

RE: P20-04027 - RICHARDSON

Site Information:

Project Customer: Project Name: Lot/Block: Model: Address: City:

Subdivision:

Design Program: MiTek 20/20 8.3

Design Method: User defined

Floor Load: N/A psf

Exposure Category: B

Trenco 818 Soundside Rd Edenton, NC 27932

State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design **Drawings Show Special Loading Conditions):**

Design Code: IRC2018/TPI2014 Wind Code: N/A Wind Speed: 130 mph Roof Load: 40.0 psf

Mean Roof Height (feet): 12

No.	Seal#	Truss Name	Date
1	E14419867 E14419868		5/19/20 5/19/20
2345678910	E14419869 E14419870	PB02 PB03	5/19/20 5/19/20
5	E14419871	PB04	5/19/20
6 7	E14419872 E14419873	PB06	5/19/20 5/19/20
8 9	E14419874 E14419875	PB07 PB08	5/19/20 5/19/20
10 11	E14419876 E14419877	PB09 T01	5/19/20 5/19/20
12	E14419878	T01GE	5/19/20
13 14	E14419879 E14419880	T02	5/19/20 5/19/20
16	E14419881 E14419882	T03 T04	5/19/20 5/19/20
17 18	E14419883 E14419884		5/19/20 5/19/20
19	E14419885 E14419886	T07	5/19/20
20 21	E14419887		5/19/20 5/19/20
21 22 23	E14419888 E14419889	T10 T11	5/19/20 5/19/20
25	E14419890 E14419891	T12 T13	5/19/20 5/19/20
26 27	E14419892 E14419893	T14	5/19/20
28	E14419893 E14419894	T17	5/19/20 5/19/20

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters

My license renewal date for the state of North Carolina is December 31, 2020 **IMPORTANT NOTE:** The seal on these truss component designs is a certificate that the engineer named is licensed in the jurisdiction (a) by the true that the engineer named is licensed in the jurisdiction (a) by the true that the engineer named is licensed in the jurisdiction (a) by the true that the engineer named is licensed in the jurisdiction (a) by the true that the engineer named is licensed in the jurisdiction (a) by the true that the engineer named is licensed in the jurisdiction (a) by the true the true of shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

May 19,2020

Job	Truss	Truss Type	Qty	Ply	RICHARDSON	
P20-04027	G01	Piggyback Base Girder	1	2		E14419867
Longleaf Truss Company	, West End, NC - 27376,			.330 s Ma		Tue May 19 07:20:33 2020 Page 1
	L	4-8-10 9-10-5	14-0-1	18-1-12	22-7-0	SEBSfHf8wkR0cpwmHmaF4HzF?pi
	, I	4-8-10 5-1-11	4-1-12	4-1-12	4-5-4	
	0.00	4x8 =	4x4 =			Scale = 1:67.7
	9.00 12 I	$2_{15} \boxtimes 16$	3 #1			T
			3x4 🕅			
	3x4 1/		4 3x4	*		
	I M			17		
		. \\		\backslash		0
	11-0-0				3x4 1 6 x 18	11-0-0
	7-5-8					
	P				3x4 🕅 7	
				0.0	-5- -5- -8-	
	⊠ 19 14		11 ²³ ²⁴ 10 ²⁵	26	9 27 28 8	
	2x4 HUS2		8 = NAILED 3x4 = NAILED NAILE		Ax4 = NAILED 2x4 NAILED	
		4-8-10 9-10-5		18-1-12	1 22-7-0	
Plate Offsets (X,Y) [1:0-1-12.0-1-8]. [2:0-6-0.0-2-	4-8-10 5-1-11 D], [5:0-1-12,0-1-8], [6:0-1-12,0-1-8]	4-1-12	4-1-12	4-5-4	
LOADING (psf)	SPACING-	2-0-0 CSI .	DEFL.	in	l (loc) l/defl L/d	PLATES GRIP
TCLL (roof) 20. Snow (Pf/Pg) 16.5/15.0	Plate Grin DC		35 Vert(LL)	-0.03	10-11 >999 240 10-11 >999 180	MT20 244/190
TCDL 10. BCLL 0.	n * Rep Stress In	cr NO WB 0.3				Woight: 415 lb ET = 20%
BCDL 10.	Code IRC20	8/TPI2014 Matrix-S				Weight: 415 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP			BRACING- TOP CHORD		ed or 6-0-0 oc purlins, except	end verticals, and 2-0-0 oc
BOT CHORD 2x6 SP WEBS 2x4 SP			BOT CHORD		(6-0-0 max.): 2-3. eiling directly applied or 6-0-0	oc bracing.
REACTIONS. (size) 14=0-3-8, 8=0-3-8					
	orz 14=-282(LC 10) lift 14=-212(LC 12), 8=-190(LC 12)				
Max Gr	av 14=2757(LC 34), 8=1794	(LC 34)				
()		250 (lb) or less except when shown 1320/256, 5-6=-1799/261, 6-7=-198				
1-14=	-1748/212, 7-8=-1631/186 =-57/722, 10-11=-59/1363, 9					
WEBS 2-13=	-348/129, 2-11=-117/641, 3-	1=-180/510, 5-11=-809/163, 5-10=-	-151/620,			
	-270/88, 1-13=-147/1239, 7-9	=-113/1484				
NOTES- 1) 2-ply truss to be conr	nected together with 10d (0.1	31"x3") nails as follows:				
	d as follows: 2x4 - 1 row at 0 octed as follows: 2x6 - 2 rows					
	ollows: 2x4 - 1 row at 0-9-0 or red equally applied to all plie	c. s, except if noted as front (F) or bac	k (B) face in the LOAD (CASE(S)	section. Ply to	
ply connections have		only loads noted as (F) or (B), unless				"TH CARO
4) Wind: ASCE 7-16; Vi	ult=130mph (3-second gust)	/asd=103mph; TCDL=6.0psf; BCDI rer left and right exposed ; end verti				R. EESSIG: 24
plate grip DOL=1.60		=1.15 Plate DOL=1.15); Pg=15.0 p			CH.	1 June
DOL=1.15); Is=1.0; F	ough Cat B; Partially Exp.; C	e=1.0; Cs=1.00; Ct=1.10, Lu=50-0-				SEAL
6) Unbalanced snow loa	less than 0.500/12 in accord ds have been considered fo	this design.			vposed v 2-0-0 wide	036322
8) This truss has been of		n chord live load nonconcurrent with				
		0.0psf on the bottom chord in all are embers, with BCDL = 10.0psf.	as where a rectangle 3-	6-0 tall by	/ 2-0-0 wide	WGINEER ON ST
10) Provide mechanical 14=212, 8=190.	connection (by others) of tru	ss to bearing plate capable of withs	tanding 100 lb uplift at jo	oint(s) exc	cept (jt=lb)	CA GILBE
11) This truss is design referenced standard		18 International Residential Code se	ections R502.11.1 and F	802.10.2	and	May 10 2020
		ne size or the orientation of the purli	in along the top and/or b	ottom cho	ord.	May 19,2020
🛕 WARNING - Verify de		ON THIS AND INCLUDED MITEK REFERENCE				ENGINEERING BY
a truss system. Before us	e, the building designer must verify	is based only upon parameters shown, and i he applicability of design parameters and pro lividual truss web and/or chord members only	perly incorporate this design ir	to the overa	11	TRENCO
is always required for sta fabrication, storage, deliv	bility and to prevent collapse with po ery, erection and bracing of trusses	ssible personal injury and property damage. I and truss systems, see ANSI/TPI1 0	For general guidance regardin Quality Criteria, DSB-89 and I	g the		A MiTek Affiliate 818 Soundside Road
Salety mormation ava	nadio nom muss riale institute, 218	N. Lee Street, Suite 312, Alexandria, VA 223	17.			Edenton, NC 27932

[Job	Truss	Truss Type	Qty	Ply	RICHARDSON
						E14419867
	P20-04027	G01	Piggyback Base Girder	1	2	
					_	Job Reference (optional)
	Longleaf Truss Company,	West End, NC - 27376,		8.3	330 s Mar	23 2020 MiTek Industries, Inc. Tue May 19 07:20:33 2020 Page 2
			ID:gkUVx	24QO5glB	KvEjRcTh	WzFI?4-tOcX8xu2wazwHzOB6EBSfHf8wkR0cpwmHmaF4HzF?pi

NOTES-

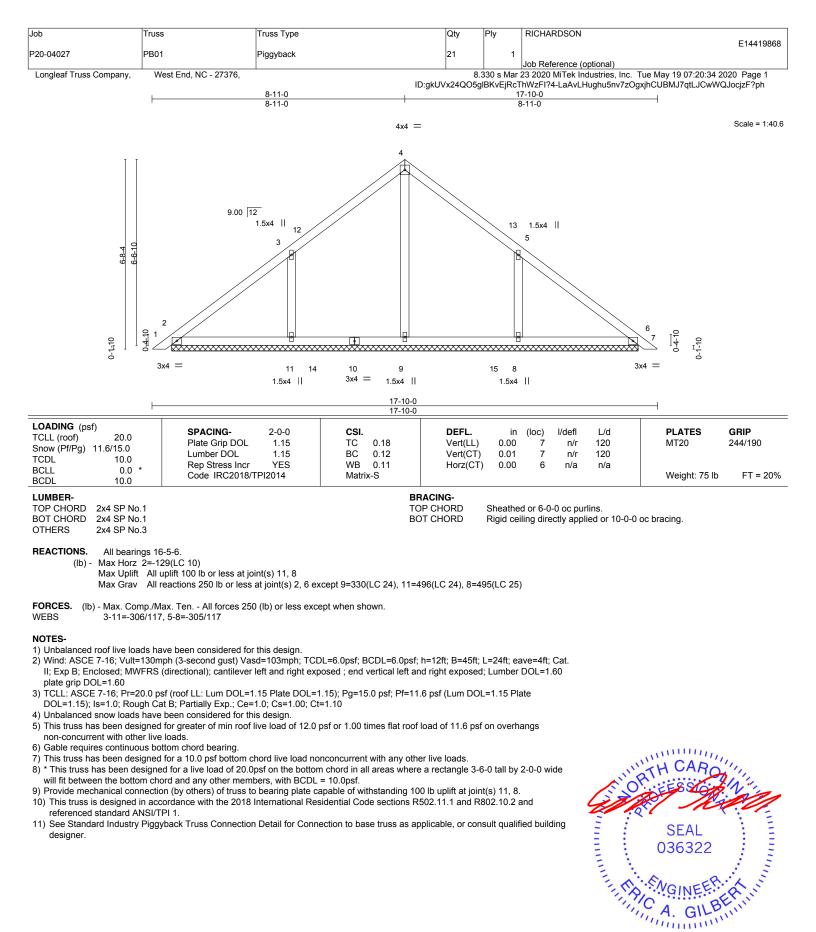
13) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent at 0-9-10 from the left end to connect truss(es) to back face of bottom chord.

