

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0820-3543 Hobson Road

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E14697928 thru E14697946

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

August 4,2020

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

1-	11-8 9-9-0	9-9-0	9-9-0	8-8-8	1-10-4 4-1-12
Plate Offsets (X,Y)	[3:0-2-0,0-2-0], [16:0-5-0,0-3-0], [32:1-0	-8,0-2-8], [32:0-9-13,0-2-0], [39:0-2-7,0-1-4]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.82 BC 0.98 WB 0.71 Matrix-S	DEFL. in (loc) Vert(LL) -0.25 38-39 Vert(CT) -0.54 38-39 Horz(CT) 0.10 29 Wind(LL) 0.28 38-39	l/defl L/d >999 360 >884 240 n/a n/a >999 240	PLATES GRIP MT20 244/190 Weight: 375 lb FT = 20%
		<u> </u>			
LUMBER- TOP CHORD 2x6 SP 1-3: 2x BOT CHORD 2x6 SP WEBS 2x4 SP 3-39: 2 OTHERS	No.1 *Except* 4 SP No.1 No.1 ' No.2 *Except* x6 SP No.1 ' No.2		BRACING- TOP CHORD Structu BOT CHORD Rigid o WEBS 1 Row JOINTS 1 Brac	ural wood sheathing dire ceiling directly applied o r at midpt 4- ce at Jt(s): 16, 10, 12, 18	ectly applied or 2-2-0 oc purlins. r 2-2-0 oc bracing. -36, 16-36 3, 21, 24, 26
REACTIONS. All be (lb) - Max H Max U Max G	arings 6-3-8 except (jt=length) 2=0-3-8, orz 2=-235(LC 17) plift All uplift 100 lb or less at joint(s) 3: 13) rav All reactions 250 lb or less at joint(31=343(LC 13), 32=1591(LC 1), 33	33=0-3-8. 1 except 2=-383(LC 12), 3 s) 29 except 2=1777(LC 2 =406(LC 3)	2=-937(LC 2),		
FORCES. ((b) - Max. TOP CHORD 2-3=- 9-11= 22-23 6-8=- 16-18 26-22	Comp./Max. Ten All forces 250 (lb) or 3029/723, 3-4=-3282/1052, 4-6=-2135/8 417/174, 11-14=-445/137, 14-17=-479, 3=-489/0, 23-25=-496/0, 25-27=-585/0, 2 1653/742, 8-10=-1544/669, 10-12=-158 3=-2329/993, 18-21=-2342/1000, 21-24= -2371/4047	less except when shown. i21, 6-7=-442/278, 7-9=-4 (112, 17-19=-433/8, 19-22 ?7-28=-523/149, 28-29=-3 6/708, 12-15=-1607/733, - 2364/1027, 24-26=-2406	10/222, !=-461/0, 72/82, 15-16=-1625/746, 5/1063,		
26-32 BOT CHORD 2-39= 32-3: WEBS 3-39= 16-30	:=-23/1/1047 644/2762, 38-39=-767/2895, 36-38=-7 3=-597/2489, 31-32=-85/372, 29-31=-85 504/411, 4-38=0/622, 4-36=-1245/554 3=-843/365, 27-32=-796/566, 28-31=-27	67/2895, 34-36=-597/2489 ;/372 , 6-36=-331/1216, 16-34= 9/106, 16-17=-314/308), 33-34=-597/2489, D/484,		TH CARO
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) DOL=1.60 plate grip 3) Truss designed for v Gable End Details a: 4) All plates are 2x4 M 5) Gable studs spaced 6) This truss has been 7) * This truss has been will fit between the b 8) Provide mechanical 2=383, 32=937. Continued on page 2	loads have been considered for this de ult=130mph (3-second gust) Vasd=103r gable end zone and C-C Exterior(2) zor DOL=1.60 vind loads in the plane of the truss only. s applicable, or consult qualified building [20 unless otherwise indicated. at 2-0-0 oc. designed for a 10.0 psf bottom chord liv n designed for a live load of 30.0psf on t ottom chord and any other members, wi connection (by others) of truss to bearir	sign. nph; TCDL=6.0psf; BCDL le;C-C for members and fo For studs exposed to win designer as per ANSI/TF e load nonconcurrent with he bottom chord in all are th BCDL = 10.0psf. g plate capable of withsta	=6.0psf; h=15ft; Cat. II; Exp C; E prces & MWFRS for reactions sh d (normal to the face), see Stan 'I 1. any other live loads. as where a rectangle 3-6-0 tall b nding 100 lb uplift at joint(s) 31	Enclosed; hown; Lumber idard Industry by 2-0-0 wide except (jt=lb)	SEAL 036322 MGINEER A. GILBERT
WARNING - Verify du Design valid for use only a truss system. Before u building design. Bracing is always required for st fabrication, storage, deli Safety Information avi	sign parameters and READ NOTES ON THIS AN with MiTek® connectors. This design is based on se, the building designer must verify the applicability i indicated is to prevent buckling of individual truss ability and to prevent collapse with possible person very, erection and bracing of trusses and truss sys- ailable from Truss Plate Institute, 2670 Crain Highw	D INCLUDED MITEK REFERENCE y upon parameters shown, and is y of design parameters and prop web and/or chord members only al injury and property damage. F iems, see <u>ANSUTPI Q</u> vay, Suite 203 Waldorf, MD 2060	E PAGE MII-7473 rev. 5/19/2020 BEFOR s for an individual building component, no erly incorporate this design into the over . Additional temporary and permanent bi or general guidance regarding the uality Criteria, DSB-89 and BCSI Builo 1	RE USE. ot rall racing ding Component	TRENGINEERING BY AMITek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Hobson Road	
					E1	4697928
J0820-3543	A1-GE	GABLE	1	1		
					Job Reference (optional)	
Comtech, Inc, Faye	teville, NC - 28314,			8.330 s Jul	22 2020 MiTek Industries, Inc. Tue Aug 4 11:12:35 2020 P	age 2
-		ID:2GNsYO62BI49KgBFP3SImayOXVO-o9ZGOgEPBYBa44kDCWgaDBXZEE6CUOGEIG6634yrF6A				

