grip DOL=1.33	0/23 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and	c						Jan 1111		111111	EER RUIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 1

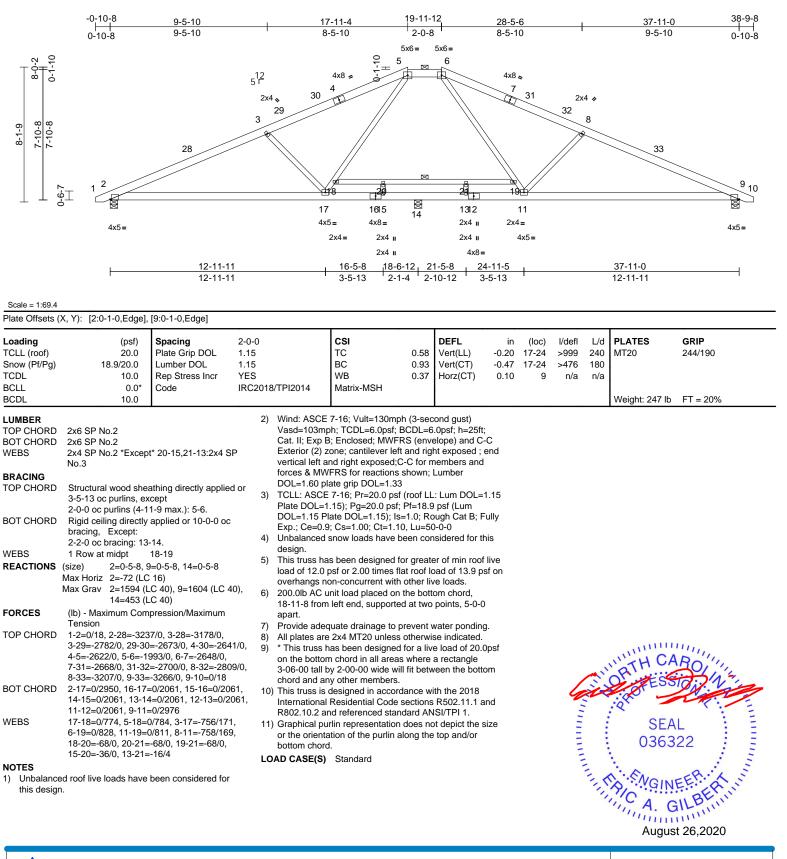

Job	Truss	Truss Type C		Ply	A&G RESIDENTIAL - 20 Mitchell Manor		
20090081	A04	Common	1	1	Job Reference (optional)	E14785989	

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Tue Aug 25 17:20:46 ID:qIMsLipxh1qc3P72gKOow_ykFMK-3QXrrKLbDe2iFVQUNY74MWwtlvupwtHeIXSfDnykEI?

Page: 1

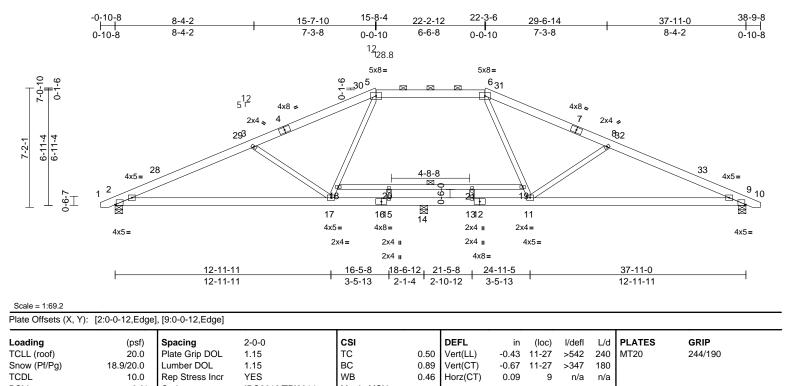
August 26,2020

818 Soundside Road Edenton, NC 27932



Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.57 0.83 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.46 0.08	l/defl >999 >484 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 250 lb	GRIP 244/190 FT = 20%
		athing directly applie applied or 10-0-0 o 17-18 3=0-5-8, 13=0-5-8 : 16) .C 2), 8=1455 (LC 2	4; ed or 5; c 6; 7; 8;	Plate DOL=' DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 overhangs n 200.0lb AC of 18-11-8 from apart. All plates are * This truss l on the botton	7-16; Pr=20.0 ps 1.15); Pg=20.0 ps late DOL=1.15); I 2; Cs=1.00; Ct=1. snow loads have as been designed psf or 2.00 times on-concurrent wit unit load placed on left end, support a 2x4 MT20 unles has been designed n chord in all area	f; Pf=13.5 s=1.0; Ro 10 been cor for great flat roof lo h other lin n the bott ed at two s otherwi d for a liv as where	psf (Lum hugh Cat B; I sidered for t er of min roo bad of 13.9 p re loads. om chord, points, 5-0-0 se indicated. e load of 20. a rectangle	Fully his f live lisf on D				
FORCES	(lb) - Maximum Com Tension		9)	chord and and and This truss is	by 2-00-00 wide w ny other members designed in acco	s. rdance w	th the 2018					
TOP CHORD	1-2=0/18, 2-3=-2742 4-5=-2283/0, 5-6=-2 7-8=-2762/0, 8-9=0/	303/0, 6-7=-2423/0,			Residential Code nd referenced sta			and				
BOT CHORD	2-16=0/2484, 15-16= 13-14=0/1700, 12-13 10-11=0/1700, 8-10=	3=0/1700, 11-12=0/	700,	UAD CASE(S)	Stanuaru						TH CA	ROUT
WEBS	16-17=0/840, 5-17=(5-18=0/885, 10-18=(17-19=-80/0, 19-20= 14-19=-33/0, 12-20=	0/860, 7-10=-635/16 -80/0, 18-20=-80/0,	<u>35,</u>						4	i.	OF FES	
NOTES	· -								=		SEA	L : E
this design 2) Wind: ASC Vasd=103 Cat. II; Exp Exterior (2 vertical lef forces & M	 NOTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 								CONTRACT.	A A A A A A A A A A A A A A A A A A A	111111	EER ALU

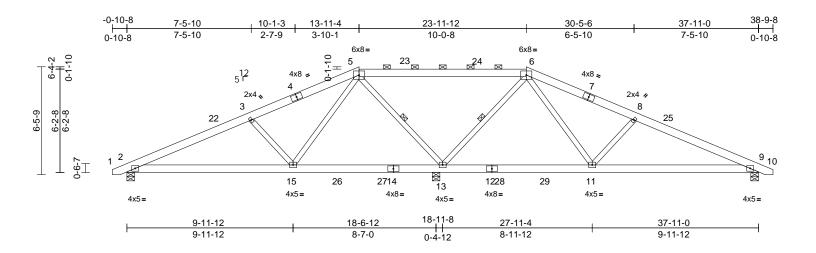
Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 20 Mitchell Manor	
20090081	A05	Нір	1	1	Job Reference (optional)	E14785990


Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Tue Aug 25 17:20:46 ID:CyQ04YxiTotmZI?hQb1qWuykFJb-3QXrrKLbDe2iFVQUNY74MWws5vtlwtxelXSfDnykEI? Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 20 Mitchell Manor	
20090081	A06	Нір	1	1	Job Reference (optional)	E14785991

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Tue Aug 25 17:20:47 ID:AEEmTwOc__7caulx0ViCvPykFHi-Xd5D3gLD_yAZtf?hxFeJvkT38JEAfljo_BCCIDykEI_


BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH			
BCDL	10.0					Weight: 243 lb	FT = 20%
	No.3 Structural wood shee 3-6-13 oc purlins, ex 2-0-0 oc purlins (4-1 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 9 Max Grav 2=1561 (L 14=432 (L (lb) - Maximum Com	1-8 max.): 5-6. applied or 10-0-0 oc 18-19 9=0-5-8, 14=0-5-8 16) .C 40), 9=1570 (LC 40 .C 40)	Vasd=103mp Cat. II; Exp B Exterior (2) zv vertical left ar forces & MWI DOL=1.60 pla or 3) TCLL: ASCE Plate DOL=1. DOL=1.15 Pli Exp.; Ce=0.9 4) Unbalanced s design. 5) This truss has load of 12.0 p overhangs nc 6) 200.0lb AC ui	7-16; Vult=130mph (3-sec: h; TCDL=6.0psf; BCDL=6. ; Enclosed; MWFRS (enve- one; cantilever left and righ rd right exposed;C-C for m FRS for reactions shown; I ate grip DOL=1.33 7-16; Pr=20.0 psf (roof LL .15); Pg=20.0 psf; Pf=18.9 ate DOL=1.15); Is=1.0; Ro is Cs=1.00; Ct=1.10, Lu=50 show loads have been con a been designed for greate is for 2.00 times flat roof lo on-concurrent with other liv nit load placed on the botto left end, supported at two	Opsf; h=25ft; lope) and C-C t exposed ; end embers and .umber Lum DOL=1.15 psf (Lum Jgh Cat B; Fully -0-0 sidered for this r of min roof live ad of 13.9 psf on e loads. m chord,		
TOP CHORD	5-30=-2333/0, 5-6=- 7-31=-2443/0, 7-8=- 32-33=-3139/0, 9-33	2567/0, 4-30=-2429/0, 2019/0, 6-31=-2350/0, 2584/0, 8-32=-2995/0, =-3181/0, 9-10=0/18	 8) All plates are 9) * This truss h on the bottom 3-06-00 tall b 	uate drainage to prevent w 2x4 MT20 unless otherwis as been designed for a live o chord in all areas where a y 2-00-00 wide will fit betw	e indicated. load of 20.0psf a rectangle	TH CA	Rojin
BOT CHORD	,	=0/2037, 15-16=0/203 4=0/2037, 12-13=0/20 =0/2897	7, chord and an ^{37,} 10) This truss is c	y other members. designed in accordance wi Residential Code sections	h the 2018	ATT OF ESS	No.
WEBS	17-18=0/616, 5-18=0	0/599, 3-17=-762/178, 0/641, 8-11=-775/171, -18/0, 19-21=-18/0,	R802.10.2 an 11) Graphical pur	d referenced standard AN lin representation does no tion of the purlin along the	SI/TPI 1. t depict the size	SEA 0363	• –
NOTES			LOAD CASE(S)	Standard		- E - N	1 I S
 Unbalance this design 	ed roof live loads have n.	been considered for				THE NGINE	ERIAS

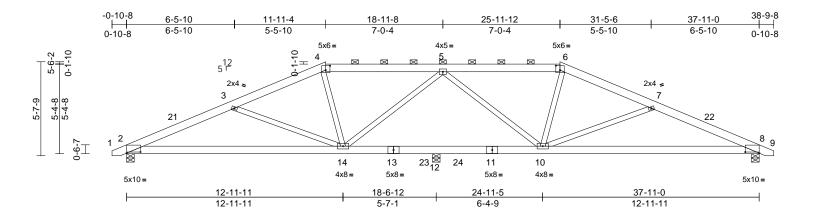
818 Soundside Road Edenton, NC 27932 Page: 1

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 20 Mitchell Manor	
20090081	A07	Нір	1	1	Job Reference (optional)	E14785992

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Tue Aug 25 17:20:48 ID:pQkI2DVJbeljCl02k7GA0OykFB6-?pfbG?MrlGIQUpatUz9YSx06QjhKOnvxDrxIHfykEkz Page: 1

Scale = 1:69.2

Scale = 1:69.2													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.45	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-21 11-21 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 240 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS	Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins (2-2 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 9 Max Horiz 2=-56 (LC Max Uplift 2=-17 (LC Max Grav 2=669 (LC 13=2171 ((lb) - Maximum Com Tension 1-2=0/18, 2-22=-906 3-4=-630/44, 4-5=-5: 23-24=0/877, 6-24=(7-8=-630/67, 8-25=- 9-10=0/18 2-15=-56/798, 15-26 26-27=-115/131, 12- 12-28=-115/131, 28- 11-29=-115/131, 9-1 5-15=0/937, 3-15=-6	-0 max.): 5-6. applied or 6-0-0 oc 5-13, 6-13 9=0-5-8, 13=0-5-8 2 16) 2 15), 9=-26 (LC 16) 2 46), 9=669 (LC 46), (LC 46) 1000 maximum 6/41, 3-22=-758/67, 22/60, 5-23=0/877, 0/877, 6-7=-522/83, 758/90, 9-25=-906/64 6=-115/131, -27=-115/131, -29=-115/131,	l or 3) 4) 5) 6) 7) 8) 9) 31, 10 19	Vasd=103mp Cat. II; Exp E Exterior (2) Exterior (2) vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 p overhangs no Provide adeo * This truss to on the botton 3-06-00 tall b chord and ar One RT7A U truss to beari This connect lateral forces This truss is International R802.10.2 ar 0) Graphical pu or the orienta	designed in accord Residential Code s and referenced stand rlin representation ation of the purlin al	CDL=6 S (env; and rig -C for n shown; (roof LL Pf=18.9 -1.0; RC 0, Lu=50 een cor or great t roof k other liv revent v for a liv where fit betw with BC ommen LIFT at and do ance w sections dard AN does no	.0psf; h=25ft; elope) and C- nt exposed; i, embers and Lumber :: Lum DOL==' psf (Lum ugh Cat B; F)-0-0 isidered for th er of min roof pad of 13.9 ps re loads. vater ponding e load of 20.0 DL = 10.0psf ded to conne jt(s) 2 and 9. its(s) 2	C end 1.15 fully his live sf on g. ppsf ct ct der nd			à	ORTH CA	• –
NOTES 1) Unbalance this design	ed roof live loads have	been considered for	LC	DAD CASE(S)	Standard							0363	22



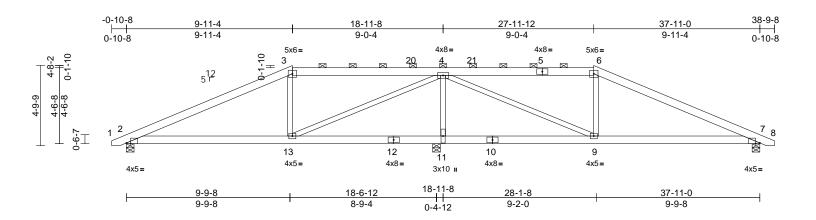
August 26,2020

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 20 Mitchell Manor	
20090081	A08	Нір	1	1	Job Reference (optional)	E14785993

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Tue Aug 25 17:20:48 ID:i?Z4a0ApeXDwICjdSAl3L_ykFAF-?pfbG?MrIGIQUpatUz9YSx0DWjYwOi5xDrxlHfykEkz