14) Fill all nail holes where hanger is in contact with lumber.

15) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

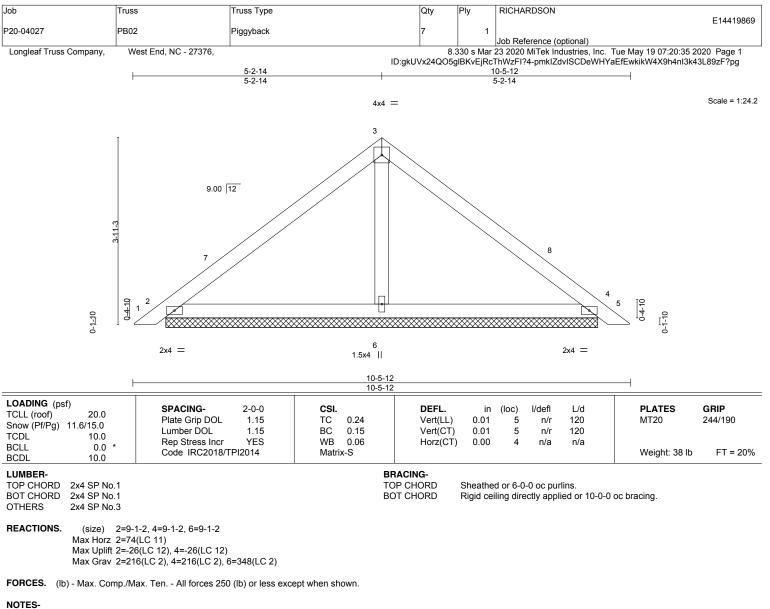
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-2=-43, 2-3=-53, 3-7=-43, 8-14=-20

Concentrated Loads (lb)

Vert: 12=-152(B) 13=-152(B) 19=-1106(B) 20=-152(B) 22=-152(B) 23=-152(B) 24=-164(B) 25=-164(B) 25=-164(B) 27=-164(B) 28=-164(B) 28=-

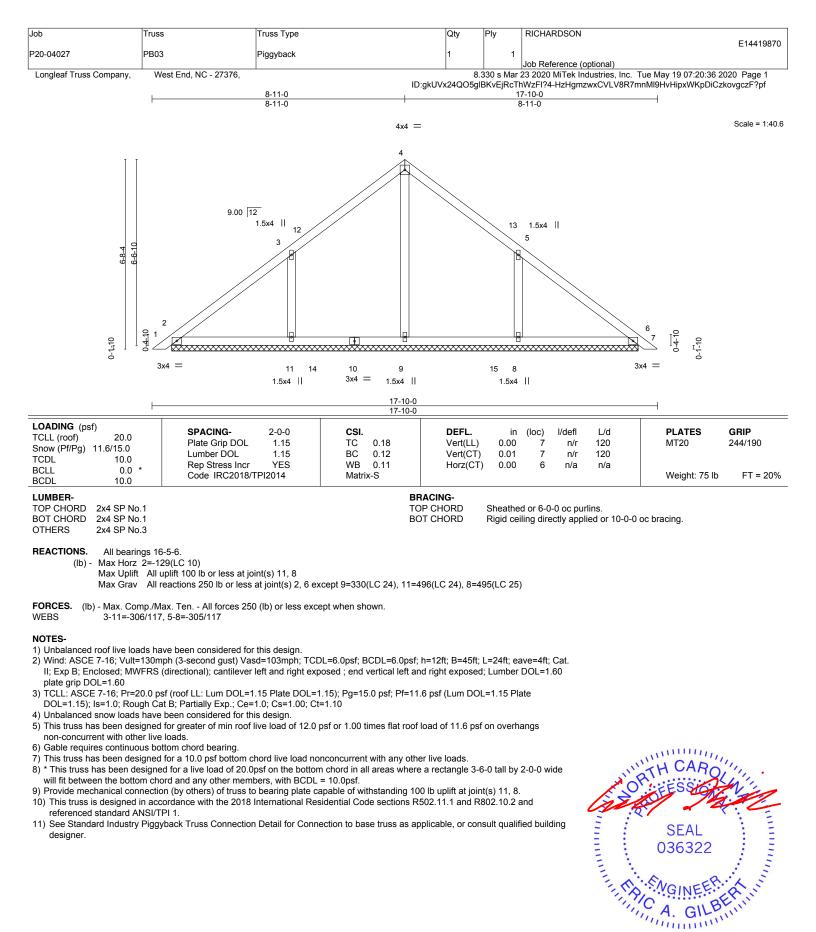
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSVTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANST/PTI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. RENCO

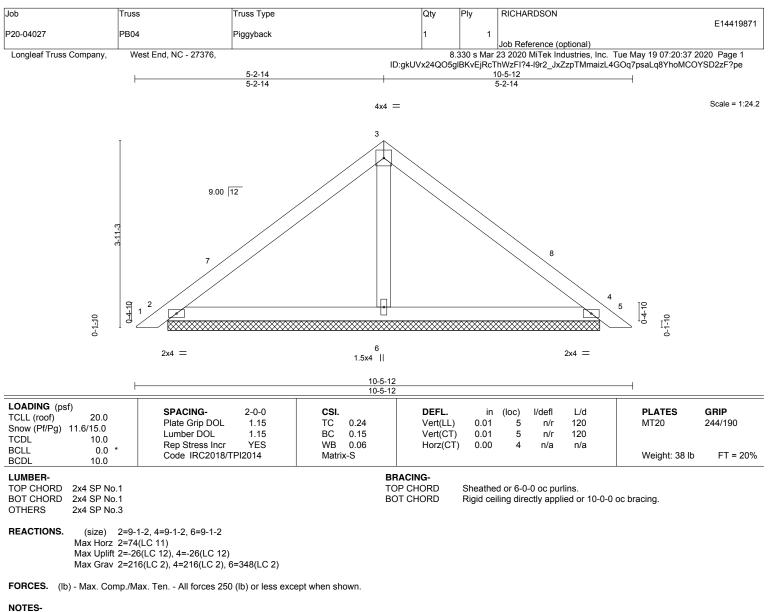
May 19,2020

Edenton, NC 27932



- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

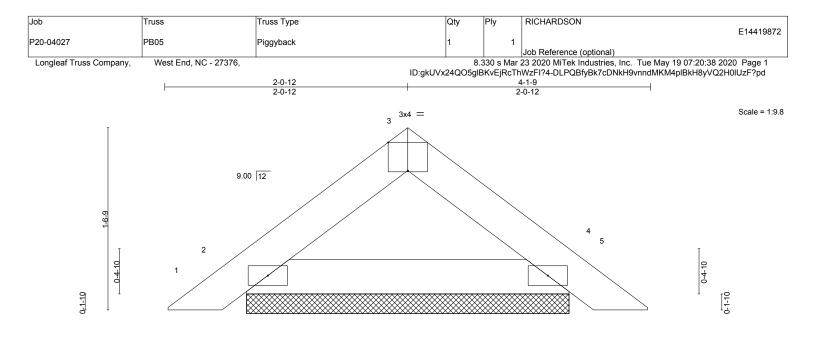
818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek At

May 19,2020



- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2x4 =

2x4 =

Sheathed or 4-1-9 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.02 BC 0.06 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4 4 4	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Code IRC2018/TPI2014	Matrix-P						Weight: 12 lb	FT = 20%

TOP CHORD

BOT CHORD

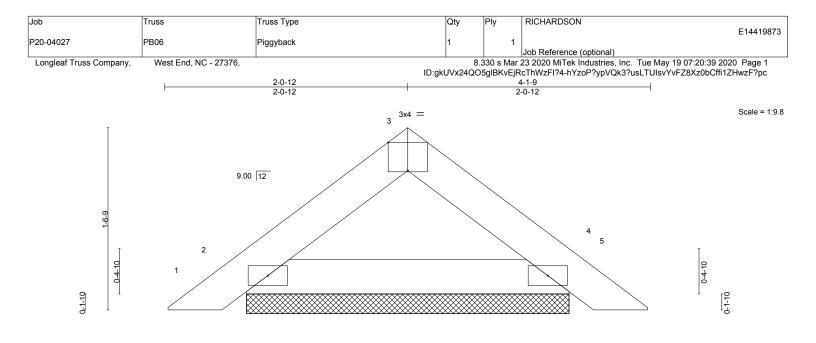
4-1-9 4-1-9

LUMBER-

TOP CHORD 2x4 SP No 1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 2=2-8-14, 4=2-8-14 Max Horz 2=-27(LC 10) Max Uplift 2=-11(LC 12), 4=-11(LC 12) Max Grav 2=136(LC 2), 4=136(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2x4 =

2x4 =

Sheathed or 4-1-9 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD

BOT CHORD

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.02 BC 0.06 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4 4 4	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Code IRC2018/TPI2014	Matrix-P						Weight: 12 lb	FT = 20%

