

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 1669955 H&H/Calabash/

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource (Albermarle,NC).

Pages or sheets covered by this seal: E12650805 thru E12650908

My license renewal date for the state of North Carolina is December 31, 2019.

North Carolina COA: C-0844

January 30,2019

Gilbert, Eric

IMPORTANT NOTE: Truss Engineer's responsibility is solely for design of individual trusses based upon design parameters shown on referenced truss drawings. Parameters have not been verified as appropriate for any use. Any location identification specified is for file reference only and has not been used in preparing design. Suitability of truss designs for any particular building is the responsibility of the building designer, not the Truss Engineer, per ANSI/TPI-1, Chapter 2.

			55-11-0							
Plate Offsets (X V)	[11:0-4-0 0-3-3] [17:0-5-0 0-4-8] [21:0-4	1-0 0-3-3] [38.0-5-0 0-4-8	55-11-0 8] [44·0-5-0 0-4-8]	[50.0-	5-0 0-4-	.81			·	
	[11.0-4-0,0-3-3], [17.0-3-0,0-4-0], [21.0-	+-0,0-3-3], [30.0-3-0,0-4-0	J, [++.0-3-0,0-4-0],	[30.0-	5-0,0-4-	0]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.08 BC 0.05 WB 0.17 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.01	(loc) 31 31 30	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 559 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x6 SP No.2 BRACING- 2x6 SP No.2 OTHERS 2x4 SP No.3 DELECTIONS Attle in CE1440										
REACTIONS. All bearings 55-11-0. (lb) - Max Horz 2=309(LC 11) Max Uplift All uplift 100 lb or less at joint(s) 2, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 43, 42, 41, 40, 38, 37, 36, 35, 34, 33 except 56=-141(LC 12), 32=-140(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 30, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33 except 56=338(LC 19), 32=336(LC 20)										
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. FOP CHORD 2-3=-281/256, 9-10=-216/268, 10-11=-254/297, 11-12=-235/281, 12-13=-235/281, 13-14=-235/281, 14-15=-235/281, 15-16=-235/281, 16-17=-234/281, 17-18=-234/281, 18-19=-234/281, 19-20=-234/281, 20-21=-234/280, 21-22=-253/296 WEBS 3-56=-250/172, 29-32=-251/170										
 NOTES (12) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Provide adequate drianage to prevent water ponding. 5) All plates are 2x4 MT20 unless otherwise indicated. 6) Gable requires continuous bottom chord bearing. 7) Gable studs spaced at 2-0-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) Trois truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 43, 42, 41, 40, 38, 37, 36, 35, 34, 33 except (1t=1) 56=141, 32=140. 10) Graphical puritin representation does not depic the size or the orientation of the puritin along the top and/or bottom chord. 12) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code. January 30,2019 										

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

7-	5-2 17-10-8	30-7-4	38-0	0-8	48-5-14	55-11-	0			
Plate Offsets (X,Y)	<u>-5-2</u> [3:0-5-0,0-4-8], [4:0-7-8,0-4-0], [7:0-7-0,0)-3-12], [8:0-5-0,0-4-8], [1	3:0-3-8,0-2-8], [14:0-4-0),0-4-4]	10-5-6	7-5-2				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.66 BC 0.65 WB 0.95 Matrix-AS	DEFL. in Vert(LL) -0.27 Vert(CT) -0.41 Horz(CT) 0.03 Wind(LL) 0.05	(loc) l/defl 14-16 >999 14-16 >889 9 n/a 16-18 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 409 lb	GRIP 244/190 FT = 20%			
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP WEBS 2x4 SP 5-16,7-	No.2 No.2 No.3 *Except* 14: 2x4 SP No.2	sheathing dir (6-0-0 max.): ectly applied. 3	ectly applied, except 4-7. -16, 4-16, 5-16, 5-14, 7	7-14, 8-13						
5-16,7-14: 2x4 SP No.2 WEBS 1 Row at midpt 3-16, 4-16, 5-16, 5-14, 7-14, 8-13 REACTIONS. (lb/size) 2=1040/0-5-8, 14=2737/0-3-8, 9=781/0-5-8 Max Horz 2=309(LC 11) Max Uplift 2=-225(LC 12), 14=-214(LC 12), 9=-230(LC 13) Max Grav 2=1090(LC 23), 14=2747(LC 2), 9=835(LC 24)										
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. FOP CHORD 2-3=-1652/421, 3-4=-891/313, 4-5=-631/369, 5-7=0/641, 7-8=-374/227, 8-9=-1170/347 30T CHORD 2-18=-392/1424, 16-18=-392/1423, 14-16=-503/298, 11-13=-186/969, 9-11=-186/970 NEBS 3-18=0/343, 3-16=-924/418, 4-16=-269/173, 5-16=-233/1206, 5-14=-1530/528, 7-14=-1260/331, 7-13=-61/588, 8-13=-954/404, 8-11=0/398										
NOTES- (9) 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope)	7-14=-1260/331, 7-13=-61/588, 8-13=-954/404, 8-11=0/398 IOTES- (9) () Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWERS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed:C-C for members and forces &									

- MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=225, 14=214, 9=230.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

minin CARO RT Contraction and MANDER DA PARTICIDA SEAL 036322 G١ minum January 30,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Insitute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

balance only which the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932 VIIIIIIIIIII

 	10-8-2	17-10-8	30-7-4		38-0-8		44-11-0		53-11-8	55-11-0	
Plate Offsets (X,Y)	[8:0-6-12.0-3-8]. [11:0	-6-15.0-2-8]. [11:0-	4-12.Edge]. [13:0-4-0.0-1	0-8]. [14:0-7-8.0	7-5-4)-3-8]. [18:0-	5-0.0-4-12]	6-10-8		9-0-8	1-11-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incl Code IRC2015	2-0-0 . 1.15 1.15 r YES /TPI2014	CSI. TC 0.76 BC 0.67 WB 0.99 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loo -0.26 18-1 -0.41 18-1 0.05 1 0.17 14-2	c) l/defl 9 >999 9 >889 1 n/a 25 >999	L/d 360 240 n/a 240	F	PLATES MT20 Weight: 419 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP 9-14: 2 WEBS 2x4 SP 6-19,8-	P No.2 P No.2 *Except* x4 SP No.2 No.3 *Except* 18: 2x4 SP No.2			BRACING TOP CHO BOT CHO WEBS	5- IRD Stru 2-0- IRD Rig 6-0- 1 R 2 R	uctural woo -0 oc purlin id ceiling di -0 oc bracir ow at midp ows at 1/3	d sheathing s (6-0-0 ma irectly appli ng: 9-14 t pts	g directly a ax.): 5-8. ed. Excep 3-19, 5-1 8-18	pplied, except ot: 9, 6-19, 6-18,	8-16, 8-14	
REACTIONS. (Ib/size Max H Max U Max G	e) 2=947/0-5-8, 11=6 orz 2=305(LC 9) plift2=-230(LC 12), 11 rav 2=1044(LC 23), 11	13/0-5-8, 18=2937 =-176(LC 13), 18= =711(LC 20), 18=	/0-3-8 (req. 0-3-12) -226(LC 13) 3166(LC 2)								
FORCES. (lb) - Maxin TOP CHORD 1-2=(9-10= BOT CHORD 2-28= 30-31 14-15 WEBS 3-21= 8-14=	RCES. (lb) - Maximum Compression/Maximum Tension P CHORD 1-2=0/21, 2-3=-1407/362, 3-4=-762/240, 4-5=-621/288, 5-6=-538/327, 6-7=0/940, 7-8=0/940, 8-9=-786/475, 9-10=-505/219, 10-11=-733/184 T CHORD 2-28=-392/1153, 28-29=-392/1153, 21-29=-392/1153, 20-21=-368/1218, 19-20=-368/1218, 19-30=-758/343, 30-31=-758/343, 18-31=-758/343, 17-18=-353/227, 17-32=-353/227, 16-32=-353/227, 16-33=-353/227, 15-33=-353/227, 14-15=-321/231, 13-14=-30/482, 13-34=-19/541, 12-34=-19/541, 9-14=-684/467 :BS 3-21=0/349, 3-19=-286/367, 5-19=-284/138, 6-19=-250/1353, 6-18=-1641/572, 8-18=-1445/353, 8-16=-11/154, 8-14=-440/1393										
 VEBS 3-21=0/349, 3-19=-936/367, 5-19=-284/138, 6-19=-250/1353, 6-18=-1641/572, 8-18=-1445/353, 8-16=-11/154, 8-14=-440/1393 IOTES- (12) Ubnolance roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed: MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are 5x8 MT20 unless otherwise indicated. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. WARNING: Required bearing size at joint(s) 18 greater than input bearing size. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 230 lb uplift at joint 2, 176 lb uplift at joint 11. OThis truss id designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. OThis truss id designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. OThis truss id designed in accordance with the 2015 International Residential be applied directly to the bottom chord. This truss id designed in accordance with the size or the orientation of the purlin along the top and/or bottom chord. This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenceed by the building code. CANE(65) Standard 											
A Stan	uaru									and the second	

CE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK KEH-KENCE PAGE MIN-74/3 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria**, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. NOTES ON THIS AND INCLUDED MITEK RE

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/
					E12650810
1669955	A06	ATTIC	9	1	
					Job Reference (optional)
Probuild East Albemarle NC 28	001			8.2	20 s. Jan 19 2019 MiTek Industries, Inc., Wed. Jan 30 11:57:44 2019, Page 2

8.220 s Jan 19 2019 MiTek Industries, Inc. Wed Jan 30 11:57:44 2019 Page 2 ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-UOwntZa9aWkeBUYxkk1w?9mjaYGmZbQ5BVuRpizqBLr

