

	Client:			Date:	2/25/2021	Page 2 of
TisDesign	Project: Address:			Input by: Job Nam	: Neal Baggett ne: Lot 45 SUMMERLIN	
	, (000)			Project #	#:	
GDH Kerto-S	LVL 1.750"	X 14.000"	2-Ply	- PASSED	Level: Level	
					<u> </u>	
· · · ·	· · ·	· · ·	•••	· · ·	· · · · · · · · ·	
	• • •	• •	• •	• •		<u>}</u> ¥₩↓
T SPF End Grain					2 SPF End Grain	
[16'10"		,	∫[3 1/2"
ŕ			16'10"		· · · · · · · · · · · · · · · · · · ·	1
Id Limit per Foot Id Limit per Fastener Id Mode ge Distance 1. End Distance ad Combination	245.6 PLF 81.9 lb. IV 1 1/2" 3"					
ration Factor	1.00					

Notes	chemicals	6. For flat roofs provide proper drainage to prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the interded application, and to verify the dimensions and loads. Lumber 1. Dry service conditions, unless noted otherwise 2. LVL not to be treated with fire retardant or corrosive	Handling & Installation 1. LVL beams must not be cut or drilled 2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals 3. Damaged Beams must not be used 4. Design assumes top edge is laterally restrained 5. Provide lateral support at bearing points to avoid lateral displacement and rotation	ponding This design is valid until 11/27/2023	Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633	Fayetteville, NC USA 28314 910-864-TRUS

	Client:		Date:	2/25/2021	Page 4 of 8
lisDesign	Project: Address:		Input by: Job Name:	Neal Baggett Lot 45 SUMMERLIN	
			Project #:		
BM1 Kerto-S LVL	1.750" X 9.250"	2-Ply - PAS	SED		
	• •	• •	•	• •	2 M 2
•••	• •	• •	•	• • —	<u> </u>
1 SPF End Grain				2 SPF End G	rain
	1	0'3 1/2"			3 1/2"
1	1	0'3 1/2"			1
Multi-Ply Analysis					
Fasten all plies using 2 rows of 10c	d Box nails (.128x3") at 12"	o.c Maximum end di	stance not	to exceed 6"	
Capacity 0.0 %					
Yield Limit per Foot 163.7 Pl	LF				
Yield Limit per Fastener 81.9 lb. Yield Mode IV					
Edge Distance 1 1/2"					
Min. End Distance 3"					
Duration Factor 1.00					
				anufacturar Info	Comtech Inc
Notes che Calculated Structured Designs is responsible only of the structural adequary of this component based as the	emicals Iling & Installation	 For flat roofs provide proper drainage ponding 	ge to prevent Ma	etsä Wood	1001 S. Reilly Road, Suite #639 Fayetteville, NC USA
subcould adequacy or uns component based on the 1. LVL design criteria and loadings shown. It is the 2. Ref responsibility of the customer and/or the contractor to ensure the component suitability of the intended	use a sequezy or us component used on use 1. UL beams must not be cut or drilled ign criteria and loadings shown. It is the 2. Refer to manufacturer's product information regarding installation requirements, multi-phy use the component suitability of the intended use the component suitability of the intended installation requirements, multi-phy installation requirements, multi-phy installatinstallation requirements, multi-phy installation		28314 910-864-TRUS		
application, and to verify the dimensions and loads. app Lumber 3. Date of the dimension of	terning details, beam strength values, and code provals maged Beams must not be used sign assumes ton edge is laterally potentiated		(000) 022-3030 www.metsawood.com/us ICC-ES: ESR-3633		
1. Dry service conditions, unless noted otherwise 2. LVL not to be treated with fire retardant or corrosive	ovide lateral support at bearing points to avoid eral displacement and rotation	This design is volid until 11/2	7/2022		соттесн

	Cli	ient [.]			D	ate:	2/25/2021				Page 5 of
	Pr	oiect:			Ir	nput by:	Neal Badde	ett			i age o oi
isDesign	Ac	Idress:			Je	ob Name:	Lot 45 SUN	IMERLIN			
					Р	roject #:					
BM2 Karta-S		750" X Q	250"	2-DIv -	DVCC		vel: Level				
DIVIZ Neito-S		./50 / 5.	200	Z -F iy -	FAUU						
						1					
			3	3							
2											
		1									
											$\overline{1}$
											NM I
			1. Million								Ň Ň 9
• · · · · · · · · · · · · · · · · · · ·											VVV L
1 SPF End Grain				2 SPF En	d Grain						
		5'7"			~						´ ´ 3 1/2"
1		5'7"			,	r					
Member Information					Reaction				ift)		
		Application	Floor		Bro					Wind	Const
Plies: 2		Design Method:	ASD			913	163		977	0	0
Moisture Condition: Dry		Building Code:	IBC/IRC 201	15	2	913	163	5 (6 ()77	0	0
Deflection LL: 480		Load Sharing:	No		_					-	-
Deflection TL: 360		Deck:	Not Checkee	d							
Importance: Normal - II											
Temperature: Temp <= 1	00°F				Booring	<u> </u>					
					Беагінд	S	0		L T-4-		
					Bearing	Length	Cap.	React D/L	D IOTA	Ld. Case	Ld. Comb.
					End	3.000	33%	1030 / 141	7 3054	; L	D+0.75(L+S)
Analysis Results					Grain						
Analysis Actual	Location Al	lowed Capac	ity Comb.	Case	2 - SPF	3.000"	33%	1636 / 141	7 3054	† L	D+0.75(L+S)
Moment 3709 ft-lb	2'9 1/2" 14	423 ft-lb 0.257 (- 26%) D+0.75(L	_+S) L	End Grain						
Unbraced 3709 ft-lb	2'9 1/2" 11	402 ft-lb 0.325 (33%) D+0.75(L	_+S) L							
Shear 2006 lb	4'7 1/2" 79	43 lb 0.253 (25%) D+0.75(L	_+S) L							
LL Defl inch 0.024 (L/2568)	2'9 1/2" 0.1	130 (L/480) 0.190 (19%) 0.75(L+S	S) L							
TL Defl inch 0.052 (L/1192)	2'9 1/2" 0.1	174 (L/360) 0.300 (30%) D+0.75(L	_+S) L							
Design Notes											
1 Fasten all plies using 2 rows	of 10d Box nails	(.128x3") at 12" o.c.	Maximum end	distance not	1						
2 Refer to last page of calculat	ions for fasteners	required for specific	ed loads								
3 Girders are designed to be s	upported on the b	oottom edge only.									
4 Top loads must be supported	equally by all pli	es.									
 6 Bottom braced at bearings. 											
7 Lateral slenderness ratio bas	ed on single ply v	width.									
ID Load Type	Lo	cation Trib Widt	h Side	Dead 0.9	Live	1 Snow	1.15 W	/ind 1.6 Co	onst. 1.25	Commen	nts
1 Uniform			Тор	350 PLF	0 PL	F 350) PLF	0 PLF	0 PLF	A2	
2 Uniform			Тор	120 PLF	0 PL	F C) PLF	0 PLF	0 PLF	WALL	
3 Uniform			Тор	109 PLF	327 PL	F C) PLF	0 PLF	0 PLF	FLOOR T	RUSSES
Self Weight				7 PLF							
5											
Notes	chemicals		6. For	flat roofs provide p	roper drainage to	prevent	anufacturer	Info		Comtech, Inc.	d Suite #630
Calculated Structured Designs is responsible or structural adequacy of this component based	ly of the Handling &	& Installation	pon	iding		M	etsä Wood		F	-ayetteville, NC JSA	a, June #005
design criteria and loadings shown. It responsibility of the customer and/or the contri	is the 2. Refer to actor to regarding	must not be cut or drilled manufacturer's product installation requiremente	information multi-plv			30 N	orwalk, CT 06	8851		28314 910-864-TRUS	
ensure the component suitability of the application, and to verify the dimensions and loa	ntended fastening o ds. approvals	details, beam strength values	, and code			(8) W	00) 622-5850 ww.metsawoo	od.com/us			
1. Dry service conditions, unless noted otherwise	3. Damaged I 4. Design ass	Beams must not be used sumes top edge is laterally res	trained			IC	C-ES: ESR-3	633			
2. LVL not to be treated with fire retardant or o	orrosive 5. Provide la lateral disp	lacement and rotation	Th	is design is valid	until 11/27/20	23				con	птесн

