

RE: J0820-3990 Precision/Lot 38 Summerlin/Harnett **Trenco** 818 Soundside Rd Edenton, NC 27932

Site Information: Customer: Project Name: J0820-3990 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf Design Program: MiTek 20/20 8.3 Wind Speed: N/A mph Floor Load: 55.0 psf

This package includes 12 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	E14950659	ET1	10/21/2020
2	E14950660	ET2	10/21/2020
3	E14950661	ET3	10/21/2020
4	E14950662	F1	10/21/2020
5	E14950663	F2	10/21/2020
6	E14950664	F3	10/21/2020
7	E14950665	F4	10/21/2020
8	E14950666	F5	10/21/2020
9	E14950667	F6	10/21/2020
10	E14950668	F7	10/21/2020
11	E14950669	F8	10/21/2020
12	E14950670	F9-GR	10/21/2020

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2020

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Precision/Lot 38 Summ	nerlin/Harnett	E14050650
J0820-3990	ET1	GABLE	1	1			E14950659
					Job Reference (option	al)	1.0000 D
Comtech, Inc, Fayette	eville, NC - 28314,		s ID:JJp3 bNird	0.330 s Ju peLXA5m	Dh?5?y7p3U-OHVh2H	ies, inc. Wed Oct 7 09:21:31 [zqEP9jn8jwltevlFM9fqkNf5G	2020 Page 1 Q7GGs8SyVrel
0-1 ₁ 8							0-1 ₁ 8
							Scale = 1:32.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5 41 0 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 10 2 0 28 27 2x6 2x6	11 4	3 12 13	3x6 FP = 14 15 44 16 23 22 21 x6 FP = 2x6 2x6	$ \begin{array}{c} 17 \\ 17 \\ 18 \\ 17 \\ 18 \\ 39 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17$
$\frac{0.6-4}{0.6-4}$ 1-10-4 3	- <u>2-4 4-6-4 5-10-4</u> -4-0 1-4-0 1-4-0	+ 7-2-4 + 8-6-4 + 9-10-4 1-4-0 + 1-4-0 + 1-4-0	<u>+ 11-2-4 + 12-6-4</u> 1-4-0 1-4-0	13-1	0-4 15-2-4 16 -0 1-4-0 1·	<u>-6-4 17-10-4 19-2-4</u> -4-0 1-4-0 1-4-0	<u>19-8-8</u> 0-6-4
Plate Offsets (X,Y) [20	:Edge,0-3-0], [20:0-0-12,0-0-0), [36:0-0-12,0-0-0], [37:Edge,0-3	3-0]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.10 BC 0.00 WB 0.04 Matrix-R	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	(loc) - - 19	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRI MT20 244 Weight: 109 lb F	I P /190 T = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No WEBS 2x4 SP No OTHERS 2x4 SP No REACTIONS. All beari (lb) - Max Uplif Max Grav	0.1(flat) 0.1(flat) 0.3(flat) 0.3(flat) 0.3(flat) ngs 19-8-8. t All uplift 100 lb or less at jo r All reactions 250 lb or less 19	int(s) 37 at joint(s) 28, 29, 30, 31, 33, 34, 3	BRACING- TOP CHORD BOT CHORD 35, 36, 27, 26, 25, 24, 22	Structur except e Rigid ce 2, 21, 20,	al wood sheathing dire and verticals. iling directly applied o	ectly applied or 6-0-0 oc pur r 10-0-0 oc bracing.	lins,
	mp (Max Top All forces 250) (Ib) or loss avaant when shown					
	mp./wax. ren All lorces 250	(iu) of less except when shown.					
NOTES- 1) All plates are 1.5x3 MT	20 unless otherwise indicated						

- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 37.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
- Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

- 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
 - Vert: 19-37=-10, 1-18=-100
- Concentrated Loads (lb)

Vert: 18=-72 7=-64 4=-64 10=-64 13=-64 40=-64 41=-64 42=-64 43=-64 44=-64

				17-0-0				
	G (psf)	SPACING- 2-0-(0 CSI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
TCDL	10.0	Lumber DOL 1.00 Rep Stress Incr YES	0 BC 0.01 S WB 0.03	Vert(CL) Vert(CT) Horz(CT)	n/a - 0.00 16	n/a 999 n/a n/a	WIZO	244/130
BCDL	5.0	Code IRC2015/TPI2014	Matrix-R				Weight: 71 lb	FT = 20%F, 11%E
LUMBEF TOP CHO BOT CHO	}- ORD 2x4 SF ORD 2x4 SF	P No.1(flat) P No.1(flat)		BRACING- TOP CHORD	Struct	ural wood sheathing di t end verticals.	irectly applied or 6-0-0) oc purlins,
WEBS	2x4 SF	P No.3(flat)		BOT CHORD	Rigid	ceiling directly applied	or 10-0-0 oc bracing.	

17-0-0

OTHERS 2x4 SP No.3(flat)

REACTIONS. All bearings 17-0-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 30, 16, 29, 28, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

						15-7-0						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0)))	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.00 1.00 YES 212014	CSI. TC BC WB Matriz	0.06 0.01 0.03 x-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP I 2x4 SP I 2x4 SP I	No.1(flat) No.1(flat) No.3(flat)				BRACING- TOP CHOR BOT CHOR	.D .D	Structur except Rigid ce	ral wood end verti eiling dire	sheathing di icals. ectly applied	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,