14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

⊢		10-8-12	19-7-12		30-7-4		36-0-4	38-0-8	46-4-4	55-1	1-0
Plate Offsets (X	V)	10-8-12 [2:Edge 0-0-4] [16:0-5	8-11-0 -0.0-3-81 [18:0-5-	0 0-3-81 [20.0-4-6	10-11-8		5-5-0	2-0-4	8-3-12	9-6-	12
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCLL 0.0))) *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC 0.56 BC 0.98 WB 0.76	DI Ve Ve Ho	EFL. ert(LL) - ert(CT) - orz(CT)	in (lo 0.37 14-1 0.70 14-1 0.08	c) l/defl 16 >817 16 >432 13 n/a	L/d 360 240 n/a	PLATES MT20 MT20HS	GRIP 244/190 187/143
BCDL 10.0		Code IRC2015	1912014	Matrix-AS	vv	IND(LL)	0.28 14-1	16 >999	240	vveight: 478 li	6 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS REACTIONS. (lb) -	2x6 SP 2x6 SP 15-16: 2x4 SP 6-18,9- All be Max H Max U Max G	No.2 No.2 *Except* 2x6 SP No.1, 16-18: 2: No.3 *Except* 16: 2x6 SP No.2, 21-2 earings 0-5-8 except (jt orz 2=305(LC 11) plift All uplift 100 lb of rav All reactions 250 17=1587(LC 27)	x10 SP DSS 2: 2x4 SP No.2 =length) 2=0-3-0, · less at joint(s) ex lb or less at joint(17=0-3-8. ccept 2=-223(LC 1 s) except 2=1261(BF TC BC WI JC 3), 20=-421(LC LC 1), 20=1617	ACING- DP CHORD EBS UNTS 9), 13=-224 (LC 26), 13	9 Stru 2-0 Rig 1 R 1 B 4(LC 13) 3=1846(LC	uctural wood -0 oc purlins id ceiling dir ow at midpt race at Jt(s) 2 2),	I sheathing di (4-5-15 max ectly applied : 21, 22, 23	irectly applied, except): 5-10. 18-21, 16-22, 7-21, 7-	22, 12-16
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	- Max. 2-3=- 9-10= 2-20= 13-14 3-20= 21-23 12-14	Comp./Max. Ten All 1869/469, 3-5=-2171/4 1991/481, 10-12=-22 108/1516, 18-20=-17 I=-327/2671 1234/503, 3-18=-204 3=-466/1283, 22-23=-4 I=0/490, 7-21=-1530/50	forces 250 (lb) or 151, 5-6=-1954/48 28/452, 12-13=-3 1/1427, 17-18=-4 /851, 5-18=-284/1 66/1283, 16-22=- 02, 7-22=-1249/48	less except when 10, 6-7=-1761/452, 194/539 4/1977, 16-17=-45 123, 18-21=-1026 758/401, 9-22=-39 39, 12-16=-1136/3	shown. 7-9=-2062/466, /1991, 14-16=-3 /407, 6-21=-608 1/321, 10-16=-1 91	27/2671, /325, 27/850,					
NOTES- (14 1) Unbalanced 2) Wind: ASCE MWFRS (em forces & MW 3) Provide adec 4) All plates are 6) This truss ha 7) * This truss ha 7) * This truss ha 7) * This truss ha 8) Ceiling dead 9) Bottom choro 10) Provide me joint 20 and 11) This truss d sheetrock b 12) Graphical p 13) Attic room of Continued on part) roof live 7-10; V velope) FRS for juate dr MT20 j 5x8 M s been as been as been the b load (5 d live loa chanica 224 lb esign re e applie urfin rep checked ge 2	e loads have been cons ult=120mph (3-second gable end zone and C r reactions shown; Lum ainage to prevent wate plates unless otherwise in designed for a 10.0 ps n designed for a live lo ottom chord and any o 0.0 psf) on member(s). 3 ad (40.0 psf) and additi I connection (by others uplift at joint 13. equires that a minimum ad directly to the bottor presentation does not o I for L/360 deflection.	idered for this de gust) Vasd=95m -C Exterior(2) zon ber DOL=1.60 pla er ponding. i indicated. f bottom chord live ad of 20.0ps f on t ther members, wi 21-23, 22-23; Wa onal bottom chore s) of truss to beari n of 7/16" structura n chord. Jepict the size or t	sign. ph; TCDL=6.0psf; e; end vertical left ate grip DOL=1.60 e load nonconcurre he bottom chord ir th BCDL = 10.0psi II dead load (5.0psi d dead load (5.0psi d dead load (5.0psi al wood sheathing the orientation of th	BCDL=6.0psf; h exposed; porch all areas where f. sf) on member(s sf) applied only t of withstanding 2 be applied direc he purlin along t	=25ft; Cat. left expose a rectang).18-21, 16 to room. 17 23 lb uplift ctly to the to he top and	II; Exp C ed;C-C for s. le 3-6-0 ta 5-22 7-18, 16-1 at joint 2, op chord a /or bottom	; Enclosed; r members a III by 2-0-0 v 421 lb uplif 421 lb uplif and 1/2" gyp a chord.	vide : at sum	Janua	SEAL SEAL SGINEER A. GILPER Y 30,2019
WARNING - Design valid for a truss system, building design is always requit fabrication, stor Safety Information	Verify de r use only Before us Bracing red for sta rage, deliv ation ava	esign parameters and READ with MiTek® connectors. Th se, the building designer mus indicated is to prevent buckl ibility and to prevent collapse ery, erection and bracing of illable from Truss Plate Instit	NOTES ON THIS AND is design is based only it verify the applicabilit ing of individual truss v with possible persona trusses and truss syste ute, 218 N. Lee Street,	D INCLUDED MITEK RE / upon parameters shou y of design parameters web and/or chord memt il injury and property de sms, see ANS Suite 312, Alexandria,	FERENCE PAGE MI wn, and is for an indi and properly incorp pers only. Additional mage. For general S/TP/1 Quality Crite VA 22314.	II-7473 rev. 10 vidual building prate this desi temporary ar guidance rega eria, DSB-89 a	2/03/2015 BE g component ign into the c nd permaner arding the and BCSI Bu	FORE USE. t, not verall t bracing uilding Compo	nent	TRI 818 Soundside Edenton, NC 2	A MiTek Affiliate

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
						E12650811
1669955	A07	ATTIC	9	1		
					Job Reference (optional)	
Probuild East, Albemar	le , NC 28001		8.2	20 s Nov 1	16 2018 MiTek Industries, Inc. Wed Jan 30 10:23:35 2019	Page 2

8.220 s Nov 16 2018 MiTek Industries, Inc. Wed Jan 30 10:23:35 2019 Page 2 ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-c_RcghB_7tar9DcOX91nn3Pcfaxrzx3V0C2XOzzqBrs

14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
				-	E126508	814
1669955	A10	ATTIC GIRDER	18	1		
					Job Reference (optional)	
Probuild East, Albemar	le , NC 28001		8.2	20 s Nov 1	16 2018 MiTek Industries, Inc. Wed Jan 30 10:23:40 2019 Page 2	

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-yxEVjOF7xQD7G_VMJjdyU66Ribl4e9tE9Ull4AzqBrn

NOTES- (14)

13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-60, 4-9=-60, 9-12=-60, 2-20=-20, 17-20=-30, 16-17=-20, 24-27=-10, 13-15=-20

Drag: 20-27=-10, 17-24=-10 Concentrated Loads (lb)

Vert: 32=-635(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/
					E12650816
1669955	A12	ATTIC	18	1	
					Job Reference (optional)
Probuild East, Albemark	e , NC 28001		8.2	20 s Nov 1	6 2018 MiTek Industries, Inc. Wed Jan 30 10:23:44 2019 Page 2

8.220 s Nov 16 2018 MiTek Industries, Inc. Wed Jan 30 10:23:44 2019 Page 2 ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-riU0Zmld?ejZlbo7YYhueyG5SD40a_Cq46jVDyzqBrj

14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe and truss systems, see **ANSI/TPI Quaity Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
						E12650817
1669955	A13	ATTIC	36	1		
					Job Reference (optional)	
Probuild East, Albemar	le , NC 28001		8.2	20 s Nov 1	16 2018 MiTek Industries, Inc. Wed Jan 30 10:23:46 2019	Page 2

8.220 s Nov 16 2018 MiTek Industries, Inc. Wed Jan 30 10:23:46 2019 Page 2 ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-n5bm_RKtXGzH_vyVgzjMjNMP20mE2rh6YQCcHqzqBrh

This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/
					E12650818
1669955	A14	ATTIC	36	1	
					Job Reference (optional)
Probuild East, Alb	emarle , NC 28001		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Wed Jan 30 10:23:47 2019 Page 2
		ID:j1	gj18SwfyF	8hyT9h0Y	t9kzZiYQ-FH98BnLWIZ58c3XiEhFbGbuY4Q8OnJ6Gn4y9pGzqBrg

NOTES- (14)

11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

13) Attic room checked for L/360 deflection.

14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
					E1:	2650823
1669955	A19	ATTIC	4	1		
					Job Reference (optional)	
Probuild East, Albemarle , NC 280	001			8.2	20 s Jan 19 2019 MiTek Industries, Inc. Wed Jan 30 11:58:55 2019 Page	a 2

8:220 s Jan 19 2019 Mi lek industries, inc. Wed Jan 30 11:58:55 2019 Page 2 ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-v2idnqRhsKgZCOUbO9pZN7CwsAc8hirYV1aip5zqBKk

14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

beign valid for dise only with with with exercising is based only upon parameters shown, and is for an individual form point, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
					E126	50824
1669955	A20	ATTIC	6	1		
					Job Reference (optional)	
Probuild East, Albemarle , NC 280	101			8.22	20 s Jan 19 2019 MiTek Industries, Inc. Wed Jan 30 12:00:10 2019 Page 2	2

14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

being waite to day only which the contractions in the case of the second of the parameters and a roperty incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPH / Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
					E126508	25
1669955	A21	ATTIC	9	1		
					Job Reference (optional)	
Probuild East Albemarle NC 28001				82	20 s Jan 19 2019 MiTek Industries Inc. Wed Jan 30 12:03:46 2019 Page 2	

8.220 s Jan 19 2019 Mi Lek Industries, Inc. Wed Jan 30 12:03:46 2019 Page 2 ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-u1odrLzDKkLHc6DWxmXogVlffTwhNL5NQpabXjzqBGB

14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/			
			_		E12650826			
1669955	A22	ATTIC	9	1				
					Job Reference (optional)			
Probuild East, Albemarle , NC 28001				8.220 s Jan 19 2019 MiTek Industries, Inc. Wed Jan 30 12:04:35 2019 Page 2				
ID;j ⁻					ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-ySF975ZynoWK?eTxJZvI9qH0PDe5MW3bhxxhINzqBFQ			

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	10-8-12	19-7-12	30-7	-4	36-0-4	38-0-8	43-4-12	46-4-4	55-11-0)
	10-8-12	8-11-0	10-1	1-8	5-5-0	2-0-4	5-4-4	2-11-8	9-6-12	
Plate Offsets (X,Y)	[13:Edge,0-0-4], [17:0-	-5-0,0-3-8], [19:0-4	-12,0-3-8]							
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc	c) l/defl	L/d		PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC 0.45	Vert(LL)	-0.13 16-1	7 >999	360		MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC 0.84	Vert(CT)	-0.27 14-3	0 >564	240		MT20HS	187/143
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.57	Horz(CT)	0.04 1	3 n/a	n/a			
BCDL 10.0	Code IRC2015	/TPI2014	Matrix-AS	Wind(LL)	0.14 14-3	0 >999	240		Weight: 478 lb	FT = 20%
				. ,					•	
LUMBER- TOP CHORD 2x6 SP No.2 BRACING- TOP CHORD TOP CHORD Structural wood sheathing directly applied, except 2-0-0 oc purlins (5-7-10 max.): 5-10. Network BOT CHORD 2x6 SP No.2 *Except* 15-17: 2x6 SP No.1, 17-19: 2x10 SP DSS BOT CHORD Rigid ceiling directly applied. WEBS 2x4 SP No.3 *Except* 6-19,9-17: 2x6 SP No.2, 22-23: 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied. WEBS 3-21, 19-22, 17-23, 7-22, 7-23, 12-17 REACTIONS. All bearings 0-5-8 except (jt=length) 2=0-3-0, 18=0-3-8, 16=0-3-0. (lb) - Max Horz 2=305(LC 9) Max Uplift 16 except 2=-179(LC 13), 21=-223(LC 9), 13=-180(LC 13) Max Grav 13=-180(LC 13) All reactions 250 lb or less at joint(s) except 2=768(LC 1), 21=2108(LC 26), 13=1285(LC 21),										
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-882/385, 3-5=-1604/395, 5-6=-1399/430, 6-7=-1321/389, 7-9=-1384/434, 9-10=-1407/436, 10-12=-1608/407, 12-13=-1948/422 BOT CHORD 2-21=-144/696, 19-21=-84/458, 18-19=-83/1404, 17-18=-82/1416, 16-17=-228/1631, 14-16=-228/1631, 13-14=-228/1631 WEBS 3-21=-1724/335, 3-19=-163/1384, 5-19=-249/778, 19-22=-944/392, 6-22=-549/311, 22-24=-465/1278, 23-24=-465/1278, 17-23=-851/380, 9-23=-472/302, 10-17=-162/688, 7-22=-1402/514, 7-23=-1314/475, 12-17=-582/347										
 NOTES- (14) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) All plates are 5X8 DT20 unless otherwise indicated. 5) All plates are 5X8 MT20 unless otherwise indicated. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) Ceiling dead load (5.0 psf) on member(s). 22-24, 23-24; Wall dead load (5.0 psf) on member(s). 19-22, 17-23 9) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 18-19, 17-18 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16 except (jt=lb) 2=179, 21=223, 13=180. 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 13) Attic room checked for L/360 deflection. 										
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building design. Bracing indicated is to prevent buckling of sindividual truss web and/or chord members only. Additional temporary and permanent bracing building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing AMITek Affiliate										