Scale = 1:69.1

Plate Offsets	(X, Y): [2:0-10-0,0-0-1	2], [4:0-3-0,0-3-3], [6:	0-3-0,0-3	-3], [8:0-10-0,0)-0-12]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.52 0.99 0.65	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 14-17 14-17 8	l/defl >869 >429 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 243 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x6 SP No.2 2x4 SP No.2 *Excep Structural wood shea 3-6-1 oc purlins, exco 2-0-0 oc purlins (4-6 Rigid ceiling directly bracing. (size) 2=0-5-8, 8 Max Horiz 2=-49 (LC Max Grav 2=1523 (L 12=346 (L (lb) - Maximum Com Tension 1-2=0/20, 2-21=-293 3-4=-2464/8, 4-5=-23	-0 max.): 4-6. applied or 2-2-0 oc 3=0-5-8, 12=0-5-8 : 16) .C 46), 8=1530 (LC 44 .C 3) .pression/Maximum 11/0, 3-21=-2895/6,	4) l or 5) 6), 7) 6), 8) 9)	Plate DOL= DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 overhangs n Provide ade * This truss on the botton 3-06-00 tall chord and al This truss is International R802.10.2 a Graphical pu or the orient bottom chore		Pf=18.9 =1.0; Rc 0, Lu=50 been cor or greate at roof k or ther liv prevent v for a liv s where II fit betw with BC dance wi sections dard AN does no	psf (Lum nugh Cat B; F)-0-0 usidered for t er of min roo bad of 13.9 p re loads. vater pondin e load of 20. a rectangle veen the bott DL = 10.0ps th the 2018 R502.11.1 a (SI/TPI 1. ot depict the	Fully his f live isf on g. Opsf rom f. and					
BOT CHORD	12-23=0/2671, 12-24 10-11=0/2671, 8-10=		′1, 371,	DAD CASE(S)	Standard							WITH CA	Rolling
WEBS		648/84, 3-14=-742/109 0/664, 7-10=-739/110								/	S.	G. FESS	The se
this desig 2) Wind: AS Vasd=103 Cat. II; Ex Exterior (2 vertical le	ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bf pB; Enclosed; MWFR 2) zone; cantilever left a ft and right exposed;C-	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed ; er C for members and								C		SEA 0363	22


forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 20 Mitchell Manor	
20090081	A09	Нір	1	1	Job Reference (optional)	E14785994

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Tue Aug 25 17:20:49 ID:67I4Lgc0wvtgFu2k7SwkloykF9g-T?D_ULNTWZQH6y832ggn_9YKB7x57B45RVhJp5ykEky Page: 1

Scale = 1:69

Plate Offsets (X, Y): [2:0-3-0,Edge], [7:0-3-0,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.78 0.73 0.54	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.23 0.01	(loc) 13-16 13-16 7	l/defl >999 >988 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 231 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 *Except Structural wood shee 3-7-0 oc purlins, exc 2-0-0 oc purlins (6-0- Rigid ceiling directly bracing.	athing directly applie ept -0 max.): 3-6. applied or 6-0-0 oc '=0-5-8, 11=0-5-8 16) 15), 7=-13 (LC 16) 2 40), 7=871 (LC 40)	lo.2 4) d or 5) 6) 7)	Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 Unbalanced design. This truss ha load of 12.0 overhangs n Provide aded * This truss the on the bottor 3-06-00 tall b chord and ar One RT7A U	7-16; Pr=20.0 psf .15); Pg=20.0 psf; late DOL=1.15); Is .c Cs=1.00; Ct=1.1 .s now loads have t .s been designed f posf or 2.00 times fl on-concurrent with uate drainage to p has been designed n chord in all areas .sy 2-00-00 wide will y other members. .SP connectors rec	Pf=18.9 =1.0; Rc 0, Lu=50 eeen cor or greate at roof lo other liv orevent v for a liv s where I fit betv	psf (Lum pugh Cat B; F)-0-0 usidered for t er of min rool pad of 13.9 p ve loads. vater pondin e load of 20. a rectangle veen the bott ded to conne	Fully his f live sf on g. Opsf om ect				weight. 23 ho	11 - 2078
FORCES	(lb) - Maximum Com	,		This connect	ing walls due to UI ion is for uplift only								
TOP CHORD	Tension 1-2=0/20, 2-3=-1106 4-20=-907/37, 4-21= 5-6=-906/51, 6-7=-1 ⁻²	-908/51, 5-21=-908/	9) 51,	International	a designed in accord Residential Code nd referenced stan	sections	R502.11.1 a	and					
BOT CHORD WEBS	2-13=0/901, 12-13=- 10-11=-73/9, 9-10=-7 3-13=-166/85, 4-13=	73/9, 7-9=0/903 0/1050, 4-11=-1590/	'92,	or the orienta bottom chore				size				WITH CA	ROL
NOTES	4-9=0/1052, 6-9=-16			DAD CASE(S)	Standard					4	in	OTESS	MAL
this design 2) Wind: ASC Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & M	ed roof live loads have CE 7-16; Vult=130mph imph; TCDL=6.0psf; BC p B; Enclosed; MWFRS 2) zone; cantilever left a t and right exposed;C-4 IWFRS for reactions sf plate grip DOL=1.33	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-(and right exposed ; e C for members and	0							STRUMPS.		SEA 0363	22 EER. KIN

A Mi Tek Affiliate B18 Soundside Road Edenton, NC 27932

August 26,2020

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 20 Mitchell Manor	
20090081	B01	Common	4	1	Job Reference (optional)	E14785995

6-6-0

6-6-0

Carter Components (Sanford), Sanford, NC - 27332,

-0-10-8

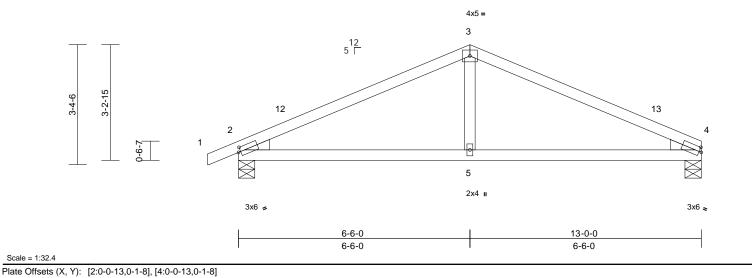
0-10-8

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Tue Aug 25 17:20:49 ID:URk5ESiUkZDv2jw1OLXrOmykF8G-T?D_ULNTWZQH6y832ggn_9YMz70h7IF5RVhJp5ykEky