NOTES-

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-2-12 to 4-7-9, Interior(1) 4-7-9 to 15-5-8, Exterior(2) 15-5-8 to 19-10-5, Interior(1) 19-10-5 to 38-8-2 zone; cantilever right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15 except (jt=lb) 10=132.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

to 38-8-2 zone; cantilever right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15 except (jt=lb) 10=157.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIRS AND INCLODED MITER REFERENCE PAGE mit-143 a few of 3/3/2/00 BeFORE DSE. Design valid for use only with MITeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component**
 Satisfies
 Ansi/TPI Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8 except (jt=lb) 9=155.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

i late elleste ()	.,,,,			0,0 = 0], [1 1	= age, e = e], [1.0.0	o i,o = o]; [:		0,0 - 0]				
LOADING (psi TCLL 20.0 TCDL 10.0 BCLL 0.1 BCDL 10.0	f) 0 0 0 * 0	SPACING- Plate Grip D Lumber DOI Rep Stress Code IRC20	2-0-0 OL 1.15 L 1.15 Incr YES 015/TPI2014	CSI. TC BC WB Matri	0.32 0.39 1.00 x-S		DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.14 -0.26 0.04 0.06	(loc) 12-15 12-15 10 12-15	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 297 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x6 SP 2x6 SP 11-14,2 2x4 SP 8-9: 2x6	No.1 No.1 *Except* 2-16: 2x10 SP No.1 No.2 *Except* 6 SP No.1					BRACING- TOP CHOR BOT CHOR WEBS	D D	Structu except Rigid co 1 Row	ral wood end vertio eiling dire at midpt	sheathing dire cals. ctly applied o 6-	ectly applied or 6-0-0 c r 6-0-0 oc bracing. 10, 7-10	c purlins,
REACTIONS.	(size Max He Max U Max G	e) 2=0-3-8, 10=0- orz 2=260(LC 12) plift 2=-52(LC 12), rav 2=740(LC 1), 1	3-8, 9=Mechanical 10=-169(LC 12), 9= 10=2551(LC 19), 9=	-438(LC 23) 55(LC 12)									
FORCES. (Ib TOP CHORD BOT CHORD WEBS) - Max. 2-3=- 2-15= 5-12= 5-15=	Comp./Max. Ten 1432/250, 3-5=-14: 340/1256, 12-15= -754/351, 6-12=-1 276/1182, 3-15=-3	All forces 250 (lb) o 27/399, 6-7=-31/836 -155/326, 10-12=-4 91/1075, 6-10=-1742 355/236	r less except 17/109 2/356, 7-9=-3	when shown. 3/638, 7-10=-	723/2	39,						
NOTES-													

