

RE: J0820-4006 Lot 2 Finley's Crossing Trenco 818 Soundside Rd Edenton, NC 27932

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.3 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 28 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	E14589675	A1-GE	9/1/2020	27	E14589701	PB7	9/1/2020
2	E14589676	A2	9/1/2020	28	E14589702	PB8	9/1/2020
3	E14589677	A3	9/1/2020				
4	E14589678	B1-GE	9/1/2020				
5	E14589679	B2	9/1/2020				
6	E14589680	C1-GE	9/1/2020				
7	E14589681	C2	9/1/2020				
8	E14589682	C3	9/1/2020				
9	E14589683	C4	9/1/2020				
10	E14589684	C5	9/1/2020				
11	E14589685	C6	9/1/2020				
12	E14589686	D1-GE	9/1/2020				
13	E14589687	D2	9/1/2020				
14	E14589688	E1-GE	9/1/2020				
15	E14589689	E2	9/1/2020				
16	E14589690	E3	9/1/2020				
17	E14589691	E4	9/1/2020				
18	E14589692	G1-GE	9/1/2020				
19	E14589693	G2	9/1/2020				
20	E14589694	G3-GE	9/1/2020				
21	E14589695	PB1	9/1/2020				
22	E14589696	PB2	9/1/2020				
23	E14589697	PB3	9/1/2020				
24	E14589698	PB4	9/1/2020				
25	E14589699	PB5	9/1/2020				
26	E14589700	PB6	9/1/2020				

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the design for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