	Client:		Date:	2/25/2021	Page 6 of 8
isDesign	Project: Address:		Input by Job Nar	r: Neal Baggett ne: Lot 45 SUMMERLIN	
			Project	#:	
BM2 Kerto-S	LVL 1.750"	X 9.250" 2-F	Ply - PASSED	Level: Level	
	•	•	•	_	
	•			1/2	
	•		•	$\overline{\mathbf{V}}$	9 1
	•	• •	·	\pm	
1 SPF End Grain		:	2 SPF End Grain		
	5'7"				ິ່ງ (<u></u>]3 1/2"
1	5'7"		1		
Multi-Ply Analysis					
Fasten all plies using 2 ro	ows of 10d Box nails (.1	28x3") at 12" o.c Ma	ximum end distance i	not to exceed 6"	
Load	0.0 PLF				
Yield Limit per Foot Vield Limit per Fastener	163.7 PLF 81 9 lb				
Yield Mode	IV				
Edge Distance Min_End Distance	1 1/2" 3"				
Load Combination	Ū				
Duration Factor	1.00				
				Manufacturor Info	Comtech Inc
Notes Calculated Structured Designs is responsible of	chemicals Inly of the Handling & Installation	6. For flat ro ponding	ofs provide proper drainage to prevent	Metsä Wood	1001 S. Reilly Road, Suite #639 Fayetteville, NC
structural adequacy of this component base design criteria and loadings shown. It responsibility of the customer and/or the com-	d on the 1. LVL beams must not be cut is the 2. Refer to manufacturer's tractor to regarding installation	or drilled product information equirements multi-nly		301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	USA 28314 910-864-TRUS
ensure the component suitability of the application, and to verify the dimensions and to	ads. approvals	ength values, and code		(800) 622-5850 www.metsawood.com/us	
Lumber Dry service conditions, unless noted otherw LVL not to be treated with fire retardent or	3. Damaged Beams must not b 4. Design assumes top edge is 5. Provide lateral support at	laterally restrained bearing points to avoid		ICC-ES: ESR-3633	сотесн
Varsian 20.90.210 Deveral her Street	Iateral displacement and rot	This des	ign is valid until 11/27/2023		
version 20.00.210 Powered by Istruct					

	-	C	Client: Project:				Date	e: ut by:	2/25/2021 Neal Bag	gett				Paç	ge 7 of 8
is	Design	A	Address:				Job Proi	Name: iect # [.]	Lot 45 SU	IMMERLIN	I				
BM3	Kerto-S I	LVL 1	.750"	X 9.2	250"	2-Ply -	PASSE	D	evel: Level						
						3		<u></u>							
	2			1											
•	•	•		•		•								Λ	1
	a come man attraction and													XX	9 1/-
							PE End Grain								
			5'	11"				\rightarrow						3 1/	2"
<i>†</i>			5'	11"				-							
Member In	formation						Reactions	UNP	ATTERN	ED lb (l	Jolift)				
Туре:	Girder		Applicat	ion:	Floor		Brg	Live	Dea	ad	Snow	,	Wind	Const	
Plies:	2		Design I	Method:	ASD		1	870	17	02	1035		0	0	
Deflection LL	480		L oad Sh	Code:	IBC/IRC 2	015	2	870	17	02	1035		0	0	
Deflection TL:	360		Deck:	lanng.	Not Check	ed									
Importance:	Normal - II														
Temperature:	Temp <= 10	0°F													
							Bearings								
							Bearing L	ength	Cap.	React D)/L lb	Total	Ld. Case	Ld. Cor	mb.
							1 - SPF 3 End	8.000"	34%	1/02/	1429	3130	L	D+0.75(L+S)
Analysis Re	sults						Grain								
Analysis	Actual	Location A	Allowed	Capacity	y Comb.	. Case	2-SPF 3	8.000"	34%	1702 /	1429	3130	L	D+0.75(L+S)
Moment	4062 ft-lb	2'11 1/2" 1	4423 ft-lb	0.282 (28	3%) D+0.75	5(L+S) L	Grain								
Unbraced	4062 ft-lb	2'11 1/2" 1	1027 ft-lb	0.368 (37	7%) D+0.75	ō(L+S) L									
Shear	2116 lb	4'11 1/2" 7	'943 lb	0.266 (27	7%) D+0.75	5(L+S) L									
LL Defl inch	0.029 (L/2309)	2'11 1/2" 0	0.139 (L/480	0) 0.210 (21	1%) 0.75(L+	+S) L									
TL Defl inch	0.063 (L/1054)	2'11 1/2" 0).185 (L/360	0) 0.340 (34	1%) D+0.75	5(L+S) L	-								
Design Not	tes		. (100,20)	at 10" a a N		d distance not	4								
to exceed 6	6".	DI TUU BOX Nails	s (. 120X3) a	al 12 O.C. IV	aximum en	id distance not									
2 Refer to las	st page of calculation	ons for fastener	rs required f	for specified	loads.										
4 Top loads r	nust be supported	equally by all p	lies.	je only.											
5 Top braced	at bearings.														
 6 Bottom bra 7 Lateral sler 	ced at bearings. Iderness ratio base	ed on single ply	width.												
ID	Load Type	L	ocation	Trib Width	Side	Dead 0.9	Live 1	Snov	v 1.15 \	Nind 1.6	Const	. 1.25	Commen	s	
1	Uniform				Тор	98 PLF	294 PLF		0 PLF	0 PLF		0 PLF	F2		
2	Uniform				Тор	120 PLF	0 PLF		0 PLF	0 PLF		0 PLF	WALL		
3	Uniform				Тор	350 PLF	0 PLF	35	50 PLF	0 PLF		0 PLF	A2		
	Self Weight					7 PLF									
	Manufacturer Info Comtech. Inc.														
Notes Calculated Structured	Notes chemicals 6. For flat roots provide proper drainage to prevent ponding Interdiction mode 1001 S. Reilly Road, Suite #639 Calculated Structured Designs is responsible only of the draining & Installation Handling & Installation Metsä Wood Fayetteville, NC														
structural adequacy design criteria and	of this component based I loadings shown. It	on the 1. LVL bear is the 2. Refer 1	ns must not be cu to manufacture	ut or drilled r's product in	formation				301 Merritt 7	Building, 2n)6851	d Floor	US 28	SA 314 0-864-TPUS		
ensure the comport application, and to ver	customer and/or the contra nent suitability of the ir rify the dimensions and load	ntended fastening s. opprovel	g installation g details, beam s s	requirements, strength values,	multi-ply and code				(800) 622-585	50 Dod.com/up		91	6004-1R05		
Lumber	Lumber 3. Damaged Beams must not be used 4. Design assumes top edge is laterally restrained 4. Design assumes top edge is laterally restrained														
2. LVL not to be treat	ated with fire retardant or co	5. Provide lateral dis	lateral support a splacement and r	at bearing points otation	to avoid	This design is valid	until 11/27/2023						con	ntec	>H