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-2 to 3-7-11, Interior(1) 3-7-11 to 22-5-8, Exterior(2) 22-5-8 to 26-10-5, Interior(1) 26-10-5 to 33-8-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 10=169, 9=438.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MWFRS (envelope) and C-C Exterior(2) -0-9-2 to 3-7-11, Interior(1) 3-7-11 to 22-5-8, Exterior(2) 22-5-8 to 26-10-5, Interior(1) 26-10-5 to 33-8-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9 except (jt=lb) 10=154.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

August 4,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

1-11-0	11-0-0	21-5-0		31-2-0	41-10-7	41-11-0
1-11-	3' 9-9-0	9-9-0	-	9-9-0 '	10-7-14	0-0-10
Plate Offsets (X,Y)	[3:0-1-12,0-2-8], [16:0-2-7,0-1-4]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.77 BC 0.57 WB 0.74 Matrix-S	DEFL. in Vert(LL) -0.22 Vert(CT) -0.47 Horz(CT) 0.10 Wind(LL) 0.17	1 (loc) l/defl L/d 1 5-16 >999 360 7 15-16 >999 240 9 9 n/a n/a 7 15-16 >999 240	PLATES MT20 Weight: 273 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 S 1-3: 2 BOT CHORD 2x6 S 2-14: 2-14:	SP No.1 *Except* 2x4 SP No.1 3P No.1 *Except* 2x6 SP 2400F 2.0E		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing o Rigid ceiling directly applied 1 Row at midpt	directly applied or 3-2-4 c d or 10-0-0 oc bracing. 4-13, 8-13	oc purlins.
WEBS 2x4 S 3-16:	2x6 SP No.1					

REACTIONS. (size) 2=0-3-8, 9=0-2-5 Max Horz 2=139(LC 11) Max Uplift 2=-119(LC 12), 9=-110(LC 13) Max Grav 2=1776(LC 2), 9=1778(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-3000/371, 3-4=-3282/610, 4-6=-2101/532, 6-8=-2099/538, 8-9=-3172/595

- BOT CHORD 2-16=-327/2790, 15-16=-407/2937, 13-15=-407/2937, 11-13=-379/2717, 9-11=-379/2717
- WEBS 3-16=-547/291, 4-15=0/631, 4-13=-1333/339, 6-13=-191/1350, 8-13=-1136/306, 8-11=0/569

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 1-11-8, Interior(1) 1-11-8 to 21-5-8, Exterior(2) 21-5-8 to 25-10-5, Interior(1) 25-10-5 to 42-8-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 9.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=119, 9=110.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design Valid for Use only with Mill RKW connectors. This design is based only upon parameters and properly incorporate individual outling component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Max Horz 1=-251(LC 8) Max Uplift 1=-38(LC 12), 5=-38(LC 13) Max Grav 1=1057(LC 19), 5=1056(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-1310/271, 2-3=-1215/419, 3-4=-1213/419, 4-5=-1307/271

BOT CHORD 1-8=-84/1057, 6-8=0/704, 5-6=-77/924

WEBS 3-6=-185/682, 4-6=-393/288, 3-8=-185/687, 2-8=-393/288

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 11-11-8, Exterior(2) 11-11-8 to 16-4-5, Interior(1) 16-4-5 to 23-9-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TRENCO AMITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Hobson Road
					E14697939
J0820-3543	D3	COMMON GIRDER	1	2	
				_	Job Reference (optional)
Comtech, Inc, Faye	tteville, NC - 28314,			8.330 s Ju	22 2020 MiTek Industries, Inc. Tue Aug 4 11:12:50 2020 Page 2
		ID:2GNs	YO62BI49	KgBFP3SI	mayOXVO-s2zwYoPqf94SNNN6a9S5KMfE5HLpV94SI6FP4iyrF5x

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 1-5=-20

Concentrated Loads (lb)

Vert: 5=-243(F) 11=-236(F) 12=-236(F) 14=-236(F) 16=-236(F) 17=-17(F) 18=-17(F) 19=-17(F) 20=-17(F) 21=-17(F) 22=-17(F) 23=-17(F) 23=-17

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 - **3**----, ---

4) * This russ has been designed for a live load of 30.0ps for the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=165, 2=165.

6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=160, 2=165.

6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope) and C-C Exterior(2) 0-1-8 to 4-6-5, Interior(1) 4-6-5 to 9-3-0, Exterior(2) 9-3-0 to 13-7-13, Interior(1) 13-7-13 to 18-4-8 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=161, 3=161.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 1=4-6-10, 3=4-6-10, 4=4-6-10

Max Horz 1=37(LC 9)

Max Uplift 1=-13(LC 13), 3=-16(LC 13)

Max Grav 1=87(LC 1), 3=87(LC 1), 4=126(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