4-1-9 4-1-9

LUMBER-

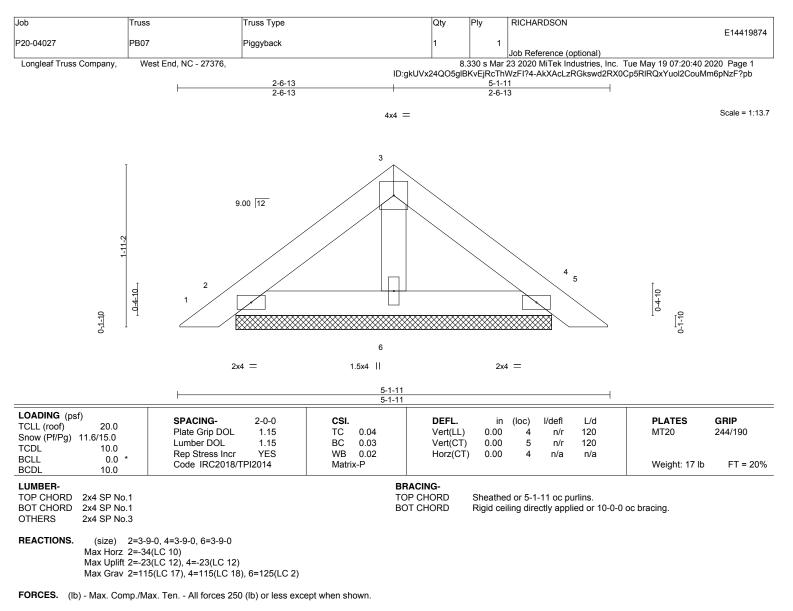
TOP CHORD 2x4 SP No 1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 2=2-8-14, 4=2-8-14 Max Horz 2=-27(LC 10) Max Uplift 2=-11(LC 12), 4=-11(LC 12) Max Grav 2=136(LC 2), 4=136(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

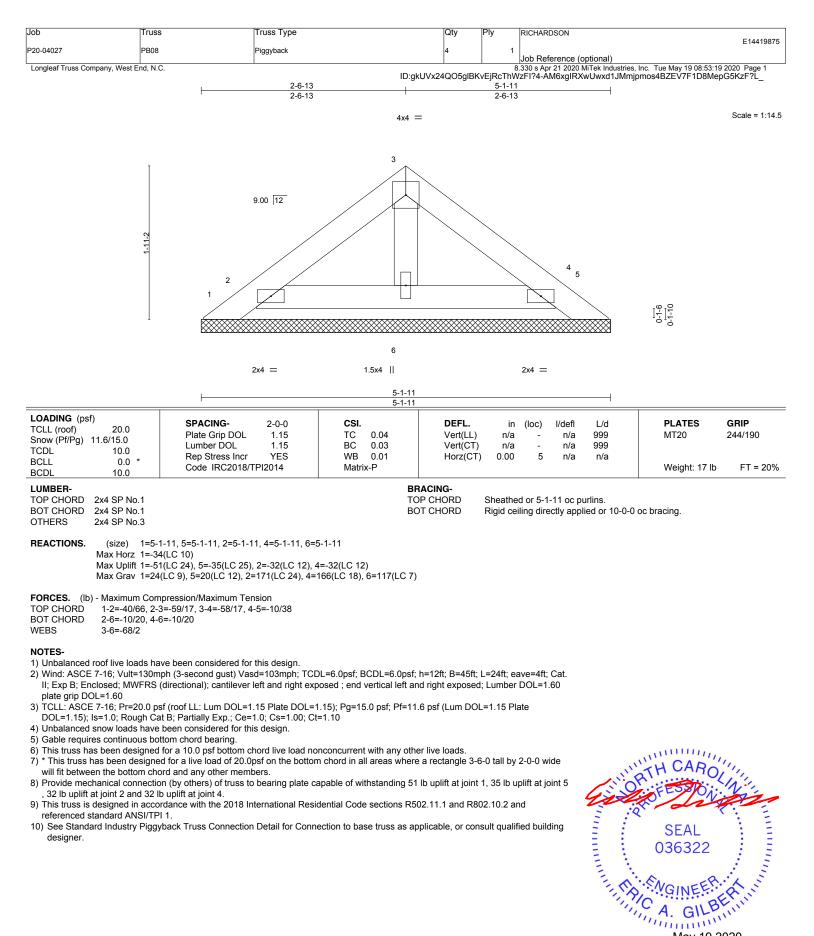
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

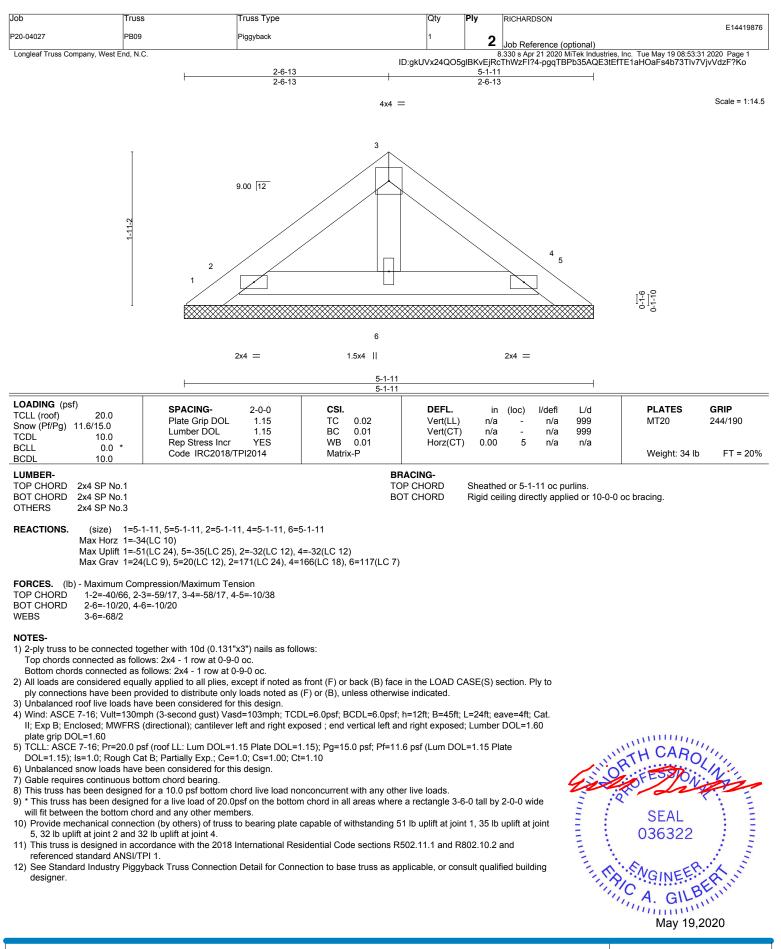

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

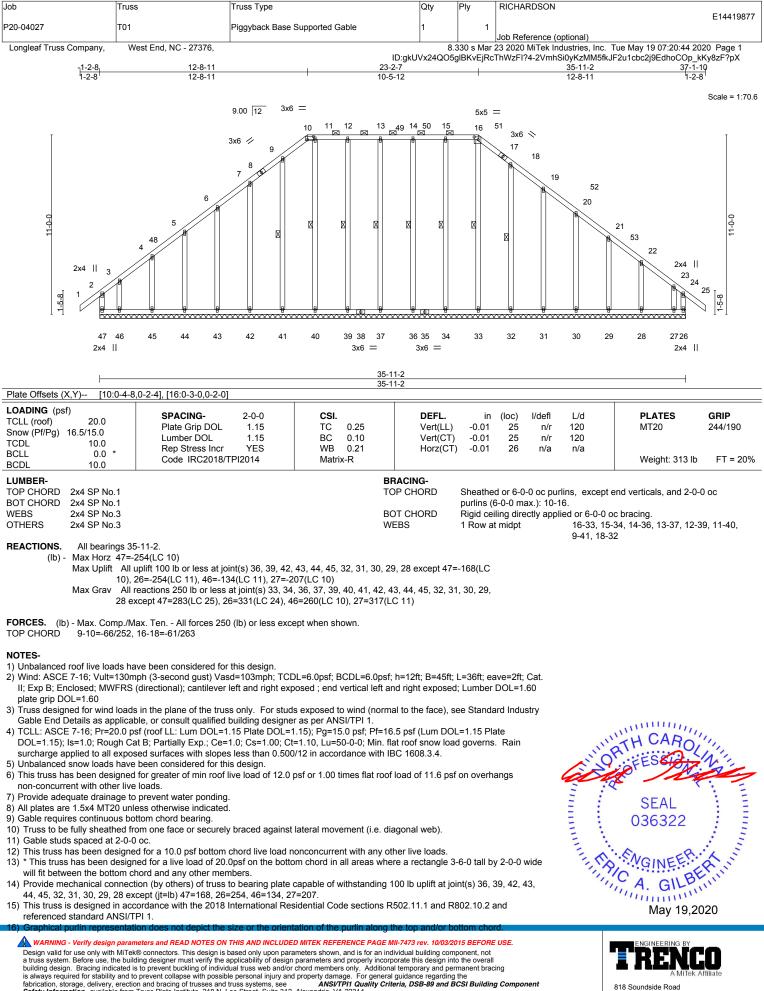
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

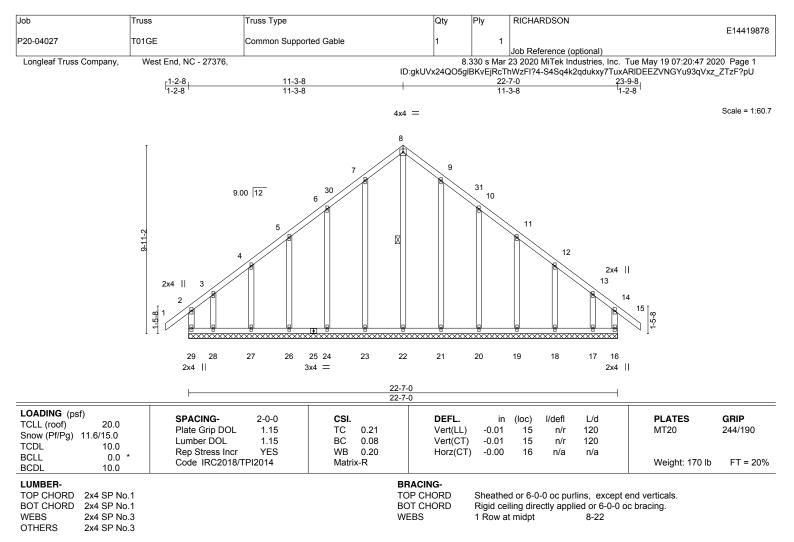

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. May 19,2020



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Que** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. All bearings 22-7-0.