15-7-0

2x4 SP No.3(flat) OTHERS

REACTIONS. All bearings 15-7-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 26, 14, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Job	Truss	Truss Type	Qty	Ply	Precision/Lot 38 Summerlin/Harnett	
J0820-3990	F1	GABLE	1	1	E14950662	
Comtech, Inc, Fayette	ville, NC - 28314,		ID: LIn3, bNirdne	 3.330 s Jul I XA5mDb	Job Keterence (optional) I 22 2020 MiTek Industries, Inc. Wed Oct 7 09:21:34 2020 Page 1 252/27.031 LosPab Mc20kaEthOPMXOtr9shZathlspELIWkny/kreE	
0-1-8			ID.3393_bitlide	LAGINDI		
HI	12-7-8	<mark>1-3-0</mark>		0 <u>-10-0</u>	<u>1-10-8 0-1-8</u> Scale = 1:54.9	
		4x6 =	3x4 =	= 3x4	=	
4 0 54 0	4 5 50 6 7 0	3x4 3x6 FP =	3x6 = 3x6	6 FP =	3x4 = 3x4 = 3x4 = 4x6 =	
			15 16 17		20 21 22 23 24 25	
48 47 46	45 44 43 42 4	1 40 39 38 37 36 35	34 33	32 31	30 29 28 27 26	
3x6 = 2x6 2 2x6	x6 2x6 2x6 2x6 2x	6 2x6 2x6 3x6 FP = 4x6 = 3x10 =	= 3x8 M18SHS 3x6 =	FP = 3x4 =	3x4 = 3x6 = 4x6 = 3x6 = 3x10 =	
		2x6		3x10	0 =	
. 1-4-0 . 2-8-0 . 4-0-0	. 5-4-0 . 6-8-0 . 8-0-0 . 9-4-0 .	12-7- 8 3-1-8	21-6-8	22-	£.12. 32.5.0 ·	
1-4-0 1-4-0 1-4-0	1-4-0 1-4-0 1-4-0 1-4-0	1-4-0 1-4-0 0-7-8 0-4-8	8-5-0	1-	0-4 9-10-4	
Plate Offsets (X,Y) [19	:0-1-8,Edge], [20:0-1-8,Edge]	0-1-8				
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	I/defi L/d PLATES GRIP	
TCLL 40.0 TCDL 10.0	Plate Grip DOL 1.00 Lumber DOL 1.00	TC 0.31 BC 0.51	Vert(LL) -0.31 Vert(CT) -0.43	30-31 30-31	>751 480 MT20 244/190 >547 360 M18SHS 244/190	
BCLL 0.0 BCDL 5.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.58 Matrix-S	Horz(CT) 0.07	26	n/a n/a Weight: 174 lb FT = 20%F, 11%E	
LUMBER-			BRACING-	<u> </u>		
BOT CHORD 2x4 SP 24	00F 2.0E(flat) 00F 2.0E(flat)			Structura except e	al wood sheathing directly applied or 6-0-0 oc purlins, and verticals.	
WEBS 2x4 SP No OTHERS 2x4 SP No	.3(flat) .3(flat)		BOT CHORD	Rigid ce	iling directly applied or 6-0-0 oc bracing.	
REACTIONS. All bearing	ngs 13-1-8 except (jt=length) 2	26=0-3-0.				
(lb) - Max Uplift Max Grav	All uplift 100 lb or less at joi All reactions 250 lb or less a	nt(s) except 38=-349(LC 4) at joint(s) 48, 47, 46, 45, 44, 43, 42, 4	41, 40, 39 except 37	=1542(LC	; 1),	
	37=1542(LC 1), 26=1053(LC	1)				
FORCES. (lb) - Max. Cor TOP CHORD 13-15=-2	np./Max. Ten All forces 250 202/0, 15-16=-3838/0, 16-17=	(lb) or less except when shown. 3838/0, 17-19=-4665/0, 19-20=-48	45/0,			
20-21=-4 BOT CHORD 35-37=0/	674/0, 21-22=-3843/0, 22-23= 1333, 34-35=0/3149, 32-34=0	=-3843/0, 23-24=-2267/0)/4380, 31-32=0/4845, 30-31=0/484{	5, 29-30=0/4845,			
28-29=0 WEBS 12-37=-2	/4386, 27-28=0/3172, 26-27= 65/0, 13-37=-1547/0, 13-35=(0/1328)/1135, 15-35=-1233/0, 15-34=0/881	1,			
24-26=-1 17-34=-6	663/0, 24-27=0/1223, 23-27= 692/0, 17-32=0/371, 19-32=-2	-1178/0, 23-28=0/856, 21-28=-693/0 77/0, 20-29=-263/0), 21-29=0/376,			
NOTES-						
 Unbalanced floor live loa All plates are MT20 plate 	ads have been considered for es unless otherwise indicated	this design.				
3) All plates are 1.5x3 MT24) Plates checked for a plu	20 unless otherwise indicated. s or minus 1 degree rotation a	about its center.			H CARO	
5) Gable studs spaced at 16) Provide mechanical con	 5) Gable studs spaced at 1-4-0 oc. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 349 lb uplift at joint 38. 					
7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.					and sure !!	
8) CAUTION, Do not erect truss backwards. SEAL						
LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00						
Uniform Loads (plf) Vert: 26-48=-10, 1-25=-100						
Concentrated Loads (lb) Vert: 4=-85 7=-85 10=-85 51=-85 52=-85 53=-85						
					A. GILDIN	
					October 7,2020	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type		Qty	/ Ply	Pr	ecision/Lot 38 Summe	rlin/Harnett	E4405	
J0820-3990	F2	Floor		1		1			E14950	1663
Comtech. Inc. Fa	vetteville. NC - 28314.				8.330 s	Jo s Jul 22	b Reference (optional) 2020 MiTek Industries) s. Inc. Wed Oct 7 09	:21:35 2020 Page	1
,,,	,,,			ID:JJp3_bNirdp	eLXA5mDh	?5?y7p	3U-G2ICueWUkTvbC0	DSV98yb3bQvhGwZ	IDM?2uE4HDyVreE	-
0-1-8										
	2-4-4				of	-10-0 1	-10-12 0-10-0		0-1-8 Scale = 1	1.53 0
		3	1x4 4x	12 =					10	
3x4	3 4	3x10 =	3x6 FP =	$3x6 FP \equiv$	4x4	+ = 1 12	3x4 =	3X	10 = 16 17	
			• / •		-					
29										30
۲. <u>Nana</u>				<u> </u>	0		0		×	-
28	27 26		25 24	23 22		21	20	19	18	
3x6 =	$3x4 \equiv 3x6$	=	3x6 FP =	$3x6 FP \equiv 4x12$	=	4x4 =	$=$ 3x4 \equiv	$3x10 \equiv$	3x6 ≡	
. 54	6-6-10 7-8-12	12.0.12 12-	10.0	21-6-4		22-6	10	32.5.0		
5-4-	8 1-1-2 1-0-2	5-1-0 0-0	-4	8-8-4		1-0-	-6	9-10-6		
Plate Offsets (X,Y)	[20:0-1-8,Edge], [21:0-1-8,Edge]	lge], [26:0-1-8,Edge], [2	27:0-1-8,Edge]							
LOADING (psf) TCLL 40.0	SPACING- 2 Plate Grip DOL	-0-0 CSI. 1.00 TC	0.64	DEFL. Vert(LL)	in (loc -0.33 19-20	:) l/d 0 >7	efl L/d 11 480	PLATES MT20	GRIP 244/190	
TCDL 10.0	Lumber DOL	I.00 BC	0.52	Vert(CT)	-0.44 19-20	0 >5	24 360			
BCDL 5.0	Code IRC2015/TPI20	14 Matrix	v.98		0.00 1	o r	i/a 11/a	Weight: 155 lb	FT = 20%F, 11	%E
LUMBER- TOP CHORD 2x4 SI	P 2400F 2.0E(flat)	I		BRACING- TOP CHORI	D Strue	ctural w	vood sheathing direc	tly applied or 6-0-0	oc purlins,	

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 6-0-0 oc bracing.

WEBS 2x4 SP No.3(flat) REACTIONS. (size) 28=0-3-0, 25=0-3-8, 18=0-3-0

Max Grav 28=623(LC 3), 25=2067(LC 1), 18=965(LC 7)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1673/317, 3-4=-1673/317, 4-5=-1673/317, 5-6=0/2340, 6-8=0/2340, 8-10=-2690/0, 10-11=-2690/0, 11-12=-4029/0, 12-13=-4029/0, 13-14=-4029/0, 14-15=-3473/0,
 15-16=-3473/0 BOT CHORD 27-28=-1/1256, 26-27=-317/1673, 25-26=-1085/690, 22-25=-213/874, 21-22=0/3740,

20-21=0/4029, 19-20=0/4054, 18-19=0/2118 6-25=-315/0, 2-28=-1345/1, 2-27=-341/450, 5-25=-1924/0, 5-26=0/1469, 4-26=-441/0, WEBS 8-25=-2747/0, 8-22=0/2065, 10-22=-279/0, 16-18=-2272/0, 16-19=0/1462, 15-19=-251/0, 14-19=-628/0, 11-22=-1253/0, 11-21=0/820, 12-21=-502/0, 14-20=-412/340

NOTES-

1) Unbalanced floor live loads have been considered for this design.

