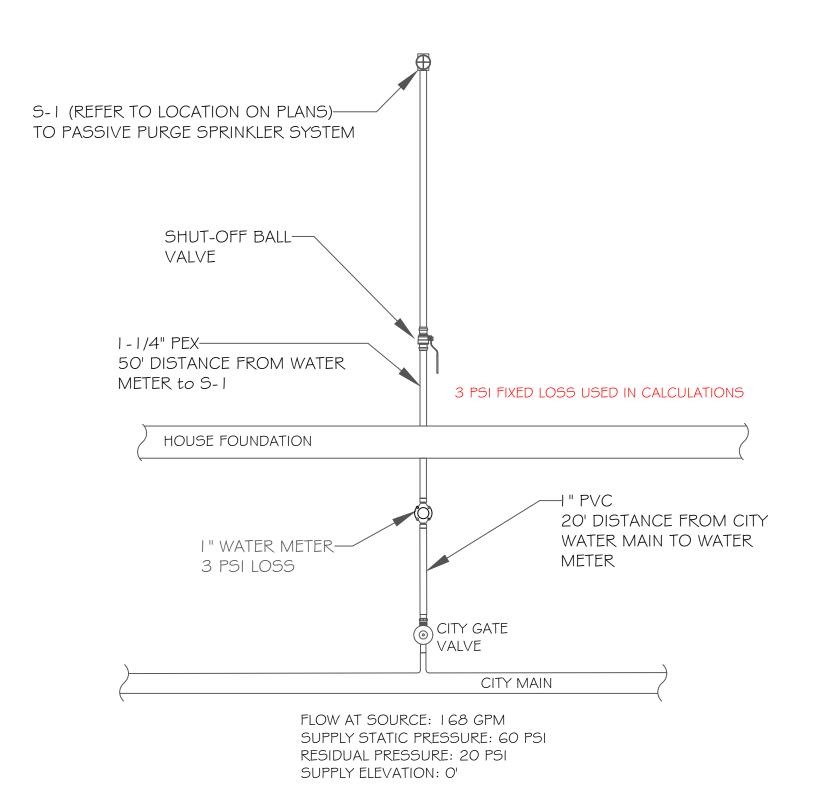

- - - **19**RFC49-16

RELIABLE Model RFC49Concealed Pendent Spr FP K=4.9, 155F°, 7/16" Orifice, Maximum Spacing 16'x16' Sprinkler head demand: 13 gpm @ 7.04

RELIABLE Model RFC49Concealed Pendent Spr FP K=4.9, 155F°, 7/16" Orifice, Maximum Spacing 18'x18' Sprinkler head demand: 17 gpm @ 12.03


SPRINKLER DESCRIPTIONS

Most Demanding Single Head Information				
Information	Results			
Flow Required at Head (GPM):	17			
Source Pressure at Head (PSI):	12.03			
Maximum Spacing (length):	18			
Maximum Spacing (Width):	18			
Domestic Flow Added (GPM):	0			
Sprinkler Model:	RFC49			
Elevation of Highest Head:	108			
K-Factor	4.9			
Temperature Rating:	155			
Flow Required at Source (GPM)	17			
Pressure Required at Source (psi)	33.19			
Source Reference Point:	At Ref Pt STR			
C-Factor of Sprinkler Pipe	150			
C-Factor of Service Line	150			
Head Reference Point:	H.5			

Most Demanding Two Head	d Information
Information	Results
Flow Required at Head (GPM):	13
Source Pressure at Head (PSI):	7.04
Maximum Spacing (length):	16
Maximum Spacing (Width):	16
Domestic Flow Added (GPM):	0
Sprinkler Model:	RFC49
Elevation of Highest Head:	117
K-Factor	4.9
Temperature Rating:	155
Flow Required at Source (GPM)	26.229
Pressure Required at Source (psi)	50.22
Source Reference Point:	At Ref Pt STR
C-Factor of Sprinkler Pipe	150
C-Factor of Service Line	150
Head Reference Point:	H.20 & H.16

LEGEND					
(************************************	Manifold				
○ A	Inter Level Connection				
• irAB1+	Hot Water Fixture				
• irAB1+	Cold Water Fixture				
	Type K Copper w/ ProPress Fittings				
	Type L Copper w/ ProPress Fittings				
	Type M Copper w/ ProPress Fittings				
	ViegaPEX Ultra Black				
	ViegaPEX Ultra Blue - Cold Plumbing				
	ViegaPEX Ultra Red - Hot Plumbing				

