

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 21030062-B 585 Sunridge-Roof-35464GH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Chesapeake, VA).

Pages or sheets covered by this seal: E15577165 thru E15577208

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

April 5,2021

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	B01	Attic Supported Gable	1	1	Job Reference (optional)	E15577165

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:33 ID:?zmQ1_Hj0vAMFz0qQBony0zUt65-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:80.5	
Plate Offsets (X, Y):	[19:0-3-8,0-3-0], [21:0-3-8,0-3-0]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.18 0.07 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 285 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	IMBER DP CHORD 2x6 SP No.2 DT CHORD 2x12 SP 2400F 2.0E EBS 2x4 SP No.3 *Except* 6-10:2x4 SP No.2 THERS 2x4 SP No.3 RACING Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. DT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing, Except: 10-0-0 oc bracing: 19-21. DINTS 1 Brace at Jt(s): 25, 28, 31 EACTIONS (size) 16=23-11-0, 17=23-11-0, 18=23-11-0, 19=23-11-0, 19=23-11-0, 19=23-11-0, 11-0, 12=23-11-0, 12-23-11-0,				EBS 1	11-19=-269/65, 19-3 30-31=-46/337, 14-3 5-21=-269/65, 2-28-2 21-27=-56/378, 6-24 5-29=-72/95, 10-27 7-26=-71/18, 4-27=- 3-28110/67, 23-24 2-30=-38/53, 18-36 17-31=-100/68 roof live loads have	30=-51/ 31=-47/ =-51/34 6=-72/9 9=-72/9 -38/53, 3=-100/ 0=-90/3	(378, (343, (3, 27-28=-50) (5, 25-26=-72) (5, 8-25=-20)/ (22-27=-90/3) (68, 9-29=-71) (7, 13-31=-11) considered fo	 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2-0-0 oc. 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 13) Ceiling dead load (5.0 psf) on member(s). 5-6, 10-11, 6-26, 25-26, 25-29, 10-29; Wall dead load (5.0psf) on member(s). 11-19, 5-21 14) One RTZA USP connectors recommended to connect 						
REACTIONS	28, 31 (size) Max Horiz Max Uplift Max Grav	16=23-11- 18=23-11- 23=23-11- 24=-239 (I 16=-53 (LL 18=-651 (I 23=-10 (LC 16=478 (L 18=-111 (I 21=1029 (0, 17=23-11-0, 0, 19=23-11-0, 0, 22=23-11-0, 0, 24=23-11-0 LC 12) C 14), 17=-10 (LC 15 LC 21), 22=-651 (LC C 14), 24=-53 (LC 15 C 23), 17=295 (LC 2 LC 21), 22=-108 (LC C 25), 24-478 (L C C 25), 24-478 (L C	2) 5), 21), 5) (6), (21), (21), (2)	Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-(1-11-8 to 8-1 (2N) 14-11-8 zone; cantile and right exp MWFRS for 1 grip DCL=1.6 Truss design only. For stu see Standard	ACLE 7-16; Vult=130mph (3-second gust) 103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Exp B; Enclosed; MWFRS (envelope) exterior nd C-C Corner(3E) -1-0-0 to 1-11-8, Exterior(2N) to 8-11-8, Corner(3R) 8-11-8 to 14-11-8, Exterior 4-11-8 to 21-11-0, Corner(3E) 21-11-0 to 24-11-0 antilever left and right exposed ; end vertical left ht exposed;C-C for members and forces & S for reactions shown; Lumber DOL=1.60 plate DL=1.60 designed for wind loads in the plane of the truss or studs exposed to wind (normal to the face), andard Industry Gable End Details as applicable,					s to bea and 17. conside ≥ RT8A s to bea nection es.	mended to connect T at jt(s) 24, 16, 21, uplift only and does mended to connect T at jt(s) 22. This es not consider lateral			
FORCES	(lb) - Max	imum Com	pression/Maximum	4)	or consult qu TCLL: ASCE	alified building desi 7-16; Pr=20.0 psf	gner as (roof LL	s per ANSI/TI .: Lum DOL=	PI 1. 1.15		L	the	:22.9		
TOP CHORD	Tension HORD 2-24=-470/104, 1-2=0/34, 2-3=-380/82, 3-4=-382/112, 4-5=-342/147, 5-6=-399/163, 6-7=-338/89, 7-8=-299/107, 8-9=-299/107, 9-10=-338/89, 10-11=-399/163, 11-12=-342/147, 12-13=-382/112, 13-14=-380/82, 14-15=0/34, 14-16=-470/104 5 HORD 23-24=-224/204, 22-23=-224/204, 21-22=-224/204, 20-21=-64/304, 19-20=-64/304, 18-19=-42/53, 17-18=-42/53, 16-17=-42/53 7					Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. All plates are 2x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. April 5,202								EER. A. Market	

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH				
21030062-B	B01	Attic Supported Gable	1	1	Job Reference (optional)	E15577165			

- 16) One RT8A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 18. This connection is for uplift only and does not consider lateral forces.
- 17) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

18) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:33 ID:?zmQ1_Hj0vAMFz0qQBony0zUt65-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	B02	Attic	5	1	Job Reference (optional)	E15577166

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:34 ID:jjyUrr0_ffsi3LAZUVO4xtzUt58-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [2:0-2-14,0-2-0], [8:0-2-14,0-2-0], [11:0-3-8,0-8-0], [13:0-3-8,0-8-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.69	Vert(LL)	-0.16	11-13	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.24	11-13	>999	180			
TCDL	10.0	Rep Stress Incr	YES	WB	0.51	Horz(CT)	0.01	10	n/a	n/a			
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH		Attic	-0.09	11-13	>999	360			
BCDL	10.0										Weight: 260 lb	FT = 20%	
LUMBER			2) Wind: ASCE	7-16; Vult=130mph	(3-sec	ond gust)							

TOP CHORD	2x6 SP No.2	
BOT CHORD	2x12 SP 2400F 2.0E	
WEBS	2x4 SP No.3 *Except* 4-6:2x4 SP No.2	
BRACING		
TOP CHORD	Structural wood sheathing directly applied or 4-9-8 oc purlins, except end verticals.	
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.	
JOINTS	1 Brace at Jt(s): 15	
REACTIONS	(size) 10=0-3-8, 14=0-3-8	
	Max Horiz 14=-286 (LC 12)	
	Max Grav 10=1500 (LC 26), 14=1500 (LC 25)	
FORCES	(lb) - Maximum Compression/Maximum	2
	Tension	
TOP CHORD	1-2=0/35, 2-3=-1413/0, 3-16=-1152/69,	5
	4-16=-1074/92, 4-17=-303/125,	
	5-17=-267/158, 5-18=-267/158,	
	6-18=-303/125, 6-19=-1073/92,	6
	7-19=-1152/69, 7-8=-1412/0, 8-9=0/35,	
	2-14=-1567/0, 8-10=-1567/0	7
BOT CHORD	13-14=-259/265, 12-13=0/1165,	
	11-12=0/1165, 10-11=-31/50	
WEBS	7-11=-312/357, 3-13=-312/357,	
	4-15=-1159/36, 6-15=-1159/36, 5-15=0/98,	8
	2-13=0/1305, 8-11=0/1305	

NOTES

Scale = 1:69.5

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 1-0-0 to 2-0-0, Interior (1) 2-0-0 to 8-11-8, Exterior(2R) 8-11-8 to 14-11-8, Interior (1) 14-11-8 to 21-11-0, Exterior(2E) 21-11-0 to 24-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Ceiling dead load (5.0 psf) on member(s). 3-4, 6-7, 4-15, 6-15; Wall dead load (5.0psf) on member(s).7-11, 3-13
- Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 11-13
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 11) Attic room checked for L/360 deflection.
- (1) Allic room checked for L/360 defiect
- LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	B03	Attic Girder	3	2	Job Reference (optional)	E15577167

Scale = 1:70.9

Run; 8,43 S Mar 22 2021 Print; 8,430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:34 ID:NBvRvSppo7Wiq5V?9a2nx5zUt2q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [13:0-3-8,0-3-0], [14:0-3-8,0-8-0], [16:0-3-8,0-5-12], [17:0-3-8,0-3-0]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.50 0.15 0.63	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.08 -0.13 0.01 -0.05	(loc) 14-16 14-16 12 14-16	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 560 lb	GRIP 244/190	%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x6 SP No.2 2x12 SP 2400F 2.0E 2x4 SP No.3 *Excep Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. 1 Brace at Jt(s): 19 (size) 12=0-3-8, Max Horiz 18=286 (L	t* 5-7:2x4 SP No.2 athing directly applie cept end verticals. applied or 10-0-0 oc 18=0-3-8 C 11)	2) d or 3) ; 4)	All loads are except if note CASE(S) sec provided to d unless othery Unbalanced 1 this design. Wind: ASCE Vasd=103mp Cat. II; Exp B zone; cantiler and right exp	considered equally ad as front (F) or ba ttion. Ply to ply comi istribute only loads vise indicated. roof live loads have 7-16; Vult=130mpf h; TCDL=6.0psf; B ; Enclosed; MWFR ver left and right ex osed; Lumber DOL	applied ack (B) nection noted been of CDL=6 S (env posed =1.60	d to all plies, ace in the LO s have been as (F) or (B), considered for ond gust) .0psf; h=25ft; elope) exterior end vertical I plate grip	AD r eft	13) Loa des corr 14) Use 10- left cho 15) Fill 16) Attiv LOAD (1) De Ind	d case (s igner murect for the USP TI 16d nails end to c rd. all nail h c room c CASE(S) ead + Sn crease=	s) 1, 2 ust rev he inte HDH28 s into T onnect oles w hecke) Sta iow (ba 1.15	has/have been iew loads to ver inded use of this 3-2 (With 36-16c Truss) or equival t truss(es) to fro there hanger is i d for L/360 defle ndard alanced): Lumbe	modified. Bu ify that they ; truss. 1 nails into (lent at 18-5- nt face of bo n contact w ection. er Increase=	uilding are Girder & •8 from the ottom rith lumber. =1.15, Plate
FORCES	Max Grav 12=3720 ((lb) - Maximum Com Tension 1-2=0/35, 2-3=-2274 4-20=-3235/0, 4-21= 5-61913/0, 6-711	(LC 21), 18=3414 (LC pression/Maximum //0, 3-20=-3295/0, 3737/0, 5-21=-3324/0 850/0, 7-223324/0	C 20) 5) 4/0, 6)	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced	7-16; Pr=20.0 psf (15); Pf=20.0 psf (L s=1.0; Rough Cat E 1.10 snow loads have be	(roof LL Lum DC B; Fully een cor	: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 nsidered for th	.15 ; is	Ur	Vert: 1-2 5-6=-36 16-18=- 7-19=-1 Drag: 8-	0ads (∥ 2=-60, 0, 6-7⊧ 20, 14 0 ∙14=-1∣	b/ft) 2-20=-60, 4-20= -360, 7-8=-370 -16=-30, 12-14= 0, 4-16=-10	=-360, 4-5=- , 8-10=-60, =-20, 5-19=-	-370, 10-11=-60, ·10,
BOT CHORD	8-22=-3722/0, 8-9=-3 10-11=0/35, 2-18=-3 17-18=-261/257, 16- 15-16=0/2888, 14-15 12-13=-31/41	3345/0, 9-10=-2451/ 4339/0, 10-12=-3697/ 17=0/1998, 5=0/2888, 13-14=0/2	, 0, 7) /0 055, 8)	 Concentrated Loads (lb) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 										
WEBS NOTES	8-14=-1251/617, 9-1 4-16=-1461/469, 3-1 5-19=-1844/0, 7-19= 2-17=0/2804, 10-13=	4=0/1910, 9-13=-22 6=0/2248, 3-17=-25 -1844/0, 6-19=0/124 =0/3039	24/0, 9) 74/0, I, 10	 This truss h on the botton 3-06-00 tall b chord and an Ceiling dead 	as been designed f n chord in all areas y 2-00-00 wide will y other members. load (5.0 psf) on m	for a liv where fit betv	e load of 20.0 a rectangle veen the botto s). 4-5, 7-8, 5	psf m -19,		4		O SEA	AL.	
 2-ply truss to be connected together with 10d (0.131*x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x12 - 2 rows staggered at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. 				 7-19; Wall de Bottom chord chord dead ld This truss is a International R802.10.2 ar 	ead load (5.0psf) of Hive load (40.0 psf) oad (5.0 psf) applie designed in accord. Residential Code s nd referenced stanc	ber(s).8-14, 4- dditional botto o room. 14-16 ith the 2018 . R502.11.1 ar ISI/TPI 1.	036322 <i>NgineeR</i> <i>A. GILBER</i>							

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

April 5,2021

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	E 4 5 5 7 7 4 6 7
21030062-B	B03	Attic Girder	3	2	Job Reference (optional)	E155//16/

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:34 ID:NBvRvSppo7Wiq5V?9a2nx5zUt2q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

2) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-2=-60, 2-20=-60, 4-20=-160, 4-5=-170, 5-6=-160, 6-7=-160, 7-8=-170, 8-10=-60, 10-11=-60, 16-18=-20, 14-16=-30, 12-14=-20, 5-19=-10, 7-19=-10

Drag: 8-14=-10, 4-16=-10

Concentrated Loads (lb)

Vert: 14=-1322 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	B04	Attic Girder	1	2	Job Reference (optional)	E15577168

Scale = 1:74.6

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:35 ID:w9ZTEcRV0cWZWrJyZRzSvZzUt0j-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-2-14,0-2-0], [10:0-2-14,0-2-0], [13:0-3-8,0-5-12], [14:0-3-8,0-9-4], [16:0-3-8,0-9-4], [17:0-3-8,0-5-12]

						, 1, 1			· ·							
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.74	Vert(LL)	-0.10	14-16	>999	240	MT20	244/190		
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.24	Vert(CT)	-0.16	14-16	>999	180				
TCDL		10.0	Rep Stress Incr	NO		WB	0.77	Horz(CT)	0.01	12	n/a	n/a				
BCLL		0.0*	Code	IRC201	8/TPI2014	Matrix-MSH		Attic	-0.06	14-16	>999	360				
BCDL		10.0											Weight: 560 lb	FT = 20%		
LUMBER				2	All loads are	considered equal	ly applie	d to all plies,	13) Load case(s) 1, 2 has/have been modified. Building							
TOP CHORD	2x6 SP No.2				except if note	ace in the LC	DAD	des	igner m	ust rev	iew loads to verify	/ that they are				
BOT CHORD	2x12 SP 240	0F 2.0E			CASE(S) see	ction. Ply to ply co	nnection	s have been		cori	ect for t	he inte	nded use of this i	russ.		
WFBS	2x4 SP No 3	*Except	* 5-7·2x4 SP No 2		provided to c	listribute only load	s noted	as (F) or (B),		14) Use	USP T	HDH26	6-2 (With 22-16d	nails into Girder	&	
BRACING					unless other	wise indicated.				8-1	6d nails	into Tr	uss) or equivalen	t at 5-5-8 from th	he	
	Structural w	ood shos	athing directly applie	dor 3	Unbalanced	roof live loads hav	e been o	considered fo	r	left	end to c	onnec	t truss(es) to from	face of bottom		
TOP CHORD			anning unectly applie	u 01 -	this design.					cho	rd.		()			
	Pigid ceiling	directly	applied or 10-0-0 oc	. 4)	Wind: ASCE	7-16; Vult=130mp	oh (3-sec	ond gust)		15) Use	USP T	HDH28	3-2 (With 36-16d)	nails into Girder	&	
	bracing	unecuy			Vasd=103m	oh; TCDL=6.0psf;	BCDL=6	.0psf; h=25ft;		10-	16d nails	s into T	russ) or equivale	nt at 18-5-8 from	n the	
	1 Brace at It	t(c)· 10			Cat. II; Exp E	3; Enclosed; MWF	RS (env	elope) exterio	or	left	end to c	onnec	t truss(es) to from	face of bottom		
DEACTIONS		(3).13	40.000		zone; cantile	ver left and right e	xposed	end vertical	left	cho	rd.					
REACTIONS		2=0-3-6	0.10		and right exp	osed; Lumber DC	L=1.60 µ	olate grip		16) Use	USP T	HDH28	3-2 (With 36-16d)	nails into Girder	&	
	Max Craw 12	S=-280 (L		C 20)	DOL=1.60					10-	16d nails	s into T	Truss) or equivale	nt at 18-5-8 from	n the	
		2=4522 (LC 24), 10=3002 (LV	5 (20) 5	TCLL: ASCE	TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 left end to connect truss(es) to back face of bottom										
FORCES	(Ib) - Maximu	um Com	pression/Maximum		Plate DOL=1	Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate chord										
	l ension				DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 17) Fill all nail holes where hanger is in contact with								contact with lur	nber.		
TOP CHORD	1-2=0/35, 2-3	3=-2475	/0, 3-20=-3836/0,		Cs=1.00; Ct=1.10 18) Attic room checked for								d for L/360 deflec	tion.		
	4-20=-3772/0	0,4-21=	-4060/0, 5-21=-3559	9/0, 6j	Unbalanced snow loads have been considered for this						LOAD CASE(S) Standard					
	0-0=-1009/1	9,6-7=-1	1/91/42, 7-22=-3720)/U,	design.					1) Dead + Snow (balanced): Lumber Increase=1.15, Plate						
	8-22=-3964/	0,8-9=-3	3972/0, 9-10=-2979/ 721/0, 10, 12 - 4427	0, 7) /0	This truss ha	is been designed f	or great	er of min roof	live	Inc	crease=	1.15				
	17 19 - 250/	2-10=-3	131/0, 10-12=-4437/ 17_0/2222	0	load of 12.0	pst or 1.00 times t	lat roof lo	bad of 20.0 ps	st on	Ur	hiform Lo	oads (I	b/ft)			
BOT CHORD	17-10=-209/2	209,10-	-0/2222, -0/2201 12 14-0/2	559 0	overnangs n	on-concurrent witr		/e loads.						1111		
	12-13-28//	5 5	=0/3301, 13-14=0/2	.556, 8j	This truss ha	is been designed i	or a 10.0) pst bottom					WAH CA	Rollin		
WERS	9 1/- 900/1	121 0 1	4- 20/1707		chord live loa	ad nonconcurrent	with any	other live loa	ds.			5	R	· Sinte		
WLD5	0-13-2315/	0 4-16-	-1187/630 3-16-0/2	9,99	" I NIS truss r	has been designed	i for a liv	e load of 20.0	Jpst			~	U. EESO	Oil is		
	3-173177/	0,4-10-	-7107/039, 3-10-0/2	.000,	on the bottor	n chord in all area	s where	a rectangle				1		MAD	1	
	7-192388/	0,0 10- 132 6-10	9-0/149 2-17-0/30	91	3-06-00 tall t	by 2-00-00 wide wi	II III Delv	leen the botto	JIII			n	2		-	
	10-13=0/379	102, 0 1.	5=0/145, 2 17=0/50	JI, 1/		lood (5 0 pof) on a	- mombor/	a) 4 5 7 9 5	- 10		-		CEA.		1	
NOTES	10 10-0/010	~_			7 10: Woll d	load (5.0 psi) offi		(5). 4-5, 7-6, 5	16		=	1	SEA	L <u>i</u>	-	
		الدم مد ام م	han with 10d		7-19, Wali u	eau ioau (5.0psi)	on menn	Jei (5).0-14, 4	-10		1	:	0363	22 :	-	
 Z-piy truss (0.121"y2") pails as follo	ea logeli	ner with 10a	1) Bottom chor	d live load (40.0 pg	e hae (te	dditional bott	h							
Top chord	i nails as iolion	no. Follows	· 2x6 - 2 rows	1	chord dead load (5 op 6) and a dutin room 11/16									1		
top criticitu baraanete	at 0-9-0 oc 2v	4 - 1 row	. 270 - 210WS	1) This trues is	designed in accor	dance w	ith the 2018	0			2.	N. En	Rik	~	
Bottom ch	ords connected	d as follo	ws: 2x12 - 2 rows	14	International	Residential Code	sections	R502 11 1 a	nd			25	S. GINI	EF. AS		
standered	at 0-9-0 oc		MO. 2012 210W3		R802 10 2 a	nd referenced star	Idard AN	ISI/TPI 1				11	10 m	BEIN		
Web conn	ected as follow	/s: 2x4 -	1 row at 0-9-0 oc										11, A. G	ILLUIN		
													(IIIIIII)	IIII.		

