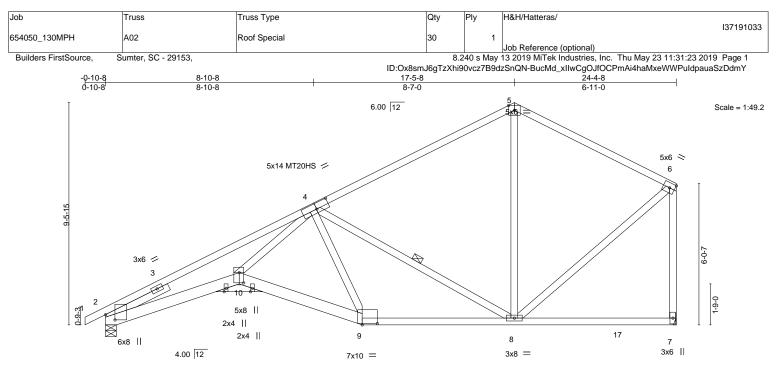

Trenco RE: 654050_130MPH - H&H/Hatteras/ 818 Soundside Rd Site Information: Edenton, NC 27932 Project Customer: H AND H Project Name: 654050 130MPH Lot/Block: A Subdivision: All Model: Address: State: NC City: Fayetteville General Truss Engineering Criteria & Design Loads (Individual Truss Design **Drawings Show Special Loading Conditions):** Design Code: IRC2015/TPI2014 Design Program: MiTek 20/20 8.2 Wind Code: ASCE 7-10 Wind Speed: 130 mph Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-10 Roof Load: 40.0 psf Floor Load: N/A psf Mean Roof Height (feet): 25 Exposure Category: C No. Seal# Truss Name Date No. Seal# Truss Name Date E05 J01 137191032 A01 35 36 37 38 39 40 137191066 5/24/10 123456789111111111122222222222333333 5/24/19 137191033 A02 137191067 24/19 24/19 137191068 137191069 137191034 A03 Ĵ02 24/1 C 24/19 J03 137191035 A04 С 137191036 137191037 A05 J04 137191070 Jŏ5 A06 137191071 41 42 137191038 A07 137191072 J06 137191039 137191073 J07 A08 43 44 A09 137191040 137191074 J08 24/1 137191041 A10 137191075 ĴÕ9 24/10 45 46 47 137191042 137191076 A11 J10 /24/19 137191043 A12 137191077 J11 24/19 137191044 137191078 J12 J17 /24/10 137191045 48 A15 137191079 24/19 49 50 137191046 A16 137191080 Ĵ18 /24/10 137191081 137191047 A17 J19 24/19 51 52 53 54 137191048 A18 B01 137191082 J20 137191049 137191083 J21 J22 J23 137191050 B02 137191084 24/19 137191051 B03 37191085 g 55 137191052 137191086 C01 5/24/19 137191053 137191054 137191055 Č04 137191056 C05 137191057 137191058 137191059 CP02 137191060 D01 137191061 D02 137191062 D03 E01 E02 137191063 137191064 E04 137191065 The truss drawing(s) referenced above have been prepared by

In ouscu on the parameters InstSource-Sumter,SC. Truss Design Engineer's Name: Johnson, Andrew My license renewal date for the state of North Carolina is December 31, 2019 **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use incorporate these designs into the overall to the state of the state of the design barameters incorporate these designs into the overall to the state of the state of the state of the design barameters incorporate these designs into the overall to the state of the state of the state of the design barameters incorporate these designs into the overall to the state of the state of the state of the state of the design barameters incorporate these designs into the overall to the state of the state


1 of 1

May 24,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affiliat 818 Soundside Road Edenton, NC 27932

	<u>5-8-8</u> 5-8-8	<u>10-11-8</u> 5-3-0	<u> </u>		<u>24-4-8</u> 6-11-0
Plate Offsets (X,Y)	[2:0-2-11,0-4-13], [4:0-6-8,0-3-0],				
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.64	DEFL. in (loc) Vert(LL) -0.14 9-10	l/defl L/d >999 360	PLATES GRIP MT20 244/190
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.79 WB 0.74 Matrix-AS	Vert(CT) -0.30 9-10 Horz(CT) 0.15 7 Wind(LL) 0.20 9-10	>962 240 n/a n/a >999 240	MT20HS 187/143 Weight: 159 lb FT = 20%

BRACING-

BOT CHORD

WEBS

LUMBER-

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2 *Except*
	2-10,9-10: 2x6 SP No.2
WEBS	2x4 SP No.3 *Except*
	6-7: 2x4 SP No.2
SLIDER	Left 2x4 SP No.2 3-0-0

REACTIONS. (lb/size) 2=1023/0-5-8, 7=968/Mechanical Max Horz 2=374(LC 12) Max Uplift 2=-288(LC 12), 7=-270(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2848/1449, 4-5=-732/366, 5-6=-696/374, 6-7=-905/478

- BOT CHORD 2-10=-1520/2726, 9-10=-810/1405, 8-9=-633/1213
- WEBS 4-10=-941/1777, 4-9=-310/338, 4-8=-781/465, 5-8=0/251, 6-8=-284/693

NOTES- (11)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are MT20 plates unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

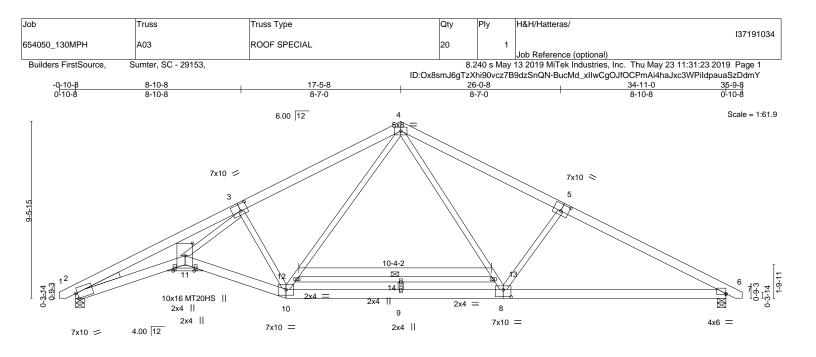
 Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=288, 7=270.

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932


Structural wood sheathing directly applied, except end verticals.

4-8

Rigid ceiling directly applied.

1 Row at midpt

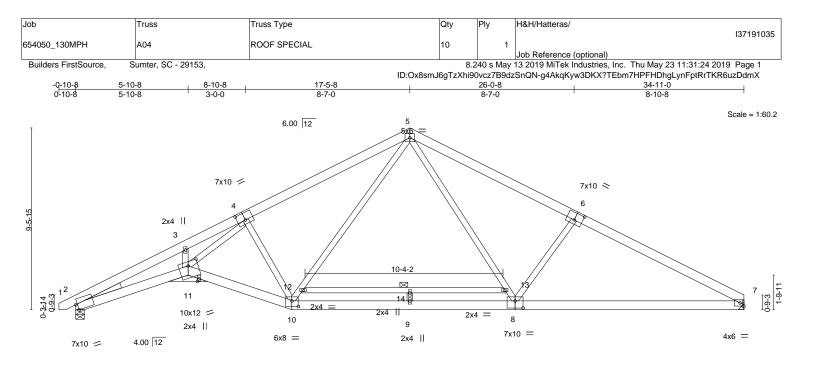
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

5-10-8 11-3-8 5-10-8 5-5-0	<u> </u>	22-11-8		4-11-0 1-11-8	
Plate Offsets (X,Y) [2:0-1-2,Edge], [3:0-4-8,0-4-8], [5:0-5-				1-11-0	
LOADING (psf) SPACING- 2-0-0 TCLL 20.0 Plate Grip DOL 1.15 TCDL 10.0 Lumber DOL 1.15 BCLL 0.0 * Rep Stress Incr NO BCDL 10.0 Code IRC2015/TPI2014	CSI. TC 0.64 BC 0.95 WB 0.75 Matrix-AS	DEFL. in (loc) //dt Vert(LL) -0.46 9-10 >90 Vert(CT) -0.71 9-10 >55 Horz(CT) 0.25 6 n Wind(LL) 0.29 10-11 >95	8 360 2 240 ′a n/a	PLATES MT20 MT20HS Weight: 254 lb	GRIP 244/190 187/143 FT = 20%
LUMBER- TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.1 *Except* 2-11: 2x6 SP DSS, 6-8: 2x6 SP No.2, 15-16: WEBS 2x4 SP No.3 *Except* 3-11,12-13: 2x4 SP No.2 WEDGE Left: 2x4 SP No.3	2x4 SP No.2		bod sheathing direc directly applied. dpt 12-		
REACTIONS. (lb/size) 2=1438/0-5-8, 6=1438/0-5-8 Max Horz 2=-204(LC 13) Max Uplift 2=-389(LC 12), 6=-389(LC 13) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) TOP CHORD 2-3=-5081/1950, 3-4=-2224/1073, 4-5=-220 BOT CHORD 2-11=-1644/4597, 10-11=-949/2568, 9-10=:	9/1026, 5-6=-2446/1044 387/1556, 8-9=-387/1556, 6-				
 WEBS 3-11=-946/2756, 3-10=-1226/741, 10-12=-3 8-13=-272/908, 5-8=-498/477 NOTES- (10) 1) Unbalanced roof live loads have been considered for this of 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=10 MWFRS (envelope) gable end zone and C-C Exterior(2) z MWFRS for reactions shown; Lumber DOL=1.60 plate grip 3) All plates are MT20 plates unless otherwise indicated. 4) This truss has been designed for a 10.0 psf bottom chord 1 5) * This truss has been designed for a live load of 20.0psf or will fit between the bottom chord and any other members. 6) All bearings are assumed to be User Defined crushing cap (capacity of bearing surface. 8) Provide mechanical connection (by others) of truss to bear 2=389, 6=389. 9) This truss design requires that a minimum of 7/16" structur sheetrock be applied directly to the bottom chord. 10) This manufactured truss is designed as an individual buil particular building is the responsibility of the building desi 	esign. 3mph; TCDL=6.0psf; BCDL= one; end vertical left and right DOL=1.60 ve load nonconcurrent with a the bottom chord in all areas acity of 565 psi. ANSI/TPI 1 angle to grain for ing plate capable of withstand al wood sheathing be applied ding component. The suitabil	6.0psf; h=25ft; Cat. II; Exp C; Enclose exposed;C-C for members and ford swhere a rectangle 3-6-0 tall by 2-0 mula. Building designer should ver ding 100 lb uplift at joint(s) except (ji I directly to the top chord and 1/2" g lity and use of this component for ar	es & 0 wide fy =lb) ⁄psum	Autom	SEAL 45844

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

May 24,2019


Job	Truss	Truss Type	Qty	Ply	H&H/Hatteras/
					137191034
654050_130MPH	A03	ROOF SPECIAL	20	1	
					Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,		8.2	240 s May	13 2019 MiTek Industries, Inc. Thu May 23 11:31:23 2019 Page 2
			ID:Ox8smJ6gTzX	hi90vcz7B	9dzSnQN-BucMd_xIIwCgOJfOCPmAi4haJxc3WPildpauaSzDdmY

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

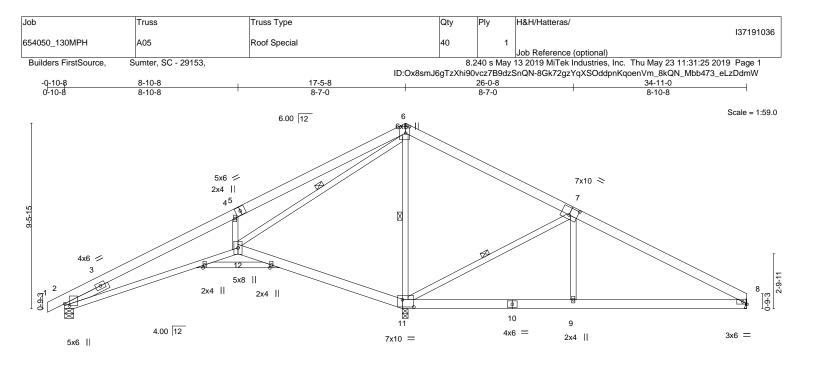
Vert: 1-4=-60, 4-7=-60, 11-17=-20, 10-11=-20, 10-20=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTPI1 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	5-10-8 11-3-8	17-5-8	22-11-8	1	34-11-0	1
	5-10-8 5-5-0	6-2-0	5-6-0	1	11-11-8	1
Plate Offsets (X,Y)	[2:0-1-2,Edge], [4:0-5-0,0-4-8], [6:0-	5-0,0-4-8], [8:0-5-0,0-4-8], [10:	0-4-0,0-3-8], [11:0-0-15,0-2-12],	[11:0-6-0,0-2-8]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-1-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.93 BC 0.92 WB 0.94 Matrix-MS	DEFL. in (loc) Vert(LL) -0.48 9-10 Vert(CT) -0.74 9-10 Horz(CT) 0.23 7 Wind(LL) 0.27 10-11	l/defl L/d >869 360 >570 240 n/a n/a >999 240	PLATES MT20 Weight: 253 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP 1-4: 2x6 BOT CHORD 2x6 SP 2-11: 2: WEBS 2x4 SP	No.2 *Except* 6 SP No.1		BRACING- TOP CHORD Structur BOT CHORD Rigid ce	ral wood sheathing dire siling directly applied o	ectly applied or 2-5-10	
Max Ho Max Uş FORCES. (Ib) - Max. Uş TOP CHORD 2-3=-4 30T CHORD 2-11= NEBS 4-11=	 2=1498/0-5-8, 7=1454/Mechani orz 2=221(LC 12) plift 2=-405(LC 12), 7=-381(LC 13) Comp./Max. Ten All forces 250 (lb 5142/2058, 3-4=-4877/2056, 4-5=-2 -1773/4622, 10-11=-1049/2798, 9-1 -991/2555, 4-10=-1464/833, 10-12= -297/975, 6-8=-535/513, 3-11=-63/4) or less except when shown. 359/1135, 5-6=-2299/1073, 6-7 0=-415/1598, 8-9=-415/1598, -369/917, 5-12=-390/1021, 5-7	7-8=-826/2192			
 Wind: ASCE 7-10; V MWFRS (envelope) reactions shown; Lur This truss has been will fit between the busility of the sering Bearings are assume Refer to girder(s) for 7) Bearing at joint(s) 2 of capacity of bearing s Provide mechanical 2=405, 7=381. This manufactured tr particular building is 	connection (by others) of truss to be russ is designed as an individual bui the responsibility of the building des	03mph; TCDL=6.0psf; BCDL= zone; end vertical left exposed b live load nonconcurrent with on the bottom chord in all area ng capacity of 565 psi. g ANSI/TPI 1 angle to grain for aring plate capable of withstar ding component. The suitabili	d;C-C for members and forces & any other live loads. Is where a rectangle 3-6-0 tall by rrmula. Building designer should rding 100 lb uplift at joint(s) exce ty and use of this component for	MWFRS for 2-0-0 wide I verify pt (jt=lb)	TANK	SEAL 45844
LOAD CASE(S) Stand 1) Dead + Roof Live (ba	dard alanced): Lumber Increase=1.15, PI	ate Increase=1.15			M	W JOHN

Continued on page 2

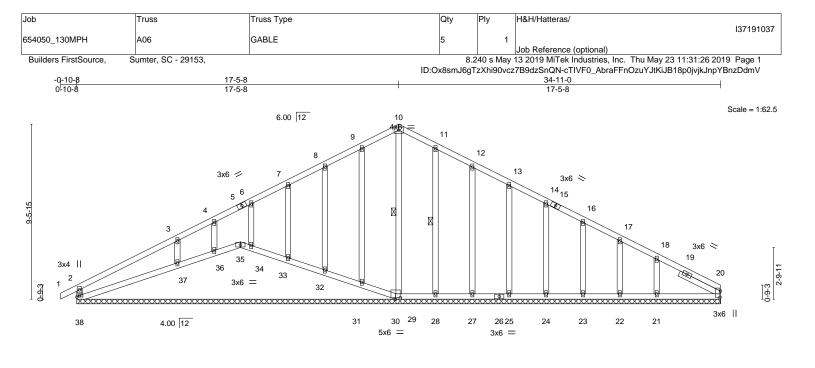
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


Job	Truss	Truss Type	Qty	Ply	H&H/Hatteras/
					137191035
654050_130MPH	A04	ROOF SPECIAL	10	1	
					Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,		8.	240 s May	13 2019 MiTek Industries, Inc. Thu May 23 11:31:24 2019 Page 2
		ID:Ox8sr	nJ6gTzXhi9	0vcz7B9dz	zSnQN-g4AkqKyw3DKX?TEbm7HPFHDhgLynFptRrTKR6uzDdmX

LOAD CASE(S) Standard Uniform Loads (plf)