WATER SERVICE DETAIL

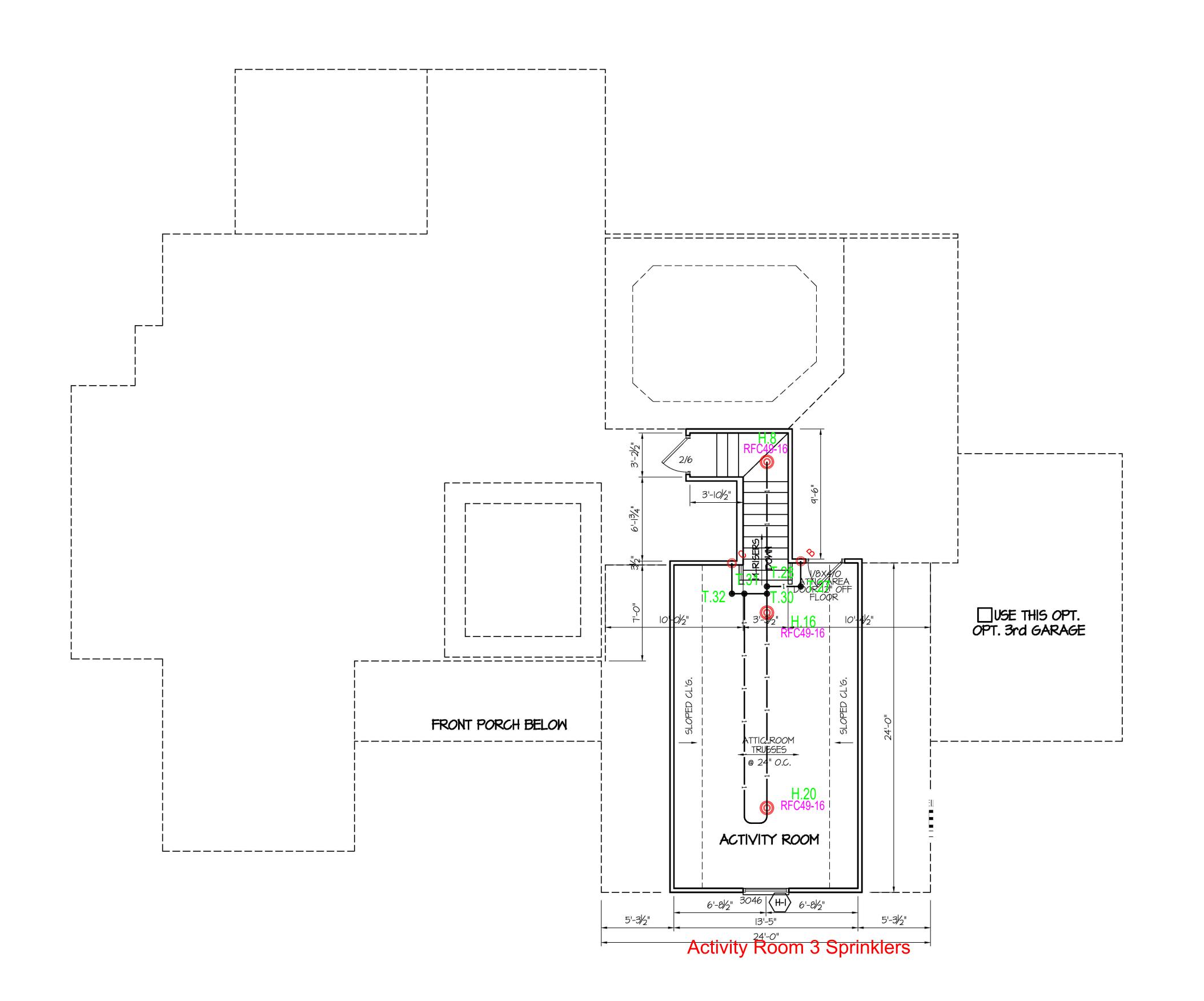
VIEGA LLC'S DESIGN SERVICES DEPARTMENT HAS PREPARED THIS SERIES OF DRAWINGS AS THE FIRST DESIGN FOR PLUMBING, RADIANT, SNOW MELTING OR FIRE SUPPRESSION SYSTEMS FOR THE USE OF YOU, OUR CUSTOMER, IN PREPARING / OBTAINING SPECIFICATIONS, BIDS AND PROPOSALS IN RELATION TO THE SALE OF THESE SYSTEMS. THESE DRAWINGS ARE BASED UPON INFORMATION PROVIDED BY YOU AND HAVE BEEN PREPARED TO APPROPRIATE PROFESSIONAL STANDARDS OF DESIGN BASED UP THAT INFORMATION. THESE DRAWINGS ARE NOT TO BE CONSIDERED FINAL AND, PRIOR TO PERFORMING ANY WORK ASSOCIATED WITH THESE DESIGNS OR DRAWINGS, YOU MUST:

- 1.) CHECK AND CONFIRM ALL PIPE SIZES, CALCULATIONS, MATERIALS, PLUMBING AND / OR FIF CODES USED OR APPLICABLE; AND
- 2.) PRESENT THE DRAWINGS TO YOUR PROFESSIONAL ENGINEER FOR REVIEW AND APPROVAL AND HAVE THE DRAWINGS MARKED "FINAL" BY YOUR PROFESSIONAL ENGINEER.

IF YOUR PROFESSIONAL ENGINEER REPORTS ANY ERRORS IN THE DRAWINGS OR MAKES ANY CHANGES IN THE DRAWINGS, THESE ERRORS OR CHANGES MUST BE COMMUNICATED TO VIEGA LLC'S DESIGN SERVICES DEPARTMENT FOR A DETERMINATION IF A REVISION TO THE DESIGN IS NECESSARY.

VIEGA LLC DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, ASSOCIATED WITH THE DESIGN OF THE SYSTEM OR ITS USE. ALL DESIGNS ARE PROVIDED "AS IS" AND IT IS YOUR SOLE RESPONSIBILITY TO CONFIRM AND ENSURE THAT THE SYSTEM TO BE INSTALLED WILL OPERATE AND FUNCTION IN COMPLIANCE WITH ALL APPLICABLE CODES AND IN ACCORDANCE WITH ALL APPLICABLE SPECIFICATIONS.