April 5,2021

818 Soundside Road Edenton, NC 27932

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	B04	Attic Girder	1	2	Job Reference (optional)	E15577168
Carter Components, Chesapeake	e. VA - 23323.	Run: 8.43 S Mar 22	2021 Print: 8	430 S Mar 2	2 2021 MiTek Industries, Inc. Mon Apr 05 14:02:35	Page: 2

ID:w9ZTEcRV0cWZWrJyZRzSvZzUt0j-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components, Chesapeake, VA - 23323,

Vert: 1-2=-60, 2-20=-60, 4-20=-360, 4-5=-370, 5-6=-360, 6-7=-360, 7-8=-370, 8-10=-60, 10-11=-60, 16-18=-20, 14-16=-30, 12-14=-20, 5-19=-10, 7-19=-10 Drag: 8-14=-10, 4-16=-10 Concentrated Loads (lb) Vert: 14=-1663 (F=-851, B=-811), 16=-52 (F) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-2=-60, 2-20=-60, 4-20=-160, 4-5=-170, 5-6=-160, 6-7=-160, 7-8=-170, 8-10=-60, 10-11=-60, 16-18=-20, 14-16=-30, 12-14=-20, 5-19=-10, 7-19=-10

Drag: 8-14=-10, 4-16=-10 Concentrated Loads (lb)

2)

Vert: 14=-2222 (F=-801, B=-1422), 16=-82 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 2

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	G02	Flat Girder	1	2	Job Reference (optional)	E15577169

Run; 8,43 S Mar 22 2021 Print; 8,430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:44 ID:_mRjpwQEU_GrHX9ZS0x_q8zUt0I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.69 0.08 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 95 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP 2400F 2.0E 2x8 SP 2400F 2.0E 2x4 SP No.3 2-0-0 oc purlins: 1-2,	, except end verticals	4) 5) 5.	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Provide adec	7-16; Pr=20.0 psf .15); Pf=20.0 psf (I s=1.0; Rough Cat .1.10 snow loads have b	(roof LL Lum DC B; Fully een cor	L: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 Insidered for th	l.15 ; iis	1) De Inc Ur Cc	ead + Sn crease=' hiform Lo Vert: 1-2 oncentra Vert: 5=	ow (ba 1.15 bads (ll 2=-60, ted Loa -558, 6	alanced): Lumber b/ft) 4-7=-20, 3-7=-50 ads (Ib) 5=-568, 8=-296 (E	Increase=1.15, Plate
BOT CHORD	Rigid ceiling directly bracing. (size) 3= Mecha Max Horiz 4=-203 (Lt Max Uplift 3=-323 (Lt Max Grav 3=1368 (L	applied or 10-0-0 oc nical, 4= Mechanical C 8) C 9), 4=-263 (LC 8) C 21), 4=932 (LC 22)	8) 8)	This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an	s been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by other members.	or a 10.0 vith any for a liv where I fit betw	or performing of performing other live load e load of 20.0 a rectangle veen the botto	ds. Ipsf om	2) De Pli Ur Co	ead + Ro ate Incre hiform Lo Vert: 1-2 oncentra Vert: 5=	of Live ase=1 bads (II 2=-60, ted Los -473, 6	e (balanced): Lun .15 b/ft) 4-7=-20, 3-7=-13 ads (Ib) 6=-483, 8=-180 (I	iber Increase=1.15, ;0 3), 9=-183 (B)
FORCES	(lb) - Maximum Com Tension 1-4=-577/204, 1-5=-7 2-6=-75/57, 2-3=-826	pression/Maximum 75/57, 5-6=-75/57, 6/76	9) 10	Refer to girde Provide mech bearing plate joint 4 and 32	er(s) for truss to tru hanical connection capable of withsta 23 lb uplift at joint 3	iss conr (by oth inding 2 5.	nections. ers) of truss to 263 lb uplift at	D					
BOT CHORD	4-7=-177/159, 7-8=- ⁻ 3-9=-177/159 1-3=-172/172	177/159, 8-9=-177/15	9, 11) This truss is International R802.10.2 ar	designed in accord Residential Code s	ance w sections	ith the 2018 8 R502.11.1 a NSI/TPI 1.	nd					
NOTES 1) 2-ply truss (0.131"x3' Top chord oc. Pottom ch	s to be connected toget) nails as follows: Is connected as follows	her with 10d : 2x4 - 1 row at 0-9-0	12 13	 Load case(s) designer mus correct for the Graphical pu or the orienta bottom chorse 	1, 2 has/have bee st review loads to v e intended use of t rlin representation ation of the purlin a	n modif rerify that his truss does no long the	fied. Building at they are s. ot depict the s ot op and/or	ize			(1)	NHTH CA	ROLIN

Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-9-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

- All loads are considered equally applied to all plies, 2) except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 3) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 14) Use USP MSH29 (With 10d nails into Girder & 4-10d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-9-12 from the left end to 3-9-12 to connect truss(es) to back face of bottom chord.
- 15) Fill all nail holes where hanger is in contact with lumber.
- 16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 598 Ib down and 26 lb up at 1-9-12, and 602 lb down and 29 Ib up at 3-9-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	G01	Flat Girder	1	2	Job Reference (optional)	E15577170

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:43 ID:_mRjpwQEU_GrHX9ZS0x_q8zUt0I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

April 5,2021

$$| \begin{array}{c} 1-5-0 \\ | \begin{array}{c} 1-3-4 \\ 1-3-4 \\ 1-3-4 \\ 0-1-12 \end{array} | \\ 0-1-12 \\ \end{array} |$$

Scale = 1:49.3

PLATES GRIP MT20 244/190 Weight: 105 lb FT = 20%
connection device(s) shall be o support concentrated load(s) 604 p at 1-9-12, and 607 lb down and 25 op chord, and 354 lb down and 161 1 358 lb down and 159 lb up at ord. The design/selection of such s) is the responsibility of others. dard anced): Lumber Increase=1.15, Plate ft) -5=-20 ds (lb) -5-74, 8=-296 (F), 9=-299 (F) SEAL 036322
PN V copolito) dan ft-fdam

- 2 except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	D01	Monopitch	8	1	Job Reference (optional)	E15577171

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:39 ID:v_L3h6oB1qOsCxwpctXYOtzUt2r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:48.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.75 0.30 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.07 0.00	(loc) 6-7 6-7 6	l/defl >999 >848 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-4-0 oc purlins, exc Rigid ceiling directly bracing. (size) 6= Mecha Max Horiz 7=238 (LC Max Uplift 6=-149 (LC Max Grav 6=316 (LC (Ib) - Maximum Com Tension 1-2=0/35, 2-3=-138/5 3-6=-261/74, 2-7=-3 6-7=-222/154, 5-6=0 2-6=-146/199	athing directly applie cept end verticals. applied or 10-0-0 oc nical, 7=0-3-8 2 11) C 11), 7=-38 (LC 10) 2 21), 7=367 (LC 21) pression/Maximum 94, 3-4=-13/0, 18/101	5) 6) ; 8) 9) 1(L(This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Refer to girdd Provide mecl bearing plate joint 6. One RT7A U truss to beari connection is forces.)) This truss is 4 International R802.10.2 ar DAD CASE(S)	s been designed f d nonconcurrent i as been designed n chord in all area y 2-00-00 wide wi y other members. rf(s) for truss to tr nanical connection capable of withst SP connectors re- ng walls due to U for uplif only and designed in accor Residential Code id referenced star Standard	for a 10.0 with any d for a liv s where ill fit betw uss conr h (by oth anding 1 commen PLIFT at d does no dance w sections ndard AN	D psf bottom other live loa e load of 20.1 a rectangle veen the bott nections. ers) of truss i 49 lb uplift ai ded to conne jt(s) 7. This ot consider la ith the 2018 i R502.11.1 a ISI/TPI 1.	ads. Opsf com t ect ateral						
 Wind: ASC Vasd=103i Cat. II; Exp zone and 0 2-0-0 to 2- cantilever right expos for reaction DOL=1.60 TCLL: ASC Plate DOL TCLL: ASC Plate DOL=1.15 Cs=1.00; 0 Unbalance design. This truss 	E 7-16; Vult=130mph mph; TCDL=6.0psf; BG o B; Enclosed; MWFRS C-C Exterior(2E) -1-0-C 4-0, Exterior(2E) 2-4-0 left and right exposed ; sed;C-C for members a ns shown; Lumber DOI CE 7-16; Pr=20.0 psf (r =1.15); Pf=20.0 psf (L); Is=1.0; Rough Cat B Ct=1.10 d snow loads have be has been designed for a full d accel for the statement of the too:	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior to 2-0-0, Interior (1) to 5-4-0 zone; ; end vertical left and and forces & MWFR: L=1.60 plate grip roof LL: Lum DOL=1 Jm DOL=1.15 Plate ; Fully Exp.; Ce=0.9; en considered for thi greater of min roof I) 1 S .15 ; is							M. HILLING		SEA 0363	ROUTER L 22 BERTIN	Mamming

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

818 Soundside Road Edenton, NC 27932

G

11111111

April 5,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	C01	Roof Special	2	1	Job Reference (optional)	E15577172

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:36 ID:I?WvTBLT6Ab4HYLrBg5?46zUvdO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

		1	-3-4-6	3-3-2		6-6-4		1	9-10-	10		
Scale = 1:37		I	3-4-6	3-3-2	ļ	3-3-2		I	3-4-0	6		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Inc Code	2-0-0 - 1.15 1.15 r YES IRC2018/TPI20	CSI TC BC WB 14 Matrix-MP	0.36 0.61 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.22 0.22	(loc) 6-9 6-9 5	l/defl >999 >708 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 61 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS FORCES TOP CHORD	2x8 SP 2400F 2.0E 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Brace at Jt(s): 6 (size) 1=0-3-0, 5 Max Horiz 1=89 (LC Max Uplift 1=-37 (LC Max Grav 1=624 (LC (lb) - Maximum Com Tension 1-13=-301/112, 2-13	athing directly ap applied or 10-0- i=0-3-0 11) 14), 5=-40 (LC 2 21), 5=618 (LC pression/Maximu =-183/134,	4) Unbal desig 5) This ti chord 6) * This 3-06- 0 oc 7) Bearir using desig 8) One F truss 1 5) This c latera um 9) This ti Intern R802.	anced snow loads hav n. russ has been designe live load nonconcurre truss has been design a bottom chord in all ar ob tall by 2-00-00 wide and any other membe ng at joint(s) 1, 5 consi ANSI/TPI 1 angle to g ner should verify capa. RT7A USP connectors to bearing walls due to connection is for uplift of l forces. russ is designed in acc ational Residential Co 10.2 and referenced s	ve been col ed for a 10. nt with any hed for a liv reas where will fit betw ers. iders parall rain formul city of bear recommer o UPLIFT a conly and do cordance w de sections tandard AN	nsidered for t 0 psf bottom other live loa re load of 20.1 a rectangle ween the bott el to grain va a. Building ing surface. ded to connet t jt(s) 1 and 5 bes not consid tith the 2018 s R502.11.1 a vSI/TPI 1.	his ads. Opsf om lue ect der					
BOT CHORD WEBS	2-3=-1413/370, 3-4= 4-14=-172/135, 5-14 2-6=-201/973, 4-6=- 3-6=-18/210	-929/276, =-298/114 113/904	LOAD CA	SE(S) Standard								
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=102 Cat. II; Ex zone and 3-4-6 to 9 (2E) 9-10 exposed ; members Lumber D 3) TCLL: AS Plate DOI DOL=1.15	ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; BG C-C Exterior(2E) 0-1-8 L-4-10, Interior (1) 9-4-1 -10 to 13-1-8 zone; can ; end vertical left and rig and forces & MWFRS i 00L=1.60 plate grip DO 0CL 7-16; Pr=20.0 psf (L L=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat B	been considered (3-second gust) CDL=6.0psf; h=2 S (envelope) ext to 3-4-6, Exteric 0 to 9-10-10, Ext tilever left and ri ht exposed;C-C for reactions sho L=1.60 roof LL: Lum DO m DOL=1.15 PI ; Fully Exp.; Ce=	d for 25ft; erior pr(2R) terior ght for ywn; H=1.15 late =0.9;						4.11111		SEA 0363	EER. KIN

Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G

ununu April 5,2021

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	EJ01	Jack-Open	18	1	Job Reference (optional)	E15577173

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:40 ID:URkLkHuKd3SWG6g5S1V7BlzUsrp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-0-0

Plate Offsets (X, Y): [2:Edge,0-1-5]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD	(psf) 20.0 20.0 10.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018 5) 6)	/TPI2014 This truss ha chord live loa * This truss h	CSI TC BC WB Matrix-MP as been designed fr ad nonconcurrent v has been designed	0.89 0.55 0.00 or a 10. vith any for a liv	DEFL Vert(LL) Vert(CT) Horz(CT) 0 psf bottom other live loz e load of 20.	in -0.09 -0.16 0.03 ads. 0psf	(loc) 4-7 4-7 2	l/defl >788 >433 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%	
WEDGE BRACING TOP CHORD BOT CHORD	Left: 2x4 SP No.3 Structural wood shea 2-2-0 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 oc	ed or 7) 5 8)	on the bottor 3-06-00 tall to chord and ar Refer to gird Provide mec bearing plate	n chord in all areas by 2-00-00 wide wil by other members. er(s) for truss to tru hanical connection e capable of withsta	s where Il fit betv uss conr (by oth anding 9	a rectangle veen the bott nections. ers) of truss 2 lb uplift at	to joint						
FORCES	(size) 2=0-5-8,3 Mechanici Max Horiz 2=145 (LC Max Uplift 2=-17 (LC Max Grav 2=381 (LC 4=112 (LC (lb) - Maximum Com Tension 1-2=0/30, 2-8=-266/2 2-4=-315/260	3= Mechanical, 4= al 2 14) 2 14), 3=-92 (LC 14) 2 21), 3=254 (LC 21) 2 7) pression/Maximum 239, 3-8=-77/99	9) ^{I,} 10) LO	o. One RT7A U truss to bear connection is forces. This truss is International R802.10.2 ar AD CASE(S)	ISP connectors rec ing walls due to Uf s for uplift only and designed in accord Residential Code nd referenced stan Standard	commen PLIFT at does no dance w sections dard AN	ded to conne jt(s) 2. This ot consider la ith the 2018 R502.11.1 a ISI/TPI 1.	ect ateral and						
NOTES 1) Wind: AS Vasd=100 Cat. II; Ex zone and exposed : members Lumber D 2) TCLL: AS Plate DOI DOL=1.11 Cs=1.00; 3) Unbalanc design. 4) This truss load of 12 overhang	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B(cp B; Enclosed; MWFRS; C-C Exterior(2E) zone; end vertical left and rig and forces & MWFRS; VOL=1.60 plate grip DO CE 7-16; Pr=20.0 psf (L L=1.15); Pf=20.0 psf (L L=1.15); Pf=20.0 psf (L CE-1.10 ed snow loads have be thas been designed for 2.0 psf or 1.00 times flat s non-concurrent with c	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and r pht exposed;C-C for for reactions shown; J=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate s; Fully Exp.; Ce=0.9 een considered for th r greater of min roof t roof load of 20.0 ps ther live loads.	r ight .15 ; is live f on							A THINK .		SEA 0363		A annung,

April 5,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	K01	Jack-Open Supported Gable	1	1	Job Reference (optional)	E15577174

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:45 ID:J89T7yNQCMVr3FknoQDWpBzUsrB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.8

L oading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.26 0.04 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 8-11 8-11 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%	//6
LUMBER TOP CHORD SOT CHORD WEBS DTHERS SRACING TOP CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 2=6-0-0, 5 7=6-0-0, 6 Max Horiz 2=137 (LC Max Uplift 2=-8 (LC (LC 14), 8 10) Max Grav 2=148 (LC (LC 7), 7= 21), 9=144 (lb) - Maximum Com Tension 1-2=0/30 2-12=-151	athing directly applied cept end verticals. applied or 10-0-0 oc 5= Mechanical, 6=6-0 C 13), 9=137 (LC 13) 10), 5=-28 (LC 11), 7 B=-66 (LC 14), 9=-8 (L C 21), 5=72 (LC 21), 6 -254 (LC 21), 8=229 (8 (LC 21) pression/Maximum /66 3-12=-146/74	2) 3) 1 or -0, 5) -0, 5) -0, 6) 7) C 8) LC 9) 10,	Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 g overhangs ne Gable studs : This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Refer to girdd Provide mect	ed for wind loads in ds exposed to wind ds exposed to wind a Industry Gable Er alified building des 7-16; Pr=20.0 psf (15); Pf=20.0 psf (15); Pf=20.0 psf (1.10) snow loads have b s been designed for bar or 1.00 times fla on-concurrent with spaced at 2-0-0 oc s been designed n chord in all areas n chord in all areas n chord in all areas n y 2-00-00 wide will y other members. er(s) for truss to tru- hanical connection	n the pla d (norm nd Detail igner as (roof LL Lum DC B; Fully eeen cor or greate at roof lc other liv or a 10.0 vith any for a 10.0 vith any for a liv s where I fit betw (by othe 2	ane of the true al to the face Is as applical per ANSI/TF : Lum DOL= L=1.15 Plate Exp.; Ce=0.9 sidered for th er of min roof pad of 20.0 ps re loads. 0 psf bottom other live loa e load of 20.0 a rectangle even the botto ections. ers) of truss t a bundiff at i	ss), ble, 211. 1.15 1.15 2); his live sf on ds. Dpsf om						
BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=103 Cat. II; Ex zone and 2-0-0 to 2- cantilever right expo for reactio DOL=1.60	1-2=0/30, 2+12=-131 3-13=-83/41, 4-13=- 5-6=0/0 2-8=-103/83, 7-8=-6; 4-7=-212/188, 3-8=- CE 7-16; Vult=130mph imph; TCDL=6.0psf; BK p B; Enclosed; MWFR3 C-C Corner(3E) -1-0-0 -10-4, Corner(3E) -1-0-0 -10-4, Corner(3E) -1-0-0 left and right exposed sed;C-C for members a ins shown; Lumber DO)	75/59, 4-5=-73/61, 2/83, 6-7=-62/83 187/168 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior to 2-0-0, Exterior(2N I-4 to 5-10-4 zone; ; end vertical left and and forces & MWFRS L=1.60 plate grip	11) 12)) 13) LO	5. One RT7A U truss to beari This connect lateral forces This truss is International R802.10.2 ar Gap betweer diagonal or v	SP connectors rec ing walls due to UF ion is for uplift only designed in accord Residential Code s and referenced stand inside of top chor ertical web shall no Standard	ommen PLIFT at and do lance wi sections dard AN d bearir ot excee	ded to conne jt(s) 2, 7, and es not consid th the 2018 R502.11.1 a SI/TPI 1. g and first d 0.500in.	ct d 8. ler nd		M. Hallins		SEA 0363		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	K02	Common Supported Gable	1	1	Job Reference (optional)	E15577175

P

10

Carter Components, Chesapeake, VA - 23323,

2-9-8

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:46

0

8

7

ID:JEKb3PK54QWR7KQjJ_yk_1zUsd2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -1-0-0 3-2-8 6-5-0 7-5-0 1-0-0 3-2-8 3-2-8 1-0-0 4x5 = 12 7 Г 4 2x4 🛛 2x4 🛚 19 18 3 5 2-5-1 P Þ 2 6 <u>0-6-10</u>