- 2) All plates are 1.5x3 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

BOT CHORD 2x4 SP 2400F 2.0E(flat)

Job	Truss	Truss Type		Qty	Ply	Precision/Lot 38 Surr	merlin/Harnett	E14950664
J0820-3990	F3	Floor Girder		1	1	Ich Reference (antio		E14950004
Comtech, Inc, Faye	tteville, NC - 28314,		ID:.Lin	3 hNirdn	⊥ 8.330 s Jul ≥I XA5mDt	22 2020 MiTek Indus	tries, Inc. Wed Oct 7 09	9:21:37 2020 Page 1
0-1-8			10.000		EXADINE	1:0:9700-0rttybrott		
H I -3-0	2-4-4				0 <mark>_10-0</mark> _1	-10-12 0-10-0		0-1-8 Scale = 1:56.0
$1.5x3 \parallel$ 1.5x3 =	4: 1.5x3 1.5x3	$x_{6} = 3x_{10} = 7x_{14} M_{18SHS}$ $3x_{6} FP = 3x_{10} = 3x_{$	S = 6x6 = 2x6	3x10 =	= 6 FP ==		1.5x3 3x6 =	1.5x3 4x6 =1.5x3 =
1 2	3 4 5	<u>5 7 8 9 10</u>	11 12	13	14 15	16 17	18 19	20 21
-2-139								40 g
38 37 3x6 =	36 35 4x4 =	34 33 32 3x10 = 3x6 FP =	31 30 3x10	29 =	28 27 3x10	26 25 = 3x10 =	24 $233x6 = 4x6 =$	22 = 3x6 =
		4x12 = 6x10 M	M18SHS = 3x8	M18SHS	FP =			
5-4-8	6-6-10 7-8-12 6-5-10 7-6-12 1-1-2 1-0-2	12-9-12 12-10-0 5-1-0 0-0-4	21-6-4		22-6	-10	32-5-0	
Plate Offsets (X.Y) [0-1-0 0-2-0 13:0-3-12.Edge]. [15:0-1-8.Edg	e]. [16:0-1-8.Edge]. [35:0-1-8.Edg	pe]. [36:0-1-8.Ec	lael				
	SPACING- 2-0-(ir	(loc)	l/defl l/d		GRIP
TCLL 40.0	Plate Grip DOL 1.0	TC 0.97	Vert(LL)	-0.31	26-27	>737 480	MT20	244/190
BCLL 0.0	Rep Stress Incr NC	WB 0.76	Horz(CT)	-0.43	26 22	>542 360 n/a n/a	M185H5	244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S					Weight: 173 lb	FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP	2400F 2.0E(flat)		BRACIN TOP CHO	G- DRD	Structura	al wood sheathing di	rectly applied or 6-0-0	oc purlins,
BOT CHORD 2x4 SP WEBS 2x4 SP	2400F 2.0E(flat) No.3(flat) *Except*		BOT CHO	ORD	except e Rigid ce	nd verticals.	or 6-0-0 oc bracing.	
10-31: 2	2x4 SP No.2(flat)				0	0 7 11	C C	
REACTIONS. (size) 38=0-3-0, 33=0-3-8, 22=0-3	-0						
Max Gr	av 38=512(LC 3), 33=2984(LC	1), 22=1064(LC 4)						
FORCES. (Ib) - Max. (Comp./Max. Ten All forces 25	0 (lb) or less except when shown						
TOP CHORD 2-3=-9 9-10=)39/222, 3-4=-973/1005, 4-5=-9 0/3910, 10-11=-1377/0, 11-12=	73/1005, 5-6=-973/1005, 6-8=0/2 -4224/0, 12-13=-4224/0, 13-15=-	2192, 8-9=0/391 4836/0,	4,				
15-16 BOT CHORD 37-38	=-4935/0, 16-17=-4761/0, 17-18 =-104/624, 36-37=-467/1153, 3	3=-3898/0, 18-19=-3898/0, 19-20 5-36=-1005/973, 34-35=-1701/25	=-2295/0 3.33-34=-2609	/0.				
31-33	=-1279/0, 30-31=0/3453, 28-30 =0/4935, 24-25=0/4453, 23-24=	=0/4622, 27-28=0/4935, 26-27=0	/4935,	-,				
WEBS 2-38=	-779/132, 2-37=-154/410, 3-37=	279/318, 3-36=-699/0, 4-36=0/2	280, 8-33=-1752	/0,				
8-34= 19-23	=-1195/0, 19-24=0/874, 10-33=	-3235/0, 10-31=0/2703, 11-31=-2	20-23=0/124 2689/0,	J,				
11-30 16-25	=0/1010, 13-30=-579/0, 13-28= =-607/79, 16-26=-242/250, 15-2	-81/402, 17-24=-709/0, 17-25=0/9 28=-441/243, 15-27=-255/237	540,					
NOTES-							, unun	11111
 Unbalanced floor live All plates are MT20 r 	loads have been considered for	r this design. d					IN ATH CA	9011
3) All plates are 3x4 MT	20 unless otherwise indicated.	about its contor					S NO FES	N. Sin
5) Provide mechanical of	connection (by others) of truss t	o bearing plate capable of withsta	anding 67 lb upli	ft at joint	38.	2	My /	
 Recommend 2x6 strongbacks to be attended 	ongbacks, on edge, spaced at 1 tached to walls at their outer en	0-0-0 oc and fastened to each tr ds or restrained by other means.	uss with 3-10d (0.131" X	3") nails.	=	SEA	AL 🚦
 CAUTION, Do not ere Hanger(s) or other co 	ect truss backwards. onnection device(s) shall be pro	vided sufficient to support concer	ntrated load(s) 9	83 lb dov	vn at 16-'	10-4 on top	0363	322 : E
chord. The design/selection of such connection device(s) is the responsibility of others.							A 1. 3	
b) in the EOAD CASE(S) section, loads applied to the face of the floted as north (F) of Dack (B).								
1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00					ALBEIN			
Uniform Loads (plf) Vert: 22-38=-10, 1-21=-100							Ootok	1111 ¹
Continued on page 2								
Continued on page 2			OF BAOF MIL 7179			105		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

RE

٢N

Job		Truss	Truss Type	Qty	Ply	Precision/Lot 38 Summerlin/Harnett	
						E149	50664
J0820-3990		F3	Floor Girder	1	1		
						Job Reference (optional)	
Comtech, Inc,	Fayettev	ille, NC - 28314,			3.330 s Jul	22 2020 MiTek Industries, Inc. Wed Oct 7 09:21:37 2020 Page	e 2
	-		ID:JJp	3 bNirdpe	LXA5mDh	?5?y7p3U-CRtyJKXkG4AIRibtGY 380VA14YhnBJIWCjAL6yVre	эC

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 11=-903(B)

			<u>15-7-0</u> 15-7-0			
Plate Offsets (X,Y)	[4:0-1-8,Edge], [5:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.39 BC 0.71 WB 0.53 Matrix-S	DEFL. ir Vert(LL) -0.19 Vert(CT) -0.26 Horz(CT) 0.05	n (loc) I/defl L/d 11-12 >982 480 11-12 >704 360 9 n/a n/a	PLATES MT20 Weight: 77 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	ctly applied or 6-0-0 10-0-0 oc bracing.	oc purlins,

REACTIONS.	(size)	14=0-3-0, 9=0-3-8
	Max Grav	14=837(LC 1), 9=837(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2816/0, 3-4=-2816/0, 4-5=-3056/0, 5-6=-2816/0, 6-7=-2816/0