Page: 1

13-0-0 6-6-0

PLATES


Weight: 48 lb

MT20

GRIP

244/190

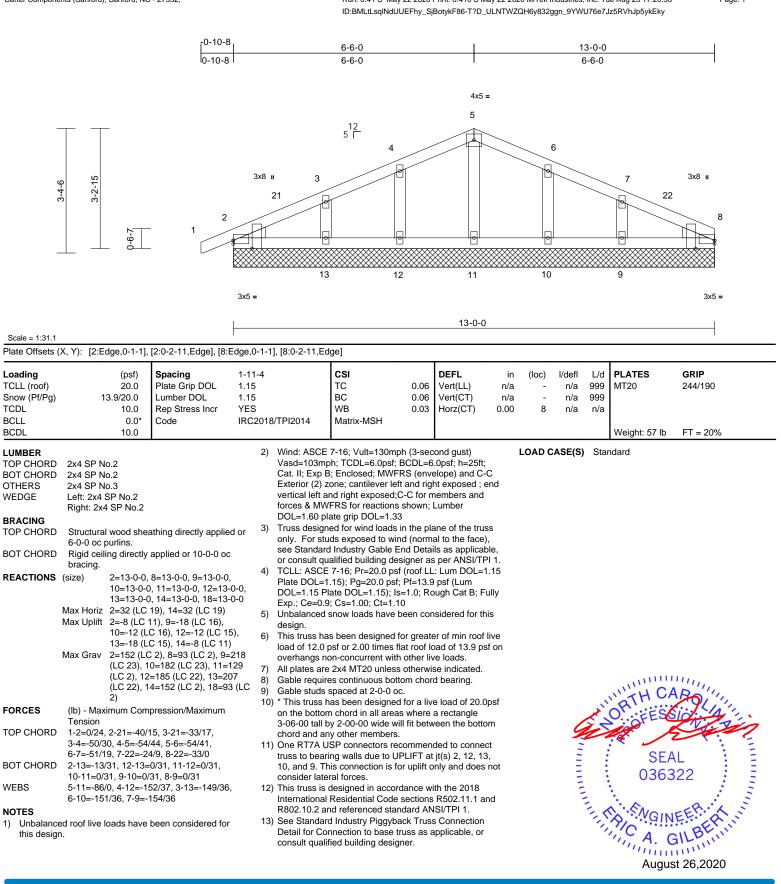
FT = 20%

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MSH	0.67 0.44 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.10 0.01	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a
BCDL	10.0										
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea	thing directly applied	5) 6) d or 7)	load of 12.0 p overhangs nd * This truss h on the bottom 3-06-00 tall b chord and an This truss is d	s been designed for or 2.00 times fla on-concurrent with as been designed or chord in all areas y 2-00-00 wide will y other members. designed in accord	at roof lo other liv for a liv where fit betw ance wi	ad of 13.9 p re loads. e load of 20. a rectangle reen the bott th the 2018	sf on Opsf om			
	5-0-13 oc purlins.				Residential Code s			and			
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	LO	AD CASE(S)	Standard						
	(size) 2=0-5-8, 4 Max Horiz 2=33 (LC Max Grav 2=572 (LC	19)									
FORCES	(lb) - Maximum Com	pression/Maximum									
TOP CHORD	Tension 1-2=0/25, 2-12=-782 3-13=-707/0, 4-13=-7	, , ,									
BOT CHORD	2-5=-93/653, 4-5=0/6	53									
WEBS NOTES	3-5=0/175										
1) Unbalance this design											Ant
Vasd=103	E 7-16; Vult=130mph mph; TCDL=6.0psf; BC B: Enclosed: MWERS	DL=6.0psf; h=25ft;								4	in

Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

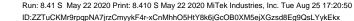


Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 20 Mitchell Manor	
20090081	B02	Common	1	1	Job Reference (optional)	E14785996

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Tue Aug 25 17:20:50

Page: 1

818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 20 Mitchell Manor	
20090081	C01	Half Hip Girder	1	2	Job Reference (optional)	E14785997

BCLL

BCDL

2)

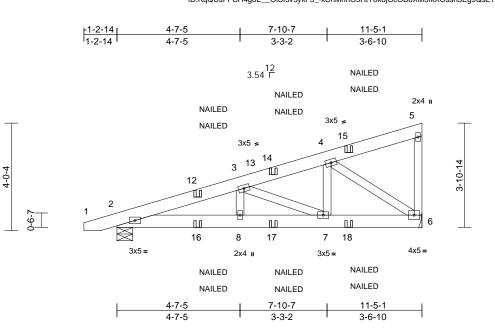
unless otherwise indicated.

Page: 1

0-10-8 4-7-0 8-2-0 13-10-8 19-7-0 4-7-0 3-7-0 5-8-8 5-8-8 1-10-8 6x8 = 3x5 = 2x4 II 12 5 Г 4 5 14 6 . M \boxtimes \square 2x4 👟 3 3-11-5 3-11-5 4-0-11 . --• 7 \ge 10 15 16 9 18 819 20 17 4x5 = 3x5 = 3x5 = 4x6 = 3x5 = THD26 THD26 THD26 HJC26 THD26 THD26 7-2-5 13-10-8 19-7-0 7-2-5 6-8-3 5-8-8 Scale = 1:40.7 Loading Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.22 Vert(LL) -0.10 9-10 >999 240 MT20 244/190 Snow (Pf/Pg) BC Lumber DOL 0.82 18 9/20 0 1 15 Vert(CT) -0.189-10 >999 180 TCDL 10.0 Rep Stress Incr NO WB 0.61 Horz(CT) 0.03 7 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 265 lb FT = 20% 10.0 LUMBER 3) Unbalanced roof live loads have been considered for 15) Fill all nail holes where hanger is in contact with lumber. this desian. TOP CHORD LOAD CASE(S) Standard 2x6 SP No.2 Wind: ASCE 7-16; Vult=130mph (3-second gust) BOT CHORD 2x6 SP No.2 4) Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 2x4 SP No.3 *Except* 7-5,9-4:2x4 SP No.2 WEBS Increase=1.15 Cat. II; Exp B; Enclosed; MWFRS (envelope); cantilever Uniform Loads (lb/ft) BRACING left and right exposed ; end vertical left and right Vert: 1-4=-48, 4-6=-58, 7-11=-20 TOP CHORD Structural wood sheathing directly applied or exposed; Lumber DOL=1.60 plate grip DOL=1.33 6-0-0 oc purlins, except end verticals, and Concentrated Loads (lb) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 5) Vert: 15=-1100 (B), 16=-342 (B), 17=-342 (B), 2-0-0 oc purlins (6-0-0 max.): 4-6. Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum BOT CHORD Rigid ceiling directly applied or 10-0-0 oc 18=-342 (B), 19=-342 (B), 20=-342 (B) DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully bracing. Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 REACTIONS (size) 2=0-5-8, 7=0-5-8 Unbalanced snow loads have been considered for this 6) Max Horiz 2=108 (LC 10) design. Max Uplift 7=-41 (LC 8) This truss has been designed for greater of min roof live 7) Max Grav 2=1959 (LC 33), 7=2607 (LC 32) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on FORCES (lb) - Maximum Compression/Maximum overhangs non-concurrent with other live loads. Tension Provide adequate drainage to prevent water ponding. 8) TOP CHORD 1-2=0/20, 2-3=-4328/0, 3-4=-4169/0, * This truss has been designed for a live load of 20.0psf 9) 4-5=-3307/24, 5-14=-66/31, 6-14=-66/31, on the bottom chord in all areas where a rectangle 6-7=-207/32 3-06-00 tall by 2-00-00 wide will fit between the bottom BOT CHORD 2-10=0/3906, 10-15=0/3471, 15-16=0/3471, chord and any other members. 16-17=0/3471, 9-17=0/3471, 9-18=-30/3307, 10) One RT7A USP connectors recommended to connect 8-18=-30/3307.8-19=-30/3307. truss to bearing walls due to UPLIFT at jt(s) 7. This 19-20=-30/3307.7-20=-30/3307 connection is for uplift only and does not consider lateral WFBS 5-7=-3845/9, 4-10=0/1586, 3-10=-154/165, forces. 4-9=-454/0, 5-9=0/1691 11) This truss is designed in accordance with the 2018 \cap International Residential Code sections R502.11.1 and NOTES R802.10.2 and referenced standard ANSI/TPI 1. 1) 2-ply truss to be connected together with 10d 12) Graphical purlin representation does not depict the size (0.131"x3") nails as follows: AND DURING THE PARTY Top chords connected as follows: 2x6 - 2 rows or the orientation of the purlin along the top and/or SEAL staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. bottom chord 036322 Bottom chords connected as follows: 2x6 - 2 rows 13) Use USP HJC26 (With 16-16d nails into Girder & 10d staggered at 0-9-0 oc. nails into Truss) or equivalent at 8-2-6 from the left end Web connected as follows: 2x4 - 1 row at 0-9-0 oc. to connect truss(es) to back face of bottom chord. 14) Use USP THD26 (With 18-16d nails into Girder & All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD 12-10d x 1-1/2 nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 10-2-12 from the left end to CASE(S) section. Ply to ply connections have been GILB provided to distribute only loads noted as (F) or (B), 18-2-12 to connect truss(es) to back face of bottom munn

À WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only watch the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component**
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


chord.