818 Soundside Road Edenton, NC 27932

is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
						E12650827
1669955	A23	ATTIC	9	1		
					Job Reference (optional)	
Probuild East, Albemarle , NC 28001 8.220 s Nov 16 2018 MiTek Industries, Inc. Wed Jan 30 10:24:02 2019 Page 2						

8.220 s Nov 16 2018 MiTek Industries, Inc. Wed Jan 30 10:24:02 2019 Page 2 ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-JAZpLwWwmA_?vMAacK06Nl0EdTAHoBiTDv4SrvzqBrR

14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

January 30,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing tabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		10-8-2	17-10-8		30-7-4			38-0	-8	43-5-0)
	1	10-8-2	7-2-6		12-8-12		1	7-5-	4	5-4-8	
Plate Offsets (X	K,Y) [8:0-5-0,0-2-4], [13:0-4-0,0-4-8]									
LOADING (psf TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	f) 0 0 0 * 0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.68 BC 0.66 WB 0.86 Matrix-AS	DEFL Vert(L Vert(C Horz(C Wind(ir -) -0.26 T) -0.43 T) 0.03 L) 0.09	n (loc) 5 13-14 3 13-14 3 10 9 16-19	l/defl >999 >859 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 34	0 lb	FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x6 SP 8-9: 2x4 2x6 SP 2x4 SP 6-14,8-1	No.2 *Except* I SP No.2 No.2 No.3 *Except* I3: 2x4 SP No.2		BRAC TOP C BOT C WEBS	NG- HORD HORD	Structu 2-0-0 c Rigid c 1 Row	iral wood oc purlins eiling dire at midpt	sheathing dir (6-0-0 max.): ectly applied. 3	ectly applied, exo 5-8. -14, 5-14, 6-14, 6	cept enc	3 verticals, and 3, 8-11, 9-10
REACTIONS.	REACTIONS. (lb/size) 2=1154/0-5-8, 13=2119/0-3-8, 10=232/0-3-8 Max Horz 2=405(LC 12) Max Uplift 2=-200(LC 12), 13=-353(LC 9), 10=-78(LC 8) Max Grav 2=1160(LC 23), 13=2228(LC 2), 10=349(LC 26)										
FORCES. (Ib) TOP CHORD BOT CHORD WEBS) - Max. (2-3=-1 2-16= 3-16=	Comp./Max. Ten All forces 25 1632/348, 3-5=-990/274, 5-6=-7 -487/1441, 14-16=-467/1504 0/343, 3-14=-926/368, 6-14=-25	0 (lb) or less except when : 33/316, 6-8=-39/312, 9-10: 59/1063, 6-13=-1432/578, 8	shown. =-265/104 8-13=-595/208							
NOTES- (9) 1) Unbalanced 2) Wind: ASCE MWFRS (env reactions sho 3) Provide adec 4) This trues bac	roof live 7-10; Vu velope) g own; Lun quate dra	loads have been considered fo ult=120mph (3-second gust) Va gable end zone and C-C Exterio nber DOL=1.60 plate grip DOL= ainage to prevent water ponding	r this design. sd=95mph; TCDL=6.0psf; or(2) zone; end vertical left =1.60 9.	BCDL=6.0psf; h=25 exposed;C-C for m	it; Cat. II; E mbers and	Exp C; Er d forces &	nclosed; & MWFR\$	S for			1116

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10 except (jt=lb)
- 2=200, 13=353.
 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum
- () This russ design requires that a minimum of (716' structural wood sheathing be applied directly to the top chord and 1/2' gypsum sheetrock be applied directly to the bottom chord.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

RT CAR Variation WWWWWWW SEAL 036322 С G١ minum January 30,2019

AMITEK AMITEK AMITEK

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/
4000055		ATTIC			E12650831
1669955	A27	ATTIC	4	1	
					Job Reference (optional)
Probuild East, Albemarle , NC 280	001			8.2	20 s Jan 19 2019 MiTek Industries, Inc. Wed Jan 30 12:08:16 2019 Page 2
			ID:jTg	18SwfyF8	hyT9h0Yt9kzZiYQ6iWfEakiMz0ctPITN7cRxo_J2leUl6Wp_u?4zqBBz

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
					E	12650833
1669955	A30	ATTIC GIRDER	7	1		
					Job Reference (optional)	
Probuild East, Al	lbemarle, NC 28001			3.220 s Nov	16 2018 MiTek Industries, Inc. Wed Jan 30 10:24:10 2019 I	Page 2
			ID:jT	gj18SwfyF8h	hyT9h0Yt9kzZiYQ-4j2r0fcxte_tsbo7409_hRLZYh_9giPf390t7	RzqBrJ

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-60, 4-9=-60, 9-12=-60, 20-28=-20, 17-20=-30, 16-17=-20, 24-27=-10, 13-15=-20 Drag: 20-27=-10, 17-24=-10

Concentrated Loads (lb)

Vert: 33=-700(F)

Job	1	Truss	Truss Type	Qty	Ply	H&H/Calabash/
						E12650834
1669955	A	\31	ATTIC	7	1	
						Job Reference (optional)
Probuild East,	Albemarle	e , NC 28001		8.2	20 s Nov 1	6 2018 MiTek Industries, Inc. Wed Jan 30 10:24:12 2019 Page 2
			ID:jT	gj18SwfyF	8hyT9h0Y	t9kzZiYQ-05AbRKeBPFFb6vxVBRBSnsRsiVdt8fyxWTV_CKzqBrH

NOTES- (13)

12) Attic room checked for L/360 deflection.

13) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
						E12650835
1669955	A32	ATTIC	7	1		
					Job Reference (optional)	
Probuild East, Albemar	le , NC 28001		8.2	20 s Nov 1	16 2018 MiTek Industries, Inc. Wed Jan 30 10:24:14 2019	Page 2

8.220 s Nov 16 2018 MiTek Industries, Inc. Wed Jan 30 10:24:14 2019 Page 2 ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-yUIMs0fRxsVILD5uJsEwsHWCCJJLcZUE_n_5HCzqBrF

 This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
						E12650836
1669955	A33	ATTIC	14	1		
					Job Reference (optional)	
Probuild East, Albema	rle , NC 28001		8.2	20 s Nov '	16 2018 MiTek Industries, Inc.	. Wed Jan 30 10:24:16 2019 Page 2
		ID:jTgj	18SwfyF8	hyT9h0Yt9	kzZiYQ-vsP6HihiTUl0aWFG0	QGGOxibXV6zW4RQXR5TCL5zqBrD

NOTES- (15)

12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

14) Attic room checked for L/360 deflection.

15) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/
					E12650837
1669955	A34	ATTIC	14	1	
					Job Reference (optional)
Probuild East, Albe	marle, NC 28001		8.2	20 s Nov '	16 2018 MiTek Industries, Inc. Wed Jan 30 10:24:17 2019 Page 2
		ID:	Tgj18Swf	/F8hyT9h0	Yt9kzZiYQ-N3zUU2iKEnttCgqT_ndUw8msWO3puogglDltXzqBrC

NOTES- (15)

12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

14) Attic room checked for L/360 deflection.

15) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/
					E1265084
1669955	A37	ATTIC	4	1	
					Job Reference (optional)
Probuild East, Alberr	arle , NC 28001		8.2	20 s Nov	16 2018 MiTek Industries, Inc. Wed Jan 30 10:24:22 2019 Page 2
		ID:j	Tgj18Swfy	F8hyT9h0	Yt9kzZiYQ-j0nNYImT2KVAIRiQnXNoBzrhoX4iUAVQq0wWZIzqBr7

NOTES- (13)

12) Attic room checked for L/360 deflection.

13) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/
					E12650841
1669955	A38	ATTIC	4	1	
					Job Reference (optional)
Probuild East, Albema	rle , NC 28001	·	8.2	20 s Nov 1	6 2018 MiTek Industries, Inc. Wed Jan 30 10:24:24 2019 Page 2
		ID	;jTgj18Sw	fyF8hyT9h	0Yt9kzZiYQ-gPu8yRnjaxluYlspuyPGGOw1ILmAy4?iHKPdddzqBr5

NOTES- (13)

12) Attic room checked for L/360 deflection.

13) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/
1660055	A 30	ATTIC		1	E12650842
1009955	A39	ATTIC	0	'	Job Reference (optional)
Probuild East, Albemarle , NC 280	001	I		8.2	20 s Jan 19 2019 MiTek Industries, Inc. Wed Jan 30 12:10:07 2019 Page 2
			ID:jTgj′	8SwfyF8h	nyT9h0Yt9kzZiYQ-EKJgpcaDboLDqfsllHt9cr1nv3y?8c2S1bNGP8zqBAE

NOTES- (14)

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

13) Attic room checked for L/360 deflection.

14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

Scale = 1:103.8

Plate Offsets (X,Y)-- [5:0-6-12,0-3-8], [15:0-4-0,0-0-8], [16:0-4-0,0-0-8], [17:0-5-0,0-4-4], [18:0-4-8,0-3-8], [20:0-4-8,0-3-8], [22:0-4-0,0-0-8], [25:0-4-0,0-8], [25:0-4-

TCLL 20.0 Plate Grip DOL 1.15 TC 0.38 Vert(LL) -0.11 17-34 >999 360 MT20 244/190	
TCDL 10.0 Lumber DOL 1.15 BC 0.51 Vert(CT) -0.23 17-34 >682 240	
BCLL 0.0 * Rep Stress Incr YES WB 0.98 Horz(CT) 0.01 14 n/a n/a	
BCDL 10.0 Code IRC2015/TPI2014 Matrix-AS Wind(LL) 0.08 24-29 >999 240 Weight: 531 lb FT = 20%	

LUMBER-		BRACING-		
TOP CHORD	2x6 SP No.2	TOP CHORD	Structural wood sheathing	directly applied, except
BOT CHORD	2x6 SP No.2 *Except*		2-0-0 oc purlins (6-0-0 ma	x.): 5-10.
	11-17: 2x4 SP No.2, 18-20: 2x10 SP DSS	BOT CHORD	Rigid ceiling directly applie	ed. Except:
WEBS	2x4 SP No.3 *Except*		6-0-0 oc bracing: 11-17	
	6-20,9-18: 2x6 SP No.2, 26-27: 2x4 SP No.2	WEBS JOINTS	1 Row at midpt 1 Brace at Jt(s): 26, 27, 28	20-26, 18-27, 7-26, 7-27, 10-17, 5-21 3

REACTIONS. (lb/size) 2=832/0-4-11, 17=1860/0-3-8, 14=272/0-5-8, 21=1540/0-3-8, 19=518/0-3-8 Max Horz 2=309(LC 9) Max Uplift2=-150(LC 12), 17=-240(LC 13), 14=-87(LC 13), 21=-132(LC 12)

Max Grav 2=851(LC 24), 17=1860(LC 1), 14=308(LC 21), 21=1810(LC 2), 19=1287(LC 18)

FORCES. (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/40, 2-3=-992/274, 3-4=-881/372, 4-5=-753/420, 5-6=-298/276, 6-7=-266/259, 7-8=-281/268, 8-9=-281/268, 9-10=-301/278, 10-11=0/451, 11-12=-4/469, 12-13=-31/297, 13-14=-155/177

BOT CHORD 2-25=-237/804, 25-36=-237/804, 36-37=-237/804, 24-37=-237/804, 23-24=-184/251, 23-38=-184/251, 22-38=-184/251, 21-22=-194/246, 20-21=-179/252, 19-20=-151/358, 18-19=-149/365, 17-18=-172/264, 16-17=-118/98, 15-16=-103/112, 14-15=-172/58, 11-17=-375/284

WEBS 3-24=-601/404, 20-26=-853/377, 6-26=-458/296, 26-28=-427/1184, 27-28=-427/1184, 18-27=-861/340, 9-27=-470/262, 10-18=-196/777, 7-26=-1235/451, 7-28=0/102, 7-27=-1214/442, 10-17=-1068/136, 13-17=-499/290, 5-24=-344/1042, 5-21=-1412/189, 5-20=-174/892

NOTES- (14)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) All plates are 5x8 MT20 unless otherwise indicated.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 7) Ceiling dead load (5.0 psf) on member(s). 26-28, 27-28; Wall dead load (5.0 psf) on member(s). 20-26, 18-27
- 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 19-20, 18-19

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 150 lb uplift at joint 2, 240 lb uplift at joint 17, 87 lb uplift at joint 14 and 132 lb uplift at joint 21.

