ABBREVIATIONS

ACCESS ACC BWL BRACED WALL LINE BRACED WALL PANEL CO CASED OPENING CEILING JOIST CJ. CLOSET CLOS COL COLUMN

COMPOSITION CONCRETE CONT CONTINUOUS CARBON MONOXIDE ALARM C.M.A

CONCRETE MASONRY UNIT C.M.U. - DOUBLE HUNG D.H. - DIAMETER DIA.

= DOUBLE JOIST D.I. DN. = DOWN EXH. = EXHAUST

COMP

CONC

EXT. = EXTERIOR FI .I = FLOOR JOIST

FTG. = FOOTING - GROUND FAULT INTERRUPTER GFL

- HOSE BIB H.B.

- LAMINATED VENEER LUMBER LVL

M.O - MASONRY OPENING = MASONR MAS MAX. - MAXIMUM

M.C. - MEDICINE CABINET = METAL

MIN - MINIMUM O.C. - ON CENTER

OSB - ORIENTED STRAND BOARD PERF - PERFORATED

BEC. - BECESSED REINE - REINFORCED - SCREENED SCR

- SMOKE DETECTOR S.D. SEC = SECOND

SHWR. = SHOWER SYP - SOUTHERN YELLOW PINE

S.P.F. = SPRUCE/PINE/FIR SUSP. = SUSPENDED

- TYPICAL TYP. U.O.N. - UNLESS OTHERWISE NOTED

WASH. - WASHER - WATER HEATER W.H. - WEATHER PROOF W.P.

W.W.M. - WELDED WIRE MESH

WDW. HT. = WINDOW HEIGHT - woon

SYMBOLS - HOSE BIB

= SWITCH

= 3-WAY SWITCH

Ò = LIGHT FIXTURE

- FYHAUST FAN & LICHT

- SMOKE DETECTOR

V - SHOWER HEAD

- TELEPHONE JACK

- CONVENIENCE OUTLET

= 220 VOLT OUTLET

- GROUND FAULT INTERRUPTER

= CEILING FAN

0 - CARBON MONOXIDE ALARM

GENERAL NOTES AND SPECIFICATIONS

COPYRIGHT

THIS PLAN IS PROTECTED UNDER THE FEDERAL COPYRIGHT ACT. REPRODUCTION IN WHOLE OR IN PART, INCLUDING DIRECT COPYRIGA HIS OF REPRANTION OF DERIVATIVE WORKS, FOR ANY REASON WITHOUT THE PRIOR WRITTEN CONSENT FROM STANDARD HOMES PLAN SERVICE, INC. IS STRICTLY PROHIBITION.

ORIGINAL PURCHASE AGREEMENT

SEE ATTACHED CONSTRUCTION LICENSE FOR INVOICE NUMBER 13105

BUILDING CODE INFORMATION

THIS PLAN HAS BEEN DRAWN TO CONFORM TO THE NORTH CAROLINA RESIDENTIAL CODE, 2018 EDITION (2015 INTERNATIONAL RESIDENTIAL CODE FOR ONE— AND TWO-FAMILY DWELLINGS, CURRENT EDITION) WITH AMENDMENTS UNLESS OTHERWISE NOTED. (SEE ATTACHMENTS)

PRIOR TO CONSTRUCTION

THE CONTRACTOR SHALL REVIEW THE PLAN(S) FOR THIS PARTICULAR BUILDING PROJECT TO ENSURE COMPLIANCE WITH ALL NATIONAL, STATE AND LOCAL CODES, CLIMATIC GEOGRAPHIC DESIGN CRITERIA, AND ANY OTHER PROVISIONS THAT MAY BE REQUIRED BY VA/FHA/RD.

THE CONTRACTOR SHALL VERIFY PLAN DIMENSIONS, STRUCTURAL COMPONENTS, AND GENERAL SPECIFICATIONS CONTAINED IN THIS SET OF PLANS AND REPORT ANY DISCREPACIES TO STANDARD HOMES PLAN SERVICE, INC. FOR JUSTIFICATION OR CORRECTION BEFORE PROCEEDING WITH WORK ON HOUSE.

THE CONTRACTOR SHALL DETERMINE ROUGH OPENING SIZES FOR ALL BUILT—IN EQUIPMENT AND/OR FACILITIES AND ADJUST PLAN DIMENSIONS AS REQUIRED.

DO NOT SCALE FROM BLUEPRINTS, REFER TO THE LABELED DIMENSIONS FOR ACTUAL MEASUREMENTS.

IT SHALL BE THE RESPONSIBILITY OF THE OWNER/BUILDER TO PROVIDE FOR THE SERVICES OF A PROFESSIONAL ENGINEER IF REQUIRED BY THE BUILDING CODE OFFICIAL.

SHIPPING DATE :

STAMP MUST APPEAR IN RED. PLANS FOR WHICH A BUILDING PERMIT HAS NOT BEEN OBTAINED ONE YEAR FROM THE ABOVE DATE IS SUBJECT TO REVIEW BY STANDARD HOMES PLAN SERVICE, INC. A FEE MAY BE CHARGED FOR THIS SERVICE.

EXCAVATION

EXCAVATE TO UNDISTURBED SOIL BOTTOM OF FOOTING SHALL EXTEND BELOW LOCAL FROST LINE AND TO A MINIMUM DEPTH OF 12" BELOW ADJACENT GRADE. (PRESUMED 2000 PSF SOIL BEARING CAPACITY).

EXPANSIVE, COMPRESSIVE OR SHIFTING SOILS SHALL BE REMOVED TO A DEPTH AND WIDTH SUFFICIENT TO ASSUME A STABLE MOISTURE CONTENT IN EACH ACTIVE ZONE.

FOUNDATION

PROVIDE 1/2" DIA. STEEL ANCHOR BOLTS 6'-0" O.C., 1'-0" MAX. FROM CORNERS AND 1'-0" MAX. FROM ENDS OF EACH PLATE SECTION, WITH 7" MIN. EMBEDMENT.

PROVIDE FOUNDATION WATERPROOFING AND DRAIN WITH POSITIVE SLOPE TO OUTLET AS REQUIRED BY SITE CONDITIONS.

SLOPE GRADE AWAY FROM FOUNDATION WALLS 6" MINIMUM WITHIN THE FIRST 10 FEET.

PROVIDE PRESSURE TREATED LUMBER FOR SILLS, PLATES, BANDS AND ANY LUMBER IN CONTACT WITH MASONRY.

PROVIDE APPROVED AND BONDED CHEMICAL SOIL TREATMENT AGAINST FUNGUS, TERMITES AND OTHER HARMFUL INSECTS.

CRAWL SPACE

ALL GIRDER JOINTS AND ENDS OF GIRDERS SHALL REST ON SOLID BEARINGS. FILL CORES OF HOLLOW MASONRY TO FOOTING WITH CONCRETE. FILL TOP COURSE CORES OF EXTERIOR FOUNDATION

FOOTINGS SHALL EXTEND 6" AND SHALL BE 12" THICK UNDER

CHIMNEY FOOTING SHALL EXTEND 12" MINIMUM BEYOND EACH SIDE AND SHALL BE AT LEAST 12" THICK.

BASEMENT

ALL GIRDER JOINTS SHALL BREAK ON COLUMN CENTER LINES (STAGGERED) AND ENDS OF GIRDERS SHALL REST ON SOLID MASONRY.

DOUBLE SILL AND USE LEDGER OVER ALL BASEMENT OPENINGS.

ALL BASE. SASH SHALL BE 18/20 2-LT. 3'-3 7/8" X 1'-11 15/16" 3420 HB.

FRAMING

ALL FLOOR JOISTS, CEILING JOISTS, RAFTERS, GIRDERS, HEADERS, SILLS AND BEAMS SHALL BE NO. 2 SPRUCE/PINE/FIR (S.P.F.) UNLESS OTHERWISE INDICATED.

ALL LOAD BEARING WALLS SHALL BE STUD GRADE SPRUCE/PINE/FIR (S.P.F.) UNLESS OTHERWISE INDICATED.

DESIGN SPECIFICATIONS FOR LAMINATED VENEER LUMBER (LVL) BEAMS AND HEADERS: GRADE: 2950Fb-2.0E

BENDING Fb : 2950 MOE : 2.0 X 108 SHEAR Fy : 290

SUPPORT FOR HEADERS

(919)552-5677

SUPPORT FOR REACHES.

HEADERS SHALL BE SUPPORTED ON EACH END WITH ONE OR MORE JACK STUDS OR WITH APPROVED FRAMING ANCHORS IN ACCORDANCE WITH BUILDING CODE (SEE PLAN), THE FULL-HEIGHT STUD ADJACENT TO EACH END OF THE HEADER SHALL BE END NAILED TO EACH END OF THE HEADER WITH FOUR-18D NAILS. SEE TABLE BELLOW.

MINIMUM NUMBER OF FULL HEIGHT STUDS AT EACH END OF HEADERS IN EXTERIOR WALLS:

HEADER SPAN	MAXIMUM STUD :	SPACING (INCHES
(FEET)	16	24
3 FEET OR LESS	1	1
4 FT.	2	1
8 FT.	3	2
12 FT.	5	3
16 FT.	6	4

CLIMATIC AND GEOGRAPHICAL DESIGN CRITERIA

ROOF LIVE LOAD (POUNDS PER SQUARE FOOT) : 20 PSF ULTIMATE DESIGN WIND SPEED (MILES PER HOUR) : 120 MPH NOMINAL DESIGN WIND SPEED : 93 MPH EXPOSURE CATEGORY "B" UNLESS OTHERWISE NOTED WINDOW DESIGN PRESSURE RATING : DP 25 COMPONENT AND CLADDING LOADS FOR A BUILDING WITH A MEAN ROOF HEIGHT OF 30 FEET OR LESS:

PRESSURE ZONE		ULTIMATE DESIGN WIND SPEED (MPH)									
PRESSURE ZUNE	115	120	130	140							
ZONE 1	13.1, -14.0	14.2, -15.0	16.7, -18.0	19.4, -21.0							
ZONE 2	13.1, -16.0	14.2, -18.0	16.7, -21.0	19.4, -24.0							
ZONE 3	13.1, -16.0	14.2, -18.0	16.7, -21.0	19.4, -24.0							
ZONE 4	14.3, -15.0	15.5, -16.0	18.2, -19.0	21.2, -22.0							
ZONE 5	14.3, -19.0	15.5, -20.0	18.2, -24.0	21.2, -28.0							

ASSUMED MEAN ROOF HEIGHT: 17'-6"

SEISMIC CONDITION BY ZONE : ZONES A AND B SUBJECT TO DAMAGE FROM WEATHERING : MODERATE CLIMATE ZONES (UNLESS OTHERWISE NOTED): ZONES 3 AND 4 MINIMUM VALUES FOR ENERGY COMPLIANCE:
CEILING R-38; EXTERIOR WALLS R-15; CRAWL WALL R-10
WINDOW U-FACTOR & 0.35; RECOMMENDED SHGC & 0.30

MISCELLANEOUS

LOCATE ALL CONVENIENCE OUTLETS ABOVE KITCHEN BASE CABINETS 42" ABOVE FINISHED FLOOR.