4-	$\frac{3-8}{2.8}$ 11-1-10 17	-11-13 24-11-	-8 27-7-12 3	$\frac{31-11-3}{4-2-8}$ + $\frac{35-9-2}{2-0-14}$	39-9-2	41-7-8 47-11-	0
Plate Offsets (X,Y)	[6:0-5-4.0-3-0]. [10:0-4-0.0-2-13]. [12:0-	4-0.0-4-8]. [14:0-5-0.0-3-0]	1. [28:0-0-9.0-1-10]	4-5-6 5-9-14	4-0-0	1-10-0 0-3-0	
], [===============				
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.43	Vert(LL) -0.2	0 32-33 >999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.56	Vert(CT) -0.3	3 32-33 >999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.37	Horz(CI) 0.1	0 25 n/a	n/a		FT 000/
BCDL 10.0	Code IRC2015/1PI2014	Matrix-S	Wind(LL) 0.1	2 35-36 >999	240	vveight: 427 ib	FT = 20%
LUMBER-			BRACING-				
TOP CHORD 2x6 SP	9 No.1		TOP CHORD	Structural wood	sheathing dir	rectly applied or 3-9-10	oc purlins,
BOT CHORD 2x6 SP	? No.1			except			•
WEBS 2x4 SP	9 No.2			2-0-0 oc purlins	(5-1-1 max.):	: 6-10, 7-28.	
OTHERS 2x4 SP	9 No.2		BOT CHORD	Rigid ceiling dire	ectly applied of	or 10-0-0 oc bracing,	Except:
				8-5-0 oc bracing	: 2-36		
				8-4-14 oc bracin	g: 35-36.		
			WEBS	1 Row at midpt	3	3-35, 4-33, 6-32, 14-32	
	arings 6.2.8 avcont (it-longth) 2-0.2.8	20-0.2.8	JUINTS	1 Brace at Jt(s):	9, 11, 12, 17	, 19, 22, 14	
(lb) - Max H	$arr 2=345(I \cap 11)$	29=0-3-0.					
() Max U	plift All uplift 100 lb or less at joint(s) e	xcept 2=-330(LC 12), 27=-	120(LC 2),				
	28=-665(LC 13)						
Max G	irav All reactions 250 lb or less at joint	(s) 27 except 2=1854(LC 2	2),				
	25=379(LC 22), 28=1675(LC 2), 29	=352(LC 2)					
	Comp (May Tan All foress 250 (lb) as						
	Comp./Max. Ten All forces 250 (ID) 01		010/1/7				
10F CHURD 2-3=- 8-10-	-302/141 10-13368/137 13-15364	/25, 0-7=-1005/005, 7-0=-	-369/0				
20-21	1=-409/0 21-23=-475/0 23-24=-441/23	24-25=-528/195 7-9=-1	908/626				
9-11=	=-1918/629, 11-12=-1876/616, 12-14=-1	919/654, 14-17=-2236/762	2. 17-19=-2268/797.				
19-2	2=-2304/828, 22-28=-2301/839		_,,				
BOT CHORD 2-36=	=-866/3708, 35-36=-874/3705, 33-35=-4	62/2557, 32-33=-296/1918	3, 30-32=-317/2146,				115
29-3	0=-317/2146, 28-29=-317/2146, 27-28=	-192/433, 25-27=-192/433				111110	in the
WEBS 3-35=	=-1244/431, 4-35=-41/554, 4-33=-944/3	93, 6-33=-159/1047, 7-32=	-35/670,			I'STH UA	ROUL
23-28	3=-574/361, 14-30=0/309, 14-32=-490/2	34				A ON SERG	in the
NOTES						SAM	Things
1) Unbalanced roof live	loads have been considered for this de	sian			Z		NºU/
2) Wind: ASCE 7-10: V	/ult=130mph (3-second gust) Vasd=103	mph: TCDI =6 0psf: BCDI	=6 0psf: h=15ft: Cat II	· Exp C: Enclosed:	-		1 1 1 I I I I I I I I I I I I I I I I I
MWFRS (envelope)	gable end zone and C-C Exterior(2) zor	ne: porch right exposed:C-	C for members and for	rces & MWFRS for	=	: SEA	
reactions shown; Lu	mber DOL=1.60 plate grip DOL=1.60	,			Ξ	0363	22 E
3) Truss designed for v	vind loads in the plane of the truss only.	For studs exposed to win	d (normal to the face),	see Standard Indu	stry 🗧	0000	· · · · · · · · · · · · · · · · · · ·
Gable End Details a	s applicable, or consult qualified building	g designer as per ANSI/TP	YI 1.		-		1 2
Provide adequate dr	ainage to prevent water ponding.				8	· A. En	-cRik S
5) All plates are 2x4 M	T20 unless otherwise indicated.					GIN GIN	EFTAN
6) Gable studs spaced	at 2-0-0 oc.					THO A	BEIN
 I his truss has been * This truss has been 	designed for a 10.0 pst bottom chord live	e load nonconcurrent with	any other live loads.		ido	11, A. C	11-111
will fit between the b	option chord and any other members w	ith BCDI = 10.0 nsf	as where a rectangle a	-0-0 tall by 2-0-0 w	iue	- aun	1111
 9) Provide mechanical 	connection (by others) of truss to bearing	ig plate capable of withsta	nding 330 lb uplift at jo	int 2, 120 lb uplift a	t	JL	ily 7,2020
joint 27 and 665 lb u	plift at joint 28.	. ,	2 , ,	· · ·			
Continued on page 2 WARNING - Verify de	esign parameters and READ NOTES ON THIS AN	D INCLUDED MITEK REFERENC	E PAGE MII-7473 rev. 5/19/2	2020 BEFORE USE.			RING BY
Design valid for use only	y with MiTek® connectors. This design is based on	ly upon parameters shown, and is	s for an individual building co	mponent, not			
a truss system. Before u	use, the building designer must verify the applicabil	ity of design parameters and prop web and/or chord members only	erly incorporate this design i Additional temporary and p	into the overall			JUJJ.
is always required for sta	ability and to prevent collapse with possible persor	al injury and property damage. F	or general guidance regardi	ng the			A MiTek Affiliate
fabrication, storage, deli	very, erection and bracing of trusses and truss sys	tems, see ANSI/TPI1 Q way Suite 203 Waldorf MD 2060	uality Criteria, DSB-89 and	BCSI Building Compo	nent	818 Soundside F	Road