0

9

Flate Olisets (A, T). [2.0-3-0,	,Eugej,	[0.0-3-0,Euge]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	((psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.11 0.03 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP N Right: 2x4 SP Structural wo 6-0-0 oc purli Rigid ceiling of bracing. (size) 2== Max Horiz 2== Max Uplift 2== 11: Max Grav 2=: 8= 100 15:	No.3 od shea ns. directly 6-5-0, 6 6-5-0, 1 =6-5-0 -58 (LC -50 (LC =-12 (LC 184 (LC 185 (LC =185 (LC =184 (L =184 (L	thing directly applied applied or 10-0-0 oc =6-5-0, 8=6-5-0, 0=6-5-0, 11=6-5-0, 12), 11=-58 (LC 12) 15), 6=-18 (LC 15), 15), 10=-53 (LC 14), C 15), 15=-18 (LC 15) 21), 6=184 (LC 22), 22), 9=139 (LC 22), C 21), 11=184 (LC 2-	2) or 3) 4) 5) 6) 1), 7)	Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-(2-0-0 to 4-5-(cantilever lef right exposed for reactions DOL=1.60 Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); 1 Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 p overhangs no Gable require	7-16; Vult=130mph bh; TCDL=6.0psf; B s; Enclosed; MWFR C Corner(3E) -1-0-(0, Corner(3E) 4-5-0 t and right exposed d;C-C for members shown; Lumber DC ed for wind loads ir ds exposed to wind d Industry Gable Er alified building desi 7-16; Pr=20.0 psf (15); Pf=20.0 psf (L s=1.0; Rough Cat I =1.10 show loads have build s been designed for osf or 1.00 times fla on-concurrent with es continuous botto	(3-sec CDL=6 S (env to 7-5; ; end \ and for DL=1.6(h the pl, d (norm d Deta gner a: (roof LL .um DC 3; Fully seen cor r great it roof it t ordhe in m chor	cond gust) .0psf; h=25ft; elope) exterioio -0, Corner(3R 0 zone; vertical left and cces & MWFR) plate grip ane of the trus al to the face) ils as applicab s per ANSI/TP L=1.15 Plate Exp.; Ce=0.9 nsidered for th er of min roof 1 and of 20.0 ps ve loads. d bearing.	r) S S S S S S S S S S S S S S S S S S	13) This Inte R80 LOAD (s truss is rnationa i2.10.2 a :ASE(S)	: desig I Resiciand ref	ned in accordance dential Code sect erenced standard ndard	e with the 2018 ons R502.11.1 a ANSI/TPI 1.	and
FORCES	(lb) - Maximu Tension 1-2=0/48, 2-3 4-18=-31/84,	m Comp 8=-47/54 4-19=-3	oression/Maximum , 3-18=-68/78, 1/84, 5-19=-68/78,	8) 9) 1(Gable studs This truss ha chord live loa) * This truss h	spaced at 2-0-0 oc. s been designed fo ad nonconcurrent w as been designed	r a 10.0 ith any for a liv	0 psf bottom other live load e load of 20.0	ds. psf		4	I.I.	A CONTRACTOR		5
BOT CHORD WEBS NOTES 1) Unbalance this design	3-0=-17/23, 6 2-10=-39/84, 6-8=-16/84 4-9=-93/4, 3- ⁻ ed roof live load	9-10=-1 10=-181	6/84, 8-9=-16/84, /154, 5-8=-181/154 peen considered for	1 [.] 1:	on the bottom 3-06-00 tall b chord and ar 1) One RT7A U truss to bear 8. This conne consider late 2) Beveled plate surface with	n chord in all areas by 2-00-00 wide will yy other members. SP connectors reac- ing walls due to UP ection is for uplift or ral forces. e or shim required t truss chord at joint(where fit betv ommen LIFT at aly and o provi s) 2, 11	a rectangle veen the botto ded to connec jt(s) 2, 6, 10, does not de full bearing	om ot and		111111111		SEA 0363	ER. K	Willing the

April 5,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	K03	Common Girder	1	2	Job Reference (optional)	E15577176

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:46 ID:gIBLFIoZuPRvJKvD6h9t4GzUscR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Pa

April 5,2021

818 Soundside Road Edenton, NC 27932

	3-2-8	6-5-0	
	3-2-8	3-2-8	
icale = 1:32.3			
ate Offsets (X_Y); [2:0-1-3 0-1-8] [4:0-1-3 0-1-8]			

Scale = 1:32.3														
Plate Offsets ((X, Y): [2:0-1	-3,0-1-8],	[4:0-1-3,0-1-8]										-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20	18/TPI2014	CSI TC BC WB Matrix-MP	0.24 0.77 0.63	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 5-11 5-11 4	l/defl >999 >999 n/a Vert: 8=	L/d 240 180 n/a	PLATES MT20 Weight: 61 lb (B), 11=-1497 (E	GRIP 244/190 FT = 20% 3), 12=-1530 (B),
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x6 SP No 2x4 SP No Structural v 6-0-0 oc pu Rigid ceilin bracing. (size)	.2 .2 .3 wood sheaurlins. ng directly 2=0-5-8, 4	athing directly applie applied or 10-0-0 oc 4=0-5-8	d or 5	Vasd=103mj Cat. II; Exp E zone; cantile and right exp DOL=1.60) TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct	bh; TCDL=6.0psf; E 3; Enclosed; MWFF ver left and right ex bosed; Lumber DOI 57-16; Pr=20.0 psf 1.15); Pf=20.0 psf (I Is=1.0; Rough Cat =1.10	3CDL=6 RS (env kposed L=1.60 (roof LI Lum DC B; Fully	6.0psf; h=25ft elope) exterio ; end vertical plate grip :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9	; or left 1.15 9;		13=-154	49 (B)		
FORCES TOP CHORD BOT CHORD	(size) 2 Max Horiz 2 Max Grav 2 (lb) - Maxir Tension 1-2=0/46, 2 2-12=0/284	2=0-3-6, 4 2=53 (LC 2=3922 (L num Com 2-3=-3296 45, 5-12=(=0-3-6 9) .C 22), 4=3503 (LC 2 pression/Maximum i/0, 3-4=-3302/0 0/2845, 5-13=0/2845	6 23) 7 , 8	 Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa 	snow loads have b as been designed for psf or 1.00 times fla on-concurrent with as been designed for ad nonconcurrent w	or great at roof le other lin or a 10.1 vith any	nsidered for the er of min roof bad of 20.0 p ve loads. D psf bottom other live loa	his f live sf on ads.					
 WEBS NOTES 1) 2-ply truss (0.131"x3" Top chord oc. Bottom ch staggered Web conn 2) All loads a except if n CASE(S) s provided to unless oth 3) Unbalance this design 	4-13=0/204 3-5=0/3095 is to be connect ') nails as foll is connected ords connect at 0-6-0 oc. ected as foll are considere oted as front section. Ply to o distribute o nerwise indica ed roof live lo h.	 cted toget cted toget ows: as follows as follows as follows as follows cted as follows <licted as="" follows<<="" td=""><td>ther with 10d 5: 2x4 - 1 row at 0-9-0 5: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO. tections have been noted as (F) or (B), been considered for</td><td>9 1 0 1 AD 1 L 1</td><td> 1 Inis truss is on the bottor 3-06-00 tall b chord and ar 10) This truss is International R802.10.2 a 11) Use USP TH 12-10d x 1-1 2-0-0 cc maximis 5-10-8 to con chord. 2) Fill all nail ho OAD CASE(S) Dead + Sm Increase=1 Uniform Lo Vert: 1-3 Concentrat </td><td>has been designed in chord in all areas by 2-00-00 wide wil by other members. designed in accorc Residential Code s not referenced stan ID26 (With 18-16d /2 nails into Truss) k. starting at 0-6-8 f innect truss(es) to b bles where hanger i Standard by (balanced): Lurr 15 ads (lb/ft) =-60, 3-4=-60, 6-9= ed Loads (lb)</td><td>Tor a liv s where I fit betw dance w sections dard AN nails int or equi from the eack fac is in cor</td><td>e load of 20.1 a rectangle veen the bott ith the 2018 s R502.11.1 a SI/TPI 1. o Girder & valent space left end to e of bottom ntact with lum rease=1.15, l</td><td>upst and d at bber. Plate</td><td></td><td>C. C. C</td><td></td><td>SEA 0363</td><td>EER. HUMAN</td></licted>	ther with 10d 5: 2x4 - 1 row at 0-9-0 5: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO. tections have been noted as (F) or (B), been considered for	9 1 0 1 AD 1 L 1	 1 Inis truss is on the bottor 3-06-00 tall b chord and ar 10) This truss is International R802.10.2 a 11) Use USP TH 12-10d x 1-1 2-0-0 cc maximis 5-10-8 to con chord. 2) Fill all nail ho OAD CASE(S) Dead + Sm Increase=1 Uniform Lo Vert: 1-3 Concentrat 	has been designed in chord in all areas by 2-00-00 wide wil by other members. designed in accorc Residential Code s not referenced stan ID26 (With 18-16d /2 nails into Truss) k. starting at 0-6-8 f innect truss(es) to b bles where hanger i Standard by (balanced): Lurr 15 ads (lb/ft) =-60, 3-4=-60, 6-9= ed Loads (lb)	Tor a liv s where I fit betw dance w sections dard AN nails int or equi from the eack fac is in cor	e load of 20.1 a rectangle veen the bott ith the 2018 s R502.11.1 a SI/TPI 1. o Girder & valent space left end to e of bottom ntact with lum rease=1.15, l	upst and d at bber. Plate		C. C		SEA 0363	EER. HUMAN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	VL05	Valley	1	1	Job Reference (optional)	E15577177

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:47 ID:Gw3X4ckIzBZvO4Jvs8cSgRzUtFr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x5 =

2

3-5-3

1-5-10

3-11-2

3

2x4 🍃 3-11-2

1-11-9

1-11-9

Scale = 1:22.7

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading	(psf) 20.0	Spacing Plate Grip DOI	2-0-0 1 15	CSI TC	0 12	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		211/100
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP		- ()						
BCDL	10.0										Weight: 11 lb	FT = 20%
LUMBER			7) Gable studs	s spaced at 4-0-0 oc).							
TOP CHORD	2x4 SP No.2		This truss h	as been designed for	or a 10.	0 psf bottom						
BOT CHORD	2x4 SP No.2		chord live lo	ad nonconcurrent v	vith any	other live loa	ids.					
BRACING			9) * This truss	has been designed	for a liv	e load of 20.0	Opsf					
TOP CHORD	Structural wood she 3-11-2 oc purlins.	eathing directly applie	ed or on the botto 3-06-00 tall	m chord in all areas by 2-00-00 wide wil	s where Il fit betv	a rectangle veen the botto	om					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	chord and a 10) Provide me	iny other members. chanical connection	ı (by oth	ers) of truss t	to					
REACTIONS	(size) 1=3-11-2	, 3=3-11-2	bearing plat	e capable of withsta	anding 1	5 lb uplift at j	oint					
	Max Horiz 1=23 (LC	11)	11) This trues is	designed in accord	tance w	ith the 2018						
	Max Uplift 1=-15 (LC	C 14), 3=-15 (LC 15)	Internations	I Residential Code	sections	R502 11 1 a	nd					
	Max Grav 1=179 (L	C 20), 3=179 (LC 21) R802.10.2	and referenced stan	dard AN	NSI/TPI 1.						
FORCES	(lb) - Maximum Con Tension	npression/Maximum	LOAD CASE(S) Standard								
TOP CHORD	1-2=-276/105, 2-3=-	-159/79										
BOT CHORD	1-3=-78/229											
NOTES												
1) Unbalance	ed roof live loads have	been considered for	r									
2) Wind AS	CE 7-16: \/ult-130mph	(3-second quist)										
Vasd=103	Bmph TCDI =6 0psf B	CDI = 6 Opsf h = 25ft									IIIIII	11111
Cat. II; Ex	p B; Enclosed; MWFR	S (envelope) exterio	r								N'LY CA	Rall
zone and	C-C Exterior(2E) zone	; cantilever left and r	ight							1	all	
exposed ;	end vertical left and ri	ght exposed;C-C for								N.	O'EES8	10 - 1. E.
members	and forces & MWFRS	for reactions shown	,							25	10-1	and the second s
Lumber D	OL=1.60 plate grip DC	DL=1.60							2			
3) Truss des	igned for wind loads ir	n the plane of the true	SS						-		054	
only. For	studs exposed to wind	d (normal to the face)	,						=		SEA	L <u>:</u> E
see Stand	lard Industry Gable En	d Details as applicat	ole,						Ξ.		0363	22 E
or consult	qualified building desi	gner as per ANSI/TF	911.						-		. 0000	: :
4) TCLL: AS	CE 7-16; Pr=20.0 pst ((roof LL: Lum DOL=1	.15							-		1. 1. 2.
	_=1.15); PI=20.0 pSI (L	um DOL=1.15 Plate								- 1	N. E.	Riki
$C_{e}=1.00$	7, 13-1.0, Nough Cal E	, i uny Exp., Ce=0.8	,							20	S. GIN	EFRAN
5) Unhalance	ed snow loads have be	en considered for th	is							1	C .	BEIN
design											11, A. C	illin
6) Gable red	uires continuous botto	m chord bearing.									10000	um.

- 5) Unbalanced snow loads have been considered for this design.
- 6) Gable requires continuous bottom chord bearing.

818 Soundside Road Edenton, NC 27932

April 5,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

0-10-5

1-2-0

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	VL04	Valley	1	1	Job Reference (optional)	E15577178

2-10-2

2-10-2

Carter Components, Chesapeake, VA - 23323,

Run; 8,43 S Mar 22 2021 Print: 8,430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:47 ID:Gw3X4ckIzBZvO4Jvs8cSgRzUtFr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-3-12 3-5-10 4x5 =

6-9-11

Scale = 1:26.1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-P	0.33 0.10 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD FORCES TOP CHORE BOT CHORE WEBS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sheat 6-10-2 oc purlins, ea Rigid ceiling directly bracing. (size) 3=6-9-11, Max Horiz 5=-53 (LC Max Uplift 3=-26 (LC Max Uplift 3=-26 (LC S=142 (LC (Ib) - Maximum Com Tension 1-5=-124/84, 1-2=-50 1-5=-124/84, 1-2=-50 2-4=-196/74 	athing directly applied coept end verticals. applied or 10-0-0 oc 4=6-9-11, 5=6-9-11 10) 15), 5=-38 (LC 14) 2 21), 4=274 (LC 21), 2 20) pression/Maximum 0/64, 2-3=-67/62 /50	4) 5) d or 6) 7) 8) 9) 9) 10	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Gable require Gable studs This truss ha chord live load This truss ha on the bottom 3-06-00 tall b chord and an Provide mecl bearing plate 5 and 26 lb u) This truss is International R802.10.2 ar	7-16; Pr=20.0 psf (1.5); Pf=20.0 psf (Is=1.0; Rough Cat I 1.10 snow loads have b es continuous botto spaced at 4-0-0 oc s been designed fo ad nonconcurrent w as been designed n chord in all areas by 2-00-00 wide will by other members. hanical connection capable of withstat uplift at joint 3. designed in accord Residential Code s and referenced stand Standard	(roof LL Lum DC B; Fully een cor or a 10.0 in	.: Lum DOL=1 IL=1.15 Plate Exp.; Ce=0.9 isidered for th d bearing. 0 psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to 8 lb uplift at jo ith the 2018 R502.11.1 a ISI/TPI 1.	I.15); ds.)psf om o pint					
NOTES 1) Unbalanc this desiç	ed roof live loads have jn.	been considered for	20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									Partie

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 2-10-2, Exterior (2R) 2-10-2 to 3-3-10, Exterior(2E) 3-3-10 to 6-3-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SEAL

036322

anninn ann

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	VL03	Valley	1	1	Job Reference (optional)	E15577179

2-10-2

Carter Components, Chesapeake, VA - 23323,

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries. Inc. Mon Apr 05 14:02:47 ID:G9cY2kKUZfvzQnNENXcOktzUtO6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-3-12

Page: 1

8-9-11

8-9-11

Scale = 1:30.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.83 0.25 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exa Rigid ceiling directly bracing. (size) 3=8-9-11, Max Horiz 5=-95 (LC Max Uplift 3=-34 (LC 5=139 (LC (lb) - Maximum Com Tension 1-5=-133/84, 1-2=-61 3-6=-105/54	athing directly applie cept end verticals. applied or 10-0-0 or 4=8-9-11, 5=8-9-11 12) 15), 5=-40 (LC 14) 2 21), 4=388 (LC 21) 2 20) pression/Maximum 6/81, 2-6=-67/93,	4) 5) d or 6) 7) 5 8) 9) 9) 1, 10	TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar) Provide mec bearing plate 5 and 34 lb u) This truss is International R802.10.2 au	57-16; Pr=20.0 1.15); Pf=20.0 p Is=1.0; Rough (=1.10 snow loads hav es continuous l spaced at 4-0-1 is been designe ad nonconcurre has been designe in chord in all al by 2-00-00 wide hanical connec e capable of wit uplift at joint 3. designed in acc Residential Con nd referenced s	psf (roof LL ssf (Lum DC Cat B; Fully ve been cor bottom chor 0 oc. ed for a 10.0 ed for a 10.0 int with any ned for a liv reas where e will fit betw ers. tition (by oth hstanding 4 cordance wi ode sections standard AN	:: Lum DOL= IL=1.15 Plate Exp.; Ce=0.1 d bearing. D psf bottom other live loa e load of 20.1 a rectangle veen the bott ers) of truss i 0 lb uplift at j ith the 2018 i R502.11.1 a ISI/TPI 1.	1.15 9; his ads. Opsf om to joint					
WEBS NOTES 1) Unbalance	2-4=-276/85 ed roof live loads have	been considered for		IAD CASE(S)	Standard							NILL CA	Politi

this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 2-10-2, Exterior (2R) 2-10-2 to 5-3-10, Exterior(2E) 5-3-10 to 8-3-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G

SEAL

036322

Vananovana

Job	Truss	Truss Type Qty Ply 585 Sunridge-Roof-35464GH		585 Sunridge-Roof-35464GH		
21030062-B	VL02	Valley	1	1	Job Reference (optional)	E15577180

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:47 ID:SIdr8MXWVALWIXMu_b_m?fzUtT0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