13-14=0/1801, 12-13=0/3056, 11-12=0/3056, 10-11=0/3056, 9-10=0/1801 BOT CHORD

WEBS 2-14=-1931/0, 2-13=0/1095, 7-9=-1931/0, 7-10=0/1095, 5-10=-589/60, 4-13=-589/60

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 1.5x3 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

		1	7-0-0 7-0-0			
Plate Offsets (X,Y)	[4:0-1-8,Edge], [5:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.45 BC 0.84 WB 0.63 Matrix-S	DEFL. ir Vert(LL) -0.26 Vert(CT) -0.36 Horz(CT) 0.06	1 (loc) I/defl L/d 12-13 >774 480 12-13 >558 360 10 n/a n/a	PLATES MT20 M18SHS Weight: 83 lb	GRIP 244/190 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direct except end verticals. Rigid ceiling directly applied or 1	tly applied or 6-0-0 0-0-0 oc bracing.	oc purlins,

REACTIONS.	(size)	16=0-3-0, 10=0-3-8
	Max Grav	16=915(LC 1), 10=915(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3211/0, 3-4=-3211/0, 4-5=-3659/0, 5-6=-3211/0, 6-8=-3211/0

BOT CHORD 15-16=0/1994, 13-15=0/3659, 12-13=0/3659, 11-12=0/3659, 10-11=0/1994

WEBS 2-16=-2138/0, 2-15=0/1314, 3-15=-273/17, 8-10=-2138/0, 8-11=0/1314, 6-11=-273/17, 5-11=-800/0, 4-15=-800/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 1.5x3 MT20 unless otherwise indicated.

4) Plates checked for a plus or minus 1 degree rotation about its center.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

			15-5-0			
Plate Offsets (X,Y)	- [1:Edge,0-1-8], [4:0-1-8,Edge], [5:0-1-8,	Edge]	15-5-0			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.39 BC 0.69 WB 0.52 Matrix-S	DEFL. ir Vert(LL) -0.18 Vert(CT) -0.25 Horz(CT) 0.05	i (loc) l/defl L/d 11-12 >999 480 11-12 >724 360 9 n/a n/a	PLATES MT20 Weight: 77 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4	SP No.1(flat) SP No.1(flat) SP No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,

REACTIONS. (size) 14=Mechanical, 9=0-3-0 Max Grav 14=834(LC 1), 9=828(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-2769/0, 3-4=-2769/0, 4-5=-2989/0, 5-6=-2770/0, 6-7=-2770/0

BOT CHORD 13-14=0/1781, 12-13=0/2989, 11-12=0/2989, 10-11=0/2989, 9-10=0/1779

WEBS 2-14=-1916/0, 2-13=0/1067, 7-9=-1907/0, 7-10=0/1070, 5-10=-568/70, 4-13=-568/69

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

		1	5-8-8			
Plate Offsets (X,Y)	[4:0-1-8,Edge], [5:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.41 BC 0.72 WB 0.53 Matrix-S	DEFL. in Vert(LL) -0.19 Vert(CT) -0.27 Horz(CT) 0.05	(loc) I/defl L/d 11-12 >961 480 11-12 >689 360 9 n/a n/a	PLATES MT20 Weight: 77 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x BOT CHORD 2x WEBS 2x	4 SP No.1(flat) 4 SP No.1(flat) 4 SP No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direct except end verticals. Rigid ceiling directly applied or	tly applied or 6-0-0 10-0-0 oc bracing.	oc purlins,

15-8-8

REACTIONS.	(size)	14=0-3-8, 9=0-3-0					
	Max Grav	14=844(LC 1), 9=844(LC 1)					

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2850/0, 3-4=-2850/0, 4-5=-3105/0, 5-6=-2850/0, 6-7=-2850/0

13-14=0/1818, 12-13=0/3105, 11-12=0/3105, 10-11=0/3105, 9-10=0/1818 BOT CHORD

WEBS 2-14=-1950/0, 2-13=0/1113, 7-9=-1950/0, 7-10=0/1113, 5-10=-607/51, 4-13=-607/51

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 1.5x3 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

L		6-5-12		7-7-0	13-1	1-8	1
Г		6-5-12		1-1-4	5-6	-8	1
Plate Of	sets (X,Y)	[8:0-1-8,Edge], [9:0-1-8,Edge]					
LOADIN TCLL TCDL BCLL BCDI	G (psf) 40.0 10.0 0.0 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code. IBC2015/TPI2014	CSI. TC 0.51 BC 0.57 WB 0.43 Matrix-S	DEFL. ir Vert(LL) -0.20 Vert(CT) -0.27 Horz(CT) 0.03	n (loc) l/defl L/d) 9-10 >787 480 7 9-10 >569 360 3 7 n/a n/a	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%F 11%F
LUMBEI TOP CH BOT CH WEBS	R- ORD 2x4 SP ORD 2x4 SP 2x4 SP	No.1(flat) No.1(flat) No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,
REACTI	ONS. (size Max G	e) 10=0-3-0, 7=0-3-8 rav 10=702(LC 1), 7=702(LC 1)					

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2160/0, 3-4=-2160/0, 4-5=-2160/0

BOT CHORD 9-10=0/1456, 8-9=0/2160, 7-8=0/1456

WEBS 2-10=-1560/0, 2-9=0/870, 5-7=-1560/0, 5-8=0/870

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 734 lb down at 1-10-4, and 734

Ib down at 3-10-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.

6) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 5-8=-10, 1-4=-100

Concentrated Loads (lb) Vert: 2=-734(F) 3=-734(F)

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIRS AND INCLODED MITER REFERENCE PAGE MIT 14/3 TeV. 5/ 9/2/20 BEFORE DSE. Design valid for use only with MITeK with connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI f Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

RE: J0820-3989

Precision/Lot 38 Summerlin/Harnett

Site Information:

Customer: Project Name: J0820-3989 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.3 Wind Speed: 130 mph Floor Load: N/A psf

Trenco

818 Soundside Rd

Edenton, NC 27932

This package includes 20 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10 10 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Seal# E14950639 E14950640 E14950641 E14950642 E14950643 E14950644 E14950645 E14950646 E14950647 E14950648 E14950649 E14950650 E14950651 E14950653 E14950653 E14950653	Truss Name A1-GE A2 A4 A5-GE B1-GE B2 C1-GE C2 C3 C4 D1-SG D2 P1-GE P2 P3 P4 OE	Date 10/21/2020 10/21/2020 10/21/2020 10/21/2020 10/21/2020 10/21/2020 10/21/2020 10/21/2020 10/21/2020 10/21/2020 10/21/2020 10/21/2020 10/21/2020
14	E14950652	P2	10/21/2020
15	E14950653	P3	
16	E14950654	P4-GE	10/21/2020
17	E14950655	VB1	10/21/2020
18	E14950656	VB2	10/21/2020
19	E14950657	VB3	10/21/2020
20	E14950658	VB4	10/21/2020

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2020

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

WARNING - Verify design parameters and HEAD NOTES ON THIS AND INCLOSED IN TER REFERENCE FACE INFECTOR FOR INTERCOVER AND INCLOSE IN TERCENCE FACE INFECTOR FOR INTERCOVER AND INCLOSE INTERCOVER AND INTERCOVER AND INCLOSE INTERCOVER AND INTERCOVER AND INCLOSE INTERCOVER AND INTERCOVE

