

RE: J0820-3671 Weaver / 28 Mitchell Manor / Johnston Trenco 818 Soundside Rd Edenton, NC 27932

Site Information: Customer: Project Name: J0820-3671 Lot/Block: Address:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf

City:

Design Program: MiTek 20/20 8.3 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 26 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	E14496517	A1	11/24/2020	21	E14496537	VC1	11/24/2020
2	E14496518	A1GE	11/24/2020	22	E14496538	VC2	11/24/2020
3	E14496519	A2	11/24/2020	23	E14496539	VC3	11/24/2020
4	E14496520	A3	11/24/2020	24	E14496540	VC4	11/24/2020
5	E14496521	A4	11/24/2020	25	E14496541	VC5	11/24/2020
6	E14496522	A5	11/24/2020	26	E14496542	VC6	11/24/2020
7	E14496523	A6	11/24/2020				
8	E14496524	A7	11/24/2020				
9	E14496525	A7GE	11/24/2020				
10	E14496526	B1	11/24/2020				
11	E14496527	B1GE	11/24/2020				
12	E14496528	B2	11/24/2020				
13	E14496529	B3	11/24/2020				
14	E14496530	B4	11/24/2020				
15	E14496531	C1	11/24/2020				
16	E14496532	C1GE	11/24/2020				
17	E14496533	C2	11/24/2020				
18	E14496534	C3	11/24/2020				
19	E14496535	VB1	11/24/2020				
20	E14496536	VB2	11/24/2020				

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the design for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

 	10-9-12	20-7-0	30-4-4	41-0-4	49-10-0
Plate Offsets (X,Y)	[11:0-3-4.0-0-3]	9-9-4	9-9-4	10-8-0	49-10-0 8-9-12 PLATES GRIP MT20 244/190 Weight: 354 lb FT = 20% Sectly applied or 6-0-0 oc purlins. r 6-0-0 oc bracing. 19, 6-17 Image: Section of the section of
LOADING (psf)	SPACING- 2-0-0 Plate Grip DOI 1.1	0 CSI.	DEFL. in	(loc) I/defl L/d	PLATES GRIP
TCDL 10.0	Lumber DOL 1.1	5 BC 0.41	Vert(CT) -0.17 1	5-17 >999 240	1120 244/100
BCLL 0.0 *	Rep Stress Incr YES	S WB 0.51	Horz(CT) 0.02	13 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.03 1	5-17 >999 240	41-0-4 49-10-0 10-8-0 8-9-12 1/defl L/d >999 360 >999 240 n/a n/a >999 240 weight: 354 lb FT = 20% tural wood sheathing directly applied or 6-0-0 oc purlins. ceiling directly applied or 6-0-0 oc bracing. v at midpt 4-19, 6-17
LUMBER- TOP CHORD 2x6 SP 9-12: 2 BOT CHORD 2x6 SP WEBS 2x4 SP 5-17: 2	P No.1 *Except* x4 SP No.1 No.1 P No.2 *Except* x6 SP No.1		BRACING- TOP CHORD S BOT CHORD R WEBS 1	tructural wood sheathing dire tigid ceiling directly applied or Row at midpt 4-	actly applied or 6-0-0 oc purlins. · 6-0-0 oc bracing. 19, 6-17
REACTIONS. All be (lb) - Max H Max U Max G	earings 0-3-8 except (jt=length) orz 1=-297(LC 6) plift All uplift 100 lb or less at ju irav All reactions 250 lb or less 22)	I=Mechanical. pint(s) 1, 11 except 13=-189(LC s at joint(s) except 13=1672(LC	C 11), 19=-186(LC 10) ; 1), 1=329(LC 21), 19=2060(L	C 17), 11=279(LC	
FORCES. (lb) - Max. TOP CHORD 2-4=-	Comp./Max. Ten All forces 25 53/432, 4-5=-879/341, 5-6=-851	0 (lb) or less except when sho //342, 6-8=-1514/361, 8-9=-158	wn. 85/359,		
BOT CHORD 17-19 WEBS 2-19= 10-13	=-2019/486, 9-10=-136/537 9=0/367, 15-17=-27/1101, 13-15 =-484/260, 4-19=-1463/351, 4-1 3=-608/280, 6-15=-23/481	=-157/1388 7=0/659, 5-17=-133/470, 6-17=	=-753/272,		
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) 24-11-13 to 46-3-11 DOL=1.60 plate grip	e loads have been considered fo /ult=130mph (3-second gust) Va and C-C Exterior(2) 0-0-12 to 4- , Exterior(2) 46-3-11 to 50-8-8 z DOL=1.60	r this design. sd=103mph; TCDL=6.0psf; BC -5-9, Interior(1) 4-5-9 to 16-2-3 one;C-C for members and force	CDL=5.0psf; h=15ft; Cat. II; Ex , Exterior(2) 16-2-3 to 24-11-1 es & MWFRS for reactions sh	p C; Enclosed; 3, Interior(1) own; Lumber	TH CARO