(lb) - Max Horz 29=220(LC 11)

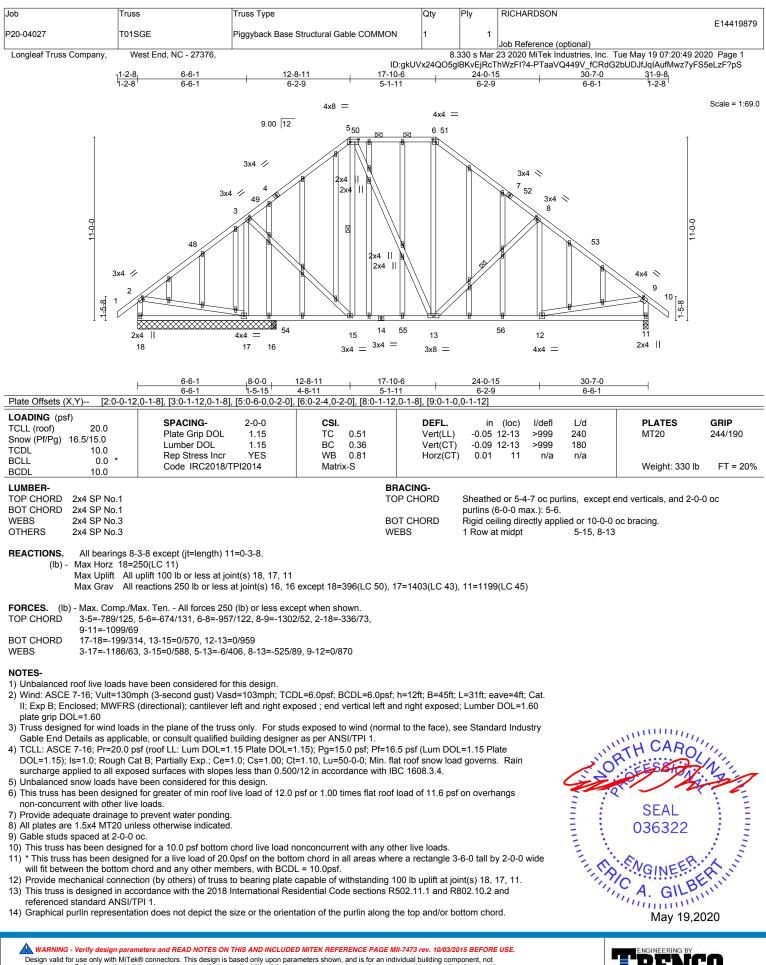
 Max Uplift
 All uplift 100 lb or less at joint(s) 16, 23, 24, 26, 27, 21, 20, 19, 18, 17 except 29=-125(LC 10), 28=-101(LC 11)

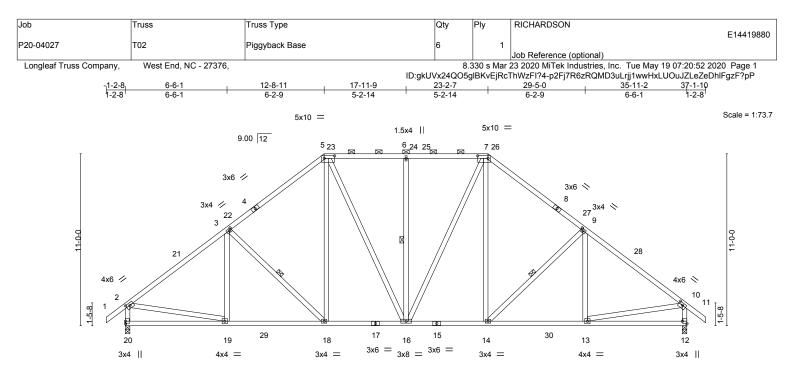
 Max Grav
 All reactions 250 lb or less at joint(s) 29, 16, 23, 24, 26, 27, 28, 21, 20, 19, 18, 17 except

22=265(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- All plates are 1.5x4 MT20 unless otherwise indicated.
- B) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 23, 24, 26, 27, 21, 20, 19, 18, 17 except (jt=lb) 29=125, 28=101.
 14) This is designed in accordance with the 2019 laterational Besidential Cade sections D502 11 (1 and D802 10 and 10 and
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


TRENCO A MiTek Atfiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	6-6-1	12-8-11	17-11-9	23-2-7	29-5-0	35-11-2	
	6-6-1	6-2-9	5-2-14	5-2-14	6-2-9	6-6-1	
Plate Offsets (X,Y)	[2:0-3-0,0-1-12], [3:0-1-12,0-	1-8], [5:0-8-0,0-2-0], [7:0)-8-0,0-2-0], [9:0-1-12	2,0-1-8], [10:0-3-0,0-1	1-12], [12:Edge,0-3-8]		

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.52 BC 0.43 WB 0.56 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.08 13-14 >999 -0.15 13-14 >999 0.05 12 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 265 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.3	-3-8, 12=0-3-8	то	T CHORD	Sheathed or 4-3-13 oc pu purlins (5-2-5 max.): 5-7. Rigid ceiling directly appli 1 Row at midpt	<i>,</i> ,	oc bracing.	-0 oc

Max Horz 20=254(LC 11) Max Uplift 20=33(LC 12), 12=-33(LC 12) Max Grav 20=1734(LC 24), 12=1734(LC 25)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1962/49, 3-5=-1702/118, 5-6=-1387/128, 6-7=-1387/128, 7-9=-1702/118, 9-10=-1962/49, 2-20=-1632/66, 10-12=-1632/66

BOT CHORD 19-20=-193/342, 18-19=0/1649, 16-18=0/1378, 14-16=0/1317, 13-14=0/1483 WEBS 3-18=-442/90, 5-18=0/545, 5-16=-30/396, 6-16=-491/59, 7-16=-30/396, 7-14=0/546, 9-14=-442/90, 2-19=0/1387, 10-13=0/1390

NOTES-

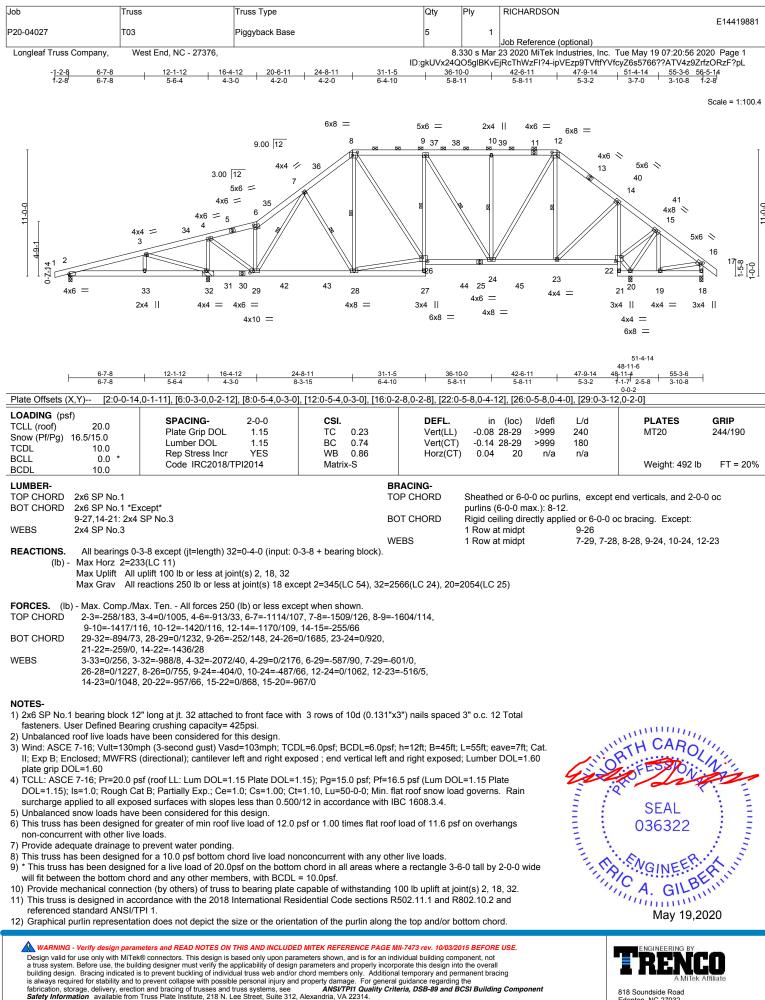
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=36ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

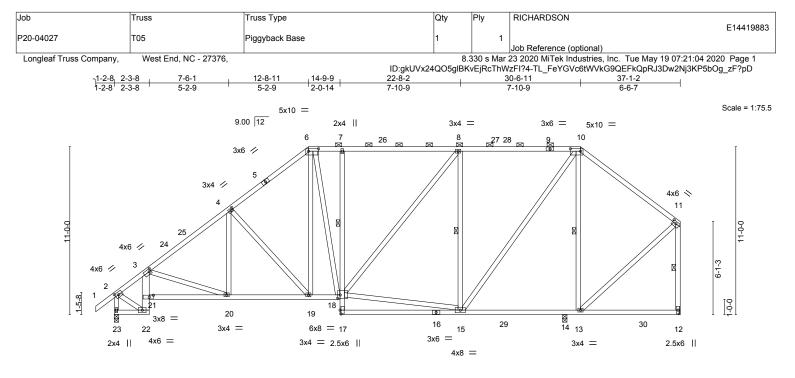
3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.