Design Services Department 1900 Southwood Drive - Nashua, NH 03063 Tel: 877-843-4262 x 351 Fax: 316-425-8466


218 OAKHAVEN DRIVE, LOT 4 HOLLY SPRINGS, NC 27540

Dwg no.: FP 1

Title:

MAIN FLOOR PLAN

Quotation no.: FPNM2103-002 NC					
Drawn by:	N.M.				
Approv. by:					
Date Submitted:	3/3/2021				
Scale:	1/4" = 1'				
Revision No:	Revision Date:				

VIEGA LLC'S DESIGN SERVICES DEPARTMENT HAS PREPARED THIS SERIES OF DRAWINGS AS THE FIRST DESIGN FOR PLUMBING, RADIANT, SNOW MELTING OR FIRE SUPPRESSION SYSTEMS FOR THE USE OF YOU, OUR CUSTOMER, IN PREPARING / OBTAINING SPECIFICATIONS, BIDS AND PROPOSALS IN RELATION TO THE SALE OF THESE SYSTEMS. THESE DRAWINGS ARE BASED UPON INFORMATION PROVIDED BY YOU AND HAVE BEEN PREPARED TO APPROPRIATE PROFESSIONAL STANDARDS OF DESIGN BASED UP THAT INFORMATION. THESE DRAWINGS ARE NOT TO BE CONSIDERED FINAL AND, PRIOR TO PERFORMING ANY WORK ASSOCIATED WITH THESE DESIGNS OR DRAWINGS, YOU MUST:

- CHECK AND CONFIRM ALL PIPE SIZES, CALCULATIONS, MATERIALS, PLUMBING AND / OR FIRE CODES USED OR APPLICABLE; AND

 A PRESENT THE PRAYMED TO YOUR PROFESSIONAL ENGINEER FOR REVIEW AND APPROVAL.

 THE PROFESSIONAL FINE PRAYMED TO YOUR PROFESSIONAL ENGINEER FOR REVIEW AND APPROVAL.

 THE PROFESSIONAL FINE PRAYMED TO YOUR PROFESSIONAL ENGINEER FOR REVIEW AND APPROXIMATE TO YOUR PROFESSIONAL FINE PROFESSIONAL
- 2.) PRESENT THE DRAWINGS TO YOUR PROFESSIONAL ENGINEER FOR REVIEW AND APPROVAL AND HAVE THE DRAWINGS MARKED "FINAL" BY YOUR PROFESSIONAL ENGINEER.

IF YOUR PROFESSIONAL ENGINEER REPORTS ANY ERRORS IN THE DRAWINGS OR MAKES ANY CHANGES IN THE DRAWINGS, THESE ERRORS OR CHANGES MUST BE COMMUNICATED TO VIEGA LLC'S DESIGN SERVICES DEPARTMENT FOR A DETERMINATION IF A REVISION TO THE DESIGN IS NECESSARY.

VIEGA LLC DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, ASSOCIATED WITH THE DESIGN OF THE SYSTEM OR ITS USE. ALL DESIGNS ARE PROVIDED "AS IS" AND IT IS YOUR SOLE RESPONSIBILITY TO CONFIRM AND ENSURE THAT THE SYSTEM TO BE INSTALLED WILL OPERATE AND FUNCTION IN COMPLIANCE WITH ALL APPLICABLE CODES AND IN ACCORDANCE WITH ALL APPLICABLE SPECIFICATIONS.

Design Services Department 1900 Southwood Drive - Nashua, NH 03063 Tel: 877-843-4262 x 351 Fax: 316-425-8466

218 OAKHAVEN DRIVE, LOT 4 HOLLY SPRINGS, NC 27540

Proje

Dwg no.:

FP 2

ACTIVITY ROOM PLAN

Quotation no.: FPN	NM2103-002 NC
Drawn by:	N.M.
Approv. by:	
Date Submitted:	3/3/2021
Scale:	1/4" = 1'
Revision No:	Revision Date:

FIRE PROTECTION INSTALLATION NOTES:

- 1. INSTALLATION OF THE FIRE PROTECTION SYSTEM SHALL BE INSTALLED IN ACCORDANCE WITH THE 2016 EDITION OF NFPA 13D OR SECTION P2904 OF THE 2018 INTERNATIONAL RESIDENTIAL CODE (IRC). NFPA 13D IS THE STANDARD FOR THE INSTALLATION OF SPRINKLER SYSTEMS IN ONE- AND TWO-FAMILY DWELLINGS AND MANUFACTURED HOMES.
- 2. INSTALLATION OF THE FIRE PROTECTION SYSTEM SHALL COMPLY WITH ALL LOCAL RESIDENTIAL FIRE PROTECTION CODES AND ALL APPLICABLE STATE REGULATIONS.
- 3. SPRINKLER HEADS SHALL MEET ALL GENERAL CARE AND INSTALLATION REQUIREMENTS OF THE SPRINKLER MANUFACTURER. SUBSTITUTION OF SPRINKLER HEADS IS NOT PERMITTED.
- 4. AFTER INSTALLATION OF THE SPRINKLERS, THE ENTIRE SYSTEM SHALL BE PRESSURE TESTED IN ACCORDANCE WITH STATE AND LOCAL CODE REQUIREMENTS.
- 5. SPRINKLERS SHALL BE LOCATED PER THE LAYOUT. DO NOT INSTALL SPRINKLERS IN AREAS EXPOSED TO TEMPERATURES THAT EXCEED THE MAXIMUM RECOMMENDED AMBIENT TEMPERATURE FOR THE TEMPERATURE RATING USED. MINIMUM DISTANCE OF SPRINKLER HEADS FROM HEAT SOURCES SHALL COMPLY WITH TABLE 7.5.6.3 IN THE 2016 EDITION OF NFPA 13D, INSTALLATION OF SPRINKLER SYSTEMS IN ONE AND TWO FAMILY DWELLINGS AND MANUFACTURED HOMES.
- 6. NO DEVIATIONS FROM THE PLAN SHALL BE ALLOWED WITHOUT APPROVAL FROM THE AUTHORITY HAVING JURISDICTION AND DESIGNER.
 7. PIPING AND SPRINKLER FITTINGS SHALL BE SUPPORTED IN COMPLIANCE WITH LOCAL PLUMBING CODE AND THE 2016 EDITION OF NFPA 13D, INSTALLATION OF SPRINKLER SYSTEMS IN ONE AND TWO FAMILY DWELLINGS AND MANUFACTURED HOMES.
- 8. SMOKE DETECTORS SHALL BE INSTALLED IN ACCORDANCE WITH NFPA 72, NATIONAL FIRE ALARM CODE. WHEN NOT EQUIPPED WITH SMOKE DETECTORS, LOCAL WATERFLOW ALARMS SHALL BE REQUIRED.
- 9. WATER SOFTENERS AND WATER FILTRATION DEVICES SHALL NOT BE INSTALLED IN THE SYSTEM WITHOUT A REVIEW OF THE HYDRAULIC CALCULATIONS OF THE
- 10. A SIGN SHALL BE AFFIXED ADJACENT TO THE MAIN SHUTOFF VALVE THAT STATES IN MINIMUM 1/4" LETTERS, "WARNING: THE WATER SYSTEM FOR THIS HOME SUPPLIES FIRE SPRINKLERS THAT REQUIRE CERTAIN FLOWS AND PRESSURES TO FIGHT A FIRE. DEVICES THAT RESTRICT THE FLOW OR DECREASE THE PRESSURE OR AUTOMATICALLY SHUT OFF THE WATER TO THE FIRE SPRINKLER SYSTEM, SUCH AS WATER SOFTENERS, FILTRATION SYSTEMS, AND AUTOMATIC SHUT-OFF VALVES, SHALL NOT BE ADDED TO THIS SYSTEM WITHOUT A REVIEW OF THE FIRE SPRINKLER SYSTEM BY A FIRE PROTECTION SPECIALIST. DO NOT REMOVE THIS SIGN."
- II. ALL PIPING AND FITTINGS SHALL BE PROPERLY INSULATED AND PROTECTED SO THAT THEY ARE NOT EXPOSED TO TEMPERATURES BELOW 40° F.
- 12. WHEN THE MAXIMUM STATIC PRESSURE EXCEEDS 80 PSI, A PRESSURE-REDUCING VALVE SHALL BE INSTALLED. NFPA 13D RESTRICTS THE OPERATING PRESSURE OF PEX SYSTEMS TO 80 PSI. PRESSURE DROP THROUGH THE PRESSURE-REDUCING DEVICE SHALL BE INCLUDED IN THE HYDRAULIC CALCULATIONS
- 13. WHEN A FIRE DEPARTMENT CONNECTION IS REQUIRED, PEX TUBING SHALL NOT BE PERMITTED. CONSULT WITH THE AUTHORITY HAVING JURISDICTION (AHJ)
 ABOUT THIS REQUIREMENT PRIOR TO INSTALLATION.

PLUMBING INSTALLATION NOTES:

- I. INSTALLATION OF HOT AND COLD WATER DISTRIBUTION SYSTEMS SHALL BE IN ACCORDANCE WITH THE LOCAL PLUMBING CODE.
- 2. WATER SOFTENERS AND WATER FILTRATION DEVICES SHALL NOT BE INSTALLED WITHOUT A REVIEW OF THE HYDRAULIC CALCULATIONS OF THE SYSTEM.
- 3. FINAL APPROVAL OF MULTIPURPOSE AND PASSIVE PURGE FIRE SPRINKLER INSTALLATIONS SHALL BE FROM THE AUTHORITY HAVING JURISDICTION. TESTING:

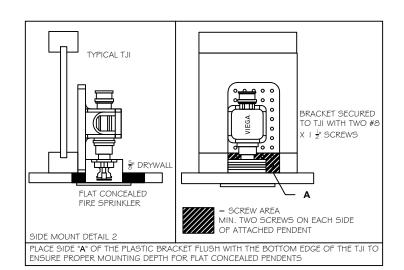
1. EVERY VIEGA NFPA 13D FIRE PROTECTION INSTALLATION SHALL BE PRESSURE TESTED IN ACCORDANCE WITH NFPA 13D, WHICH STATES THAT SYSTEMS

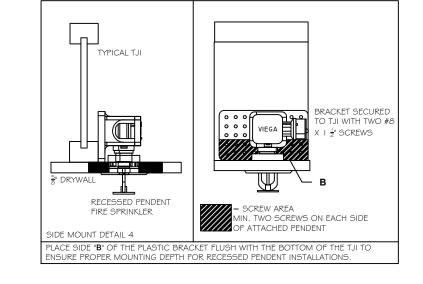
- WITHOUT FIRE DEPARTMENT CONNECTIONS SHALL BE TESTED FOR LEAKAGE AT THE NORMAL SYSTEM OPERATING WATER PRESSURE.

 2. THE AUTHORITY HAVING JURISDICTION (AHJ) MAY REQUIRE A FLOW VERIFICATION TEST OF THE MOST HYDRAULICALLY REMOTE SPRINKLER HEAD(S). THIS FLOW VERIFICATION TEST IS AVAILABLE TO ENSURE THE INSTALLED FIRE PROTECTION SYSTEM OPERATES AS DESIGNED. DOCUMENTATION ON HOW TO PERFORM A FLOW VERIFICATION TEST IS AVAILABLE THROUGH VIEGA TECHNICAL SERVICES.
- 3. THE FLOW VERIFICATION TEST SHALL BE PERFORMED AFTER ALL PIPING, FITTINGS, SPRINKLER HEADS AND PLUMBING CONNECTIONS HAVE BEEN INSTALLED AND PRESSURE TESTING OF THE SYSTEM HAS BEEN COMPLETED. THE FLOW TEST SHOULD OCCUR WHILE IN THE "ROUGH" STAGE OF CONSTRUCTION. FLOW TEST RESULTS SHOULD BE COMPARED TO THE SYSTEM DESIGN VALUES. RESIDUAL PRESSURE (PSI) AND FLOW (GPM) MUST BE EQUAL TO OR GREATER THEN THE DESIGN VALUES TO ENSURE A PROPERLY FUNCTIONING SYSTEM.