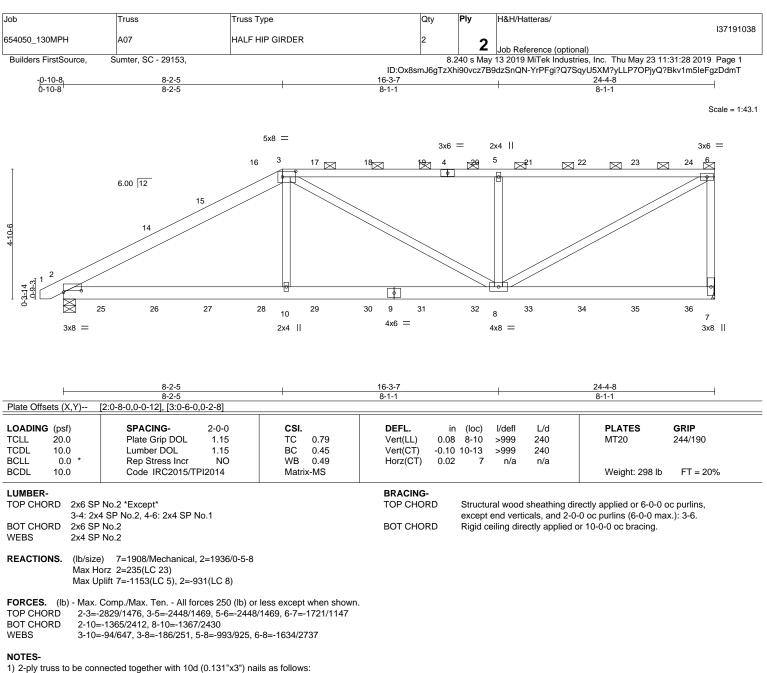
Vert: 1-5=-62, 5-7=-63, 11-16=-21, 10-11=-21, 10-19=-21

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


 	8-10-8 8-10-8	17-3-8 8-5-0	<u> </u>	34-11-0 8-10-8
Plate Offsets (X,Y)	[2:0-1-5,0-2-15], [6:0-4-0,0-2-4], [7:0-5-			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.43 BC 0.45 WB 0.53 Matrix-AS	DEFL. in (loc) I/defl L/ Vert(LL) -0.08 12-17 >999 36 Vert(CT) -0.20 12-17 >999 24 Horz(CT) 0.05 11 n/a n// Wind(LL) 0.10 12-17 >999 24	50 MT20 244/190 10 /a
2-12,1 WEBS 2x4 SI	P No.2 P No.2 *Except* 3-14: 2x4 SP No.2 P No.3 t4 SP No.2 2-6-0		BRACING- TOP CHORD Structural wood shea BOT CHORD Rigid ceiling directly WEBS 1 Row at midpt	athing directly applied. applied. 6-11, 7-11, 6-12
Max H Max L	e) 2=438/0-5-8, 11=2005/0-3-8, 8=403 forz 2=216(LC 16) Jplift 2=-124(LC 13), 11=-562(LC 12), 8= Grav 2=444(LC 23), 11=2005(LC 1), 8=5	=-259(LC 13)		
TOP CHORD 2-4= BOT CHORD 2-12	Comp./Max. Ten All forces 250 (lb) o -592/265, 4-6=-582/517, 6-7=-154/707, =-261/498, 11-12=-619/462, 9-11=-211/ =-575/542, 6-11=-1239/506, 7-11=-865/	7-8=-651/382 492, 8-9=-209/497	1194	
 2) Wind: ASCE 7-10; MWFRS (envelope) reactions shown; Lu 3) This truss has been 4) * This truss has bees will fit between the list 5) All bearings are ass 6) Refer to girder(s) for 	a gable end zone and C-C Exterior(2) zon umber DOL=1.60 plate grip DOL=1.60 designed for a 10.0 psf bottom chord liv in designed for a live load of 20.0psf on bottom chord and any other members. sumed to be User Defined crushing capa r truss to truss connections. considers parallel to grain value using A	mph; TCDL=6.0psf; BCDL= he; end vertical left exposed re load nonconcurrent with the bottom chord in all area city of 565 psi.	s where a rectangle 3-6-0 tall by 2-0-0 wide	TH CARO
 8) Provide mechanical 2=124, 11=562, 8=2 9) This truss design re sheetrock be applie 10) This manufactured 	connection (by others) of truss to bearir 259.	I wood sheathing be applie ng component. The suitab		SEAL 45844

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

May 24,2019


J

	8-10-8 8-10-8	<u>17-3-8</u> 8-5-0		<u>34-11-0</u> 17-7-8		
Plate Offsets (X,Y)	[20:0-4-0,0-0-6], [29:0-1-12,0-0-0], [30			17-7-0		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.29 BC 0.23 WB 0.15 Matrix-S	Vert(CT) 0.01	c) l/defl L/d 1 n/r 120 1 n/r 120 20 n/a n/a	PLATES MT20 Weight: 216 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP OTHERS 2x4 SP SLIDER Right 2	9 No.2 9 No.2		exce BOT CHORD Rigi	ctural wood sheathing directly apt end verticals. d ceiling directly applied or 10- ow at midpt 10-29,	0-0 oc bracing.	oc purlins,
(lb) - Max H Max U	earings 34-11-0. orz 38=-197(LC 17) plift All uplift 100 lb or less at joint(s) 38=-129(LC 13), 34=-111(LC 12) irav All reactions 250 lb or less at joi 38=273(LC 1), 29=300(LC 12), 3	37=-252(LC 12), 21=-164(LC 1t(s) 35, 30, 20, 31, 32, 33, 34,	13)	except		
TOP CHORD 4-6=- 10-11 2-38=	Comp./Max. Ten All forces 250 (lb) 156/259, 6-7=-188/334, 7-8=-208/395 1=-252/520, 11-12=-233/464, 12-13=- 263/219 9=-352/132, 3-37=-295/311	, 8-9=-233/464, 9-10=-252/520,	S=-164/269,			
 Wind: ASCE 7-10; V MWFRS (envelope) MWFRS for reaction Truss designed for v Gable End Details a All plates are 2x4 M Gable studs spaced This truss has been This truss has been This truss has been All bearings are assisting Provide mechanica 32, 33, 36, 28, 27, Beveled plate or sf This manufactured 	e loads have been considered for this fult=130mph (3-second gust) Vasd=10 gable end zone and C-C Exterior(2) z is shown; Lumber DOL=1.60 plate gri vind loads in the plane of the truss on s applicable, or consult qualified build T20 unless otherwise indicated. inuous bottom chord bearing. at 2-0-0 oc. designed for a 10.0 psf bottom chord n designed for a 10.0 psf bottom chord and any other members. umed to be User Defined crushing caj al connection (by others) of truss to be 25, 24, 23, 22 except (jt=lb) 38=129, 3 mir required to provide full bearing su truss is designed as an individual buils is the responsibility of the building des	 Big Display Control (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	xposed;C-C for members normal to the face), see St y other live loads. where a rectangle 3-6-0 tai ling 100 lb uplift at joint(s) 35, 31, 32, 33, 34, 36, 37.	and forces & andard Industry	EN PRESS	SEAL 45844

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- Top chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc, 2x4 1 row at 0-9-0 oc.
- Bottom chords connected as follows: 2x6 2 rows staggered at 0-9-0 0C, 2x4 1 row at 0-9-0 0C. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.
- Webs connected as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=1153, 2=931.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 46 lb down and 91 lb up at 3-5-8, 24 lb down and 53 lb up at 5-5-8, 149 lb down and 137 lb up at 7-5-8, 167 lb down and 164 lb up at 9-5-8, 167 lb down and 164 lb up at 11-5-8, 168 lb down and 164 lb up at 11-5-8, 105 lb down and 25 lb up at 11-5-8, 168 lb down and 25 lb up at 15-5-8, 68 lb down and 25 lb up at 11-5-8, 68 lb down and 25 lb up at 15-5-8, 68 lb down and 25 lb up at 11-5-8, 68 lb down and 25 lb up at 11-5-8, 68 lb down and 25 lb up at 11-5-8, 68 lb down and 25 lb up at 11-5-8, 68 lb down and 25 lb up at 11-5-8, 68 lb down and 25 lb up at 11-5-8, 68 lb down and 25 lb up at 11-5-8, 68 lb down and 23 lb up at 23-5-8 on bottom chord. The design/selection of such connection Contidexide(s) is desired at 11-5-8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent onlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Hatteras/
	1.07				137191038
654050_130MPH	A07	HALF HIP GIRDER	2	2	Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,		8.		13 2019 MiTek Industries, Inc. Thu May 23 11:31:28 2019 Page 2
		ID:O	8smJ6gTzXI	ni90vcz7B9	dzSnQN-YrPFgi?Q7SqyU5XM?yLLP7OPjyQ?Bkv1m5leFgzDdmT

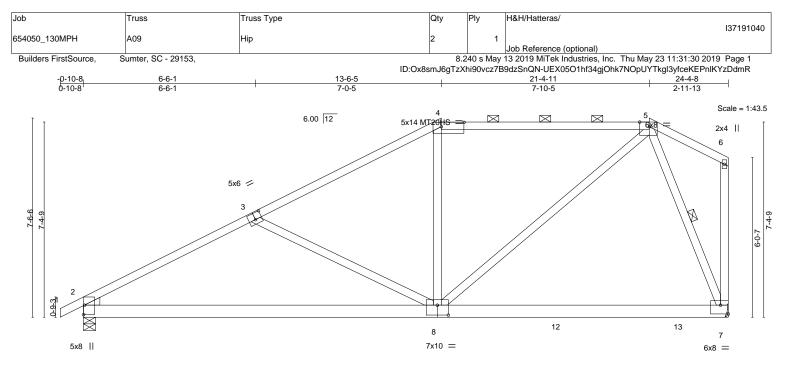
1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-6=-60, 7-11=-20

Concentrated Loads (lb)

Vert: 14=-46(F) 15=-1(F) 16=-74(F) 17=-95(F) 18=-95(F) 19=-95(F) 20=-95(F) 21=-95(F) 22=-95(F) 23=-95(F) 24=-102(F) 25=-210(F) 26=-105(F) 27=-138(F) 28=-77(F) 29=-55(F) 30=-55(F) 31=-55(F) 32=-55(F) 33=-55(F) 34=-55(F) 35=-55(F) 36=-57(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

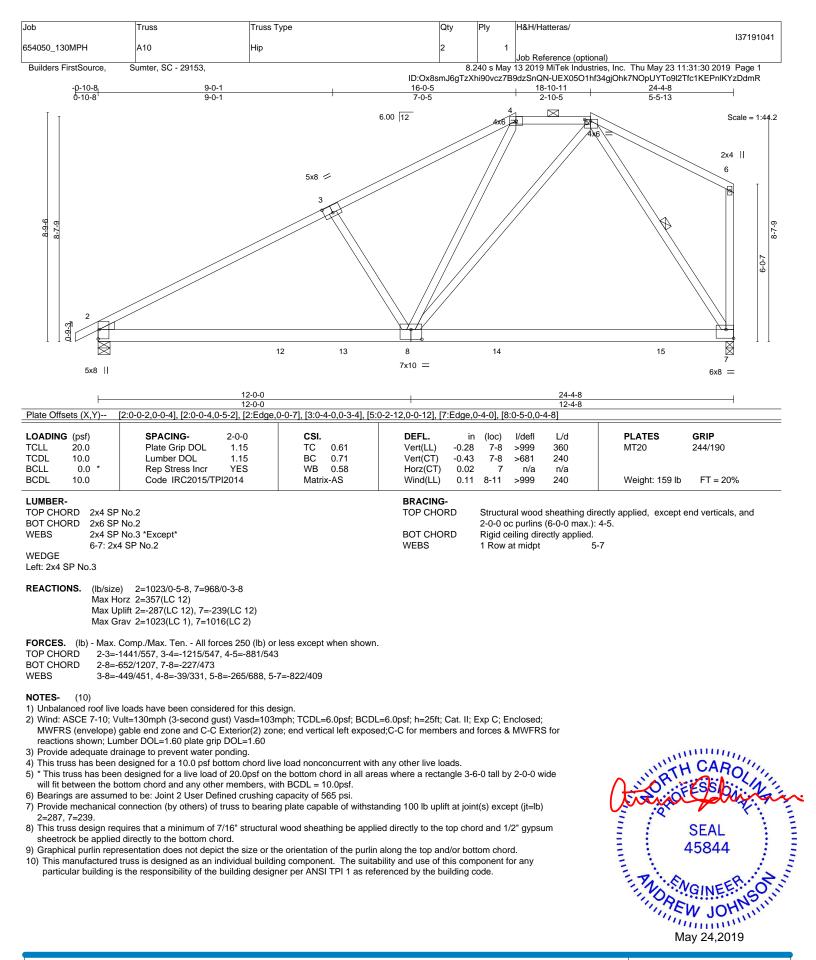


11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

SEAL 45844 May 24,2019

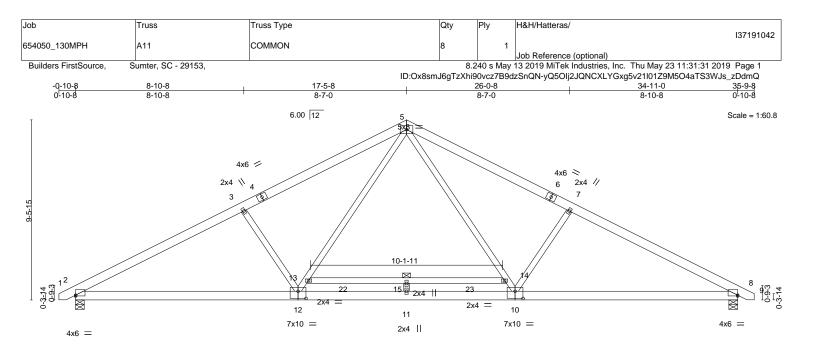
> ENGINEERING BY A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


⊢	<u> </u>					<u>24-4</u> 10-10		
Plate Offsets (X,Y)	[2:Edge,0-0-7], [2:0-0-4,0-5-2], [2:0-0-2,	0-0-4], [3:0-3-0,0-3-0], [4:0-	-10-4,0-2-0], [5:0-4-	-6,Edge],	[7:Edge,0-4-	-0], [8:0-5-0,0	-4-8]	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.89 BC 0.68 WB 0.61 Matrix-AS	Vert(CT) -0 Horz(CT) 0	in (loo).16 7-).32 8-1).02).04 8-1	7-8 >999 11 >909 7 n/a	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 154 lb	GRIP 244/190 187/143 FT = 20%
WEBS 2x4 SI	P No.2 P No.2 P No.3 *Except* k4 SP No.2		BRACING- TOP CHORD BOT CHORD WEBS	2-0- Rigi		(2-2-0 max.): ectly applied.	ectly applied, except e 4-5. -7	end verticals, and
Max H	te) 2=1023/0-5-8, 7=968/Mechanical Horz 2=328(LC 12) Jplift 2=-274(LC 12), 7=-196(LC 12)							
TOP CHORD2-3=BOT CHORD2-8=	. Comp./Max. Ten All forces 250 (lb) or 1505/632, 3-4=-1091/416, 4-5=-898/459 -759/1284, 7-8=-172/354 -435/429, 5-8=-280/737, 5-7=-924/470							
 Wind: ASCE 7-10; ' MWFRS (envelope) reactions shown; Li Provide adequate d All plates are MT20 This truss has beer * This truss has beer 	e loads have been considered for this de: Vult=130mph (3-second gust) Vasd=103r) gable end zone and C-C Exterior(2) zon umber DOL=1.60 plate grip DOL=1.60 Irainage to prevent water ponding. plates unless otherwise indicated. In designed for a 10.0 psf bottom chord live en designed for a live load of 20.0psf on the bottom chord and any other members, wi	nph; TCDL=6.0psf; BCDL= e; end vertical left exposed e load nonconcurrent with a he bottom chord in all area	l;C-C for members any other live loads	and force	es & MWFRS		Aunorth	CARO

- 7) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 8) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=274, 7=196.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


A REPUEN A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

ENGINEERING BY REENCO A MiTek Atfiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	<u>11-8-13</u> 11-8-13	<u> </u>		23-2-3 5-8-11				<u>34-11-0</u> 11-8-13	
Plate Offsets (X,Y)	[2:0-0-0,0-0-8], [6:0-0-0,0-0-0], [8:Edge,	0-0-8], [10:0-5-0,0-4-8], [12:0	0-5-0,0-4-8]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.37 BC 0.87 WB 0.56 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.30 -0.43 0.06 0.09	(loc) 11 11 8 12	l/defl >999 >973 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 240 lb	GRIP 244/190 FT = 20%
		· · · · · ·	BRACING- TOP CHOR BOT CHOR WEBS	D	Rigid c		ectly applied.	rectly applied. 13-14	
	e) 2=1438/0-5-8, 8=1438/0-5-8 lorz 2=-204(LC 17) Jplift 2=-389(LC 12), 8=-389(LC 13)								
()	Comp./Max. Ten All forces 250 (lb) or -2373/1047, 3-5=-2098/1043, 5-7=-2098								