Job	Truss	Truss Type	Qty	Ply	Lot 2 Finley's Crossing	
						E14589675
J0820-4006	A1-GE	GABLE	1	1		
					Job Reference (optional)	
Comtech, Inc, Faye	teville, NC - 28314,			8.330 s Ma	ay 6 2020 MiTek Industries, Inc. Tue Jul 7 10:28:47 2020	0 Page 2
		ID:2GNsYO6	2BI49KaE	FP3SIma	OXVO-4DGMoeFk5pNmv0IFaMUx8dkTufou6UmLodQc5	vz UNE

NOTES-

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		5-7-10	10-11-13 I	20-1	1-4	1 24-11	-3	28-9-4	1	34-9-4	40-11-0	
		5-7-10	5-4-2	9-1	1-7	4-0-) '	3-10-0		6-0-0	6-1-12	
Plate Offsets (X,Y) [3:0-5-4,0-2-12], [5:0-5-0,0-3-8], [9:Edge,0-1-11]												
LOADING (ps	sf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20	0.0	Plate Grip DOL	1.15	TC C).57	Vert(LL)	-0.16	16-17	>999	360	MT20	244/190
TCDL 10	0.0	Lumber DOL	1.15	BC C).52	Vert(CT)	-0.27	16-17	>999	240	M18SHS	244/190
BCLL 0).0 *	Rep Stress Incr	YES	WB C).76	Horz(CT)	0.02	11	n/a	n/a		
BCDL 10	0.0	Code IRC2015	/TPI2014	Matrix-S	3	Wind(LL)	0.08	14	>999	240	Weight: 338 lb	FT = 20%
											U	

LUMBER-BRACING-TOP CHORD 2x6 SP No 1 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, BOT CHORD 2x6 SP No.1 except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-5. 2x4 SP No.2 *Except* BOT CHORD WEBS Rigid ceiling directly applied or 6-0-0 oc bracing. 1-17: 2x6 SP No.1 WEBS 1 Row at midpt 3-14, 4-14, 2-17, 6-12

REACTIONS. (size) 11=0-3-8, 17=0-3-8, 9=0-3-0 Max Horz 17=-262(LC 8) Max Uplift 11=-97(LC 13), 17=-28(LC 12), 9=-599(LC 25) Max Grav 11=2575(LC 2), 17=1473(LC 2), 9=56(LC 12)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1313/382, 3-4=-960/369, 4-5=-959/369, 5-6=-1058/361, 6-8=-726/166, 8-9=-394/1234

 BOT CHORD
 16-17=-151/1000, 14-16=-88/1105, 12-14=0/491, 11-12=-931/376, 9-11=-931/376

 WEBS
 2-16=-68/348, 3-16=-4/463, 4-14=-306/196, 6-14=-162/795, 8-12=-278/1680, 8-11=-2434/668, 2-17=-1352/275, 6-12=-717/270

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-2-12 to 4-7-9, Interior(1) 4-7-9 to 10-11-13, Exterior(2) 10-11-13 to 17-2-7, Interior(1) 17-2-7 to 24-11-3, Exterior(2) 24-11-3 to 31-1-14, Interior(1) 31-1-14 to 41-8-7 zone; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) All plates are MT20 plates unless otherwise indicated.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 97 lb uplift at joint 11, 28 lb uplift at joint 17 and 599 lb uplift at joint 9.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

SEAL 036322 July 7,2020

> TRENGINEERING BY A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

├ ──	5-7-10 10-11-13	20-11-4	24-11-3 28-9-4 34-9-4	40-11-0
Plate Offsets (X,Y)	[3:0-5-4,0-2-12], [5:0-4-0,0-2-13], [12:	0-3-0,0-4-4]	4-0-0 3-10-1 0-0-0	0-1-12
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.45 BC 0.51 WB 0.68 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) -0.16 16-17 >999 360 Vert(CT) -0.25 16-17 >999 240 Horz(CT) 0.01 12 n/a n/a Wind(LL) 0.04 14-16 >999 240	PLATES GRIP MT20 244/190 Weight: 338 lb FT = 20%

LUMBER-		BRACING-				
TOP CHORD	2x6 SP No.1	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins			
BOT CHORD	2x6 SP No.1		except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-5.			
WEBS	2x4 SP No.2 *Except*	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.			
	1-17: 2x6 SP No.1	WEBS	1 Row at midpt	3-14, 4-14, 6-12, 2-17		