DRAWING AND DESIGN NOTES:

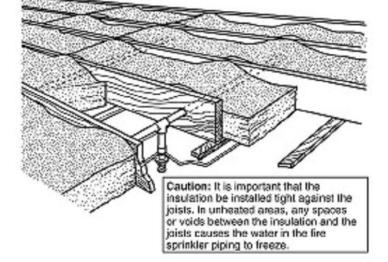
- I. DESIGN SHALL ENSURE WATER SUPPLY TO THE MOST HYDRAULICALLY DEMANDING SINGLE AND DUAL SPRINKLER HEADS.
- 2. TUBING AND FITTINGS SHALL BE U.L. LISTED FOR RESIDENTIAL FIRE PROTECTION SYSTEMS IN ACCORDANCE WITH NFPA 13D
- 3. VIEGAPEX ULTRA (BLACK IN COLOR) LISTED TO U.L. 1821 FOR RESIDENTIAL WET-PIPE FIRE PROTECTION SYSTEMS IN ACCORDANCE WITH NFPA 13D.
- 4. VIEGA PEX PRESS FITTINGS (POLYMER AND BRONZE) LISTED TO U.L. 1821 FOR RESIDENTIAL WET-PIPE FIRE PROTECTION SYSTEMS IN ACCORDANCE WITH NFPA 13D.
- 5. APPROVED SMOKE DETECTION SYSTEMS AND/OR WATER FLOW ALARMS SHALL BE INSTALLED WHERE REQUIRED BY THE AUTHORITY HAVING JURISDICTION (AHJ).


MATERIALS LIST NOTES:


- . SERVICE ENTRANCE MATERIALS FROM WATER MAIN CONNECTION TO DISTRIBUTION MANIFOLD ARE EXCLUDED.
- 2. SPRINKLERS AND ASSOCIATED ESCUTCHEONS OR COVER PLATES ARE NOT SUPPLIED BY VIEGA.


INSTALLATION DETAIL - SPRINKLER BRACKETS

3. MATERIAL LIST IS SUGGESTED ONLY. CONTRACTOR SHALL CONFIRM REQUIRED MATERIALS PRIOR TO PLACEMENT OF ORDER.


INSTALLATION NOTES

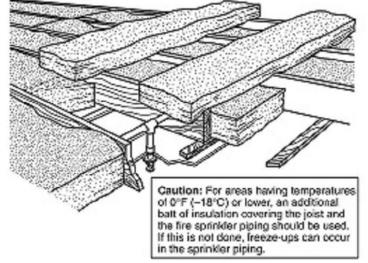


FIGURE A.9.1.1(b) Insulation Recommendations -

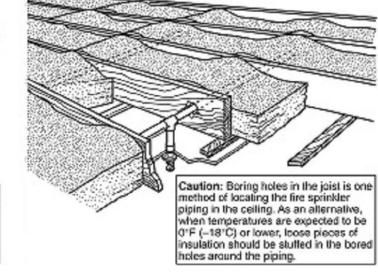


FIGURE A.9.1.1(c) Insulation Recommendations — Arrangement 3.

FIGURE A.9.1.1(a) Insulation Recommendations — Arrangement 1.

FIGURE A.9.1.1(d) Insulation Recommendations -

Arrangement 4.



FIGURE A.9.1.1(e) Insulation Recommendations — Arrangement 5.

Arrangement 2.

INSULATION DETAILS - ANNEX A.9.1.1 (NFPA 13D 2016)

Meter			Flow	(gpm)		
Sıze (ın.)	18 or less	23	26	31	39	52
5/8"	9	14	18	26	38	*
3/4"	7	1.1	14	22	35	*
I n	2	3	3	4	6	10
1-1/2"	1	J	2	2	4	7
2"	Ī	1	I	I	2	3

TABLE 10.4.4(a) (NFPA 13D 2016)

DISTANCES FROM HEAT SOURCES - TABLE 7.5.6.3 NFPA 13D (2016)

Heat Source	Ordinary Temp. 135°-170°	Intermediate Temp. 175*-225*
Side of Fireplace	36"	12"
Front of Fireplace	60"	36"
Coal or Wood Burning Stove	42"	12"
Kıtchen Range	18"	9"
Wall Oven	18"	9"
Hot Air Flues	18"	9"
Uninsulated Heat Ducts	18"	9"
Uninsulated Hot Water Pipes	12"	6"
Side of Hot Air Diffusers	24"	12"
Front of Hot Air Diffusers	36"	18"
Hot Water Heater or Furnace	6"	3"
Light Fixture O W - 250 W	6"	3"
Light Fixture 250 W - 499 W	12"	6"