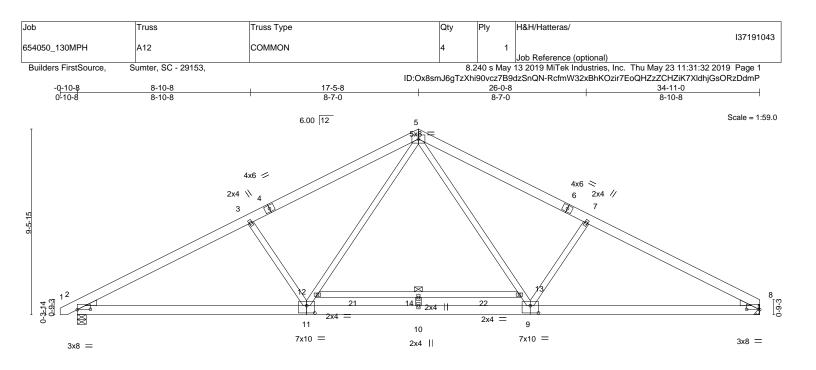
BOT CHORD

2-12=-770/2027, 11-12=-381/1454, 10-11=-381/1454, 8-10=-772/2027 WFBS 5-14=-317/885, 10-14=-299/779, 7-10=-501/478, 12-13=-299/779, 5-13=-317/885, 3-12=-501/478

NOTES-(8)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces &
- MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=389, 8=389.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-5=-60, 5-9=-60, 16-19=-20

818 Soundside Road Edenton, NC 27932

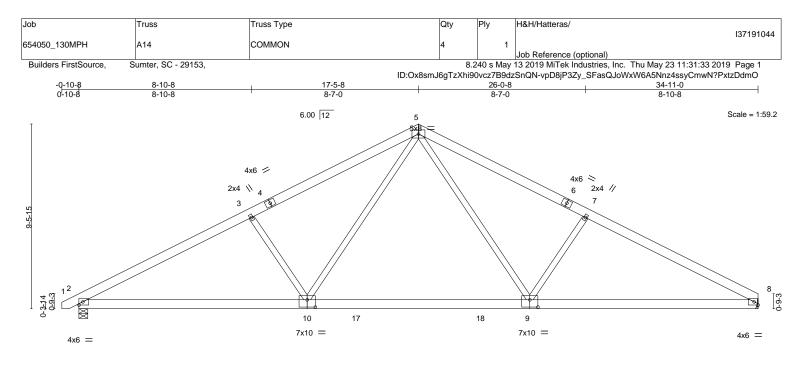
🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	<u>11-8-13</u> 11-8-13	17-5-8		<u>23-2</u> 5-8-				<u>34-11-0</u> 11-8-13	
Plate Offsets (X,Y)	[2:0-8-0,0-0-4], [6:0-0-0,0-0-0], [8:0-8-0,0		-5-0,0-4-8]	5-0-				11-0-13	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.37 BC 0.87 WB 0.57 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.30 -0.43 0.06 0.09	10 10 8	l/defl >999 >974 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 240 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x6 S WEBS 2x4 S 12-13: WEDGE Left: 2x4 SP No.3, Rig			BRACING- TOP CHOR BOT CHOR WEBS	D	Rigid c		ectly applied.	irectly applied. 12-13	
Max H Max U	 e) 2=1438/0-5-8, 8=1396/Mechanical dorz 2=212(LC 16) Jplift 2=-389(LC 12), 8=-367(LC 13) Comp./Max. Ten All forces 250 (lb) or 1 								

- TOP CHORD 2-3=-2374/1048. 3-5=-2099/1043. 5-7=-2101/1044. 7-8=-2375/1049
- BOT CHORD 2-11=-790/2027, 10-11=-399/1455, 9-10=-399/1455, 8-9=-791/2029
- 5-13=-318/885, 9-13=-300/779, 7-9=-503/478, 11-12=-299/779, 5-12=-317/885, WEBS 3-11=-501/478

NOTES-(9)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=389, 8=367.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.


LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

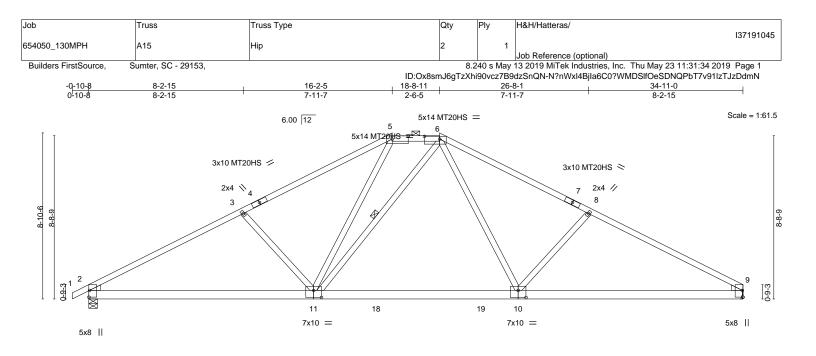
Uniform Loads (plf) Vert: 1-5=-60, 5-8=-60, 15-18=-20

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPERVICE PAGE MIT-14/3 refer to 1000 SEC. Design valid for use only with MITER design connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

<u> </u>		<u>23-2-3</u> 11-5-5	<u>34-11-0</u> 11-8-13	
Plate Offsets (X,Y) [6:0-0-0,0-0-0], [9:0-5-	0,0-4-8], [10:0-5-0,0-4-8]			
LOADING (psf)SPACING-TCLL20.0Plate Grip DOLTCDL10.0Lumber DOLBCLL0.0 *Rep Stress IncrBCDL10.0Code IRC2015	1.15 BC 0.66 YES WB 0.68	DEFL. in (loc) //dt Vert(LL) -0.25 9-10 >90 Vert(CT) -0.39 9-10 >90 Horz(CT) 0.06 8 m Wind(LL) 0.09 9-10 >90	99 360 MT20 99 240 v/a n/a	GRIP 244/190 FT = 20%
UMBER- OP CHORD 2x6 SP No.2 30T CHORD 2x6 SP No.2 VEBS 2x4 SP No.3 REACTIONS. (lb/size) 2=1438/0-5-8, 8=' Max Horz 2=212(LC 16) Max Uplift 2=-389(LC 12), 8=			rood sheathing directly applied. g directly applied.	
TOP CHORD 2-3=-2376/1048, 3-5=-2101 BOT CHORD 2-10=-789/2029, 9-10=-362	forces 250 (lb) or less except when show /1043, 5-7=-2103/1044, 7-8=-2378/1048 /1370, 8-9=-790/2031 9, 5-10=-314/808, 3-10=-501/478			
NOTES- (9) 1) Unbalanced roof live loads have been cons 2) Wind: ASCE 7-10; Vult=130mph (3-second MWFRS (envelope) gable end zone and C MWFRS for reactions shown; Lumber DOL 3) This truss has been designed for a 10.0 ps 4) * This truss has been designed for a live lo will fit between the bottom chord and any c 5) All bearings are assumed to be User Defin	I gust) Vasd=103mph; TCDL=6.0psf; BC -C Exterior(2) zone; end vertical left and .=1.60 plate grip DOL=1.60 f bottom chord live load nonconcurrent w ad of 20.0psf on the bottom chord in all a ther members, with BCDL = 10.0psf.	right exposed;C-C for members and for vith any other live loads.	ces &	

Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=389, 8=367.


8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

F	<u>12-0-0</u> 12-0-0		11-0 11-0			34-11-0 12-0-0	
Plate Offsets (X,Y)				0-0-7], [9:0-0-4,0			8],
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	TC 0.73 Ve BC 0.64 Ve WB 0.38 He	EFL. in ert(LL) -0.27 ert(CT) -0.41 orz(CT) 0.06 ind(LL) 0.12	10-11 >999 9 n/a	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 202 lb	GRIP 244/190 187/143 FT = 20%
BOT CHORD 2x	4 SP No.2 5 SP No.2 4 SP No.3	тс вс	T CHORD			applied, except	
Left: 2x4 SP No.3,	Right: 2x4 SP No.3			T NOW at midpt	0-11		

REACTIONS. (lb/size) 2=1450/0-5-8, 9=1396/Mechanical Max Horz 2=200(LC 16) Max Uplift 2=-384(LC 12), 9=-355(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-2344/1041, 3-5=-2034/970, 5-6=-1451/858, 6-8=-2035/971, 8-9=-2347/1042

BOT CHORD 2-11=-790/2008, 10-11=-396/1448, 9-10=-792/2011

WEBS 3-11=-446/450, 5-11=-222/636, 6-11=-248/256, 6-10=-225/672, 8-10=-449/451

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) All plates are MT20 plates unless otherwise indicated.

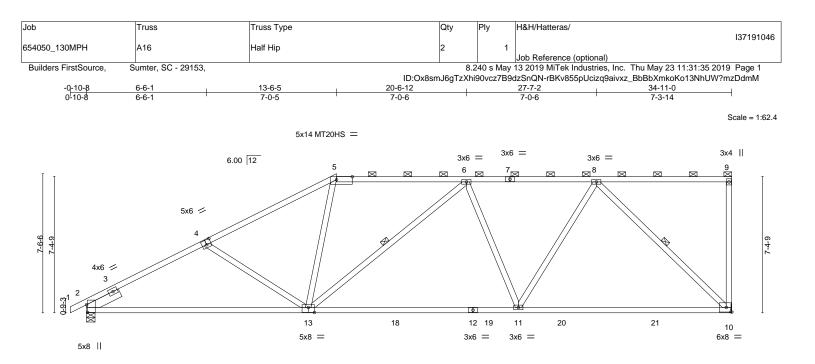
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) All bearings are assumed to be User Defined crushing capacity of 565 psi.

8) Refer to girder(s) for truss to truss connections.

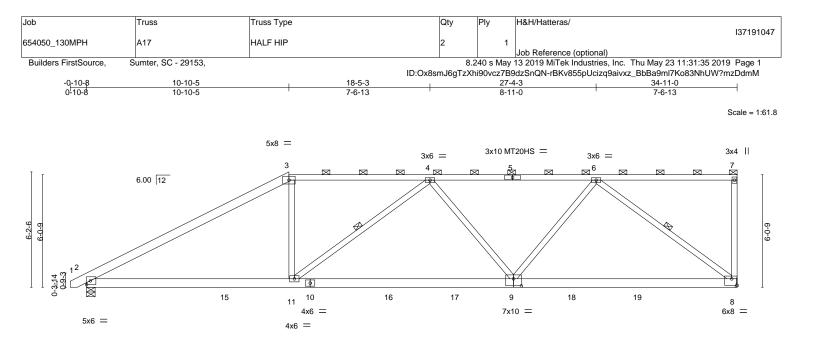
9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=384, 9=355.


10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WWWWWWWWWW You www. SEAL .10 minim May 24,2019

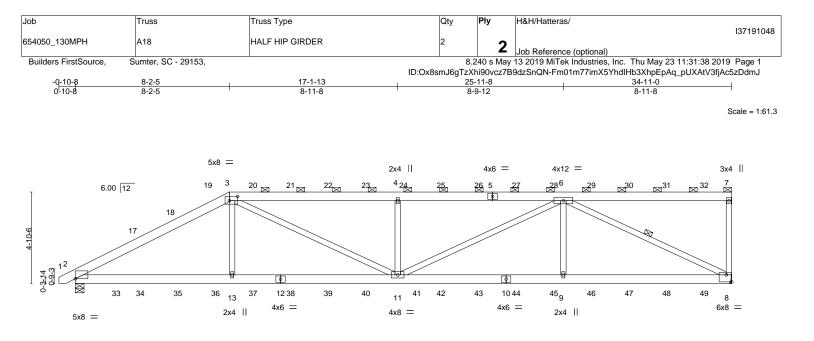
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


	12-0-0		23-4-8		34-11-0
	12-0-0		11-4-8		11-6-8
Plate Offsets (X,Y)	[2:0-5-0,0-0-10], [4:0-3-0,0-3-0], [5:0-10-	4,0-2-0], [13:0-4-0,0-3-4]	Ļ		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.88 BC 0.82 WB 0.85 Matrix-AS	DEFL. in (loc) Vert(LL) -0.36 11-13 Vert(CT) -0.69 10-11 Horz(CT) 0.08 10 Wind(LL) 0.15 11-13	>999 360 >607 240 n/a n/a	PLATES GRIP MT20 244/190 MT20HS 187/143 Weight: 196 lb FT = 20%
10-12: 2 WEBS 2x4 SP	PNo.1 *Except* 2x4 SP SS		2-0-0 BOT CHORD Rigid	oc purlins (3-10-9 max.) ceiling directly applied.	ectly applied, except end verticals, and : 5-9. -13, 8-10
Max Ho Max Up	e) 10=1390/Mechanical, 2=1444/0-5-8 lorz 2=367(LC 12) lplift 10=-459(LC 9), 2=-334(LC 12) krav 10=1424(LC 2), 2=1444(LC 1)				
TOP CHORD 2-4=-2 BOT CHORD 2-13= WEBS 4-13=	Comp./Max. Ten All forces 250 (lb) or -2301/923, 4-5=-2008/775, 5-6=-1634/77 =-1082/1991, 11-13=-732/1713, 10-11=- =-320/367, 5-13=-32/539, 6-13=-280/184 =-1586/703	71, 6-8=-1606/605 503/1167			
 Wind: ASCE 7-10; V MWFRS (envelope) reactions shown; Lur Provide adequate dr: All plates are MT20 p This truss has been This truss has been * This truss has been * This truss has been Will fit between the br All bearings are assu Refer to girder(s) for Provide mechanical of 10=459, 2=334. This truss design re sheetrock be applie 	e loads have been considered for this de: /ult=130mph (3-second gust) Vasd=103r gable end zone and C-C Exterior(2) zon imber DOL=1.60 plate grip DOL=1.60 rainage to prevent water ponding. plates unless otherwise indicated. designed for a 10.0 psf bottom chord livin n designed for a live load of 20.0psf on the bottom chord and any other members, wi umed to be User Defined crushing capacity r truss to truss connections. connection (by others) of truss to bearin equires that a minimum of 7/16" structurated directly to the bottom chord. presentation does not depict the size or the	mph; TCDL=6.0psf; BCDL he; end vertical left expose the load nonconcurrent with the bottom chord in all are ith BCDL = 10.0psf. city of 565 psi. Ing plate capable of withsta al wood sheathing be app	ed;C-C for members and forces h any other live loads. eas where a rectangle 3-6-0 tall anding 100 lb uplift at joint(s) exc plied directly to the top chord and	& MWFRS for by 2-0-0 wide	SEAL 45844

- 10=459. 2=334. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

10 May 24,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



—	<u>10-10-5</u> 10-10-5		<u>22-11-0</u> 12-0-11		<u>34-11-0</u> 12-0-0			
Plate Offsets (X,Y)	[8:Edge,0-4-4], [9:0-5-0,0-4-8]		12-0-11		12-0-0			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.91 BC 0.74 WB 0.85 Matrix-AS	- ()	8-9 >999 360 8-9 >999 240 8 n/a n/a	PLATES MT20 MT20HS Weight: 211 lb	GRIP 244/190 187/143 FT = 20%		
BOT CHORD 2x6 SP WEBS 2x4 SP REACTIONS. (lb/size Max H			2-0 BOT CHORD Rig	uctural wood sheathing -0 oc purlins (2-2-0 max id ceiling directly applie ow at midpt		end verticals, and		
TOP CHORD 2-3=- BOT CHORD 2-11=	Comp./Max. Ten All forces 250 (lb) or 2301/809, 3-4=-1965/841, 4-6=-1980/71 842/1951, 9-11=-926/2182, 8-9=-629/1 34/585, 4-11=-452/293, 4-9=-405/349,	0 473	81					

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	8-2-5	<u>17-1-13</u> 8-11-8	25-11-8		<u>34-11-0</u> 8-11-8	
Plate Offsets (X,Y)	[2:0-0-0,0-0-0], [3:0-5-4,0-2-12], [8:Edg		0-9-12		0-11-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.56 BC 0.63 WB 0.78 Matrix-MS	DEFL. in (loc) //de Vert(LL) 0.25 9-11 >95 Vert(CT) -0.28 9-11 >95 Horz(CT) 0.07 8 n	99 240	PLATES MT20 Weight: 467 lb	GRIP 244/190 FT = 20%
Max H	P No.2		except end	verticals, and 2-0 directly applied	rectly applied or 6-0-0 ∂)-0 oc purlins (5-10-4 m or 10-0-0 oc bracing. 5-8	
TOP CHORD 2-3= BOT CHORD 2-13 WEBS 3-13	Comp./Max. Ten All forces 250 (lb) c -4574/2514, 3-4=-5536/3350, 4-6=-553 =-2301/3974, 11-13=-2302/3991, 9-11 =-56/659, 3-11=-1211/1824, 4-11=-100 -4699/2857	6/3350, 7-8=-395/353 -2596/4270, 8-9=-2596/42	70			
Top chords connect Bottom chords conn Webs connected as 2) All loads are consid ply connections hav 3) Unbalanced roof liv 4) Wind: ASCE 7-10; N	nnected together with 10d (0.131"x3") n ed as follows: 2x6 - 2 rows staggered a rected as follows: 2x6 - 2 rows staggered follows: 2x4 - 1 row at 0-9-0 oc. ered equally applied to all plies, except e been provided to distribute only loads e loads have been considered for this d /ult=130mph (3-second gust) Vasd=103	t 0-9-0 oc, 2x4 - 1 row at 0 d at 0-9-0 oc. if noted as front (F) or back noted as (F) or (B), unless esign. Bmph; TCDL=6.0psf; BCDL	 (B) face in the LOAD CASE(S) sections otherwise indicated. =6.0psf; h=25ft; Cat. II; Exp C; Enclosed 	·		A1111111
 5) Provide adequate d 6) This truss has been 7) * This truss has been will fit between the b 8) All bearings are ass 9) Refer to girder(s) for 	gable end zone; end vertical left exposi rainage to prevent water ponding. designed for a 10.0 psf bottom chord li in designed for a live load of 20.0psf on bottom chord and any other members. umed to be User Defined crushing capier r truss to truss connections. al connection (by others) of truss to bea	ve load nonconcurrent with the bottom chord in all are acity of 565 psi.	any other live loads. as where a rectangle 3-6-0 tall by 2-0		AUNARTH	SEAL