818 Soundside Road Edenton, NC 27932

October 7,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

A. GILD

WARNING - Verify design parameters and HEAD NOTES ON THIS AND INCLOSED IN TER REFERENCE FACE INFECTOR FOR INTERCOVER AND INCLOSE IN TERCENCE FACE INFECTOR FOR INTERCOVER AND INCLOSE INTERCOVER AND INTERCOVER AND INCLOSE INTERCOVER AND INTERCOVER AND INCLOSE INTERCOVER AND INTERCOVE

818 Soundside Road Edenton, NC 27932

<u>19-9-8</u> 19-9-8

						10 0 0						
late Off	sets (X,Y)	[17:0-4-0,0-4-8]										
.OADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL	20.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	-0.00	12	n/r	120	MT20	244/190
CDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	-0.00	12	n/r	120		
LL	0.0 *	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.00	12	n/a	n/a		
DL	10.0	Code IRC2015/T	PI2014	Matri	x-S						Weight: 154 lb	FT = 20%
						1						
JMBEF	}-					BRACING-						
OP CH	ORD 2x6 SI	P No.1				TOP CHOP	RD	Structu	ral wood	sheathing di	rectly applied or 6-0-0 c	oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1OTHERS2x4 SP No.2

REACTIONS. All bearings 19-9-8.

(lb) - Max Horz 2=219(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 2, 19, 20, 21, 22, 17, 16, 15, 14, 12 Max Grav All reactions 250 lb or less at joint(s) 2, 18, 19, 20, 21, 22, 17, 16, 15, 14, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 19, 20, 21, 22, 17, 16, 15, 14, 12.

ontinued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Ouality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Precision/Lot 38 Summerlin/Harnett	
					E	14950644
J0820-3989	B2	COMMON GIRDER	1	2		
				_	Job Reference (optional)	
Comtech, Inc, Faye	tteville, NC - 28314,		8	3.330 s Jul	22 2020 MiTek Industries, Inc. Wed Oct 7 09:21:36 2020 I	Page 2
		ID:JJr	3 bNirdpe	LXA5mDh	?5?y7p3U-kFJa5 X6Vm1SqY1hirTqcpy9 gGM2gr9HYzdpg	gyVreD

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 11=-1350(B) 12=-1352(B) 13=-1350(B) 14=-1350(B) 15=-1350(B) 16=-1350(B) 17=-1350(B) 18=-1350(B) 19=-1350(B) 20=-1354(B)

Job	Truss	Truss Type	Qty	Ply	Precision/Lot 38 Summ	nerlin/Harnett	E44050045
J0820-3989	C1-GE	ATTIC	1	1			E14950645
Comtech, Inc, Fayette	eville, NC - 28314,			3.330 s Ju	Job Reference (optional 22 2020 MiTek Industrie	al) es, Inc. Wed Oct 7 09:2	1:37 2020 Page 1
	-1-2-8	5-3-4 7-10-3 8-11-12 11	ID:JJp3_bNirdpe -3-0 13-6-5 14-7-13 17-2-12	LXA5mD	h?5?y7p3U-CRtyJKXkG 22-6-0 23-8-8	4AIRibtGY_380VOY4f9r	nKvIWCjAL6yVreC
	1-2-8	5-3-4 ' 2-6-15 1-1-8' 2-	-3-4 ' 2-3-4 1-1-8' 2-6-15	I	5-3-4 1-2-8		
			4x6 =				Scale = 1:80.6
			6				
		$\begin{array}{c} 2x4 = \\ 12.00 \overline{12} \\ 5 \end{array}$	2x4 =				
		2x4		2x4	+		
		4 x6 // 🖉	_	8			
	,		7-7-8	$\left \right\rangle$	4x6 ∖\ ∖ 9		
		· / •	11-6-0	_ `	Ŕ		
	2	/5-6-0					
				til		-2-12	
	¹ √ ¹ (∕ ⊠ 5x8		·····	******* 12	5x8	4.4	
		2x6 2x6 8x8 —	2x6 13 2x6 6x8 = 8	x8 =			
		oxo —	2x6				
	H	5-3-4 11-3-0 5-3-4 5-11-12	17-2-12 5-11-12		22-6-0 5-3-4		
Plate Offsets (X,Y) [2:	0-2-0,0-4-5], [2:0-1-0,0-1-0], [6	<u>5:0-3-0,Edge], [10:0-1-0,0-1-0], [1</u>	0:0-1-15,0-4-5]				
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.11	DEFL. in Vert(LL) -0.00	(loc) 11	l/defl L/d n/r 120	PLATES MT20	GRIP 244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.26	Vert(CT) -0.00	11	n/r 120		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	1012(01) 0.00	10	ina ina	Weight: 236 lb	FT = 20%
LUMBER- TOP CHORD 2x6 SP N BOT CHORD 2x10 SP I 12-14: 2x WEBS 2x6 SP N WEDGE	o.1 No.1 *Except* 6 SP No.1 o.1		BRACING- TOP CHORD BOT CHORD	Structur Rigid ce	al wood sheathing dire iling directly applied or	ctly applied or 6-0-0 oc 10-0-0 oc bracing.	purlins.
Left: 2x4 SP No.2 , Right:	2x4 SP No.2						
REACTIONS. All bear (lb) - Max Horz Max Uplit	ings 22-6-0. z 2=369(LC 11) ft All uplift 100 lb or less at jo 13)	int(s) except 14=-287(LC 12), 12	=-284(LC				
Max Grav	All reactions 250 lb or less 20), 12=1052(LC 21), 10=57	at joint(s) except 2=576(LC 1), 14 6(LC 1)	4=1056(LC				
FORCES. (lb) - Max. Co TOP CHORD 2-4=-67 BOT CHORD 2-14=-2 WEBS 4-14=-5	omp./Max. Ten All forces 250 8/69, 4-5=-566/133, 7-8=-565/ 5/457, 12-14=-25/457, 10-12= 24/369, 8-12=-524/366, 5-7=-) (lb) or less except when shown. 133, 8-10=-674/63 -25/457 350/163					
 NOTES- 1) Unbalanced roof live lo 2) Wind: ASCE 7-10; Vult MWFRS (envelope) ga DOL=1.60 plate grip D 3) Gable requires continu 4) This truss has been de 5) * This truss has been de 5) * This truss has been de 6) Ceiling dead load (10.0 7) Provide mechanical co at joint 12. 8) Attic room checked for 	ads have been considered for =130mph (3-second gust) Vas ble end zone and C-C Exterio OL=1.60 ous bottom chord bearing. signed for a 10.0 psf bottom c lesigned for a live load of 30.0 om chord and any other memil 0 psf) on member(s). 4-5, 7-8, nnection (by others) of truss to L/360 deflection.	this design. d=103mph; TCDL=6.0psf; BCDL r(2) zone;C-C for members and f hord live load nonconcurrent with psf on the bottom chord in all are bers, with BCDL = 10.0psf. 5-7; Wall dead load (5.0psf) on r bearing plate capable of withsta	.=6.0psf; h=15ft; Cat. II; f orces & MWFRS for read a any other live loads. as where a rectangle 3-6 nember(s).4-14, 8-12 nding 287 lb uplift at join	Exp C; Er tions sho 5-0 tall by t 14 and :	2-0-0 wide	SEAL 03632	
WARNING - Verify desir	In parameters and READ NOTES ON	THIS AND INCLUDED MITEK REFERENC	CE PAGE MII-7473 rev 5/19/202	0 BEFORF	USE.	ENGINEEDIN	,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

RE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Precision/Lot 38 Summerlin/Harnett	
					E14	4950647
J0820-3989	C3	ATTIC	2	2		
				–	Job Reference (optional)	
Comtech, Inc, Fayettev	ille, NC - 28314,			3.330 s Jul	22 2020 MiTek Industries, Inc. Wed Oct 7 09:21:41 2020 Pa	ige 2

ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-5C6T9ibFJlgkwJveVO3?JsfwghzOj5WuQphOUtyVre8

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (pif) Vert: 1-4=-60, 4-5=-80, 5-6=-60, 6-7=-60, 7-8=-80, 8-11=-60, 2-14=-20, 14-19=-40, 12-19=-233(F=-193), 10-12=-213(F=-193), 5-7=-20

Drag: 4-14=-10, 8-12=-10 Concentrated Loads (Ib)

Vert: 14=-1900(F)

Fayetteville, NC - 28314, Comtech, Inc.