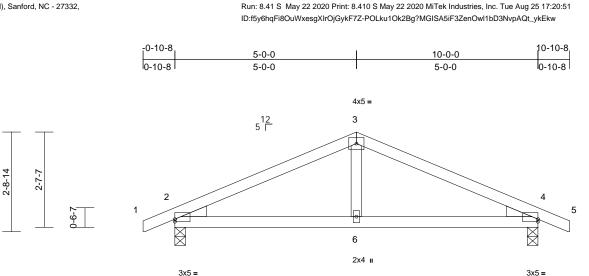
August 26,2020

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 20 Mitchell Manor	
20090081	CJ01	Diagonal Hip Girder	1	1	Job Reference (optional)	E14785998

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Tue Aug 25 17:20:51 ID:KqQUJFFCH4g6E__0iSl5v3ykF5_-xCnMhhO5HtY8k6jGcOB0XM5fkXOssh5Eg9QsLYykEkx

Coolo	= 1:43.2
Scale :	= 1:43.2

- investigation of the		0.01	6	n/a	n/a	Weight: 77 lb	FT = 20%
all areas where a wide will fit betw mbers. ss to truss conni- tors recommend te to UPLIFT at nly and does no n accordance will I Code sections ed standard AN Od (0.148"x3") oi	a rectangle veen the botto ded to connecc jt(s) 2. This ot consider late th the 2018 R502.11.1 ar SI/TPI 1. r 2-12d	m ct eral					
ection, loads ap	oplied to the fa	ace					
	. ,	late					
20							
b) 1, B=-61), 15=-7	· · ·	4),				TH CA	PLIN
all winsstcent n a concern peed 20 b)	signed for a livi, l areas where ide will fit betw nbers. s to truss conn ors recommen- e to UPLIFT at ly and does no code sections d standard AN d (0.148"x3") of ber NDS guidlin ction, loads ap front (F) or bac d): Lumber Inco 0) , B=-61), 15=- B=-3), 17=-48	I areas where a rectangle ide will fit between the botto hbers. s to truss connections. ors recommended to connect e to UPLIFT at jt(s) 2. This ly and does not consider lat accordance with the 2018 Code sections R502.11.1 ar d standard ANSI/TPI 1. d (0.148"x3") or 2-12d ber NDS guidlines. betion, loads applied to the fa front (F) or back (B). d): Lumber Increase=1.15, P 0) , B=-61), 15=-70 (F=-35, B=-3), 17=-48 (F=-24, B=-2:	signed for a live load of 20.0psf I areas where a rectangle ide will fit between the bottom nbers. s to truss connections. ors recommended to connect e to UPLIFT at jt(s) 2. This Iy and does not consider lateral accordance with the 2018 Code sections R502.11.1 and d standard ANSI/TPI 1. d (0.148"x3") or 2-12d ber NDS guidlines. section, loads applied to the face front (F) or back (B). d): Lumber Increase=1.15, Plate	signed for a live load of 20.0psf I areas where a rectangle ide will fit between the bottom nbers. s to truss connections. ors recommended to connect e to UPLIFT at jt(s) 2. This Iy and does not consider lateral accordance with the 2018 Code sections R502.11.1 and d standard ANSI/TPI 1. d (0.148"x3") or 2-12d ver NDS guidlines. section, loads applied to the face front (F) or back (B). d): Lumber Increase=1.15, Plate	signed for a live load of 20.0psf l areas where a rectangle ide will fit between the bottom nbers. s to truss connections. ors recommended to connect e to UPLIFT at jt(s) 2. This ly and does not consider lateral accordance with the 2018 Code sections R502.11.1 and d standard ANSI/TPI 1. d (0.148*x3") or 2-12d ber NDS guidlines. rction, loads applied to the face front (F) or back (B). d): Lumber Increase=1.15, Plate	signed for a live load of 20.0psf l areas where a rectangle ide will fit between the bottom nbers. s to truss connections. ors recommended to connect e to UPLIFT at jt(s) 2. This ly and does not consider lateral accordance with the 2018 Code sections R502.11.1 and d standard ANSI/TPI 1. d (0.148"x3") or 2-12d ber NDS guidlines. rotion, loads applied to the face front (F) or back (B). d): Lumber Increase=1.15, Plate	Weight: 77 lb signed for a live load of 20.0psf I areas where a rectangle ide will fit between the bottom nbers. s to truss connections. prs recommended to connect a to UPLIFT at jt(s) 2. This ly and does not consider lateral accordance with the 2018 Code sections R502.11.1 and d standard ANSI/TPI 1. d (0.148"x3") or 2-12d ver NDS guidlines. sction, loads applied to the face front (F) or back (B). d): Lumber Increase=1.15, Plate 0) , B=-61), 15=-70 (F=-35, B=-3), 17=-48 (F=-24, B=-24),


- left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully
- Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

SEAL 036322 August 26,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 20 Mitchell Manor	
20090081	D01	Common	3	1	Job Reference (optional)	E14785999

3x5 =

Scale = 1:31.7 Plate Offsets (X, Y): [2:Edge.0-0-13]. [4:Edge.0-0-13].

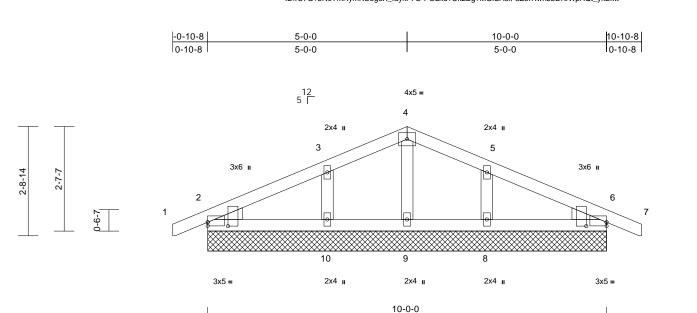
	X, Y): [2:Edge,0-0-13]], [4:Edge,0-0-13]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 6-12 6-12 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	Max Horiz 2=-23 (LC Max Uplift 2=-78 (LC Max Grav 2=454 (LC	applied or 10-0-0 o 4=0-3-8 : 16) : 11), 4=-78 (LC 12) C 22), 4=454 (LC 23	c 7) 8)	design. This truss h load of 12.0 overhangs n * This truss l on the botto 3-06-00 tall i chord and ai One RT7A L truss to beat This connec lateral forces This truss is International	snow loads have as been designed psf or 2.00 times f ion-concurrent with has been designed m chord in all area by 2-00-00 wide w ny other members JSP connectors re- ring walls due to U tion is for uplift onl s. designed in accor Residential Code nd referenced stat	for greate flat roof lo h other liv d for a liv is where ill fit betw commen IPLIFT at ly and do rdance wi sections	er of min roo pad of 13.9 p e loads. e load of 20. a rectangle veen the bott ded to conne jt(s) 2 and 4 es not consid ith the 2018 R502.11.1 a	f live Isf on Opsf om ect c. der					
TOP CHORD	(lb) - Maximum Com Tension 1-2=0/25, 2-3=-574/9		L	DAD CASE(S)	Standard								
this design2) Wind: ASCVasd=103	4-5=0/25 2-6=-55/475, 4-6=-5: 3-6=-34/121 ed roof live loads have 1. CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bd p B; Enclosed; MWFR	been considered fo (3-second gust) CDL=6.0psf; h=25ft;	;							4	I. I. I.	ORTH CA	ROLIN

Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

CHARLEN WARNING The man we wanted SEAL 036322 GI mmm August 26,2020

Page: 1



Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 20 Mitchell Manor	
20090081	D02	Common Supported Gable	1	1	Job Reference (optional)	E14786000

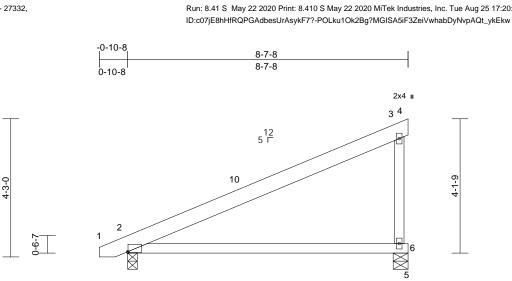
Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Tue Aug 25 17:20:51 ID:rC7G?bNcYmHymKCog6X_faykF7O-POLku10k2Bg?MGISA5iF3ZerRwnbbDKNvpAQt_ykEkw Page: 1

August 26,2020

818 Soundside Road Edenton, NC 27932

Scale = 1:28.9

Plate Offsets (X, Y): [2:Edge,0-1-1], [2:0-1-3,0-6-2], [6:Edge,0-1-1], [6:0-1-3,0-6-2]


