

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0920-4348 Chris Foisy Residence

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E14888658 thru E14888687

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

September 21,2020

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

		9-1-12		19-0-3		29-0-3		-	3	8-7-4	45-9-0	
Plate Offsets ((X Y)	9-1-12		9-10-7		10-0-0				9-7-1	7-1-12	
	(X,1)	0.0 0 4,0 0 0]										
LOADING (ps	sf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20	0.0	Plate Grip DOL	1.15	TC	0.50	Vert(LL)	-0.12	14-15	>999	360	MT20	244/190
TCDL 10	0.0	Lumber DOL	1.15	BC	0.38	Vert(CT)	-0.17	14-15	>999	240		
BCLL 0).0 *	Rep Stress Incr	YES	WB	0.92	Horz(CT)	0.01	12	n/a	n/a		
BCDL 10	0.0	Code IRC2018/T	PI2014	Matrix-	S	Wind(LL)	-0.03	15-17	>999	240	Weight: 347 lb	FT = 20%
LUMBER-				·		BRACING-						
TOP CHORD	2x6 SP	No.1				TOP CHOR	D	Structu	ral wood	sheathing di	rectly applied or 6-0-0 o	c purlins,
BOT CHORD	2v6 SP	No 1						excent	end verti	cals and 2-0	-0 oc purlins (6-0-0 may	x): 5-6

 TOP CHORD
 2x6 SP No.1
 TOP CHORD
 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 5-6.

 WEBS
 2x4 SP No.2 *Except*
 BOT CHORD
 BOT CHORD
 Rigid ceiling directly applied or 6-0-0 oc purlins, (6-0-0 max.): 5-6.

 WEBS
 9-11: 2x6 SP No.1
 WEBS
 1 Row at midpt
 5-15, 6-14

REACTIONS. (size) 17=0-3-8, 12=0-3-8 Max Horz 17=301(LC 11) Max Uplift 17=-130(LC 12), 12=-110(LC 13) Max Grav 17=2393(LC 2), 12=2010(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-387/796, 3-5=-814/105, 5-6=-605/186, 6-8=-826/116, 8-9=-234/484

BOT CHORD 2-17=-559/408, 15-17=-709/464, 14-15=-112/672, 12-14=-317/249

WEBS 3-17=-1866/492, 3-15=-225/1302, 5-15=-349/249, 6-14=-308/202, 8-14=-137/1049,

8-12=-1535/357, 9-12=-364/321

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-5 to 3-7-8, Interior(1) 3-7-8 to 19-0-3, Exterior(2R) 19-0-3 to 25-2-14, Interior(1) 25-2-14 to 29-0-3, Exterior(2R) 29-0-3 to 35-2-14, Interior(1) 35-2-14 to 46-6-5 zone; cantilever left and right exposed ; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 130 lb uplift at joint 17 and 110 lb uplift at joint 12.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