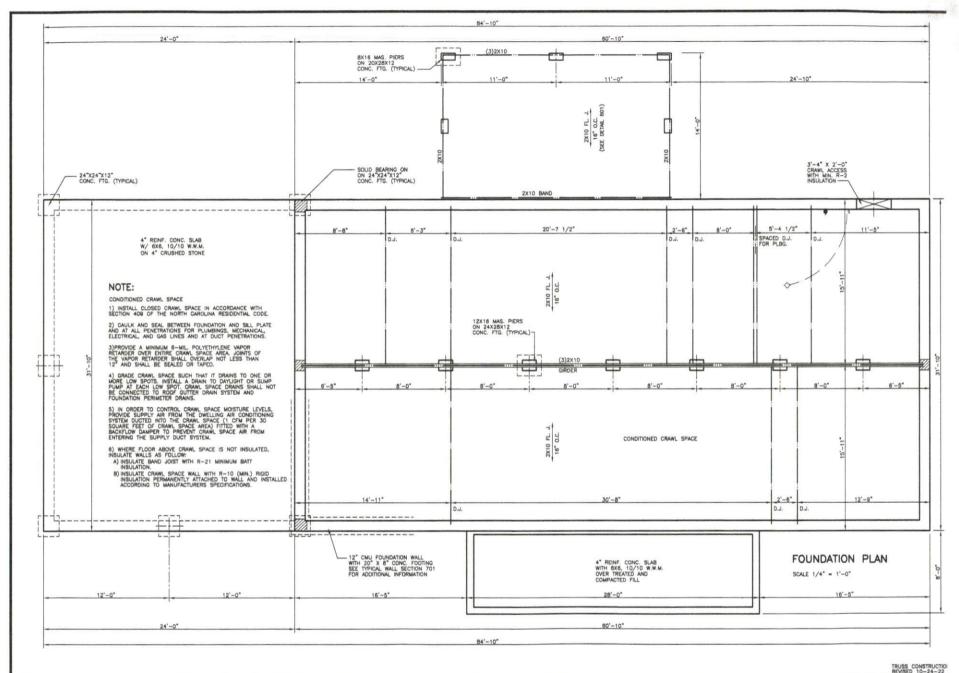
EMERGENCY EGRESS REQUIREMENTS

IT SHALL BE THE RESPONSIBILITY OF THE OWNER/BUILDER TO VERIFY CONFORMITY WITH EGRESS REQUIREMENTS BASED ON SPECIFICATIONS PROVIDED BY WINDOW MANUFACTURER.

2018 NORTH CAROLINA RESIDENTIAL CODE

2018 NORTH CAROLINA RESIDENTIAL CODE
THE REQUIRED EORESS WINDOW FROM EVERY SLEEPING ROOM SHALL HAVE A
SILL HEIGHT OF NOT MORE THAN HIGHES ABOVE FINISHED FLOOR. THE NET
LEAR OPENING SHALL NOT BE LESS THAN 4.0 SQUARE FEET WHENE THE NET
OPENING WIDTH SHALL BE AT LEAST 20 INCHES. IN ADDITION THE MINIMUM
TOTAL GLASS AREA SHALL NOT BE LESS THAN 5.0 SQUARE FEET IN THE CASE
OF A GROUND STORY WINDOW AND NOT LESS THAN 5.7 SQUARE FEET IN THE
CASE OF A SECOND STORY WINDOW.

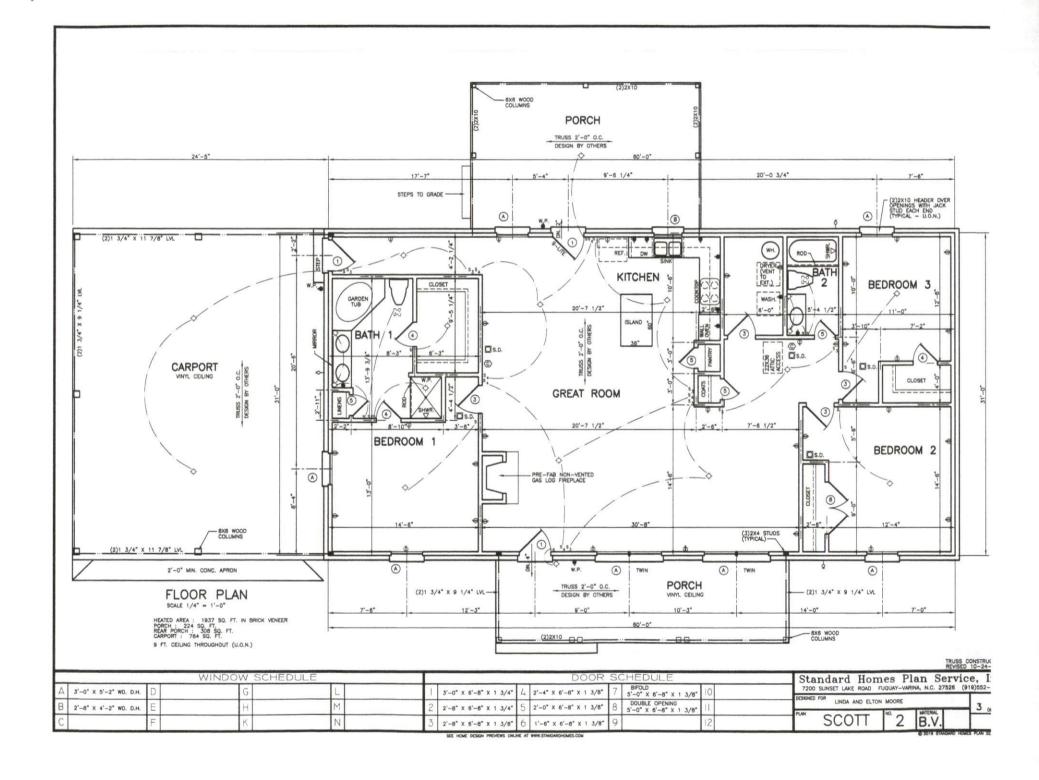
2015 INTERNATIONAL RESIDENTIAL CODE

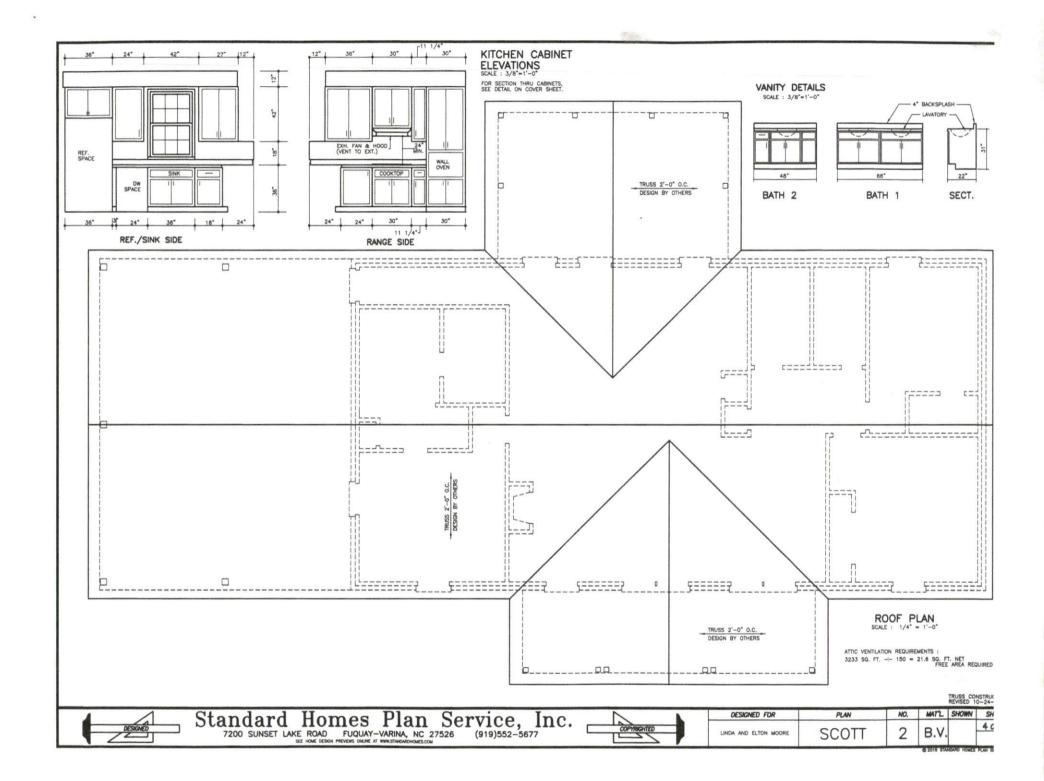

2015 INTERMATIONAL RESIDENTIAL COME EVERY SLEEPING ROOM SHALL HAVE A SILL HEIGHT OF NOT MORE THAN 44 INCHES ABOVE PINISHED FLOOR. ALL LEMPRORDY. SECOPE AND RESCUE OPENINGS SHALL HAVE A MINIMUM NET CLEAR OPENING OF 5.7 SOLURE FEET EXCEPT GRADE FLOOR OPENINGS SHALL HAVE A MINIMUM NET OPENING OF 5 SQUARE FEET. THE MINIMUM NET CLEAR OPENING HEIGHT SHALL SE 24 NOHES. THE MINIMUM NET CLEAR OPENING WIGHT SHALL SE 20 NOHES.