10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
						E12650843
1669955	A40	ATTIC	12	1		
					Job Reference (optional)	

14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

being real of the set only water the building designer must verify the subject of building designer much the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	_
					E1265084	44
1669955	A41	ATTIC	4	1		
					Job Reference (optional)	
Probuild East, Albemarle, NC 280	001			8.2	20 s Jan 19 2019 MiTek Industries, Inc. Wed Jan 30 12:15:02 2019 Page 2	

14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/
					E12650845
1669955	A42	ATTIC	7	1	
					Job Reference (optional)
Probuild East, Albemarle , NC 28	001			8.2	20 s Jan 19 2019 MiTek Industries, Inc. Wed Jan 30 12:17:21 2019 Page 2
		I	D:jTgj18Sv	vfyF8hyT9	h0Yt9kzZiYQ-WqXkv0qRO81euM19BQfwCM0wI?46qzlKq6VEd_zqB3S

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
						E12650846
1669955	A43	ATTIC	7	1		
					Job Reference (optional)	
Probuild East,	Albemarle, NC 28001		8.2	20 s Nov 1	16 2018 MiTek Industries, Inc. Wed Jan 30 10:24:33	2 2019 Page 2
			ID:jTgj18SwfyF	8hyT9h0Y	t9kzZiYQ-RxN9eAtkiOmIV_TLMdY8b4GNjZRwqmb	ou7aL2u9zqBqz

NOTES- (14)

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 13) Attic room checked for L/360 deflection.

14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

			55-11-0 55-11-0				
Plate Offsets (X,Y)	[11:0-4-0,0-3-3], [17:0-5-0,0-4-8], [21:0-4	4-0,0-3-3], [38:0-5-0,0-4-8], [44:0-5-0,0-4-8], [50:0	-5-0,0-4-8]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.08 BC 0.05 WB 0.13 Matrix-S	DEFL. in Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) 0.01	i (loc) l/defl 31 n/i 31 n/i 30 n/a	L/d 120 120 n/a	PLATES MT20 Weight: 570 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP OTHERS 2x4 SP	No.2 No.2 No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structural woo 2-0-0 oc purlin Rigid ceiling o 1 Row at mid	od sheathing o ns (6-0-0 max lirectly applied ot	directly applied or 6-0-0 (.): 11-21. d or 10-0-0 oc bracing. 16-44, 15-45, 14-46, 13 10-50, 9-51, 17-43, 18 21-39, 22-38, 23-37	oc purlins, except -47, 12-48, 11-49, 42, 19-41, 20-40,
REACTIONS. All be (lb) - Max H Max U Max G	earings 55-11-0. orz 2=-316(LC 10) plift All uplift 100 lb or less at joint(s) 2, 40, 38, 37, 36, 35, 34, 33 except 56 rav All reactions 250 lb or less at joint(42, 41, 40, 39, 38, 37, 36, 35, 34, 33 Comp./Max. Ten All forces 250 (lb) or	44, 45, 46, 47, 48, 49, 50 =-156(LC 12), 32=-150(LC s) 2, 30, 44, 45, 46, 47, 44 3 except 56=336(LC 19), 3 less except when shown.	, 51, 52, 53, 54, 55, 43, C 13) 3, 49, 50, 51, 52, 53, 54, 32=329(LC 20)	42, 41, , 55, 43,			
WEBS 3-56=	299/205, 9-10=-222/275, 10-11=-200/30 =-240/287, 14-15=-240/287, 15-16=-240 =-240/287, 19-20=-240/287, 20-21=-240 261/188, 29-32=-261/181), 11-12=-240/287, 12-13 0/287, 16-17=-240/287, 17 0/286, 21-22=-260/303, 22	=-240/287, 7-18=-240/287, 2-23=-222/256				
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) MWFRS for reaction 3) Truss designed for w Gable End Details a 4) Provide adequate dr 5) All plates are 2x4 M 6) Gable requires conti 7) Gable studs spaced 8) This truss has been 9) * This truss has been	e loads have been considered for this de ult=120mph (3-second gust) Vasd=95m gable end zone and C-C Exterior(2) zon s shown; Lumber DOL=1.60 plate grip D vind loads in the plane of the truss only. s applicable, or consult qualified building ainage to prevent water ponding. T20 unless otherwise indicated. nuous bottom chord bearing. at 2-0-0 oc. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on t	sign. ph; TCDL=6.0psf; BCDL= ie; end vertical left and rig DOL=1.60 For studs exposed to win g designer as per ANSI/TF e load nonconcurrent with he bottom chord in all area	6.0psf; h=25ft; Cat. II; E ht exposed;C-C for men d (normal to the face), s l 1. any other live loads. as where a rectangle 3-f	xp C; Enclosed nbers and force see Standard In 6-0 tall by 2-0-0	; s & dustry wide	UNPTH PROFESSION	CAROUNA SEAL 36322

will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 43, 42, 41, 40, 38, 37, 36, 35, 34, 33 except (it=lb) 56=156, 32=150.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

L		9-1-0	17-5-8	17-1Q-8	30-7-4			43-	-3-4		55-11-0	
		9-1-0	8-4-8	0-5-0	12-8-12			12-	-8-0		12-7-12	
Plate Offsets (X	(,Y)	[11:0-0-0,0-0-7]										
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0))) *)	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES 12014	CSI. TC BC WB Matri:	0.62 0.70 0.52 x-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	ir -0.19 -0.29 0.01 0.06	l (loc) 15-17 15-17 13 13-25	l/defl >790 >512 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 403 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 *Except* 6-17,8-15: 2x4 SP No.2 WEDGE Right: 2x4 SP No.3					BRACING TOP CHO BOT CHO WEBS	3- DRD DRD	Structu 2-0-0 c Rigid c 1 Row	ural wood oc purlins ceiling dire at midpt	sheathing dir (6-0-0 max.): ectly applied. 3	rectly applied, except 5-8. I-17, 5-17, 6-17, 6-15, 8	8-15, 8-13	
REACTIONS. All bearings 0-3-8 except (jt=length) 2=0-5-8, 11=0-5-8. (lb) - Max Horz 2=316(LC 11) Max Uplift All uplift 100 lb or less at joint(s) except 2=-152(LC 12), 17=-275(LC 12), 15=-180(LC 8), 13=-239(LC 13), 11=-162(LC 13) Max Grav All reactions 250 lb or less at joint(s) except 2=728(LC 19), 17=1440(LC 25), 15=1132(LC 26), 13=1044(LC 20), 11=655(LC 20)												
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	- Max. 2-3=- 2-19= 3-19= 8-15=	Comp./Max. Ten All for 758/222, 3-5=-109/310, 6 184/773, 17-19=-184/77 -0/349, 3-17=-955/381, 5- 330/108, 10-13=-604/40	ces 250 (lb) or -8=-228/261, 8 3, 13-15=-42/2 17=-568/220, 5	less except 3-10=-347/22 268, 11-13=- 6-17=-319/1	when shown. 23, 10-11=-55 11/415 57, 6-15=-489	7/190 9/323,						

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are 5x8 MT20 unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 152 lb uplift at joint 2, 275 lb uplift at joint 17, 180 lb uplift at joint 15, 239 lb uplift at joint 13 and 162 lb uplift at joint 11.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

ENGINEERING BY AMITek Affiliate 818 Soundside Road

Edenton, NC 27932

	(0-5-0				
Plate Offsets (X,Y)	[2:0-2-10,0-2-8], [5:0-7-8,0-4-0], [19:0-8	-8,0-3-8]				
LOADING (psf)	SPACING- 2-0-0 Plate Grip DOI 115	CSI.	DEFL. ir	n (loc) l/defl L/d	PLATES	GRIP
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.73 WB 0.51	Vert(CT) -0.28 Horz(CT) -0.01	3 14-17 >544 240 1 12 n/a n/a	WIT20	244/130
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0.04	4 22-24 >999 240	Weight: 425 lb	FT = 20%
LUMBER-			BRACING-		•	
TOP CHORD 2x6 SF	P No.2		TOP CHORD	Structural wood sheathing di	irectly applied, except	
BOT CHORD 2x6 SF	P No.2			2-0-0 oc purlins (6-0-0 max.)	: 5-8.	
WEBS 2x4 SP No.3 *Except*			BOT CHORD	Rigid ceiling directly applied.		

WEBS

1 Row at midpt

8-17,6-19: 2x4 SP No.2 WEDGE

Right: 2x4 SP No.3

REACTIONS. All bearings 0-3-8 except (jt=length) 2=0-5-8, 12=0-5-8. (lb) - Max Horz 2=317(LC 11)

Max Horz 2=317(LC 11) Max Uplift All uplift 100 lb or less at joint(s) except 2=-119(LC 12), 19=-324(LC 12), 17=-207(LC 9), 12=-108(LC 13), 14=-328(LC 13) Max Grav All reactions 250 lb or less at joint(s) except 2=636(LC 23), 19=1515(LC 23), 17=1065(LC 26), 12=556(LC 24), 14=1156(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-645/156, 3-5=-124/360, 11-12=-500/121
- BOT CHORD 2-22=-117/629, 19-22=-123/629, 17-19=-186/288, 14-17=-134/251, 12-14=0/393
- WEBS 3-22=0/333, 3-19=-850/382, 6-17=-496/315, 8-14=-254/108, 5-19=-639/251,
- 9-14=-384/291, 8-17=-291/79, 11-14=-493/292, 6-19=-358/170

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are 5x8 MT20 unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 119 lb uplift at joint 2, 324 lb uplift at joint 19, 207 lb uplift at joint 17, 108 lb uplift at joint 12 and 328 lb uplift at joint 14.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

3-19, 6-17, 8-14, 5-19, 8-17, 6-19

ENGINEERING BY REENCO AMITER Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPI Quality Criteria</u>, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

REACTIONS. All bearings 20-11-0.