6) Provide adequate drainage to prevent water ponding.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 12.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

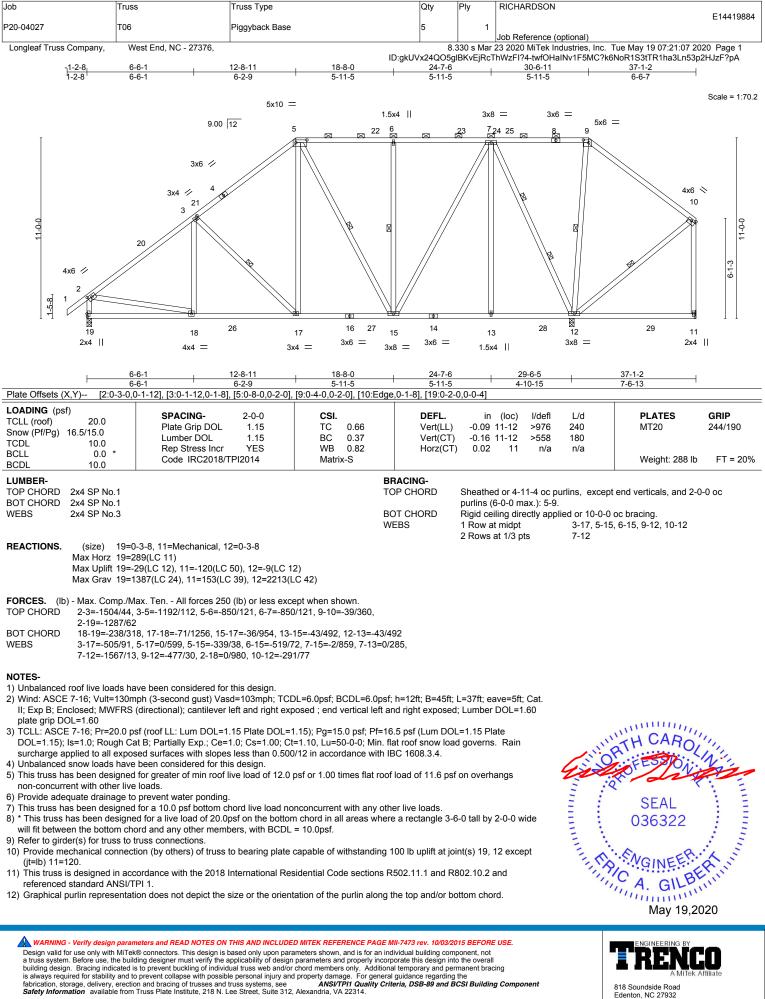
	2-3-8	7-6-1	12-8-11	14-9-9		2-8-2	1	29-8-1	30 ₁ -6		7-1-2	
	2-3-8	5-2-9	5-2-9	2-0-14		-10-9		6-11-15	0-10		6-7	-
Plate Offsets (2	X,Y) [2:0-2-1-	4,0-2-0], [3:0-1-8,0-2	-0], [4:0-1-12,0-1-8]	, [6:0-8-0,0-	2-0], [10:0·	<u>-8-0,0-2-0], [11:0</u>	-3-0,0-1	-12], [17:0-3	8-0,0-0-12	.], [18:0-2-0,0	0-2-12], [21:0-3-4,0-1-8]	
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL	20.0	SPACING- Plate Grip DO Lumber DOL Rep Stress Ir	1.15	CSI. TC BC WB	0.86 0.69 0.73	DEFL Vert(L Vert(C Horz(.L) -0 CT) -0	in (loc)).13 15-17).27 15-17).11 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 * 10.0	Code IRC20		Matr		11012(01) 0		n/a	n/a	Weight: 301 lb	FT = 20%
LUMBER-						BRACING-						
TOP CHORD	2x4 SP No.1					TOP CHORD	She	athed or 4-3	-9 oc pur	lins, except	end verticals, and 2-0-0) oc
BOT CHORD	2x4 SP No.1 *E							ins (3-11-2 r	,			
WEBS	3-22: 2x6 SP N 2x4 SP No.3	o.1, 7-17: 2x4 SP No	o.3			BOT CHORD	0	id ceiling dire	2 11	ied or 10-0-0	0 oc bracing, Except:	
						WEBS		ow at midpt ow at midpt		7-18 8-15 10-	13, 11-12	
REACTIONS.	Max Horz 23= Max Uplift 23=	0-3-8, 12=Mechanica 289(LC 11) -36(LC 12), 12=-21(L 1622(LC 24), 12=12	_C 12)	LC 42)		WEBC				0 10, 10	10, 11 iz	
FORCES. (lb) - Max Comp /	Max. Ten All forces	250 (lb) or less exc	ent when st	nown							
TOP CHORD	2-3=-1384/36 8-10=-1261/1	, 3-4=-2086/58, 4-6= 34, 10-11=-859/119,	-1694/117, 6-7=-14 2-23=-1653/48, 11-	15/126, 7-8 12=-1108/5	=-1416/123 8	,						
BOT CHORD		32, 21-22=-539/0, 3- 77, 7-18=-484/63, 14			19-20=-47	/1723,						
WEBS	,	l-19=-620/81, 6-19=- , 10-15=0/1136, 10-1	,	.,	, -	18=-22/390,						
NOTES-												
		ave been considered nph (3-second gust)		DL=6.0psf; I	BCDL=6.0	psf; h=12ft; B=4	5ft; L=37	'ft; eave=5ft;	Cat.		MUUL	

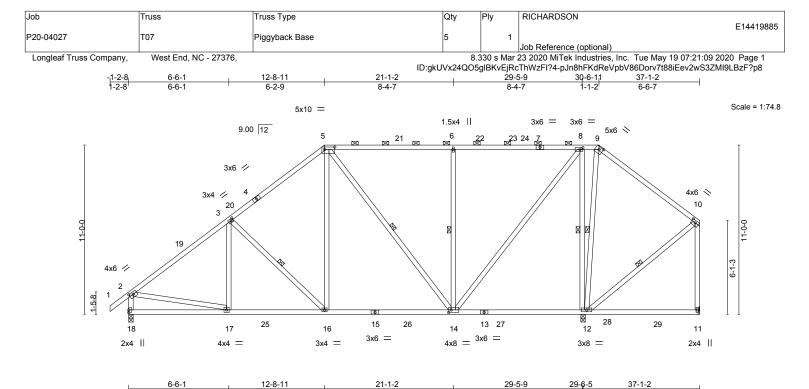
- II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23, 12.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Munninn,

ORTH


Contraction of the


CAR

SEAL

036322

	6-6-1	6-2-9	1	8-4-7	1	8-4-7	7	0-0"	1	7-6-13	1	
Plate Offsets (X,Y) [2:0-3-0,	0-1-12], [3:0-1-12,0-1-8]	, [5:0-8-0,0-2-0], [[8:0-2-4,0-1	-8], [9:0-3-0,	0-2-2], [10:0-3-0,0)-1-12], [14	4:0-2-0	,0-2-0]				
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/	2-0-0 1.15 1.15 YES IPI2014	CSI. TC BC WB Matrix	1.00 0.58 0.97 -S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (-0.14 12 -0.23 14 0.02		l/defl >999 >999 n/a	L/d 240 180 n/a		PLATES MT20 Weight: 275 lb	GRIP 244/190 FT = 20%
LUMBER-				в	RACING-							
TOP CHORD 2x4 SP No.1				T					urlins, e	xcept end	verticals, and 2-	0-0 oc
BOT CHORD 2x4 SP No.1				_		purlins (2-2		,				
WEBS 2x4 SP No.3				B		Rigid ceilir 6-0-0 oc bi	0		ed or 10-	0-0 oc bra	icing, Except:	
				W	EBS	1 Row at r	midpt		3-16, 5	5-14, 6-14	, 8-12, 9-12, 10- ⁻	12

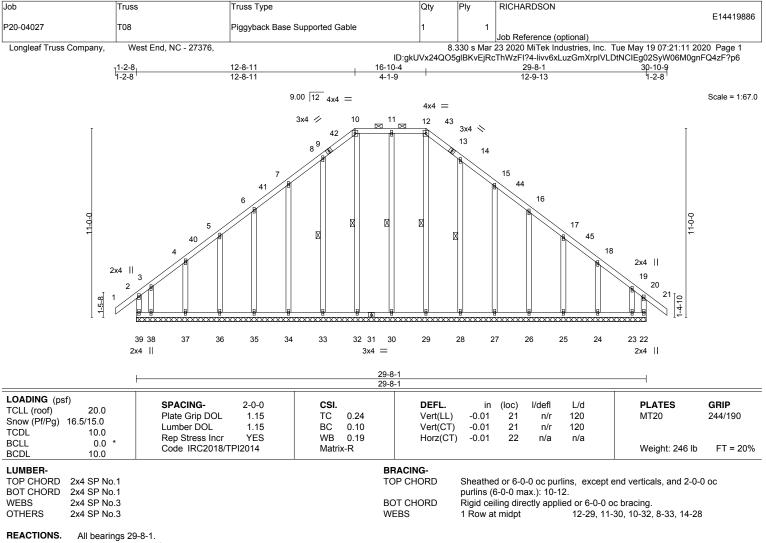
REACTIONS. (size) 18=0-3-8, 11=Mechanical, 12=0-3-8 Max Horz 18=289(LC 11) Max Uplift 18=-29(LC 12), 11=-86(LC 50), 12=-6(LC 12)

Max Grav 18=1406(LC 24), 11=184(LC 39), 12=2154(LC 42)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-1523/45, 3-5=-1229/111, 5-6=-798/122, 6-8=-798/122, 9-10=-70/304, 2-18=-1301/64 BOT CHORD 17-18=-237/325, 16-17=-70/1271, 14-16=-31/987
- WEBS 3-16=-485/93, 5-16=0/652, 5-14=-440/17, 6-14=-776/108, 8-14=-5/1479, 8-12=-1669/56, 9-12=-425/23, 2-17=0/989

NOTES-


1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=37ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 11, 12. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