8.330 s Jul 22 2020 MiTek Industries, Inc. Wed Oct 7 09:21:42 2020 Page 1 ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-ZOgrM2bt4cobYTUr36aEr4C755PBSU41fTQx1JyVre7

9-4-4

Structural wood sheathing directly applied or 4-11-9 oc purlins.

8-11

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

1 Brace at Jt(s): 11

7-10-3 5-6-0 8₁11-12 11-3-0 17-5-4 22-6-0 1-2-8 1-2-8 23-8-8 1-2-8 0-10-4 5-6-0 1-1-8 2-3-4 6-2-4 5-0-12 1-5-15 Scale = 1:75.5 5x5 = 2.78 12 6 2x4 =14 7 2x4 =

5-6-0 17-5-4 22-6-0 6-4-4 0-10-4 5-0-12 5-6-0 11-1-0

TOP CHORD

BOT CHORD

WFBS

JOINTS

Plate Offsets (X) [2:0-2-0,0-4-5], [2:0-1-0,0	-1-0], [6:0-3-9]	,0-2-8]		1						
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.63	Vert(LL)	0.00	2-10	>999	360	MT20	244/190
CDL 10.0	Lumber DOL	1.15	BC	0.14	Vert(CT)	-0.00	2-10	>999	240		
BCLL 0.0	* Rep Stress Incr	YES	WB	0.60	Horz(CT)	0.29	8	n/a	n/a		
3CDL 10.0	Code IRC2015/TF	912014	Matrix	k-S	Wind(LL)	-0.00	2-10	>999	240	Weight: 141 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 *Except* 6-9: 2x4 SP No.1 BOT CHORD 2x10 SP No.1 WEBS 2x6 SP No.1 *Except* 6-11,7-11: 2x4 SP No.2 WEDGE

Left: 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 10=Mechanical, 8=0-3-8 Max Horz 2=345(LC 12) Max Uplift 2=-86(LC 10), 10=-491(LC 12), 8=-197(LC 9) Max Grav 2=296(LC 12), 10=967(LC 20), 8=548(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown TOP CHORD 2-4=-523/603, 4-5=-395/192, 5-6=-662/468, 6-7=-669/489, 7-8=-1518/982

WEBS 5-11=-374/606, 8-11=-924/1454, 7-11=-870/556, 4-10=-1157/854

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-14 to 3-3-15, Interior(1) 3-3-15 to 11-3-0, Exterior(2) 11-3-0 to 15-7-13, Interior(1) 15-7-13 to 23-8-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 86 lb uplift at joint 2, 491 lb uplift at joint 10 and 197 lb uplift at joint 8.

7) Attic room checked for L/360 deflection.

	1	5-0-0	1		10-0-0		1	
		5-0-0	1		5-0-0			
Plate Offsets (X,Y)	[2:0-0-8,0-0-9], [6:0-0-8,0-0-9]							
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.12	DEFL. ir Vert(LL) -0.01	n (loc) 10	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.12 WB 0.06 Matrix-S	Vert(CT) -0.02 Horz(CT) 0.00 Wind(LL) 0.02	2 10) 6 2 8	>999 n/a >999	240 n/a 240	Weight: 52 lb	FT = 20%
LUMBER- TOP CHORD 2x4 S	P No.1		BRACING- TOP CHORD	Structu	ral wood	sheathing di	rectly applied or 6-0-0	oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD2x4 SF N0.1BOT CHORD2x6 SP N0.1WEBS2x4 SP N0.2OTHERS2x4 SP N0.2

REACTIONS. (size) 2=0-3-8, 6=0-3-8 Max Horz 2=-63(LC 17) Max Uplift 2=-120(LC 9), 6=-120(LC 8) Max Grav 2=470(LC 1), 6=470(LC 1)

4-9=-415/246

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-493/553, 3-4=-449/607, 4-5=-449/607, 5-6=-493/553

BOT CHORD 2-10=-389/381, 9-10=-389/381, 8-9=-389/381, 6-8=-389/381

WEBS

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 120 lb uplift at joint 2 and 120 lb uplift at joint 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Cuality Criteria, DSB-89 and BCSI Building Component Safety Information**available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

		5-0-0 5-0-0		<u> </u>	
Plate Offsets (X,Y)	[2:0-0-8,0-0-9], [4:0-0-8,0-0-9]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.21 BC 0.10 WB 0.05 Matrix-S	DEFL. ir Vert(LL) 0.02 Vert(CT) -0.01 Horz(CT) 0.00	n (loc) l/defi L/d 2 4-6 >999 240 2-6 >999 240 0 4 n/a n/a	PLATES GRIP MT20 244/190 Weight: 48 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x6 SP WEBS 2x4 SP	No.1 No.1 No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir Rigid ceiling directly applied c	ectly applied or 6-0-0 oc purlins. r 10-0-0 oc bracing.
REACTIONS. (size Max H Max U Max G	e) 2=0-3-8, 4=0-3-8 orz 2=-40(LC 10) plift 2=-91(LC 9), 4=-91(LC 8) rav 2=470(LC 1), 4=470(LC 1)				

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-506/558, 3-4=-506/558

BOT CHORD 2-5=-506/558, 5-4=-506/558 BOT CHORD 2-6=-365/377, 4-6=-365/377 WEBS 3-6=-327/239

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope) and C-C Exterior(2) -1-2-8 to 3-2-5, Interior(1) 3-2-5 to 5-0-0, Exterior(2) 5-0-0 to 9-4-13, Interior(1) 9-4-13 to 11-2-8 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 91 lb uplift at joint 2 and 91 lb uplift at joint 4.

LOADING (ps TCLL 20 TCDL 10 BCLL 0 BCDL 10	sf)).0).0).0 *).0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 YES VI2014	CSI. TC BC WB Matrix	0.10 0.08 0.04 (-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 0.00 0.00	(loc) 1 1	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP No. 2x4 SP No. 2x6 SP No. 2x4 SP No.	1 1 1 2				BRACING- TOP CHOR BOT CHOR	RD RD	Structur except e Rigid ce	al wood s and vertic siling dire	sheathing dire cals. ctly applied o	ectly applied or 5-9-0 r 10-0-0 oc bracing.	oc purlins,

REACTIONS. (size) 5=5-9-0, 2=5-9-0, 6=5-9-0

Max Horz 2=80(LC 8)

Max Uplift 5=-10(LC 8), 2=-93(LC 8), 6=-93(LC 12) Max Grav 5=20(LC 1), 2=210(LC 1), 6=284(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 5, 93 lb uplift at joint 2 and 93 lb uplift at joint 6.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (l	oc) I	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.37	Vert(LL)	-0.04	2-4 >	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.27	Vert(CT)	-0.09	2-4 >	>728	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.00		n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL)	0.10	2-4 >	>655	240	Weight: 22 lb	FT = 20%
LUMBER-			BRACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x6 SP No.1 WEBS

REACTIONS. (size) 2=0-3-0, 4=0-1-8

Max Horz 2=56(LC 8) Max Uplift 2=-130(LC 8), 4=-85(LC 8)

Max Grav 2=306(LC 1), 4=206(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

ł

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-2-8 to 3-2-5, Interior(1) 3-2-5 to 5-6-4 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 130 lb uplift at joint 2 and 85 lb uplift at joint 4.