(lb) - Max Horz 1=-209(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 1, 6, 11, 18, 19, 20, 16, 15, 14 except 21=-147(LC 12),

13=-140(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 6, 11, 18, 19, 20, 16, 15, 14 except 21=308(LC 19), 13=297(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (10)

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- r) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 6, 11, 18, 19, 20, 16, 15, 14 except (jt=lb) 21=147, 13=140.
- 10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI (Duality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/
					E12650856
1669955	B03	COMMON GIRDER	18	2	
				3	Job Reference (optional)
Probuild East, Albemar	le , NC 28001		8.2	20 s Nov 1	16 2018 MiTek Industries, Inc. Wed Jan 30 10:24:49 2019 Page 2

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-RDvbC_5PhcvL2bGcsiM7ngTJtQKmJPTO1jzR?gzqBqi

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 10-13=-20

Concentrated Loads (lb)

Vert: 7=-1403 16=-586(B) 17=-549(B) 18=-549(B) 19=-1864 20=-1864 21=-1403 22=-1403 23=-1403 24=-1403

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TRENCE A MITEK Atfiliate 818 Soundside Road

Edenton, NC 27932

January 30,2019

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 14, 20, 21, 22, 24, 19, 17, 16 except (jt=lb) 23=201, 15=127.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=138, 3=169.
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

[lob	Truss	Truss Type	Qty	Ply	H&H/Calabash/
						E12650860
	669955	B13	Common Girder	7	2	
					3	Job Reference (optional)
	Probuild East, Albemai	le , NC 28001		8.2	20 s Nov 1	6 2018 MiTek Industries, Inc. Wed Jan 30 10:24:54 2019 Page 2

8.220 s Nov 16 2018 Mi Lek Industries, Inc. Wed Jan 30 10:24:54 2019 Page 2 ID:u2XELeCnRWP0nPLJeNfnnKyCKHZ-nAiUFi8XW9Xd8M9afFxIUjA9ZQ19_gv7B?gCguzqBqd

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 10-13=-20 Concentrated Loads (lb)

Vert: 7=-1383 16=-593(B) 17=-553(B) 18=-553(B) 19=-1948 20=-1948 21=-1383 22=-1383 23=-1383 24=-1386

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

I LIMBER-

LUMBER-		BRACING-
TOP CHORD	2x4 SP No.2	TOP CHORD
BOT CHORD	2x4 SP No.2	
WEBS	2x4 SP No.2 *Except*	BOT CHORD
	2-28: 2x4 SP No.3	
OTHERS	2x4 SP No.3	

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 7-10. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 20-11-0.

- (lb) Max Horz 29=-222(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 17, 24, 25, 26, 27, 23, 21, 20, 19 except 29=-122(LC 8), 28=-126(LC 12), 18=-119(LC 13)
 - Max Grav All reactions 250 lb or less at joint(s) 29, 17, 24, 25, 26, 27, 28, 23, 21, 20, 19, 18

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17, 24, 25, 26, 11)
 - 27, 23, 21, 20, 19 except (jt=lb) 29=122, 28=126, 18=119.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters shown, and is for an individual point point, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (Ib/size) 5=547/Mechanical, 2=652/0-3-0 Max Horz 2=147(LC 11) Max Uplift 5=-94(LC 13), 2=-122(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-4=-610/576, 4-5=-629/552
- BOT CHORD 2-6=-343/434, 5-6=-343/434
- WEBS 4-6=-371/298

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 2=122.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

TH CAN ORT Van and and and the MANDER IN THE SEAL 036322 GI minum January 30,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 2=122.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

January 30,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **NSUFTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

3) All plates are 2x4 MT20 unless otherwise indicated.

Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 1, 11, 12, 13, 15 except (it=lb) 16=257.

9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 14, 11, 12, 13, 15, 16.

10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

SEAL 036322 January 30,2019

> ENGINEERING BY REENCO A MiTek Atfiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	2x4 2x4			
4.00 12			5x8 ≈	
-9-8		13-7-0		

6-9-8

Plate Of	sets (X,Y)	[1:0-5-5,Edge], [6:0-3-0,E	agej									
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.43	Vert(LL)	-0.07	6-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.46	Vert(CT)	-0.15	6-7	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.39	Horz(CT)	0.06	6	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	912014	Matri	x-AS	Wind(LL)	0.05	7-12	>999	240	Weight: 81 lb	FT = 20%
LUMBER	र-					BRACING-					•	

LUMBER-

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2 2x4 SP No.3 WEBS SLIDER Left 2x4 SP No.3 2-0-0

TOP CHORD BOT CHORD Rigid ceiling directly applied. WEBS 1 Row at midpt

Structural wood sheathing directly applied, except end verticals. 5-6, 3-6

REACTIONS. (lb/size) 1=537/0-3-8, 6=537/0-3-8 Max Horz 1=398(LC 12) Max Uplift 6=-287(LC 12) Max Grav 1=537(LC 1), 6=591(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

1-3=-815/181 TOP CHORD

BOT CHORD 1-7=-475/957, 6-7=-469/957

NOTES-(7)

1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

6

6-9-8

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 1, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=287.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Scale = 1:55.2

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WEBS 3-7=-219/728, 3-6=-1098/542

Edenton, NC 27932

Job Truss	Truss Type	Qty	Ply	H&H/Calabash/
				E12650867
1669955 FG01	FLAT GIRDER	18	2	
			_	Job Reference (optional)
Probuild East, Albemarle , NC 28001		8.2	20 s Nov '	16 2018 MiTek Industries, Inc. Wed Jan 30 10:25:00 2019 Page 2

8.220 s Nov 16 2018 MiTek Industries, Inc. Wed Jan 30 10:25:00 2019 Page 2 ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-cK4IWIDI5?InsHck?W2ij_QAmr3nOK40Zx7XuYzqBqX

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 5-8=-20

Concentrated Loads (lb)

Vert: 7=-1934(F=-1552, B=-383) 6=-1934(F=-1552, B=-383) 9=-1428(F=-1040, B=-389) 10=-1416(F=-1034, B=-383) 11=-1934(F=-1552, B=-383) 12=-1552(F) 13=-383(B) 14=-1938(F=-1552, B=-386)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
					E126508	68
1669955	FG02	FLAT GIRDER	7	2		
				_	Job Reference (optional)	
Probuild East, Albemar	e , NC 28001		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Wed Jan 30 10:25:01 2019 Page 2	

8.220 s Nov 16 2018 MiTek Industries, Inc. Wed Jan 30 10:25:01 2019 Page 2 ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-4Wd7j5EwsIQeURBwZDaxGCyLIFQW7nx9obt4Q_zqBqW

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 5-8=-20

Concentrated Loads (lb)

Vert: 7=-1909(F=-1557, B=-352) 6=-1909(F=-1557, B=-352) 9=-1399(F=-1041, B=-357) 10=-1387(F=-1035, B=-352) 11=-1909(F=-1557, B=-352) 12=-1557(F) 13=-352(B) 14=-1915(F=-1560, B=-355)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TI	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matri	0.05 0.06 0.07 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 12 13 12	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 128 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP No.2				BRACING- TOP CHOR	D	Structu	ral wood	sheathing d	irectly applied or 6-0-0 c	oc purlins.		

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x6 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS

REACTIONS. All bearings 19-11-0.

(lb) - Max Horz 2=177(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 2, 19, 20, 21, 16, 15 except 22=-111(LC 12), 14=-108(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 19, 20, 21, 17, 16, 15, 12 except 22=254(LC 19), 14=252(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 19, 20, 21, 16, 15 except (jt=lb) 22=111, 14=108.

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIPS ON MICLODED MITER REFERENCE PAGE mit-14/3 at 900, 1002/015 BEFORE 052. Design valid for use only with MITeR works connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES.	(lb) - Max.	Comp./Max.	Ten.	- All forces	250 (lb	o) or less	except when	shown.
TODOUOD	D 00	1105/051 0		105/051				

TOP CHORD 2-3=-1105/251, 3-4=-1105/251

BOT CHORD 2-6=-71/928, 4-6=-71/928 WEBS 3-6=0/462

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=157, 4=157.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

19-11-0

			10 11 0		
Plate Offsets (X,Y)	[2:0-3-8,Edge], [2:0-0-11,0-5-3], [2:0-0-	5,0-0-9], [6:0-3-0,0-1-12],	9:0-3-0,0-1-12], [13:0-0-	5,0-0-9], [13:0-0-11,0-5-3], [13	3:0-3-8,Edge]
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.09 BC 0.06 WB 0.05 Matrix-S	DEFL. in Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) 0.00	(loc) l/defl L/d 14 n/r 120 14 n/r 120 13 n/a n/a	PLATES GRIP MT20 244/190 Weight: 107 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP OTHERS 2x4 SP WEDGE	No.2 No.2 No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d 2-0-0 oc purlins (6-0-0 max.) Rigid ceiling directly applied	irectly applied or 6-0-0 oc purlins, except): 6-9. or 10-0-0 oc bracing.

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. All bearings 19-11-0.

(lb) - Max Horz 2=143(LC 11)

- Max Uplift All uplift 100 lb or less at joint(s) 2, 20, 21, 22, 18, 17, 16, 13 except 23=-114(LC 12), 15=-111(LC 13) Max Gray All reactions 250 lb or less at joint(s) 2, 20, 21, 22, 18, 17, 16, 13 except 23=-254(LC 19)
- Max Grav All reactions 250 lb or less at joint(s) 2, 20, 21, 22, 18, 17, 16, 13 except 23=254(LC 19), 15=250(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces &
- MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 20, 21, 22, 18, 17, 16, 13 except (jt=lb) 23=114, 15=111.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

SEAL 036322 January 30,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y)	<u>0-6-8</u> <u>0-6-8</u> [2:0-3-12,0-0-0]		<u>10-10-8</u> 10-4-0		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.43 BC 0.78 WB 0.00 Matrix-MP	DEFL. in (loc) //dd Vert(LL) -0.21 5 >62 Vert(CT) -0.39 5-9 >33 Horz(CT) 0.01 4 n Wind(LL) 0.17 5-9 >74	efl L/d 24 360 35 240 1/a n/a 40 240	PLATES GRIP MT20 244/190 Weight: 55 lb FT = 20%
LUMBER-	·		BRACING-		

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x8 SP DSS WEBS 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-11-15 oc bracing.