REACTIONS. (size) 12=0-3-8, 17=0-3-8, 9=0-3-0 Max Horz 17=-262(LC 8) Max Uplift 12=-178(LC 8), 17=-21(LC 12), 9=-118(LC 25) Max Grav 12=2275(LC 2), 17=1187(LC 19), 9=274(LC 24)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-967/282, 3-4=-440/222, 4-5=-439/223, 5-6=-531/216, 6-8=-216/641, 8-9=-132/439
- BOT CHORD 16-17=-148/809. 14-16=-84/843. 12-14=-588/419. 11-12=-313/113. 9-11=-313/113
- WEBS 316=-7/544, 3-14=-541/110, 4-14=-464/250, 6-14=-294/1359, 6-12=-1704/542, 2-17=-1001/179, 8-12=-549/464

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-2-12 to 4-7-9, Interior(1) 4-7-9 to 10-11-13, Exterior(2) 10-11-13 to 17-2-7, Interior(1) 17-2-7 to 24-11-3, Exterior(2) 24-11-3 to 31-1-14, Interior(1) 31-1-14 to 41-8-7 zone; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 178 lb uplift at joint 12, 21 lb uplift at joint 17 and 118 lb uplift at joint 9.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

L		43-11-0					
		43-11-0		·			
Plate Offsets (X,Y)	[12:0-3-0,0-3-8], [17:0-4-0,0-2-13], [34:0-	-4-0,0-4-8], [41:0-4-0,0-4-8]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IPC2015/TPI2014	CSI. DEFL. TC 0.05 Vert(LL) BC 0.04 Vert(CT) WB 0.18 Horz(CT)	in (loc) l/defl L/d 0.00 26 n/r 120 0.00 26 n/r 120 0.01 26 n/a n/a	PLATES GRIP MT20 244/190 Weight: 428 lb ET = 20%			
BCDL 10.0	Code INC2015/1712014	Matrix-5		Weight: 420 lb FT = 20 %			
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP	2 No.1 2 No.1	BRACING- TOP CHOR	CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except				
OTHERS 2x4 SP	? No.2	BOT CHOR	D Rigid ceiling directly applied	or 10-0-0 oc bracing.			
		WEBS	T-Brace:	2x4 SPF No.2 - 17-35, 16-36, 15-37, 14-38 , 13-39, 12-40, 11-41, 18-34			
			Fasten (2X) T and I braces f	to narrow edge of web with 10d			
			(0.131"x3") nails, 6in o.c.,wit	h 3in minimum end distance.			
			Brace must cover 90% of we	eb length.			

REACTIONS. All bearings 43-11-0.

- (lb) Max Horz 2=345(LC 11)
 - Max Uplift All uplift 100 lb or less at joint(s) 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 34, 33, 32, 31, 30, 29, 26 except 2=-106(LC 8), 28=-122(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 34, 33, 32, 31, 30, 29, 28, 26 except 47=307(LC 1)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 2-3=-296/209, 10-11=-235/290, 11-12=-285/330, 12-13=-258/307, 13-14=-258/307,
 - 14-15=-258/307, 15-16=-258/307, 16-17=-258/307, 17-18=-285/330, 18-19=-236/271