	A, f). [2.Euge,0-1-1],	[2.0-1-3,0-0-2], [0.E0	ige,0-1-1]	, [6.0-1-3,0-6-2	.]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.09 0.09 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 43 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.2 Right: 2x4 SP No.2 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=10-0-0, 9=10-0-0, 15=10-0-0 Max Horiz 2=-23 (LC Max Uplift 2=-10 (LC 8=-20 (LC 11=-10 (L Max Grav 2=186 (LC 10=282 (L 15=186 (L	applied or 10-0-0 oc 6=10-0-0, 8=10-0-0, 10=10-0-0, 11=10-0 10, 11=-23 (LC 16) 11), 6=-11 (LC 12), 16), 10=-22 (LC 15) C 11), 15=-11 (LC 12) 22), 6=186 (LC 23) C 23), 9=69 (LC 2), C 22), 11=186 (LC 2 C 23)	4) -0, 5) , 6) , 7)	Vasd=103mp Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 pl Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 i overhangs nd Gable requir Gable studs	7-16; Vult=130mp bh; TCDL=6.0psf; J 3; Enclosed; MWFI one; cantilever lef nd right exposed; (IFRS for reactions ate grip DOL=1.33 red for wind loads i ds exposed to wind d Industry Gable E ralified building des .7-16; Pr=20.0 psf; .15); Pg=20.0 psf; .15); Pg=20.0 psf; .15); Pg=20.0 psf; .15); Pg=20.0 psf; .15); Cs=1.00; Ct=1.1 snow loads have b the been designed f por-concurrent with es continuous bott spaced at 2-0-0 oc nas been designed	BCDL=6 RS (envt t and rig C-C for r shown; in the pl dd (norm nd Deta signer a: f (roof Ll Pf=13.9 =1.0; Rd 0 been col or great f t roof li o ther li o other li o on chor c.	:.0psf; h=25ft; elope) and C- ht exposed ; e nembers and Lumber ane of the trus at to the face) ils as applicat s per ANSI/TF .: Lum DOL=1 e) psf (Lum pugh Cat B; F asidered for the er of min roof pad of 13.9 ps /e loads. d bearing.	C end ss), ole, 11. 1.15 ully his live sf on					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	(lb) - Maximum Com Tension 1-2=0/25, 2-3=-64/24 4-5=-85/34, 5-6=-64, 2-10=-7/50, 9-10=0/2 4-9=-51/0, 3-10=-200 ed roof live loads have n.	4, 3-4=-85/37, /14, 6-7=0/25 50, 8-9=0/50, 6-8=0/5 0/43, 5-8=-200/43	50 11 12	on the bottom 3-06-00 tall b chord and ar 0) One RT7A U truss to beari 8. This conne consider late 1) This truss is International R802.10.2 ar 2) See Standar Detail for Con	n chord in all areas by 2-00-00 wide wi yo ther members. ISP connectors rec ing walls due to UI ection is for uplift of ral forces. designed in accorr Residential Code nd referenced stam d Industry Piggyba nnection to base tr fied building desig	s where Il fit betw commen PLIFT a only and dance w sections dard AN ack Trus russ as a	a rectangle veen the botto jt(s) 2, 6, 10, does not ith the 2018 i R502.11.1 a ISI/TPI 1. s Connection	om ct and nd				SEA 0363	EER AU

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 20 Mitchell Manor	
20090081	J01	Monopitch	3	1	Job Reference (optional)	E14786001

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Tue Aug 25 17:20:52

2x4 II

Page: 1

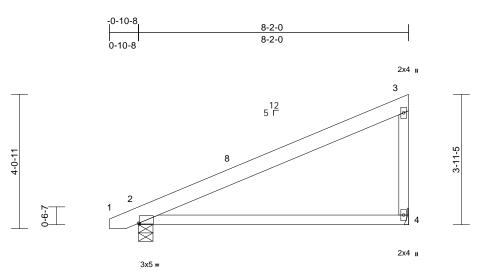
8-7-8

3x5 =

Scale = 1:35.4 Plate Offsets (X, Y): [2:0-0-2.0-0-4]

oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof) Snow (Pf/Pg)	20.0 13.9/20.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.67 0.48	Vert(LL) Vert(CT)	0.17 -0.27	6-9 6-9	>596 >372	240 180	MT20	244/190
CDL	13.9/20.0	Rep Stress Incr	YES		WB	0.48	Horz(CT)	-0.27	0-9 2	>372 n/a	n/a		
BCLL	0.0*	Code	IRC2018/TF	PI2014	Matrix-MP	0.00	11012(01)	0.01	-	n/a	n/a		
BCDL	10.0					-						Weight: 42 lb	FT = 20%
ot chord VEBS BRACING OP CHORD	2x6 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. size) 2=0-3-8, 6	cept end verticals. applied or 10-0-0 oc	ed or Tri c 1 c 7) Ti c 7) Ti la	n the bottom 06-00 tall b nord and an ne RT7A U uss to beari nis connecti teral forces nis truss is o ternational	designed in accor Residential Code	as where ill fit betw commend IPLIFT at ly and do rdance with sections	a rectangle veen the botto ded to conne jt(s) 6 and 2. es not consic th the 2018 R502.11.1 a	om ct ler					
N	Max Horiz 2=0-3-6, 0 Max Horiz 2=113 (LC Max Uplift 2=-60 (LC Max Grav 2=373 (LC	C 14) 11), 6=-73 (LC 12)		802.10.2 ar • CASE(S)	d referenced sta Standard	ndard AN	ISI/TPI 1.						
ORCES	(lb) - Maximum Com Tension												
OP CHORD	1-2=0/18, 2-10=-162 3-4=-8/0, 3-6=-312/5												
BOT CHORD	2-6=-59/123, 5-6=0/0												
OTES													
Vasd=103m Cat. II; Exp Exterior (2) vertical left exposed;C-	E 7-16; Vult=130mph hph; TCDL=6.0psf; BC B; Enclosed; MWFRS zone; cantilever left a and right exposed; po C for members and fo hown; Lumber DOL=1	CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e orch left and right prces & MWFRS for	C end							4		OR FESS	ROLIN
Plate DOL= DOL=1.15 F	E 7-16; Pr=20.0 psf (r 1.15); Pg=20.0 psf; P Plate DOL=1.15); Is= 9; Cs=1.00; Ct=1.10	f=13.9 psf (Lum								THE PARTY			
 Unbalanced design. 	snow loads have be	en considered for th	is								11.0	N. ENOU	FER. X S
 This truss h load of 12.0 	as been designed for) psf or 2.00 times flat non-concurrent with o	roof load of 13.9 ps									in.	A. C.	E.E. ER III

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent culses with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 20 Mitchell Manor	
20090081	J02	Jack-Closed	6	1	Job Reference (optional)	E14786002

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Tue Aug 25 17:20:52 ID:kox3XP26bfC9snvMP91t0BykF6X-tau66NPMpUoszQtejoEUcnAuqK2KKgCX8TvzQQykEkv

818 Soundside Road Edenton, NC 27932

8-2-0

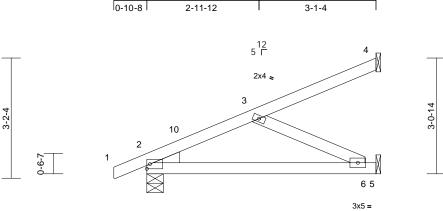
Scale = 1:34.9

Plate Offsets (X, Y): [2:0-0-6,0-0-4]