GRIP 244/190

FT = 20%

Coolo	_	1.27.2
Scale	=	1:37.3

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.27	Vert(LL)	n/a	-	n/a	999	MT20
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999	
TCDL		10.0	Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.00	4	n/a	n/a	
BCLL		0.0*	Code	IRC2018	3/TPI2014	Matrix-SH							
BCDL		10.0											Weight: 47 lb
LUMBER				3)	Truss desigr	ned for wind load	ds in the pl	ane of the tru	ISS				
TOP CHORD	2x4 SP N	0.2		,	only. For sti	uds exposed to	wind (norm	al to the face	e),				
BOT CHORD	2x4 SP N	0.2			see Standar	d Industry Gable	e End Deta	ils as applica	ble,				
WEBS	2x4 SP N	lo.3			or consult qu	alified building	designer a	s per ANSI/T	PI 1.				
OTHERS	2x4 SP N	0.3		4)	TCLL: ASCE	7-16; Pr=20.0	psf (roof Ll	.: Lum DOL=	1.15				
BRACING					Plate DOL=	1.15); Pf=20.0 p	sf (Lum DC	DL=1.15 Plate	9				
TOP CHORD	Structura	l wood she	athing directly applied	lor	DOL=1.15);	Is=1.0; Rough C	Cat B; Fully	Exp.; Ce=0.9	9;				
	6-0-0 oc	purlins, ex	cept end verticals.	-	Cs=1.00; Ct	=1.10							
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc					bied or 10-0-0 oc 5) Unbalanced snow loads have been considered for this								
	bracing.			0)									
REACTIONS	(size)	4=10-9-11	1, 5=10-9-11, 6=10-9-	11, 5)	Gable requir	es continuous d	ottom choi	d bearing.					
	7=10-9-11				This trues by	spaceu al 4-0-0	000. Id for a 10.	0 pcf bottom					
	Max Horiz	7=-136 (L	C 10)	0)	chord live lo	ad nonconcurre	nt with any	other live los	ade				
	Max Uplift	4=-7 (LC	11), 5=-116 (LC 15),	a)	* This trues								
		7=-29 (LC	5 14)	3)	on the botto	m chord in all ar	eas where	a rectangle	000				
	Max Grav	4=124 (LC	C 23), 5=412 (LC 21),		3-06-00 tall	by 2-00-00 wide	will fit bety	veen the bott	om				
		6=283 (LC	C 21), 7=157 (LC 20)		chord and a	ny other membe	rs.						
FORCES	(lb) - Max	imum Com	pression/Maximum	10) Provide med	hanical connect	tion (by oth	ers) of truss	to				
	Tension				bearing plate	e capable of with	nstanding 2	29 lb uplift at j	joint				
TOP CHORD	1-7=-136	/83, 1-2=-8	9/101, 2-8=-111/94,		7, 7 lb uplift	at joint 4 and 11	6 lb uplift a	at joint 5.					
	3-8=-120	/70, 3-4=-1	23/112	11) This truss is	designed in acc	ordance w	ith the 2018					
BOT CHORD	6-7=-84/1	16, 5-6=-8	4/116, 4-5=-84/116		International	Residential Co	de sections	s R502.11.1 a	and				
WEBS	2-6=-213	/39, 3-5=-3	22/179		R802.10.2 a	nd referenced s	tandard AN	ISI/TPI 1.					D'I''IL
NOTES				LC	AD CASE(S)	Standard						1	THU

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 2-10-2, Exterior (2R) 2-10-2 to 5-10-2, Interior (1) 5-10-2 to 7-3-10, Exterior(2E) 7-3-10 to 10-3-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	VL01	Valley	1	1	Job Reference (optional)	E15577181

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:46 ID:SIdr8MXWVALWIXMu_b_m?fzUtT0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

11-7-13

Scalo	- 1.27 0	
Scale	= 1:37.9	

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-SH	0.13 0.05 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 63 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 7=11-7-1 10=11-7- 12=11-7- Max Horiz 13=-154 (Max Uplift 7=-19 (LC 9=-46 (LC 11=-6 (LC 13=-20 (L Max Grav 7=104 (LC 9=165 (LC 11=164 (L 11=164 (L 13=12 (LC	athing directly applied cept end verticals. applied or 10-0-0 oc 3, 8=11-7-13, 9=11-7- 13, 11=11-7-13, 13, 13=11-7-13 (LC 10) 2 11), 8=-63 (LC 15), 2 10), 12=-35 (LC 14), C 15), 10=-55 (LC 14), C 15), 10=235 (LC 24), C 21), 10=235 (LC 24), C 20), 12=204 (LC 2), C 20), 12=204 (LC 2)	 2) Wind: AS Vasd=10 Cat. II; E: zone and 2-10-2 to (3E) 8-1-exposed members Lumber II 3) Truss de: only. Foi see Stan or consul 4) TCLL: AS Plate DO DOL=1.1 CS=1.00; 5) Unbalanc design. 6) All plates s, 7) Gable ret 0), 8) Gable stu 9) This truss 	CE 7-16; Vult=130 3mph; TCDL=6.0ps pp B; Enclosed; MV C-C Corner(3E) 0- 5-10-2, Exterior(2h 12 to 11-1-12 zone; end vertical left ar and forces & MWF 0OL=1.60 plate grip signed for wind load studs exposed to dard Industry Gable t qualified building v CE 7-16; Pr=20.0 pc 5); Is=1.0; Rough C Ct=1.10; ed snow loads hav are 2x4 MT20 unle juires continuous b ds spaced at 2-0-0; has been designed	mph (3-sec of; BCDL=6 VFRS (env. 1-12 to 2-7 4) 5-10-2 tt cantilever a right exp FRS for res b DOL=1.60 ds in the pl wind (norm a End Deta designer a psf (roof LI sf (Lum DC at B; Fully e been cor ass otherwid otom chor loc. d for a 10 0	cond gust) cond gust) conds; h=25ft; lelope) exteric lo-2, Corner(3 p 8-1-12, Corr left and right left and right ossed;C-C for citions shown on ane of the tru al to the face is as applical s per ANS//TF .: Lum DOL=: DL=1.15 Plate Exp.; Ce=0.5 asidered for th se indicated. d bearing. D osf bottom	5 5 5 5 5 5 5 5 5 5 1.15 5 5 5 5 5 5 5 5 5 5 5 5 5					
FORCES	(lb) - Maximum Corr Tension	pression/Maximum	chord live	load nonconcurre	nt with any	other live loa	ds.				WH CA	ROUL
TOP CHORD	1-13=-52/68, 1-2=-7 3-4=-97/155, 4-14=- 5-15=-100/87, 6-15=	0/94, 2-3=-96/148, 90/88, 5-14=-101/77, =-115/76, 6-7=-138/11	on the bo 3-06-00 t 1 chord and	ttom chord in all ar all by 2-00-00 wide	eas where will fit betw	a rectangle veen the botto	om		1		ORIEESO	China and a second
BOT CHORD	12-13=-93/128, 11-1 10-11=-93/128, 9-10 7-8=-93/128	12=-93/128,)=-93/128, 8-9=-93/12	11) Provide r 8, bearing p 13, 19 lb	nechanical connect late capable of with uplift at joint 7, 6 lb	ion (by oth nstanding 2 uplift at joi	ers) of truss t 20 lb uplift at j nt 11, 35 lb u	o oint plift			u	SEA	
WEBS	3-11=-123/29, 2-12= 5-9=-131/104, 6-8=-	=-172/83, 4-10=-194/1 149/147	09, at joint 12 and 63 lb	, 55 lb uplift at join uplift at join	t 10, 46 lb	uplift at joint 9	9		E		0363	22 =
NOTES 1) Unbalance this design	ed roof live loads have 1.	been considered for	12) This truss Internatic R802.10. LOAD CASE	is designed in acc nal Residential Coo 2 and referenced s (S) Standard	ordance w de sections tandard AN	ith the 2018 s R502.11.1 a ISI/TPI 1.	nd			A A A A A A A A A A A A A A A A A A A	NGIN	EER.K.

818 Soundside Road Edenton, NC 27932

April 5,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	CJ05	Jack-Open	2	1	Job Reference (optional)	E15577182

-1-3-0 1-3-0

1

2-0-7

0-8-6

2

Л

 \square

Carter Components, Chesapeake, VA - 23323,

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:38 ID:IxplvvWxgRbJ5ptWrFLigJzUsIr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-7-15

1-7-15

, 12 7 ⊑

3

4

1-8-0

Page: 1

3x6 II 1-7-15

Scale = 1:26.2

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.20	DEFL Vert(LL)	in 0.00	(loc) 4-5	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.06	Vert(CT)	0.00	4-5	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MR								FT 00%
BCDL	10.0		-									vveight: 8 lb	FT = 20%
LUMBER			5)	This truss ha	s been designed fo	or a 10.0) psf bottom						
TOP CHORD	2x4 SP No.2		,	chord live loa	ad nonconcurrent v	vith any	other live load	ds.					
BOT CHORD	2x4 SP No.2		6)	* This truss has been designed for a live load of 20.0psf									
WEBS	2x4 SP No.3			on the bottor	n chord in all areas	s where	a rectangle						
BRACING				3-06-00 tall b	y 2-00-00 wide wil	ll fit betv	veen the botto	m					
TOP CHORD Structural wood sheathing directly applied or 1-7-15 oc purlins, except end verticals. 7) Refer to girder(s) for truss to truss connections.													
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1 lb uplift at joint 4													
REACTIONS	(size) 3= Mecha 5=0-3-8	anical, 4= Mechanica	l, 9)	One RT7A U	SP connectors rec		ded to connec	ct					
	Max Horiz 5=52 (LC	14)		connection is	for unlift only and	does n	ot consider lat	eral					
	Max Uplift 3=-20 (LC	C 14), 4=-1 (LC 21), 5	5=-30	forces.	s for upint only and	000310		ciui					
	(LC 14)		10)) This truss is	designed in accord	dance w	ith the 2018						
	Max Grav 3=26 (LC	21), 4=24 (LC 7), 5=	265	International	Residential Code	sections	R502.11.1 a	nd					
FORCES	(LC 21)	n ra a ai a n /N da vina una		R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.						
TORCES			LO	AD CASE(S)	Standard								
TOP CHORD	2-5=-234/127, 1-2=0	0/63, 2-3=-55/23											
NOTEO	4-5=0/0												
NOIES	CE 7 16: \/ult_120mph	(2 accord quat)											
I) Wind: AS	CE 7-16; Vuit=130mpn	CDI =6 Opef: b=25ft:										, unin	11111
Cat II: Ex	n B: Enclosed: MWFR	S (envelope) exterior	r									IN TH CA	ROUL
zone and	C-C Exterior(2E) zone	: cantilever left and ri	iaht								N	A	-911's
exposed ;	end vertical left and right	ght exposed;C-C for	5							/	32	E FOU	A. A.
members	and forces & MWFRS	for reactions shown;								4		<u> </u>	Rel 1
Lumber D	OL=1.60 plate grip DC	DL=1.60											N 1 E
2) TCLL: AS	CE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1	.15							=	- 1	SEA	AL : E
Plate DOL	_=1.15); Pt=20.0 pst (L	um DOL=1.15 Plate								=	:	0363	200 : =
Cs=1.00	Ct=1 10	s, Fully Exp., Ce=0.9	,							1		0303	22 : 5
3) Unbalance	ed snow loads have be	een considered for th	is							-		N	1 E
design.			-							S	-	N. En	Riks
4) This truss	has been designed fo	r greater of min roof	live								30	S, GIN	EF. AN
load of 12	.0 psf or 1.00 times fla	t roof load of 20.0 ps	f on								11	CA -	BEIN
overhangs	overhangs non-concurrent with other live loads.												

mm April 5,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

F Т

В

Ν

- 2
- 3
- 4

Job	Truss Truss Type Qty Ply 585 Sunridge-Roof-3546		585 Sunridge-Roof-35464GH			
21030062-B	CJ04	Jack-Open	2	1	Job Reference (optional)	E15577183

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:38 ID:Q9aF3XTRcC4ucCalcPHmWTzUslv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-7-15

Coolo	1.00 6
Scale =	= 1.20.0

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MR	0.24 0.12 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP Nc 2x4 SP Nc 2x4 SP Nc Structural 3-7-15 oc Rigid ceilir bracing. (size) Max Horiz Max Uplift Max Grav	.2 .2 .3 wood shea purlins, e ng directly 3= Mecha 5=9-3-8 5=94 (LC 3=-56 (LC 3=138 (LC (LC 21)	athing directly applie kcept end verticals. applied or 10-0-0 oc nical, 4= Mechanical 14) 14), 5=-23 (LC 14) 2 21), 4=64 (LC 7), 5	6) 7) d or 8) 9) l, 10 =368	* This truss h on the botton 3-06-00 tall b chord and an Refer to girdd Provide mecl bearing plate 3. One RT7A U truss to beari connection is forces.) This truss is International R802.10.2 ar	as been designed in chord in all areas y 2-00-00 wide wil y other members. ar(s) for truss to tru- nanical connection capable of withsta SP connectors rec ng walls due to UF for uplift only and designed in accord Residential Code s and referenced stan	for a liv s where I fit betw uss conr (by oth anding 5 commen PLIFT at does no lance w sections dard AN	e load of 20.0 a rectangle veen the botto nections. ers) of truss t 6 lb uplift at j ded to conne jt(s) 5. This ot consider la ith the 2018 i R502.11.1 a ISI/TPI 1.	Opsf om to joint ect iteral					
FORCES	(lb) - Maxii Tension 2-5=-337/1	num Com	pression/Maximum /69, 2-3=-101/53	LC	DAD CASE(S)	Standard								
 BOT CHORD 4-5=0/0 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 											C. Contraction		SEA 0363	ROUTE L

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

April 5,2021

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	CJ03	Jack-Open	1	1	Job Reference (optional)	E15577184

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:37 ID:f984WQnkUCMBjBZI7tltZyzUsIV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-6-7

Scale = 1:31.7

-

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MR	0.72 0.37 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.09 0.04	(loc) 4-5 4-5 3	l/defl >999 >689 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No. 2x4 SP No. 2x4 SP No. 5-6-7 oc pu Rigid ceiling bracing. (size) 3 5 Max Horiz 5 Max Uplift 3 Max Grav 3	2 2 3 rlins, exc g directly = Mecha =0-3-8 =134 (LC ==87 (LC ==230 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc nical, 4= Mechanica 2 14) 14), 5=-21 (LC 14) 2 21), 4=100 (LC 7),	5) 6) d or 7) ; 8) I, 9)	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Refer to girde Provide mech bearing plate 3. One RT7A U truss to beari connection is forces.	s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. er(s) for truss to tru- nanical connection capable of withsta SP connectors rec- ng walls due to UP for uplift only and	or a 10.0 rith any for a liv where l fit betw ss conr (by oth nding 8 ommen PLIFT at does no) psf bottom other live loa e load of 20. a rectangle reen the bott ections. ers) of truss 7 lb uplift at ded to conne jt(s) 5. This ot consider la	nds. Opsf om to joint ect teral					
FORCES	5 (lb) - Maxim	=396 (LC	221)	10	International	Residential Code s	sections	R502.11.1 a	and					
TONOLO	Tension		pression/maximum	LC	AD CASE(S)	Standard		151/TPLT.						
TOP CHORD	2-5=-362/14	41, 1-2=0 >	/42, 2-6=-140/12,											
BOT CHORD	4-5=0/0	5												
NOTES														
 Wind: ASt Vasd=103 Cat. II; Ex zone and exposed; members Lumber D TCLL: AS Plate DOI DOL=1.15 Cs=1.00; Unbalanc design. This truss load of 12 	CE 7-16; Vult= 3mph; TCDL=6 C-C Exterior(; end vertical li and forces & OL=1.60 plate CE 7-16; Pr=2 =1.15); Pf=2(5); Is=1.0; Rot Ct=1.10 ed snow loads has been des 0.0 psf or 1.00	=130mph 6.0psf; BC ; MWFRS 2E) zone; eft and rig MWFRS e grip DO 20.0 psf (L 10.0 psf (L) 10.0 psf (L 10.0 psf (L) 10.0	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and ri ht exposed;C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1. um DOL=1.15 Plate ; Fully Exp.; Ce=0.9; en considered for the greater of min roof I roof load of 20.0 ps	r ght .15 ; ; is fon							Manna and and a second		SEAL OBCERSON SEAL O3632	ROLATION INTERNET

This truss has been designed for greater of min roof live 4) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

818 Soundside Road Edenton, NC 27932

A. GILBE

April 5,2021

A. GILBEN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	CJ08	Jack-Open	1	1	Job Reference (optional)	E15577185

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:39 ID:jJ4AEMApy1OfZ6?u?bJNsizUsl?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-6-7

Scale = 1:31.7

-

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MR	0.72 0.37 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.09 0.04	(loc) 4-5 4-5 3	l/defl >999 >689 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural w 5-6-7 oc pu Rigid ceiling bracing. (size) 3 5 Max Horiz 5 Max Horiz 5 Max Uplift 3 Max Grav 3 5 (lb) - Maxim Tension 2-5=-362/14 3-6=-129/90	2 2 3 vood shea rlins, exa g directly = Mecha =0-3-8 =134 (LC =-87 (LC =396 (LC =396 (LC =396 (LC uum Com	athing directly applie sept end verticals. applied or 10-0-0 oc nical, 4= Mechanical (14), 5=-21 (LC 14) (21), 4=100 (LC 7), (21) pression/Maximum (42, 2-6=-140/12,	5) 6) d or 7) 8) (, 9) 10 LC	This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Refer to girdd Provide mecl bearing plate 3. One RT7A U truss to beari connection is forces.) This truss is International R802.10.2 ar	s been designed for d nonconcurrent w as been designed in h chord in all areas y 2-00-00 wide will y other members. er(s) for truss to tru- nanical connection capable of withsta SP connectors reco- ng walls due to UP for uplift only and designed in accord Residential Code s and referenced stance Standard	or a 10.0 ith any for a liv where fit betv ss conr (by oth nding 8 ommen LIFT at does no ance w sections dard AN	D psf bottom other live loz e load of 20. a rectangle veen the bott nections. ers) of truss 7 lb uplift at ded to conne jt(s) 5. This ot consider la k R502.11.1 a ISI/TPI 1.	ads. Opsf to joint act ateral					
 NOTES 1) Wind: ASC Vasd=103 Cat. II; Exposed 103 Cat. II; Exposed 2; members Lumber D 2) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; C 3) Unbalance design. 4) This truss load of 12 overhange 	CE 7-16; Vult= bmph; TCDL=6 p B; Enclosed C-C Exterior(2 end vertical le and forces & I OL=1.60 plate CE 7-16; Pr=2 =.1.5); Pf=20 b; Is=1.0; Rou Ct=1.10 ed snow loads has been des .0 psf or 1.00 s non-concurre	a130mph 6.0psf; BC ; MWFRS 2E) zone; aft and rig MWFRS a grip DO 0.0 psf (L 0.0 psf (L gh Cat B have be igned for times flat ent with o	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and ri ht exposed;C-C for for reactions shown; L=1.60 oof LL: Lum DOL=1. am DOL=1.15 Plate ; Fully Exp.; Ce=0.9; en considered for thi greater of min roof I roof load of 20.0 psf ther live loads.	ght .15 s ive f on							W. TITTING		SEA O363	ROK WILL 22 ILBERTINI

818 Soundside Road Edenton, NC 27932

April 5,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	G03	Flat Girder	2	2	Job Reference (optional)	E15577186

Run; 8,43 S Mar 22 2021 Print; 8,430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:44 ID:v_L3h6oB1qOsCxwpctXYOtzUt2r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.9