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 34, 33, 32, 31, 30, 29, 26 except (jt=lb) 2=106, 28=122.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	4-	-3-8	11-1-10	17-11-13	27-11-4		35	-9-2	43-10-7	<u>43-1</u> 1-0
	4-	-3-8	6-10-2	6-10-2	9-11-7	1	7-	9-14	8-1-5	0-0-10
Plate Offsets (X,	Y) [2	2:0-1-10,	Edge], [6:0-5-4,0-2-12]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	*	SP Pla Lur Rej Co	ACING- 2-0-0 tte Grip DOL 1.15 mber DOL 1.15 p Stress Incr YES de IRC2015/TPI2014	CSI. TC 0.59 BC 0.55 WB 0.37 Matrix-S	DEFL. Vert(LL) -0.2 Vert(CT) -0.3 Horz(CT) 0.1 Wind(LL) 0.0	in (loc 20 14-1 34 14-1 10 1 08 17-1	c) l/defl 5 >999 5 >999 0 n/a 8 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 335 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2 REACTIONS. (size) 2=0-3-8, 10=0-2-5 Max Horz 2=272(LC 11)					BRACING- TOP CHORD BOT CHORD WEBS	Stru exce 2-0-I Rigio 1 Ro	ictural wood ept 0 oc purlins d ceiling dire ow at midpt	sheathing dir (4-10-3 max.) ectly applied c 3-	ectly applied or 3-9-12): 6-7. or 9-9-2 oc bracing. -17, 4-15, 6-14, 9-14	oc purlins,
	Max Ho Max Up Max Gra	irz 2=272 lift 2=-92 av 2=184	2(LC 11) 2(LC 12), 10=-77(LC 13) 48(LC 2), 10=1951(LC 20)							
FORCES. (Ib) - TOP CHORD	- Max. C 2-3=-4	Comp./Ma 045/768,	ax. Ten All forces 250 (lb) or , 3-4=-3046/625, 4-6=-2376/59 5	less except when show 98, 6-7=-1810/553, 7-9=	wn. =-2279/574,					
BOT CHORD	2-18=- 10-12	-641/3816 =-321/23	6, 17-18=-648/3813, 15-17=-3 04	38/2617, 14-15=-128/1	944, 12-14=-321/2304,					
WEBS	VEBS 3-17=-1242/328, 4-17=-12/557, 4-15=-930/286, 6-15=-88/1044, 6-14=-266/145, 7-14=-52/804, 9-14=-766/246, 9-12=0/414									
NOTES- 1) Unbalanced ro 2) Wind: ASCE 7 MWFRS (env	NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-4 to 3-7-9, Interior(1) 3-7-9 to 17-11-13, Exterior(2) 17-11-13 to 22-4-9, Interior(1)									

MWFRS (envelope) and C-C Exterior(2) -0-9-4 to 3-7-9, Interior(1) 3-7-9 to 17-11-13, Exterior(2) 17-11-13 to 22-4-9, Interior(1) 22-4-9 to 27-11-4, Exterior(2) 27-11-4 to 32-4-0, Interior(1) 32-4-0 to 44-8-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 10.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[11:0-3-0.0-3-8], [23:0-4-0.0-4-8]

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.05 BC 0.01 WB 0.17 Matrix-S	DEFL. i Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) -0.00	n (loc) l/defl L/d 0 1 n/r 120 0 1 n/r 120 0 17 n/a n/a	PLATES GRIP MT20 244/190 Weight: 280 lb FT = 20%		
LUMBER- TOP CHORD 2x BOT CHORD 2x	5 SP No.1 5 SP No.1		BRACING- TOP CHORD	HORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.); 11-16.			
WEBS 2x OTHERS 2x	I SP No.2 I SP No.2		BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 22-23.			
			WEBS	T-Brace:	2x4 SPF No.2 - 16-17, 15-18, 14-19, 13-20 . 12-21. 11-22. 10-23		

REACTIONS. All bearings 25-11-8.

(lb) - Max Horz 2=523(LC 12)

- Max Uplift All uplift 100 lb or less at joint(s) 17, 2, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 except 29=-161(LC 12)
 - Max Grav All reactions 250 lb or less at joint(s) 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 except 2=344(LC 12)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 2-3=-618/496, 3-4=-498/396, 4-5=-421/336, 5-6=-347/277, 6-7=-272/218

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17, 2, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 except (jt=lb) 29=161.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 49 lb down and 47 lb up at
- 24-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 12) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance.

Brace must cover 90% of web length.