Homes Plan Service, Inc. 7200 SUNSET LAKE ROAD FUQUAY-VARINA, NC 27526

SEE HOME DESIGN PREVIEWS CHILINE AT WWW.STANDARDHOMES.COM

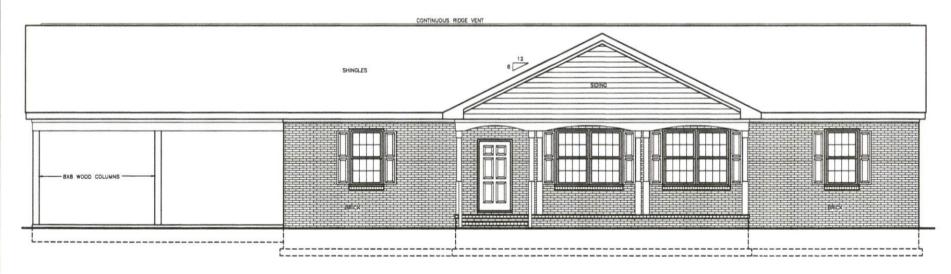
NO. MAT'L. SHOWN SH DESIGNED FOR PLAN 1 6 SCOTT 2 B.V LINDA AND ELTON MOORE




Standard Homes Plan Service, Inc.

7200 SUNSET LAKE ROAD FUQUAY-VARINA, NC 27526
SEE HOME DESIGN PREVIOUS ONLINE AT WWW.STANDAYDHOMES.COM

DESIGNED FOR	PLAN	NO.	MAT'L.	SHOWN	SH
LINDA AND ELTON MOORE	SCOTT	2	B.V.		20



PROVIDE GUTTERS, DOWNSPOUTS AND SPLASHPADS ACCORDING TO LOCAL CODE AND RAINFALL CONDITIONS. ALL SPLASHPADS SHALL CARRY WATER 60" FROM BUILDING.

LEFT SIDE ELEVATION



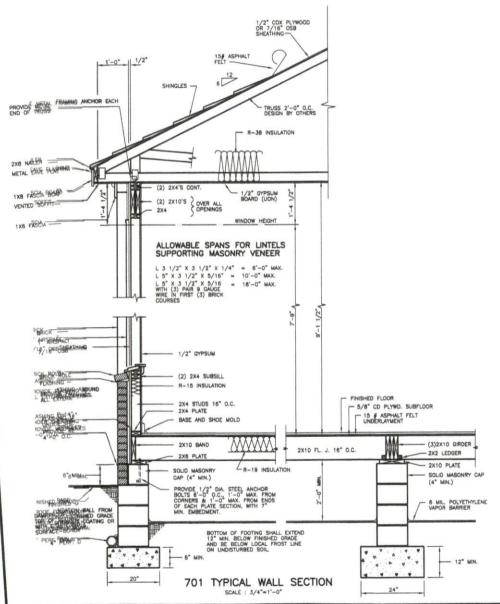
FRONT ELEVATION
SCALE 1/4" = 1'-0"

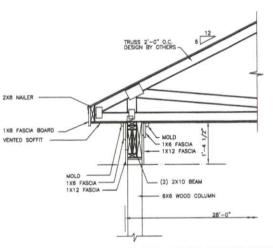
Standard Homes Plan Service, Inc. 7200 SUNSET LAKE ROAD FUQUAY-VARINA, NC 27526 (919)552-5677

			TRU	SS CONSTI	RUCTIO
DESIGNED FOR	PLAN	NO.	MAT'L.	SHOWN	SH
UNDA AND ELTON MOORE	SCOTT	2	B.V.		50

REAR EALEVATION

DESIGNED


Standard Homes Plan Service, Inc.
7200 SUNSET LAKE ROAD FUQUAY-VARINA, NC 27526 (919)552-5677
SET HOLE DESIGN PROPERS ON ARE AT WHINTENDAMPHONISCOM


СОРУВІСНТЕВ

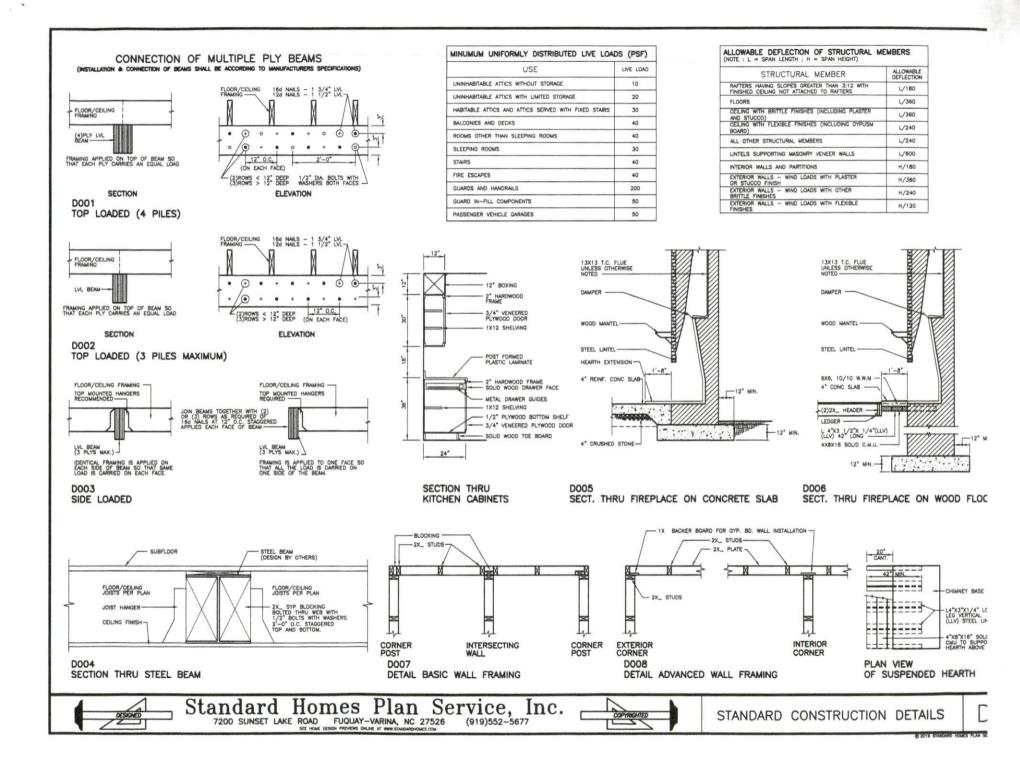
N S	SHOWN	MATT	NO.	PLAN	DESIGNED FOR	-
6		5.4			DEDICTED FOR	
		B.V.	2	SCOTT	LINDA AND ELTON MOORE	

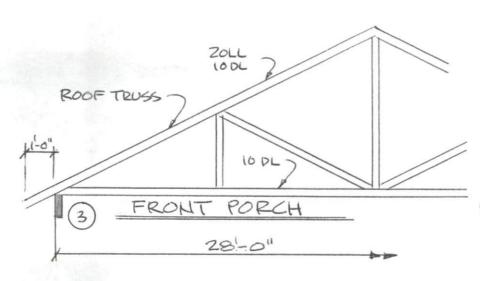
@ 2019 STANDARD HOMES PLAN SI

TRUSS CONSTRUCT

702 SECTION THRU FRONT PORCH

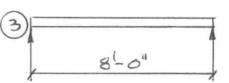
TRUSS CONSTRUCTION


Standard Homes Plan Service, Inc.

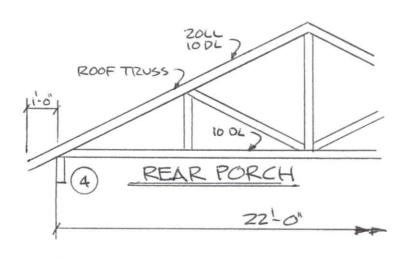

7200 SUNSET LAKE ROAD FUQUAY-VARINA, NC 27526

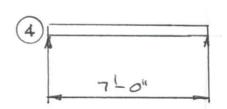
(919)552-5677

DESIGNED FOR	PLAN	NO.	MAT'L.	SHOWN	SH
LINDA AND ELTON MOORE	SCOTT	2	B.V.		70
		-	AT SOTO STA	NOARD HOMES	PLAN S


SCOTT No. Z

FOR: ELTON & LINDA MOORE


PERMIT:


REVISED:

DATE : 10-24-22

3) W= (15-0")(40 PSF) W= 600 PLF Choose 2(13/4")(9 /4") LVL (see attached)

4) w= (12-0")(40 PSF) w= 480 PLF Chouse (2) 2×10 # 2 SPF PER 2018 NCRC, APPENDIX W

GANG-LAM LVL 2950 Fb 2.0E MAXIMUM UNIFORM LOAD (PLF)

						A	LLC)WA	ABL	EF	LO	OR	LOA	DS	(PI	F)	100	%						,
(F1)		13/4			13/4)	k 91/4	1 PI	/ 13/4)	91/2			111/4	Personal	-	-		y 13/4		1 PI	y 13/4 ler To N	x 16	1 PI	y 13/4	x 18
m Span		Load	Total Load	Live Defle		Total Load		Load	Total Load	Live Defie		Total Load	Live Defle		Total Load	Live Defle	Load	Total Load	Live	Load	Total Load	Live		Total Load
Веаш		L/480	L/240	L/360	L/480	L/240	L/360	L/480	L/240	L/360	L/480	L/240	L/360	L/480	L/240	L/360	L/480	L/240	L/360	L/480				L/240
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	681 443 303 215 158 120 93 73 59 48 40 33	522 337 229 163 120 90 70 55 44 36	777 639 441 315 231 174 134 105 84 68 55 46 38 32	1046 864 603 434 321 244 189 150 121 98 81 68 58 49 42 37 32	1016 669 461 330 244 185 143 113 91 74 61 51 43 37 32	864 736 607 467 355 276	1082 893 649 467 347 263 205 162 130 106 88 74 62 53 46 39 34	497 356 263 199 155 122 96 80 66 55 47 40 34	1082 893 760 637 504 384 298 235 189 154 126 105 88 74 63 54	1102 932 748 559 428 334 265 214 175 145 121 102 87 75 65	794 574 427 325 253 201 162 132 109 91 77 66 57 49 43	1348 1102 932 807 704 584 484 385 310 253 209 174 147 124 106 91 79	1181 996 861 649 498 389 310 250 205 170 142 120 102 88 76 66	1181 918 667 497 380 296 235 189 155 128 107 91 77 66 57 50	1450 1181 996 861 758 644 543 449 363 297 245 205 172 146 125 108 93	1470 1229 1056 925 785 618 495 401 329	1229	1470 1229	1772 1469 1254 1094 969 870 717 584 481	1772 1469	1254 1094 969	2110 1732	2110 1732 1468	211 173 146 127 112
24	-	-	-	-	-	32	-		40 35	50 44	37 33	68 60	58 51	44 39	81 71	95 84	71 63	134	140 124	106 93	200	198 175	150	284
25 26	-	-			-		:	-		39	-	52 46	46 41	34	62 55	74 66	56 50	103	110	83	155	155	132	250
27 28		-	-	-	-	-	-	-	-	31		41 36	36 33	:	48 43	59 53	45 40	81 72	88 79	66 59	138 122 109	138 124 111	104 93 84	196 178 156
29 30		-		-	-	-	-	-		-	-	32	-	-	38 34	48 43	36 33	64	71	53 48	98	100	76 68	140

How to use maximum uniform load tables:

- Select the correct table for the beam application you need.
- 2. Choose the required beam span in the left column.
- 3. Select a beam depth from the tables that satisfies BOTH the live and total load PLF on the beam.
- 4. Check the bearing requirements as shown on page 8.