- 3) All plates are 4x6 MT20 unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11 except (it=lb) 13=189, 19=186.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

	3	30-4-4 30-4-4				49-10-0 19-5-12	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.20 BC 0.16 WB 0.15	DEFL. in Vert(LL) 0.01 Vert(CT) 0.01 Horz(CT) 0.01	(loc) l/defl 29 n/r 29 n/r 28 n/a	L/d 120 120 n/a	PLATES MT20	GRIP 244/190
		Matrix-S	PRACING			weight: 434 lb	FT = 20%

LUMBER-		BRACING-		
TOP CHORD	2x6 SP No.1 *Except*	TOP CHORD	Structural wood sheath	ing directly applied or 6-0-0 oc purlins.
	21-29: 2x4 SP No.1	BOT CHORD	Rigid ceiling directly ap	plied or 6-0-0 oc bracing, Except:
BOT CHORD	2x6 SP No.1		10-0-0 oc bracing: 32-3	3,31-32,30-31,28-30.
OTHERS	2x4 SP No.2	WEBS	1 Row at midpt	12-44, 11-45, 10-46, 9-48, 13-43, 14-42,
			·	15-41
		JOINTS	1 Brace at Jt(s): 24, 23	

- REACTIONS. All bearings 49-10-0. (lb) - Max Horz 1=-384(LC 6)
 - Max Uplift All uplift 100 lb or less at joint(s) 45, 46, 48, 49, 50, 51, 52, 53, 43, 42, 41, 39, 38, 37, 34, 33 event 1=-106(1, 0, 8), 28=-126(1, 0, 7), 54=-
 - 42, 41, 39, 38, 37, 34, 33 except 1=-106(LC 8), 28=-126(LC 7), 54=-133(LC 10), 35=-128(LC 11), 30=-183(LC 11) Max Grav All reactions 250 lb or less at joint(s) 32, 1, 45, 46, 48, 49, 50, 51, 52,
 - 53, 54, 43, 42, 41, 39, 38, 37, 35, 34, 33 except 28=281(LC 1), 44=263(LC 20), 31=297(LC 3), 30=354(LC 22)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD
 1-2=-379/319, 2-3=-283/273, 3-4=-223/253, 9-10=-148/262, 10-11=-203/304, 11-12=-233/336, 12-13=-233/336, 13-14=-203/302, 22-24=-273/273, 23-24=-296/343, 23-32=-257/242

 BOT CHORD
 1-54=-154/288, 53-54=-154/288, 52-53=-154/288, 51-52=-154/288, 50-51=-154/288, 49-50=-154/288, 48+99=-154/288, 46-48=-154/288, 45-46=-154/288, 44-45=-154/288, 43-44=-154/288, 42-43=-154/288, 41-42=-154/288, 39-41=-154/288, 38-39=-154/288
- WEBS 27-30=-275/252

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) 0-0-0 to 4-7-0, Exterior(2) 4-7-0 to 16-2-3, Corner(3) 16-2-3 to 24-11-13, Exterior(2) 24-11-13 to 46-3-11, Corner(3) 46-3-11 to 50-8-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 45, 46, 48, 49, 50, 51, 52, 53, 43, 42, 41, 39, 38, 37, 34, 33 except (jt=lb) 1=106, 28=126, 54=133, 35=128, 30=183.