SEAL 036322 September 21,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		9-1-12 9-1-12	9-3-8 0-1-12	<u>16-11-12</u> 7-8-4	19-0-3	24-8-0	29-0-3		38-7-	4	45-9-0	
Plate Offsets	(X,Y)	[5:0-4-12,0-3-0], [15:0-3-0,0-3	·8], [17:0-3	3-0,0-3-8]	0710	440				7 1 12	
LOADING (p TCLL 20 TCDL 10 BCLL 0 BCDL 10	osf) 0.0 0.0 0.0 * 0.0	SPACING Plate Grip Lumber DO Rep Stress Code IRC	- 2-0 DOL 1. DL 1. s Incr YE 2018/TPI201	I-0 15 15 ES 4	CSI. TC 0.50 BC 0.31 WB 0.84 Matrix-S		DEFL. in Vert(LL) -0.12 Vert(CT) -0.17 Horz(CT) 0.07	n (loc) 2 15-16 7 15-16 1 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 339 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2 *Except* 9-11: 2x6 SP No.1 REACTIONS. (size) 17=0-3-8, 12=0-3-8							BRACING- TOP CHORD BOT CHORD WEBS	Structu except Rigid c 1 Row	ural wood s end vertic eiling direc at midpt	heathing dired als, and 2-0-0 ctly applied or 6-1	ctly applied or 6-0-0 o) oc purlins (6-0-0 ma) 6-0-0 oc bracing. 14, 5-16, 5-15	nc purlins, k.): 5-6.
REACTIONS. (size) 17=0-3-8, 12=0-3-8 Max Horz 17=-267(LC 10) Max Uplift 17=-130(LC 12), 12=-109(LC 13) Max Grav 17=2267(LC 2), 12=1983(LC 28)												
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-396/854, 3-5=-756/110, 5-6=-566/162, 6-8=-785/123, 8-9=-233/480 BOT CHORD 2-17=-606/417, 16-17=-849/466, 15-16=-142/724, 14-15=-25/620, 12-14=-302/281 WEBS 3-17=-1725/351, 6-14=-314/209, 8-14=-146/1000, 8-12=-1477/365, 9-12=-357/342, 5-16=-294/400, 3-16=-103/1225												
 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-5 to 3-9-10, Interior(1) 3-9-10 to 19-0-3, Exterior(2R) 19-0-3 to 25-5-13, Interior(1) 25-5-13 to 29-0-3, Exterior(2R) 29-0-3 to 35-5-13, Interior(1) 35-5-13 to 46-6-5 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown: Lumber DOI =1 60 												