Example: Floor live load 480 PLF, L/360 deflection limit. Floor total load 660 PLF, L/240 deflection limit. Beam span 14' - 0"

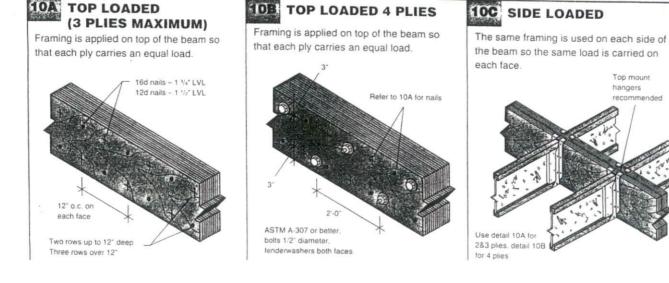
Solution: Try 2 plies 13/4" x 111/8", which can carry:

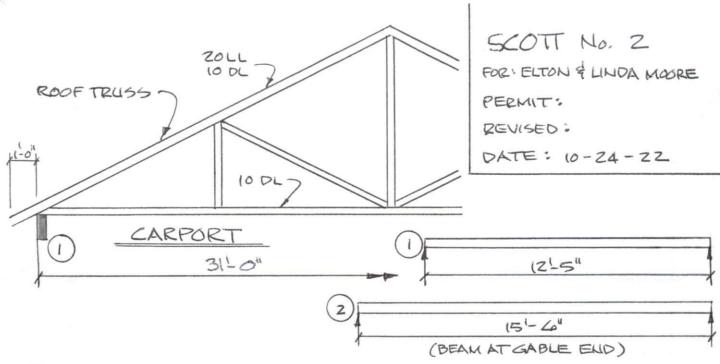
- Live load 2 x 250 = 500 > 480 PLF ✓OK
- Total load 2 x 363 = 726 > 660 PLF ✓ OK

Notes (for page 6 and 7)

- 1. Beam spans are defined as follows: Simple span dimensions are measured from inside face of supports. Multiple span dimensions are measured from inside face of exterior supports to center line of interior supports.
- 2. These tables are for simple spans (with a support at each end) or for continuous (multiple span) beams if spans are equal.
- 3. PLF values are for a single ply of 134" Gang-Lam LVL.
 - Double the values for two plies or 3½" thickness.
- Triple the values for three plies or 5¼" thickness.
- * 4. For 1¾" x 16" beams and deeper, two plies (minimum) are required.

SIDE LOADED


Top mount


recommended

hangers

5. More than three plies may require special design. Contact your LP engineered products distributor.

CONNECTION OF MULTIPLE PLY BEAMS

- 1) w = (16-6") (40 PSF) w = 660 PLF Choose (2) 13/4" x 1178" LVL (See attached)
- 2 w= (2-0")(40 PSF) + (7-0")(11 PSF) w= 157 PLF Choose (2) 1 3/4" x 9 1/4" LVL (see attached)

GANG-LAM LVL 2950 Fb 2.0E MAXIMUM UNIFORM LOAD (PLF)

						A	LLC)WA	BL	EF	LOC	OR I	LOA	DS	(PI	F)	100	0%						
I (FU)		y 13/4	x 71/4	1 PI	13/4)		1	/ 13/4 X		T		111/4		-			y 13/4		1 PI	y 13/4 ler To N	x 16	1 PI	y 13/4	x 18
m Span	Live Defie	Load	Total Load	Live Defle		Total Load	Live Defle	Load	Total Load	Live Defle		Total Load	Live Defle		Total Load	Live Defle		Total Load	Live	Load	Total Load	Live		Total Load
Beam			L/240	L/360	L/480	L/240		L/480	L/240	L/360	L/480	L/240	L/360	L/480	L/240	L/360	L/480	L/240	L/360	L/480	L/240	L/360	L/480	L/240
6 7 8	681 443 303	522 337 229	777 639 441	1046 864 603	1016 669 461	1046 864 736	1082 893 649	1082 720 497	1082 893 760		1348 1102 794	1348 1102 932	1450 1181	1181	1181	1470		1470	1772	1772	1772	2698 2110	2698 2110	2698 2110
9	215 158	163 120	315	434	330	607 467	467 347	356 263	637 504	748 559	574 427	807 704	996 861 649	918 667 497			1229 1041 784		1469 1254 1094	1469 1254 1094	1469 1254 1094	1732 1468 1274	1468	1468
11 12	120 93 73	90 70 55	174	189	185	355 276	263	199 155	384 298	428 334	325 253	584 484	498 389	380 296	644 543	785 618	603 473	823 732	969 870	870 686		1125		1125
13 14 15	59 48	44 36	105 84 68	150 121 98	113 91 74	218 175 142	162 130 106	122 96 80	235 189 154	265 , 214 175	201 162 132	385 310 253	310 250 205	235 189 155	449 363 297	495 401 329	377 305	625, 541	717 584	550 446	790 689	911 807	761 621	911 832
16 17	40 33	:	55 46	81 68	61 51	117. 97	88 74	66 55	126 105	145 121	109	209 174	- 170 142	128 107	245	274	250 207 174	472, 396, 332	481 401 337	367 305 256	601 529 469	668 559 472	512 427 359	744 656 582
18 19 20	-		38	58 49 42	43 37 32	81 68 58	62 53 46	47 40 34	88 74 63	102 87 75	77 66 57	147 124 106	120 102	91 77	172- 146	194. 166	147 125	281 239	286 245	217 185	413 353	401	305 261	520 467
21 22	:		-	37 32	-	50 43	39 34	-	54 47	65 57	49 43	91	88 76 66	66 57 50	125 108 93	143 124 108	108 93 81	205 177 154	211 183 160	160 138 121	304 263 229	297 258	225 195	421 371
23	-	-	-	-	-	37 32	-	-	40 35	50 44	37 33	68 60	58 51	44 39	81 71	95 84	71 63	134	140 124	106	200	225 198 175	170 150 132	324 284 250
25 26 27	-	-							:	39 35 31	-	52 46 41	46 41 36	34 31	62 55 48	74 66 59	56 50	103 91	110 98	83 74	155 138	155 138	117 104	221 196
28 29	-			:	:	:	-	-	-	-		36 32	33	-	48 43 38	53 48	45 40 36	81 72 64	88 79 71	66 59 53	122 109 98	124 111 100	93 84 76	175 156
30	-	-	-	-	-		- 1	-	-	-	-	-	-		34	43	33	57	64	48	88	91	68	140

How to use maximum uniform load tables:

- Select the correct table for the beam application you need.
- 2. Choose the required beam span in the left column.
- 3. Select a beam depth from the tables that satisfies BOTH the live and total load PLF on the beam.
- 4. Check the bearing requirements as shown on page 8.

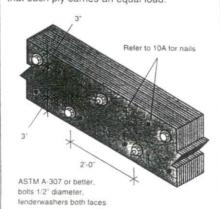
Example: Floor live load 480 PLF, L/360 deflection limit. Floor total load 660 PLF, L/240 deflection limit. Beam span 14° - 0°

Solution: Try 2 plies 13/4" x 111/8", which can carry:

- Live load 2 x 250 = 500 > 480 PLF ✓OK
- Total load 2 x 363 = 726 > 660 PLF ✓ OK

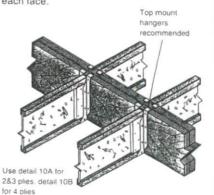
TOP LOADED

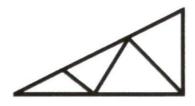
Notes (for page 6 and 7)


- Beam spans are defined as follows: Simple span dimensions are measured from inside face of supports. Multiple span dimensions are measured from inside face of exterior supports to center line of interior supports.
- 2. These tables are for simple spans (with a support at each end) or for continuous (multiple span) beams if spans are equal.
- 3. PLF values are for a single ply of 1¾" Gang-Lam LVL.
 - Double the values for two plies or 3½" thickness.
 - Triple the values for three plies or 51/4" thickness.
- * 4. For 1¾" x 16" beams and deeper, two plies (minimum) are required.
- More than three plies may require special design. Contact your L-P engineered products distributor.