Loa TCL Sno TCE BCL BCE	ding .L (roof) w (Pf) DL .L DL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	/TPI2014	CSI TC BC WB Matrix-MP	0.23 0.18 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.02 0.00	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 94 lb	GRIP 244/190 FT = 20%
LUN TOF BOT WEI BRA TOF BOT	ABER CHORD CHORD BS ACING CHORD CHORD	2x4 SP No.2 2x8 SP 2400 2x4 SP No.3 2-0-0 oc pur Rigid ceiling bracing.	2 DF 2.0E lins: 1-2, directly	, except end verticals applied or 10-0-0 oc	4) 5) 5. 6) 7)	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Provide adec This truss ha	7-16; Pr=20.0 psf .15); Pf=20.0 psf (I s=1.0; Rough Cat .1.10 snow loads have b uate drainage to p s been designed for	(roof LI Lum DC B; Fully een cor revent or a 10.1	L: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 Insidered for the water ponding D psf bottom	1.15); ; ; nis g.	Cc 2) De Pla Ur Cc	oncentra Vert: 5= ead + Ro ate Incre hiform Lo Vert: 1-2 oncentra Vert: 5=	ted Loa -296 (E of Live ase=1 oads (II 2=-60, ted Loa -180 (E	ads (lb) 3), 6=-300 (B) 4 (balanced): Lum 15 5/ft) 3-4=-515 ads (lb) 3), 6=-184 (B)	ber Increase=1.15,
RE/	ACTIONS	(size) 3= Max Horiz 4= Max Uplift 3= Max Grav 3=	= Mecha =-203 (L0 =-86 (LC =1442 (L	nical, 4= Mechanical C 8) 9), 4=-3 (LC 8) C 2), 4=1342 (LC 2)	8)	* This truss h on the botton 3-06-00 tall b	ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will	for a liv where fit betw	other live loa e load of 20.0 a rectangle veen the botto	ds.)psf om					
FOF	RCES	(lb) - Maxim Tension	um Com	pression/Maximum	9) 10)	Refer to girde Provide mec	er(s) for truss to tru hanical connection	iss conr (by oth	nections. ers) of truss t	0					
TOF BOT	CHORD	1-4=-171/19 4-5=-177/15	5, 1-2=-7 9, 5-6=-1	75/57, 2-3=-126/52 177/159, 3-6=-177/15	9	bearing plate and 86 lb upl	capable of withsta ift at joint 3.	Inding 3	B lb uplift at jo	int 4					
WE	BS	1-3=-175/17	5		11)	This truss is	designed in accord	lance w	ith the 2018						
NO 1)	FES 2-ply truss (0.131"x3" Top chord oc.	to be connect) nails as follo s connected a	ted toget ws: s follows	her with 10d :: 2x4 - 1 row at 0-9-0	12)	R802.10.2 ar Load case(s) designer mus correct for th	Residential Code s and referenced stand 1, 2 has/have bee st review loads to v e intended use of t	dard AN n modifier rerify the his trus	S K502.11.1 a ISI/TPI 1. fied. Building at they are s.	nd				mmm	um.
2)	Bottom ch staggered Web conn All loads a except if n	ords connecte at 0-9-0 oc. ected as follow re considered oted as front (a as tollo vs: 2x4 - equally : F) or bac	ows: 2x8 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LOA ections have been	13) 14) \D	or the orienta bottom chord Use USP MS nails into Tru	run representation ttion of the purlin a I. GH29 (With 10d nai ss) or equivalent a uss(es) to back fac	aces no long the ls into (t 1-9-12 e of bot	e top and/or Girder & 4-100 from the left	d end		4	ALL C	OR DEESS	ROLLING

- provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 15) Use USP JUS26 (With 4-10d nails into Girder & 2-10d nails into Truss) or equivalent at 3-9-12 from the left end to connect truss(es) to back face of bottom chord.
- 16) Fill all nail holes where hanger is in contact with lumber. LOAD CASE(S) Standard
- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15
 - Uniform Loads (lb/ft) Vert: 1-2=-60, 3-4=-155

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	E01	Common Supported Gable	2	1	Job Reference (optional)	E15577187

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:39 ID:mlgac_MEZSY?5HzWOKKkr5zUt_E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale	= '	1:25.1
-------	-----	--------

Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL	(p 20 20 10	osf) 0.0 0.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-11-4 1.15 1.15 YES		CSI TC BC WB	0.10 0.08 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	1(0.0* 0.0	Code	IRC201	8/TPI2014	Matrix-MP							Weight: 24 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP N Right: 2x4 SP I Structural woo	o.3 No.3 od shea	thing directly applied	2) d or	Wind: ASCE Vasd=103m Cat. II; Exp E zone and C- 2-0-0 to 3-0- cantilever let right expose for reactions	7-16; Vult=130m ob; TCDL=6.0psf 3; Enclosed; MWI C Corner(3E) -1-(0, Corner(3E) 3-(t and right expos d;C-C for membe shown; Lumber I	nph (3-sec ; BCDL=6 FRS (envi 0-0 to 2-0 0-0 to 6-0- ed ; end v ers and for DOL=1.60	cond gust) .0psf; h=25ft; elope) exteric -0, Corner(3F 0 zone; rertical left an rces & MWFR) plate grip	or R) d RS					
BOT CHORD	5-0-0 oc purlin Rigid ceiling di	is. irectly a	applied or 10-0-0 oc	3)	DOL=1.60 Truss desigr only. For stu	ned for wind loads uds exposed to w	s in the pla ind (norm	ane of the tru al to the face	ss),					
REACTIONS	(size) 2=5. 7=5. Max Horiz 2=-4 Max Uplift 2=-4 7=-4 Max Grav 2=2 6=1: 11=1	-0-0, 4: -0-0, 1 46 (LC 44 (LC 44 (LC 70 (LC 21 (LC 270 (LC	=5-0-0, 6=5-0-0, 1=5-0-0 12), 7=-46 (LC 12) 14), 4=-50 (LC 15), 14), 11=-50 (LC 15) 21), 4=270 (LC 22), 21), 7=270 (LC 21), C 22)	4) 5) 6)	see Standar or consult qu TCLL: ASCE Plate DOL=' DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha	d Industry Gable ialified building de 7-16; Pr=20.0 ps 1.15); Pf=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have	End Deta esigner as sf (roof LL f (Lum DC at B; Fully been cor	ils as applical per ANSI/TF L: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 asidered for the	ble, PI 1. 1.15); his					
FORCES	(lb) - Maximum Tension	n Comp	pression/Maximum	-,	load of 12.0 overhangs n	psf or 1.00 times on-concurrent wit	flat roof lo th other liv	bad of 20.0 p /e loads.	sf on				mu	Un.s
TOP CHORD	1-2=0/45, 2-14 3-15=-91/115,	l=-106/ 4-15=-	111, 3-14=-91/115, 106/111, 4-5=0/45	7) 8)	Gable requir Gable studs	es continuous bo spaced at 2-0-0 d	ttom chor	d bearing.				15	"TH CA	ROUT
BOT CHORD WEBS NOTES 1) Unbalanc this desig	2-6=-17/69, 4-4 3-6=-41/3 red roof live loads n.	6=0/69	been considered for	9) 10 11	This truss ha chord live loo)* This truss I on the bottou 3-06-00 tall I chord and an () One RT7A L truss to bear This connec lateral forces () This truss is	as been designed ad nonconcurrent has been designe n chord in all are: by 2-00-00 wide v y other members SP connectors rr ing walls due to U tion is for uplift or a. designed in acco	I for a 10.0 t with any of for a liv as where will fit betw s. ecommen JPLIFT at hly and do	b) psf bottom other live loa e load of 20.0 a rectangle veen the botto ded to conne jt(s) 2 and 4. es not consid ith the 2018 psc2 44.4 a	ds. Opsf om ct ler		A STITUTE STATE		SEA 0363	L 22 EER.H

- 11) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

G minin

April 5,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	E02	Common	4	1	Job Reference (optional)	E15577188

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:40 ID:3M6feBfHvqabzzo7oMIMp9zUszs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28.3

													_	
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.11	Vert(LL)	0.00	6-12	>999	240	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.06	Vert(CT)	0.00	6-12	>999	180		
TCDL		10.0	Rep Stress Incr	YES		WB	0.04	Horz(CT)	0.00	4	n/a	n/a		
BCLL		0.0*	Code	IRC201	8/TPI2014	Matrix-MP								
BCDL		10.0		-									Weight: 22 lb	FT = 20%
LUMBER				5	This truss ha	s been designed fo	or great	er of min roof	live					
TOP CHORD	2x4 SP No.2	2			load of 12.0 p	osf or 1.00 times fla	at roof le	oad of 20.0 ps	sf on					
BOT CHORD	2x4 SP No.2	2			overhangs no	on-concurrent with	other liv	/e loads.						
WEBS	2x4 SP No.3	3		6)	This truss ha	s been designed fo	or a 10.0) psf bottom						
BRACING					chord live loa	d nonconcurrent w	ith any	other live loa	ds.					
TOP CHORD	Structural w	ood shea	athing directly applied	dor 7)	* This truss h	as been designed	for a liv	e load of 20.0)psf					
	5-0-0 oc pur	lins.	applied or 10.0.0 ap		3-06-00 tall b	v 2-00-00 wide will	l fit betv	veen the botto	om					
BOT CHORD	bracing.	unecuy	applied of 10-0-0 oc		chord and an	y other members.								
REACTIONS	(size) 2=	=0-5-8, 4	=0-5-8	8)	One RT7A U	SP connectors reco		ded to conne	ct					
	Max Horiz 2	=48 (LC	13)		This connect	ing waits due to OF		$JI(S) \ge aIIU 4$	lor					
	Max Uplift 2=	=-38 (LC	14), 4=-38 (LC 15)		lateral forces									
	Max Grav 2	=342 (LC	21), 4=342 (LC 22)	9	This truss is a	designed in accord	lance w	ith the 2018						
FORCES	(lb) - Maxim Tension	um Com	pression/Maximum	0,	International R802 10 2 ar	Residential Code s	sections	R502.11.1 a	nd					
TOP CHORD	1-2=0/47, 2-	3=-224/7	72, 3-4=-224/72,	L	DAD CASE(S)	Standard		00/1111.						
	4-5=0/47				(-)									
BOT CHORD	2-6=-35/141	, 4-6=0/1	141											
WEBS	3-6=0/95													
NOTES														
1) Unbalance	ed roof live loa	ds have	been considered for											
2) Wind: ASC		120mph	(2 accord quat)										1111100	
2) Wind ASC	mob TCDI -6	Opef: BC											I'TH CA	Rollin
Cat II: Evr	n B: Enclosed:	MWERS	SDL=0.0psi, n=25ii, S (envelope) exterior									5	A	and in the
zone and (C-C Exterior(2	F) -1-0-0	to 2-0-0 Exterior(2)	R)							/	31	C FESS	This was
2-0-0 to 3-	0-0. Exterior(2	2E) 3-0-0	to 6-0-0 zone:	,							4		~ /	2 min
cantilever	left and right e	exposed ;	end vertical left and								-		Q.	
right expos	sed;C-C for me	embers a	and forces & MWFRS	S							-	:	SEA	1 : -
for reaction	ns shown; Lun	nber DOI	L=1.60 plate grip								=		JLA	
DOL=1.60)										=		0363	22
3) TCLL: ASC	CE 7-16; Pr=2	0.0 psf (r	roof LL: Lum DOL=1.	.15								8		1 E -
Plate DOL	=1.15); Pf=20	.0 psf (Lu	um DOL=1.15 Plate									1	· ~	A 1. 3
DOL=1.15 Cs=1.00.0); Is=1.0; Rou Ωt=1 10	gn Cat B	; Fully Exp.; Ce=0.9;									3.4	NGINI	EENIAN
4) Unbalance	ed snow loads	have be	en considered for thi	s								14	C	BELIN

4) Unbalanced snow loads have been considered for this design.

GI

1111111 April 5,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	F03	Half Hip	2	1	Job Reference (optional)	E15577189

Run; 8,43 S Mar 22 2021 Print; 8,430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:43 ID:ifwCEoKLZxlbqXTM2VhQb2zUsv7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale	= 1:31 7
ocale	- 1.01.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-MP	0.82 0.29 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.08 0.01	(loc) 7-10 7-10 2	l/defl >999 >924 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she 6-0-0 oc purlins, exi 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=154 (LC Max Uplift 2=-25 (LC	t* 3-7:2x4 SP No.2 athing directly applie cept end verticals, a -0 max.): 4-7, 4-5. applied or 10-0-0 or S=0-5-8 C 14) : 14), 6=-68 (LC 14)	5) 6) 7) ed or 8) 5 9)	This truss ha load of 12.0 J overhangs n Provide adec This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar One RT7A U truss to bear This connect lateral forces	s been designed f psf or 1.00 times fl on-concurrent with quate drainage to p s been designed f ad nonconcurrent v has been designed in chord in all area by 2-00-00 wide wi by other members. SP connectors rea ing walls due to UI ion is for uplift only	for great lat roof lo other lin prevent for a 10. with any I for a liv s where II fit betw commen PLIFT af y and do	er of min roof bad of 20.0 p re loads. water ponding 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott ded to conne jt(s) 6 and 2 es not consid	f live sf on g. ads. Opsf om ect der					
FORCES	Max Grav 2=455 (LC (lb) - Maximum Com Tension	C 36), 6=439 (LC 35 pression/Maximum) 10) This truss is International R802 10 2 a	designed in accord Residential Code	dance w sections	ith the 2018 R502.11.1 a	and					
TOP CHORD	1-2=0/46, 2-3=-310/- 3-4=-49/69, 4-11=-6 5-6=-385/142	47, 4-7=-172/123, 25/251, 5-11=-625/2	11 251,) Graphical pu or the orienta	rlin representation ation of the purlin a	does no	ot depict the s top and/or	size					
BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC	2-7=-177/205, 6-7=- 5-7=-249/658 ed roof live loads have n. CF 7-16: Vult=130mph	13/14 been considered for (3-second gust)	12 LC	2) Hanger(s) or provided suff down and 3 l selection of s responsibility DAD CASE(S)	other connection icient to support c b up at 4-3-12 on such connection de of others. Standard	device(s oncentra top cho evice(s)) shall be ated load(s) 1 rd. The desig is the	I3 lb gn/			- III	NITH CA	NRO IN

Dead + Snow (balanced): Lumber Increase=1.15, Plate

Vert: 1-3=-60, 4-11=-60, 5-11=-150, 6-8=-20

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-0-0 to 6-4-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1)

Increase=1.15

Uniform Loads (lb/ft)

Vert: 11=-11

Concentrated Loads (lb)

GI

SEAL

036322

Summer of the

annun an

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	F02	Half Hip	3	1	Job Reference (optional)	E15577190

Run; 8,43 S Mar 22 2021 Print; 8,430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:42 ID:?pQ7Pd1kul3NnRvVRhk0yHzUsuD-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

0		04	_
	- 1		
COLORIDA	_		

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.66 0.26 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.07 0.01	(loc) 7-10 7-10 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Left: 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0	t* 3-7:2x4 SP No.2 athing directly applie cept end verticals, a -0 max.): 4-7, 4-5.	4 5 ed or 7 ind 8	Unbalanced design. This truss ha load of 12.0 overhangs n Provide aded This truss ha chord live loa * This truss h	snow loads have as been designed psf or 1.00 times on-concurrent wii quate drainage to as been designed ad nonconcurrent nas been designed	been cor flat roof lo th other lin prevent v for a 10.0 t with any ed for a liv	nsidered for t er of min root bad of 20.0 p ve loads. water pondin 0 psf bottom other live loa e load of 20.1	his f live sf on g. uds. Opsf					
BOT CHORD	Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=154 (LC Max Uplift 2=-20 (LC Max Grav 2=426 (LC	applied or 10-0-0 or =0-5-8 2 14) 14), 6=-43 (LC 14) 2 36), 6=285 (LC 35	c 9 5)	on the bottor 3-06-00 tall the chord and are One RT7A L truss to bear This connect lateral forces	m chord in all are by 2-00-00 wide v hy other members JSP connectors re ing walls due to t tion is for uplift or s.	as where vill fit betw s. ecommen JPLIFT at hly and do	a rectangle veen the bott ded to conne jt(s) 6 and 2 es not consid	om ect der					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	1) This truss is International	designed in acco Residential Code	ordance w	ith the 2018 R502 11 1 a	and					
TOP CHORD	1-2=0/46, 2-3=-268/7 3-4=-72/66, 4-11=-49 5-6=-241/105 2-7=-178/164, 6-7=-	71, 4-7=-113/108, 91/220, 5-11=-491/2 13/14	220, 1	R802.10.2 a) Graphical pu or the orienta bottom chore	nd referenced sta Irlin representation ation of the purlin	andard AN on does no along the	ISI/TPI 1. ot depict the set top and/or	size					
WEBS NOTES	5-7=-216/517		1	 Hanger(s) or provided suf 	other connectior ficient to support	n device(s concentra) shall be ited load(s) 1	3 lb				N'IL CA	Della

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-0-0 to 6-4-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- down and 3 lb up at 4-3-12 on top chord. The design/ selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15
 - Uniform Loads (lb/ft) Vert: 1-3=-60, 4-5=-60, 6-8=-20 Concentrated Loads (lb)
 - Vert: 11=-11

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	A01	Half Hip Girder	1	1	lob Reference (optional)	E15577191

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:21 ID:ecAETluyz9kk3hi8hLs8U8zUshU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	20.0		1.15		00	0.43	ven(cr)	-0.47	14-10	2140	100	101120113	107/145
TCDL	10.0	Rep Stress Incr	NO		WB	0.77	Horz(CT)	0.09	11	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 203 lb	FT = 20%
LUMBER 2x6 SP No.2 *Except* 1-4:2x4 SP No.2 BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x4 SP No.3 *Except* 16-4:2x4 SP No.2, 14-5,12-10:2x4 SP No.1 WEDGE Left: 2x4 SP 2400F 2.0E BRACING TOP CHORD TOP CHORD Structural wood sheathing directly applied or 1-10-11 oc purlins, except end verticals, and 2-0-0 oc purlins (2-4-7 max.): 4-10. BOT CHORD Rigid ceiling directly applied or 9-10-15 oc bracing. WEBS 1 Row at midpt 10-11, 8-12 REACTIONS (size) 2=0-5-8, 11=0-5-8 Max Horiz 2=129 (LC 11) Max Uplift FORCES (lb) - Maximum Compression/Maximum Tension 10-90204 (LC 33) 1-2=0/46, 2-3=-5097/779, 3-4=-5110/800, 1-2=0/264, 6, 2-3=-5097/779, 3-4=-5110/800,				VEBS OTES) Unbalance this design) Wind: ASC Vasd=103r Cat. II; Exp zone; canti and right e: DOL=1.60) TCLL: ASC Plate DOL=	3-17=-93/264, 4-17 4-16=-398/2577, 5 5-14=-87/518, 6-14 8-14=-186/1167, 8 8-12=-2803/471, 9 10-12=-742/4657 d roof live loads hav E 7-16; Vult=130mp nph; TCDL=6.0psf; B; Enclosed; MWF lever left and right e cposed; Lumber DC E 7-16; Pr=20.0 psf 1.15); Pf=20.0 psf	7=-29/44 -16=-13 +=-784/2 -13=0/3 -12=-84 e been o h (3-sec BCDL=6 RS (env xposed L=1.60 p (roof LL Lum DC	0, 38/385, 88, 35, 4/293, considered for cond gust) .0psf; h=25ft; elope) exterion end vertical I plate grip .: Lum DOL=1 JL=1.15 Plate	r left	11) This Inte R80 12) Gra or tr bott 13) Use nails to c 14) Fill a (0.1	truss is rnational (2.10.2 a phical pu- ne orient om chorr USP H, s into Tru onnect tr all nail ha ILED" in 48"x3.25	desig I Resid Ind ref urlin re ation o d. JC26 (uss) of russ(e oles w dicate 5") toe	ned in accordar dential Code sec ferenced standa epresentation do of the purlin alor (With 16-16d nai r equivalent at 6 rs) to front face c vhere hanger is i es 3-10d (0.148"; -nails per NDS (ce with the 2018 titons R502.11.1 and rd ANSI/TPI 1. es not depict the size g the top and/or lls into Girder & 10d -0-6 from the left end f bottom chord. n contact with lumber. (3") or 3-12d yuidlines.
FORCES TOP CHORD BOT CHORD	Max Grav $2=3007$ ((lb) - Maximum Con Tension $1-2=0/46, 2-3=-509$) 4-21=-6206/975, 21 5-22=-6222/978, 5-22-6938/1101, 6 2-52=-6938/1101, 6 7-26=-6938/1101, 7 8-27=-6938/1101, 8 28-29=-3787/604, 9 9-30=-3787/604, 30 10-31=-3787/604, 10 12-17=-752/4316, 17 32-33=-766/4372, 1 16-34=-1114/6550, 14-36=-1004/6016, 13-37=-1004/6016, 13-37=-1004/6016, 12-40=-33/48, 40-4	LC 34), 11=3201 (LC npression/Maximum 7/779, 3-4=-5110/800 -22=-6211/976, 23=-6938/1101, 24-25=-6938/1101, -26=-6938/1101, -26=-6938/1101, -26=-6938/1101, -28=-3787/604, -31=-3787/604, -31=-3787/604, 0-11=-3086/546 -32=-766/4372, 6-33=-766/4372, 34-35=-1114/6550, 36-37=-1004/6016, 13-38=-1004/6016, 12-39=-1004/6016, 13-33(48, 11-41=-33/	33)), 4, 5, 6, 7, 8, 9; 9; 11	DOL=1.15) Cs=1.00; C Unbalance design.) This truss H load of 12.(overhangs)) Provide ad) All plates a) All plates a) This truss H chord live H) * This truss on the bott 3-06-00 tal chord and i 0) One RT7A truss to bea This conne lateral force	Is=1.0; Rough Cat t=1.10 d snow loads have I has been designed f 0 psf or 1.00 times fi non-concurrent with equate drainage to pre MT20 plates unle has been designed foad nonconcurrent has been designed om chord in all area by 2-00-00 wide wi any other members. USP connectors rear- ring walls due to U ction is for uplift only s.	B; Fully been cor or great at roof lo other lip orevent ss other or a 10.0 with any for a liv s where Il fit betw commen PLIFT at y and do	Exp.; Ce=0.9 asidered for the er of min roof 1 bad of 20.0 ps ve loads. water ponding wise indicatec 0 ps f bottom other live load e load of 20.0 a rectangle veen the botto ded to connec jt(s) 11 and 2 es not conside	; live sfon J. ds. psf ct 2. er		Mannan		SEA 0363	EER. R. I.