		Client:			Date:	2/25/2021	Page 8 of 8
	icDecian	Project:			Input by:	Neal Baggett	
	isbesign	Address.			JOD Nall Project #		
	Karta C I \	// / 750"	V 0 250"	2 Db		Level: Level	
BIVI 3	Nerto-5 LV	/L 1./50	X 9.25U	Z-Piy	- PASSED		
•	•	•	•	•	• •	72"	N/N/L L
						~	X X 9 1
•	•	•	•	•	• • –	<u> </u>	
							
1 SPI	F End Grain				2 SPF End Grain		
		5'11			1		3 1/2"
/		5'11	"				
•		011					
Multi-Ply	Analysis						
asten all	plies using 2 rows	of 10d Box nails (.1	28x3") at 12"	o.c Maximu	im end distance n	ot to exceed 6"	
apacity		0.0 %					
oad		0.0 PLF					
ield Limit pei ïeld Limit pei	r Fool r Fastener	163.7 PLF 81.9 lb					
ield Mode		IV					
dge Distanc	e	1 1/2"					
/lin. End Dist	ance	3"					
oad Combination East	ation	1.00					
	01	1.00					
Nete		chomissis		6 Ear flat and and	do propor designed to according	Manufacturer Info	Comtech, Inc.
NOTES Calculated Structu	ured Designs is responsible only of	the Handling & Installation		o. For flat roots provi ponding	ue proper urainage to prevent	Metsä Wood	1001 S. Reilly Road, Suite #639 Fayetteville, NC
structural adequa design criteria	cy of this component based on and loadings shown. It is	the 1. LVL beams must not be cut o the 2. Refer to manufacturer's	r drilled product information			301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	USA 28314
responsibility of the ensure the com-	ne customer and/or the contractor ponent suitability of the intend	to regarding installation re fastening details, beam stre	quirements, multi-ply ngth values, and code			(800) 622-5850	910-804-1RUS
Lumber	venty the unnensions and loads.	approvals 3. Damaged Beams must not be	e used			www.metsawood.com/us ICC-ES: ESR-3633	
 Dry service co LVL not to be 	nditions, unless noted otherwise treated with fire retardant or corros	 Design assumes top edge is Provide lateral support at b 	eaterally restrained bearing points to avoid				сотесн
		iateral displacement and rota	uon	This design is v	alid until 11/27/2023		

RE: J0221-1205 Precision/Lot 45 Summerlin/Harnett **Trenco** 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0221-1205 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf Design Program: MiTek 20/20 8.3 Wind Speed: N/A mph Floor Load: 55.0 psf

This package includes 13 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	E14866542	ET1	2/25/2021
2	E14866543	ET2	2/25/2021
3	E14866544	ET3	2/25/2021
4	E14866545	F1	2/25/2021
5	E14866546	F2	2/25/2021
6	E14866547	F3	2/25/2021
7	E14866548	F4	2/25/2021
8	E14866549	F4-GR	2/25/2021
9	E14866550	F5	2/25/2021
10	E14866551	F6-GR	2/25/2021
11	E14866552	F7	2/25/2021
12	E14866553	F8-GR	2/25/2021
13	E14866554	F9-GR	2/25/2021

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2021

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty Ply	Precision/Lot 45 Summerlin/Harnett	E44000540
J0221-1205	ET1	GABLE	1 1		E14806542
				Job Reference (optional)	
Comtech, Inc, Fayette	/ille, NC - 28314,	ID:PC	8.330 s Ju QVbfLGVTT1IOnQ611p	I 22 2020 MiTek Industries, Inc. Tue Se ZG_z1SF7-0GQL6KIjCLqybISHUreRvb	p 15 13:54:07 2020 Page 1 s9VTS0lcKQFq07qZydMok
0-1 <mark>-</mark> 8					0- <mark>1</mark> -8
					Scale = 1:34.8
				3v6 FP ==	
1 2	3 4 5	6 7 8 9	10 11	12 13 14 15 16	ð 17 18
I 0 0	0 0	0 0	0		
9 7 0					
36 35	34 33 32 3	1 30 29 28 27	26 25	24 23 22 21	1 20 19
3x4 =	3x6	FP =			3x4 =
<u>1-4-0</u> <u>2-8-0</u> <u>1-4-0</u> <u>1-4-0</u>	4-0-0 5-4-0 6- 1-4-0 1-4-0 1-	<u>8-0 8-0-0 9-4-0 10-5-8 11-7-</u> 4-0 1-4-0 1-4-0 1-1-8 1-1-8	0 <u>12-11-0 14-3-0</u> 1-4-0 1-4-0	0 15-7-0 16-11-0 18-3-0 1-4-0 1-4-0 1-4-0	<u>19-7-0 20-11-0</u> 1-4-0 1-4-0
LOADING (psf)	SPACING- 2-0-0	CSI. DEFI	. in (loc)	l/defl L/d PLATES	GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.06 Vert(LL) n/a -	n/a 999 MT20	244/190
TCDL 10.0	Lumber DOL 1.00 Rep Stress Incr VES	BC 0.01 Vert(WB 0.03 Horz	CT) n/a -	n/a 999 n/a n/a	
BCDL 5.0	Code IRC2015/TPI2014	Matrix-R	0.00 10	Weight:	87 lb FT = 20%F, 11%E
LUMBER-		BRAG	CING-		
TOP CHORD 2x4 SP No	.1(flat)	TOP	CHORD Structur	al wood sheathing directly applied or	6-0-0 oc purlins.