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 130 lb uplift at joint 17 and 109 lb uplift at joint 12.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L	9-1-12 1	9-0-3	24-11-8 29-0-3	38-7-4	44-7-4 45-9-0
	9-1-12	-10-7	5-11-5 4-0-11	9-7-1	6-0-0 1-1-12
Plate Offsets (X,Y)	[4:0-0-0,0-2-12], [4:0-2-8,0-4-4], [34:0-	2-0,0-0-0]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.49 BC 0.35 WB 0.90 Matrix-S	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.13 Horz(CT) 0.01 Wind(LL) 0.06	n (loc) l/defl L/d 17-19 >999 360 17-19 >999 240 13 n/a n/a 2-19 >999 240	PLATES GRIP MT20 244/190 Weight: 496 lb FT = 20%
		Malix C	Wind(EE) 0.00	210 2000 210	
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP WEBS 2x4 SP 9-11: 2: OTHERS 2x4 SP	No.1 No.1 No.2 *Except* x6 SP No.1 No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing dii except end verticals, and 2-0 Rigid ceiling directly applied of 1 Row at midpt 5	rectly applied or 6-0-0 oc purlins, -0 oc purlins (6-0-0 max.): 5-6. or 6-0-0 oc bracing. ;-17, 6-15
REACTIONS. All be (lb) - Max He Max Up Max G	arings 0-3-8. orz 2=375(LC 11) plift All uplift 100 lb or less at joint(s) rav All reactions 250 lb or less at join 18)	6 except 2=-328(LC 8), 1 t(s) except 2=251(LC 20)	19=-586(LC 12), 13=-421 , 19=2347(LC 19), 13=19	(LC 13) 36(LC 2), 16=363(LC	
FORCES. (lb) - Max. TOP CHORD 2-3=-1 BOT CHORD 2-19= WEBS 3-19= 8-13=	Comp./Max. Ten All forces 250 (lb) c 606/976, 3-5=-796/303, 5-6=-571/300, -480/222, 17-19=-480/222, 16-17=-53 -1859/685, 3-17=-297/1099, 5-17=-32 -1463/482, 13-59=-365/323, 9-59=-36	r less except when shown 6-8=-738/240, 8-9=-234/ 544, 15-16=-53/544, 13-1 9/287, 6-15=-325/174, 8-1 7/322	n. 482 15=-320/273 15=-102/955,		
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V Gable Roof; Hip Trus Exterior(2R) 19-0-3 tright exposed; end v DOL=1.60 plate grip 3) Truss designed for w Gable End Details at 4) Provide adequate dr 5) All plates are 2x4 MT 6) Gable studs spaced 7) This truss has been will fit between the b 9) Provide mechanical 2=328, 19=586, 13= 10) This truss is design referenced standar 11) Graphical purlin reference 	loads have been considered for this d ult=130mph (3-second gust) Vasd=10: ss; MWFRS (envelope) gable end zom o 23-5-0, Interior(1) 23-5-0 to 29-0-3, I vertical right exposed; porch left expose DOL=1.60 vind loads in the plane of the truss only s applicable, or consult qualified buildir ainage to prevent water ponding. I20 unless otherwise indicated. at 2-0-0 oc. designed for a 10.0 psf bottom chord lin n designed for a 10.0 psf bottom chord lin n desi	esign. Imph; TCDL=6.0psf; BCD ixterior(2R) 29-0-3 to 33-1 id;C-C for members and 1 . For studs exposed to w g designer as per ANSI/T we load nonconcurrent with the bottom chord in all ar with BCDL = 10.0psf. ng plate capable of withst ational Residential Code s the orientation of the pur	DL=6.0psf; h=15ft; Cat. II; -9-5 to 3-7-8, Interior(1) 3 5-0, Interior(1) 33-5-0 to 4 forces & MWFRS for reac ind (normal to the face), s FPI 1. th any other live loads. reas where a rectangle 3- tanding 100 lb uplift at join sections R502.11.1 and R rlin along the top and/or b	Exp C; Enclosed; -7-8 to 19-0-3, 16-6-5 zone; cantilever tions shown; Lumber see Standard Industry 6-0 tall by 2-0-0 wide nt(s) 16 except (jt=lb) 802.10.2 and ottom chord.	SEAL 036322 September 21,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		9-1-12	1 1	9-0-3	24-9-12	29-0	-3		38-7-4	1	45-9-0	
		9-1-12	' 9	-10-7	5-9-9	4-2-	7 '		9-7-1	1	7-1-12	
Plate Offsets ()	X,Y)	[5:0-5-4,0-3-0], [14:0-4-12	2,0-3-0], [15:0-2	2-12,0-3-0]								
LOADING (psf TCLL 20.0 TCDL 10.0 BCLL 0.1 BCDL 10.0	f) O O * O	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TP	2-0-0 1.15 1.15 YES I2014	CSI. TC 0.5 BC 0.5 WB 0.7 Matrix-S	51 51 73	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.12 -0.21 0.05 0.05	(loc) 15-17 15-17 12 2-17	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 361 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x6 SP 2x6 SP 14-15: 2 2x4 SP 9-11: 2	No.1 No.1 *Except* 2x4 SP No.2 No.2 *Except* x6 SP No.1				BRACING- TOP CHOR BOT CHOR WEBS	D D	Structu except Rigid c 6-0-0 o 1 Row	ral wood s end vertic eiling dire c bracings at midpt	sheathing d als, and 2-0 ctly applied 12-14.	irectly applied or 4-4-13 D-0 oc purlins (6-0-0 max or 10-0-0 oc bracing, E 3-15, 6-14, 8-12, 5-14	oc purlins, x.): 5-6. Except:
REACTIONS.	(size	e) 2=0-3-8, 12=0-3-8										

CTIONS. (size) 2=0-3-8, 12=0-3-8 Max Horz 2=301(LC 11) Max Uplift 2=-100(LC 12), 12=-98(LC 13) Max Grav 2=1823(LC 19), 12=2460(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-2808/225, 3-5=-1755/280, 5-6=-980/267, 6-8=-1262/209, 8-9=-233/482
- BOT CHORD 2-17=-179/2518, 15-17=-179/2518, 14-15=-86/1498, 12-14=-310/248
- WEBS 3-17=0/620, 3-15=-1177/231, 5-15=0/915, 8-14=-206/1475, 8-12=-1959/426, 9-12=-362/320, 5-14=-747/147