A MITEK Affiliate B18 Soundside Road Edenton, NC 27932

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	A01	Half Hip Girder	1	1	Job Reference (optional)	E15577191

16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 213 lb down and 88 lb up at 6-0-0, 230 lb down and 88 lb up at 8-0-12, 232 lb down and 89 lb up at 10-0-12, 232 lb down and 89 lb up at 12-0-12, 232 lb down and 89 lb up at 14-0-12, 230 lb down and 88 lb up at 16-10-1, 230 lb down and 88 lb up at 18-10-1, 230 lb down and 88 lb up at 20-10-1, 230 lb down and 88 lb up at 22-10-1, and 230 lb down and 88 lb up at 24-10-1, and 230 lb down

and 88 lb up at 26-10-1 on top chord. The design/ selection of such connection device(s) is the responsibility of others.

17) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-4=-60, 4-10=-60, 11-18=-20

Concentrated Loads (lb)

Vert: 4=-194 (F), 10=44 (F), 15=-72 (F), 6=-165 (F), 14=-36 (F), 21=-194 (F), 22=-197 (F), 23=-197 (F), 25=-197 (F), 26=-194 (F), 27=-194 (F), 28=-194 (F), 29=-194 (F), 30=-194 (F), 31=-194 (F), 28=-560 (F), 33=-69 (F), 34=-72 (F), 35=-72 (F), 36=-69 (F), 37=-69 (F), 38=-69 (F), 39=-69 (F), 40=-69 (F),

41=-69 (F)

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:21 ID:ecAETIuyz9kk3hi8hLs8U8zUshU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	A02	Нір	1	1	Job Reference (optional)	E15577192

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:24 ID:JRIJMzi65l5gWV0wqnXnQHzUsdr-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:54

Plate Offsets	(X, Y): [2:0-3-8,Edge],	[3:0-4-0,0-1-11], [5:0	0-4-0,0-1-1	1], [6:0-3-8,Ec	lge]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.89 0.84 0.88	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.25 0.08	(loc) 7-16 7-16 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 137 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig	2x4 SP 2400F 2.0E * No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 4-7-1 oc purlins, exc 2-0-0 oc purlins (3-0 Rigid ceiling directly bracing. (size) 2=0-5-8, 6 Max Horiz 2=117 (LC Max Uplift 2=-140 (LI Max Grav 2=1281 (L (lb) - Maximum Com Tension 1-2=0/30, 2-17=-186 3-18=-1803/181, 3-1 19-20=-1550/218, 5-2 23-24=-1817/158, 6- 2-10=-118/1564, 9-1 8-9=-144/2117, 7-8= 3-10=0/549, 4-10=-7 4-7=-700/176, 5-7=0 ed roof live loads have n.	*Except* 3-5:2x4 SP athing directly applied ept -7 max.): 3-5. applied or 10-0-0 oc 3=0-5-8 C 11) C 14), 6=-120 (LC 15 C 42), 6=1219 (LC 45 pression/Maximum 5/145, 17-18=-1815/ 9=-1547/216, 20=-1550/216, 22=-1550/216, 22=-1550/216, 22=-1550/216, 3=-1806/183, 24=-1867/153 0=-144/2117, -144/2117, 6-7=-57/- 03/176, 4-8=0/244, /549 been considered for	2) d or 3) 5) 4) (2) 5) 156, 6) 7) 8) 1566 9) 10 11	Wind: ASCE Vasd=103mr Cat. II; Exp E zone and C-0 2-0-0 to 3-9- 12-2-15 to 16 Interior (1) 22 28-10-13 zor vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n- Provide aded This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss to a chord and ar One RT7A U truss to bear This truss is International R802.10.2 ai) Graphical pu or the orienta	7-16; Vult=130mp b; TCDL=6.0psf; B; S; Enclosed; MWFI C Exterior(2E) -1-0 1, Exterior(2R) 3-9 5-7-14, Exterior(2R) 3-9 5-7-14, Exterior(2R) 5-1-12 to 25-10-13 ne; cantilever left a nd right exposed; C FRS for reactions ate grip DOL=1.60 7-16; Pr=20.0 psf (15); Pf=20.0 psf (15); Pf=	h (3-sec BCDL=6 RS (env) -0 to 2-(-1 to 12 to 1	cond gust) cond gust) i.Opsf; h=25ft; elope) exterio D-0, Interior (1 -2-15, Interior (1 c2) 25-10-1 exposed; en nembers and Lumber : Lum DOL=- DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof pad of 20.0 pse ve loads. water ponding D psf bottom other live load e load of 20.0 pse ve loads. water ponding D psf bottom other live load e load of 20.0 ese not conside ith the 2018 is R502,11.1 a JSI/TPI 1. ot depict the ss top and/or	or)) (1) 13 to d 1.15); live sf on g. ds.)psf om ct ler nd ize	LOAD	CASE(S)	Sta	ndard NH CA SEA 0363	ROUN 22 EREA	
				bottom chord	l.							111. G	initi	

April 5,2021

Page: 1

6

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	A03	Нір	1	1	Job Reference (optional)	E15577193

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:25 ID:hVlfiemBG6xUFY2UXG99I3zUtFo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

18-10-13 5-0-13 10-0-0 11-7-11 17-3-2 23-10-0 28-10-13 1-7-11 5-0-13 4-11-3 1-7-11 5-7-6 4-11-3 5-0-13 2-10-7 4x8= 4x8= 0-1-12 H 6-4-10 0-1-12 3031 7 4 5 6 12 7 $\mathbf{\nabla}$ 3x5 💋 3x5 👟 29 32 3 4-10-14 8 6-2-14 6-2-14 6-9-1 28 33 34 27 9 0-6-10 Ē 40 41 -46 42 43 X 20 17 35 36 12 37 38 3911 10 19 15 3x8= MT20HS 8x12 = 3x8= 4x8= 4x8= 19-0-9 10-3-15 10-3-7 12-10-7 0-5-3 2-6-8 0-0-8 18-7-6 18-6-14 14-0-0 16-0-6 5-0-13 9-10-4 23-10-0 28-10-13 18-6-14 2-6-8 0-0-8 0-5-3 1-1-9 5-0-13 4-9-7 2-0-6 4-9-7 5-0-13

Scale = 1:54

Plate Offsets (X, Y): [2:Edge,0-0-13], [4:0-4-0,0-1-11], [7:0-4-0,0-1-11], [9:Edge,0-0-13]

														_	
Loading	(psf) 20.0	Spacing Plate Grip DOI	2-0-0 1 15		CSI	0.62	DEFL Vert(LL)	in -0.38	(loc) 12-17	l/defl ⊳923	L/d 240	PLATES	GRIP 244/190		
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.97	Vert(CT)	-0.71	12-17	>485	180	MT20HS	187/143		
TCDL	10.0	Rep Stress Incr	YES		WB	0.48	Horz(CT)	0.07	9	n/a	n/a				
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH										
BCDL	10.0											Weight: 168 lb	FT = 20%		
LUMBER	NOTES								13) Graphical purlin representation does not depict the size						
TOP CHORD	2x4 SP No.2		1)	Unbalanced	roof live loads hav	e been (considered for	r	or the orientation of the purlin along the top and/or						
BOT CHORD	2x4 SP 2400F 2.0E *	Except* 18-13:2x4 SP	,	this design.	7 40. 14.400	h (0			bott	om chor	d.				
	NO.2	2) Wind: ASCE 7-16; Vult=130mph (3-second gust) LOAD CASE(S) Standard													
WEDGE	284 5P NO.3			Cat II: Evo B	: Enclosed: MWF	RS (env	elone) exterio	r							
WEDGE	Right: 2x4 SP No.3			zone and C-0	C Exterior(2E) -1-0	-0 to 2-0	0-0. Interior (1)							
BRACING	rught. 2x1 OF 110.0			2-0-0 to 5-9-1	I, Exterior(2R) 5-9	-1 to 14	-2-15, Interior	(1)							
TOP CHORD	Structural wood shea	athing directly applied	or	14-2-15 to 14	-7-14, Exterior(2R	R) 14-7-1	4 to 23-1-12,								
	3-1-7 oc purlins, except Interior (1) 23-1-12 to 25-10-13, Exterior(2E) 25-10-13 to														
	2-0-0 oc purlins (3-4-	-14 max.): 4-7.		28-10-13 zor	e; cantilever left a	nd right	exposed ; en	d							
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		forces & MW	FRS for reactions	shown:	lumber								
	bracing. Except:			DOL=1.60 pl	ate arip DOL=1.60)	Lambol								
	6-0-0 oc bracing: 13-	-18	3)	TCLL: ASCE	7-16: Pr=20.0 psf	(roof LL	.: Lum DOL=1	1.15							
REACTIONS	(size) 2=0-5-8, 9	=0-5-8	- /	Plate DOL=1	.15); Pf=20.0 psf (Lum DC	L=1.15 Plate								
	Max Horiz 2=144 (LC	, 11) C 49) 0 4657 (I C 49)	`	DOL=1.15); I	s=1.0; Rough Cat	B; Fully	Exp.; Ce=0.9);							
FORCES	(lb) Maximum Com	C 40), 9=1057 (LC 40))	Cs=1.00; Ct=	1.10										
FURGES	Tension	pression/maximum	4)	Unbalanced : design.	snow loads have b	been cor	isidered for th	IIS							
TOP CHORD	1-2=0/30, 2-27=-268	3/0, 27-28=-2600/0,	5)	This truss ha	s been designed f	or great	er of min roof	live							
	3-28=-2541/0, 3-29=	-2438/0, 4-29=-2366/0), \	load of 12.0 p	ost or 1.00 times fl	at root lo	bad of 20.0 ps	st on					1111		
	6-31=-2120/0 6-7=-2	2120/0, 30-31=-2120/0	ν, Ε)	overnangs no	on-concurrent with	other In	ve loads.	E C				TH CA	Roille		
	8-32=-2439/0, 8-33=	-2547/0, 33-34=-2606/	<i>'</i> 0, ⁰ ,	from left end	supported at two	noints !	5-0-0 apart	-5-6			S	A STER	D. Inter		
	9-34=-2688/0		7)	Provide adec	uate drainage to p	pointo, t	water ponding	1.		/	5.2	FESS	PN: Si	_	
BOT CHORD	2-20=-168/2263, 19-2	20=0/2263,	8)	All plates are	MT20 plates unle	ss other	wise indicate	d.		Q			and the second s	1	
	19-35=0/2184, 35-36	5=0/2184, 17-36=0/218	34, 9)	All plates are	2x4 MT20 unless	otherwi	se indicated.			-			1 1 I I I		
	15-17=0/2184, 12-15	=0/2184, 12-37=0/218	^{34,} 10)) This truss ha	s been designed f	or a 10.0	0 psf bottom				:	SEA	L : =		
	37-38=0/2184, 38-39	1=0/2184, 11-39=0/218 -0/2251_18-40=-67/2	34,	chord live loa	d nonconcurrent v	vith any	other live load	ds.		Ξ.		0363	22 : E		
	40-41=-67/2. 16-41=	=0/2251, 9-10=0/2251, 18-40=-67/2, =-67/2 16-41=-67/2 14-16=-67/2 11) * This truss has been designed for a live load of 20.0psf										. 0000	i E		
	14-42=-67/2, 42-43=	-67/2, 13-43=-67/2		3-06-00 tall b	v 2-00-00 wide will	ll fit hetv	a reclarigie	m		-	-		1 3		
WEBS	3-19=-358/225, 4-19	=0/1159, 7-11=0/1158	,	chord and an	v other members.	with BC	DL = 10.0psf.				20	N. ENGUN	ERIX S		
	8-11=-368/229, 18-19=-609/199, 12) This truss is designed in accordance with the 2018									1	S. GIN	1. A			
	5-18=-530/250, 6-13=-528/249, International Residential Code sections						8 R502.11.1 a	nd			1	A G	ILBE.IN		
	11-13=-606/197, 16- 3-20=-61/38 8.10= 0	17=-78/11, 12-14=-77/ 00/10	11,	R802.10.2 ar	nd referenced stan	dard AN	ISI/TPI 1.					1111.0	in in its		
	5-20=-01/30, 0-10=-8	50/13										Δη	ril 5 2021		
												Ap	11 0,2021		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	A04	Нір	2	1	Job Reference (optional)	E15577194

Loading

TCDL

BCLL

BCDL

WEBS

WEDGE

Run: 8 43 S. Mar 22 2021 Print: 8 430 S. Mar 22 2021 MiTek Industries. Inc. Mon Apr 05 14:02:26

Page: 1

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	A05	Hip	1	1	Job Reference (optional)	E15577195

Loading

Snow (Pf)

TCDL

BCLL

BCDL

LUMBER

WEBS

WEDGE

FORCES

WEBS

NOTES

Run: 8 43 S. Mar 22 2021 Print: 8 430 S. Mar 22 2021 MiTek Industries. Inc. Mon Apr 05 14:02:26 ID:CYjITQLk4G9gf5XdUyfspIzUtO4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	HJ01	Diagonal Hip Girder	3	1	Job Reference (optional)	E15577196

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:45 ID:OK4zRbN_5yJqP4wtfpa2E4zUsi9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.3

Loac TCLI Snov TCD BCLI BCD	ling _ (roof) v (Pf) L _	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/	/TPI2014	CSI TC BC WB Matrix-MP	0.56 0.37 0.28	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 43 lb	GRIP 244/190 FT = 20%	
LUM TOP BOT WEB WEC BRA TOP BOT REA FOR	BER CHORD S GE CING CHORD CHORD CHORD CES CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood sh 6-0-0 oc purlins, e Rigid ceiling directl bracing. (size) 2=0-7-6, Max Horiz 2=151 (L Max Uplift 2=-79 (L Max Grav 2=525 (L (lb) - Maximum Con Tension 1-2=0/32, 2-10=-71 3-11=-613/80, 3-12 4-5=-175/60 2-13=-125/615 6-1	eathing directly applie xcept end verticals. y applied or 10-0-0 or 5= Mechanical C 11) C 12), 5=-90 (LC 12) C 19), 5=520 (LC 19) npression/Maximum 2/69, 10-11=-661/72, =-146/38, 4-12=-60/5	5) 6) ed or 7) 8) 5 9) 10) 12, 11) 12)	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Refer to girdt Provide mecl bearing plate 5. One RT7A U truss to beari connection is forces. This truss is of International R802.10.2 ar "NAILED" inc (0.148"x3.25) In the LOAD	s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members. er(s) for truss to tru- nanical connection capable of withsta SP connectors rec ng walls due to UF for uplift only and designed in accord Residential Code s d referenced stam- ticates 3-10d (0.14 ") toe-nails per ND CASE(S) section, re noted as frost."	or a 10.0 vith any for a liv s where I fit betv uss conr (by oth anding 9 commen PLIFT at does no dance w sections dard AN (8"x3") of S guidli loads ap) psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 0 lb uplift at ded to conne jt(s) 2. This of consider la ith the 2018 rs502.11.1 i rs502.11.1 i rs502.11.1 i uplied to the ov (R)	ads. .0psf tom to joint ect ateral and						
WEB	S	6-14=-125/615, 5-1 3-6=0/202, 3-5=-68	4=-125/615 0/143	LO / 1)	AD CASE(S) Dead + Sno	Standard w (balanced): Lum	nber Inc	rease=1.15,	Plate				mmm	un.	
NOT 1) \ 2 2) 7 F [((2) 7 F [((2) 7 F [((4) 7 - - - - - - - - - - - - -	ES Wind: ASC /asd=103 Cat. II; Exp cone; cant and right e OOL=1.60 FCLL: ASC Plate DOL DOL=1.15 Cs=1.00; C Jnbalance design. This truss coad of 12. overhangs	CE 7-16; Vult=130mp smph; TCDL=6.0psf; E p B; Enclosed; MWFF tilever left and right ex exposed; Lumber DOI) CE 7-16; Pr=20.0 psf =1.15); Pf=20.0 psf (ct=1.10; Rough Cat Ct=1.10 ed snow loads have b has been designed fo .0 psf or 1.00 times fits s non-concurrent with	h (3-second gust) 3CDL=6.0psf; h=25ft; XS (envelope) exterio qoosed ; end vertical I _=1.60 plate grip (roof LL: Lum DOL=1 Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9 een considered for th or greater of min roof at roof load of 20.0 ps other live loads.	r left l.15 ; ; iis live on	Increase=1. Uniform Loz Vert: 1-4: Concentrate Vert: 12= 14=-51 (F	15 ads (lb/ft) =-60, 5-7=-20 ad Loads (lb) -151 (F=-76, B=-76 =-26, B=-26)	6), 13=-	2 (F=-1, B=-	1),		M. HILLING	The second secon	SEA 0363	ROUL L 22 ILBERTITI	

April 5,2021

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	EJ02	Jack-Open	3	1	Job Reference (optional)	E15577197

Run; 8,43 S Mar 22 2021 Print; 8,430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:40 ID:fLZop_9IVXxR6M9xefKv?CzUsmI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-0-0 2 12 7 Г 4-0-10 4-0-10 7 1 -6-10 3

6-0-0

4x5 =

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.91 0.58 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.17 0.03	(loc) 3-6 3-6 1	l/defl >745 >413 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Left: 2x4 SP No.3 Structural wood she 2-2-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-5-8, 2 Mechanic Max Horiz 1=127 (L0 Max Grav 1=316 (L0 3=113 (L0	eathing directly applie v applied or 10-0-0 oc 2= Mechanical, 3= cal C 14) C 14) C 20), 2=257 (LC 20) C 7)	5) * This truss on the botto 3-06-00 tall chord and a 6) Refer to girr 7) Provide me bearing plat 2. 8) This truss is Internationa R802.10.2 a LOAD CASE(S)	has been designed im chord in all area by 2-00-00 wide w iny other members der(s) for truss to tr chanical connection is capable of withst is designed in accor and referenced star is Standard	d for a liv s where ill fit betv uss conr n (by oth anding 9 dance w sections ndard AN	e load of 20.1 a rectangle veen the bott nections. ers) of truss f 3 lb uplift at j ith the 2018 R 502.11.1 <i>a</i> ISI/TPI 1.	Opsf om oont und					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-7=-327/348, 2-7=- 1-3=-325/284	npression/Maximum										
NOTES 1) Wind: ASC Vasd=103 Cat. II; Exp zone and C	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B o B; Enclosed; MWFR C-C Exterior(2E) zone	n (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior s; cantilever left and r	r ight								WH CA	Rojin

exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.