 TOP CHORD
 2x4 SP No.1(flat)

 BOT CHORD
 2x4 SP No.1(flat)

 WEBS
 2x4 SP No.3(flat)

 OTHERS
 2x4 SP No.3(flat)

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purl except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 20-11-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 36, 19, 27, 20, 21, 22, 23, 24, 25, 26, 35, 34, 33, 32, 30, 29, 28

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			14-7-8			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.06 BC 0.01 WB 0.03	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	n (loc) l/defl L/d a - n/a 999 a - n/a 999 0 13 n/a n/a	PLATES G MT20 2	i RIP 44/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-R			Weight: 62 lb	FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S	P No.1(flat) P No.1(flat)	-	BRACING- TOP CHORD	Structural wood sheathing dir except end verticals.	ectly applied or 6-0-0 oc	purlins,
WEBS 2x4 S	SP No.3(flat)		BOT CHORD	Rigid ceiling directly applied of	or 10-0-0 oc bracing.	

14-7-8

OTHERS 2x4 SP No.3(flat)

REACTIONS. All bearings 14-7-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 24, 13, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type		Qty	Ply	Precision/Lot 45 Sum	merlin/Harnett	E14866544
J0221-1205	ET3	GABLE		1	1	Job Reference (option	nal)	L 14000344
Comtech, Inc, Fayette	eville, NC - 28314,		ID-PO/	 thfl GVTT/	3.330 s Jul	22 2020 MiTek Indust	ries, Inc. Tue Sep 15 1 zfvpDS1T2Y9gRpO.lite	13:54:08 2020 Page 1 n.l13QaUUlgM2vdMoi
0 ₁₁ 8			12.1 4	0.2011		p=0_110.1 00_0g01		0 _∐ 8
								Scale = 1:19.7
1 2	25 3	4 5	6 7		8	9	26 10	11
23 🗖	<u> </u>	• • •	• •		•	<u> </u>	•	24
								1-2-0
	•				•	•		
22 21	20	19 18	17 16		15	14	13	12
6x6 = 2x6	2x6	2x6 2x6	2x6 2x6	П	2x6	5 2x6	2x6	6x6 =
1-4-0	2-8-0 4-0-	0 _ 5-4-0 _ 5-1	1-8 6-7-0	7-11	-0 ,	9-3-0	10-7-0	11-11-0
1-4-0	1-4-0 1-4-) 1-4-0 0-7	7-8 0-7-8	1-4-	0 +	1-4-0	1-4-0	1-4-0
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl L/d	PLATES	GRIP
TCDL 40.0 TCDL 10.0	Lumber DOL 1.00	BC 0.00	Vert(LL)	n/a n/a	-	n/a 999 n/a 999	MT20	244/190
BCLL 0.0 BCDL 5.0	Rep Stress Incr NC Code IRC2015/TPI2014	WB 0.04 Matrix-R	Horz(CT) 0.00	12	n/a n/a	Weight: 68 lb	FT = 20%F, 11%E

LUMBER-

TOP CHORD	2x4 SP No.1(flat)
BOT CHORD	2x4 SP No.1(flat)
WEBS	2x4 SP No.3(flat)
OTHERS	2x4 SP No.3(flat)

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 11-11-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 17, 13, 14, 15, 16, 21, 20, 19, 18

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

- 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
 - Vert: 12-22=-10, 1-11=-100
 - Concentrated Loads (lb)
 - Vert: 6=-48 8=-48 4=-48 25=-48 26=-48

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type		Qty	Ply	Precision/Lot 45 Summerlin/Harnett		
10004 4005	F 4	FL 0.0D		10			E14	4866545
J0221-1205	F1	FLOOR		12	1	lob Reference (ontional)		
Comtech. Inc. Favette	ville, NC - 28314.			8	3.330 s Jul	22 2020 MiTek Industries, Inc. Tue Ser	0 15 13:54:08 2020 Pa	age 1
	,		ID:PQV	bfLGVTT1	IIOnQ611p	ZG_z1SF7-US_jJgJLzfypDS1T2Y9gRp	OHJtgn1y4aUUlgM?y	dMoj
0-1-8								
H 1-3-0		1-6-0	1-8-0	1-6-0	_		C	D- <u>1</u> -8
111		I	11 11		1		Scale	e≌1:34.5
						3x0 FF —		
3x10 ≡	3x4 ≡	3x4 =	$3x4 \equiv 3x4$	=		$3x4 \equiv 3x4 \equiv$	3x10 =	
1 2	3 4	5 6	7 8		9	10 11 12 13	14 15	5
			औं हि		0			
₹ 1				\sim				28 Q
							4 💦	É É
								₹ [†]
26	25 24	23 22	21 20		19	18 17	17	5
3x6 =	3x10 = 3x6 =	3x6 =			3x6 =	3x6 = 3x10) = 3x6	=
		3x8 M18SHS FP =						

20-11-0									
20-11-0									
Plate Offsets (X,Y) [7:0-1-8,Edge], [8:0-1-8,Edge]									
LOADING (psf)	SPACING- 1-	7-3 CSI.	DEFL.	in (loc) l/defl	L/d F	PLATES	GRIP		
TCLL 40.0	Plate Grip DOL 1	.00 TC 0	0.24 Vert(LL)	-0.34 20-21 >728	480 N	MT20	244/190		
TCDL 10.0	Lumber DOL 1	.00 BC 0	0.49 Vert(CT)	-0.47 20-21 >529	360 N	M18SHS	244/190		
BCLL 0.0	Rep Stress Incr Y	ES WB 0	0.51 Horz(CT)	0.07 16 n/a	n/a				
BCDL 5.0	Code IRC2015/TPI20	14 Matrix-S	-S		v	Veight: 108 lb	FT = 20%F, 11%E		
LUMBER-	μ		BRACING-						
TOP CHORD 2	x4 SP 2400F 2.0E(flat)		TOP CHORI	D Structural wood	sheathing directly ap	plied or 6-0-0 o	c purlins.		
BOT CHORD 2	x4 SP 2400F 2.0E(flat)			except end verti	cals.		- p		
WEBS 2	x4 SP No.3(flat)		BOT CHORI	D Riaid ceiling dire	ectly applied or 10-0-0	0 oc bracina.			
	()			5		5			
REACTIONS.	(size) 26=0-3-0, 16=0-3-8								
N	Nax Grav 26=904(LC 1), 16=904(L	C 1)							