CONNECTION OF MULTIPLE PLY BEAMS

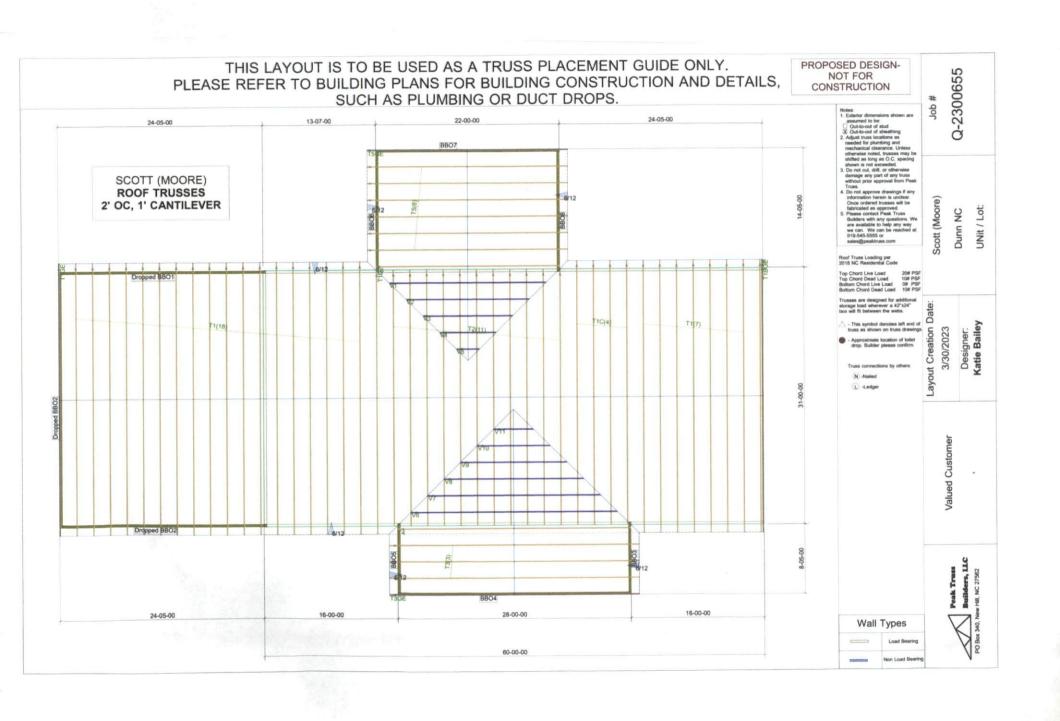
(3 PLIES MAXIMUM) Framing is applied on top of the beam so that each ply carries an equal load. 16d nails - 1 1/4* LVL 12d nails - 1 1/4* LVL 12d nails - 1 1/4* LVL


10B TOP LOADED 4 PLIES


Framing is applied on top of the beam so that each ply carries an equal load.

10C SIDE LOADED

The same framing is used on each side of the beam so the same load is carried on each face.



Peak Truss Builders, LLC

PO Box 340, New Hill, NC 27562

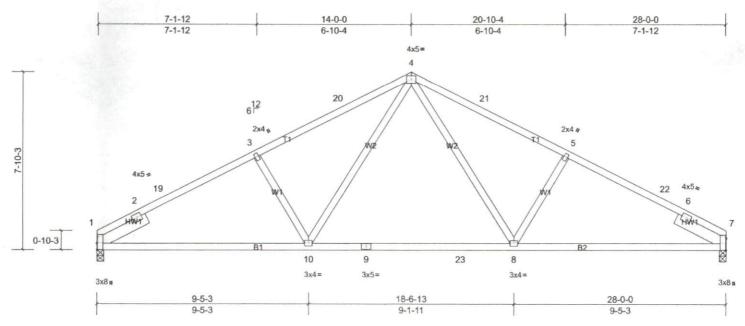
Comments and Clarifications

Job #:	Description:	Notes:
Q-2300655 Customer:	Scott (Moore)	Roof Trusses
Valued Customer	our nace.	
Address:	Site Address:	
	Dunn NC	
Truss Design Date:		
 The plan elevations on this jo All perimeter dimensions on laup with edge of slab. All trusses and engineered winstallation Package. However, Cantilever horizontal truss Carport and porch LVLs supp 	2x4 (3-1/2" wide) unless otherwise noted. bb show brick. Per plans, truss overhang is measur ayout reflect outside to outside of the sheathing. So ood require proper bracing and blocking. Some bra "systematic" or "whole house" bracing is the respondimension is 12". Sub-fascia and fascia are beyon blied by others. idered in this design. If HVAC / attic storage is required.	tuds are held in 1/2" to allow sheathing to line acing guidance is provided in our Field insibility of the Engineer of Record.
I have Reviewed and Approve	ed above Clarifications:	
Signed:	Date:	:

Job	Truss	Truss Type	Qty	Ply	Scott (Moore)-Roof
Q-2300655-1	T4	Common	1	1	Job Reference (optional)

Run: 8.62 S Nov 16 2022 Print: 8.620 S Nov 16 2022 MiTek Industries, Inc. Thu Mar 30 12:42:22

ID:mrmWpjrEbJ7IVQByKx?Qo8zVlrt-E6WcNpC2pwUDhli8PYSrO20CUWp9pkmTRINRAuzVlmF


Structural wood sheathing directly applied or 3-8-15 oc purlins.

installed during truss erection, in accordance with Stabilizer

MiTek recommends that Stabilizers and required cross bracing be

Rigid ceiling directly applied or 10-0-0 oc bracing.

Installation guide.

Scale = 1:48.5

Plate Offsets	X	V)·	[1:0-3-8 Edge]	[7:0-6-4,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.59	Vert(LL)	-0.30	8-10	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.66	Vert(CT)	-0.46	8-10	>729	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.24	Horz(CT)	0.06	7	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 139 lb	FT = 20%

BRACING

TOP CHORD

BOT CHORD

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1

WEBS 2x4 SP No.3

SLIDER Left 2x6 SP No.2 - 2-6-0, Right 2x6 SP No.2 -- 2-6-0

REACTIONS (lb/size) 1=1120/0-3-8, (min. 0-1-8), 7=1120/0-3-8, (min. 0-1-8)

Max Horiz 1=-104 (LC 9)

Max Uplift 1=-138 (LC 11), 7=-138 (LC 11)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

1-2=-508/0, 2-19=-1736/247, 3-19=-1638/269, 3-20=-1578/277, 4-20=-1472/294, 4-21=-1472/294, 5-21=-1578/277,

5-22=-1640/269, 6-22=-1736/247, 6-7=-427/0

BOT CHORD 1-10=-183/1495, 9-10=-33/1048, 9-23=-33/1048, 8-23=-33/1048, 7-8=-160/1493 **WEBS** 4-8=-63/600, 5-8=-359/188, 4-10=-63/596, 3-10=-359/188

NOTES

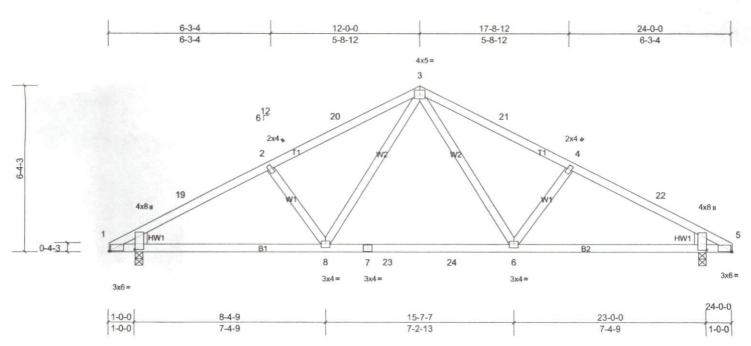
Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=28ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 14-0-0, Exterior (2) 14-0-0 to 17-0-0, Interior (1) 17-0-0 to 28-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 138 lb uplift at joint 1 and 138 lb uplift at joint 7.
- This truss is designed in accordance with the 2015 international resource and accordance with the 2015 international resource.

Job	Truss	Truss Type	Qty	Ply	Scott (Moore)-Roof
Q-2300655-1	T5	Common	6	1	Job Reference (optional)

Run: 8.62 S Nov 16 2022 Print: 8.620 S Nov 16 2022 MiTek Industries, Inc. Thu Mar 30 12:42:23

Page: 1 ID:7pZPsQvNPrmacC3w6UbbVBzVlro-iI4_a9DgaDc4JvHLzF_4wGZPlvCgYBDdgy6_jKzVlmE


Structural wood sheathing directly applied or 4-9-10 oc purlins.

installed during truss erection, in accordance with Stabilizer

MiTek recommends that Stabilizers and required cross bracing be

Rigid ceiling directly applied or 10-0-0 oc bracing.

Installation guide.

Scale = 1:41 9

Plate Offsets (X, Y): [1:0-0-8,0-0-2], [1:0-0-12,0-11-13], [5:0-0-8,0-0-2], [5:0-0-12,0-11-13]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.46	Vert(LL)	-0.15	6-8	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.51	Vert(CT)	-0.26	6-8	>999	180	0.0000000000000000000000000000000000000	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.16	Horz(CT)	0.03	5	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 111 lb	FT = 20%

BRACING

TOP CHORD

BOT CHORD

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 WEBS 2x4 SP No.3

WEDGE Left: 2x6 SP No.2 Right: 2x6 SP No.2

REACTIONS (lb/size) 1=960/0-3-8, (min. 0-1-8), 5=960/0-3-8, (min. 0-1-8)

Max Horiz 1=-89 (LC 9)

Max Uplift 1=-118 (LC 11), 5=-118 (LC 11)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-19=-1342/188, 2-19=-1300/210, 2-20=-1179/204, 3-20=-1104/220, 3-21=-1104/220, 4-21=-1179/204, 4-22=-1300/210,

5-22=-1342/188

BOT CHORD 1-8=-112/1125, 7-8=-9/800, 7-23=-9/800, 23-24=-9/800, 6-24=-9/800, 5-6=-112/1125

WEBS 3-6=-35/403, 4-6=-266/147, 3-8=-35/403, 2-8=-266/147

NOTES

Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 12-0-0, Exterior (2) 12-0-0 to 15-0-0, Interior (1) 15-0-0 to 24-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

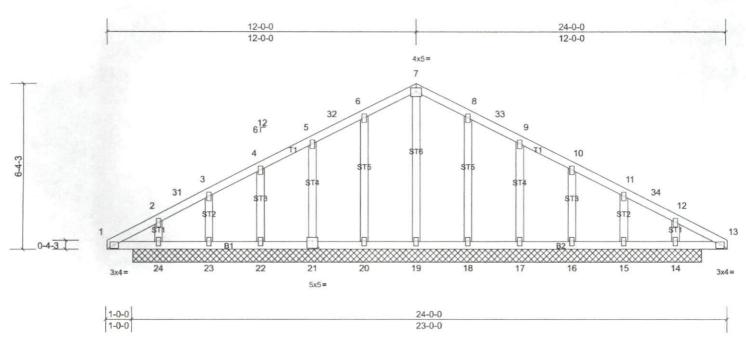
Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 118 lb uplift at joint 1 and 118 lb uplift at joint 5.

This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Scott (Moore)-Roof
Q-2300655-1	T5GE	Common Supported Gable	1	1	Job Reference (optional)

Run: 8.62 S Nov 16 2022 Print: 8.620 S Nov 16 2022 MiTek Industries, Inc. Thu Mar 30 12:42:23

Page: 1 ID:UnNIw8zVENOtizytv2BmCFzVIrj-il4_a9DgaDc4JvHLzF_4wGZV5vIYYBbdgy6_jKzVImE


Structural wood sheathing directly applied or 10-0-0 oc purlins.

installed during truss erection, in accordance with Stabilizer

MiTek recommends that Stabilizers and required cross bracing be

Rigid ceiling directly applied or 6-0-0 oc bracing.