Structural wood sheathing directly applied or 5-9-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.22 BC 0.17 WB 0.00 Matrix-P	DEFL. Vert(LL) -0.0 Vert(CT) -0.0 Horz(CT) 0.0 Wind(LL) 0.0	in (loc) 2 2-4 14 2-4 10 04 2-4	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER-		I	BRACING-					

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x6 SP No.1 WEBS

REACTIONS. (size) 2=0-3-0, 4=0-1-8

Max Horz 2=48(LC 8) Max Uplift 2=-117(LC 8), 4=-67(LC 8)

Max Grav 2=268(LC 1), 4=164(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

ł

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-2-8 to 3-2-5, Interior(1) 3-2-5 to 4-6-4 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 117 lb uplift at joint 2 and 67 lb uplift at joint 4.

Structural wood sheathing directly applied or 5-9-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

LUMBER-			BRACING-		
TOP CHORD	2x4 SP No.1		TOP CHORD	Structural wood sheathing dir	ectly applied or 5-9-0 oc purlins,
BOT CHORD	2x4 SP No.1			except end verticals.	
WEBS	2x6 SP No.1		BOT CHORD	Rigid ceiling directly applied of	or 10-0-0 oc bracing.
OTHERS	2x4 SP No.2				c c

REACTIONS. (size) 5=4-9-0, 2=4-9-0, 6=4-9-0

Max Horz 2=69(LC 8)

Max Uplift 5=-25(LC 8), 2=-85(LC 8), 6=-65(LC 12) Max Grav 5=70(LC 1), 2=167(LC 1), 6=197(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 5, 85 lb uplift at joint 2 and 65 lb uplift at joint 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affiliate 818 Soundside Road

Edenton, NC 27932

A. GILP

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

¹⁾ Unbalanced roof live loads have been considered for this design.

2x4 🥢

2x4 📎

	I		4-1-15 '	
Plate Offsets (X,Y)	[2:0-2-0,Edge]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IPC2015/TPI2014	CSI. TC 0.03 BC 0.09 WB 0.00 Matrix P	DEFL. in (loc) l/defl L/d PLATES Vert(LL) n/a - n/a 999 MT20 Vert(CT) n/a - n/a 999 MT20 Horz(CT) 0.00 3 n/a n/a Wainst: 12	GRIP 244/190
			Weight 12	5 11 - 2070
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP	P No.1 P No.1		BRACING- TOP CHORD Structural wood sheathing directly applied or 4- BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracin	-15 oc purlins. g.

4-1-15

REACTIONS. (size) 1=4-1-15, 3=4-1-15

Max Uplift 1=-7(LC 12), 3=-7(LC 13)

Max Grav 1=128(LC 1), 3=128(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

		Client:		Date: 10/21/2020	Page 2 of 8
	icDecign™	Project:		Designer: Neal Baggett	
J)	ISDESIGN	Address:		Job Name: LOT 38 SUMMERI	IN
				Project #:	
BM1	Kerto-S LVL	1.750" X 14.00	0" 2-Ply - PASS	SED Level: Level	
			-		
				I	
•	• • •	• • •	• • •		
	• • •	• • •	• • •	• • •	· · · 1'2"
•	• • •	• • •	• • •	• • • •	
	=				
			15'9"		1 3 1/2"
			45101		
			15'9"		I
	Analysia				
wuiti-Piy	y Analysis				
Fasten all	plies using 3 rows of 1	10d Box nails (.128x3") a	at 12" o.c Maximum end o	listance not to exceed 6"	
Capacity	93.1	%	7		
Load	228.	5 PLF			
Yield Limit pe	er Foot 245.	6 PLF			
Yield Limit pe	er Fastener 81.9	lb.			
Yield Mode	IV				
Edge Distan	ce 1 1/2	2"			
Min. End Dis	stance 3"				
Load Combir	nation D+L				
Duration Fac	ctor 1.00				

Notes	chemicals	6. For flat roofs provide proper drainage to prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads. Lumber 1. Dry service conditions, unless noted otherwise 2. LVL not to be treated with fire retardant or corrosive	Handling & Installation 1. UK beams must not be cut or drilled 2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals 3. Damaged Beams must not be used 4. Design assumes top edge is laterally restrained 5. Provide lateral support at bearing points to avoid lateral displacement and rotation	ponding This design is valid until 12/11/2021	Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633	Fayetteville, NC USA 28314 910-864-TRUS
Version 18.80.245 Powered by iStruct™				IST .

Version 18.80.245 Powered by iStruct™

	Client: Project:		Date: Design	10/21/2020 er: Neal Baggett	Page 4 of
s Jesig	Address:		Job Na Project	me: LOT 38 SUMMERLIN #:	
GDH Kerto-S	LVL 1.750" X 2	4.000" 2-F	Ply - PASSED	Level: Level	
· · · ·	· · · · ·	· · · ·	· · · ·	•••]	Π \uparrow
• • •		• • •	• • • •		2'
1 SPF End Grain		<u> </u>	• • • • 2 SPF Er	·↓ hd Grain ↓	
¢	16'7	1/4"			3 1/2"
ļ	167	1/4"		I	
Iulti-Ply Analysis					
isten all plies using 3 r apacity	ows of 10d Box nails (.128 0.0 %	x3") at 12" o.c M	aximum end distance	not to exceed 6"	
ad ald Limit per Foot	0.0 PLF 245.6 PLF				
ad Limit per Fastener	81.9 lb.				
ld Mode Ige Distance	IV 1 1/2"				
n. End Distance	3"				
ad Combination	1.00				
Iration Factor	1.00				
lotes	chemicals	6. For flat ponding	roofs provide proper drainage to preven	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Favetteville_NC
raisurated Structured Designs is responsible tructural adequacy of this component bas lesign criteria and loadings shown	ed on the 1. LVL beams must not be cut or dril t is the 2. Refer to monufacturate	iled		301 Merritt 7 Building, 2nd Floor	USA 28314
sponsibility of the customer and/or the co- sure the component suitability of the	ntractor to regarding installation require intended fastening details, beam strength	ements, multi-ply 1 values, and code		Norwalk, CT 06851 (800) 622-5850	910-864-TRUS
pplication, and to verify the dimensions and	pads. approvals			www.metsawood.com/us	
umber	 Damaged Beams must not be use 	ed		ICC-ES: ESR-3633	

(S)