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1967/0, 3-4=-3381/0, 4-5=-3381/0, 5-6=-4234/0, 6-7=-4234/0, 7-8=-4472/0,

 B-9=-4234/0, 9-10=-4234/0, 10-11=-3381/0, 11-13=-3381/0, 13-14=-1967/0

 BOT CHORD
 25-26=0/1143, 24-25=0/2764, 22-24=0/3877, 21-22=0/4472, 20-21=0/4472, 19-20=0/4472, 18-19=0/3877, 17-18=0/2764, 16-17=0/1143

 WEBS
 2-26=-1431/0, 2-25=0/1073, 3-25=-1038/0, 3-24=0/788, 14-16=-1431/0, 14-17=0/1073,

13-17=-1038/0, 13-18=0/788, 10-18=-633/0, 10-19=0/456, 5-24=-633/0, 5-22=0/456, 7-22=-625/148, 8-19=-625/148

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 1.5x3 MT20 unless otherwise indicated.

4) Plates checked for a plus or minus 1 degree rotation about its center.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SEAL 036322 September 15,2020

Job		Truss	Truss Type	Qty	Ply	Precision/Lot 45 Summerlin/Harnett	_
J0221-1205		F2	FLOOR	15	1	E 1400034	0
						Job Reference (optional)	
Comtech, Inc,	Fayette	ville, NC - 28314,		1	3.330 s Jul	22 2020 MiTek Industries, Inc. Tue Sep 15 13:54:09 2020 Page 1	
				ID:PQVbfLGVTT	11OnQ611	pZG_z1SF7-yeY6W0Jzky4grccfbGgv_0xQsG_PmOfji8VEuSydMoi	
0-1-8							
н н	2-6-0		1-0-0 1-7	-8 1-0-	0	0 ₁ 1 ₈	
						Scale: 1/2"=	:1'
		3x6 =	3x4 =			3x6 =	
1		2	3 4	₅ ^{3x4} =	6	7 8	
0		2 2 4			0		Ī
15	_				H		6
	\square						1-2-(
4					\mathbb{N}		

11

10

3x10 =

	5-4-8		14-7-8					
1	5-4-8	I		9-3-0		I		
Plate Offsets (X,Y)	[4:0-1-8,Edge], [5:0-1-8,Edge]							
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.32 BC 0.59 WB 0.49 Matrix-S	DEFL. ir Vert(LL) -0.15 Vert(CT) -0.21 Horz(CT) 0.04	n (loc) l/defl L/d 11-12 >999 480 11-12 >832 360 9 n/a n/a	PLATES MT20 Weight: 73 lb	GRIP 244/190 FT = 20%F, 11%E		
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direc except end verticals. Rigid ceiling directly applied or	tly applied or 6-0-0 10-0-0 oc bracing.	oc purlins,		

REACTIONS.	(size)	14=0-3-8, 9=0-3-0
	Max Grav	14=784(LC 1), 9=784(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-2556/0, 3-4=-2556/0, 4-5=-2689/0, 5-6=-2556/0, 6-7=-2556/0

BOT CHORD 13-14=0/1669, 12-13=0/2689, 11-12=0/2689, 10-11=0/2689, 9-10=0/1669

WEBS 2-14=-1790/0, 2-13=0/957, 7-9=-1790/0, 7-10=0/957, 5-10=-454/124, 4-13=-454/124

NOTES-

3x6 =

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 1.5x3 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

13

3x10 =

12

Strongbacks to be attached to walls at their outer ends or restrained by other means.

K

3x6 =

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			15-3-0			
Ι			15-3-0			Ι
Plate Offsets (X,Y)	[1:Edge,0-1-8], [5:0-1-8,Edge], [6:0-1-8,E	Edge], [16:Edge,0-1-8]				
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) l/defl L/d	PLATES	GRIP
TCDL 10.0 BCLL 0.0	Lumber DOL 1.00 Rep Stress Incr YES	BC 0.68 WB 0.51	Vert(CT) -0.18 Vert(CT) -0.24 Horz(CT) 0.04	13 >741 360 10 n/a n/a	INT20	244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 79 lb	FT = 20%F, 11%E
LUMBER-		l	BRACING-			
BOT CHORD 2x4 SF	TOP CHORD2x4 SP No.1(flat)BOT CHORD2x4 SP No.1(flat)			except end verticals.	ectly applied or 6-0-0	oc purlins,
WEBS 2x4 SF	P No.3(flat)		BOT CHORD	Rigid ceiling directly applied of	or 10-0-0 oc bracing.	
REACTIONS. (siz	e) 16=Mechanical, 10=0-3-0					

Max Grav 16=825(LC 1), 10=819(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 1-16--852/0, 1-2=-583/0, 2-3=-583/0, 3-4=-2857/0, 4-5=-2857/0, 5-6=-2926/0, 6-7=-2723/0, 7-8=-2723/0 BOT CHORD 14-15=0/2051, 13-14=0/2926, 12-13=0/2926, 11-12=0/2926, 10-11=0/1756
- WEBS
 8-10=-1882/0, 8-11=0/1044, 6-11=-536/76, 5-14=-421/200, 4-14=-260/26, 3-14=0/870, 3-15=-1584/0, 1-15=0/1059