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-5 to 3-7-8, Interior(1) 3-7-8 to 19-0-3, Exterior(2R) 19-0-3 to 25-2-14, Interior(1) 25-2-14 to 29-0-3, Exterior(2R) 29-0-3 to 35-2-14, Interior(1) 35-2-14 to 46-6-5 zone; cantilever right exposed; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 2=100.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

Plate Offsets (X,Y)	9-1-12 9-1-12 [5:0-5-4,0-2-12], [11:0-4-12,0-2-8]	<u>19-0-3</u> 9-10-7	24-9-12 5-9-9	<u>29-0-3</u> 4-2-7	36-6-8 7-6-5	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.50 BC 0.50 WB 0.78 Matrix-S	DEFL. in Vert(LL) -0.11 Vert(CT) -0.20 Horz(CT) 0.05 Wind(LL) 0.05	(loc) l/defl L 12-14 >999 36 12-14 >999 24 9 n/a n 2-14 >999 24	/d PLATES 60 MT20 40 /a 40 Weight: 300 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP 11-12: WEBS 2x4 SP	2 No.1 2 No.1 *Except* 2x4 SP No.2 2 No.2	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood she except end verticals Rigid ceiling directly 1 Row at midpt	athing directly applied or 4-5-10 , and 2-0-0 oc purlins (6-0-0 ma applied or 10-0-0 oc bracing. 3-12, 5-11, 6-11, 7-9) oc purlins, ix.): 5-6.	
REACTIONS. (size Max H Max U Max G	e) 2=0-3-8, 9=Mechanical orz 2=288(LC 12) plift 2=-83(LC 12), 9=-29(LC 12) rav 2=1785(LC 19), 9=1679(LC 2)					
FORCES. (lb) - Max.	Comp./Max. Ten All forces 250 (lb) or la	ess except when shown.				

FUNCES. (ID) - Max. Comp./Max. Ten. - All forces 250 (ID) of less except when shown.

- TOP CHORD 2-3=-2736/235, 3-5=-1678/267, 5-6=-876/245, 6-7=-1073/220, 7-9=-1495/269
- BOT CHORD 2-14=-337/2402, 12-14=-337/2402, 11-12=-183/1382
- WEBS 3-14=0/620, 3-12=-1179/232, 5-12=0/918, 5-11=-801/122, 7-11=-140/1198

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-5 to 3-7-8, Interior(1) 3-7-8 to 19-0-3, Exterior(2R) 19-0-3 to 25-2-14, Interior(1) 25-2-14 to 29-0-3, Exterior(2R) 29-0-3 to 35-2-14, Interior(1) 35-2-14 to 36-2-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 9) Attic room checked for L/360 deflection.

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILER KETKERICE FAGE MILETATION (1974) STATUS DEL ONE COM-Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 16=157.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

9) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITEK Affiliate B18 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 TRENGINEERING BY A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

September 21,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent uclasses with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 10) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affil 818 Soundside Road Edenton, NC 27932

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Chris Foisy Residence	
					E1488	8670
J0920-4348	B1GE	GABLE	1	1		
					Job Reference (optional)	
Comtech, Inc, Fayette	ville, NC - 28314,		8	.330 s Jul :	22 2020 MiTek Industries, Inc. Mon Sep 21 12:16:44 2020 Page	2
		ID:jCmIBXc	dM3tFyeyc	0bSvKQhz	uApV-1pd1aMGkJVc54KpdBTly?WwTkJMwm2EKY4HuCUybPg	1

NOTES-

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 369 lb uplift at joint 26, 348 lb uplift at joint 18, 792 lb uplift at joint 24, 485 lb uplift at joint 25, 792 lb uplift at joint 20 and 480 lb uplift at joint 19.