Installation guide.

Scale = 1:42.1

Plate Of	fsets (X	Y):	21:0-2	2-8,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(TL)	n/a	200	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.14	Horiz(TL)	0.00	14	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS						1	Weight: 126 lb	FT = 20%

BRACING

TOP CHORD

BOT CHORD

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1

2x4 SP No.3 **OTHERS**

REACTIONS All bearings 22-0-0.

(lb) - Max Horiz 24=-89 (LC 9)

Max Uplift All uplift 100 (lb) or less at joint(s) 14, 15, 16, 17, 18, 20, 21,

22, 23, 24

All reactions 250 (lb) or less at joint(s) 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24

FORCES NOTES

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner (3) 0-0-0 to 3-0-0, Exterior (2) 3-0-0 to 12-0-0, Corner (3) 12-0-0 to 15-0-0, Exterior (2) 15-0-0 to 24-0-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown, Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult 3) qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable studs spaced at 2-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 21, 22, 23, 24, 18, 17, 16, 15, 14.
- Non Standard bearing condition. Review required.
- This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Scott (Moore)-Roof
Q-2300655-1	Т6	Common	1	1	Job Reference (optional)

Run: 8.62 S Nov 16 2022 Print: 8.620 S Nov 16 2022 MiTek Industries, Inc. Thu Mar 30 12:42:23

Page: 1 ID:uM2RY9?OXImSZQgSaAkTqtzVlrg-il4_a9DgaDc4JvHLzF_4wGZSlvDaYB0dgy6_jKzVlmE

Structural wood sheathing directly applied or 5-1-13 oc purlins.

installed during truss erection, in accordance with Stabilizer

MiTek recommends that Stabilizers and required cross bracing be

Rigid ceiling directly applied or 10-0-0 oc bracing.

Installation guide.

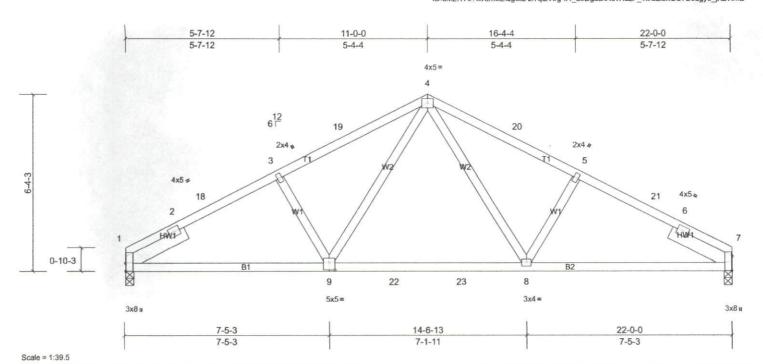


Plate Offsets (X, Y): [1:0-3-8,Edge], [7:0-6-4,Edge], [9:0-2-8,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.30	Vert(LL)	-0.11	8-9	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.39	Vert(CT)	-0.19	8-9	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.18	Horz(CT)	0.03	7	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 112 lb	FT = 20%

BRACING TOP CHORD

BOT CHORD

LUMBER

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

2x4 SP No.3 WERS SLIDER

Left 2x6 SP No.2 -- 2-6-0, Right 2x6 SP No.2 -- 2-6-0

REACTIONS (lb/size) 1=880/0-3-8, (min. 0-1-8), 7=880/0-3-8, (min. 0-1-8)

Max Horiz 1=82 (LC 10)

Max Uplift 1=-108 (LC 11), 7=-108 (LC 11)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown

TOP CHORD 1-2=-394/0, 2-18=-1307/193, 3-18=-1224/206, 3-19=-1199/213, 4-19=-1127/229, 4-20=-1127/229, 5-20=-1199/213,

5-21=-1224/206, 6-21=-1307/193, 6-7=-347/0

1-9=-123/1124, 9-22=-25/808, 22-23=-25/808, 8-23=-25/808, 7-8=-120/1124 **BOT CHORD**

WEBS 4-8=-47/429, 5-8=-263/144, 4-9=-47/429, 3-9=-263/144

NOTES

Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; B=20ft; L=22ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 11-0-0, Exterior (2) 11-0-0 to 14-0-0, Interior (1) 14-0-0 to 22-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and

any other members, with BCDL = 10.0psf.

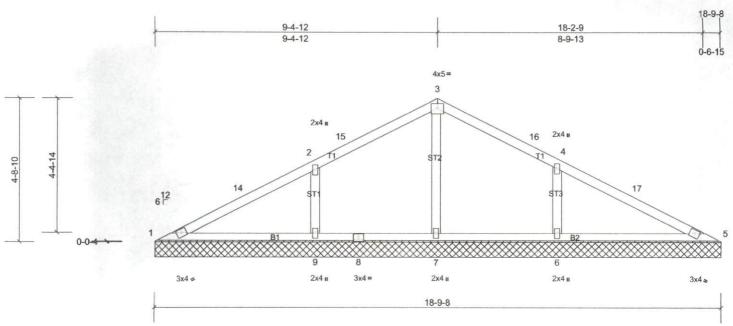
Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 108 lb uplift at joint 1 and 108 lb uplift at joint 7.

This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Scott (Moore)-Roof
Q-2300655-1	V1	Valley	1	1	Job Reference (optional)

Run: 8.62 S Nov 16 2022 Print: 8.620 S Nov 16 2022 MiTek Industries, Inc. Thu Mar 30 12:42:23

ID:EmoTSFfBMO6ZazyuOajg9mzVls7-il4_a9DgaDc4JvHLzF_4wGZTbvHpYBPdgy6_jKzVImE


Structural wood sheathing directly applied or 10-0-0 oc purlins.

installed during truss erection, in accordance with Stabilizer

MiTek recommends that Stabilizers and required cross bracing be

Rigid ceiling directly applied or 6-0-0 oc bracing.

Installation guide.

Scale = 1:36.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L∕d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.18	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.15	Horiz(TL)	0.00	9	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 70 lb	FT = 20%

BRACING

TOP CHORD

BOT CHORD

LUMBER TOP CHORD BOT CHORD

2x4 SP No.1 2x4 SP No.1

2x4 SP No.3 **OTHERS**

REACTIONS All bearings 18-9-8.

(lb) - Max Horiz 1=-68 (LC 9)

Max Uplift All uplift 100 (lb) or less at joint(s) 1, 5 except 6=-102 (LC 11),

9=-102 (LC 11)

Max Grav All reactions 250 (lb) or less at joint(s) 1, 5 except 6=458 (LC

21), 7=420 (LC 1), 9=455 (LC 20)

FORCES TOP CHORD (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-14=-42/287, 3-15=0/257, 3-16=0/251, 4-17=-41/284

WEBS

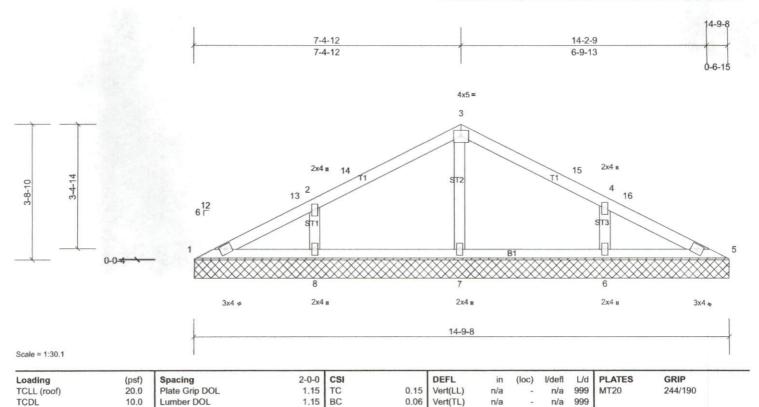
3-7=-377/33, 2-9=-316/141, 4-6=-317/141

NOTES

Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 9-5-4, Exterior (2) 9-5-4 to 12-5-4, Interior (1) 12-5-4 to 18-10-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Gable requires continuous bottom chord bearing.


- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (it=lb) 9=102, 6=102. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Scott (Moore)-Roof
Q-2300655-1	V2	Valley	1	1	Job Reference (optional)

Run: 8.62 S Nov 16 2022 Print: 8.620 S Nov 16 2022 MiTek Industries, Inc. Thu Mar 30 12:42:23

Page: 1

ID:FJsKbt3WLrOkfBZQNjKeXxzVlrb-il4_a9DgaDc4JvHLzF_4wGZU9vJIYCgdgy6_jKzVlmE

0.07

BRACING

TOP CHORD

BOT CHORD

Horiz(TL)

0.00

Installation guide.

n/a n/a

Weight: 53 lb

Structural wood sheathing directly applied or 6-0-0 oc purlins.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 6-0-0 oc bracing.

FT = 20%

LUMBER

BCLL

BCDL

TOP CHORD 2x4 SP No.1 2x4 SP No.1

BOT CHORD OTHERS 2x4 SP No.3

REACTIONS All bearings 14-9-8.

(lb) - Max Horiz 1=-53 (LC 9)

0.0*

10.0

Max Uplift All uplift 100 (lb) or less at joint(s) 1, 5, 6, 8

Max Grav All reactions 250 (lb) or less at joint(s) 1, 5 except 6=347 (LC

21), 7=323 (LC 1), 8=347 (LC 20)

Rep Stress Incr

FORCES WEBS

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-8=-256/117, 4-6=-254/115

NOTES

Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 7-5-4, Exterior (2) 7-5-4 to 10-5-4, Interior (1) 10-5-4 to 14-10-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Gable requires continuous bottom chord bearing.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 8, 6.