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2-5-14	3-7-4 3-8-12		1	5-6-8					
Z-5-14 Plate Offecte (X X)	1-1-0 U-1-8 [2:0 1 8 Edgo] [3:0 1 8 Edgo] [11:0 1 8	R Edgo] [12:0 1 8 Edgo]	1	1-9-12	· · · · · · · · · · · · · · · · · · ·				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 DCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO	CSI. TC 0.44 BC 0.48 WB 0.38	DEFL. in Vert(LL) -0.12 Vert(CT) -0.18 Horz(CT) 0.02	n (loc) l/defi L/d 10-11 >999 480 10-11 >772 360 10 n/a n/a	PLATES GRIP MT20 244/190				
BCDL 5.0	Code IRC2015/1PI2014	Matrix-S			Weight: 78 lb $FI = 20\%F$, 11%E				
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. (size Max G	P No.1(flat) P No.1(flat) P No.3(flat) e) 16=0-3-0, 10=0-3-0, 13=0-3-8 rrav 16=341(LC 10), 10=603(LC 7), 13=	1139(LC 1)	BRACING- TOP CHORD BOT CHORD	Structural wood sheath except end verticals. Rigid ceiling directly ap	ning directly applied or 6-0-0 oc purlins,				
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-269/12, 3-4=0/430, 4-5=0/440, 5-6=-1601/0, 6-7=-1601/0, 7-8=-1601/0 BOT CHORD 15-16=-12/269, 14-15=-12/269, 13-14=-12/269, 12-13=0/997, 11-12=0/1601, 10-11=0/1207 WEBS 4-13=-260/0, 8-10=-1292/0, 8-11=0/498, 5-13=-1396/0, 5-12=0/688, 2-16=-350/23, 3-13=-619/0									
NOTES- 1) Unbalanced floor liv 2) All plates are 1.5x3 3) Plates checked for a 4) Load case(s) 1, 2, 3 they are correct for t 5) Recommend 2x6 str Strongbacks to be a 6) CAUTION, Do not e	 3-13=-619/0 NOTES- Unbalanced floor live loads have been considered for this design. All plates are 1.5x3 MT20 unless otherwise indicated. Plates checked for a plus or minus 1 degree rotation about its center. Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss. Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. (CAUTION, Do not erect truss backwards. 								
 LOAD CASE(S) Stan. Dead + Floor Live (b Uniform Loads (pff) Vert: 10-16: Dead: Lumber Incre Uniform Loads (pff) Vert: 10-16: 1st Dead + Floor Liv Uniform Loads (pff) Vert: 10-16: 2nd Dead + Floor Li Uniform Loads (pff) Vert: 10-16: 3rd unbalanced Dead 	dard valanced): Lumber Increase=1.00, Plate =-10, 1-19=-200, 3-19=-100, 3-4=-200, 4 ase=1.00, Plate Increase=1.00 =-10, 1-19=-200, 3-19=-100, 3-4=-200, 4 re (unbalanced): Lumber Increase=1.00, =-10, 1-19=-200, 3-19=-100, 3-4=-200, 4 ve (unbalanced): Lumber Increase=1.00 =-10, 1-19=-120, 3-19=-20, 3-4=-120, 4- id: Lumber Increase=1.00, Plate Increase	Increase=1.00 I-9=-100 Plate Increase=1.00 I-9=-20 , Plate Increase=1.00 9=-100 e=1.00			SEAL 036322				
Continued on page 2					,				

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job		Truss	Truss Type	Qty	Ply	Precision/Lot 45 Summerlin/Harnett	
						E	14866548
J0221-1205		F4	FLOOR	3	1		
						Job Reference (optional)	
Comtech, Inc,	Fayettev	ille, NC - 28314,		8	.330 s Jul	22 2020 MiTek Industries, Inc. Tue Sep 15 13:54:10 2020 F	Page 2
	-		ID:PQVbfLGVTT1IOnQ611pZG_z1SF7-Qr6UkMKbVGCXSmAs9zB8WEUamgMKVtbtxoEnQuydMoh				

LOAD CASE(S) Standard

Uniform Loads (plf)

- Vert: 10-16=-10, 1-19=-200, 3-19=-100, 3-4=-200, 4-9=-20 6) 4th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 10-16=-10, 1-19=-120, 3-19=-20, 3-4=-120, 4-9=-100

7) 1st chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

- Vert: 10-16=-10, 1-19=-200, 3-19=-100, 3-4=-120, 4-9=-100
- 8) 2nd chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 10-16=-10, 1-2=-120, 2-19=-200, 3-19=-100, 3-4=-200, 4-9=-100 9) 3rd chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf) Vert: 10-16=-10, 1-19=-200, 3-19=-100, 3-4=-200, 4-7=-100, 7-9=-20
- 10) 4th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 10-16=-10, 1-19=-200, 3-19=-100, 3-4=-200, 4-6=-20, 6-9=-100 11) 5th chase Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
- Vert: 10-16=-10, 1-19=-200, 3-19=-100, 3-4=-120, 4-9=-100
- 12) 6th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 10-16=-10, 1-2=-120, 2-19=-200, 3-19=-100, 3-4=-200, 4-9=-100 13) 7th chase Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
 - Vert: 10-16=-10, 1-19=-200, 3-19=-100, 3-4=-200, 4-7=-100, 7-9=-20
- 14) 8th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
 - Vert: 10-16=-10, 1-19=-200, 3-19=-100, 3-4=-200, 4-6=-20, 6-9=-100

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

12

3x4 =

11

3x4 =

2-5-1 2-5-1 Plate Offsets (X,Y)	4 3-7-4 3-8-12 4 1-1-6 0-1-8 [1:Edge,0-1-8], [11:0-1-8,Edge], [12:0-1-	8,Edge]	15 11-	-6-8 9-12		I
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.48 BC 0.49 WB 0.40 Matrix-S	DEFL.inVert(LL)-0.12Vert(CT)-0.19Horz(CT)0.02	(loc) l/defl L/d 10-11 >999 480 10-11 >739 360 10 n/a n/a	PLATES MT20 Weight: 82 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,

REACTIONS. (size) 16=0-3-0, 10=0-3-0, 13=0-3-8 Max Grav 16=476(LC 10), 10=579(LC 7), 13=1471(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-572/0, 3-4=0/748, 4-5=0/772, 5-6=-1467/0, 6-7=-1467/0, 7-8=-1467/0

- BOT CHORD 15-16=0/572, 14-15=0/572, 13-14=0/572, 12-13=0/788, 11-12=0/1467, 10-11=0/1147
- WEBS 8-10=-1227/0, 5-13=-1480/0, 5-12=0/759, 6-12=-268/0, 8-11=0/410, 2-16=-742/0,

X

3x10 =

3-13=-1266/0

NOTES-

K

3x6 =

15

1.5x3 ||

14

1.5x3 ||

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) CAUTION, Do not erect truss backwards.

5) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 805 lb down at 2-1-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.

6) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 10-16=-10, 1-9=-100 Concentrated Loads (lb) Vert: 19=-725(B)

818 Soundside Road Edenton, NC 27932 3x6 =

FORE USE. nent, not he overall anent bracing e

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	1			11-11-0			
				11-11-0			1
Plate 0	Offsets (X,Y)	[8:0-1-8,Edge], [9:0-1-8,Edge]					
LOAD TCLL	ING (psf) 40.0	SPACING- 2-0-0 Plate Grip DOL 1.00	CSI. TC 0.35	DEFL. in Vert(LL) -0.12	(loc) l/defl L/d 7-8 >999 480	PLATES MT20	GRIP 244/190
TCDL BCLL BCDL	10.0 0.0 5.0	Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.44 WB 0.38 Matrix-S	Vert(CT) -0.18 Horz(CT) 0.02	9-10 >797 360 7 n/a n/a	Weight: 58 lb	FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)				BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,
REAC	TIONS. (size Max G	e) 10=0-2-6, 7=0-3-0 rav 10=635(LC 1), 7=635(LC 1)					