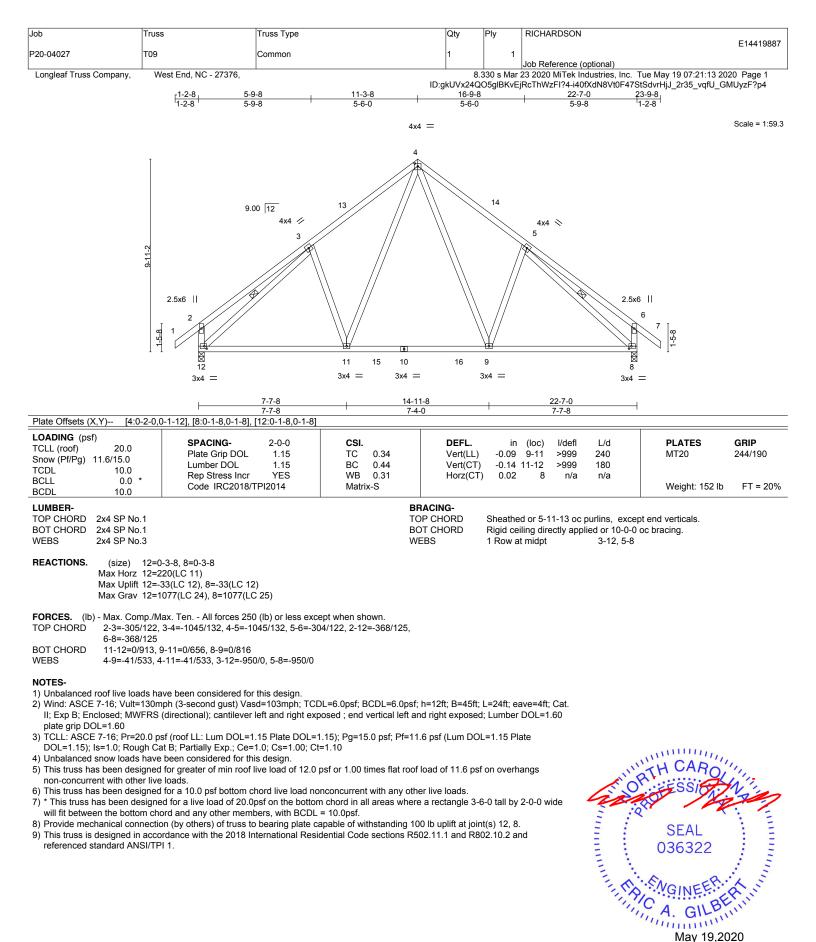
(lb) - Max Horz 39=-249(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 33, 34, 35, 36, 37, 28, 27, 26, 25, 24 except 39=-237(LC 10), 22=-203(LC 11), 38=-193(LC 11), 23=-164(LC 10)

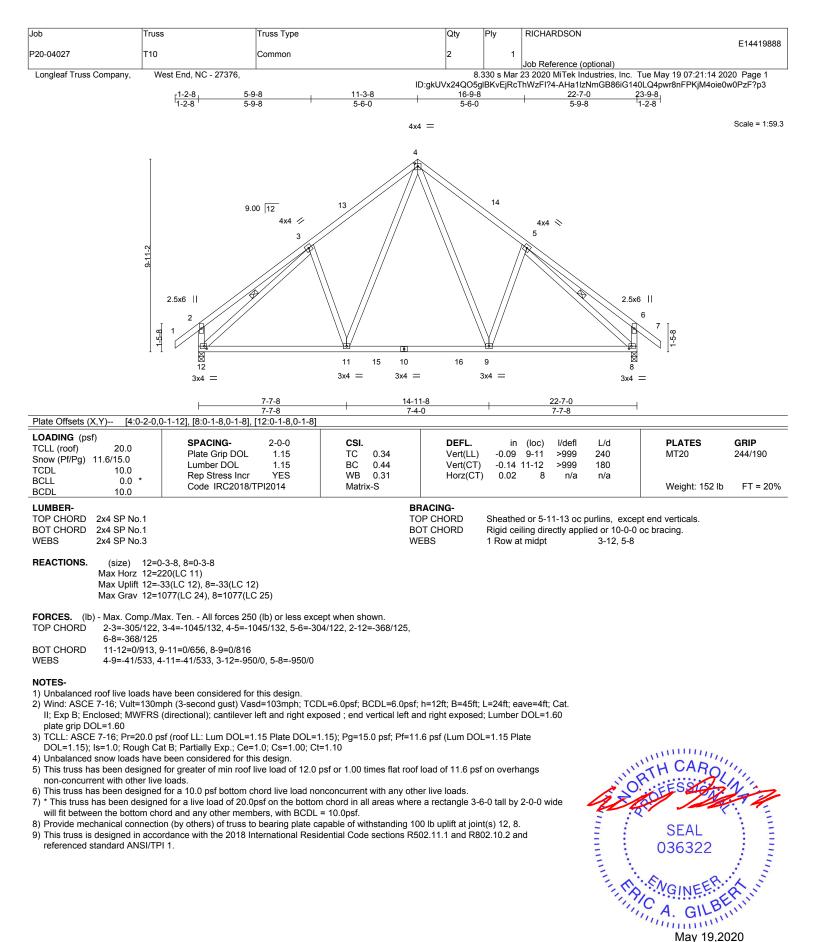
Max Grav All reactions 250 lb or less at joint(s) 29, 30, 32, 33, 34, 35, 36, 37, 28, 27, 26, 25, 24 except 39=324(LC 25), 22=296(LC 24), 38=302(LC 10), 23=273(LC 11)

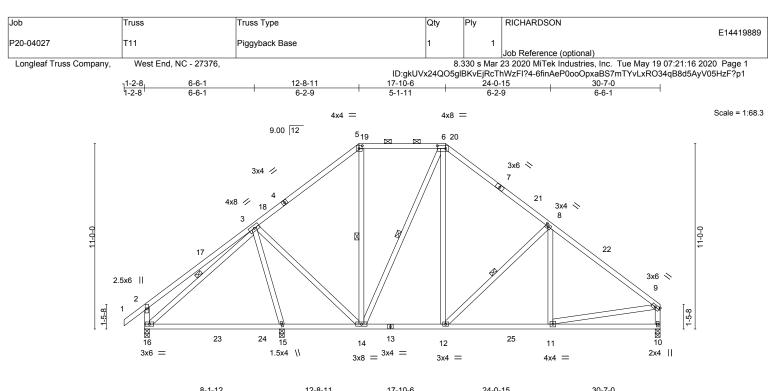
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 8-10=-67/268, 12-14=-58/269


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=30ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 1.5x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 33, 34, 35, 36, 37, 28, 27, 26, 25, 24 except (jt=lb) 39=237, 22=203, 38=193, 23=164.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. TRENGINEERING BY A MiTek Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. ENGINEERING BY

	8-1-12		-10-6	24-0-15	30-7-0		
	8-1-12	4-6-14 5-1	1-11 '	6-2-9	6-6-1	1	
Plate Offsets (X,Y) [5:0-2-4,0	0-2-0], [6:0-6-0,0-2-0], [8:0-1-12,0-1-8],	[9:Edge,0-1-8]					
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.52 BC 0.44 WB 0.82 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.14 15-16 >710 -0.23 15-16 >426 0.02 10 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 218 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.1				Sheathed or 5-4-7 oc pu	<i>'</i>	nd verticals, and 2-0-	0 oc
BOT CHORD2x4 SP No.1WEBS2x4 SP No.3		BC	OT CHORD	purlins (6-0-0 max.): 5-6 Rigid ceiling directly app 6-0-0 oc bracing: 14-15.		c bracing, Except:	
REACTIONS. (size) 15=0 Max Horz 16=2)-3-8, 16=0-3-8, 10=0-3-8 /42(1 C 11)	W	EBS	1 Row at midpt	5-14, 6-14, 8	8-12, 3-16	
	48(LC 12), 10=-5(LC 12)						

Max Grav 15=1364(LC 43), 16=539(LC 24), 10=1100(LC 45)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-345/137, 3-5=-695/132, 5-6=-436/138, 6-8=-903/127, 8-9=-1250/54, 2-16=-403/136, 9-10=-1000/38

 BOT CHORD
 15-16=-66/345, 12-14=0/632, 11-12=0/918

 WEBS
 3-15=-1102/72, 3-14=-0/639, 6-14=-482/0, 6-12=0/619, 8-12=-537/91, 9-11=0/835

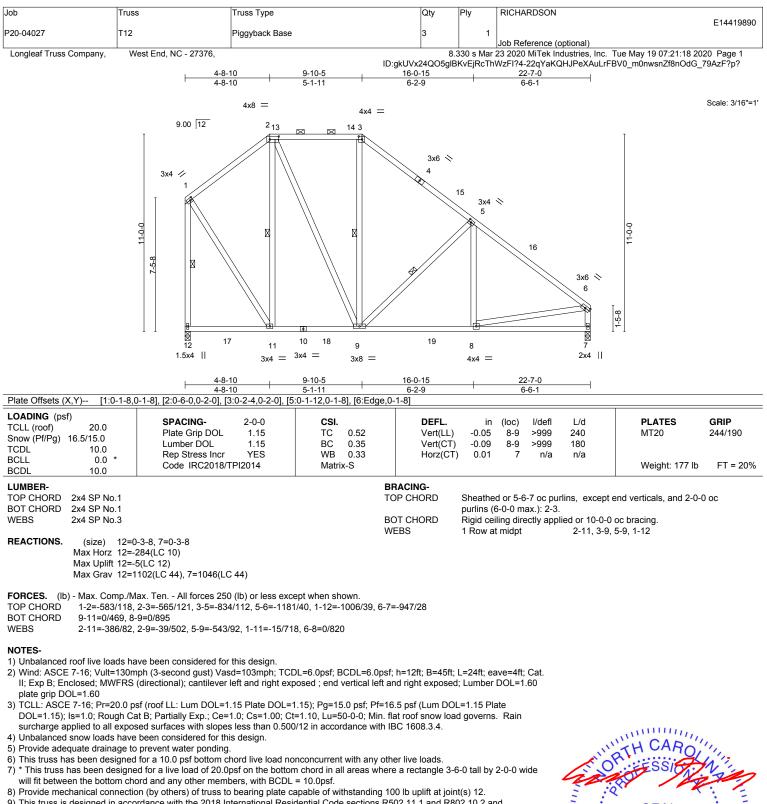
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=31ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

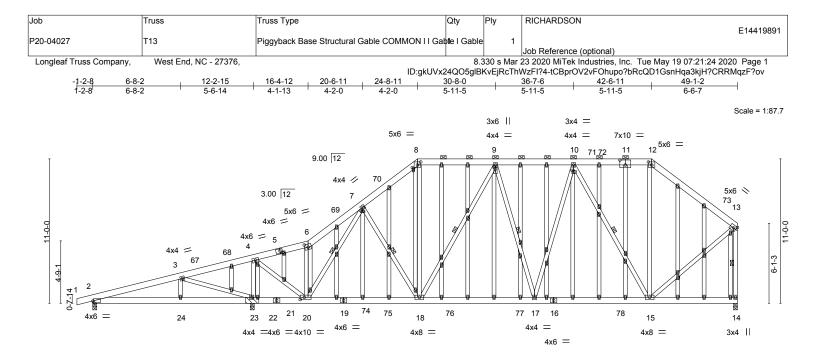
3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) Unbalanced snow loads have been considered for this design.


- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932


 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

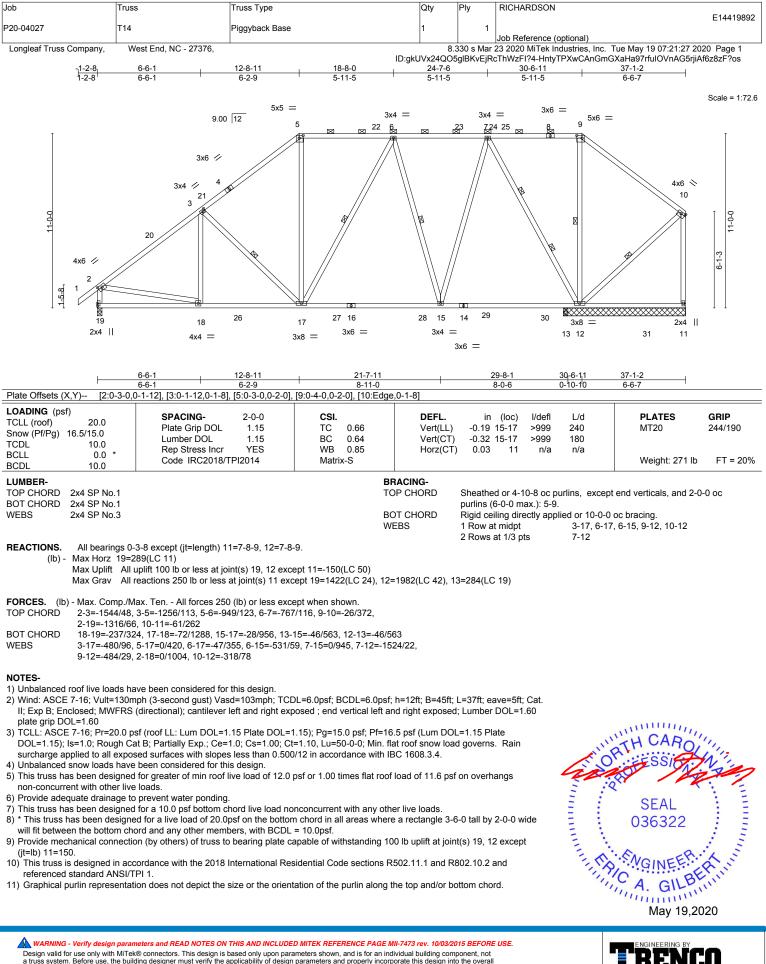
10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

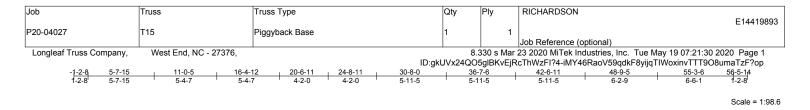
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

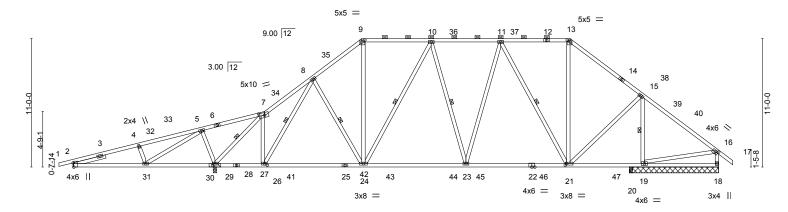
F	6-8-2 6-8-2	12-2-15	12-3-8 16-4-12	24-8-11 8-3-15	33-7-1		42-6-11 8-11-0	49-1-2	
Plate Offsets (X	,Y) [2:0-0-14	0-1-11], [5:0-2-3,0-], [6:0-2-0,0-0-14], [7:0				3,0-1-5], [11:0-5-0,0-4-8],	
LOADING (psf) TCLL (roof) Snow (Pf/Pg) 1 TCDL BCLL	20.0 6.5/15.0 10.0 0.0 *	SPACING- Plate Grip Du Lumber DOL Rep Stress I Code IRC20	. 1.15 ncr YES	CSI. TC 0.37 BC 0.38 WB 0.87 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.08 15-17 -0.14 15-17 0.03 14	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 621 lb	GRIP 244/190 FT = 20%
BCDL	10.0				BRACING-				
TOP CHORD					TOP CHORD			cept end verticals, and 2-0	-0 oc
BOT CHORD WEBS	2x6 SP No.1 2x4 SP No.3				BOT CHORD	purlins (6-0-0 m	ax.): 8-12. ectly applied or 6-		
	2x4 SP No.3				WEBS	1 Row at midpt		7-18, 9-18, 9-17, 10-15, 1	3-14
REACTIONS.	Max Horz 2=26 Max Uplift 2=-29 Max Grav 2=35	4(LC 11) 5(LC 12), 23=-8(LC 4(LC 54), 14=1616	(LC 25), 23=2614(L	C 24)					
FORCES. (Ib) TOP CHORD	3-4=-25/972, 4	-6=-943/8, 6-7=-11	250 (lb) or less exc 57/76, 7-8=-1589/10 12-13=-1198/96, 13	9, 8-9=-1275/110,					
BOT CHORD WEBS	20-23=-892/46 3-24=0/256, 3-	, 18-20=-19/1270, 23=-994/10, 4-23=	17-18=0/1532, 15-1 -2111/46, 4-20=0/22						
fasteners. Us 2) Unbalanced 3) Wind: ASCE II; Exp B; End plate grip DC 4) Truss design Gable End D 5) TCLL: ASCE DOL=1.15); 1 surcharge ap 6) Unbalanced 7) This truss ha non-concurre 8) Provide adec 9) All plates are 10) Gable studs 11) This truss h 12) * This truss will fit betwee	er Defined Beari roof live loads ha 7-16; Vult=130m closed; MWFRS IL=1.60 ed for wind loads etails as applicat 7-16; Pr=20.0 ps s=1.0; Rough Ca plied to all expos snow loads have s been designed ent with other live juate drainage to 2x4 MT20 unles s spaced at 2-0-0 as been design has been design ent the bottom cl	ng crushing capaci ve been considered ph (3-second gust) (directional); cantile in the plane of the le, or consult qualities of (roof LL: Lum DC t B; Partially Exp.; ed surfaces with slibeen considered for for greater of min r loads. prevent water pon- s otherwise indication oc. d for a 10.0 psf bot ed for a live load of load any other	ty= 425psi. d for this design. Vasd=103mph; TCl ever left and right exit truss only. For stud fied building designe 0L=1.15 Plate DOL= Ce=1.0; Cs=1.00; C opes less than 0.500 or this design. oof live load of 12.0 ding. ed. tom chord live load if f20.0psf on the bott members, with BCD	h 3 rows of 10d (0.13 DL=6.0psf; BCDL=6.0p bosed ; end vertical left ls exposed to wind (no rr as per ANSI/TPI 1. 1.15); Pg=15.0 psf; Pf= t=1.10, Lu=50-0-0; Min 0/12 in accordance with psf or 1.00 times flat ro nonconcurrent with any om chord in all areas w L = 10.0psf. capable of withstandin	osf; h=12ft; B=45ft; t and right exposed rmal to the face), so =16.5 psf (Lum DOI 1. flat roof snow load h IBC 1608.3.4. bof load of 11.6 psf y other live loads. where a rectangle 3-	L=49ft; eave=6ft ; Lumber DOL=1 ee Standard Indu L=1.15 Plate d governs. Rain on overhangs -6-0 tall by 2-0-0	.60 Istry	SEAL 036322	
Continued on pa	ge 2		io boag plato		.g				
Design valid fo a truss system	r use only with MiTek Before use, the build	® connectors. This designed in the second	gn is based only upon par the applicability of design	D MITEK REFERENCE PAG ameters shown, and is for an a parameters and properly ind chord members only. Addit	n individual building comp corporate this design into	oonent, not the overall			:0

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


Job	Truss	Truss Type	Qty	Ply	RICHARDSON	
P20-04027	T13	Piggyback Base Structural Gable COMMON I I Gal		1	E14419891	
F 20-04027					Job Reference (optional)	
Longleaf Truss Company	y, West End, NC - 27376,		8.	330 s Mar	23 2020 MiTek Industries, Inc. Tue May 19 07:21:25 2020 Page 2	
		ID:gkUVx24QO5glBKvEjRcThWzFI?4-LOIB2jWggZXYWzNB997fmEp1XhApoByQEsA?uGzF?ou				

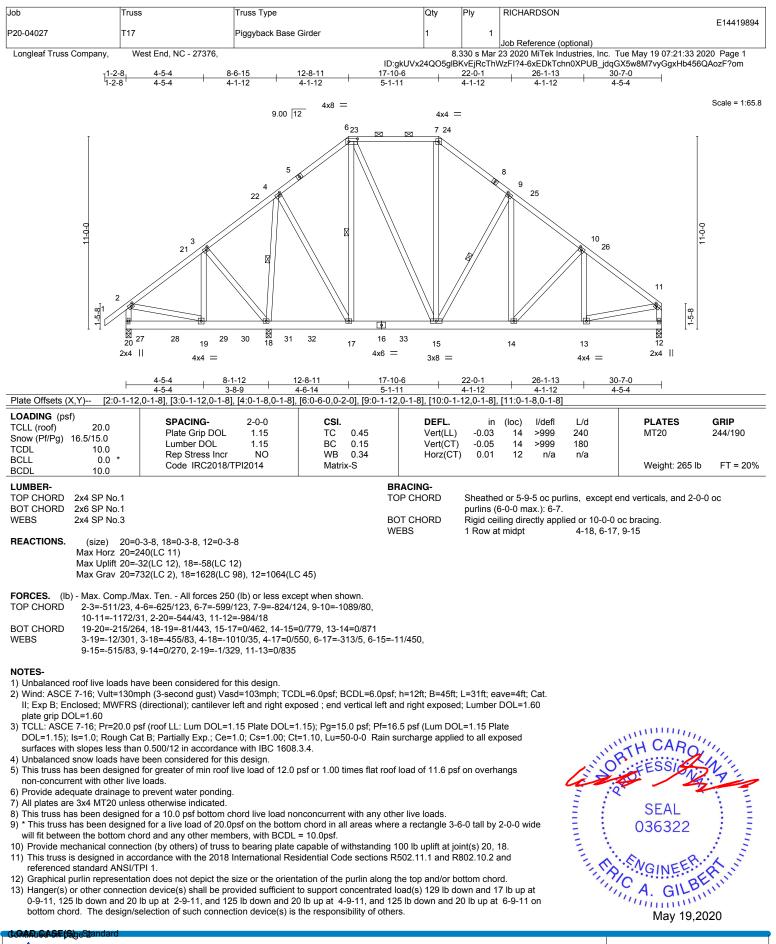
NOTES-


14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ucollapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