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb 8=1627, 2=1389.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Hatteras/
654050 130MPH	A18	HALF HIP GIRDER	2		137191048
054050_130MPH	AIO	HALF HIP GIRDER	2	2	Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,		8.	240 s May	13 2019 MiTek Industries, Inc. Thu May 23 11:31:38 2019 Page 2

NOTES-

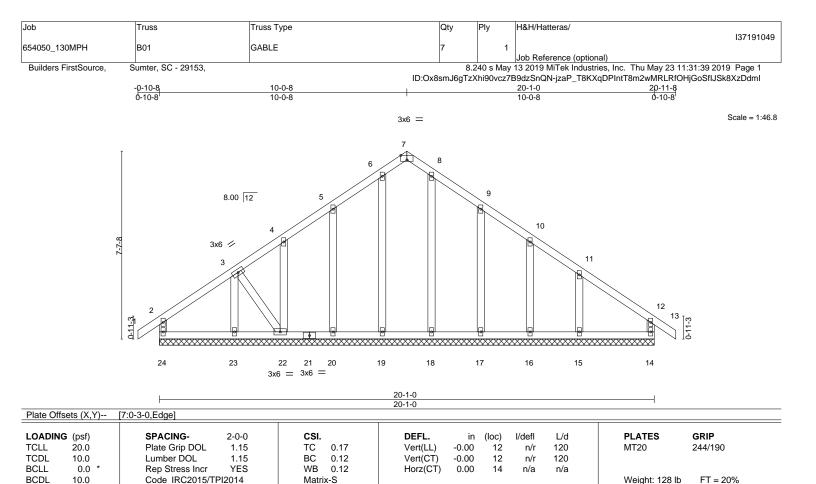
ID:Ox8smJ6gTzXhi90vcz7B9dzSnQN-Fm01m77imX5YhdIHb3XhpEpAq_pUXAtV3fjAc5zDdmJ

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 86 lb down and 91 lb up at 3-5-8, 41 lb down and 53 lb up at 5-5-8, 149 lb down and 137 lb up at 7-5-8, 167 lb down and 164 lb up at 9-5-8, 167 lb down and 164 lb up at 11-5-8, 167 lb down and 164 lb up at 13-5-8, 167 lb down and 164 lb up at 15-5-8, 167 lb down and 164 lb up at 15-5-8, 167 lb down and 164 lb up at 15-5-8, 167 lb down and 164 lb up at 12-5-8, 167 lb down and 164 lb up at 23-5-8, 167 lb down and 25 lb up at 33-5-8 on top chord, and 21 lb up at 12 lb up at 15-5-8, 105 lb down and 25 lb up at 33-5-8 on top chord, and 21 lb down and 25 lb up at 11-5-8, 68 lb down and 25 lb up at 15-5-8, 68 lb down and 25 lb up at 11-5-8, 68 lb down and 25 lb up at 13-5-8, 68 lb down and 25 lb up at 13-5-8, 68 lb down and 25 lb up at 23-5-8, 68 lb down and 25 lb up at 23-5-8, 68 lb down and 25 lb up at 23-5-8, 68 lb down and 25 lb up at 33-5-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)


Vert: 1-3=-60, 3-7=-60, 8-14=-20

Concentrated Loads (lb)

Vert: 17=-46(B) 18=-1(B) 19=-74(B) 20=-95(B) 21=-95(B) 22=-95(B) 23=-95(B) 24=-95(B) 25=-95(B) 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-

TOP CHORD

BOT CHORD

FORCES.	(lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.

13). 15=-207(LC 13)

20), 15=269(LC 20)

WEBS 3-22=-233/279

NOTES-

LUMBER-

WEBS

OTHERS

TOP CHORD

BOT CHORD

REACTIONS.

(lb) -

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

2x4 SP No.3

Max Grav

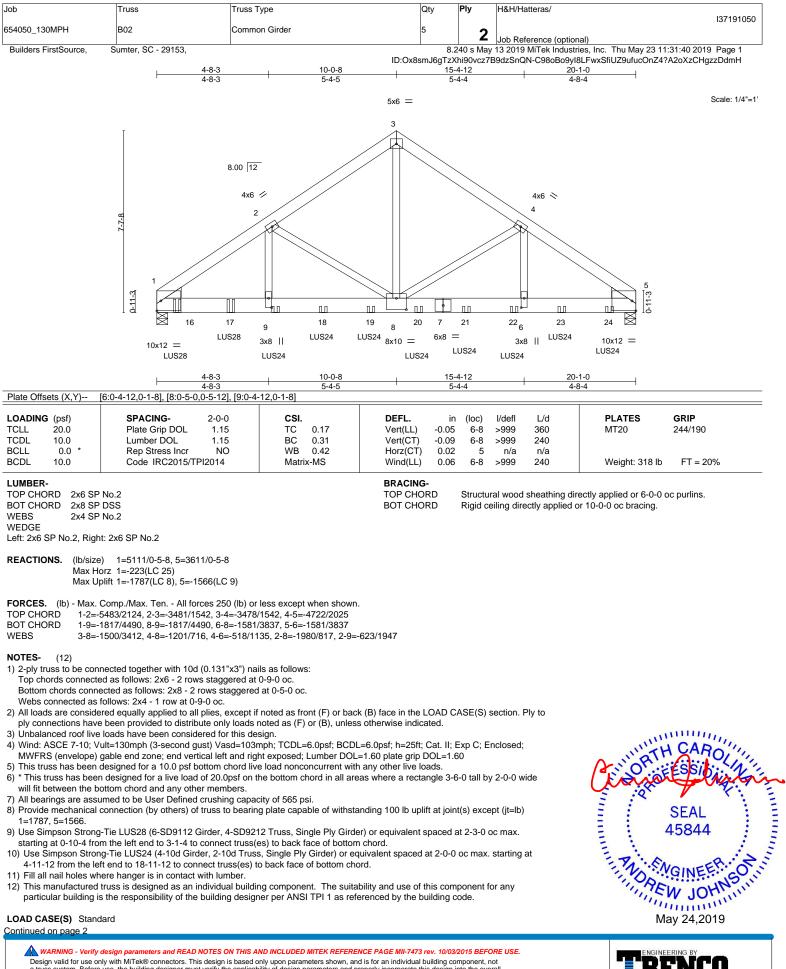
All bearings 20-1-0. Max Horz 24=-277(LC 10)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Max Uplift All uplift 100 lb or less at joint(s) 24, 19, 23, 16 except 20=-138(LC 12), 22=-297(LC 12), 17=-151(LC

All reactions 250 lb or less at joint(s) 24, 14, 19, 20, 18, 17, 16 except 22=299(LC 19), 23=280(LC

- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 19, 23, 16 except (jt=lb) 20=138, 22=297, 17=151, 15=207.


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing

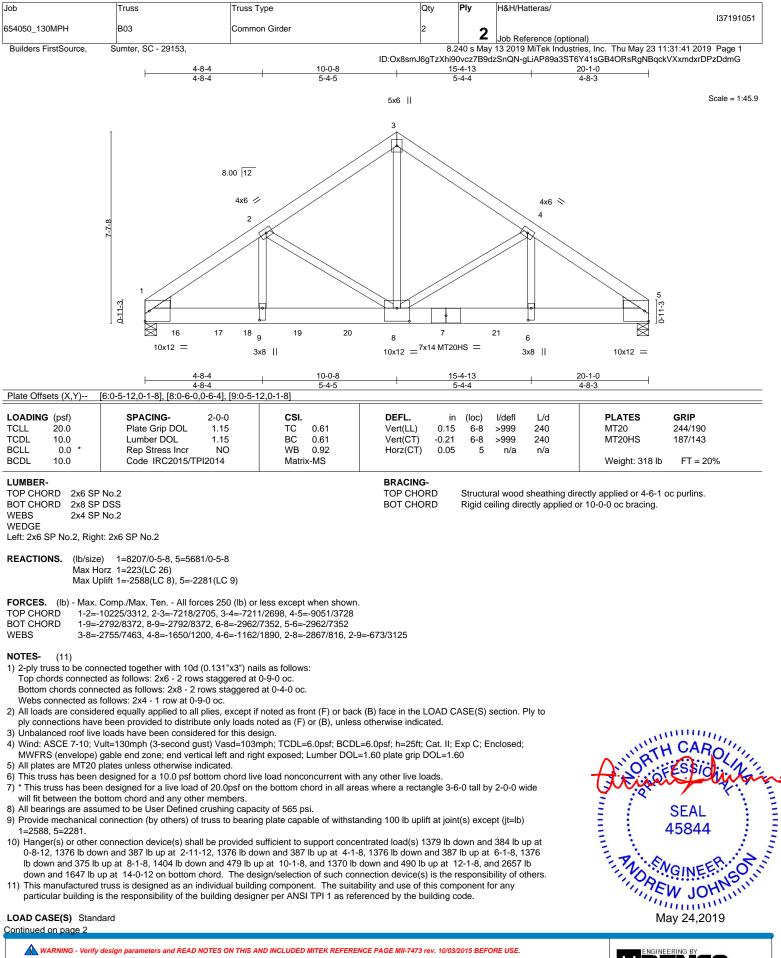
except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

besign valid for dise only with with with exercising is based only door parameters shown, and is for an individual building Completin, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Hatteras/
					137191050
654050_130MPH	B02	Common Girder	5	2	
				~	Job Reference (optional)
Builders FirstSource, S	umter, SC - 29153,		8.2	40 s May	13 2019 MiTek Industries, Inc. Thu May 23 11:31:40 2019 Page 2
		ID:Ox8s	smJ6gTzX	hi90vcz7B	9dzSnQN-C98oBo9yI8LFwxSfiUZ9ufucOnZ4?A2oXzCHgzzDdmH

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 10-13=-20

Concentrated Loads (lb)

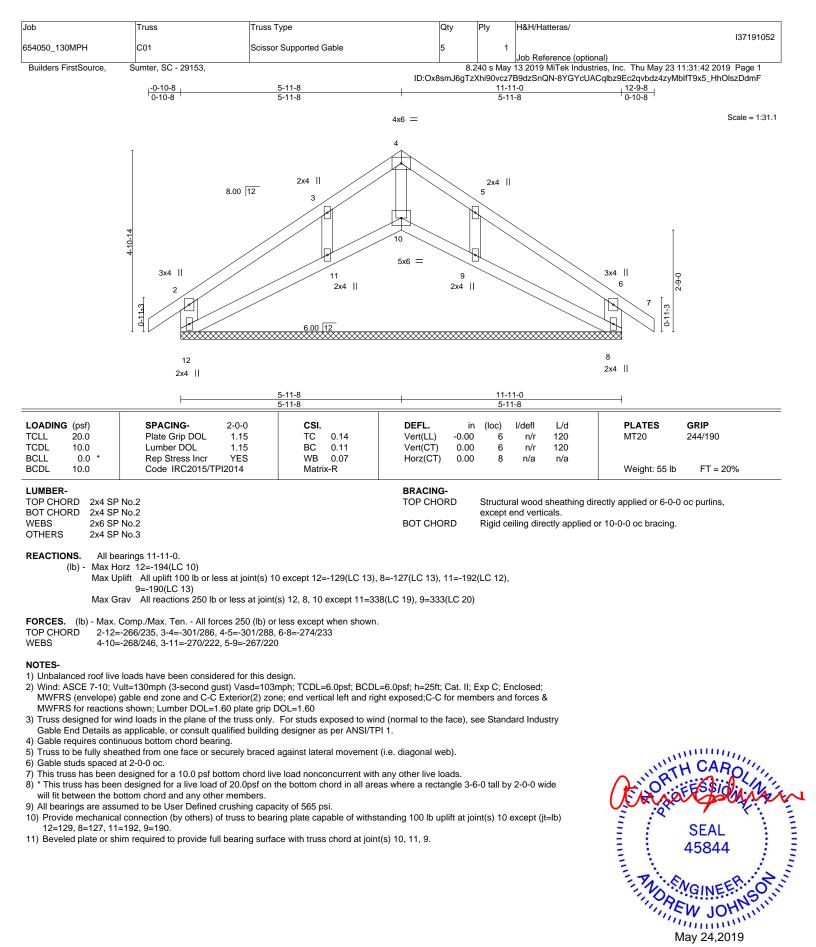
Vert: 9=-531(B) 16=-1435(B) 17=-1434(B) 18=-531(B) 19=-531(B) 20=-531(B) 21=-531(B) 22=-531(B) 23=-531(B) 24=-531(B) 24=-

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

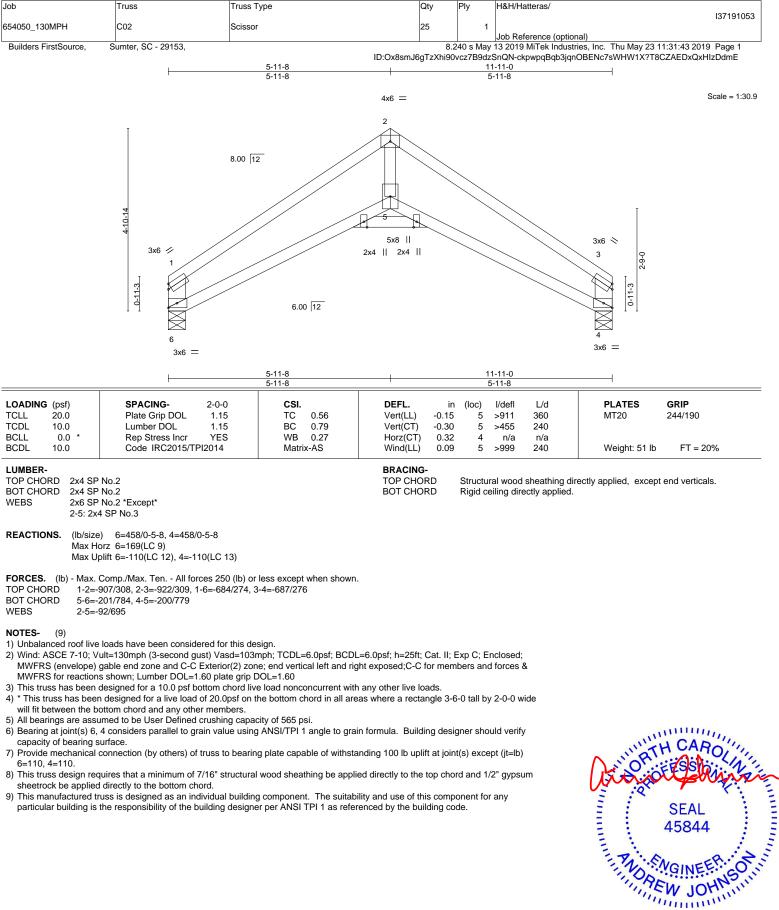
Design valid for use only using indicated is to prevent building designer must verify the applicability of design parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Hatteras/	
			_		137191051	
654050_130MPH	B03	Common Girder	2	2		
				~	Job Reference (optional)	
Builders FirstSource, S	umter, SC - 29153,		8.2	40 s May	13 2019 MiTek Industries, Inc. Thu May 23 11:31:41 2019 Page 2	
		ID:0x8smJ6gTzXhi90vcz7B9dzSnQN-gLiAP89a3ST6Y41sGB4ORsRgNBqckVXxmdxrDPzDdmG				