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1782/0, 3-4=-1782/0, 4-5=-1782/0

BOT CHORD 9-10=0/1288, 8-9=0/1782, 7-8=0/1288

WEBS 5-7=-1379/0, 2-10=-1379/0, 2-9=0/658, 5-8=0/658

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 10.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L				14-7-8			
				14-7-8			I
Plate Of	fsets (X,Y)	[1:Edge,0-1-8], [6:0-1-8,Edge], [13:0-1-8	,Edge]				
LOADIN TCLL TCDL BCLL	IG (psf) 40.0 10.0 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO	CSI. TC 0.75 BC 0.99 WB 0.65	DEFL. in Vert(LL) -0.21 Vert(CT) -0.31 Horz(CT) 0.05	(loc) l/defl L/d 13-14 >811 480 13-14 >557 360 10 n/a n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 78 lb	FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)				BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	ctly applied or 6-0-0 [.] 10-0-0 oc bracing.	oc purlins,
REACT	ONS. (siz	e) 15=0-3-8. 10=0-3-0					

Max Grav 15=1389(LC 1), 10=873(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-2392/0, 4-5=-3325/0, 5-6=-3325/0, 6-7=-2980/0, 7-8=-2980/0

BOT CHORD 14-15=0/2389, 13-14=0/3105, 12-13=0/3325, 11-12=0/3325, 10-11=0/1891

WEBS 8-10=-2028/0, 8-11=0/1176, 6-11=-766/0, 2-15=-2701/0, 2-14=0/375, 4-14=-786/0, 4-13=-103/377

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 773 lb down at 1-11-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.

5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 10-15=-10, 1-9=-100

Concentrated Loads (lb)

Vert: 2=-693(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

12-6-0								
			12-6-0			I		
Plate Offsets (X,Y)	[1:Edge,0-1-8], [4:0-1-8,Edge], [11:0-1-8	,Edge]						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Codo, IPC/2015/TPI2014	CSI. TC 0.42 BC 0.67 WB 0.40 Matrix S	DEFL. in Vert(LL) -0.12 Vert(CT) -0.16 Horz(CT) 0.02	(loc) l/defl L/d 9-10 >999 480 9-10 >939 360 8 n/a n/a	PLATES MT20	GRIP 244/190		
BCDL 5.0	Code IRC2015/1912014	Matrix-S			weight 63 b	FI = 20%F, 11%E		
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI	P No.1(flat) P No 1(flat)	BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,						
WEBS 2x4 SI	P No.3(flat)		BOT CHORD	Rigid ceiling directly applied o	r 10-0-0 oc bracing.			
REACTIONS. (siz Max (e) 12=Mechanical, 8=0-3-0 Grav 12=674(LC 1), 8=668(LC 1)							

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1882/0, 3-4=-1882/0, 4-5=-1991/0, 5-6=-1991/0

BOT CHORD 11-12=0/1164, 10-11=0/1882, 9-10=0/1882, 8-9=0/1377

WEBS 6-8=-1474/0, 6-9=0/663, 5-9=-277/0, 4-9=-207/328, 2-12=-1296/0, 2-11=0/827, 3-11=-270/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

0-9-0	2-7-4		15-2-15							
Plate Offsets (X,Y)	[1:Edge,0-1-8], [3:0-3-8,Edge], [6:0-1-8	,Edge], [7:0-1-8,Edge], [16:0-	-4-8,Edge]							
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.72 BC 0.70 WB 0.63 Matrix-S	DEFL. ir Vert(LL) -0.22 Vert(CT) -0.31 Horz(CT) 0.05	n (loc) l/defl 2 14-15 >817 1 14-15 >587 5 11 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 86 lb	GRIP 244/190 FT = 20%F, 11%E			
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	BUMBER- TOP CHORD 2x4 SP No.1(flat) BRACING- TOP CHORD BOT CHORD 2x4 SP 2400F 2.0E(flat) WEBS 2x4 SP No.3(flat)									
Max (Siz	Grav 18=0-10-15, 11=0-3-0 Grav 18=1400(LC 1), 11=930(LC 1)									
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1023/0, 3-4=-3102/0, 4-5=-3845/0, 5-6=-3840/0, 6-7=-3689/0, 7-8=-3258/0, 8-9=-3258/0 BOT CHORD 17-18=0/1023, 16-17=0/3036, 15-16=0/3477, 14-15=0/3689, 13-14=0/3689, 12-13=0/3689, 11-12=0/2034 WEBS 9-11=-2182/0, 9-12=0/1321, 7-12=-845/0, 6-15=-91/504, 4-15=0/387, 3-17=-2314/0, 3-16=0/616, 4-16=-704/0, 2-17=0/1162, 2-18=-1798/0										
 NOTES- 1) Unbalanced floor live loads have been considered for this design. 2) Plates checked for a plus or minus 1 degree rotation about its center. 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 4) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 773 lb down at 2-7-3 on top chord. The design/selection of such connection device(s) is the responsibility of others. 5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 										
LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00. Plate Increase=1.00										

Uniform Loads (plf)

Vert: 11-18=-10, 1-10=-100 Concentrated Loads (lb)

Vert: 3=-693(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	0-3-0	1-4-0	0-0-14	0-0-14	0-1-0	1-0-0	
Plate Offsets (X,Y)	[6:0-1-8,Edge]						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TI	2-0-0 1.00 1.00 NO PI2014	CSI. TC 0.06 BC 0.23 WB 0.29 Matrix-P	DEFL. ii Vert(LL) -0.07 Vert(CT) -0.07 Horz(CT) 0.07	n (loc) l/defl L/d 1 7 >999 480 1 7 >999 360 1 5 n/a n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)				BRACING- TOP CHORD BOT CHORD	Structural wood sheathin except end verticals. Rigid ceiling directly app	ng directly applied or 4-2-1 lied or 10-0-0 oc bracing.	2 oc purlins,
REACTIONS (siz	ze) 8=Mechanical 5=Me	chanical					

Max Grav 8=793(LC 1), 5=793(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1028/0

BOT CHORD 7-8=0/1022, 6-7=0/1022, 5-6=0/1028

WEBS 2-8=-1237/0, 3-5=-1244/0

NOTES-

1) Plates checked for a plus or minus 1 degree rotation about its center.

2) Refer to girder(s) for truss to truss connections.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 574 lb down at 1-4-4, and 574

Ib down at 2-10-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.