Client:	Date:	10/21/2020	Page 6 of 8
Project:	Design	er: Neal Baggett	5
	Job Na	me: LOT 38 SUMMERLIN	
	Project	#:	
Front Porch Beams SP #2 2 00	1" X 12 000" 2-Ply - PASSED	Level: Level	
	5 X 12.000 2-FTy - FASSED		
			=
			1/2
••••••••••		· · · · · · · ·	
<u></u>	· · · · · · · · · · · · · · ·	<u> </u>	<u>· · · · · · · · · · · · · · · · · · · </u>
1 SPF End Grain	2 SPF End Grain	3 SPF End	Grain /\
4			
15'	.1	17'6"	3"
ſ	32'6"		
Multí-Ply Analysis			
Fasten all plies using 2 rows of 10d Box nails (. ²	28x3") at 12" o.c Maximum end distance	not to exceed 6"	
Capacity 0.0 %			
Load 0.0 PLF			
Yield Limit per Foot 202.6 PLF			
Yield Limit per Fastener 101.3 lb.			
Yield Mode IV			
Edge Distance 1 1/2"			
Min. End Distance 3"			
Load Combination			
Duration Factor 1.00			
		Manufacturer Info	Comtech, Inc.
			1001 S. Reilly Road, Suite #639 Fayetteville, NC
			USA 28314
			USA 28314 910-864-TRUS
			USA 28314 910-864-TRUS
			USA 28314 910-864-TRUS

	sDesign™	Cl Pi Ad	lient: roject: ddress:				Da De Jo Pr	ate: esigner: b Name oject #:	10/21/20 Neal Ba :: LOT 38	020 ggett SUMMERLI	N			Paç	ge 7 of 8
BM2	Kerto-S L\	/L 1	.750"	X 9.2	50"	2-Ply -	PASSE	ED ^I	Level: Leve	I					
	2_					3									
			1												,
	1990	•	1.174	•	1889	· .	•	•							9 1/4
1 SPF	End Grain		5'11	"		2 \$	SPF End Grain	n A						3 1/	2"
 			5'1	1"				\neg							
							Desertion				1.190				
Type:	Girder		Applicatio	n:	Floor		Brg	Live		ead	Snow	1	Wind	Const	
Plies: Moisture Conc Deflection LL: Deflection TL: Importance:	2 Jition: Dry 480 360 Normal		Design M Building (Load Sha Deck:	ethod: Code: ring:	ASD IBC 2012 No Not Checl	ked	1 2	926 926	6 1 6 1	915 915	1231 1231		0 0	0 0	
Temperature:	Temp <= 100°	F					Bearings	;							
							Bearing 1 - SPF End	Length 3.000"	n Ca 39	o. React D % 1915 /	0/L lb 1617	Total 3532	Ld. Case L	Ld. Cor D+0.75(mb. L+S)
Analysis Re	sults						Grain	2 000"	20	0/ 1015 /	1617	2522	1		1.18)
Analysis Moment Unbraced Shear LL Defl inch TL Defl inch	Actual 4583 ft-lb 4583 ft-lb 2388 lb 0.033 (L/2040) 0.071 (L/934)	Location Al 2'11 1/2" 14 2'11 1/2" 11 4'11 1/2" 75 2'11 1/2" 0. 2'11 1/2" 0.	llowed 1423 ft-lb 027 ft-lb 043 lb 139 (L/480) 185 (L/360)	Capacity 0.318 (32 0.416 (42 0.301 (30 0.240 (24 0.390 (39	 Comb D+0.7 	o. Case 5(L+S) L 5(L+S) L 5(L+S) L +S) L 5(L+S) L	2 - SPF End Grain	3.000		~~ 1913 <i>7</i>	1017		L	D+0.73(
Design Not	es	10d Poy poils	(129v2") of	12" o o M		nd distance not	4								
 Fasteri ali p to exceed 6 2 Refer to las 3 Girders are 4 Top loads m 5 Top braced 6 Bottom brac 7 Lateral slend 	it is using 2 rows of ". designed to be supp nust be supported eq at bearings. ced at bearings. iderness ratio based	on single ply	(.120x3) at s required fo pottom edge jes. width.	r specified only.	loads.										
ID 1	Load Type	Lo	ocation T	rib Width	Side	Dead 0.9	Live 1	I Sno	w 1.15	Wind 1.6	Const.	1.25	Commen	ts	
2	Uniform				Тор	104 PLF 120 PLF	0 PLF	=	0 PLF	0 PLF	() PLF			
3	Uniform Self Weight				Тор	416 PLF 7 PLF	0 PLF	- 4	16 PLF	0 PLF	() PLF			
Notes Calculated Structured structural adequacy or design criteria and responsibility of the or	Designs is responsible only of of this component based on loadings shown. It is ustomer and/or the contractor	chemicals the Handling the 1. LVL beam the 2. Refer to regarding	& Installation s must not be cut of manufacturer's installation m	I or drilled product in equirements,	6. formation multi-ply	For flat roofs provide p ponding	proper drainage to	prevent	Manufactur Metsä Wood 301 Merritt 7 Norwalk, CT	er Info 1 7 Building, 2n - 06851	d Floor	Co 100 Fay US 283 910	mtech, Inc. 01 S. Reilly Road yetteville, NC 34 314 0-864-TRUS	, Suite #639	
ensure the compone application, and to veri Lumber 1. Dry service condition 2. LVL not to be treat	ent suitability of the intent ify the dimensions and loads. ons, unless noted otherwise ted with fire retardant or corros	aed fastening approvals 3. Damaged 4. Design as 5. Provide la lateral disp	details, beam str Beams must not b sumes top edge is ateral support at placement and rota	ength values, a le used laterally restrai bearing points ation	and code ned to avoid	This design is valid	until 12/11/202	21	(800) 622-5 www.metsav ICC-ES: ES	vood.com/us R-3633			con	птес	H

/ersion 18.80.245 Powered by iStruct

(S)

	isDesign™	Client: Project: Address:	Date: Designe Job Nar Project ;	10/21/2020 er: Neal Baggett ne: LOT 38 SUMMERLIN #:	Page 8 of 8
BM2	Kerto-S LVL	. 1.750" X 9.250"	2-Ply - PASSED	Level: Level	
•	•				
	_			<11/2	9 1
	• SPF End Grain	• •	• • •	∏_	
		5'11"	,	·	3 1/2"
ſ		5'11"	······,	ſ	
Multi-Ply	v Analysis				
asten all	plies using 2 rows of 0.0	10d Box nails (.128x3") at 12" %	o.c Maximum end distance r	not to exceed 6"	
oad íield Limit pe	0.0 er Foot 163	PLF			
ield Limit pe	er Fastener 81.9	9 lb.			
ield Mode dge Distand	ce 11/	/2"			
lin. End Dist	tance 3"				
oad Combin	tor 1.00	0			
Notes		chemicals	6. For flat roofs provide proper drainage to prevent	Manufacturer Info	Comtech, Inc.
Calculated Struct	tured Designs is responsible only of the acy of this component based on the	Handling & Installation	ponding	Metsä Wood	Fayetteville, NC USA
design criteria responsibility of	and loadings shown. It is the the customer and/or the contractor to	LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements multi-nlv		Norwalk, CT 06851	28314 910-864-TRUS
ensure the cor application, and to	mponent suitability of the intended o verify the dimensions and loads.	fastening details, beam strength values, and code approvals		(800) 622-5850 www.metsawood.com/us	
1. Dry service co	onditions, unless noted otherwise	 Damaged beams must not be used Design assumes top edge is laterally restrained Provide lateral support at bearing points to avoid 		ICC-ES: ESR-3633	
2. LVL not to be	e treated with fire retardant or corrosive	lateral displacement and rotation	This design is valid until 12/11/2021		Connech