	, f). [2.0-0-0,0-0-4]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/7	TPI2014	CSI TC BC WB Matrix-MP	0.63 0.44 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.23 0.01	(loc) 4-7 4-7 2	l/defl >999 >411 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103n Cat. II; Exp Exterior (2) vertical left forces & M DOL=1.60 2) TCLL: ASC Plate DOL= DOL=1.15 Exp.; Ce=0 3) Unbalancee design. 4) This truss h load of 12.0	2x4 SP No.2 2x4 SP No.3 Structural wood shee 6-0-0 oc purlins, exit Rigid ceiling directly bracing. (size) 2=0-5-4, 4 Max Horiz 2=107 (LC Max Uplift 2=-3 (LC Max Grav 2=360 (LC (lb) - Maximum Com Tension 1-2=0/18, 2-8=-155/8 3-4=-284/47	cept end verticals. applied or 10-0-0 oc l= Mechanical (14) (5), 4=-15 (LC 15) (2), 4=362 (LC 22) pression/Maximum (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; c for members and hown; Lumber roof LL: Lum DOL=1 Y=13.9 psf (Lum 1.0; Rough Cat B; Fi en considered for th greater of min roof roof load of 13.9 ps	C end 1.15 live	on the botton 3-06-00 tall b chord and an Refer to girdé bearing plate 4. One RT7A U truss to beari connection is forces. This truss is (International	as been designed as chord in all area y 2-00-00 wide w y other members ar(s) for truss to tr nanical connection capable of withst SP connectors re ng walls due to U for uplift only and designed in accor Residential Code d referenced star Standard	is where ill fit betw uss conn n (by oth tanding 1 commen PLIFT at d does no rdance wi	a rectangle veen the bottle ections. ers) of truss t 5 lb uplift at j ded to conne jt(s) 2. This of consider la th the 2018 R502.11.1 a	om to joint ect teral		M. M. Martin		SEA 0363	EER.KI
												Augus	st 26,2020

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 20 Mitchell Manor	
20090081	J03	Jack-Partial	2	1	Job Reference (optional)	E14786003

2-11-12


Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Tue Aug 25 17:20:52 ID:1PO7acL9x1ElkTlzoCSVMEykF69-tau66NPMpUoszQtejoEUcnA?DK47KfmX8TvzQQykEkv

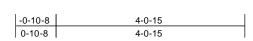
6-0-15

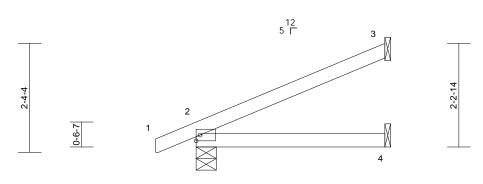
3x5 =

-0-10-8

Scale = 1:30.6

00010 - 1.00.0												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD		Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	Íload of 1	CSI TC BC WB Matrix-MP is has been designe 2.0 psf or 2.00 time: gs non-concurrent w	0.26 0.09 ed for greate s flat roof lo	oad of 13.9 p		(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins.	athing directly applied applied or 10-0-0 oc	5) * This tru on the b 3-06-00 d or chord ar 6) Refer to 7) Provide bearing	uss has been design ottom chord in all ar- tall by 2-00-00 wide d any other membe girder(s) for truss to mechanical connect plate capable of with	ned for a liv reas where will fit betw ers. o truss con tion (by oth	e load of 20. a rectangle veen the bott nections. ers) of truss	tom					
REACTIONS	(size) 2=0-5-4, Mechanic Max Horiz 2=71 (LC Max Upliti 4=-26 (LC Max Grav 2=304 (LC 5=181 (LC	15) 5 15) 5 22), 4=97 (LC 22),	truss to l connecti forces. 9) This trus	I6A USP connectors bearing walls due to on is for uplift only a is is designed in acco onal Residential Coo	UPLIFT at and does no cordance w	jt(s) 5. This ot consider la ith the 2018	ateral					
FORCES TOP CHORD BOT CHORD	3-4=-55/28	2/3, 3-10=-288/14,	R802.10	2 and referenced si E(S) Standard								
WEBS	3-6=-334/57										minin	(1) In
Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & M DOL=1.60 2) TCLL: AS Plate DOL DOL=1.15 Exp.; Ce=	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B sp B; Enclosed; MWFR 2) zone; cantilever left : ft and right exposed;C- WWFRS for reactions s 0 plate grip DOL=1.33 CE 7-16; Pr=20.0 psf (_=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ed snow loads have be	CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed ; ei C for members and hown; Lumber roof LL: Lum DOL=1. Pf=13.9 psf (Lum 1.0; Rough Cat B; Fu	nd 15 Ily									S22


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


August 26,2020

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 20 Mitchell Manor	
20090081	J04	Jack-Open	2	1	Job Reference (optional)	E14786004

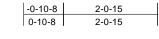
Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Tue Aug 25 17:20:52 ID:RFchmSaiEBlv8YHpzPpBASykF5r-tau66NPMpUoszQtejoEUcnAzEK6TKgCX8TvzQQykEkv

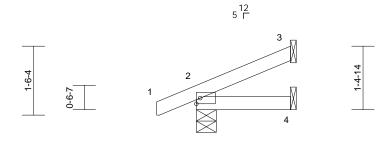
3x5 =

4-0-15

Scale =	1:24.9
---------	--------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MP	0.28 0.18 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.03 0.01	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x. BRACING TOP CHORD 5t 4-1 BOT CHORD ki procession (size REACTIONS (size REACTIONS (size Analysis) FORCES (b) Te TOP CHORD 1-2 BOT CHORD 1-2 BOT CHORD 2-4 NOTES 1) Wind: ASCE 7 Vasd=103mph Cat. II; Exp B; Exterior (2) zor vertical left and forces & MWFT DOL=1.60 plat 2) TCLL: ASCE 7 Plate DOL=1.15 Plat Exp.; Ca=0.9; f 3) Unbalanced sr design. 4) This truss has load of 12.0 ps	0-15 oc purlins. gid ceiling directly acing. e) 2=0-5-4, 3 Mechanic (Horiz 2=50 (LC (Uplift 3=-29 (LC (Uplift 3=-29 (LC (Grav 2=257 (LC 4=52 (LC) - Maximum Com- nision 2=0/25, 2-3=-59/93 4=-66/77 -16; Vult=130mph ; TCDL=6.0psf; BC Enclosed; MWFR3 ne; cantilever left a d right exposed;C- RS for peactions si e grip DOL=1.33 -16; Pr=20.0 psf (5); Pg=20.0 psf; Is= Cs=1.00; Ct=1.10 now loads have be been designed for	15) 15) 22), 3=129 (LC 22) 22) pression/Maximum 3 (3-second gust) CDL=6.0psf; h=25ft; 5 (envelope) and C-i and right exposed ; e C for members and hown; Lumber roof LL: Lum DOL=1 f=13.9 psf (Lum 1.0; Rough Cat B; Fu en considered for th greater of min roof roof load of 13.9 ps	ed or (c) (), (C) end I.15 ully iis live	 on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 3. One RT16A truss to bear is forces. This truss is International 	has been designen n chord in all are y 2-00-00 wide v ny other members er(s) for truss to hanical connection capable of withs USP connectors ing walls due to I s for uplift only ar designed in acco Residential Code nd referenced sta Standard	as where will fit betw s. truss conton (by othe standing 2 recomme JPLIFT at ad does no ordance wi e sections	a rectangle een the bott nections. ers) of truss i 9 lb uplift at j nded to conn jt(s) 4. This it consider la th the 2018 R502.11.1 a	om to joint nect teral				SEA 0363	• -


818 Soundside Road Edenton, NC 27932


A. GILB A. GIL August 26,2020

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 20 Mitchell Manor	
20090081	J05	Jack-Open	2	1	Job Reference (optional)	E14786005

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Tue Aug 25 17:20:53 ID:oUx0OzrV2xWnnwy2G1CM35ykF5V-tau66NPMpUoszQtejoEUcnA1iK8pKgCX8TvzQQykEkv