5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 5-8=-10, 1-4=-100 Concentrated Loads (lb)

Vert: 2=-574(B) 3=-574(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RE: J0720-3359 Precision/Lot 45 Summerlin/Harnett **Trenco** 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0720-3359 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.3 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 19 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	E14866523	A1-GE	2/25/2021
2	E14866524	A2	2/25/2021
3	E14866525	A3	2/25/2021
4	E14866526	A4	2/25/2021
5	E14866527	A5	2/25/2021
6	E14866528	B1-GE	2/25/2021
7	E14866529	B2	2/25/2021
8	E14866530	B3-2PLY	2/25/2021
9	E14866531	C1-GE	2/25/2021
10	E14866532	C2-2PLY	2/25/2021
11	E14866533	M1-GE	2/25/2021
12	E14866534	M2	2/25/2021
13	E14866535	M3	2/25/2021
14	E14866536	VB1	2/25/2021
15	E14866537	VB2	2/25/2021
16	E14866538	VB3	2/25/2021
17	E14866539	VB4	2/25/2021
18	E14866540	VC1	2/25/2021
19	E14866541	VC2	2/25/2021

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2021

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

September 15,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSISTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

September 15,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

(1111111)

REACTIONS. All bearings 21-0-0.

- (lb) Max Horz 2=234(LC 11)
 - Max Uplift All uplift 100 lb or less at joint(s) 2, 20, 21, 22, 17, 16, 15, 12 except 23=-112(LC 12), 14=-110(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 19, 20, 21, 22, 23, 17, 16, 15, 12, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 20, 21, 22, 17, 16, 15, 12 except (jt=lb) 23=112, 14=110.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

	1	0-6-0	10-6-0				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.26 BC 0.38 WB 0.23	DEFL. in Vert(LL) -0.06 Vert(CT) -0.14 Horz(CT) 0.02	(loc) l/de 2-9 >99 2-9 >99 6 n	efl L/d 09 360 09 240 /a n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) -0.02	6-9 >99	9 240	Weight: 119 lt	b FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

(size) 6=0-3-8, 2=0-3-8 Max Horz 2=-187(LC 10) Max Uplift 6=-62(LC 13), 2=-62(LC 12) Max Grav 6=909(LC 1), 2=909(LC 1)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1126/227, 3-4=-870/199, 4-5=-870/199, 5-6=-1126/227

 BOT CHORD
 2-9=-80/884, 6-9=-82/847

 WEBS
 4-9=-93/682, 5-9=-346/196, 3-9=-346/196

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Interior(1) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.

Structural wood sheathing directly applied or 5-8-1 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Precision/Lot 45 Summerlin/Harnett
					E14866530
J0720-3359	B3-2PLY	FINK	1	2	
					Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,			.330 s Jul	22 2020 MiTek Industries, Inc. Tue Sep 15 13:54:20 2020 Page 2

ID:PQVbfLGVTT1IOnQ611pZG_z1SF7-A7rWn4w16ybuDTIxXJeR3LuCriosrKeLELfJnJydMoX

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 1-5=-20 Concentrated Loads (lb)

Vert: 7=-1168(B) 6=-1168(B) 9=-1168(B) 10=-1168(B) 11=-1168(B) 12=-1168(B) 14=-1168(B) 15=-1168(B) 16=-1168(B) 17=-1170(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1OTHERS2x4 SP No.2

REACTIONS. All bearings 12-0-0. (lb) - Max Horz 2=-144(LC 1

Max Horz 2=-144(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 13, 14, 11, 10 Max Grav All reactions 250 lb or less at joint(s) 2, 8, 12, 13, 14, 11, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber
- DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industri Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 13, 14, 11, 10.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TRENCO A MiTek Affiliate

> 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Precision/Lot 45 Summerlin/Harnett
J0720-3359	C2-2PLY	COMMON GIRDER	1	•	E14866532
	-			2	Job Reference (optional)
Comtech, Inc, Fayette	ville, NC - 28314,		8	.330 s Jul	22 2020 MiTek Industries, Inc. Tue Sep 15 13:54:23 2020 Page 2

ID:PQVbfLGVTT1IOnQ611pZG_z1SF7-aiWeP5yvPtzT4x1VCRB8hzWnuvmG2jnnwJuzOeydMoU

LOAD CASE(S) Standard Concentrated Loads (lb)

Vert: 4=-1168(B) 5=-1168(B) 6=-1168(B) 7=-1168(B) 8=-1168(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.14	Vert(LL)	-0.01	2-4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	-0.02	2-4	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00		n/a	n/a		
BCDL	10.0	Code IRC2015/TPI	2014	Matrix	-P	Wind(LL)	0.02	2-4	>999	240	Weight: 17 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SP No.1			BRACING- TOP CHOR	RD.	Structu	ral wood	sheathing c	lirectly applied or 4-0-0	oc purlins,			

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD

2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x6 SP No.1 WEBS OTHERS 2x4 SP No.2

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=83(LC 8) Max Uplift 2=-152(LC 8), 4=-80(LC 8) Max Grav 2=240(LC 1), 4=131(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=152

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1WEBS2x6 SP No.1

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=60(LC 8) Max Uplift 2=-107(LC 8), 4=-54(LC 8) Max Grav 2=240(LC 1), 4=131(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Interior(1) zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=107.

Structural wood sheathing directly applied or 4-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

<u>5-0-0</u> 5-0-0											
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code JBC2015/TE	2-0-0 1.15 1.15 YES 22014	CSI. TC BC WB Matrix-	0.26 0.20 0.00 P	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(L)	in -0.02 -0.05 0.00 0.05	(loc) 2-4 2-4 2-4	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20	GRIP 244/190 FT = 20%
		12011	maanx			0.00	- ·		210	Wolght. 2015	11 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1WEBS2x6 SP No.1

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=71(LC 8) Max Uplift 2=-118(LC 8), 4=-73(LC 8) Max Grav 2=277(LC 1), 4=174(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Interior(1) zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=118.

Structural wood sheathing directly applied or 5-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 15,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Interior(1) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Uplift 1=-21(LC 12), 3=-28(LC 13)

Max Grav 1=169(LC 1), 3=169(LC 1), 4=344(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Interior(1) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.07 BC 0.19 WB 0.00 Matrix-P	DEFL. in (loc) I/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 16 lb FT = 20%
LUMBER-			BRACING-	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD

REACTIONS. (size) 1=5-6-0, 3=5-6-0 Max Horz 1=-36(LC 8)

Max Uplift 1=-10(LC 12), 3=-10(LC 13) Max Grav 1=181(LC 1), 3=181(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Interior(1) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 5-6-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Uplift 1=-26(LC 12), 3=-32(LC 13)

Max Grav 1=164(LC 1), 3=164(LC 1), 4=275(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Interior(1) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD

REACTIONS. (size) 1=4-6-0, 3=4-6-0 Max Horz 1=-28(LC 8) Max Uplift 1=-8(LC 12), 3=-8(LC 13)

Max Grav 1=141(LC 1), 3=141(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Interior(1) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 4-6-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