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

14) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) Ceiling dead load (10.0 psf) on member(s). 2-3, 7-8, 3-16, 7-16; Wall dead load (5.0psf) on member(s).2-14, 8-12
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 12-14

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 10) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Chris Foisy Residence	
						E14888672
J0920-4348	B2GRD	PIGGYBACK ATTIC	1	2		
				3	Job Reference (optional)	
Comtech, Inc, Fa	ayetteville, NC - 28314	3	8	.330 s Jul 2	22 2020 MiTek Industries, Ir	nc. Mon Sep 21 12:16:46 2020 Page 2
			ID:jCmIBXdM3tFyeyc0bSvKQhzuApV-zCko?2H_r6spJey0JunQ4x?cQ6uQEvJd0Om?GMybPa?			

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 13-14=-60, 11-13=-120, 10-11=-60, 1-2=-180, 2-3=-240, 3-4=-180, 6-7=-180, 7-8=-240, 8-9=-180, 4-6=-180, 3-7=-60 Drag: 2-13=-30, 8-11=-30

Concentrated Loads (lb)

Vert: 2=-420(F) 8=-420(F) 15=-634(F) 16=-1389(F) 17=-1389(F) 18=-634(F) 19=-634(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	1	11-9-3	1	21-3-0	1	
	Γ	11-9-3	Ι	9-5-13	1	
Plate Offsets (X,Y)	[5:0-2-12,0-1-12]					
						 =

LOADING (TCLL 2 TCDL 1 BCLL BCDL 1	psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TP	2-0-0 1.15 1.15 YES 12014	CSI. TC BC WB Matrix	0.33 0.40 0.30 -S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.11 -0.22 0.01 0.02	(loc) 2-9 2-9 7 2-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 149 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORI BOT CHORI WEBS	D 2x6 SP D 2x6 SP 2x4 SP 5-7: 2x6	No.1 No.1 No.2 *Except* SP No.1				BRACING TOP CHC BOT CHC	rD RD	Structu except Rigid co	ral wood end vertio eiling dire	sheathing dire cals. ctly applied o	ectly applied or 6-0-0 o r 10-0-0 oc bracing.	c purlins,
REACTION	S. (size) Max Ho) 7=0-3-8, 2=0-3-8 prz 2=199(LC 11)										

Max Horz 2=199(LC 11) Max Uplift 7=-52(LC 13), 2=-64(LC 12) Max Grav 7=895(LC 1), 2=890(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1178/287, 3-4=-860/234, 4-5=-926/204, 5-7=-821/246

BOT CHORD 2-9=-239/991, 7-9=-145/306

WEBS 3-9=-386/223, 4-9=0/490, 5-9=-13/447

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-5 to 3-7-8, Interior(1) 3-7-8 to 11-9-3, Exterior(2R) 11-9-3 to 16-2-0, Interior(1) 16-2-0 to 22-0-5 zone; end vertical right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 52 lb uplift at joint 7 and 64 lb uplift at joint 2.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[19:0-0-0,0-2-12], [19:0-3-0,0-1-4], [20:0	-1-12,0-0-0]

LOADING (psf)SPACING-TCLL20.0Plate Grip DOLTCDL10.0Lumber DOLBCLL0.0 *Rep Stress IncrBCDL10.0Code IRC2018/T	2-0-0 1.15 1.15 YES TPI2014	CSI. TC 0.04 BC 0.03 WB 0.14 Matrix-S	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.00	(loc) l/defl L/d 13 n/r 120 13 n/r 120 15 n/a n/a	PLATES GRIP MT20 244/190 Weight: 171 lb FT = 20%
LUMBER- TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1			BRACING- TOP CHORD	Structural wood sheathir except end verticals.	g directly applied or 6-0-0 oc purlins,

2x6 SP No.1except end verticals.2x6 SP No.1BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.2x4 SP No.2Second Second Se

REACTIONS. All bearings 21-3-0.