7-0-0 13-9-12 13-1 ₁ 1-8	22-10-12	31-10-0	41-0-4	49-10-0				
7-0-0 6-9-12 0-1 ^L 12	8-11-4	8-11-4	9-2-4	8-9-12				
Plate Offsets (X,Y) [11:0-3-4,0-0-3], [15:0-3-0,0-3-8], [17:0-5	-4,0-3-8]							
LOADING (psf) SPACING- 2-0-0 TCLL 20.0 Plate Grip DOL 1.15 TCDL 10.0 Lumber DOL 1.15 BCLL 0.0 * Rep Stress Incr YES BCDL 10.0 Code IRC2015/TPI2014 14	CSI. TC 0.56 BC 0.30 WB 0.73 Matrix-S	DEFL. in (loc) Vert(LL) -0.06 15-16 Vert(CT) -0.13 15-16 Horz(CT) 0.03 11 Wind(LL) 0.07 11-13	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES GRIP MT20 244/190 Weight: 345 lb FT = 20%				
LUMBER- TOP CHORD 2x6 SP No.1 *Except* 9-12: 2x4 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2		BRACING- TOP CHORD Struct BOT CHORD Rigid WEBS 1 Rov	ural wood sheathing dire ceiling directly applied o / at midpt 4-	ectly applied or 6-0-0 oc purlins. or 6-0-0 oc bracing. -17				
REACTIONS. All bearings 0-3-8 except (jt=length) 1=Mechan (lb) - Max Horz 1=-297(LC 6) Max Uplift All uplift 100 lb or less at joint(s) 1 e Max Grav All reactions 250 lb or less at joint(s) 11=289(LC 22)	68-12 0-11/12 8-11-4 9-2.4 8-9.12 0-30-03-88. [17:05-54,0-3-8] 8-9.12 8-9.12 2-0-0 CSI. DEFL in (loc) I/deft L/d PLATES GRIP 1.15 TC 0.56 Vert(LL) -0.06 15-16 >999 360 MT20 244/190 5/TPI2014 Matrix-S Wind(LL) 0.0711-13 >999 240 Weight: 345 lb FT = 20% BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. WEBS 1 Row at midpt 4-17 (j=ength) 1=Mechanical. or less at joint(s) 1 except 17=-170(LC 10), 13=-187(LC 11), 11=-150(LC 7) OID to less except when shown. A 4-5=607(237, 54=-682(249, 6-8=-1036/307, 19/353, 9-10=-106/495 OID is or less except when shown. A 4-5=607(237, 54=-682(249, 6-8=-1036/307, 19/353, 9-10=-106/495 OID is or less except when shown. A 4-5=607(2328, 14=-17)(969, 5-16=-43)264, 1/113, Interior(1)							
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-377/150, 2-4=-27/568, 4-5=-607/237, 5-6=-662/249, 6-8=-1036/307, 8-9=-1075/265, 9-13=-1609/353, 9-10=-106/95 BOT CHORD 1-18=-120/281, 17-18=-120/281, 16-17=-581/276, 15-16=0/828, 13-15=-74/924 WEBS 2-18=0/308, 2-17=-671/221, 4-17=-1384/288, 4-16=-17/969, 5-16=-43/264, 6-16=-575/291, 8-15=-253/167, 10-13=-608/296								
 NOTES- 1) Unbalanced roof live loads have been considered for this des 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103m MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Inter 24-11-13 to 46-3-11, Exterior(2) 46-3-11 to 50-8-8 zone; porce shown; Lumber DOL=1.60 plate grip DOL=1.60 3) All plates are 4x6 MT20 unless otherwise indicated. 4) This truss has been designed for a 10.0 psf bottom chord live 5) * This truss has been designed for a live load of 30.0psf on the will fit between the bottom chord and any other members. 6) Refer to girder(s) for truss to truss connections. 7) Provide mechanical connection (by others) of truss to bearing 	ign. ph; TCDL=6.0psf; BCDL rior(1) 4-5-9 to 16-2-3, Ex h right exposed;C-C for r load nonconcurrent with the bottom chord in all are plate capable of withsta	.=5.0psf; h=15ft; Cat. II; Exp C; tterior(2) 16-2-3 to 24-11-13, In members and forces & MWFRS any other live loads. as where a rectangle 3-6-0 tall I nding 100 lb uplift at joint(s) 1 e	Enclosed; terior(1) for reactions by 2-0-0 wide	SEAL				