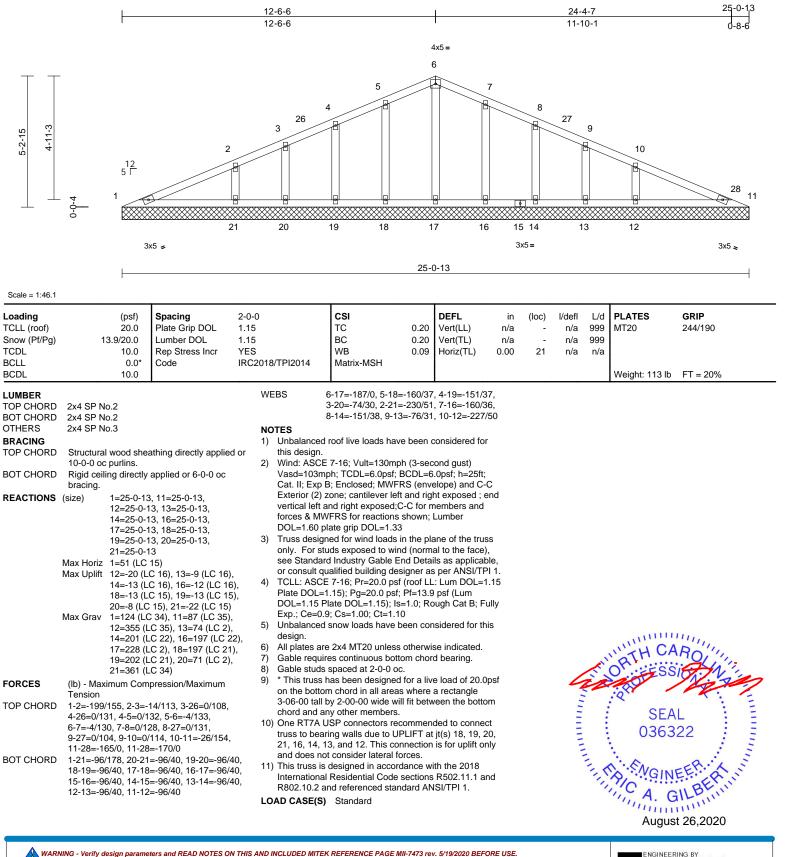
Page: 1

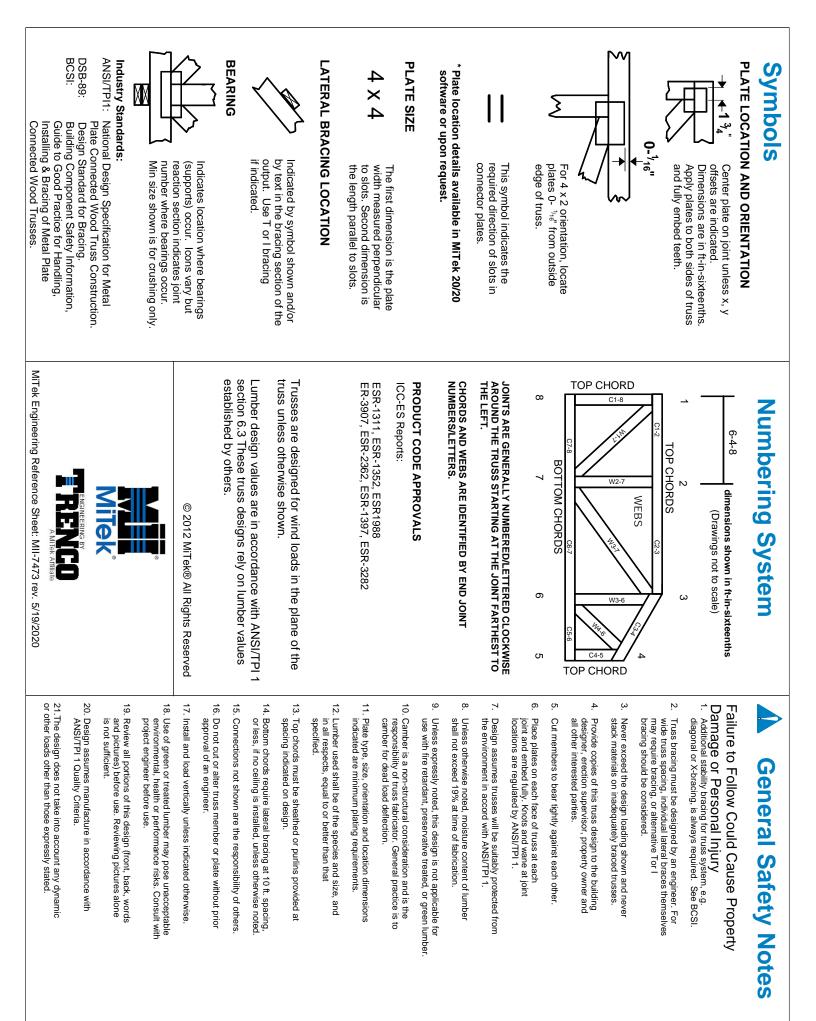
3x5 =

2-0-15

Scale	- 1	.25	1

Scale = 1:25.4													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ²	18/TPI2014	CSI TC BC WB Matrix-MP	0.06 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SI BOT CHORD 2x4 SI BRACING TOP CHORD Struct 2-0-15 BOT CHORD Rigid bracin REACTIONS (size) Max Ho Max Up Max Gr FORCES (lb) - N Tensisi TOP CHORD 1-2=0 BOT CHORD 2-4=-2 NOTES 1) Wind: ASCE 7-16; Vasd=103mph; TO Cat. II; Exp B; Enc Exterior (2) zone; vertical left and rig forces & MWFRS DOL=1.60 plate gy 2) TCLL: ASCE 7-16 Plate DOL=1.15); DOL=1.15 Plate D Exp.; Ce=0.9; Cs= 3) Unbalanced snow design. 4) This truss has bee	 No.2 No.2 No.2 No.2 ural wood she is or purlins. ceiling directly g. 2=0-5-4, 3 Mechanic riz 2=29 (LC lift 2=-8 (LC av 2=157 (LC (LC 22) / 42)) Maximum Common 25, 2-3=-27/4 26/27 Vult=130mph DDL=6.0psf; B losed; MWFR antilever left and the exposed; C-for reactions sip DOL=1.33 p: P=20.0 psf (Pg=20.0 psf; IS) OL=1.15); Is=1.00; Ct=1.10 loads have be n designed for 2.00 times flat 	15) 11), 3=-14 (LC 15) C 22), 3=55 (LC 22), apression/Maximum 9 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed; e C for members and hown; Lumber roof LL: Lum DOL=1 2f=13.9 psf (Lum 1.0; Rough Cat B; Fu seen considered for thir r greater of min roof I t roof load of 13.9 psi	7 8 4=22 9 1 L C nd .15 .15 .115 .119 is ive	 on the botton 3-06-00 tall b chord and an Refer to girdé Provide mecl bearing plate 3. One RT16A I truss to bearin connection is forces. One RT7A U truss to bearin connection es forces. One RT7A U truss to bearin connections is forces. This truss is i International 	as been designec n chord in all area y 2-00-00 wide wi y other members. er(s) for truss to tr nanical connectior capable of withst JSP connectors re ng walls due to U for uplift only and SP connectors reen ng walls due to U for uplift only and designed in accorr Residential Code the referenced star Standard	s where II fit betw russ com n (by othe anding 1 ecommen PLIFT at I does no commen- PLIFT at I does no dance wi sections	a rectangle een the botto nections. ers) of truss to 4 lb uplift at jo nded to conne- jt(s) 4. This to consider lat ded to conne- jt(s) 2. This to consider lat the the 2018 R502.11.1 a	o o point ect teral ct				ORTH CA ORTEESS SEA 0363	EEP. AL


Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 20 Mitchell Manor	
20090081	V25	Valley	1	1	Job Reference (optional)	E14786006


Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Tue Aug 25 17:20:53 ID:c07jE8hHfRQPGAdbesUrAsykF7?-MmSUJjQ_aowibaSqHWlj9_j8GkRN361gM7fWytykEku

g 25 17:20:53 Page: 1 VytykEku

818 Soundside Road

Edenton, NC 27932