This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

YES WB

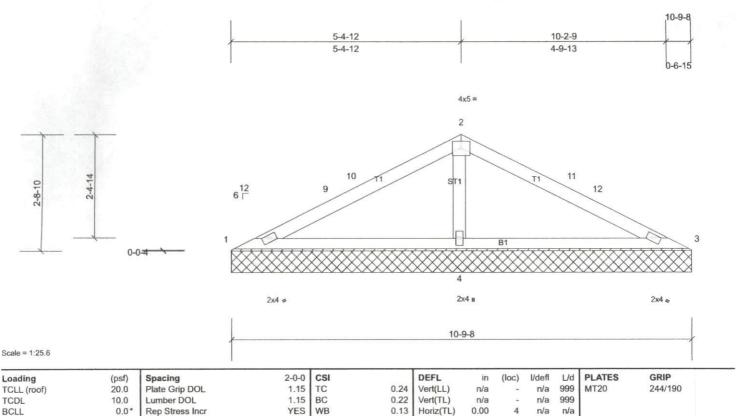
Matrix-MS

IRC2015/TPI2014

	Job	Truss	Truss Type	Qty	Ply	Scott (Moore)-Roof	
	Q-2300655-1	V3	Valley	1	1	Job Reference (optional)	
Peak Truss Builders LLC, New Hill, user Run: 8.62 S Nov 16 2022 Print: 8.620 S Nov 16 2022 MiTek Industries, Inc. Thu Mar 30 12:42:24					Page: 1		

ID:bHfDea7fAN11mzRNAGwpE_zVIrW-AVeNoVDIKXkwx3sXXzVJTT6eUJbSHezmucsYFmzVImD

Weight: 35 lb


Structural wood sheathing directly applied or 10-0-0 oc purlins.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 6-0-0 oc bracing.

Installation guide.

FT = 20%

LUMBER

BCDL

2x4 SP No.1 TOP CHORD **BOT CHORD** 2x4 SP No.1

OTHERS 2x4 SP No.3

REACTIONS (lb/size) 1=39/10-9-8, (min. 0-1-8), 3=45/10-9-8, (min. 0-1-8),

Code

4=778/10-9-8, (min. 0-1-8)

Max Horiz 1=-38 (LC 9)

10.0

Max Uplift 1=-24 (LC 21), 3=-20 (LC 20), 4=-111 (LC 11) Max Grav 1=83 (LC 20), 3=88 (LC 21), 4=778 (LC 1)

FORCES

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 1-9=-82/333, 9-10=-69/349, 2-10=-67/413, 2-11=-63/402, 11-12=-65/338, 3-12=-75/321 TOP CHORD

IRC2015/TPI2014

BOT CHORD 1-4=-312/108, 3-4=-302/106

WEBS 2-4=-594/152

NOTES

Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 5-5-4, Exterior (2) 5-5-4 to 8-5-4, Interior (1) 8-5-4 to 10-10-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MS

BRACING

TOP CHORD

BOT CHORD

Gable requires continuous bottom chord bearing.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

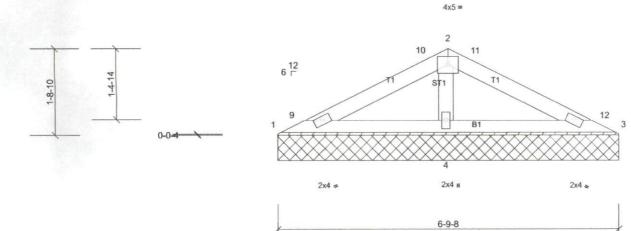
Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 1, 20 lb uplift at joint 3 and 111 lb uplift at joint 4. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Scott (Moore)-Roof
Q-2300655-1	V4	Valley	1	1	Job Reference (optional)

Run: 8.62 S Nov 16 2022 Print: 8.620 S Nov 16 2022 MiTek Industries, Inc. Thu Mar 30 12:42:24

Page: 1

ID:0sLLGc9YTIPcdQAyrPTWrdzVIrT-AVeNoVDIKXkwx3sXXzVJTT6gqJdJHg8mucsYFmzVImD


Structural wood sheathing directly applied or 6-9-8 oc purlins.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 6-0-0 oc bracing.

Installation guide.

0.	-01	_	_	4	2	1 8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 21 lb	FT = 20%

BRACING

TOP CHORD

BOT CHORD

LUMBER TOP CHORD

2x4 SP No.1 2x4 SP No.1

BOT CHORD OTHERS 2x4 SP No.3

REACTIONS (lb/size) 1=56/6-9-8, (min. 0-1-8), 3=62/6-9-8, (min. 0-1-8), 4=425/6-9-8,

(min. 0-1-8) Max Horiz 1=23 (LC 10)

Max Uplift 1=-6 (LC 11), 3=-6 (LC 11), 4=-55 (LC 11) Max Grav 1=76 (LC 20), 3=80 (LC 21), 4=425 (LC 1)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS

NOTES

Unbalanced roof live loads have been considered for this design.

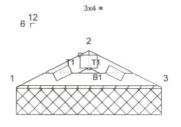
Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) 2) and C-C Exterior (2) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 3-5-4, Exterior (2) 3-5-4 to 6-5-4, Interior (1) 6-5-4 to 6-10-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Gable requires continuous bottom chord bearing.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 6 lb uplift at joint 1, 6 lb uplift at joint 3 and 55 lb uplift at joint 4. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Scott (Moore)-Roof
Q-2300655-1	V5	Valley	1	1	Job Reference (optional)


Run: 8.62 S Nov 16 2022 Print: 8.620 S Nov 16 2022 MiTek Industries, Inc. Thu Mar 30 12:42:24

Page: 1

ID:udas6 C2WXv161Ti4EYS0TzVlrP-AVeNoVDIKXkwx3sXXzVJTT6hgJe5Hg?mucsYFmzVlmD

0-4-14 0-8-1 0-0-4

2-9-8

2x4 =

2x4 =

Scale = 1:21

Plate Offsets (X, Y): [2:0-2-0,Edge]

S						10.1						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a		n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 7 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS (lb/size) 1=112/2-9-8, (min. 0-1-8), 3=112/2-9-8, (min. 0-1-8)

Max Horiz 1=-8 (LC 9) Max Uplift 1=-14 (LC 11), 3=-14 (LC 11)

BRACING TOP CHORD **BOT CHORD**

Structural wood sheathing directly applied or 2-9-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

FORCES NOTES

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber 2) DOL=1.60 plate grip DOL=1.60

Gable requires continuous bottom chord bearing.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

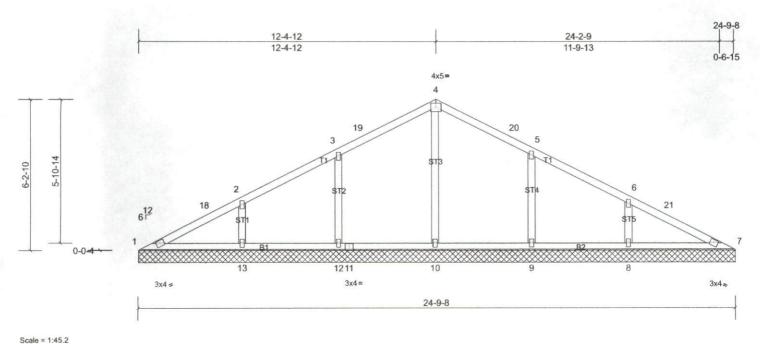
Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 1 and 14 lb uplift at joint 3.

This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Scott (Moore)-Roof
Q-2300655-1	V6	Valley	1	1	Job Reference (optional)

Run: 8.62 S Nov 16 2022 Print: 8.620 S Nov 16 2022 MiTek Industries, Inc. Thu Mar 30 12:42:24

Page: 1


ID:EVG2uRSXMAzz2M9cuWvhyAzVlsO-AVeNoVDIKXkwx3sXXzVJTT6fiJciHd_mucsYFmzVlmD

Structural wood sheathing directly applied or 10-0-0 oc purlins.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 6-0-0 oc bracing.

Installation guide.

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.16	Vert(LL)	n/a	12	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.19	Horiz(TL)	0.00	7	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 100 lb	FT = 20%

BRACING

TOP CHORD

BOT CHORD

LUMBER TOP CHORD

OTHERS

2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.3

REACTIONS All bearings 24-9-8.

(lb) - Max Horiz 1=-90 (LC 9)

Max Uplift All uplift 100 (lb) or less at joint(s) 8, 9, 12, 13

Max Grav All reactions 250 (lb) or less at joint(s) 1, 7 except 8=378 (LC

21), 9=359 (LC 17), 10=476 (LC 16), 12=364 (LC 16), 13=372

(LC 20)

FORCES WEBS

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

4-10=-285/0, 3-12=-257/130, 2-13=-254/115, 5-9=-252/128, 6-8=-258/117

NOTES

- Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=25ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 12-5-4, Exterior (2) 12-5-4 to 15-5-4, Interior (1) 15-5-4 to 24-10-0 zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 13, 9, 8.
- This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

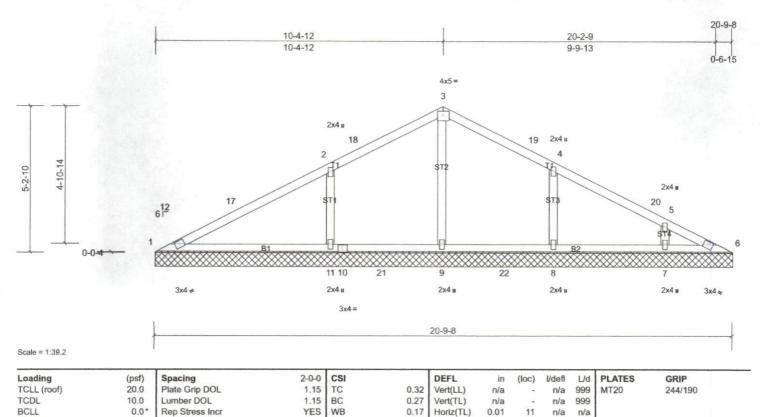
Job	Truss	Truss Type	Qty	Ply	Scott (Moore)-Roof
Q-2300655-1	V7	Valley	1	1	Job Reference (optional)

Run: 8.62 S Nov 16 2022 Print: 8.620 S Nov 16 2022 MiTek Industries, Inc. Thu Mar 30 12:42:24

Page: 1

ID:EVG2uRSXMAzz2M9cuWvhyAzVIsO-AVeNoVDIKXkwx3sXXzVJTT6cAJagHeMmucsYFmzVImD

Weight: 79 lb


Structural wood sheathing directly applied or 10-0-0 oc purlins.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 6-0-0 oc bracing

Installation guide.

FT = 20%

LUMBER TOP CHORD **BOT CHORD**

BCDL

2x4 SP No.1 2x4 SP No.1

2x4 SP No.3 **OTHERS**

REACTIONS All bearings 20-9-8.