17=170, 13=187, 11=150.8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

			1 -	1			
Job	Truss	Truss Type	Qty	Ply W	Veaver / 28 Mitchell Ma	anor / Johnston	E14496520
J0820-3671	A3	SPECIAL TRUSS	3	1			E14490520
				Jo	ob Reference (optional)	
Comtech, Inc, Fayett	teville, NC - 28314,		8.3 ID:nGEYJn1Q	330 s May 6 AngpJfECepr	2020 MiTek Industries mG8Mz?may-t6LdV4e	s, Inc. Wed Jun 10 13: xVGKFHDiljklZUfGfqZ	09:20 2020 Page 1 6G_lbAj3J4sZz7gej
	7-1-12 7-1-12	13-11-8 6-9-12	20-7-0 6-7-8	27-3-2 6-8-2	31-10-	<u>-0 33-10-0</u> 4 2-0-0 0-4-0	
			5x5 =				Scale = 1:73.0
12-8-1	2x4 \\ 14	$7.00 \boxed{12}$	5	11 6x8 =	16 3x4 = 6	7 4x6 × 7 10 9 8	2-11-12
	5x0 —	3x4 =	4.00 12			2x4	
	10-9-12	13-9-12 13-11-8	22-10-12	1	31-10-0	33-10-0	
		3-0-0 0-1-12	8-11-4		8-11-4	2-0-0	
	0:0-3-0,0-3-8], [12:0-3-0,0-3-8]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.21 BC 0.31 WB 0.42 Matrix-S	DEFL. in Vert(LL) -0.09 Vert(CT) -0.19 Horz(CT) 0.02 Wind(LL) 0.02	(loc) 1/0 1-13 >9 1-13 >8 9 1-13 >9	defl L/d 999 360 871 240 n/a n/a 999 240	PLATES MT20 Weight: 271 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP N BOT CHORD 2x6 SP N WEBS 2x4 SP N REACTIONS. (size) Max Hor Max Upl Max Gra	lo.1 lo.1 lo.2 1=Mechanical, 12=0-3-8, 9= z 1=287(LC 7) ift 1=-1(LC 10), 12=-193(LC 10) v 1=486(1 C 21) 12=1508(1 C	0-3-8)), 9=-56(LC 11) 1) 9=-20(I C 1)	BRACING- TOP CHORD BOT CHORD WEBS	Structural v except end Rigid ceilin 1 Row at m	wood sheathing dired d verticals. ng directly applied or nidpt 6-1	otly applied or 6-0-0 o 6-0-0 oc bracing. 0, 4-12	ic purlins,
FORCES. (b) - Max. C TOP CHORD 1-2=-50 BOT CHORD 1-13=-7 WEBS 6-10=-5 2-13=-4 NOTES- 1) Unbalanced roof live lo 2) Wind ASCE 7-10: Vel	omp./Max. Ten All forces 25()2/61, 4-5=-536/236, 5-6=-578, 167/427, 10-11=-104/506 552/147, 4-12=-1368/396, 4-11 162/253	 b) (lb) or less except when shown. (249, 6-7=-272/114, 7-9=-725/148 =-49/580, 7-10=-23/497, 4-13=-104 this design. this design. the standard standa	0/561, 5 Opef: h=15ft: Cat III: 1	Eyn C. Engl	osed:		

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 16-2-3, Exterior(2) 16-2-3 to 24-11-13, Interior(1) 24-11-13 to 29-1-15, Exterior(2) 29-1-15 to 33-6-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9 except (jt=lb) 12=193.

TRENCO A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 16-2-3, Exterior(2) 16-2-3 to 24-11-13, Interior(1) 24-11-13 to 29-1-15, Exterior(2) 29-1-15 to 33-6-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9 except (jt=lb) 13=200.

818 Soundside Road Edenton, NC 27932

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 4) will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 16=265, 2=143.

6) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be doiny with react contractions rule design is based only doin parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and trus systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qu** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	6-1-12 6-1-12		<u>16-9-12</u> 10-8-0	<u>19-10-14</u> 3-1-2		26-7-0 6-8-2	3	<u>3-3-2</u> 5-8-2	36-4-4 3-1-2	39-10-0 3-5-12	4
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES 12014	CSI. TC 0.62 BC 0.47 WB 0.37 Matrix-S	D Vi Vi H W	EFL. ert(LL) ert(CT) orz(CT) /ind(LL)	in (loc) -0.13 14-16 -0.20 14-16 0.03 12 -0.05 16-18	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLA MT2 Weig	TES 0 ght: 307 lb	GRIP 244/190 FT = 20%

LUMBER- TOP CHORD	2x6 SP No.1 *Except* 1-4: 2x4 SP No.1	BRACING- TOP CHORD	Structural wood sheathing	directly applied or 5-3-4 oc purlins,
BOT CHORD WEBS	2x6 SP No.1 2x4 SP No.2 *Except*	BOT CHORD	Rigid ceiling directly applie 6-0-0 oc bracing: 2-18.	ed or 10-0-0 oc bracing, Except:
	8-14: 2x6 SP No.1	WEBS	1 Row at midpt	7-14, 9-14, 9-13

REACTIONS. (size) 12=0-3-8, 18=0-3-8 Max Horz 18=292(LC 7) Max Uplift 12=-84(LC 11), 18=-199(LC 10) Max Grav 12=1444(LC 17), 18=1936(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-982/991, 3-4=-924/958, 4-18=-2613/1034, 4-5=-2011/179, 5-7=-1879/219, 7-8=-1233/368, 8-9=-1263/366, 9-10=-837/187, 10-12=-1490/264
- BOT CHORD 2-18=-920/1004, 16-18=-261/1814, 14-16=-174/1529, 13-14=-150/935
- WEBS 7-14=-755/209, 8-14=-169/852, 10-13=-124/1195, 7-16=-16/504, 9-13=-698/207, 3-18=-344/175

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 22-2-3, Exterior(2) 22-2-3 to 30-11-13, Interior(1) 30-11-13 to 35-1-15, Exterior(2) 35-1-15 to 39-6-12 zone; cantilever left exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 18=199.

6) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

	L	6-1-12	9-6-0	16-	9-12	19-10-14	21-5-0 ₁	26-7-	·0	3	3-3-2	36-4-4	38-1-8	
	1	6-1-12	3-4-4	7-3	3-12	3-1-2	1-6-2	5-2-0	0	<u>'</u>	6-8-2	3-1-2	'1-9-4 '	
X,Y) [20	:0-2-0,0-0-	-4]												
f)	SPAC	NG-	2-0-0	CSI.		D	EFL.	in	(loc)	l/defl	L/d	Р	LATES	GRIP
0	Plate C	Grip DOL	1.15	TC	0.65		ert(LL)	-0.25	12-13	>999	360	M	IT20	244/190
0	Lumbe	r DOL	1.15	BC	0.61	V	ert(CT)	-0.37	12-13	>999	240			
0 *	Rep St	ress Incr	YES	WB	0.58	н	orz(CT)	0.04	12	n/a	n/a			
0	Code	IRC2015/TF	PI2014	Matri	x-S	W	/ind(LL)	-0.05	17-19	>999	240	W	/eight: 314 lb	FT = 20%
						BI	RACING-							
2x6 SP No	0.1 *Except	t*				т	OP CHOP	RD	Structu	Iral wood	sheathing c	directly app	blied or 5-0-4	oc purlins,
1-4: 2x4 S	P No.1								except	end vert	icals.			
2x6 SP No	b.1					B	OT CHOF	RD	Rigid c	eiling dir	ectly applied	l or 10-0-0	oc bracing,	Except:
2x4 SP No	.2 *Except	t*							6-0-0 0	oc bracino	a: 2-19.		0,	
8-13 20-21	1 2x6 SP	No 1							6-0-0 c	oc bracin	1. 15-16			
0 10,20 21						W	FBS		1 Row	at midot	g. 10 10	7-15 9-12	>	
(size)	12=0-3-8	, 19=0-3-8								at mapt		, 0 12	-	
Max Horz	19=291(L	C 7)												
Max Unlift	12=-40(1	C 10) 19=-	145(I C 10)											
Max Craw	12 1501/	$(1 \cap 17) 10^{-1}$	-1065(LC 2)											
	(,Y) [20)) 2x6 SP Nc 1-4: 2x4 S 2x6 SP Nc 2x4 SP Nc 8-13,20-21 (size) Max Horz Max Upliff	(Y) [20:0-2-0,0-0-0] (Y) [20:0-2-0,0-0-0] (Y) SPACI (Y) Plate (D) (Y) Plate (D) <th< td=""><td>6-1-12 6-1-12 (,Y) [20:0-2-0,0-0-4] (i) SPACING- Plate Grip DOL Lumber DOL (i) Plate Grip DOL Code IRC2015/TI 2x6 SP No.1 *Except* 1-4: 2x4 SP No.1 2x6 SP No.1 *Except* 1-4: 2x4 SP No.1 2x6 SP No.1 *Except* 1-4: 2x4 SP No.1 (size) 12=0-3-8, 19=0-3-8 Max Horz 19=291(LC 7) Max Uplift 12=-40(LC 10), 19=- Max (Cruz 12)</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></th<>	6-1-12 6-1-12 (,Y) [20:0-2-0,0-0-4] (i) SPACING- Plate Grip DOL Lumber DOL (i) Plate Grip DOL Code IRC2015/TI 2x6 SP No.1 *Except* 1-4: 2x4 SP No.1 2x6 SP No.1 *Except* 1-4: 2x4 SP No.1 2x6 SP No.1 *Except* 1-4: 2x4 SP No.1 (size) 12=0-3-8, 19=0-3-8 Max Horz 19=291(LC 7) Max Uplift 12=-40(LC 10), 19=- Max (Cruz 12)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-989/988, 3-4=-931/955, 4-19=-2783/922, 4-5=-2188/61, 5-7=-2056/100, 7-8=-1270/284, 8-9=-1297/280
- BOT CHORD
 2-19=-916/1010, 17-19=-196/1959, 13-17=-97/1754, 12-13=-109/739

 WEBS
 7-15=-848/184, 13-15=-1063/135, 8-13=-78/880, 9-13=-9/545, 16-17=-26/430, 7-16=0/661, 9-12=-1462/232, 3-19=-343/175

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 22-2-3, Exterior(2) 22-2-3 to 30-11-13, Interior(1) 30-11-13 to 33-3-2, Exterior(2) 33-3-2 to 37-10-4 zone; cantilever left exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 19=145.

6) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

	6-1-12	16-9-12 10-8-0	+ 19-10-14 3-1-2	33-3-2 13-4-4	36-4-4 38-1-8
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.14 BC 0.11	DEFL. in Vert(LL) -0.00 Vert(CT) 0.00	(loc) l/defl L/d 1 n/r 120 1 n/r 120	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.14 Matrix-S	Horz(CT) -0.00	24 n/a n/a	Weight: 362 lb FT = 20%

LUMBER-		BRACING-		
TOP CHORD	2x6 SP No.1 *Except*	TOP CHORD	Structural wood sheathing	directly applied or 6-0-0 oc purlins,
	1-7: 2x4 SP No.1		except end verticals.	
BOT CHORD	2x6 SP No.1	BOT CHORD	Rigid ceiling directly applie	ed or 6-0-0 oc bracing, Except:
WEBS	2x4 SP No.2		10-0-0 oc bracing: 2-43,47	1-43.
OTHERS	2x4 SP No.2	WEBS	1 Row at midpt	17-30, 16-31, 15-33, 14-34, 18-29, 19-28,
				20-27
		JOINTS	1 Brace at Jt(s): 5	

REACTIONS. All bearings 38-1-8. (lb) - Max Horz 2=406(LC 10)

//ax 11012 2=400(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 24, 30, 31, 33, 34, 35, 36, 37, 38, 40, 43, 29, 28, 27, 26, 25 except 2=-137(LC 6), 42=-113(LC 6)