TABLE 7.5.6.3 (NFPA 13D 2016)

viega

VIEGA LLC'S DESIGN SERVICES DEPARTMENT HAS PREPARED THIS SERIES OF DRAWINGS AS THE FIRST DESIGN FOR PLUMBING, RADIANT, SNOW MELTING OR FIRE SUPPRESSION SYSTEMS FOR THE USE OF YOU, OUR CUSTOMER, IN PREPARING / OBTAINING SPECIFICATIONS, BIDS AND PROPOSALS II RELATION TO THE SALE OF THESE SYSTEMS. THESE DRAWINGS ARE BASED UPON INFORMATION PROVIDED BY YOU AND HAVE BEEN PREPARED TO APPROPRIATE PROFESSIONAL STANDARDS OF DESIGN BASED UP THAT INFORMATION. THESE DRAWINGS ARE NOT TO BE CONSIDERED FINAL AND, PRIOR TO PERFORMING ANY WORK ASSOCIATED WITH THESE DESIGNS OR DRAWINGS, YOU MUST:

- 1.) CHECK AND CONFIRM ALL PIPE SIZES, CALCULATIONS, MATERIALS, PLUMBING AND / OR FIF CODES USED OR APPLICABLE; AND
- 2.) PRESENT THE DRAWINGS TO YOUR PROFESSIONAL ENGINEER FOR REVIEW AND APPROVAL AND HAVE THE DRAWINGS MARKED "FINAL" BY YOUR PROFESSIONAL ENGINEER.
- IF YOUR PROFESSIONAL ENGINEER REPORTS ANY ERRORS IN THE DRAWINGS OR MAKES ANY CHANGES IN THE DRAWINGS, THESE ERRORS OR CHANGES MUST BE COMMUNICATED TO VIEGA LLC'S DESIGN SERVICES DEPARTMENT FOR A DETERMINATION IF A REVISION TO THE DESIGN IS

VIEGA LLC DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, ASSOCIATED WITH THE DESIGN OF THE SYSTEM OR ITS USE. ALL DESIGNS ARE PROVIDED "AS IS" AND IT IS YOUR SOLE RESPONSIBILITY TO CONFIRM AND ENSURE THAT THE SYSTEM TO BE INSTALLED WILL OPERATE

AND FUNCTION IN COMPLIANCE WITH ALL APPLICABLE CODES AND IN ACCORDANCE WITH ALL

APPLICABLE SPECIFICATIONS.

Design Services Department 1900 Southwood Drive - Nashua, NH 03063 Tel: 877-843-4262 x 351 Fax: 316-425-8466

8 OAKHAVEN DRIVE, LOT 4 OLLY SPRINGS, NC 27540

218

Dwg no.: FP 3

NOTES & DETAILS

Quotation no.: FPNM2103-002 NC					
Drawn by:	N.M.				
Approv. by:					
Date Submitted:	3/3/2021				
Scale:	N/A				
Revision No:	Revision Date:				

Viega LLC Technical Services Department 1900 Southwood Drive Nashua, NH 03063 603-882-7171

Job Name : 218 OAKHAVEN DRIVE, LOT 4 - One Head Calculation (H.5)

Building : SINGLE FAMILY RESIDENCE Location : HOLLY SPRINGS NC 27540

System : NFPA 13D

Contract: FPNM2103-002 NC

Data File : FPNM2103-002 NC (218 Oakhaven Drive).wx1

```
HYDRAULIC DESIGN INFORMATION SHEET
```

```
Name - 218 OAKHAVEN DRIVE LOT 4
                                                                 Date - 3/3/2021
Location -
Building - SINGLE FAMILY RESIDENCE
                                                       System No. - NFPA 13D
Contractor - x
                                                       Contract No. - FPNM2103-002 NC
Calculated By - VIEGA LLC Drawing No. - FPNM2103 Construction: (X) Combustible () Non-Combustible Ceiling Height 10
                                                       Drawing No. - FPNM2103-002 NC
OCCUPANCY - RESIDENTIAL
   Type of Calculation: ( )NFPA 13 Residential ( )NFPA 13R (X)NFPA 13D Number of Sprinklers Flowing: (X)1 ()2 ()4 ()
S
Υ
   ( )Other
S
Т
    ( )Specific Ruling
                                            Made by
                                                                   Date
Ε
   Listed Flow at Start Point - 17
                                                 System Type (X) Wet () Dry
   MAXIMUM LISTED SPACING 18 x 18
Domestic Flow Added
Listed Pres. at Start Point - 12.03Psi
                                                ( ) Deluge ( ) PreAction
Sprinkler or Nozzle
    Domestic Flow Added - 0 Gpm
Additional Flow Added - Gpm
                                          Gpm Make RFC49
Ι
    Elevation at Highest Outlet - 108 Feet Size 7/16
                                                                  K-Factor 4.9
                                                 Temperature Rating 155
G
    Note:
Calculation Gpm Required 17 Psi Required 33.19 At Ref Pt STR
                                      Overhead 150
        C-Factor Used:
                                                               Underground 150
Summary
                                   Pump Data:
   Water Flow Test:
                                                            Tank or Reservoir:
   Date of Test - x
Time of Test - x
Static (Psi) - 60
                                 Rated Cap.
                                                         Cap.
Α
                                 @ Psi
Elev.
                                                          Elev.
                                  Other
   Residual (Psi) - 20
                                                                 Well
                                                    Proof Flow Gpm
Flow (Gpm) - 168
   Elevation
                   - 100
Ρ
   Location: x
Ρ
L
   Source of Information: x
```

Page 2 Date 3/

te 3/3/2021

City Water Supply: C1 - Static Pressure : 60 Demand: D1 - Elevation : 3.465 D2 - System Flow : 16.995
D2 - System Pressure : 33.191
Hose (Demand) : 16.995
Safety Margin : 16.995 C2 - Residual Pressure: 20 C2 - Residual Flow : 168 150 140 130 P 120 R 110 E 100 s ⁹⁰ s 80 U 70 C1 R 60 E^{50} 40 D2 30 C2 20 10 80 100 120 140 160 180 20 40 60 FLOW (N ^ 1.85)