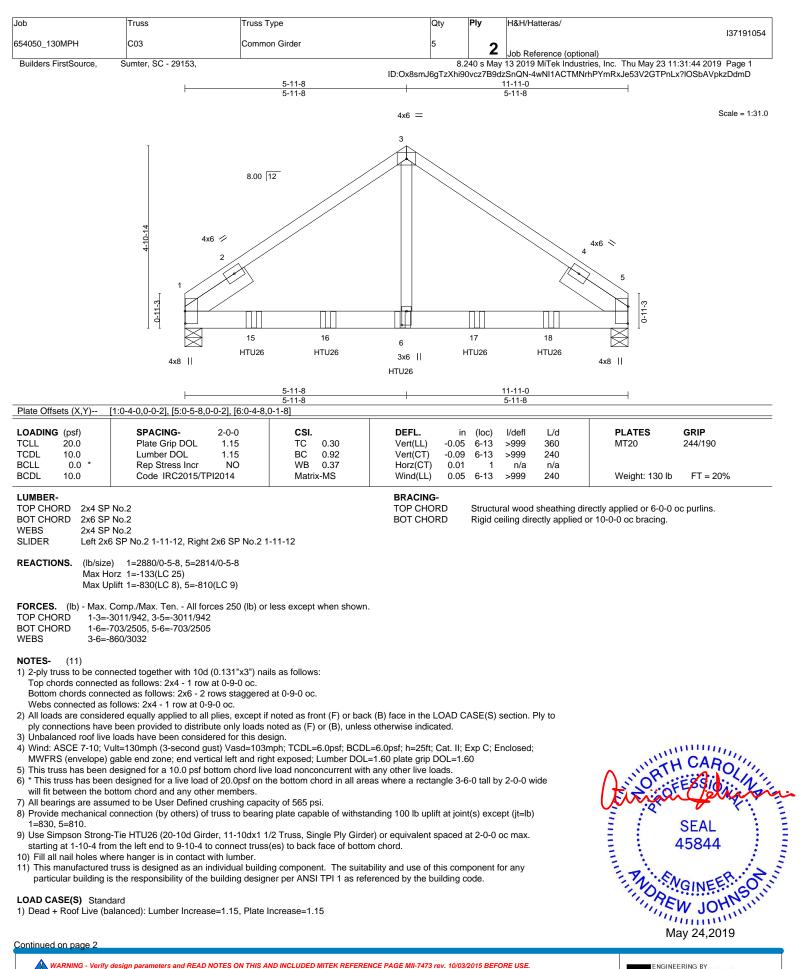
1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 10-13=-20

Concentrated Loads (lb)


Vert: 7=-1370(B) 8=-1370(B) 16=-1379(B) 17=-1376(B) 18=-1376(B) 19=-1376(B) 20=-1376(B) 21=-2657(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

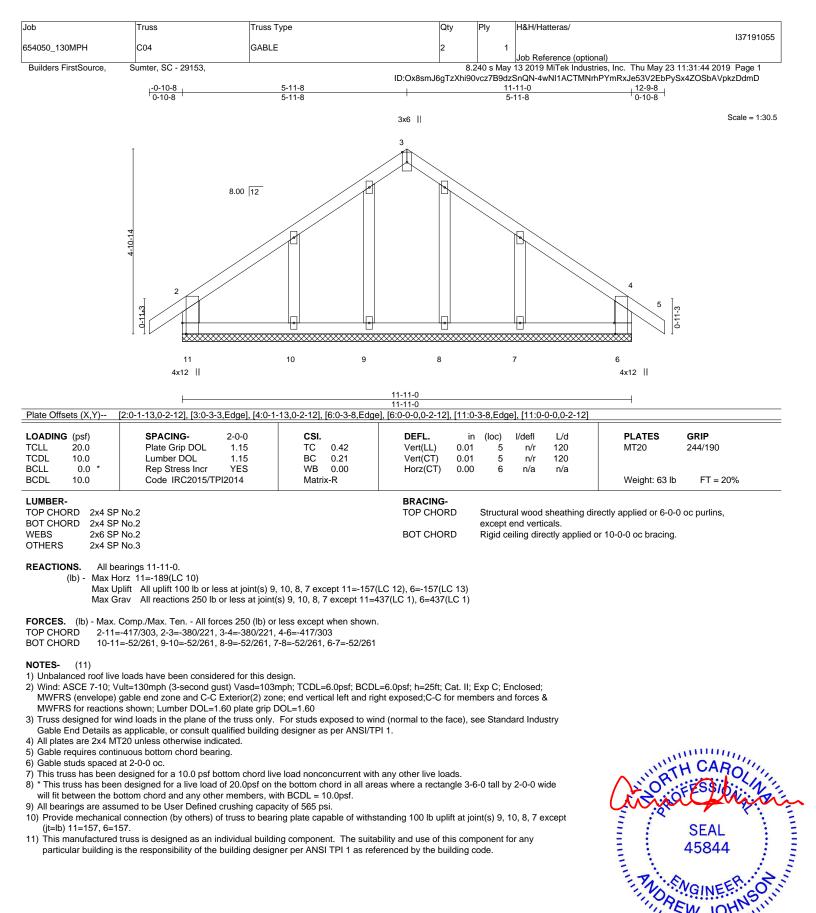


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

May 24,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

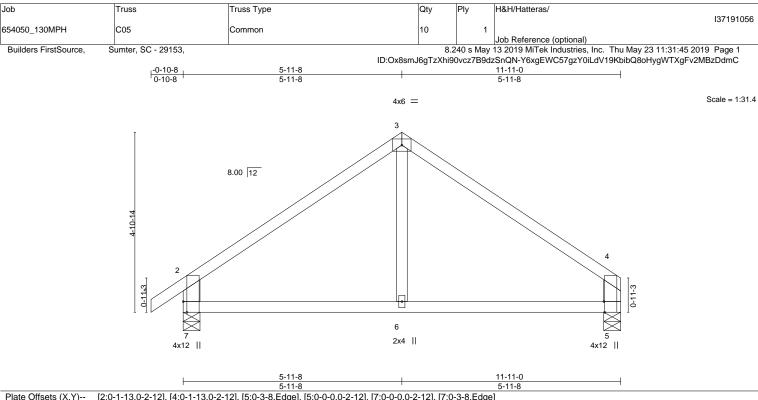
Design valid for use only with MiTek onnectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


Job	Truss	Truss Type	Qty	Ply	H&H/Hatteras/	
		· ·			I37191054	
654050_130MPH	C03	Common Girder	5	2		
				L	Job Reference (optional)	
Builders FirstSource, S	Sumter, SC - 29153,		8.2	40 s May	13 2019 MiTek Industries, Inc. Thu May 23 11:31:44 2019 Page 2	
		ID:Ox8smJ6gTzXhi90vcz7B9dzSnQN-4wNI1ACTMNrhPYmRxJe53V2GTPnLx?IOSbAVpkzDdmD				

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 7-11=-20

Concentrated Loads (lb) Vert: 6=-948(B) 15=-948(B) 16=-948(B) 17=-948(B) 18=-948(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



mmm May 24,2019 📣 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

EW

101

Plate Offsets (X,Y)	[2:0-1-13,0-2-12], [4:0-1-13,0-2-12], [5:0	-3-8,Edge], [5:0-0-0,0-2-1	12], [7:0-0-0,0-2-12], [7:0	-3-8,Edge	9]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.36 BC 0.26 WB 0.09 Matrix-AS	DEFL. ir Vert(LL) 0.03 Vert(CT) -0.05 Horz(CT) 0.01	6-7 6-7	l/defi L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP	BRACING- TOP CHORD BOT CHORD		al wood sheathing dir iling directly applied.	ectly applied, except	end verticals.		

BOT CHORD 2x4 SP No.2 WEBS

2x6 SP No.2 *Except* 3-6: 2x4 SP No.3

REACTIONS. (lb/size) 7=528/0-5-8, 5=455/0-5-8 Max Horz 7=181(LC 11) Max Uplift 7=-147(LC 12), 5=-110(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-482/194, 3-4=-477/193, 2-7=-482/280, 4-5=-418/204

BOT CHORD 6-7=-72/335, 5-6=-72/335

NOTES-(8)

1) Unbalanced roof live loads have been considered for this design.

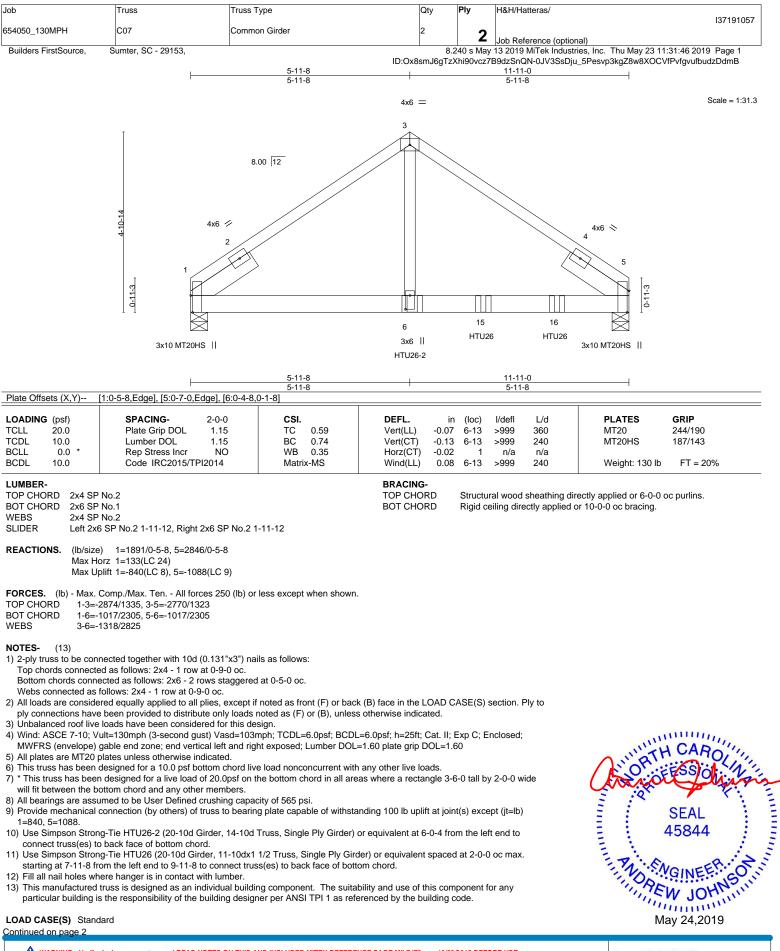
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=147, 5=110.

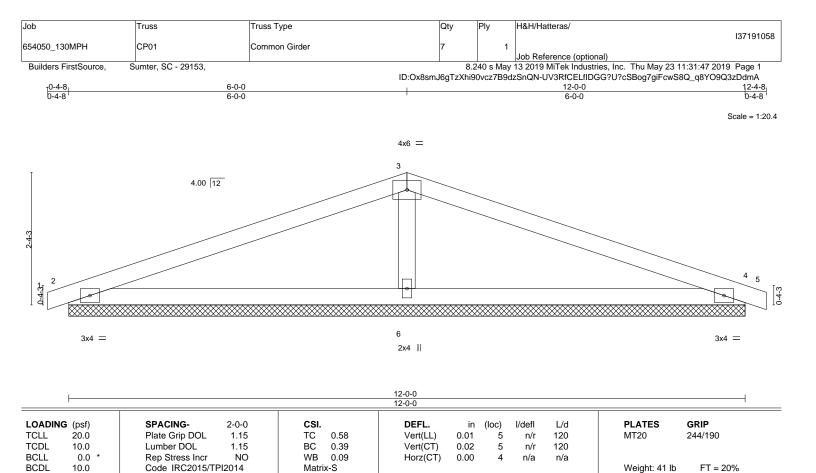

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010, 00526. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Hatteras/		
					137191057		
654050_130MPH	C07	Common Girder	2	2			
				_	Job Reference (optional)		
Builders FirstSource,	Sumter, SC - 29153,		8.	240 s May	13 2019 MiTek Industries, Inc. Thu May 23 11:31:46 2019 Page 2		
		ID:Ox8smJ6qTzXhi90vcz7B9dzSnQN-0JV3SsDju_5Pesvp3kgZ8w8XOCVfPvfqvufbudzDdmB					


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 7-11=-20 Concentrated Loads (lb)

Vert: 6=-1888(B) 15=-948(B) 16=-948(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-

TOP CHORD

BOT CHORD

```
LUMBER-
```

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

REACTIONS. (lb/size) 2=228/12-0-0, 4=228/12-0-0, 6=549/12-0-0 Max Horz 2=48(LC 12) Max Uplift 2=-103(LC 8), 4=-109(LC 9), 6=-120(LC 8) Max Grav 2=235(LC 23), 4=235(LC 24), 6=549(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-6=-366/288

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

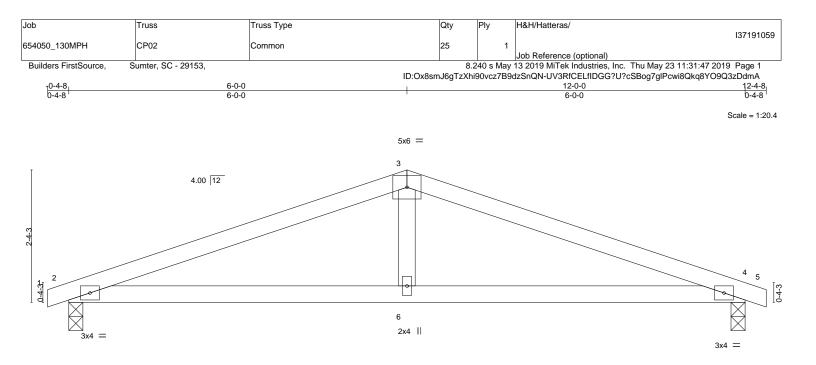
6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) All bearings are assumed to be User Defined crushing capacity of 565 psi.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=103, 4=109, 6=120.

10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 4.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MITek Affiliate 818 Soundside Road Edenton, NC 27932

	6-0-0 6-0-0		<u>12-0-0</u> 6-0-0
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) 0.10 6-12 >999 240 MT20 244/190 Vert(CT) -0.09 6-9 >999 240 MT20 244/190
TCLL 20.0	Plate Grip DOL 1.15	TC 0.44	
TCDL 10.0	Lumber DOL 1.15	BC 0.43	
3CLL 0.0 *	Rep Stress Incr YES	WB 0.10	Horz(CT) -0.01 4 n/a n/a
3CDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Weight: 41 lb FT = 20 ⁴

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.3

REACTIONS. (lb/size) 2=503/0-3-0, 4=503/0-3-0 Max Horz 2=-48(LC 13) Max Uplift 2=-312(LC 8), 4=-312(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-902/1210, 3-4=-902/1210

2-6=-1072/826, 4-6=-1072/826 BOT CHORD

WEBS 3-6=-407/267

NOTES-

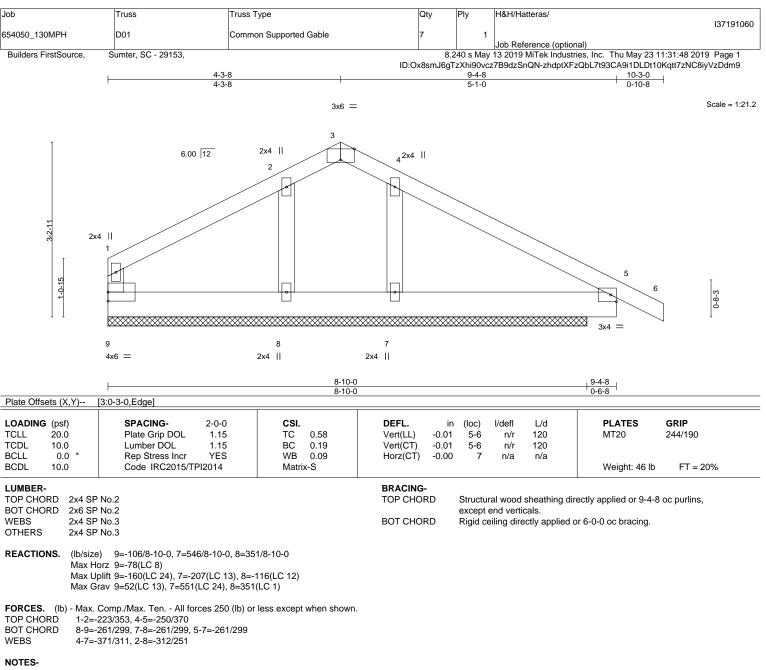
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=312. 4=312.


7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

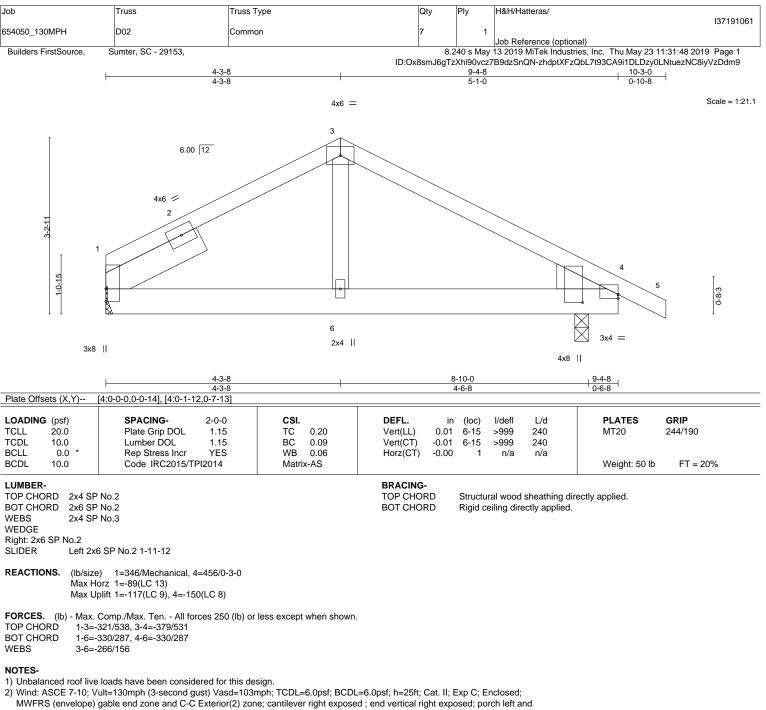
LUMBER-

WWWWWWWW Summerine SEAL 5844 101 mmm May 24,2019

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable studs spaced at 2-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be User Defined crushing capacity of 565 psi.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=160, 7=207, 8=116.