REACTIONS. (lb/size) 4=541/Mechanical, 2=1856/0-3-0 Max Horz 2=143(LC 8)

Max Uplift 4=-42(LC 8), 2=-349(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left exposed ; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=349.
- 6) Load case(s) 1, 2 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 7) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss, Single Ply Girder) or equivalent at 0-0-9 from the left end to connect truss(es) to back face of bottom chord.
- 8) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 4-0-12 to connect truss(es) to back face of bottom chord.
- 9) Fill all nail holes where hanger is in contact with lumber.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 2-5=-20, 4-5=-60 Concentrated Loads (lb)
- Vert: 2=-537(B) 10=-527(B) 11=-527(B)
- 2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-50, 2-5=-20, 4-5=-50

Continued on page 2

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and KEAD NOTES ON THIS AND INCLODED INTER REFERENCE FACE INTERVISED. INCLOSE DEL ONE OCL Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

ŀ	lob	Truss	Truss Type	Qty	Ply	H&H/Calabash/
						E12650872
	1669955	J01	ROOF SPECIAL GIRDER	18	1	
						Job Reference (optional)
	Probuild East, Albemar	le , NC 28001		8.2	20 s Nov 1	6 2018 MiTek Industries, Inc. Wed Jan 30 10:25:05 2019 Page 2
				ID:jTgj18	SwfyF8hy1	9h0Yt9kzZiYQ-zIteZSHRwXw3y2Vho3etQ2702si33pFliCrlZlzqBqS

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 2=-469(B) 10=-459(B) 11=-459(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

4x6 =

	<u>0-6-8</u> 0-6-8		<u>10-10-8</u> 10-4-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.20 BC 0.34 WB 0.00 Matrix-AS	DEFL. in (loc) l/defl L/d Vert(LL) -0.09 5 >999 360 Vert(CT) -0.16 5 >791 240 Horz(CT) 0.00 4 n/a n/a Wind(LL) 0.12 5 >999 240	PLATES GRIP MT20 244/190 Weight: 55 lb FT = 20%

LUMBER-

TOP CHORD2x6 SP No.2BOT CHORD2x8 SP DSSWEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (lb/size) 4=325/Mechanical, 2=481/0-3-0 Max Horz 2=143(LC 12) Max Uplift 2=-80(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 2-5=-20, 4-5=-60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

OADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL	20.0	Plate Grip DOL	1.15	TC	0.83	Vert(LL)	-0.09	4-7	>999	360	MT20	244/190
CDL	10.0	Lumber DOL	1.15	BC	0.44	Vert(CT)	-0.22	4-7	>560	240		
CLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	2	n/a	n/a		
DL	10.0	Code IRC2015/TF	912014	Matri	x-AS	Wind(LL)	0.12	4-7	>973	240	Weight: 63 lb	FT = 20%

LUMBER-

TOP CHORD2x6 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (lb/size) 4=403/Mechanical, 2=448/0-5-8

Max Horz 2=278(LC 12) Max Uplift 4=-181(LC 12), 2=-44(LC 12)

Max Grav 4=519(LC 19), 2=452(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-4=-305/201

NOTES- (7)

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 4=181.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Scale = 1:37.2

9-5-4 9-5-4

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.71	Vert(LL)	-0.07	4-7	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.36	Vert(CT)	-0.16	4-7	>710	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.03	1	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL)	0.10	4-7	>999	240	Weight: 59 lb	FT = 20%

LUMBER-

 TOP CHORD
 2x6 SP No.2

 BOT CHORD
 2x6 SP No.2

 WEBS
 2x4 SP No.3

 SLIDER
 Left 2x4 SP No.3 1-11-12

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (lb/size) 1=372/Mechanical, 4=372/Mechanical Max Horz 1=241(LC 12) Max Uplift 1=-10(LC 12), 4=-179(LC 12) Max Grav 1=377(LC 19), 4=487(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1-3=-310/103, 3-4=-288/196

NOTES-

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 4=179.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2, 8, 9 except (it=lb) 10=152.

8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

minin CAROL RT 0 WWWWWWWW IIIII WAARANTI SEAL 036322 G January 30,2019

📣 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON MICLODED MITER REFERENCE PAGE mit-14/3 at building component, not besign valid for use only with MITeK exconnectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-3=-372/339

WEBS 3-10=-290/231

NOTES- (8)

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 8, 9 except (jt=lb) 10=169.
- 8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ucollapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
					E12650)878
1669955	J05	ROOF SPECIAL GIRDER	7	1		
					Job Reference (optional)	
Probuild East, Albemar	le , NC 28001		8.2	20 s Nov	16 2018 MiTek Industries, Inc. Wed Jan 30 10:25:14 2019 Page 2	2

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-C1w1SXO4oI3oYRhQqSI_Hx?dpUosgmU3n6WGNkzqBqJ

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 7=-459(B) 2=-469(B) 12=-459(B) 13=-459(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0-6-8

		11-	3-8		
		10-9	9-0		
2-0-0	CSI.	DEFL.	in	(loc)	
		1		_	

LOADING	(psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.24	Vert(LL) -0	0.11 5	>999	360	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.40	Vert(CT) -0).19 5	>700	240	
BCLL	0.0 *	Rep Stress Incr NO	WB 0.00	Horz(CT) 0	0.00 4	n/a	n/a	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0).15 5-9	>917	240	Weight: 58 lb $FT = 20\%$

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x8 SP DSS 2x4 SP No.3 WEBS

REACTIONS. (lb/size) 4=341/Mechanical, 2=498/0-3-0

Max Horz 2=152(LC 12)

Max Uplift 4=-3(LC 12), 2=-84(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 2-5=-20, 4-5=-60

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

📣 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.56	Vert(LL)	-0.08	6-9	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.41	Vert(CT)	-0.20	6-9	>608	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.02	2	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	x-AS	Wind(LL)	0.11	6-9	>999	240	Weight: 65 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x6 SP No.2

 BOT CHORD
 2x6 SP No.2

 WEBS
 2x4 SP No.2

 WEDGE
 Left: 2x4 SP No.3

REACTIONS. (lb/size) 6=406/Mechanical, 2=470/0-5-8 Max Horz 2=290(LC 12) Max Uplift 6=-192(LC 12), 2=-45(LC 12) Max Grav 6=532(LC 19), 2=474(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-6=-321/217

NOTES-

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 6=192.
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

4x12

9-5-4 9-5-4

Plate Of	fsets (X,Y)	[1:0-5-8,Edge], [4:Edge,0-3-	-8]	-		1					1	
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.Ó	Plate Grip DOL	1.15	тс	0.72	Vert(LL)	-0.07	`4-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.38	Vert(CT)	-0.16	4-7	>689	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.05	1	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2	014	Matri	k-AS	Wind(LL)	0.10	4-7	>999	240	Weight: 61 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3 WEBS SLIDER Left 2x6 SP No.2 1-11-12 BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (lb/size) 1=372/Mechanical, 4=372/Mechanical Max Horz 1=241(LC 12) Max Uplift 1=-4(LC 12), 4=-186(LC 12) Max Grav 1=380(LC 19), 4=496(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1-3=-322/106, 3-4=-292/201

NOTES-

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 4=186.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.10 BC 0.05 WB 0.06 Matrix-S	DEFL. ir Vert(LL) -0.00 Vert(CT) 0.00 Horz(CT) -0.00	(loc) l/defl L/d 1 n/r 120 1 n/r 120 7 n/a n/a	PLATES G MT20 2 Weight: 79 lb	FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP WEBS 2x4 SP OTHERS 2x4 SP	No.2 No.2 No.3 No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied c	ectly applied or 6-0-0 oc or 10-0-0 oc bracing.	purlins,

REACTIONS. All bearings 10-3-0.

- (lb) Max Horz 2=293(LC 12)
 - Max Uplift All uplift 100 lb or less at joint(s) 7, 9, 8, 10, 11 except 12=-161(LC 12)
 - Max Grav All reactions 250 lb or less at joint(s) 7, 9, 2, 10, 11 except 12=344(LC 19)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-281/246

WEBS 3-12=-286/197

NOTES-

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 9, 8, 10, 11 except (jt=lb) 12=161.
- 9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.

ENGINEERING BY A MITEK Atfillate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
					E12650883	
1669955	J14A	GABLE	4	1		
					Job Reference (optional)	
Probuild East, Albemarle , NC 28001 8.220 s Nov 16 2018 MiTek Industries, Inc. Wed Jan 30 10:25:23 2019 Page 1						
		ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-RlzRLcVjh3BW7pt9srz69rt9B71rHxbOr0CFCizqBqA				

9-5-4 9-5-4

Scale = 1:36.1

REACTIONS. All bearings 9-5-4.

(lb) - Max Horz 1=276(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 7, 8, 9 except 10=-214(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 7, 8, 9 except 10=315(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-3=-287/237

```
WEBS 3-10=-291/239
```

NOTES-

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 8, 9 except (jt=lb) 10=214.

818 Soundside Road Edenton, NC 27932

will fit between the bottom chord and any other members.
9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 2, 17, 10, 18, 15, 13, 12 except (it=lb) 1=128, 19=100.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

11) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affiliat A MiTek Affiliat 818 Soundside Road Edenton, NC 27932

0-10-6			19-3-10				20-2-0
0-10-6			18-5-4				0-10-6
Plate Offsets (X,Y)	[3:0-3-4,0-1-13], [11:0-2-8,0-2-1]					1	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.07 BC 0.05 WB 0.03 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 13	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20 Weight: 68 lb	GRIP 244/190 FT = 20%
LUMBER-BRACING-TOP CHORD2x4 SP No.2TOP CHORDStructural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 3-11.OTHERS2x4 SP No.3BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.							
REACTIONS. (Ib/size Max H Max U Max G	 1=-29/20-2-0, 13=-4/20-2-0, 2=188, 22=189/20-2-0, 12=137/20-2-0 brit 1=-40(LC 8) plift 1=-47(LC 19), 13=-7(LC 20), 2=-74 22=-39(LC 9), 12=-50(LC 13) rav 1=31(LC 12), 13=10(LC 13), 2=204 24), 22=189(LC 23), 12=140(LC 20) 	20-2-0, 14=132/20-2-0, 1 (LC 12), 14=-19(LC 8), 15 (LC 19), 14=140(LC 24),)	5=167/20-2-0, 16= 5=-48(LC 9), 16=-4 15=170(LC 23), 16	:158/20-2-0, 1 0(LC 8), 18=- 6=158(LC 1),	18=161/20-2-0, 19=1: -41(LC 9), 19=-41(LC 18=161(LC 23), 19=	59/20-2-0, 20=163/20- 5 8), 20=-41(LC 9), 21: 160(LC 24), 20=163(L	2-0, 21=148/20-2-0, =-50(LC 8), C 23), 21=155(LC
FORCES. (Ib) - Maxim TOP CHORD 1-2=-	num Compression/Maximum Tension 48/67, 2-3=-68/32, 3-4=-46/42, 4-5=-46	6/42, 5-6=-46/42, 6-7=-46	/42, 7-8=-46/42, 8-	9=-46/42, 9-1	0=-46/42,		
BOT CHORD 2-22=	=-46/42, 11-12=-59/29, 12-13=-4/23 13/36, 21-22=-13/36, 20-21=-13/36, 1 i=-13/36, 12-14=-13/36	9-20=-13/36, 18-19=-13/3	36, 17-18=-13/36, ⁻	16-17=-13/36	, 15-16=-13/36,		
WEBS 11-14	l=-97/43, 10-15=-130/72, 9-16=-118/66	, 8-18=-121/67, 7-19=-12	20/67, 6-20=-122/68	8, 5-21=-119/	72, 4-22=-135/68		
 NOTES- 1) Unbalanced roof liv. 2) Wind: ASCE 7-10; V (envelope) gable en reactions shown; Lu 3) Truss designed for v Gable End Details a 4) Provide adequate d 5) All plates are 1.5x4 6) Gable requires cont 7) Gable studs spaced 8) This truss has been fit between the botto 10) Provide mechanica; 74 lb uplift at joint 20, 11) This truss is design standard ANSI/TP 12) See Standard Indu designer. 13) Graphical purlin re 	a loads have been considered for this of /ult=120mph (3-second gust) Vasd=95 d zone and C-C Exterior(2) zone; end imber DOL=1.60 plate grip DOL=1.60 wind loads in the plane of the truss only is applicable, or consult qualified buildi rainage to prevent water ponding. MT20 unless otherwise indicated. inuous bottom chord bearing. at 2-0-0 oc. designed for a 10.0 psf bottom chord I n designed for a live load of 20.0psf or om chord and any other members. al connection (by others) of truss to bea 2, 19 lb uplift at joint 21, 48 lb uplift at joi 50 lb uplift at joint 21, 39 lb uplift at join f 20 in accordance with the 2015 Intern 1. stry Piggyback Truss Connection Deta presentation does not depict the size o	esign. mph; TCDL=6.0psf; BCDJ vertical left and right expo r. For studs exposed to w ng designer as per ANSI/ ve load nonconcurrent wi the bottom chord in all a uring plate capable of with bint 15, 40 lb uplift at joint t 22 and 50 lb uplift at joint ational Residential Code a il for Connection to base r the orientation of the pu	L=6.0psf; h=25ft; C sed;C-C for memb vind (normal to the TPI 1. ith any other live lo reas where a recta astanding 47 lb uplif 16, 41 lb uplift at junt 16, 41 lb uplift at junt 12. sections R502.11.1 truss as applicable rlin along the top a	Cat. II; Exp C; ers and force face), see Sta ads. ngle 3-6-0 tal ft at joint 1, 7 oint 18, 41 lb 1 and R802.10 , or consult q nd/or bottom	Enclosed; MWFRS es & MWFRS for andard Industry Il by 2-0-0 wide will Ib uplift at joint 13, uplift at joint 19, 41 0.2 and referenced ualified building chord.	Janu	SEAL 036322 VGINEER A. GILBER Manuary 30,2019
Continued on page 2 WARNING - Verify des Design valid for use only ' a truss system. Before us building design. Bracing is always required for stat fabrication, storage, deliv Safety Information avai	ign parameters and READ NOTES ON THIS ANI with MITek® connectors. This design is based onli- e, the building designer must verify the applicabili ndicated is to prevent buckling of individual truss illity and to prevent collapse with possible person and bracing of trusses and truss syst lable from Truss Plate Institute, 218 N. Lee Street	D INCLUDED MITEK REFERENCE y upon parameters shown, and i y of design parameters and proj web and/or chord members only al injury and property damage. I ems, see ANSUTPI C , Suite 312, Alexandria, VA 2231	CE PAGE MII-7473 rev. is for an individual buildi perly incorporate this de v. Additional temporary For general guidance re Zuality Criteria, DSB-80 14.	10/03/2015 BEFC ing component, n sign into the over and permanent b garding the 9 and BCSI Build	DRE USE. lot rall vracing ding Component	TR 818 Soundsi Edenton, NC	EERING BY ENCO A MiTek Affiliate de Road 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/
			_		E12650886
1669955	PB03	GABLE	5	1	
					Job Reference (optional)
Probuild East, Albemarle , NC 280	001			8.2	20 s Jan 19 2019 MiTek Industries, Inc. Wed Jan 30 11:38:47 2019 Page 2
			ID:jTgj18	SwfyF8hy	T9h0Yt9kzZiYQ-HfjyEnqyLAUzHI7QdS8HPOAZCDRIfaKkk5ynP6zqBdc