Fittings Used Summary

Fitting Legend Abbrev. Name

Viega LLC 218 OAKHAVEN DRIVE, LOT 4 - One Head Calculation (H.5)

1/2

3/4

Pa Da	_	3/3/20	21	
16	18	20	24	

F	90' Standard Elbow	2	2	2	3	4	5	6	7	8	10
Ŧ	90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20
Vpel *	PEX Press 90 Elbow - Poly	12.6	18.9	17.7	18.6	29.4	36.4	0	0	0	
Vprt *	PEX Press Tee - Run-Poly	3.9	3.6	3.8	6.4	7.9	10.2	0	0	0	
Vptb *	PEX Press Tee - Branch-Poly	14	19.1	18.4	18.7	28.3	37.5	0	0	0	

11/4

21/2

11/2

Units Summary

Diameter Units Inches Length Units Feet

Flow Units US Gallons per Minute Pressure Units Pounds per Square Inch

Page 4 Date 3/

3/3/2021

SUPPLY ANA	ALYSI:	S
------------	--------	---

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
STR	60.0	20	168.0	59.423	17.0	33.191

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
H.5	108.0	4.9	12.03	17.0	
H.1	108.0	4.5	13.23	17.0	
H.3	108.0		13.81		
H.2	108.0		14.46		
H.6	108.0		14.92		
T.21	108.0		15.52		
H.7	108.0		15.75		
H.11	108.0		15.96		
T.22	108.0		16.04		
T.24	108.0		16.44		
T.25	108.0		16.9		
T.33	108.0		17.23		
S.1	104.0		23.52		
MTR	100.0		31.53		
STR	100.0		33.19		
H.4	108.0		13.15		
H.9	108.0		14.09		
T.23	108.0		14.83		
H.12	108.0		15.49		
T.29	108.0		15.11		
T.27	117.0		11.36		
T.28	117.0		11.86		
T.30	117.0		11.92		
T.31	117.0		12.03		
T.32	117.0		12.32		
T.26	108.0		16.37		
H.10	108.0		15.63		
H.17	108.0		15.77		
H.19	108.0		15.92		
H.18	108.0		15.98		
H.13	108.0		16.07		
H.14	108.0		16.15		
H.15	108.0		16.24		
H.16	117.0		11.93		
H.20	117.0		11.96		

Viega LLC 218 OAKHAVEN DRIVE, LOT 4 - One Head Calculation (H.5)

/iega LLC :18 OAKH/	AVEN DRI	VE, LOT 4 - O	ne Head Calcu	lation (H.5)			Page 5 Date 3/3/2021
Hyd. Ref.	Qa	Dia. "C"	Fitting	Pipe	Pt Pe	Pt Pv	****** Notoo *****
Point	Qt	Pf/Ft	or Eqv. Ln	Ftng's . Total	Pf	Pn	****** Notes *****
H.5	6.88	0.863	Vprt 3.8		12.030		K Factor = 4.90
o H.1	6.88	150.0 0.0310	0.0 0.0		0.0 1.201		Vel = 3.77
H.1 o	0.0	0.863 150.0	Vprt 3.8 0.0	3.800	13.231 0.0		
H.3	6.88	0.0310	0.0		0.582		Vel = 3.77
H.3 o H.2	0.0 6.88	0.863 150.0 0.0310	Vprt 3.8 0.0 0.0	3.800	13.813 0.0 0.644		Vel = 3.77
H.2	0.0	0.863	Vprt 3.8		14.457		
o H.6	6.88	150.0 0.0309	0.0		0.0 0.458		Vel = 3.77
H.6	0.00	0.863	Vptb 18.4		14.915		Vei - 3.77
0		150.0	0.0	18.400	0.0		Vol = 2.77
T.21 T.21	6.88 -3.05	0.0310 0.863	0.0 Vprt 3.8		0.601 15.516		Vel = 3.77
0		150.0	. 0.0	3.800	0.0		
H.7 H.7	3.83 0.0	0.0104 0.863	0.0 Vprt 3.8		0.238 15.754		Vel = 2.10
п. <i>1</i> Э	0.0	150.0	Vprt 3.8 0.0		0.0		
H.11	3.83	0.0105	0.0		0.207		Vel = 2.10
H.11 o T.22	0.0 3.83	0.863 150.0 0.0105	Vprt 3.8 0.0 0.0	3.800	15.961 0.0 0.082		Vel = 2.10
T.22	5.86	0.863	Vprt 3.8		16.043		
o T.24	9.69	150.0 0.0584	0.0 0.0		0.0 0.397		Vel = 5.31
T.24 T.24	3.06	0.863	Vprt 3.8		16.440		VEI - 3.31
0		150.0	0.0	3.800	0.0		V I 0.00
T.25 T.25	12.75 4.25	0.0967 0.863	0.0		0.464 16.904		Vel = 6.99
0	4.23	150.0	0.0		0.0		
T.33	17.0	0.1650	0.0		0.330		Vel = 9.32
T.33 o	0.0	0.863 150.0	Vpel 17.7 T 2.9		17.234 1.732		
S.1	17.0	0.1649	0.0		4.554		Vel = 9.32
S.1	0.0	1.053	2E 2.4		23.520		* * 5:
o MTR	17.0	150.0 0.0626	0.0 0.0		4.732 3.280		* * Fixed Loss = 3 Vel = 6.26
MTR	0.0	1.049	2E 6.0	20.000	31.532		
STR	17.0	150.0 0.0637	0.0 0.0		0.0 1.659		Vel = 6.31
0111	0.0	0.0001	0.0	20.044	1.000		V 01 0.01
	17.00				33.191		K Factor = 2.95
H.5 o	10.11	0.863 150.0	Vprt 3.8 0.0		12.030 0.0		
H.4	10.11	0.0631	0.0		1.123		Vel = 5.55
H.4	0.0	0.863	Vprt 3.8		13.153		
0	10.11	150.0 0.0631	0.0 0.0		0.0 0.934		Vel = 5.55