Job	Truss		Truss Type		Qty	Ply	Lot 2 Finley's Crossing	
								E14589680
J0820-4006	C1-GE		Piggyback Base Supported Gable		1	1		
							Job Reference (optional)	
Comtech, Inc, Fa	ayetteville, NC - 28	314,				8.330 s Ma	ay 6 2020 MiTek Industries, Inc.	Tue Jul 7 10:28:57 2020 Page 2
			ID:2GNsYO62BI49KgBFP3SImayOXVO-o8t8u3M?kueL9Z3A9SfIYk9GLhLmR3Rp6Br/					SfIYk9GLhLmR3Rp6Br8SKz_UN4

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-11=-60, 11-16=-60, 2-17=-20

Vert: 1-11=-60, 11-16=-60, 2-17=-2 Concentrated Loads (lb) Vert: 18=-49

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIPS ON MILE OPEN MILE REFERENCE PAGE mil-14/3 (4) and (
 Satisfies
 Ansi/TPI Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

minn July 7,2020

G

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding roo ib upilit at joint(s) 2 except (i=b) 9=123.

6) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL * Rep Stress Incr Code IRC2015/TPl2	2-0-0 CSI. 1.15 TC 0.: 1.15 BC 0.: YES WB 0.: 014 Matrix-S	DEFL. .37 Vert(LL) .38 Vert(CT) .32 Horz(CT) Wind(LL) Wind(LL)	in -0.06 -0.09 0.03 0.04	(loc) l/defl 9-10 >999 2-12 >999 10 n/a 2-12 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 265 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2 BOT CHORD 2 WEBS 2	2x6 SP No.1 2x10 SP No.1 *Except* 2-10: 2x6 SP No.1 2x4 SP No.2 *Except*	BRACING- TOP CHOR BOT CHOR	D S E D F	Structural woo except end ve Rigid ceiling d 5-0-0 oc bracii	d sheathing dir rticals, and 2-0- irectly applied c ng: 9-10.	ectly applied or 6-0-0 o 0 oc purlins (10-0-0 ma or 10-0-0 oc bracing, E	c purlins, ax.): 5-7. Except:		
REACTIONS.	5-9: 2x6 SP No.1 (size) 9=0-3-8, 2=0-3-8, 10=0	WEBS JOINTS	1	1 Row at midp 1 Brace at Jt(s	9. 5): 14, 15	-15, 3-10, 10-14, 3-14,	6-14		

Max Uplift 9=-0-3-6, 2=-0-3-6, 10=-0-3-8 Max Uplift 9=-69(LC 8), 10=-185(LC 12) Max Grav 9=510(LC 2), 2=598(LC 1), 10=1333(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-676/0, 3-5=-117/262, 9-15=-254/150, 6-15=-254/150

BOT CHORD 2-12=-249/570, 10-12=-243/561

WEBS 3-12=0/330, 3-10=-778/345, 10-14=-602/323, 5-14=-528/286, 6-14=-257/62

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-7 to 3-7-6, Interior(1) 3-7-6 to 15-11-13, Exterior(2) 15-11-13 to 22-2-7, Interior(1) 22-2-7 to 25-11-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9 except (jt=lb) 10=185.

6) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ENGINEERING BY REENCO A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

GILU.... July 7,2020

		F	2-3-8 2-3-8	<u>8-1-14</u> 5-10-6		<u>12-11-8</u> 4-9-10		15-3-0 2-3-8	4		
Plate Offsets (X	(,Y) [2:0-5-8,Edge], [8:0-	2-12,0-3-0], [9:Edge	,0-2-0], [11:E	dge,0-2-0]							
LOADING (psf TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0) SPACING-) Plate Grip DC Lumber DOL) * Rep Stress In Code IRC20 ⁻	2-0-0 PL 1.15 1.15 cr YES 5/TPI2014	CSI. TC BC WB Matrix-	0.24 0.40 0.26 S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.08 0.03 0.04	(loc) 2-10 2-10 8 2-10	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 137 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x6 SP No.1 2x10 SP No.1 *Except* 2-8: 2x6 SP No.1 2x4 SP No.2 *Except* 5-8: 2x6 SP No.1				BRACING TOP CHO BOT CHO WEBS	- RD RD	Structu except Rigid c 1 Row	ural wood end vertig eiling dire at midpt	sheathing di cals. ectly applied	irectly applied or 6-0-0 c or 10-0-0 oc bracing. 5-8, 3-8	oc purlins,
REACTIONS. (size) 8=0-3-8, 2=0-3-8 Max Horz 2=344(LC 12) Max Uplift 8=-185(LC 12) Max Grav 8=680(LC 19), 2=630(LC 1)											
FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown.											