LOAD CASE(S) Standard

			20-2-0		
1			20-2-0		1
Plate Offsets (X,Y)	[3:0-4-15,Edge], [6:0-3-0,Edge]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.20 BC 0.11 WB 0.06 Matrix-S	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) -0.00	n (loc) l/defl L/d a - n/a 999 a - n/a 999 b 8 n/a n/a	PLATES GRIP MT20 244/190 Weight: 69 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP OTHERS 2x4 SP	No.2 No.2 No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire 2-0-0 oc purlins (6-0-0 max.): : Rigid ceiling directly applied or	ectly applied or 6-0-0 oc purlins, except 3-6. 10-0-0 oc bracing.

REACTIONS. All bearings 20-2-0.

(lb) - Max Horz 1=-69(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 9, 14, 13, 12, 10, 8 except 1=-149(LC 19), 2=-157(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 9, 8 except 2=356(LC 19), 14=262(LC 1), 13=340(LC 24), 12=320(LC 23), 10=257(LC 24)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 4-13=-261/145

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 14, 13, 12, 10, 8 except (jt=lb) 1=149, 2=157.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

			20-2-0		
Plate Offsets (X,Y)	[4:0-3-0,Edge], [7:0-3-0,Edge], [8:0-0-0,0	-0-0]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.18 BC 0.11 WB 0.07 Matrix-S	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	(loc) l/defl L/d - n/a 999 - n/a 999 9 n/a n/a	PLATES GRIP MT20 244/190 Weight: 75 lb FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S OTHERS 2x4 S	P No.2 P No.2 P No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir 2-0-0 oc purlins (6-0-0 max.): Rigid ceiling directly applied o	ectly applied or 6-0-0 oc purlins, except 4-7. r 10-0-0 oc bracing.

20-2-0

REACTIONS. All bearings 20-2-0.

(lb) - Max Horz 1=106(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1, 10, 2, 14, 13, 9 except 15=-114(LC 12), 11=-111(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 10 except 2=284(LC 19), 14=318(LC 23), 15=308(LC 19), 13=318(LC 24), 9=260(LC 1), 11=304(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 10, 2, 14, 13, 9 except (jt=lb) 15=114, 11=111.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

TRENCO AMITEK Affiliate 818 Soundside Road Edenton, NC 27932

	[5.0-3-0,Euge], [6.0-3-0,Euge], [7.0-0-0,	0-0-0], [8.0-0-0,0-0-0]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.15 BC 0.14 WB 0.08 Matrix-S	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.01	i (loc) l/def - n/a - n/a 9 n/a	l L/d a 999 a 999 a n/a	PLATES MT20 Weight: 79 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP OTHERS 2x4 SP	No.2 No.2 No.3		BRACING- TOP CHORD BOT CHORD	Structural wo 2-0-0 oc purli Rigid ceiling	od sheathing di ns (6-0-0 max.) directly applied	irectly applied or 6-0-0 :: 5-6. or 10-0-0 oc bracing.) oc purlins, except
(Ib) - Max Hi (Ib) - Max Hi Max Uj Max G FORCES. (Ib) - Max.	 arings 20-2-0. orz 1=-144(LC 10) plift All uplift 100 lb or less at joint(s) 11 rav All reactions 250 lb or less at joint(20), 11=326(LC 20) Comp./Max. Ten All forces 250 (lb) or -266/192 8-11266/194 	0, 2, 14, 13 except 1=-104 s) 1, 10, 2, 9 except 14=3 less except when shown	4(LC 19), 15=-147(LC 12 375(LC 19), 15=325(LC 1	2), 11=-149(LC 19), 13=364(LC			
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) MWFRS for reaction 3) Truss designed for w Gable End Details as 4) Provide adequate dr 5) All plates are 2x4 MT 6) Gable requires conti 7) Gable studs spaced 8) This truss has been 9) * This truss has been	 Ploads have been considered for this de (ult=120mph (3-second gust) Vasd=95m gable end zone and C-C Exterior(2) zor is shown; Lumber DOL=1.60 plate grip I vind loads in the plane of the truss only. s applicable, or consult qualified building ainage to prevent water ponding. T20 unless otherwise indicated. nuous bottom chord bearing. at 4-0-0 oc. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on t 	sign. ph; TCDL=6.0psf; BCDL= e; end vertical left and rig OCL=1.60 For studs exposed to wir designer as per ANSI/TF e load nonconcurrent with	=6.0psf; h=25ft; Cat. II; E ght exposed;C-C for men nd (normal to the face), s PI 1. n any other live loads. eas where a rectangle 3-6	xp C; Enclosed abers and force see Standard Ir 6-0 tall by 2-0-0	l; s & dustry) wide	AN OR THE	CARO

will fit between the bottom chord and any other members, with BCDL = 10.0psf.
10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 2, 14, 13 except (jt=lb) 1=104, 15=147, 11=149.

11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Vanannon WWWWWWWW 0 SEAL 036322 C G١ minimum) January 30,2019

A Mi Tek Affilia 818 Soundside Road Edenton, NC 27932

L			20-2-0				
ſ			20-2-0				1
Plate Offsets (X,Y)	[5:0-3-0,Edge], [6:0-3-0,Edge], [7:0-0-0),0-0-0], [8:0-0-0,0-0-0]					
LOADING (psf) TCLL 20.0 TCDL 10.0 PCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Pag Strace lagr VES	CSI. TC 0.15 BC 0.14	DEFL. Vert(LL) Vert(CT)	in (loc) n/a - n/a -	l/defl L/d n/a 999 n/a 999	PLATES GR MT20 244	P /190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S		.00 9	11/a 11/a	Weight: 78 lb	T = 20%
LUMBER- TOP CHORD 2x4 SF	P No.2		BRACING- TOP CHORD	Structu	ral wood sheathin	g directly applied or 6-0-0 oc p	urlins, except

2-0-0 oc purlins (6-0-0 max.): 5-6. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 20-2-0.

(lb) - Max Horz 1=-135(LC 8)

2x4 SP No.3

Max Uplift All uplift 100 lb or less at joint(s) 1, 10, 2, 14, 9, 13 except 15=-150(LC 12), 11=-151(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 10, 2, 9 except 14=364(LC 19), 15=329(LC 19), 13=344(LC 20), 11=330(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 3-15=-269/194, 8-11=-268/196

NOTES-

OTHERS

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 10, 2, 14, 9, 13 except (jt=lb) 15=150, 11=151.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Vanannon SEAL 036322 GI minum January 30,2019

I			20-2-0		1
Plate Offsets (X,Y)	[4:0-3-0,Edge], [7:0-3-0,Edge], [8:0-0-0,0	-0-0]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.17 BC 0.11 WB 0.06 Matrix-S	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	n (loc) l/defl L/d a - n/a 999 a - n/a 999 b 9 n/a n/a	PLATES GRIP MT20 244/190 Weight: 74 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP OTHERS 2x4 SP	No.2 No.2 No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire 2-0-0 oc purlins (6-0-0 max.): Rigid ceiling directly applied or	ectly applied or 6-0-0 oc purlins, except 4-7. · 10-0-0 oc bracing.

20-2-0

REACTIONS. All bearings 20-2-0.

(lb) - Max Horz 1=-97(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 10, 2, 14, 9, 13, 11 except 15=-102(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 1, 10 except 2=288(LC 19), 14=312(LC 23), 15=292(LC 19), 9=274(LC 1), 13=312(LC 24), 11=289(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 10, 2, 14, 9, 13, 11 except (jt=lb) 15=102.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. ENGINEERING BY A MITEK Affiliate B18 Soundside Road Edenton, NC 27932

<u> </u>			20-2-0						
Plate Offsets (X,Y)	[3:0-4-15.Edge]. [6:0-4-15.Edge]		20-2-0						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2015/JEI2014	CSI. TC 0.20 BC 0.11 WB 0.05 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
LUMBER- TOP CHORD BRACING- TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except BOT CHORD 2x4 SP No.2 2-0-0 oc purlins (6-0-0 max.): 3-6. OTHERS 2x4 SP No.3 BOT CHORD									
REACTIONS. All bearings 20-2-0. (lb) - Max Horz 1=-60(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 8, 12, 13, 11, 9 except 1=-101(LC 19), 2=-124(LC 12), 7=-114(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 8 except 2=277(LC 19), 12=340(LC 24), 13=271(LC 23), 7=265(LC 20), 11=340(LC 23), 9=271(LC 24)									
FORCES. (lb) - Max. WEBS 4-12=	Comp./Max. Ten All forces 250 (lb) or 259/143, 5-11=-259/143	less except when shown.							

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 12, 13, 11, 9 except (jt=lb) 1=101, 2=124, 7=114.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

ļ			20-2-0	
Plate Offsets (X,Y)	[3:0-3-0,0-1-12], [11:0-3-0,0-1-12]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.09 BC 0.07 WB 0.03 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 13 n/a n/a Weight: 67 lb FT = 20%	
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI	P No.2 P No.2		BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 3-11.	

20-2-0

I OP CHORD2x4 SP No.2TOP CHORDStructural wood sheathing directly applied or 6-0-0 oc purlins, exceptBOT CHORD2x4 SP No.22-0-0 oc purlins (6-0-0 max.): 3-11.OTHERS2x4 SP No.3BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 20-2-0.