9) Non Standard bearing condition. Review required.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

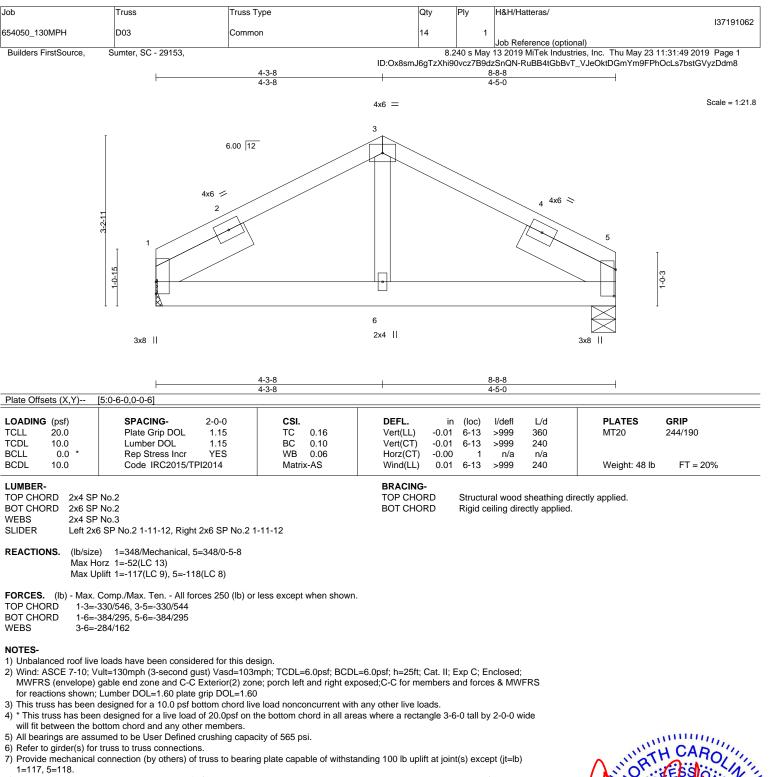
right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

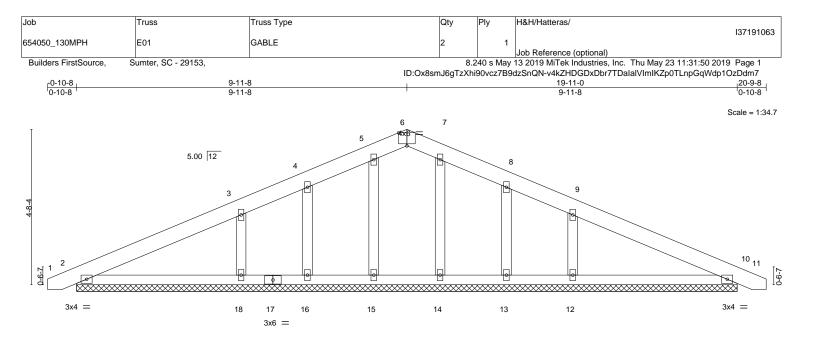
5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=117, 4=150.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

 			<u>19-11-0</u> 19-11-0				
Plate Offsets (X,Y) [6:0-3-0,Edge]	1				1	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.13 BC 0.17 WB 0.08 Matrix-S	Vert(CT)	in (loc) 0.00 11 0.01 11 0.00 10	l/defl L/d n/r 120 n/r 120 n/a n/a	PLATES MT20 Weight: 109 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x4 SP			BRACING- TOP CHORD BOT CHORD		ral wood sheathing dire eiling directly applied o		oc purlins.

OTHERS 2x4 SP No.3

REACTIONS. All bearings 19-11-0.

(lb) -Max Horz 2=-100(LC 13)

Max Uplift All uplift 100 lb or less at joint(s) 2, 15, 16, 13, 10 except 18=-188(LC 12), 12=-186(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 15, 16, 14, 13, 10 except 18=402(LC 1), 12=402(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3-18=-299/266, 9-12=-299/266 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

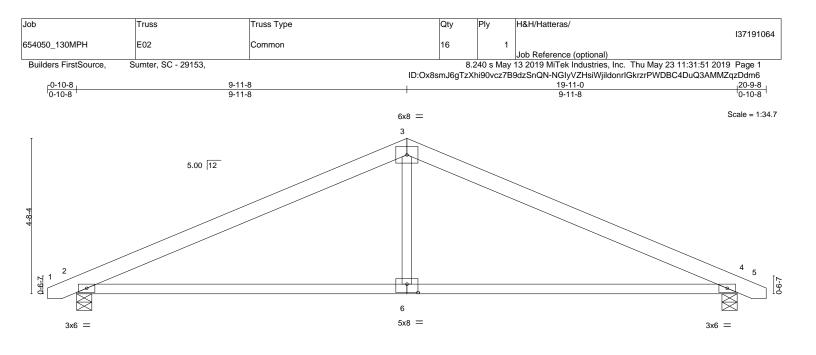
4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


9) All bearings are assumed to be User Defined crushing capacity of 565 psi.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 15, 16, 13, 10 except (jt=lb) 18=188, 12=186.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

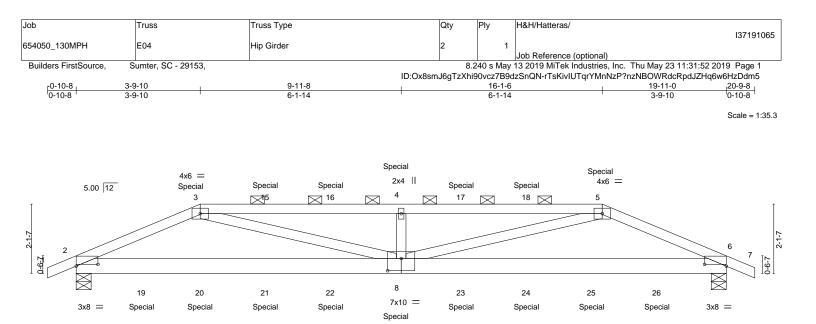
	9-11-8 9-11-8			<u>19-11-0</u> 9-11-8	
Plate Offsets (X,Y)	[6:0-4-0,0-3-0]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.56 BC 0.85 WB 0.15 Matrix-AS	DEFL. in (loc) Vert(LL) -0.13 6-12 Vert(CT) -0.28 6-12 Horz(CT) 0.02 4 Wind(LL) 0.13 6-9	>999 360 MT >844 240 n/a n/a	ATES GRIP '20 244/190 bight: 91 lb FT = 20%
Max He	No.2			ural wood sheathing directly appli ceiling directly applied.	ied.
TOP CHORD 2-3=-	Comp./Max. Ten All forces 250 (lb) or 1235/530, 3-4=-1235/530 340/1080, 4-6=-340/1080 /404	less except when shown.			
NOTES- 1) Unbalanced roof live	loads have been considered for this de	sign.			

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.


 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=235, 4=235.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	<u>9-11-8</u> 9-11-8			<u> </u>		
Plate Offsets (X,Y)	[2:0-8-0,0-0-11], [6:0-8-0,0-0-11], [8:0-5	0,0-4-8]		3-11-0		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.81 BC 0.46 WB 0.34 Matrix-MS	Vert(LL) -0.12	(loc) I/defl L/d 8 >999 360 3-11 >999 240 6 n/a n/a 8 >999 240	PLATES MT20 Weight: 101 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x6 SF WEBS 2x4 SF	P No.2 P No.2		2-	tructural wood sheathing dii -0-0 oc purlins (2-11-6 max. igid ceiling directly applied o): 3-5.	oc purlins, except
Max H	e) 2=883/0-5-8, 6=882/0-5-8 lorz 2=-44(LC 32) lplift 2=-384(LC 4), 6=-382(LC 5)					
TOP CHORD 2-3= BOT CHORD 2-8=	Comp./Max. Ten All forces 250 (lb) or 1559/780, 3-4=-2488/1175, 4-5=-2488/1 -673/1420, 6-8=-665/1420 -458/1146, 4-8=-409/322, 5-8=-462/1145	175, 5-6=-1558/777				
 2) Wind: ASCE 7-10; MWFRS (envelope) 3) Provide adequate d 4) This truss has been 5) * This truss has been will fit between the f 6) All bearings are ass 7) Provide mechanical 2=384, 6=382. 8) Graphical purlin rep 9) Hanger(s) or other of 3-9-10, 83 lb down at 49 lb up at 11-10-4 and 24 lb up at 2-00 15 lb down and 16 l 11) bu pat 15-10-4, are the responsibility of 10) In the LOAD CASE 11) This manufacture particular building LOAD CASE(S) Stan 	E(S) section, loads applied to the face of I truss is designed as an individual buildin is the responsibility of the building design	nph; TCDL=6.0psf; BCDL nt exposed; Lumber DOL= e load nonconcurrent with he bottom chord in all are city of 565 psi. g plate capable of withsta e orientation of the purlin ifficient to support concen 9 lb up at 7-10-4, 83 lb d k, and 77 lb down and 49 5 lb down and 16 lb up at at 11-10-4, 15 lb down ar h bottom chord. The desig the truss are noted as froi ng component. The suital her per ANSI TPI 1 as refe	=1.60 plate grip DOL=1.60 any other live loads. as where a rectangle 3-6-0 nding 100 lb uplift at joint(s) along the top and/or bottom trated load(s) 76 lb down ar own and 49 lb up at 9-10-4 lb up at 16-1-6 on top chore : 5-10-4, 15 lb down and 16 dl 16 lb up at 13-10-4, and n/selection of such connec nt (F) or back (B). billity and use of this compor	tall by 2-0-0 wide) except (jt=lb) n chord. nd 49 lb up at 4, 83 lb down and	AND RE	SEAL 45844

Continued on page 2

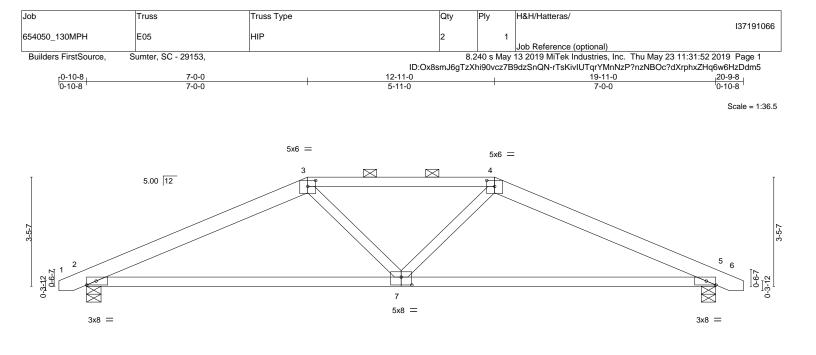
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Hatteras/
					137191065
654050 130MPH	E04	Hip Girder	2	1	
_					Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,		8.2	240 s May	13 2019 MiTek Industries, Inc. Thu May 23 11:31:52 2019 Page 2

ID:Ox8smJ6gTzXhi90vcz7B9dzSnQN-rTsKivIUTqrYMnNzP?nzNBOWRdcRpdJZHq6w6HzDdm5

LOAD CASE(S) Standard

Uniform Loads (plf)


Vert: 1-3=-60, 3-5=-60, 5-7=-60, 9-12=-20

Concentrated Loads (lb)

Vert: 8=-4(B) 19=-18(B) 20=-4(B) 21=-4(B) 22=-4(B) 23=-4(B) 24=-4(B) 25=-4(B) 26=-18(B)

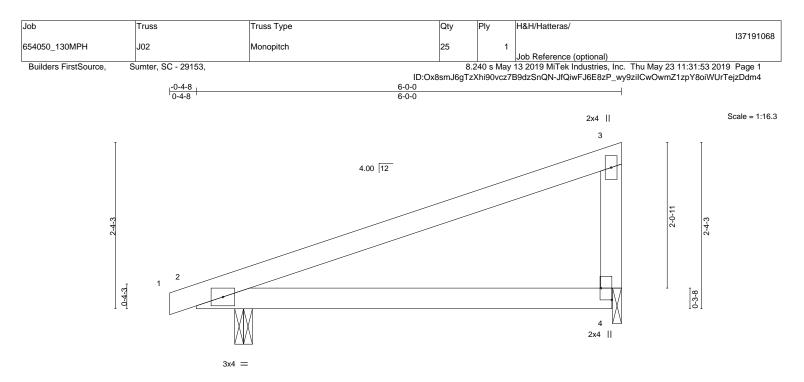
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

9-11-8 9-11-8				<u>19-11-0</u> 9-11-8		
Plate Offsets (X,Y) [3:0-3-0,0-2-4], [4:0-3-0,0-2-4], [5:0-3-10),Edge], [7:0-4-0,0-3-0]					
LOADING (psf) SPACING- 2-0-0 TCLL 20.0 Plate Grip DOL 1.15 TCDL 10.0 Lumber DOL 1.15 BCLL 0.0 * Rep Stress Incr YES BCDL 10.0 Code IRC2015/TPI2014	CSI. TC 0.39 BC 0.82 WB 0.10 Matrix-AS	Vert(CT) -0.27 Horz(CT) 0.03	7-13 >999 7-10 >872	L/d 360 240 n/a 240	PLATES MT20 Weight: 91 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP No.2 *Except* 3-4: 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BEACTIONS (b/cize) 2=826/0.5.8		BRACING- TOP CHORD BOT CHORD	Structural wood 2-0-0 oc purlins Rigid ceiling dir	; (4-10-0 max.)	ectly applied, except : 3-4.	
REACTIONS. (lb/size) 2=836/0-5-8, 5=836/0-5-8 Max Horz 2=-74(LC 17) Max Uplift 2=-202(LC 8), 5=-202(LC 9) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or TOP CHORD 2-3=-1326/562, 3-4=-1270/533, 4-5=-1326/562 BOT CHORD 2-7=-394/1174, 5-7=-395/1174 WEBS 3-7=0/271, 4-7=0/271						
 NOTES- (10) 1) Unbalanced roof live loads have been considered for this de 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103m MWFRS (envelope) gable end zone and C-C Exterior(2) zor MWFRS for reactions shown; Lumber DOL=1.60 plate grip D 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord liv 5) * This truss has been designed for a live load of 20.0psf on t will fit between the bottom chord and any other members. 6) All bearings are assumed to be User Defined crushing capation 2=202, 5=202. 8) This truss truss for requires that a minimum of 7/16" structural sheetrock be applied directly to the bottom chord. 9) Graphical purlin representation does not depict the size or the 10) This manufactured truss is designed as an individual buildin particular building is the responsibility of the building design 	mph; TCDL=6.0psf; BCDL=6 e; end vertical left and right OL=1.60 e load nonconcurrent with a he bottom chord in all areas city of 565 psi. g plate capable of withstanc wood sheathing be applied he orientation of the purlin al-	exposed;C-C for memory ny other live loads. where a rectangle 3-6 ling 100 lb uplift at join directly to the top cho ong the top and/or bot ity and use of this com	hbers and forces 6-0 tall by 2-0-0 v ht(s) except (jt=lb and and 1/2" gyps tom chord. aponent for any	& vide)	ALL TO PT	SEAL 45844

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

WEBS 3-6=-244/301


NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2 except (jt=lb) 6=139.
- 8) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

ŝ	DI /	011	() () ()	 0 4 4 41	
					0-6-8
					0-6-8

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP
u /			
TCLL 20.0	Plate Grip DOL 1.15	TC 0.40	Vert(LL) 0.11 4-8 >661 240 MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.39	Vert(CT) -0.07 4-8 >999 240
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 2 n/a n/a
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Weight: 21 lb FT = 20%

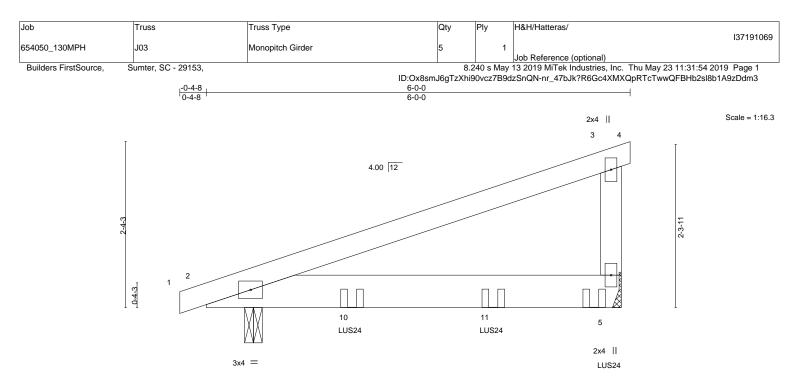
TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (Ib/size) 2=290/0-3-0, 4=200/0-1-8 Max Horz 2=110(LC 8) Max Uplift 2=-180(LC 8), 4=-152(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=180, 4=152.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0-6-8		<u>5-10-8</u> 5-4-0						
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.49	Vert(LL)	0.07	5-9	>991	240	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.70	Vert(CT)	-0.09	5-9	>725	240		
3CLL 0.0 *	Rep Stress Incr NO	WB 0.00	Horz(CT)	0.00	5	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP						Weight: 26 lb	FT = 20%

```
LUMBER-
```

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 5=848/Mechanical, 2=630/0-3-0 Max Horz 2=113(LC 4) Max Uplift 5=-366(LC 4), 2=-286(LC 4)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (10)

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left exposed ; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=366, 2=286.

7) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 5-8-12 to connect truss(es) to front face of bottom chord.

8) Fill all nail holes where hanger is in contact with lumber.

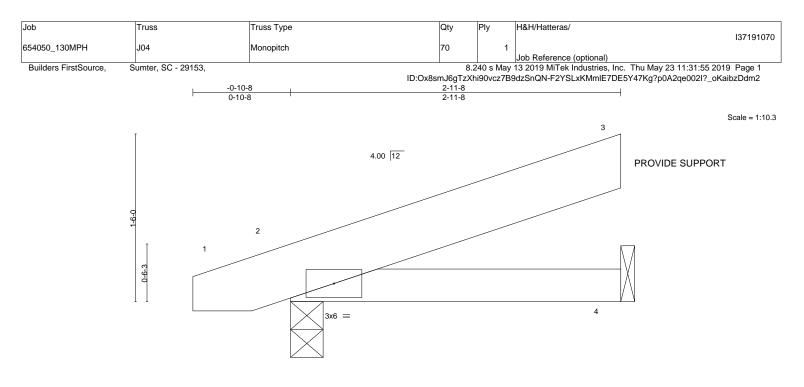
9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B)

10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)


Vert: 1-3=-60, 3-4=-20, 2-5=-20 Concentrated Loads (lb)

Vert: 5=-337(F) 10=-326(F) 11=-328(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			<u>2-11-8</u> 2-11-8					
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.14	Vert(LL) -0.02	4-7	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.47	Vert(CT) -0.03	4-7	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00	2	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP	Wind(LL) 0.03	4-7	>999	240	Weight: 14 lb	FT = 20%

```
LUMBER-
```

TOP CHORD 2x6 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (lb/size) 2=156/0-3-8, 4=116/Mechanical Max Horz 2=60(LC 8) Max Uplift 2=-64(LC 8), 4=-52(LC 9)

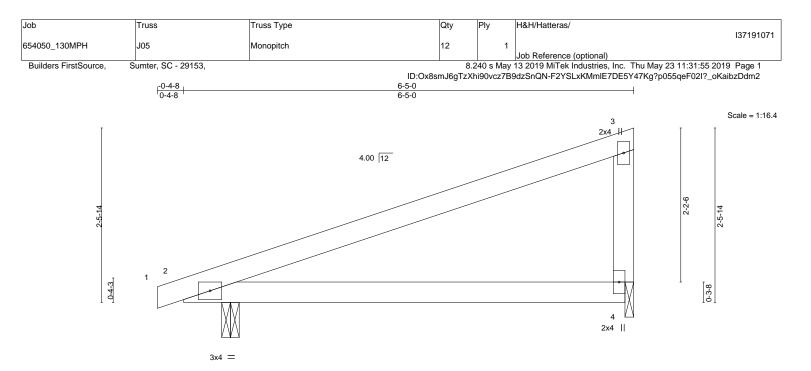
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. 10/03/2013 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-11-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

	0-6-8		6-5-0 5-10-8					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.46 BC 0.46 WB 0.00 Matrix-AS	DEFL. in Vert(LL) 0.14 Vert(CT) -0.09 Horz(CT) -0.00	4-8 4-8	l/defl >524 >801 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

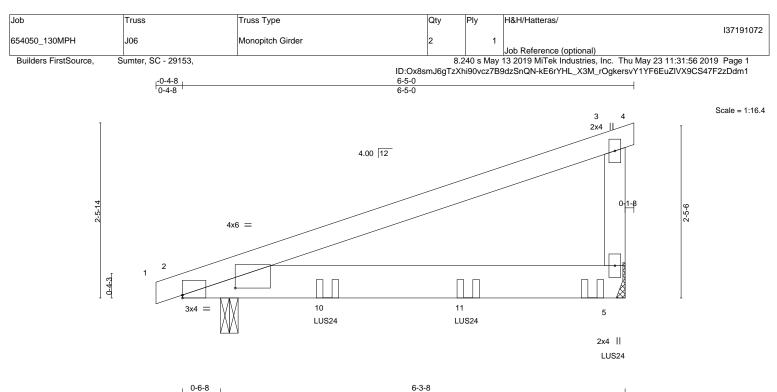
TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

REACTIONS. (Ib/size) 2=307/0-3-0, 4=218/0-1-8 Max Horz 2=118(LC 8) Max Uplift 2=-189(LC 8), 4=-164(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (8)

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=189, 4=164.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.


Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)	l/defl L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.57	Vert(LL) 0.09 5-9	>800 240	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.83	Vert(CT) -0.12 5-9	>590 240	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.00	Horz(CT) 0.00 5	n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP			Weight: 28 lb FT = 20%

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.2

REACTIONS. (lb/size) 5=841/Mechanical, 2=670/0-3-0 Max Horz 2=120(LC 4) Max Uplift 5=-371(LC 4), 2=-303(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-(9)

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left exposed ; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=371, 2=303.
- 6) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-1-0 oc max. starting at 2-0-12 from the left end to 6-1-12 to connect truss(es) to front face of bottom chord.
- 7) Fill all nail holes where hanger is in contact with lumber.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B)
- 9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

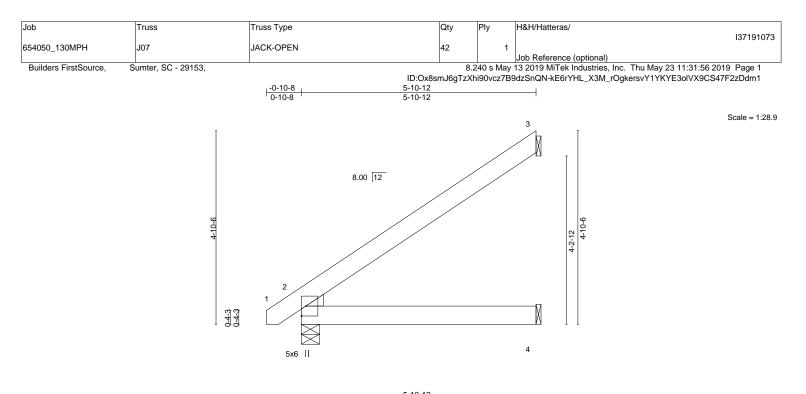
LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-20, 2-5=-20 Concentrated Loads (Ib)

Vert: 5=-337(F) 10=-326(F) 11=-328(F)



Rigid ceiling directly applied or 9-6-6 oc bracing.

except end verticals.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

						5-10-12						
Plate Offse	ets (X,Y)	[2:0-0-7,0-0-11], [2:0-0-1	5,0-4-14]									
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.22	Vert(LL)	0.03	4-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.18	Vert(CT)	-0.03	4-7	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	x-AS						Weight: 34 lb	FT = 20%

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEDGE Left: 2x4 SP No.3 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied. Rigid ceiling directly applied.

Len. 214 SF NO.3

REACTIONS. (lb/size) 3=155/Mechanical, 2=279/0-5-8, 4=75/Mechanical Max Horz 2=224(LC 12) Max Uplift 3=-158(LC 12), 2=-24(LC 12), 4=-5(LC 12) Max Grav 3=183(LC 19), 2=279(LC 1), 4=108(LC 3)

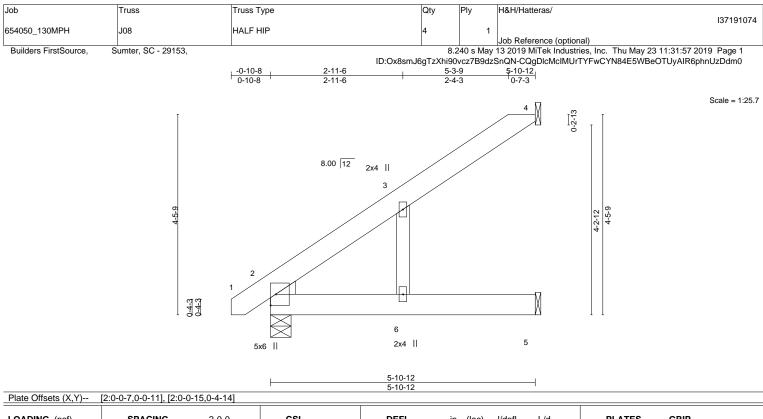
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (7

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4 except (jt=lb) 3=158.
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.17 BC 0.22 WB 0.04 Matrix-AS	DEFL. in Vert(LL) 0.04 Vert(CT) -0.04 Horz(CT) 0.01	6	>999	L/d 240 240 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SI	2 No.2		BRACING- TOP CHORD	Structu	ural wood	sheathing d	irectly applied.	

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2

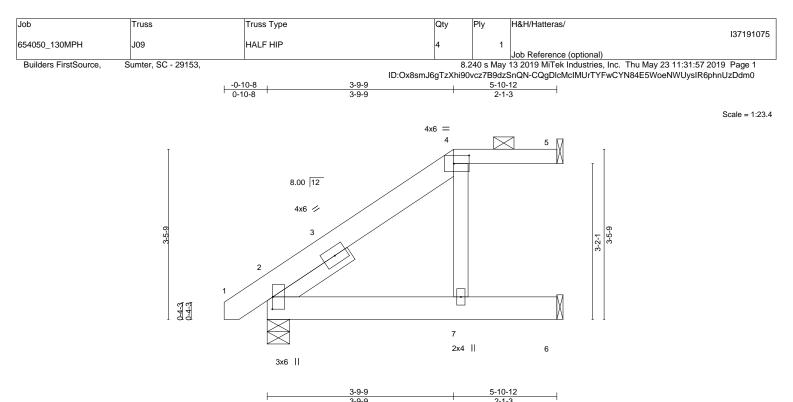
WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3

REACTIONS. (lb/size) 4=134/Mechanical, 2=279/0-5-8, 5=97/Mechanical Max Horz 2=224(LC 12) Max Uplift 4=-123(LC 12), 2=-24(LC 12), 5=-41(LC 12) Max Grav 4=157(LC 19), 2=279(LC 1), 5=108(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.


5) Refer to girder(s) for truss to truss connections.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5 except (jt=lb) 4=123.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		3-9-9		2-	1-3		
Plate Offsets (X,Y)	[2:0-3-0,0-0-2], [4:0-3-12,0-2-0]						
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.13	Vert(LL)	-0.02 7-10	>999 360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.28	Vert(CT)	-0.04 7-10	>999 240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.06	Horz(CT)	0.04 5	n/a n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL)	0.04 7-10	>999 240	Weight: 37 lb	FT = 20%
						1	
LUMBER.			BRACING-				

TOP CHORD

Structural wood sheathing directly applied, except

2-0-0 oc purlins: 4-5.

Rigid ceiling directly applied.

LUM	BER-
-----	------

TOP CHORD	2x6 SP No.2 *Except*
	4-5: 2x4 SP No.2
BOT CHORD	2x6 SP No.2
WEBS	2x4 SP No.3
SLIDER	Left 2x4 SP No.3 1-9-13

.3 1-9-13

REACTIONS. (lb/size) 5=61/Mechanical, 2=286/0-5-8, 6=158/Mechanical Max Horz 2=159(LC 12) Max Uplift 5=-41(LC 8), 2=-60(LC 12), 6=-65(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

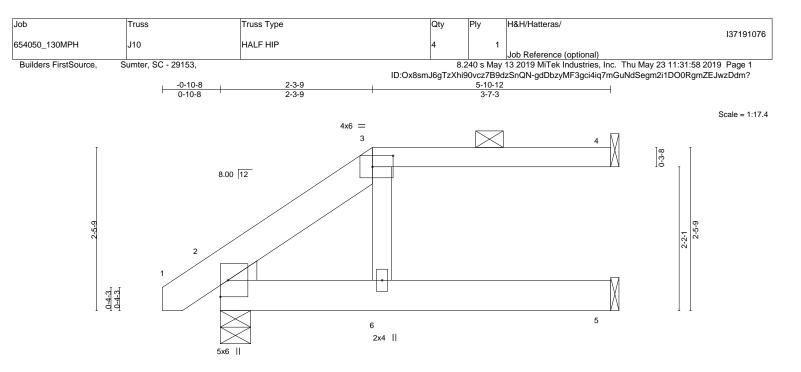
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 6.


9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

				2-3-9 2-3-9		-		5-10-1 3-7-3				
Plate Offse	ets (X,Y)	[2:0-0-15,0-4-14], [2:0-0-7	7,0-0-11], [3:	0-3-12,0-2-0]								
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	-0.02	6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.32	Vert(CT)	-0.05	5-6	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.05	4	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	912014	Matri	x-AS	Wind(LL)	0.04	6	>999	240	Weight: 32 lb	FT = 20%
LUMBER- TOP CHOR	RD 2x6 S	SP No.2 *Except*				BRACING- TOP CHOR		Structu	ral wood	sheathing di	irectly applied, except	

BOT CHORD

2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied.

 TOP CHORD
 2x6 SP No.2 *Except*

 3-4: 2x4 SP No.2

 BOT CHORD
 2x6 SP No.2

 WEBS
 2x4 SP No.3

 WEDGE
 Left: 2x4 SP No.3

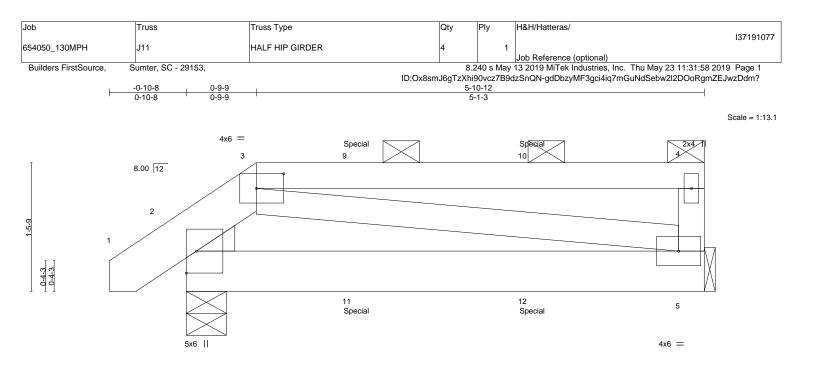
Lon. Exil Of Ho.O

REACTIONS. (Ib/size) 4=106/Mechanical, 2=279/0-5-8, 5=125/Mechanical Max Horz 2=108(LC 12) Max Uplift 4=-71(LC 8), 2=-64(LC 12), 5=-13(LC 12) Max Grav 4=106(LC 1), 2=279(LC 1), 5=139(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2, 5.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	SPACING-	2.0.0	001		DEEL		(10.0)	l/defi	1 /4		CDID
OADING (psf)		2-0-0	CSI.	0.55	DEFL.		(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.55	Vert(LL)	-0.01	5-8	>999	360	MT20	244/190
CDL 10.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	-0.01	5-8	>999	240		
3CLL 0.0 *	Rep Stress Incr	NO	WB	0.08	Horz(CT)	0.00	2	n/a	n/a		
BCDL 10.0	Code IRC2015/T	PI2014	Matri	x-MP	Wind(LL)	0.00	5-8	>999	240	Weight: 35 lb	FT = 20%
UMBER-					BRACING-						
TOP CHORD 2x	6 SP No.2 *Except*				TOP CHOR	RD.	Structu	ral wood	sheathing di	rectly applied or 5-10-	12 oc purlins.
	4: 2x4 SP No.2									-0 oc purlins: 3-4.	,
										•	

BOT CHORD 2x6 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing WEBS 2x4 SP No.2 WEDGE

Left: 2x4 SP No.2

REACTIONS. (lb/size) 5=230/Mechanical, 2=278/0-5-8 Max Horz 2=56(LC 27)

Max Uplift 5=-92(LC 5), 2=-79(LC 5)