Max Grav All reactions 250 lb or less at joint(s) 2, 24, 41, 30, 31, 33, 34, 35, 36, 37, 38, 40, 42, 29, 28, 27, 26, 25 except 43=398(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-257/190, 7-8=-327/280, 8-9=-301/283, 9-10=-264/256, 14-15=-182/272,

15-16=-221/313, 16-17=-250/325, 17-18=-250/312, 18-19=-221/274

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 3-6-5, Exterior(2) 3-6-5 to 22-2-3, Corner(3) 22-2-3 to 30-11-13, Exterior(2) 30-11-13 to 33-5-7, Corner(3) 33-5-7 to 37-10-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 30, 31, 33, 34, 35, 36, 37, 38, 40, 43, 29, 28, 27, 26, 25 except (jt=lb) 2=137, 42=113.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

ENGINEERING BY ERENCED A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

						26-6-0						ł
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	-0.00	<u></u> 1	n/r	120	MT20	244/190
CDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	-0.00	1	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.15	Horz(CT)	0.00	17	n/a	n/a		
BCDL	10.0	Code IRC2015/TP	12014	Matrix	-S						Weight: 185 lb	FT = 20%
		1		1		-					1	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1OTHERS2x4 SP No.2

REACTIONS. All bearings 26-6-0.

(lb) - Max Horz 2=244(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) 17, 2, 26, 27, 28, 29, 30, 24, 22, 21, 20, 19 except 31=-108(LC 10), 18=-113(LC 11)

Max Grav All reactions 250 lb or less at joint(s) 17, 2, 25, 26, 27, 28, 29, 30, 31, 24, 22, 21, 20, 19, 18

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-263/188

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 3-3-0, Exterior(2) 3-3-0 to 8-10-3, Corner(3) 8-10-3 to 17-7-13, Exterior(2) 17-7-13 to 22-1-3, Corner(3) 22-1-3 to 26-6-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17, 2, 26, 27, 28, 29, 30, 24, 22, 21, 20, 19 except (jt=lb) 31=108, 18=113.

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

		6-9-4		8-11-2	13-0-8	17-6	-14	1	9-8-12	24-	4-0 126-6-0	_
		6-9-4		2-1-14	4-1-6	4-6	-6		2-1-14	4-7	7-4 2-2-0	
Plate Off	sets (X,Y)	[1:0-0-0,0-0-3], [6:0-4-0,0	-1-8], [9:0-4	4-0,0-1-12]								
	- / 0											
LOADIN	G (pst)	SPACING-	2-0-0	CSI.		DEFL.	ın	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.50	Vert(LL)	-0.10	7-10	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.71	Vert(CT)	-0.22	5-7	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.24	Horz(CT)	0.06	5	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matr	ix-S	Wind(LL)	0.07	5-7	>999	240	Weight: 160 lb	FT = 20%
	_											
LUMBER	र-					BRACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No 1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS. (size) 1=0-3-8, 5=0-3-8 Max Horz 1=192(LC 7) Max Uplift 1=-85(LC 10), 5=-85(LC 11) Max Grav 1=1068(LC 17), 5=1069(LC 18)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 1-2=-1714/432, 2-3=-1531/466, 3-4=-1649/496, 4-5=-1823/455
- 1-10=-266/1511, 7-10=-64/1007, 5-7=-289/1456 BOT CHORD
- WEBS 3-10=-142/670, 2-10=-390/256, 3-7=-184/839, 4-7=-387/254

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 8-10-3, Exterior(2) 8-10-3 to 17-7-13, Interior(1) 17-7-13 to 21-11-7, Exterior(2) 21-11-7 to 26-4-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.

Variation MANDER IN THE SEAL 036322 G1 minin June 10,2020

Structural wood sheathing directly applied or 4-1-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 8-10-3, Exterior(2) 8-10-3 to 17-7-13, Interior(1) 17-7-13 to 21-11-7, Exterior(2) 21-11-7 to 26-4-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate orip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.03 BC 0.02 WB 0.12 Matrix-S	DEFL. ir Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) 0.00	(loc) 12 12 12	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 172 lb	GRIP 244/190 FT = 20%
LUMBER-			BRACING-					

TOP CHORD	2x6 SP No.1	Т
BOT CHORD	2x6 SP No.1	E
OTHERS	2x4 SP No.2	

OP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. OT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 21-8-0.