GI 111111111 April 5,2021

SEAL

036322

V CONTRACTOR IN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	CJ01	Jack-Open	6	1	Job Reference (optional)	E15577198

3-10-15

3-1<u>0-15</u>

-1-0-0

Carter Components, Chesapeake, VA - 23323,

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:36 ID:bT97gs_L1w2Zp2W3G0ZOu1zUsmX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3x5 =

Scale = 1:	28.6
------------	------

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	/TPI2014	CSI TC BC WB Matrix-MP	0.33 0.19 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.03 0.01	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Left: 2x4 SP No.3 Structural wood she 3-10-15 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, : Mechanic Max Horiz 2=101 (L0 Max Grav 2=338 (L1 4=72 (LC	athing directly applie applied or 10-0-0 oc 3= Mechanical, 4= al C 14) C 14), 3=-59 (LC 14) C 21), 3=160 (LC 21) 7)	6) 7) 8) 3) 5 9) 10)	* This truss on the botto 3-06-00 tall chord and a Refer to girc Provide mec bearing plate 3. One RT7A L truss to bear connection i forces. This truss is Internationa R802.10.2 a D CASE(S)	has been desigr m chord in all ar by 2-00-00 wide ny other membe ler(s) for truss to chanical connect e capable of with JSP connectors ring walls due to s for uplift only a designed in acc I Residential Co and referenced s	ned for a liv eas where will fit betw ers. b truss conr tion (by oth nstanding 5 recommen b UPLIFT at and does no cordance w de sections tandard AN	re load of 20. a rectangle veen the bott nections. ers) of truss i9 lb uplift at it uplift at it (s) 2. This ot consider la ith the 2018 is R502.11.1 at VSI/TPI 1.	Opsf om to joint ect ateral					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Corr Tension 1-2=0/49, 2-3=-152/ 2-4=-158/98	npression/Maximum 148	20/		Clandard								
NOTES 1) Wind: ASI Vasd=103 Cat. II; Ex zone and exposed ; members	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B p; B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and ri and forces & MWFRS	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and r ght exposed;C-C for for reactions shown;	r ight								A LINE	OPTH CA	ROLI

- Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

SEAL 036322 APRIL 5,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	CJ02	Jack-Open	6	1	Job Reference (optional)	E15577199

-1-0-0 1-0-0

Carter Components, Chesapeake, VA - 23323,

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:37 ID:up4m8F3kN3wZ87YPA_B1gWzUsmQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-10-15

1-10-15

3x5 =

1-10-15

Scale = 1:26

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.10 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood shee 1-10-15 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 3 Mechanic: Max Horiz 2=59 (LC Max Uplift 2=-20 (LC Max Grav 2=217 (LC (LC 7)	athing directly applie applied or 10-0-0 or Me Mechanical, 4= al 14), 3=-28 (LC 14) 2 21), 3=63 (LC 21),	6) ed or 7) 8) 5 9) 4=33	* This truss h on the bottom 3-06-00 tall b chord and an Refer to girdd Provide mecl bearing plate 3. One RT7A U truss to beari connection is forces.) This truss is International R802.10.2 ar	as been designed in chord in all areas by 2-00-00 wide will by other members. er(s) for truss to tru hanical connection capable of withsta SP connectors reco ing walls due to UP for uplift only and designed in accord Residential Code so do referenced stam	for a liv where fit betw ss conr (by oth nding 2 ommen 'LIFT at does n ance w sections dard AN	e load of 20.0 a rectangle veen the bottu- nections. ers) of truss t 8 lb uplift at j ded to conne jt(s) 2. This ot consider la ith the 2018 s R502.11.1 a ISI/TPI 1.	Opsf om ooint ct teral					
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: AS((lb) - Maximum Com Tension 1-2=0/45, 2-3=-85/82 2-4=-49/37 CE 7-16; Vult=130mph	pression/Maximum 2 (3-second gust)	LC	DAD CASE(S)	Standard								

- 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live 4) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

mining ORTH CAR 0 Contraction of the VIIIIIIIIII SEAL 036322 GI minim April 5,2021

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	EJ03	Jack-Open	1	1	Job Reference (optional)	E15577200

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Apr 05 15:39:56 ID:WatLcaPcjh8_fNaNuIQIHwzUt0m-zG?VkRJ55hPlaLoKA5LY?OIY_tdJu4R_3MhygzTkbo

4x5 =

6-0-0	

Scale = 1:32.6 Plate Offsets (X, Y): [2:Edge,0-1-5]

	(X, T): [2:Euge,0 T 0]													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-MP	0.89 0.55 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.16 0.03	(loc) 4-7 4-7 2	l/defl >788 >433 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD 30T CHORD 3RACING TOP CHORD 30T CHORD 30T CHORD 30T CHORD 30T CHORD 8CT CHORD 80T CHORD 8	2x4 SP No.2 2x4 SP No.2 Left: 2x4 SP No.3 Structural wood she: 2-2-0 oc purlins. Rigid ceiling directly bracing. (lb/size) 2=303/0-5 4=74/ Mer Max Horiz 2=145 (LC Max Uplift 2=-17 (LC Max Grav 2=381 (LC 4=112 (LC (lb) - Max. Comp./M: (lb) or less except w 2-8=-266/239 2-4=-315/260 CE 7-16; Vult=130mph mph; TCDL=6.0psf; Br p B; Enclosed; MWFRS OL=1.60 plate grip DO CC 7-16; Pr=20.0 psf (L 5); Is=1.0; Rough Cat E Ct=1.10 ed snow loads have be has been designed for .0 psf or 1.00 times flat s non-concurrent with c	athing directly applie applied or 10-0-0 oc 5-8, 3=158/ Mechanic chanical 214) 214), 3=-92 (LC 14) 221), 3=254 (LC 21) 27) ax. Ten All forces 2 hen shown. (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior for reactions shown; u=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate B; Fully Exp.; Ce=0.9; hen considered for thi r greater of min roof I t roof load of 20.0 ps other live loads.	5) 6) d or 7) 8) ;al, 9) , 10) 250 LO/	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 3. One RT4 US truss to bear connection is forces. This truss is International R802.10.2 ar AD CASE(S)	s been designed ad nonconcurrent has been designed n chord in all area yy 2-00-00 wide w yy other members er(s) for truss to tr hanical connectio c capable of withs P connectors rec ing walls due to U s for uplift only and designed in accor Residential Code nd referenced stat Standard	for a 10.0 with any d for a liv s where iill fit betv - russ conr n (by oth tanding 9 ommend IPLIFT at d does no rdance w s sections ndard AN	0 psf bottom other live loa e load of 20.0 a rectangle veen the bottu nections. ers) of truss t 2 lb uplift at j ed to connect jt(s) 2. This ot consider la ith the 2018 R502.11.1 a ISI/TPI 1.	ids. Dpsf om ioint t teral und				SEA 0363	RO L 22 FEREN ril 5,2021	

ENGINEERING BY **TRENCO** A Mi Tek Atfiliate 818 Soundside Road Edenton, NC 27932

🗼 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	A09	Hip Girder	1	1	Job Reference (optional)	E15577201

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries. Inc. Mon Apr 05 14:02:31

Page: 1 ID:?kBX2WbOIUVjTM_ERSuCitzUsfH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 28-10-13 3-0-13 1-0-0 3-0-13 6-0-0 10-1-13 14-5-6 18-9-0 22-10-13 25-10-0 2-11-3 3-0-13 4-1-13 4-3-9 4-3-9 4-1-13 2-11-3 Special Special Special Special Special Special Special 4x6= Special Special Special MT20HS 8x12 = MT20HS 8x12 = 4x8 =2x4 II 4x8 =3x5 🍫 ⊠5 8 4-0-10 -12 28 29 30731 32 33 0-1-12 6 34 9 12 7 4 27 • 5 3x5 👟 3-10-14 3 3-10-14 10 Ŧ 4-5-1 11 0-6-10 LI^{®1} Ш Щ Ш l nn Ïn Ш Ш 20 35 36 16 39 15 19 18 371738 40 14 13 2x4 II 6x8= 2x4 II 3x8= 2x4 II 6x8= 2x4 II 4x8 =4x8 =NAILED NAILED NAILED HJC26 NAILED HJC26 MT20HS 8x12 = NAILED NAILED NAILED NAILED 3-0-13 5-10-4 10-1-13 14-5-6 18-9-0 23-0-9 25-10-0 28-10-13 3-0-13 2-9-7 3-0-13 2-9-7 4-3-9 4-3-9 4-3-9 4-3-9 Plate Offsets (X, X): [2:Edge 0-0-1] [4:0-8-8 0-2-0] [9:0-8-8 0-2-0] [14:0-4-0 0-3-12] [19:0-4-0 0-3-12]

Scale = 1:55.5

	(X, 1). [2.20g0,0 0 1],	[0 0,0 _ 0], [0.0	00,020	, [11.0 1 0,0 0	12], [10.0 1 0,0 0	. – 1								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.88 0.46 0.92	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.32 -0.50 0.11	(loc) 17 17 11	l/defl >999 >696 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 198 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 2x6 SP 2400F 2.0E 2x4 SP No.3 Structural wood shea 2-1-5 oc purlins, exc 2-0-0 oc purlins (2-2 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 1 Max Horiz 2=94 (LC Max Uplift 2=-496 (LC Max QParty 2=3113.(t* 6-9,6-4:2x6 SP N athing directly applie ept -10 max.): 4-9. applied or 10-0-0 o 5-19, 8-14 1=0-5-8 11) C 12), 11=-496 (LC C 32) 11=3113 (LC	W ed or 1) c 2)	EBS Unbalanced this design. Wind: ASCE Vasd=103m Cat. II; Exp zone; cantile and right ex DOL=1.60	3-20=-414/93, 3-19 4-19=-273/2233, 5- 5-18=0/313, 5-17=- 8-17=-164/888, 8-1 9-14=-274/2233, 10 10-13=-414/92 roof live loads have 7-16; Vult=130mpl ph; TCDL=6.0psf; E B; Enclosed; MWFF ever left and right exposed; Lumber DOI	=-163/5 19=-260 163/888 5=0/313 0-14=-10 e been of a (3-sec 3CDL=6 8S (envision constants) (3-sec 3CDL=6 8S (envision (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	41, 57/449, 3, 7-17=-830/ 3, 8-14=-2667 55/542, considered fo ond gust) .0psf; h=25ft; elope) exteric end vertical olate grip	282, 7/448, r ; ; r left	 This Inte R8C Grat bott Use nail: may con Use 13) Use 14 Tail: 15) "NA (0.1 	s truss is rrnationa 22.10.2 a phical p to orient com chor S USP H s into Tr K. startin nect trus all nail AlLED" ir 48"x3.2	s desig and refu urlin re tation c rd. JC26 (uss) or g at 6- ss(es) t oles w ndicate 5") toe	ned in accordance dential Code sect erenced standare presentation doe of the purlin along With 16-16d nails r equivalent spac 0-6 from the left to back face of b here hanger is in s 3-10d (0.148"x -nails per NDS g	e with the 2018 ions R502.11.1 and J ANSI/TPI 1. s not depict the size J the top and/or is into Girder & 10d ed at 16-10-1 oc end to 22-10-7 to ottom chord. contact with lumber 3") or 3-12d uidlines.	;
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/46, 2-3=-5020 4-27=-4593/783, 5-2 5-6=-7358/1126, 6-2 28-29=-7358/1126, 7- 31-32=-7358/1126, 8- 9-34=-4593/783, 9-1 10-11=-5020/814, 11 2-0=-699/4263, 19- 19-35=-1024/6673, 1 18-36=-1024/6673, 1 15-39=-982/6673, 16 15-39=-982/6673, 15 14-40=-982/6673, 15 11-13=-638/4263	pression/Maximum //813, 3-4=-5364/88 7=-4604/784, 8=-7358/1126, 29-30=-7358/1126, 31=-7358/1126, 32-33=-7358/1126, 34=-4604/784, 0=-5364/884, 1-12=0/46 20=-699/4263, 18-35=-1024/6673, 18-35=-1024/6673, 3-39=-982/6673, 3-40=-982/6673, 3-14=-638/4263,	3) 4, 4) 5) 6) 7) 8) 9)	Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss hi load of 12.0 overhangs r Provide ade All plates an This truss hi chord live lo * This truss on the botto 3-06-00 tall chord and a D) One RT7A L truss to bea This connec lateral force	1-10, PI=20.0 psi (1,15); PI=20.0 psi (1,15); PI=20.0 psi (1,15); PI=20.0 psi (1,15); Rough Cat =1.10 snow loads have b as been designed fa psi or 1.00 times flaton-concurrent with quate drainage to p e MT20 plates unless been designed ff ad nonconcurrent whas been designed m chord in all areas by 2-00-00 wide will ny other members. JSP connectors reciring walls due to UF tion is for uplift only s.	um DC B; Fully een cor or greate at roof lo other liv revent v so other or a 10.0 vith any for a liv owhere l fit betwo ommen PLIFT at and do	LI-II.15 Plate Exp.; Ce=0.5 asidered for the er of min roof bad of 20.0 ps re loads. vater ponding wise indicate 0 ps f bottom other live loa e load of 20.0 a rectangle reen the bottom ded to conne jt(s) 2 and 1 es not consid	lins b; live sf on g. d. ds. Dpsf ct 1. der		Continue.		SEA 0363	ROAD L	

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 ev. 5/19/2/2/2/ BEFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

April 5,2021

12

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	A09	Hip Girder	1	1	Job Reference (optional)	E15577201

16) Hanger(s) or other connection device(s) shall be

- provided sufficient to support concentrated load(s) 222 Ib down and 88 lb up at 6-0-0, 230 lb down and 88 lb up at 8-0-12, 230 lb down and 88 lb up at 10-0-12, 230 lb down and 88 lb up at 12-0-12, 230 lb down and 86 lb up at 14-0-12, 230 lb down and 86 lb up at 14-10-1, 230 lb down and 88 lb up at 16-10-1, 230 lb down and 88 lb up at 18-10-1, and 230 lb down and 88 lb up at 20-10-1, and 222 lb down and 88 lb up at 22-10-13 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 17) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-4=-60, 4-9=-60, 9-12=-60, 21-24=-20 Concentrated Loads (lb)

- Vert: 9=-194 (B), 19=-560 (B), 5=-194 (B), 18=-69 (B), 15=-69 (B), 8=-194 (B), 14=-560 (B), 4=-194 (B),
- 27=-194 (B), 28=-194 (B), 30=-194 (B), 31=-194 (B),
- 33=-194 (B), 34=-194 (B), 35=-69 (B), 36=-69 (B),
- 37=-69 (B), 38=-69 (B), 39=-69 (B), 40=-69 (B)

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries. Inc. Mon Apr 05 14:02:31 ID:?kBX2WbOIUVjTM_ERSuCitzUsfH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	A08	Нір	1	1	Job Reference (optional)	E15577202

-1-0-0

1-0-0

4-0-13

4-0-13

Run: 8,43 S Mar 22 2021 Print: 8,430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:28 ID:USnDkezTJ1n5?0eMwLPIOSzUtAM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

29-10-13 8-0-0 11-3-10 17-9-0 20-10-13 24-10-0 28-10-13 3-11-3 3-3-10 6-5-5 3-1-13 3-11-3 4-0-13 1-0-0 2-8-2 5x8 = 5x8 = 34 0-1-12 H 5_⊠30 4 313233 6 7 \boxtimes \bowtie

Scale = 1:55.6

Plate Offsets (2	X, Y): [2:Edge,0-0-13]], [4:0-4-0,0-1-11], [7	7:0-4-0,0-1	-11], [9:Edge,()-1-13]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.76 0.83 0.55	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.33 -0.65 0.08	(loc) 13-18 13-18 9	l/defl >999 >537 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 164 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x4 SP No.2 2x4 SP 2400F 2.0E ⁻ No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 3-2-11 oc purlins, ex 2-0-0 oc purlins (2-6 Rioid ceiling directly	*Except* 19-14:2x4 athing directly applie cept -14 max.): 4-7. applied or 10-0-0 or	W SP 1) ed or 2)	EBS DTES Unbalanced this design. Wind: ASCE Vasd=103m Cat. II; Exp	4-21=-174/160, 7-1 19-20=-601/137, 5- 4-20=0/1306, 6-14= 12-14=-610/139, 7- 13-15=-103/18, 3-2 8-11=-293/146 roof live loads have 5 7-16; Vult=130mp ph; TCDL=6.0psf; E 3; Enclosed; MWFF	1=-183, 19=-55- 564/18 12=0/13 1=-292, e been o h (3-sec 3CDL=6 RS (envi	(154, 4/185, 39, 333, 17-18=-9 (145, considered for cond gust) .0psf; h=25ft; elope) exterio	98/17, r	 * Thon t 3-00 cho This Inte R80 Gra or th bott 	his truss he botto 5-00 tall rd and a s truss is rnationa 02.10.2 a phical pu he orient om chor CASE(S)	has be m choi by 2-0 ny othe design l Resid ind refe urlin re ation c d. Star	een designed for rd in all areas wi 0-00 wide will fit er members, wit ned in accordan jontial Code sec erenced standar presentation doo of the purlin alon	a live load of ere a rectan between the n BCDL = 10 ce with the 20 tions R502.1 d ANSI/TPI 1 es not depict g the top and	f 20.0psf gle bottom .0psf. D18 1.1 and the size //or
REACTIONS FORCES	(size) 2=0-5-8, 9 Max Horiz 2=122 (LC Max Grav 2=1667 (L (Ib) - Maximum Com Tension 1-2=0/30, 2-28=-260 3-29=-2562/0, 3-4=-7 5-30=-2791/0, 30-31 31-32=-2791/0, 30-31 31-32=-2791/0, 6-34 7-8=-2493/0, 8-35=-7 9-36=-2611/0, 9-10=	9=0-5-8 2 13) .C 45), 9=1668 (LC - pression/Maximum 9/0, 28-29=-2598/0, 2492/0, 4-5=-2658/C =-2791/0, 3=-2791/0, 6-7=-267 2564/0, 35-36=-2600 0/30	45)), 3) 1/0, 0/0, 4)	zone and C- 2-0-0 to 3-9- 12-2-15 to 1 Interior (1) 2 to 29-10-13 vertical left a forces & MW DOL=1.60 p TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design	C Exterior(2E) -1-0 1, Exterior(2R) 3-9 6-7-14, Exterior(2R) 4-11-11 to 26-10-1: zone; cantilever left and right exposed;C /FRS for reactions late grip DOL=1.60 E 7-16; Pr=20.0 psf (.15); Pf=20.0 psf ((Is=1.0; Rough Cat =1.10 snow loads have b	-0 to 2-(-1 to 12:) 16-7-1 3, Exter : and rig -C for n shown; (roof LL Lum DC B; Fully een cor	0-0, Interior (1 -2-15, Interior 4 to 24-11-11 ior(2E) 26-100 hit exposed ; nembers and Lumber ∴ Lum DOL=1 bL=1.15 Plate Exp.; Ce=0.9 asidered for th	l) (1) I, -13 end 1.15); his		4		HTH CA	ROLIN	111
BOT CHORD	2-21=-143/2193, 20- 20-37=0/2739, 37-38 16-18=0/2739, 13-16 39-40=0/2739, 12-40 9-11=0/2194, 19-41= 17-42=-11/61, 15-17 43-44=-11/61, 14-44	21=0/2157, 3=0/2739, 18-38=0/2 3=0/2739, 13-39=0/2 3=0/2739, 11-12=0/2 -11/61, 41-42=-11/4 =-11/61, 15-43=-11/2 =-11/61	2739, 2739, 2158, 61, (61, 8) 9) 10	This truss ha load of 12.0 overhangs n 200.0lb AC i from left enc Provide ade All plates an All plates an chord live lo	as been designed fr psf or 1.00 times fla on-concurrent with unit load placed on I, supported at two quate drainage to p e MT20 plates unles e MT20 unless as been designed fo ad nonconcurrent w	or greate at roof lo other lin the bott points, { revent v ss other otherwi or a 10.0 <i>i</i> th any	er of min roof pad of 20.0 ps ve loads. om chord, 14 5-0-0 apart. water ponding wise indicated. D psf bottom other live load	live sf on -5-6 g. d. ds.		V. TITTTTTT			L 22 ILBER	The second s