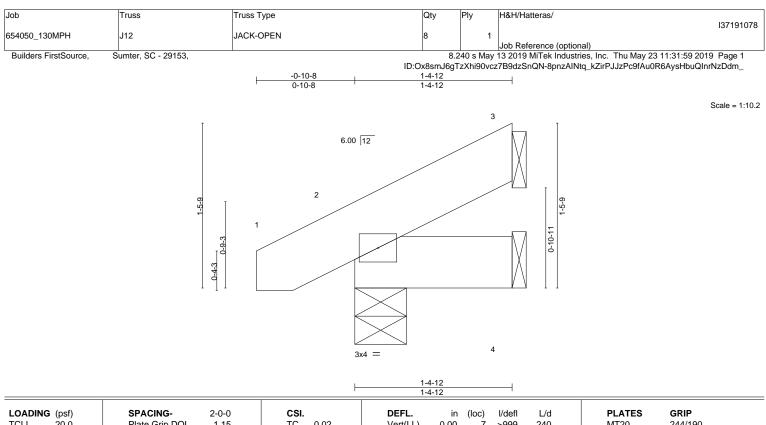
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(12)

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.
- 6) Bearings are assumed to be: Joint 2 User Defined crushing capacity of 565 psi, Joint 5 User Defined crushing capacity of 425 psi. Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 13 lb down and 21 lb up at 1-11-8, and 13 lb down and 21 lb up at 3-11-8 on top chord, and 3 lb down and 10 lb up at 1-11-8, and 3 lb down and 10 lb up at 3-11-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
- 12) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 5-6=-20 Concentrated Loads (lb) Vert: 11=-2(B) 12=-2(B)

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPERVICE PAGE MIT-14/3 refer to 1000 SEC. Design valid for use only with MITER deconnectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

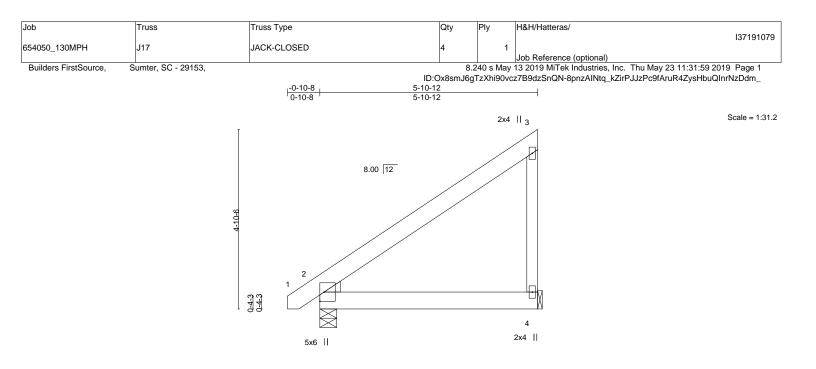
LOADING (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) l/defl L/d PLATES	GRIP
TCLL 20.0 Plate Grip DOL 1.15 TC 0.02 Vert(LL) 0.00 7 >999 240 MT20	244/190
TCDL 10.0 Lumber DOL 1.15 BC 0.01 Vert(CT) -0.00 7 >999 240	
BCLL 0.0 * Rep Stress Incr YES WB 0.00 Horz(CT) -0.00 3 n/a n/a	
BCDL 10.0 Code IRC2015/TPI2014 Matrix-MP Weight: 10 lb	FT = 20%

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-4-12 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=29/Mechanical, 2=109/0-5-8, 4=15/Mechanical Max Horz 2=52(LC 12) Max Uplift 3=-29(LC 12), 2=-31(LC 12), 4=-2(LC 12) Max Grav 3=29(LC 1), 2=109(LC 1), 4=24(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES- (7)

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.
- 7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any
- particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		L	5-10-12				
		I	5-10-12		1		
Plate Offsets (X,Y)	[2:0-0-7,0-0-11], [2:0-0-15,0-4-14]						
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl L	./d PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.22	Vert(LL) 0.03	4-7	>999 24	40 MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.18	Vert(CT) -0.03	4-7	>999 24	40	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.01	2	n/a n	n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS				Weight: 40 II	b FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x6 SP No.2

 BOT CHORD
 2x6 SP No.2

 WEBS
 2x4 SP No.3

 WEDGE
 Left: 2x4 SP No.3

REACTIONS. (lb/size) 4=227/Mechanical, 2=276/0-5-8 Max Horz 2=221(LC 12) Max Uplift 4=-162(LC 12), 2=-24(LC 12) Max Grav 4=261(LC 19), 2=276(LC 1)

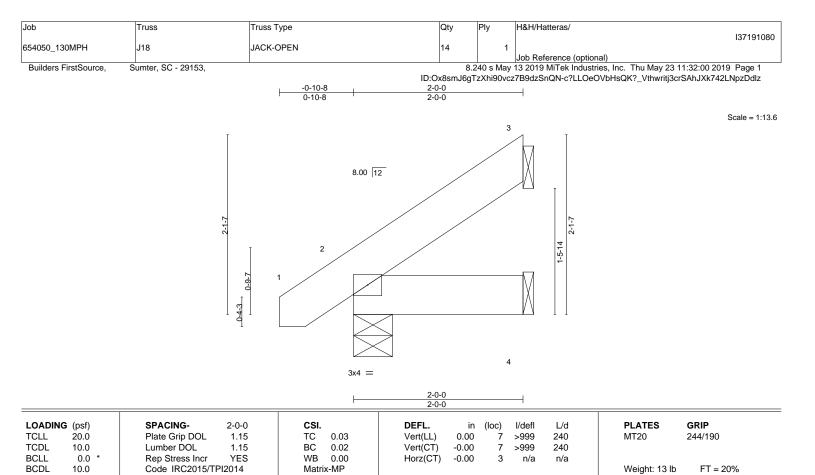
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (8

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psr bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 425 psi.

5) Refer to girder(s) for truss to truss connections.

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 4=162.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.



Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

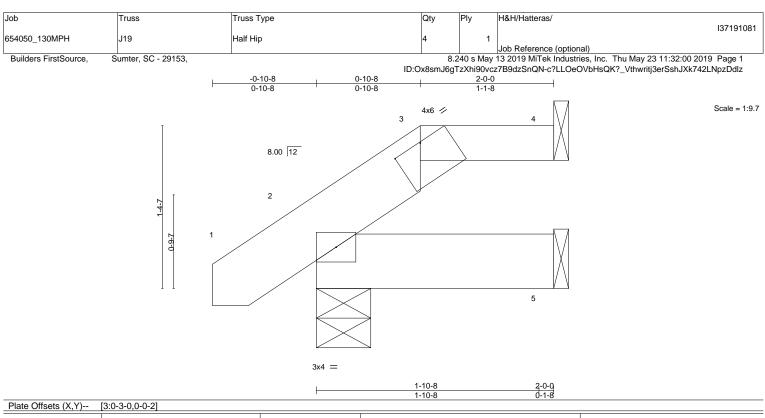
TOP CHORD2x6 SP No.2BOT CHORD2x6 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=48/Mechanical, 2=131/0-5-8, 4=24/Mechanical Max Horz 2=91(LC 12) Max Uplift 3=-53(LC 12), 2=-23(LC 12), 4=-4(LC 12) Max Grav 3=58(LC 19), 2=131(LC 1), 4=36(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES- (7)

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.
- 7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any
- particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.03	Vert(LL) -0.00	8	>999	360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.04	Vert(CT) -0.00	8	>999	240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00	4	n/a	n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP	Wind(LL) 0.00	8	>999	240	Weight: 12 lb FT = 20%

LUMBER-		BRACING-	
TOP CHORD	2x6 SP No.2 *Except*	TOP CHORD	Structural wood sheathing directly applied or 2-0-0 oc purlins, except
	3-4: 2x4 SP No.2		2-0-0 oc purlins: 3-4.
BOT CHORD	2x6 SP No.2	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 4=33/Mechanical, 2=131/0-5-8, 5=38/Mechanical Max Horz 2=59(LC 12) Max Uplift 4=-22(LC 8), 2=-36(LC 12), 5=-8(LC 12) Max Grav 4=33(LC 1), 2=131(LC 1), 5=46(LC 3)

NOTES-

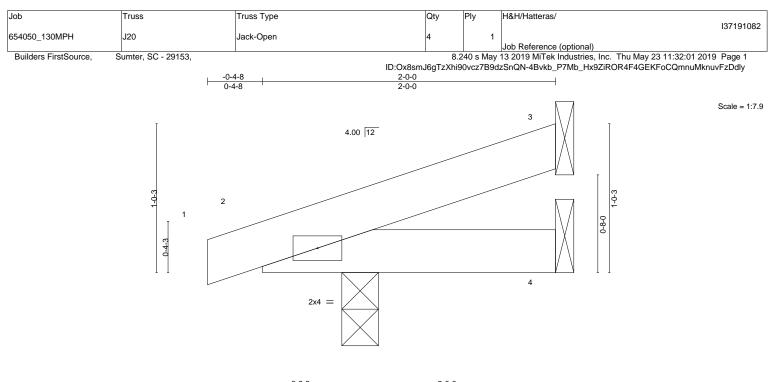
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2, 5.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

¹⁾ Unbalanced roof live loads have been considered for this design.

		0-6-8	<u>2-0-0</u> 1-5-8		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.03 BC 0.04 WB 0.00 Matrix-MP	DEFL. in (loc) Vert(LL) -0.00 5 Vert(CT) -0.00 5 Horz(CT) -0.00 3 Wind(LL) 0.00 9	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES GRIP MT20 244/190 Weight: 7 lb FT = 20%

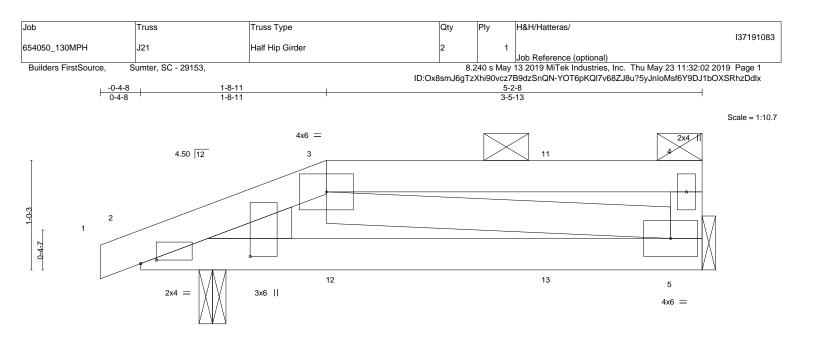
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (Ib/size) 3=29/Mechanical, 4=10/Mechanical, 2=143/0-3-0 Max Horz 2=43(LC 8) Max Uplift 3=-24(LC 12), 4=-9(LC 9), 2=-96(LC 8) Max Grav 3=29(LC 1), 4=22(LC 3), 2=143(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left and right
- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 2.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

0-6-8			4-8-0								
Plate Offsets (X,Y) [2	2:0-1-12,0-0-6], [2:0-0-1	3,1-0-3]			1					1	
OADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	0.01	5-10	>999	240	MT20	244/190
CDL 10.0	Lumber DOL	1.15	BC	0.16	Vert(CT)	-0.01	5-10	>999	240		
CLL 0.0 *	Rep Stress Incr	NO	WB	0.05	Horz(CT)	-0.00	5	n/a	n/a		
CDL 10.0	Code IRC2015/T	PI2014	Matrix	(-MP						Weight: 23 lb	FT = 20%
UMBER-					BRACING-						
OP CHORD 2x4 SP I	No.2				TOP CHOP	RD	Structu	ral wood	sheathing di	rectly applied or 5-2-8	3 oc purlins,
OT CHORD 2x4 SP I	No.2						except	end verti	cals, and 2-0	-0 oc purlins: 3-4.	

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 WEDGE Left: 2x4 SP No.2

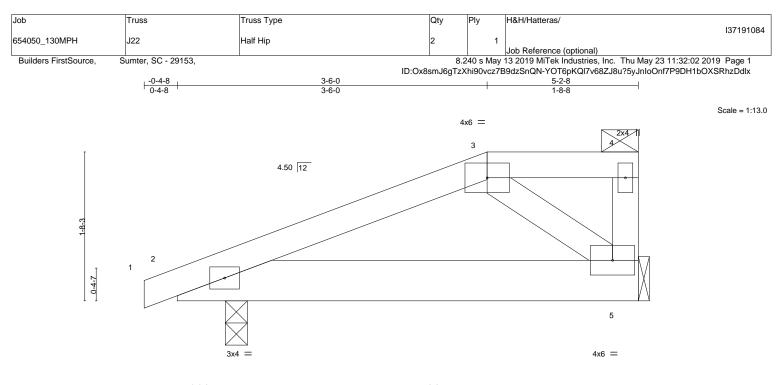
REACTIONS. (lb/size) 5=174/Mechanical, 2=252/0-3-0 Max Horz 2=42(LC 23) Max Uplift 5=-118(LC 4), 2=-167(LC 4)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (11)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left exposed ; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=118, 2=167.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 12 lb down and 17 lb up at 1-8-11, and 12 lb down and 17 lb up at 3-10-12 on top chord, and 1 lb down and 16 lb up at 1-10-12, and 1 lb down and 16 lb up at
- 3-10-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
 This manufactured truss is designed as an individual building component. The suitability and use of this component for any
- particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 5-6=-20 Concentrated Loads (lb) Vert: 12=1(F) 13=1(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

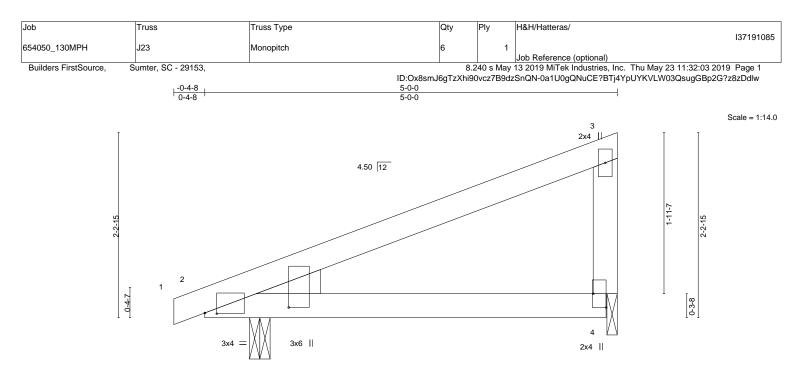
0-6-8			-	5-2-8 4-8-0							
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	0.01	5-9	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	-0.01	5-9	>999	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.05	Horz(CT)	-0.00	5	n/a	n/a		
BCDL 10.0	Code IRC2015/T	PI2014	Matrix	-AS						Weight: 25 lb	FT = 20%

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied.

REACTIONS. (Ib/size) 5=167/Mechanical, 2=260/0-3-0 Max Horz 2=75(LC 12) Max Uplift 5=-117(LC 8), 2=-161(LC 8)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=117.2=161.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0-6-8 5-0-0 0-6-8 4-5-8								—		
Plate Offsets (X,Y)	[2:0-1-12,0-0-2], [2:0-0-1	3,1-0-3], [4:Ed	ge,0-1-14j								
OADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL	1.15	TC	0.27	Vert(LL)	0.05	4-9	>999	240	MT20	244/190
CDL 10.0	Lumber DOL	1.15	BC	0.28	Vert(CT)	-0.03	4-9	>999	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	2	n/a	n/a		
BCDL 10.0	Code IRC2015/T	PI2014	Matri	x-AS						Weight: 20 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

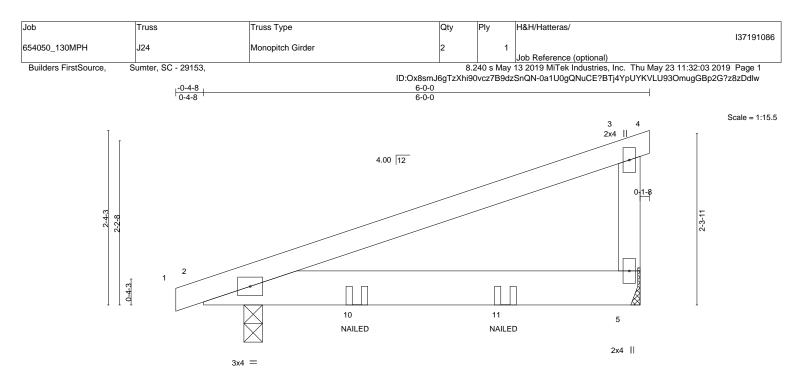
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3

REACTIONS. (lb/size) 2=245/0-3-0, 4=166/0-1-8 Max Horz 2=101(LC 12) Max Uplift 2=-140(LC 8), 4=-123(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=140, 4=123.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.



Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	<u>0-6-8</u> 0-6-8		5-10-8 5-4-0	1
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.39 BC 0.41	DEFL. in (loc) I/defl L/d Vert(LL) 0.06 5-9 >999 240 Vert(CT) -0.06 5-9 >999 240	0 MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr NO Code IRC2015/TPI2014	WB 0.00 Matrix-MP	Horz(CT) -0.00 5 n/a n/a	a Weight: 26 lb FT = 20%

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 5=342/Mechanical, 2=445/0-3-0 Max Horz 2=113(LC 4) Max Uplift 5=-258(LC 4), 2=-289(LC 4)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

- MWFRS (envelope) gable end zone; end vertical left exposed; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 5=258, 2=289.
- 7) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf) Vert: 1-3=-60, 3-4=-20, 2-5=-20 Concentrated Loads (lb)

Vert: 10=-154(B) 11=-147(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