TOP CHORD

2-3=-753/0

BOT CHORD 2-10=-234/624, 8-10=-225/624

WEBS 3-10=0/404, 3-8=-809/287

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-7 to 3-7-6, Interior(1) 3-7-6 to 15-3-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

4x8 ||

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=185.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent onlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TRENCO A MITEK Attiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

18-6-0				
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP	
TCLL 20.0	Plate Grip DOL 1.15	TC 0.03	Vert(LL) -0.00 12 n/r 120 MT20 244/190	
TCDL 10.0	Lumber DOL 1.15	BC 0.01	Vert(CT) -0.00 12 n/r 120	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.08	Horz(CT) 0.00 12 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Weight: 142 lb FT = 20%	
LUMBER-			BRACING-	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. All bearings 18-6-0

Max Horz 2=-200(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 20, 21, 22, 17, 16, 15, 14, 12 except 23=-106(LC 12) Max Grav All reactions 250 lb or less at joint(s) 2, 19, 20, 21, 22, 23, 17, 16, 15, 14, 12

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 20, 21, 22, 17, 16, 15, 14, 12 except (jt=lb) 23=106.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. ARXING - Verify design parameters and KEAD NOTES ON THIS AND INCLODED WITEK REFERENCE PAGE MIT-14's rev. or 19/20/20 DEFORE 052. Design valif for use only with MiTeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component**
 Satisfies
 Ansi/TPI Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=115, 2=115.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No 1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS. 4=0-3-8, 2=0-3-0 (size) Max Horz 2=159(LC 9) Max Uplift 4=-110(LC 8), 2=-115(LC 9) Max Grav 4=802(LC 2), 2=850(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1032/757, 3-4=-1030/760

BOT CHORD 2-6=-469/742, 4-6=-469/742

WEBS 3-6=-546/632

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope) and C-C Exterior(2) -0-9-7 to 3-7-6, Interior(1) 3-7-6 to 9-3-0, Exterior(2) 9-3-0 to 13-7-13, Interior(1) 13-7-13 to 18-4-4 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=110, 2=115.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. ARXING - Verify design parameters and KEAD NOTES ON THIS AND INCLODED WITEK REFERENCE PAGE MIT-14's rev. or 19/20/20 DEFORE 052. Design valif for use only with MiTeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component**
 Satisfies
 Ansi/TPI1 Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=111, 3=111.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.12 BC 0.05 WB 0.03 Matrix-S	DEFL. in Vert(LL) -0.00 Vert(CT) 0.00 Horz(CT) -0.00	(loc) l/defl L/d 1 n/r 120 1 n/r 120 8 n/a n/a	PLATES GRIP MT20 244/190 Weight: 68 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x6 SP	No.1 No.1		BRACING- TOP CHORD	Structural wood sheathing dir except end verticals.	ectly applied or 6-0-0 oc purlins,

LOWIDER-		BRACING-	
TOP CHORD	2x4 SP No.1	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,
BOT CHORD	2x6 SP No.1		except end verticals.
WEBS	2x4 SP No.2	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
OTHERS	2x4 SP No.2		

REACTIONS. All bearings 12-3-8.

(lb) -Max Horz 2=210(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 8, 9, 2, 10, 11, 12 except 13=-120(LC 12) Max Grav All reactions 250 lb or less at joint(s) 8, 9, 2, 10, 11, 12 except 13=340(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 7) will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 9, 2, 10, 11, 12 except (jt=lb) 13=120.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS ON TIPS AND INCLODED MITER REFERENCE PAGE mit-14/3 feV, 3/92/20 BEFORE USE. Design valid for use only with MiTeR with Connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