(lb) - Max Horiz 1=75 (LC 10)

10.0

Code

Max Uplift All uplift 100 (lb) or less at joint(s) 1, 6, 7, 8, 16 except 11=-120 (LC 11)

Max Grav All reactions 250 (lb) or less at joint(s) 1, 6, 16 except 7=284 (LC 21), 8=356 (LC 1), 9=475 (LC 16), 11=526 (LC 20)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

WEBS 3-9=-353/1, 2-11=-360/161, 4-8=-265/135

NOTES

Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=21ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 10-5-4, Exterior (2) 10-5-4 to 13-5-4, Interior (1) 13-5-4 to 20-10-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MS

BRACING

TOP CHORD

BOT CHORD

Gable requires continuous bottom chord bearing.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8, 7 except (jt=lb) 11=120.

IRC2015/TPI2014

This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss		Truss Type		Qty	Ply	Sco	tt (Mooi	e)-Roof				
Q-2300655-1	V8		Valley		1	1	Job	Refere	nce (opti	onal)			
eak Truss Builders LLC,	New Hill, user			Run: 8.62)22 Print: 8.62	0 S Nov 1	6 2022 M	Tek Indus	stries, Inc.			Page
					11	D:EVG2uRSX	MAzz2M9	cuWvhyA	zVIsO-eh	Cl?rEw5rs	snYDRj5g0Y0	Dheq3jzJ06gv7Gb5n[)zVIn
		1				1						16	6-9-8
		-	8-4-1							16-2-9			
			8-4-1	2						7-9-13		1	
												0-	6-15
						4x5 =							
						3							
			23	(4 п	//								
				15					16	2x4 n			
0-14			2	11		ST2			II	4			
3-10-14			/							M			
		6 T	14								17		
		01	ST	1						ST3			
)-4	1	B1			-0-			В	2		-	\
0-0)-4												
		0	9			7			<u> </u>	6	<u> </u>	<u> </u>	36.34
		3x4 =	2:	:4 и		2x4 II				2x4 u		3x4 ≈	
				3x4 =									
						16-9-8							
ale = 1:33.1						1000							,
	The Late of the La												
ading	(psf)	Spacing	2-0-0	CSI	0.40	DEFL	in	(loc)	l/defl		LATES	GRIP	
CLL (roof) CDL	20.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.19	Vert(LL) Vert(TL)	n/a n/a	-	n/a n/a	999 N	1T20	244/190	
CLI	0.0*	Pan Street Incr	1.15 VEC	IM/D	0.12	ACIT(IL")	0.00	-	11/61	333			

LUMBER TOP CHORD

BCLL

BCDL

2x4 SP No.1 2x4 SP No.1

10.0

0.0*

BOT CHORD 2x4 SP No.3 **OTHERS**

REACTIONS All bearings 16-9-8.

(lb) - Max Horiz 1=60 (LC 10)

Max Uplift All uplift 100 (lb) or less at joint(s) 1, 5, 6, 9

Max Grav All reactions 250 (lb) or less at joint(s) 1, 5 except 6=398 (LC

21), 7=367 (LC 1), 9=396 (LC 20)

Rep Stress Incr

FORCES **WEBS**

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3-7=-305/31, 2-9=-281/127, 4-6=-281/126

NOTES

Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) 2) and C-C Exterior (2) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 8-5-4, Exterior (2) 8-5-4 to 11-5-4, Interior (1) 11-5-4 to 16-10-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Gable requires continuous bottom chord bearing.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 9, 6.

This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Matrix-MS

YES WB

IRC2015/TPI2014

0.10

BRACING

TOP CHORD

BOT CHORD

Horiz(TL)

Rigid ceiling directly applied or 6-0-0 oc bracing.

Weight: 61 lb

Structural wood sheathing directly applied or 10-0-0 oc purlins.

installed during truss erection, in accordance with Stabilizer

MiTek recommends that Stabilizers and required cross bracing be

FT = 20%

5 n/a n/a

Installation guide.

Job	Truss		Truss Type		Qty	Ply	Scott (Moore)-R	oof			
Q-2300655-1	V9		Valley		1	1	Job Re	eference (optional)			
eak Truss Builders LLC,	New Hill, user			Run: 8.62 S						Inc. Thu Mar 30 12:		Page:
					ID:0	7snrQMCSW	/YB91zDLT0	GV2CzVIrC	ehCl?rEw	5rsnYDRj5g0Y0hen	QjwL052v7Gb5	inDzVIm
		1				6					1:	2-9-8
				6-4-12					12-2)_Q	1800	
				6-4-12		1			5-9-		1	1
		1				1					6	-6-15
						4x5	5 =					
						2						
—	_					^						
4				12 1				/	1	2x4 II		
0												
기 위				11 12 11		ST1			/	14		
3-2-10		6 T		11 12 11		SII				14 3		
3-2-1		6 12		11 12 11		SII				14 3		
3-2-1		6 F		11 12 11		311				14		
3-2-1		6 7		11 12 11		SIT	В			14 3		4
3-2-10	0-0-4					sin D	В			14 3	\	4
3-2-1	0-0-4			11 12			В			14 3		≥ 4
3-2-1	0-0-4			11 12		6				14 3	3x4.	*
3-2-1	0-0-4			11 12						14 3	3x4 &	★
3-2-1	0-0-4			11 12		6 2x4	# T			14 3	3x4 &	≥
	0-0-4			11 12		6	# T			14 3	3x4 &	
	0-0-4			11 12		6 2x4	# T			14 3	3x4 &	**
cale = 1:27.2	(psf)	Spacing	3x4 s	CSI		6 2x4 12-9-	# 8 in (1 Idac) Vde	off L/d	14 3 5 2x4 #	GRIP	≥ 4
cale = 1:27.2 cading CLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	3x4 s 2-0-0 1.15	CSI TC	0.36 V	6 2x4 12-9-	8 in (n/a	loc) I/de	off L/d	14 3 5 2x4 H		
tale = 1:27.2	(psf)	Spacing	3x4 s	CSI	0.36 V 0.31 V	6 2x4 12-9-	# 8 in (1 Idac) Vde	iff L/d da 999 da 999	14 3 5 2x4 #	GRIP	4

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 10-0-0 oc purlins.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 6-0-0 oc bracing.

Installation guide.

TOP CHORD

2x4 SP No.1 2x4 SP No.1

BOT CHORD 2x4 SP No.3 **OTHERS**

REACTIONS All bearings 12-9-8.

(lb) - Max Horiz 1=-45 (LC 9)

Max Uplift All uplift 100 (lb) or less at joint(s) 1, 4, 5, 6

Max Grav All reactions 250 (lb) or less at joint(s) 1, 4 except 5=259 (LC

21), 6=762 (LC 1)

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. **FORCES**

1-11=-97/320, 11-12=-42/330, 2-12=-40/411, 2-13=-30/370, 13-14=-35/327, 3-14=-40/323, 3-4=-94/352 TOP CHORD **BOT CHORD** 1-6=-300/96, 5-6=-292/94, 4-5=-292/94

WEBS 2-6=-584/131

NOTES

Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 6-5-4, Exterior (2) 6-5-4 to 9-5-4, Interior (1) 9-5-4 to 12-10-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Gable requires continuous bottom chord bearing.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and

4) any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4, 6, 5.

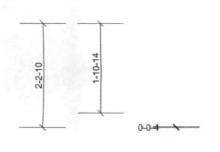
This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Scott (Moore)-Roof
Q-2300655-1	V10	Valley	1	1	Job Reference (optional)

Run: 8.62 S Nov 16 2022 Print: 8.620 S Nov 16 2022 MiTek Industries, Inc. Thu Mar 30 12:42:25

Page: 1

ID:BE1x9BV6tvxd_kJLUHz5_XzVIr1-ehCl?rEw5rsnYDRj5g0Y0heqljyT06sv7Gb5nDzVImC


Structural wood sheathing directly applied or 8-9-8 oc purlins.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 6-0-0 oc bracing.

Installation guide.

Scale = 1:23.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a		n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP		8 8					Weight: 28 lb	FT = 20%

BRACING

TOP CHORD

BOT CHORD

LUMBER TOP CHORD BOT CHORD

2x4 SP No.1 2x4 SP No.1

OTHERS 2x4 SP No.3

REACTIONS (lb/size) 1=46/8-9-8, (min. 0-1-8), 3=52/8-9-8, (min. 0-1-8), 4=606/8-9-8, (min. 0-1-8)

Max Horiz 1=30 (LC 10)

Max Uplift 1=-9 (LC 21), 3=-5 (LC 20), 4=-86 (LC 11) Max Grav 1=78 (LC 20), 3=83 (LC 21), 4=606 (LC 1)

FORCES TOP CHORD (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 1-9=-83/280, 2-9=-74/313, 2-10=-69/303, 3-10=-78/269

BOT CHORD 1-4=-250/116

WEBS 2-4=-432/134

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 4-5-4, Exterior (2) 4-5-4 to 7-7-11, Interior (1) 7-7-11 to 8-10-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Gable requires continuous bottom chord bearing.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 9 lb uplift at joint 1, 5 lb uplift at joint 3 and 86 lb uplift at joint 4.

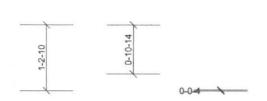
This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

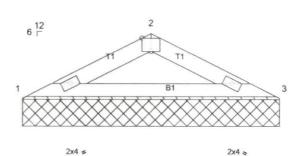
Job	Truss	Truss Type	Qty	Ply	Scott (Moore)-Roof
Q-2300655-1	V11	Valley	1	1	Job Reference (optional)

Run: 8.62 S Nov 16 2022 Print: 8.620 S Nov 16 2022 MiTek Industries, Inc. Thu Mar 30 12:42:25

Page: 1

ID:cpj3nCX_9qJCrB1v9PXoc9zVlr_-ehCl?rEw5rsnYDRj5g0Y0her?jzV07Fv7Gb5nDzVlmC


Structural wood sheathing directly applied or 4-9-8 oc purlins.


installed during truss erection, in accordance with Stabilizer

MiTek recommends that Stabilizers and required cross bracing be

Rigid ceiling directly applied or 10-0-0 oc bracing.

4-9-8

Installation guide.

Scale = 1:20.4

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 13 lb	FT = 20%

BRACING

TOP CHORD

BOT CHORD

LUMBER

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS (lb/size) 1=192/4-9-8, (min. 0-1-8), 3=192/4-9-8, (min. 0-1-8)

Max Horiz 1=-16 (LC 9)

Max Uplift 1=-24 (LC 11), 3=-24 (LC 11)

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-345/109

BOT CHORD 1-3=-86/300

NOTES

FORCES

Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; b=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Gable requires continuous bottom chord bearing.

4) *This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 1 and 24 lb uplift at joint 3.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.