ł	6-2-10	12-0-0 12-1 ₁ 12 16-4-12	24-8-11	33-7-11	42-6-11	47-11-2	48-9-5 55-3-6	
Plate Offsets ()	6-2-10 (.Y) [2:0-4-4.Ed	<u>5-9-6 0-1-42 4-3-0 </u> ge], [7:0-5-12,0-2-8], [9:0-3-0,0-	<u>8-3-15</u> 2-0]. [13:0-3-0.0-2-0]. [16:0-3	<u>8-11-0</u> 3-0.0-1-12], [21:0-1	<u>8-11-0</u> 1-8.0-1-8], [26:0-2-12	<u>5-4-7</u> 2.0-1-8], [29:0-2-8.0	<u> </u>	
LOADING (pst TCLL (roof) Snow (Pf/Pg) TCDL	f) 20.0 16.5/15.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.64 BC 0.70 WB 0.79	DEFL. Vert(LL) Vert(CT) Horz(CT	in (loc) l/ -0.20 21-23 > -0.32 21-23 >	defl L/d 999 240 999 180 n/a n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 * 10.0	Code IRC2018/TPI2014	Matrix-S				Weight: 368 lb	FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER REACTIONS.	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Left 2x4 SP No.3 - All bearings 0-3- Max Horz 29=236 Max Uplift All up	8 except (jt=length) 29=0-4-10 (nput: 0-3-8 + bearing block) 0 except 29=-286(LC 12)		purlins (5-3-6 max. Rigid ceiling directly 1 Row at midpt -7-12.): 9-13. y applied or 4-5-5 (end verticals, and 2-0- oc bracing. 5, 8-24, 10-24, 10-23, 1	
FORCES. (Ib TOP CHORD BOT CHORD WEBS	2-4=-242/906, 4- 9-10=-1143/24, 1 2-31=-820/241, 2 21-23=0/1274 4-31=-407/95, 5- 8-26=-1385/301,	Ten All forces 250 (lb) or les 5=-230/1021, 5-7=-452/2136, 7 10-11=-1329/60, 11-13=-788/10 29-31=-1835/470, 26-29=-310/7 31=-236/1075, 5-29=-686/149, 8-24=-97/402, 9-24=0/581, 10- 13-21=0/311, 15-21=0/1291, 15	8=-785/457, 8-9=-1429/2, 5, 13-15=-1004/90, 15-16=-6 92, 24-26=0/1112, 23-24=0/ 7-29=-3048/193, 7-26=-171/ 24=-539/79, 11-23=0/481,	1417, 1467,				
 fasteners. U 2) Unbalanced 3) Wind: ASCE II; Exp B; Enplate grip DC 4) TCLL: ASCE DOL=1.15); surcharge al 5) Unbalanced 6) This truss hanon-concurr 7) Provide ade 8) All plates are 9) This truss will fit betw 11) Provide medite (jt=lb) 29=2 12) This truss is 	ser Defined Bearing roof live loads have 7-16; Vult=130mpf iclosed; MWFRS (d) DL=1.60 57-16; Pr=20.0 psf Is=1.0; Rough Cat I pplied to all expose snow loads have b as been designed for ent with other live Ic quate drainage to p a 3x6 MT20 unless as been designed for a has been designed for a has been designed to has been designed can be bottom cho cchanical connection 286.	ong at jt. 29 attached to front fa g crushing capacity= 425psi. been considered for this desig (3-second gust) Vasd=103mpl irectional); cantilever left and rig (roof LL: Lum DOL=1.15 Plate I B; Partially Exp.; Ce=1.0; Cs=1. d surfaces with slopes less than een considered for this design. or greater of min roof live load of bads. revent water ponding. otherwise indicated. or a 10.0 psf bottom chord live lo d for a live load of 20.0psf on the rd and any other members, with n (by others) of truss to bearing dance with the 2018 Internation 1.	h. (; TCDL=6.0psf; BCDL=6.0p ht exposed ; end vertical left IOL=1.15); Pg=15.0 psf; Pf= 0; Ct=1.10, Lu=50-0-0; Min 0.500/12 in accordance with 12.0 psf or 1.00 times flat ro ad nonconcurrent with any of bottom chord in all areas w BCDL = 10.0psf. plate capable of withstandin	esf; h=12ft; B=45ft; t and right exposed 16.5 psf (Lum DO) flat roof snow loa b IBC 1608.3.4. Dof load of 11.6 psf other live loads. there a rectangle 3 g 100 lb uplift at jo	L=55ft; eave=7ft; Ca t; Lumber DOL=1.60 L=1.15 Plate d governs. Rain f on overhangs -6-0 tall by 2-0-0 wid int(s) 18, 20 except		SEAL 036322	A THE THE REAL PROPERTY OF THE
Design valid for a truss system building desig is always requ fabrication, sto	or use only with MiTek® 1. Before use, the building 1. Bracing indicated is to 1. B	ers and READ NOTES ON THIS AND IN connectors. This design is based only up g designer must verify the applicability or prevent buckling of individual truss wet revent collapse with possible personal in and bracing of trusses and truss systems uss Plate Institute, 218 N. Lee Street, Su	on parameters shown, and is for an design parameters and properly inc and/or chord members only. Additi ury and property damage. For gene , see ANS//TPI1 Quality C	individual building com corporate this design int ional temporary and per eral guidance regarding	ponent, not o the overall manent bracing	t	ENGINEERING BY AMITEK A 818 Soundside Road Edenton, NC 27932	D ffiliate


Job	Truss	Truss Type	Qty	Ply	RICHARDSON	
					E14419893	
P20-04027	T15	Piggyback Base	1	1		
					Job Reference (optional)	
Longleaf Truss Company,	West End, NC - 27376,	8.330 s Mar 23 2020 MiTek Industries, Inc. Tue May 19 07:21:30 2020 Page 2				
		ID:gkUVx24QO5glBKvEjRcThWzFI?4-iMY46RaoV59qdkF8yijqTlWoxinvTTT9O8umaTzF?op				

NOTES-

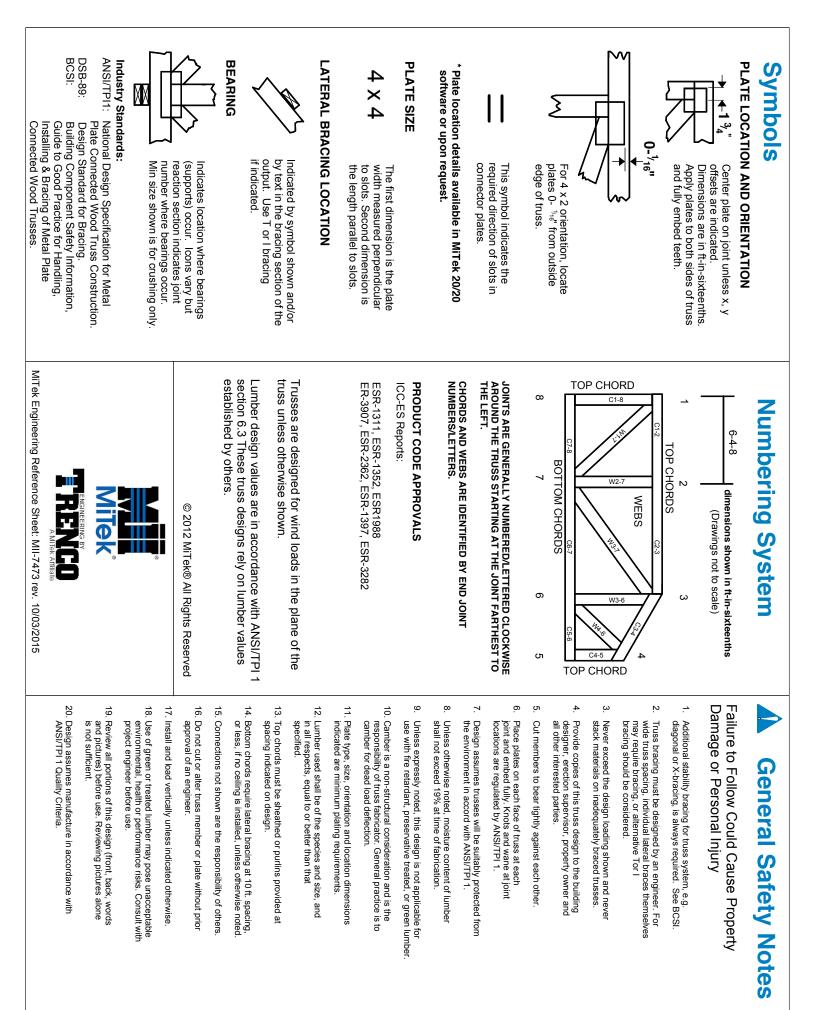
13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property dmage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	RICHARDSON	
P20-04027	T17	Piggyback Base Girder	1	1	E14419894	
					Job Reference (optional)	
Longleaf Truss Company,	West End, NC - 27376,	8.330 s Mar 23 2020 MiTek Industries, Inc. Tue May 19 07:21:33 2020 Page 2				
		ID:gkUVx24QO5glBKvEjRcThWzFI?4-6xEDkTchn0XPUB_jdqGX5w8M7vyGgxHb456QAozF?om				

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-43, 2-6=-43, 6-7=-53, 7-11=-43, 12-20=-20

Concentrated Loads (lb)

Vert: 27=-107 28=-104 29=-104 30=-104

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSVTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