(lb) - Max Horz 2=231(LC 9)

- Max Uplift All uplift 100 lb or less at joint(s) 2, 19, 21, 17, 15 except 20=-101(LC 10), 22=-146(LC 10), 16=-103(LC 11), 14=-143(LC 11)
- Max Grav All reactions 250 lb or less at joint(s) 2, 12, 18, 19, 20, 21, 17, 16, 15 except 22=255(LC 17), 14=251(LC 18)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-8-12 to 3-8-1, Exterior(2) 3-8-1 to 6-5-3, Corner(3) 6-5-3 to 15-2-13, Exterior(2) 15-2-13 to 17-11-15, Corner(3) 17-11-15 to 22-4-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 19, 21, 17, 15 except (jt=lb) 20=101, 22=146, 16=103, 14=143.

818 Soundside Road Edenton, NC 27932

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job		Truss	Truss Type		Qty	Ply	Weaver / 28 Mitchell Manor / Johnston	-
								E14496534
J0820-3671		C3	COMMON		1	ົ		
						–	Job Reference (optional)	
Comtech, Inc,	Fayettev	ille, NC - 28314,			8.3	330 s May	6 2020 MiTek Industries, Inc. Wed Jun 10 13:09:38 2020	Page 2
			ID:nG	EYJn1QAn	gpJfECep	mG8Mz?	may-LZQQHEsDGobhS_4CmW4nDS0lCpC_Cwdpssg1VW	√z7geR

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 9=-334(F) 10=-466(F) 11=-466(F) 12=-466(F) 13=-364(F) 15=-309(F) 17=-309(F) 18=-309(F) 19=-309(F) 20=-309(F) 21=-311(F)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

¹⁾ Unbalanced roof live loads have been considered for this design.

2x4 🥢

2x4 📎

Plate Offsets (X,Y) [2:0	D-2-0,Edge]		3-11-4	1
.OADING (psf) [CLL 20.0 [CDL 10.0 3CLL 0.0 * 3CDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IPC2015/TPI2014	CSI. TC 0.02 BC 0.07 WB 0.00 Matrix-P	DEFL. in (loc) I/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 11 lb ET = 20%
OP CHORD 2x4 SP No	0.1	Wath-1	BRACING- TOP CHORD Structural wood sheathing dir BOT CHORD Bioid ceiling directly applied of	ectly applied or $3-11-4$ oc purlins.

3-11-4

REACTIONS. (size) 1=3-11-4, 3=3-11-4

Max Horz 1=20(LC 7) Max Uplift 1=-9(LC 10), 3=-9(LC 11) Max Crav 1 114(LC 1) 2 114(LC 1)

Max Grav 1=114(LC 1), 3=114(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

¹⁾ Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek A

818 Soundside Road Edenton, NC 27932

(lb) - Max Horz 1=-134(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-130(LC 10), 6=-129(LC 11) Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=402(LC 17), 8=462(LC 17), 6=462(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-357/249, 4-6=-357/249

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=130, 6=129.

6) Non Standard bearing condition. Review required.

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed;
 MWERS (anyelope) and C.C. Exterior(2) zone; C.C. for members and forces & MWERS for reactions shown; Lumber DOI =1.60 pl

MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=104, 6=104.

6) Non Standard bearing condition. Review required.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate
- grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 6) Non Standard bearing condition. Review required.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) Non Standard bearing condition. Review required.

2x4 🥢

2x4 📎

Rigid ceiling directly applied or 10-0-0 oc bracing.

			<u>3-8-8</u> 3-8-8	
late Offsets (X,Y)	[2:0-2-0,Edge]	1		
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.02	Vert(LL) n/a - n/a 999	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.07	Vert(CT) n/a - n/a 999	
CLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 3 n/a n/a	
CDL 10.0	Code IRC2015/TPI2014	Matrix-P		Weight: 11 lb FT = 20%

BOT CHORD

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 1=3-8-8, 3=3-8-8

Max Horz 1=22(LC 9) Max Uplift 1=-9(LC 10), 3=-9(LC 11)

Max Grav 1=110(LC 1), 3=110(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

6) Non Standard bearing condition. Review required.