April 5,2021

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	A07	Нір	1	1	Job Reference (optional)	E15577203

Scale = 1:55.7

Plate Offsets (X, Y): [2:Edge,0-1-9], [4:0-4-0,0-1-11], [7:0-4-0,0-1-11], [9:Edge,0-1-9]

					-									
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.64	Vert(LL)	-0.39	12-17	>894	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	1.00	Vert(CT)	-0.74	12-17	>469	180	MT20HS	187/143	
TCDL	10.0	Rep Stress Incr	YES		WB	0.47	Horz(CT)	0.08	9	n/a	n/a			
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MSH									
BCDL	10.0											Weight: 161 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP 2400F 2.0E	*Except* 18-13:2x4 SI	1) P 2)	Unbalanced i this design. Wind: ASCE	roof live loads have 7-16; Vult=130mph	been o	considered for ond gust)		13) Gra or ti bott	phical p he orient	urlin re ation o d.	presentation doe of the purlin along	s not depict the top and	the size /or
WEBS WEDGE	N0.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3			Cat. II; Exp B zone and C-C 2-0-0 to 5-9-1 14-2-15 to 14	; Enclosed; MWFR C Exterior(2E) -1-0- I, Exterior(2R) 5-9- I-7-14 Exterior(2R)	CDL=0 S (env 0 to 2-0 1 to 14 14-7-1	2005), n=231, 2006), exterior 0-0, Interior (1 2-15, Interior 4 to 23-1-12	r) (1)	LOAD	CASE(S)	Sta	ndard		
BRACING TOP CHORD	Structural wood shea 2-10-13 oc purlins, e 2-0-0 oc purlins (3-4	athing directly applied except -15 max.): 4-7.	or	Interior (1) 23 29-10-13 zon vertical left ar	3-1-12 to 26-10-13, le; cantilever left an nd right exposed;C-	Exterio d right C for n	r(2E) 26-10-1 exposed ; end nembers and	3 to d						
BOT CHORD	Rigid ceiling directly bracing. Except: 6-0-0 oc bracing: 13-	applied or 10-0-0 oc	3)	DOL=1.60 pla TCLL: ASCE Plate DOL=1	ate grip DOL=1.60 7-16; Pr=20.0 psf (.15); Pf=20.0 psf (L	(roof LL .um DC	: Lum DOL=1 L=1.15 Plate	.15						
REACTIONS	(size) 2=0-5-8, 9 Max Horiz 2=149 (LC Max Grav 2=1710 (L	9=0-5-8 C 13) ∟C 45), 9=1710 (LC 45	5) 4)	DOL=1.15); I Cs=1.00; Ct= Unbalanced s	s=1.0; Rough Cat E 1.10 snow loads have be	3; Fully een cor	Exp.; Ce=0.9 sidered for th	; is						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)	design. This truss ha	s been designed fo	r greate	er of min roof	live						
TOP CHORD	1-2=0/30, 2-26=-271 3-27=-2581/0, 3-28= 4-5=-2028/0, 5-29=-2 6-30=-2112/0, 6-7=-2 8-31=-2430/0, 8-32= 9-33=-2718/0, 9-10=	8/0, 26-27=-2634/0, 2430/0, 4-28=-2360// 2112/0, 29-30=-2112// 2028/0, 7-31=-2360/0 2581/0, 32-33=-2634 -0/30	0, 0, 6) , 4/0, 7) 8)	load of 12.0 p overhangs no 200.0lb AC u from left end, Provide adeq All plates are	osf or 1.00 times fla on-concurrent with on nit load placed on t supported at two p uate drainage to pr MT20 plates unles	t roof lo other liv he bott points, s revent v s other	bad of 20.0 ps ve loads. om chord, 14- 5-0-0 apart. vater ponding wise indicated	f on 5-6			A.L.	ORTH CA	ROLIN	
BOT CHORD	2-19=-112/2289, 19- 34-35=0/2178, 35-36 15-17=0/2178, 12-15 37-38=0/2178, 11-35 18-39=-70/1, 39-40= 14-16=-70/1, 14-41= 13-42=-70/1	34=0/2178, 5=0/2178, 17-36=0/21 5=0/2178, 12-37=0/21 3=0/2178, 9-11=0/227 -70/1, 16-40=-70/1, -70/1, 41-42=-70/1,	9) 78, 10 78, 3, 11	All plates are) This truss ha chord live loa) * This truss h on the bottom 3-06-00 tall b chord and an	2x4 MT20 unless of s been designed fo d nonconcurrent w as been designed fo n chord in all areas y 2-00-00 wide will y other members, y	otherwi r a 10.0 ith any for a liv where fit betw with BC	se indicated.) psf bottom other live load e load of 20.0 a rectangle veen the botto DL = 10.0psf.	ds. psf m		Contraction of the second seco		SEA 0363	22	www.unn
WEBS	3-19=-387/207, 4-19 8-11=-387/207, 18-1 5-18=-529/261, 6-13 11-13=-616/210, 16-	=0/1146, 7-11=0/1147 9=-616/211, =-529/261, 17=-73/7, 12-14=-73/	7, 12 7) This truss is o International R802.10.2 ar	designed in accord Residential Code s ad referenced stand	ance w ections lard AN	th the 2018 R502.11.1 ar ISI/TPI 1.	nd				A. G	ILBER.	STATE OF
NOTES												Ap	il 5,2021	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	A06	Hip	1	1	Job Reference (optional)	E15577204

Scale = 1:71.2

Loading

TCLL (roof)

Snow (Pf)

LUMBER

WEBS

WEDGE

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

Run: 8 43 S. Mar 22 2021 Print: 8 430 S. Mar 22 2021 MiTek Industries. Inc. Mon Apr 05 14:02:27 ID:08lbZ2Yn1ocE_qWH500E44zUtT_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

BRACING TOP CHORD Structural wood sheathing directly applied, except 2-0-0 oc purlins (4-1-3 max.): 5-6. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Except: 6-0-0 oc bracing: 13-18 **REACTIONS** (size) 2=0-5-8, 9= Mechanical Max Horiz 2=199 (LC 11) Max Grav 2=1830 (LC 50), 9=1772 (LC 52) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/30. 2-27=-2849/0. 27-28=-2698/0. 3-28=-2688/0. 3-29=-2671/0. 4-29=-2592/0. 4-30=-2572/0, 5-30=-2527/0, 5-31=-1677/0, 6-31=-1677/0, 6-7=-2525/0, 7-32=-2557/0, 32-33=-2574/0, 8-33=-2673/0, 8-34=-2696/0, 34-35=-2706/0, 9-35=-2857/0 BOT CHORD 2-20=-265/2509, 19-20=0/2526 19-36=0/1857, 17-36=0/1857, 15-17=0/1857, 12-15=0/1857, 12-37=0/1857, 37-38=0/1857, 11-38=0/1857, 10-11=0/2387, 9-10=0/2374, 18-39=-120/0, 16-39=-120/0, 14-16=-120/0, 14-40=-120/0, 13-40=-120/0 WEBS 3-20=-58/41 3-19=-466/278 18-19=0/1032

5-18=0/1199.8-11=-470/280.6-13=0/1202. 11-13=0/1034, 8-10=-76/16, 16-17=-73/1, 12-14=-73/1 NOTES

MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 4) desian.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads

- 6) 200.0lb AC unit load placed on the bottom chord, 14-5-6 from left end, supported at two points, 5-0-0 apart.
- 7) Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated. 8)
- All plates are 2x4 MT20 unless otherwise indicated 9)
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 11) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 12) Refer to girder(s) for truss to truss connections.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

ORTH 0 UTITITITI I THE ADDRESS OF THE PARTY OF THE SEAL 036322 G mm April 5,2021

818 Soundside Road Edenton, NC 27932

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH			
21030062-B	HJ02	Diagonal Hip Girder	2	1	Job Reference (optional)	E15577205		

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:45 ID:OccP?Pae5ATQxhj89uO2QgzUshu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-1-9-3 3-9-5 8-0-13 1-9-3 3-9-5 4-3-7 Special NAILED 4.95 F NAILED 3x5 II NAILED 5 Ĺ NAILED 15¹⁶ 3x5 ≠ 4 12^{13¹⁴} 4-0-5 3x5 ≠ 3-7-14 3-7-14 4-4-7 3 FO 0-8-6 9-0-0-0-0-0 •/ 6 Ø 1718 7 1920 2x4 🛛 3x5 = 3x6 II NAILED NAILED NAILED NAILED NAILED 0-0-6 8-0-<u>13</u> 3-9-5

3-8-15 4-3-7 0-0-6

Scale = 1:42.3

Plate Offsets (X, Y): [2:Edge,0-0-0]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.60 0.34 0.25	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 -0.01	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 44 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 SLIDER Left 2x4 SP No.3 1-6-0 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 cc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-4-3, 5= Mechanical, 6= Mechanical Max Horiz 2=153 (LC 11) Max Uplift 2=-85 (LC 12), 5=-142 (LC 9), 6=-13 (LC 12) Max Grav 2=532 (LC 19), 5=345 (LC 19), 6=366 (LC 19)				 () ICLL: ASCE 7-10; Pf=20.0 psf (nor LL: Lum DOL=1.15) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15; Dol Delate State Plate DoL=1.15; Dol Delate Case Plate Case Plate A Snow (balanced): Lumber Increase=1.15, Uniform Loads (Ib/ft) Vert: 1-5=-60, 6-8=-20 Concentrated Loads (Ib) Vert: 5=-188 (F), 6=-59 (F), 15=-54 (F), 16=-87 17=2 (F), 18=-2 (B), 19=-9 (F), 20=-30 (B) 										
FORCES	(lb) - Maximum Co	mpression/Maximum		bearing plate joint 5 and 13	capable of withsta b uplift at joint 6.	nding 1	42 lb uplift at	t						
TOP CHORD	1-2=0/40, 2-3=-22 12-13=-584/67, 13 4-14=-535/74, 4-1 5-16=-60/54, 5-6= 2-17=-124/534, 13	6/58, 3-12=-604/62, -14=-558/69, 5=-140/36, 15-16=-76/ 0/0 -18124/534	9) /22, 10)	 9) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. 10) This truss is designed in accordance with the 2018 										
BOTCHORD	2-17=-124/534, 17 7-18=-124/534, 7- 19-20=-124/534, 6	-18=-124/534, 19=-124/534, -20=-124/534	11)	International R802.10.2 ar	Residential Code s id referenced stand	ections	R502.11.1 a ISI/TPI 1.	and		4	i	O FESS	TO A A A A A A A A A A A A A A A A A A A	
WEBS NOTES 1) Wind: ASI Vasd=103 Cat. II; Ex zone; can and right DOL=1.60	4-7=0/185, 4-6=-5 CE 7-16; Vult=130mj imph; TCDL=6.0psf; p B; Enclosed; MWF tilever left and right e exposed; Lumber DC)	12) 13) r left 14)	diagonal or vertical web shall not exceed 0.500in. 12) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines. 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 208 lb down and 84 lb up at 8-3-4 on top chord. The design/selection of such connection device(s) is the responsibility of others. 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). SEAL 036322 03632 036322 036322 03632									EEP. K		

818 Soundside Road Edenton, NC 27932

April 5,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	F01	Monopitch	6	1	Job Reference (optional)	E15577206

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:42 ID:QszOqW7lkpU39yHca3yVvNzUszF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.8

Plate Offsets (X, Y):	[2:Edge,0-1-5],	[3:0-2-8,0-1-4]
-----------------------	-----------------	-----------------

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.84	DEFL Vert(LL)	in -0.08	(loc) 5-8	l/defl >850	L/d 240	PLATES MT20	GRIP 244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.52	Vert(CT)	-0.15	5-8	>470	180			
	10.0	Rep Stress Incr	YES			0.00	Horz(CT)	0.03	2	n/a	n/a			
	0.0	Code	IRC2018/19120	14	Matrix-IMP							Weight: 27 lb	FT - 20%	
DODL	10.0											Weight. 27 lb	11 = 2070	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 2=0-3-8, 3 Mechanic Max Horiz 2=136 (LC Max Uplift 2=-377 (LC Max Grav 2=377 (LC 5=120 (LC	athing directly applied cept end verticals. applied or 10-0-0 oc 3= Mechanical, 5= al 2 13) 14), 3=-70 (LC 14) 2 21), 3=247 (LC 21). 2 7)	 4) This load over 5) This chore 6) * This on th 3-06-chore 7) Refet 8) Provi bearing 3. 9) One truss connections 	truss ha of 12.0 p angs no truss ha I live loas s truss h e bottor 00 tall b I and ar to gird de mec ng plate RT7A U to bear ection is	s been designed fo osf or 1.00 times fla on-concurrent with s been designed fo d nonconcurrent w has been designed in n chord in all areas by 2-00-00 wide will yo other members. er(s) for truss to trus hanical connection capable of withsta SP connectors recor- ing walls due to UP for uplift only and o	r greate t roof k other liv r a 10.0 ith any for a liv where fit betw ss conr (by oth nding 7 ommen LIFT at does no	er of min rool bad of 20.0 p re loads. 0 psf bottom other live load e load of 20.1 a rectangle veen the bott nections. ers) of truss i 0 lb uplift at j ded to conne jt(s) 2. This ot consider la	f live isf on ads. Opsf com to joint ect ateral						
FORCES	(lb) - Maximum Com Tension 1-2=0/30 2-9=-280/	pression/Maximum	10) This Interr	 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and 										
BOT CHORD	2-5=-262/248. 4-5=0	/0	-0/0 R002 11) Gan	hetweer	inside of top chore	laiu An I hearir	a and first							
NOTES	,		diago	diagonal or vertical web shall not exceed 0 500in									111.	
 Wind: ASC Vasd=103 Cat. II; Ex zone and 2-0-0 to 2- cantilever right expo for reactio DOL=1.60 2) TCLL: AS Plate DOL DOL=1.15 Cs=1.00; Unbalance design. 	CE 7-16; Vult=130mph pph; TCDL=6.0psf; B(p B; Enclosed; MWFR: C-C Exterior(2E) -1-0-(-9-4, Exterior(2E) 2-9-4 left and right exposed sed;C-C for members a ns shown; Lumber DO CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L =1.15); Rf=20.0 psf (L b); Is=1.0; Rough Cat E Ct=1.10 ed snow loads have be	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior to 2-0-0, Interior (1) to 5-9-4 zone; ; end vertical left and and forces & MWFRS L=1.60 plate grip roof LL: Lum DOL=1. um DOL=1.15 Plate t; Fully Exp.; Ce=0.9; en considered for thi	LOAD C	ASE(S)	Standard					Contraction of the second seco		SEA 0363	R 22 22 EER FR TI 5,2021	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	CJ06	Jack-Open	2	1	Job Reference (optional)	E15577207

4-1-15

4-1-15

-1-0-0

Carter Components, Chesapeake, VA - 23323,

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:38 ID:3CmM0qPIngSbVQhnpshbpPzUsm_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x5 =

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.38	Vert(LL)	-0.02	4-7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.22	Vert(CT)	-0.03	4-7	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC20	18/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 16 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2		(This truss l on the bottor 	has been desigr m chord in all ar	ned for a liv eas where	e load of 20. a rectangle	0psf					
BOT CHORD	2x4 SP No.2			3-06-00 tall I	by 2-00-00 wide	will fit betw	veen the bott	tom					
WEDGE	Left: 2x4 SP No.3			chord and a	ny other membe	ers.							
BRACING				Refer to gird	ler(s) for truss to	o truss conr	nections.						
TOP CHORD	Structural wood she 4-1-15 oc purlins.	athing directly applie	ed or	 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 63 lb uplift at joint 									
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 of	с ,	3. 9) One RT7A USP connectors recommended to connect									
REACTIONS	(size) 2=0-3-8, 3 Mechanic	3= Mechanical, 4= al		connection is	s for uplift only a	and does n	ot consider la	ateral					
	Max Horiz 2=106 (LC	C 14)		1010es. 10) This truss is	designed in acc	ordance w	ith the 2018						
	Max Uplift 2=-17 (LC	2 14), 3=-63 (LC 14)		International	Residential Co	de sections	R502.11.1	and					
	Max Grav 2=353 (LC 4=76 (LC	C 21), 3=172 (LC 21 7)),	R802.10.2 a	nd referenced s	tandard AN	ISI/TPI 1.						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	I	LOAD CASE(S)	Stanuaru								
TOP CHORD	1-2=0/50, 2-3=-163/	160											
BOT CHORD	2-4=-175/107												
NOTES													
1) Wind: AS	CE 7-16; Vult=130mph	(3-second gust)											
Vasd=103	mph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft;										minin	1111
Cat. II; Ex	p B; Enclosed; MWFR	S (envelope) exterio	r									N' CA	D'''

- Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	585 Sunridge-Roof-35464GH	
21030062-B	CJ07	Jack-Open	2	1	Job Reference (optional)	E15577208

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Mon Apr 05 14:02:38 ID:Bi3GIGZSjg5IZQBH45Qeq9zUsIn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x5 =

2-1-15

Scale = 1:26.4

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MP	0.10 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No Structural w 2-1-15 oc p Rigid ceiling (size) 2 Max Horiz 2 Max Uplift 2 Max Grav 2	2 2 2 3 directly =0-3-8, 3 4echanic: =63 (LC =-20 (LC =228 (LC C Z)	athing directly applie applied or 10-0-0 oc 3= Mechanical, 4= al 14) 14), 3=-31 (LC 14) 2 21), 3=73 (LC 21),	4=37	 * This truss h on the bottor 3-06-00 tall b chord and ar Provide meci bearing plate 3. One RT7A U truss to bear connection is forces. This truss is International 	as been designed in chord in all areas by 2-00-00 wide will by other members. er(s) for truss to tru- hanical connection capable of withsta SP connectors rec ing walls due to UF of uplift only and designed in accord Residential Code	for a liv s where Il fit betw uss conr b (by oth anding 3 commen PLIFT at does no dance w sections	e load of 20. a rectangle veen the bott nections. ers) of truss s 1 lb uplift at j ded to conne jt(s) 2. This ot consider la th the 2018 R502.11.1 a	Dpsf om ooint ect teral					
FORCES	(lb) - Maxim Tension	ium Com	pression/Maximum	I	R802.10.2 and referenced standard ANSI/TPL1. LOAD CASE(S) Standard									
TOP CHORD BOT CHORD	1-2=0/46, 2 2-4=-59/42	-3=-90/86	6											
NOTES 1) Wind: ASC Vasd=103 Cat. II; Exj zone and exposed; members Lumber D ^I 2) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; (3) Unbalance design. 4) This truss load of 12 overhange 5) This truss	CE 7-16; Vult= mph; TCDL=6 p B; Enclosed C-C Exterior(2 end vertical la and forces & 1 OL=1.60 plate CE 7-16; Pr=2 CE 7-16; Pr=2 C; IS=1.0; Rou Ct=1.10 ed snow loads has been des .0 psf or 1.00 s non-concurre	130mph 5.0psf; BC 5.0psf; BC 2E) zone; 9 ft and rig WFRS 9 grip DO 10.0 psf (L1 10 psf (L1) psf ((3-second gust) CDL=6.0pst; h=25ft; S (envelope) exterior cantilever left and r pht exposed;C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate ; Fully Exp.; Ce=0.9 en considered for th r greater of min roof roof load of 20.0 ps ther live loads. = 410.0 ps footom	r ight .15 ; is live if on							Contraction of the second seco		SEA 0363	ROUTER R. A. MANNER

- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on 4) overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

818 Soundside Road Edenton, NC 27932

GI

1111111 April 5,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