(lb) - Max Horz 1=-40(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 13, 2, 18, 19, 20, 21, 17, 15, 14, 12

Max Grav All reactions 250 lb or less at joint(s) 1, 13, 2, 18, 19, 20, 21, 17, 15, 14, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
 4) Particular the trust of the second sec
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13, 2, 18, 19, 20, 21, 17, 15, 14, 12.
 11) See Standard Industry Piggyback Truss Connection Detail for Connection to bace truss on explicable, or exposult gualified building.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

32015 BEFORE USE. omponent, not into the overall permanent bracing ing the d BCSI Building Component 818 Soundside Road Edenton, NC 27932

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 2=116, 4=103.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

			20-1-15		
Γ			20-1-15		
Plate Offsets (X,Y)	[3:0-3-0,0-1-12], [11:0-3-0,0-1-12]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.11 BC 0.07 WB 0.03 Matrix-S	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	n (loc) l/defl L/d - n/a 999 a - n/a 999 13 n/a n/a	PLATES GRIP MT20 244/190 Weight: 71 lb FT = 20%
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI OTHERS 2x4 SI	P No.2 P No.2 P No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire 2-0-0 oc purlins (6-0-0 max.): : Rigid ceiling directly applied o	ectly applied or 6-0-0 oc purlins, except 3-11. r 10-0-0 oc bracing.

REACTIONS. All bearings 20-1-15.

(lb) - Max Horz 1=49(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 1, 13, 18, 19, 12, 20, 21, 16, 15, 14 except 2=-104(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 13, 18, 19, 20, 21, 16, 15, 14 except 2=274(LC 19), 12=258(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13, 18, 19, 12, 20, 21, 16, 15, 14 except (jt=lb) 2=104.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

			20-1-15		
Plate Offsets (X,Y)	[4:0-3-0,Edge], [7:0-3-0,Edge], [8:0-0-0,0	-0-0]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.17 BC 0.11 WB 0.05 Matrix-S	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	n (loc) l/defl L/d n - n/a 999 n - n/a 999 10 n/a n/a	PLATES GRIP MT20 244/190 Weight: 72 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF OTHERS 2x4 SF	No.2 No.2 No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire 2-0-0 oc purlins (6-0-0 max.): Rigid ceiling directly applied o	ectly applied or 6-0-0 oc purlins, except 4-7. r 10-0-0 oc bracing.

20-1-15

REACTIONS. All bearings 20-1-15.

(lb) - Max Horz 1=84(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1, 10, 14, 15, 9, 12, 11 except 2=-105(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 1, 10 except 2=283(LC 19), 14=313(LC 23), 15=273(LC 19), 9=275(LC 1), 12=313(LC 24), 11=268(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 10, 14, 15, 9, 12, 11 except (jt=lb) 2=105.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

			20-1-15			
	20-1-15					
Plate Offsets (X,Y) [4:0-0-0,0-1-2], [4:0-4-14,Edge], [5:0-1-12,0-0-0], [6:0-1-12,0-0-0], [7:0-0-0,0-1-2], [7:0-4-14,Edge], [8:0-0-0,0-0-0]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.17 BC 0.14 WB 0.09 Matrix-S	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	(loc) l/defl L/d - n/a 999 - n/a 999 9 n/a n/a	PLATES GRIP MT20 244/190 Weight: 77 lb FT = 20%	
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF OTHERS 2x4 SF	No.2 No.2 No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire 2-0-0 oc purlins (6-0-0 max.): Rigid ceiling directly applied o	ectly applied or 6-0-0 oc purlins, except 4-7. r 6-0-0 oc bracing.	

REACTIONS. All bearings 20-1-15.

(lb) - Max Horz 1=122(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 1, 10, 2, 14, 9, 12 except 15=-138(LC 12), 11=-136(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 10, 2, 9 except 14=361(LC 25), 15=327(LC 19), 12=361(LC 26), 11=325(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 5-14=-257/136, 3-15=-260/183, 6-12=-257/116, 8-11=-257/180

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 10, 2, 14, 9, 12 except (jt=lb) 15=138, 11=136.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

TEREING BY A MITCH Affiliate 818 Soundside Road

Edenton, NC 27932

L			20-1-15		
Plate Offsets (X V)	[4:0-3-0 Edge] [7:0-3-0 Edge] [8:0-0-0	0-0-01	20-1-15		
		,0 0 0]	1		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	n (loc) l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.18	Vert(LL) n/	a - n/a 999	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.11	Vert(CT) n/	a - n/a 999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.06	Horz(CT) 0.0	0 9 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S			Weight: 74 lb FT = 20%
LUMBER-			BRACING-		
TOP CHORD 2x4 SF	P No.2		TOP CHORD	Structural wood sheathing dire	ectly applied or 6-0-0 oc purlins, except
BOT CHORD 2x4 SF	P No.2			2-0-0 oc purlins (6-0-0 max.):	4-7.
OTHERS 2x4 SF	P No.3		BOT CHORD	Rigid ceiling directly applied o	r 10-0-0 oc bracing.

REACTIONS. All bearings 20-1-15.

(lb) - Max Horz 1=99(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1, 10, 2, 14, 9, 12 except 15=-105(LC 12), 11=-102(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 10 except 2=288(LC 19), 14=313(LC 23), 15=296(LC 19), 9=271(LC 1), 12=313(LC 24), 11=292(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 10, 2, 14, 9, 12 except (jt=lb) 15=105, 11=102.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

			20-1-15			
Plate Offsets (X,Y) [3:0-4-14,Edge], [6:0-4-14,Edge]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.20 BC 0.11 WB 0.05 Matrix-S	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	n (loc) l/defl L/d - n/a 999 - n/a 999 7 n/a n/a	PLATES GRIP MT20 244/190 Weight: 68 lb FT = 20%	
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP OTHERS 2x4 SP	No.2 No.2 No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire 2-0-0 oc purlins (6-0-0 max.): 3 Rigid ceiling directly applied or	ectly applied or 6-0-0 oc purlins, except 3-6. r 10-0-0 oc bracing.	
REACTIONS. All bearings 20-1-15. (lb) - Max Horz 1=-62(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 8, 12, 13, 10, 9 except 1=-112(LC 19), 2=-132(LC 12),						

7=-122(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 8 except 2=288(LC 19), 12=336(LC 24), 13=274(LC 23), 7=277(LC 20), 10=336(LC 23), 9=274(LC 24)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

WEBS 4-12=-256/141, 5-10=-255/141

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 12, 13, 10, 9 except (jt=lb) 1=112, 2=132, 7=122.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

TH CAD ORTH A CHARLEN WARNING MALITICA I SEAL 036322 G minum January 30,2019

		2	20-1-15		
Plate Offsets (X	Y) [3:0-3-0,0-1-12], [11:0-3-0,0-1-12	2]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	* SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.11 BC 0.07 WB 0.03 Matrix-S	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	(loc) l/defl L/d - n/a 999 - n/a 999 13 n/a n/a	PLATES GRIP MT20 244/190 Weight: 71 lb FT = 20%
LUMBER- TOP CHORD BOT CHORD OTHERS	x4 SP No.2 x4 SP No.2 x4 SP No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dired 2-0-0 oc purlins (6-0-0 max.): 3 Rigid ceiling directly applied or	otly applied or 6-0-0 oc purlins, except -11. 10-0-0 oc bracing.

20-1-15

REACTIONS. All bearings 20-1-15.

(lb) - Max Horz 1=-49(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 13, 18, 19, 20, 21, 16, 15, 14, 12 except 2=-104(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 13, 18, 19, 20, 21, 16, 15, 14 except 2=274(LC 19), 12=258(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13, 18, 19, 20, 21, 16, 15, 14, 12 except (jt=lb) 2=104.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-3-2 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 5-3-2. (lb) - Max Horz 1=-45(LC

Max Horz 1=-45(LC 8)
 Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 2, 4

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 2, 4.

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

RT 0 Vermannen MULTINI, SEAL 036322 G minum January 30,2019

Max Uplift All Uplift 100 ib of less at joint(s) 19, 25, 26, 27, 29, 30, 31, 32, 33, 23, 21, 20 excep 1=-108(LC 10), 34=-113(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 19, 1, 25, 26, 27, 29, 30, 31, 32, 33, 34, 22, 21 except 23=261(LC 26), 20=263(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-437/291, 2-3=-346/252, 3-4=-278/228

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 19, 25, 26, 27, 29, 30, 31, 32, 33, 23, 21, 20 except (jt=lb) 1=108, 34=113.

- 9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 25, 26, 27.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

- MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 33, 34, 35, 37, 38, 39, 40, 41, 32, 22, 28, 27, 26, 25, 24 except (jt=lb) 42=107, 30=100, 23=107.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

10-1-4

16-8-8

6-1-0

4x6 ||

6-7-4

5 8.00 12 6 3 Ш 3x4 2 0-9-8 10 X X 2-10-0 6-4-11 3x6 = 4-0-11 11 12 8.00 12 13 19 18 17 16 15 14 3x6 🥢 3x4 =

<u>10-7-8</u> 10-7-8

Plate Offsets (X,Y)	[10:0-4-1,Edge], [13:0-3-0,0-0-2]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.47 BC 0.15 WB 0.26 Matrix-S	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.01	n (loc) l/defl L/d a - n/a 999 a - n/a 999 10 n/a n/a	PLATES GRIP MT20 244/190 Weight: 139 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP OTHERS 2x4 SP	No.2 No.2 No.3 No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied of 6-0-0 oc bracing: 10-11. 1 Row at midpt 4	rectly applied or 6-0-0 oc purlins, or 10-0-0 oc bracing, Except: I-16, 6-15
REACTIONS. All be	arings 16-8-8.				

ACTIONS. All bearings 16-8-8. (lb) - Max Horz 19=-341(LC 10)

17=-128(LC 12), 14=-139(LC 13)

```
Max Grav All reactions 250 lb or less at joint(s) 19, 13, 17, 18, 14, 12, 11 except 10=342(LC 10), 16=286(LC 20), 15=351(LC 20)
```

- TOP CHORD 3-4=-277/316, 6-7=-277/316, 8-9=-270/235, 9-10=-288/244
- BOT CHORD 12-13=-242/303, 11-12=-243/303, 10-11=-247/301

NOTES- (9)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 19, 16, 18, 15, 12, 11 except (jt=lb) 10=237, 13=147, 17=128, 14=139.
- 8) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 10, 12, 11.
- 9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

ORT Anna anna anna WWWWWWWW SEAL 036322 GI minum January 30,2019

Scale = 1.66.5

Max Uplift All uplift 100 lb or less at joint(s) 19, 16, 18, 15, 12, 11 except 10=-237(LC 9), 13=-147(LC 8),

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

LUMBER-		BRACING-	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,
BOT CHORD	2x4 SP No.2		except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-7.
WEBS	2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing, Except:
OTHERS	2x4 SP No.3		6-0-0 oc bracing: 11-12.
		WEBS	1 Row at midpt 5-17, 6-16

REACTIONS. All bearings 16-7-8. (lb) - Max Horz 20=-145(LC 13)

Max Uplift All uplift 100 lb or less at joint(s) 20, 11, 14, 17, 18, 19, 16, 15, 13, 12 Max Grav All reactions 250 lb or less at joint(s) 20, 11, 14, 18, 19, 15, 13, 12 except 17=251(LC 26), 16=256(LC 25)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 11, 14, 17, 18, 19, 16, 15, 13, 12.
- 9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 11, 13, 12.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP17 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 35, 36, 37, 39, 40, 41, 42, 43, 34, 32, 30, 29, 28, 27, 26, 24 except (jt=lb) 44=102, 25=102.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

Edenton, NC 27932