(lb) - Max Horz 2=248(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 15, 2, 21, 22, 23, 24, 25, 26, 20, 18, 17 except 16=-130(LC 13) Max Grav All reactions 250 lb or less at joint(s) 15, 2, 21, 22, 23, 24, 25, 26, 20, 18, 17, 16

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 7-8=-167/275, 8-9=-167/275

NOTES-

WEBS

OTHERS

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-9-5 to 3-9-3, Exterior(2N) 3-9-3 to 11-9-3, Corner(3R) 11-9-3 to 16-2-0, Exterior(2N) 16-2-0 to 22-0-5 zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15, 2, 21, 22, 23, 24, 25, 26, 20, 18, 17 except (jt=lb) 16=130.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 ENGINEERING BY ERENCO A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

TRENGINEERING BY A Mi Tek Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

ı.	18	л	D	E	D	

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

OTHERS 2x4 SP No.2

REACTIONS. (size) 2=4-6-5, 4=4-6-5, 6=4-6-5

Max Horz 2=-63(LC 10) Max Uplift 2=-22(LC 13), 4=-26(LC 13)

Max Grav 2=134(LC 1), 4=134(LC 1), 6=140(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 2 and 26 lb uplift at joint 4.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 5-7-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ Unbalanced roof live loads have been considered for this design.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

OTHERS 2x4 SP No.2 REACTIONS. (size) 1=5-7-1

ACTIONS. (size) 1=5-7-1, 3=5-7-1, 4=5-7-1 Max Horz 1=59(LC 9) Max Uplift 1=-21(LC 13), 3=-21(LC 13) Max Grav 1=119(LC 1), 3=119(LC 1), 4=153(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 1 and 21 lb uplift at joint 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITEK Affilia

September 21,2020

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affili 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=160, 6=160.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 SP No.1 BOT CHORD OTHERS 2x4 SP No.2

REACTIONS. 1=9-8-7, 3=9-8-7, 4=9-8-7 (size) Max Horz 1=-108(LC 8)

Max Uplift 1=-27(LC 13), 3=-27(LC 13) Max Grav 1=204(LC 1), 3=204(LC 1), 4=312(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIRS AND INCLODED MITER REFERENCE PAGE mit-143 a for an individual building comperiorent, not besign valid for use only with MITeK exonectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component**
 Satisfies
 Ansi/TPI Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD

OTHERS 2x4 SP No.2

REACTIONS. 1=7-4-7, 3=7-4-7, 4=7-4-7 (size) Max Horz 1=80(LC 9)

Max Uplift 1=-29(LC 13), 3=-29(LC 13) Max Grav 1=162(LC 1), 3=162(LC 1), 4=209(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS ON TIPS AND INCLODED MITER REFERENCE PAGE mit-14/3 feV, 3/92/20 BEFORE USE. Design valid for use only with MiTeR with Connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD OTHERS 2x4 SP No.2 TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-0-7 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. 1=5-0-7, 3=5-0-7, 4=5-0-7 (size) Max Horz 1=52(LC 9) Max Uplift 1=-19(LC 13), 3=-19(LC 13)

Max Grav 1=106(LC 1), 3=106(LC 1), 4=136(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS ON TIPS AND INCLODED MITER REFERENCE PAGE mit-14/3 feV, 3/92/20 BEFORE USE. Design valid for use only with MiTeR with Connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 1=2-8-7, 3=2-8-7 Max Horz 1=-24(LC 8) Max Uplift 1=-3(LC 12), 3=-3(LC 12)

Max Grav 1=80(LC 1), 3=80(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 2-8-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIRS AND INCLODED MITER REFERENCE PAGE mit-143 a for an individual building comperiorent, not besign valid for use only with MITeK exonectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component**
 Satisfies
 Ansi/TPI Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