LUMBER-	· ·	BRACING-	
TOP CHORD 2x4 S	P No.1	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,
BOT CHORD 2x6 S	P No.1		except end verticals.
WEBS 2x4 S	P No.2	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 7=0-3-0, 2=0-3-8 Max Horz 2=146(LC 8) Max Uplift 7=-74(LC 12), 2=-68(LC 8) Max Grav 7=481(LC 1), 2=540(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-888/107

BOT CHORD 2-8=-236/788, 7-8=-236/788

WEBS 3-8=0/275, 3-7=-803/229

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 12-3-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ł

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.10 BC 0.04 WB 0.03 Matrix-S	DEFL. ir Vert(LL) -0.00 Vert(CT) 0.00 Horz(CT) -0.00	(loc) 1 1 8	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x6 SP	No.1 No.1		BRACING- TOP CHORD	Structu	ral wood end verti	sheathing dir cals.	ectly applied or 6-0-0	oc purlins,

TOP CHORD	2x4 SP No.1	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlin
BOT CHORD	2x6 SP No.1		except end verticals.
WEBS	2x4 SP No.2	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
OTHERS	2x4 SP No.2		

REACTIONS. All bearings 12-0-0.

(lb) - Max Horz 2=205(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 8, 9, 2, 10, 11, 12 except 13=-111(LC 12) Max Grav All reactions 250 lb or less at joint(s) 8, 9, 2, 10, 11, 12 except 13=314(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 9, 2, 10, 11, 12 except (jt=lb) 13=111.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 8) will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 2, 8, 13, 14, 11, 10.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLODE MITER REFERENCE FACE miniformation of a state of the design of the applicability of design parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for statelity and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSTPHI Quality Criteria, DSB-89 and BCSI Building Component**
 Satisfies
 Ansi/TPI Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 ENGINEERING BY AMITEK Affiliate

July 7,2020

818 Soundside Road Edenton, NC 27932

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 2, 6, 9, 10, 8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 2, 6 except (jt=lb) 10=105, 8=104.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

viax uplint Ai 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 2=509(LC 19), 4=488(LC 20), 6=270(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-2 to 4-7-15, Interior(1) 4-7-15 to 4-11-11, Exterior(2) 4-11-11 to 9-2-5, Interior(1) 9-2-5 to 9-8-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 276 lb uplift at joint 1, 244 lb uplift at joint 5, 206 lb uplift at joint 2 and 192 lb uplift at joint 4.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDI 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.05 BC 0.03	DEFL. in (low Vert(LL) n/a	rc) I/defl L/d - n/a 999	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.04 Matrix-S	Horz(CT) -0.00	8 n/a n/a	Weight: 50 lb FT = 20%
LUMBER-			BRACING-	· · · ·	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD	2x4 SP No.1
BOT CHORD	2x4 SP No.1
WEBS	2x4 SP No.2
OTHERS	2x4 SP No.2

REACTIONS. All bearings 9-11-11.

(lb) -Max Horz 1=159(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 8, 2, 11, 12, 9 Max Grav All reactions 250 lb or less at joint(s) 1, 8, 2, 10, 11, 12, 9

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 7) will fit between the bottom chord and any other members.
- 8) Bearing at joint(s) 1, 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8, 2, 11, 12, 9.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIPS ON MILE OPEN MILE REFERENCE PAGE mil-14/3 (4) and (
 Satisfies
 Ansi/TPI Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD 2x4 SP No.1 2x4 SP No 2 WEBS OTHERS 2x4 SP No.2

except end verticals. BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 9-11-11.

(lb) - Max Horz 1=107(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 5, 6 except 1=-574(LC 19), 2=-308(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 5 except 1=281(LC 12), 2=865(LC 19), 6=399(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-307/425

WEBS 3-6=-278/131

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-2 to 4-7-15, Interior(1) 4-7-15 to 6-11-11, Exterior(2) 6-11-11 to 9-9-15 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Bearing at joint(s) 1, 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 6 except (jt=lb) 1=574. 2=308.

8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLODE MITER REFERENCE FACE miniformation of a state of the design of the applicability of design parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for statelity and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSTPHI Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qu** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Bearing at joint(s) 1, 5, 2, 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 1=109, 2=167, 4=138.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