Viega LLC 218 OAKHAVEN DRIVE, LOT 4 - One Head Calculation (H.5)

Hyd.	Qa	Dia. "C"	Fitting	Pipe	Pt	Pt	****** Notoc *****
Ref. Point	Qt	Pf/Ft	or Eqv. Ln.	Ftng's Total	Pe Pf	Pv Pn	****** Notes *****
H.9	0.0	0.863	Vprt 3.8	8.000	14.087		
o T.23	10.11	150.0 0.0631	0.0 0.0	3.800 11.800	0.0 0.745		Vel = 5.55
T.23	-4.25	0.863	Vptb 18.4	10.000	14.832		
o H.12	5.86	150.0 0.0230	0.0 0.0	18.400 28.400	0.0 0.654		Vel = 3.21
H.12	0.0	0.863	Vptb 18.4	2.000	15.486		VCI - 0.21
)		150.0	Vprt 3.8	22.200	0.0		
T.22	5.86	0.0230	0.0	24.200	0.557		Vel = 3.21
	0.0 5.86				16.043		K Factor = 1.46
T.23	4.25	0.863	Vpel 17.7	4.000	14.832		
) T 00	4.05	150.0	0.0	17.700	0.0		\/
T.29	4.25	0.0127 0.863	0.0	21.700 12.000	0.275 15.107		Vel = 2.33
T.29 o	0.0	150.0	0.0 0.0	0.0	-3.898		
T.27	4.25	0.0127	0.0	12.000	0.153		Vel = 2.33
T.27	0.0	0.863	Vptb 18.4	3.000	11.362		
o T.28	4.25	150.0 0.0127	Vpel 17.7 0.0	36.100 39.100	0.0 0.496		Vel = 2.33
T.28	0.0	0.863	Vprt 3.8	1.000	11.858		
0	4.05	150.0	0.0	3.800	0.0		
T.30	4.25	0.0125	0.0	4.800	0.060		Vel = 2.33
T.30 o	-1.50	0.863 150.0	Vptb 18.4 0.0	2.000 18.400	11.918 0.0		
T.31	2.75	0.0057	0.0	20.400	0.116		Vel = 1.51
T.31	1.50	0.863	Vpel 17.7	1.000	12.034		
o T.32	4.25	150.0 0.0127	Vprt 3.8 0.0	21.500 22.500	0.0 0.286		Vel = 2.33
T.32	0.0	0.863	0.0	12.000	12.320		V C1 2.00
0		150.0	0.0	0.0	3.898		
T.26	4.25	0.0127	0.0	12.000	0.152		Vel = 2.33
T.26 o	0.0	0.863 150.0	Vpel 17.7 Vptb 18.4	6.000 36.100	16.370 0.0		
T.25	4.25	0.0127	0.0	42.100	0.534		Vel = 2.33
	0.0						
	4.25				16.904		K Factor = 1.03
T.21 o	3.05	0.863 150.0	Vprt 3.8 0.0	13.000 3.800	15.516 0.0		
H.10	3.05	0.0068	0.0	16.800	0.115		Vel = 1.67
H.10	0.0	0.863	Vprt 3.8	16.000	15.631		
) ⊔ 17	2 05	150.0	0.0	3.800	0.0		Val - 167
<u>H.17</u> H.17	3.05 0.0	0.0069 0.863	0.0 Vprt 3.8	19.800 19.000	0.137 15.768		Vel = 1.67
п. 1 <i>1</i> Э	0.0	150.0	0.0	3.800	0.0		
H.19	3.05	0.0069	0.0	22.800	0.157		Vel = 1.67
H.19	0.0	0.863	0.0	8.000	15.925		
o H.18	3.05	150.0 0.0069	0.0 0.0	0.0 8.000	0.0 0.055		Vel = 1.67

Viega LLC 218 OAKHAVEN DRIVE, LOT 4 - One Head Calculation (H.5)

Page 7 Date 3/3/2021

Hyd. Ref.	Qa	Dia. "C"	Fitting or	Pipe Ftng's	Pt Pe	Pt Pv	****** Notes *****
Point	Qt	Pf/Ft	Eqv. Lr	n. Total	Pf	Pn	
H.18	0.0	0.863	Vprt 3.		15.980		
to		150.0	0.0		0.0		
H.13	3.05	0.0069	0.0		0.088		Vel = 1.67
H.13	0.0	0.863	Vprt 3.		16.068		
to		150.0	0.0		0.0		
H.14	3.05	0.0069	0.	11.800	0.081		Vel = 1.67
H.14	0.0	0.863	Vprt 3.		16.149		
to		150.0	0.0		0.0		
H.15	3.05	0.0069	0.	13.800	0.095		Vel = 1.67
H.15	0.0	0.863	Vptb 18.	4 10.000	16.244		
to		150.0	0.0	18.400	0.0		
T.24	3.05	0.0069	0.0	28.400	0.196		Vel = 1.67
	0.0						
	3.05				16.440		K Factor = 0.75
T.30	1.50	0.863	Vprt 3.	3 2.000	11.918		
to		150.0	0.0		0.0		
H.16	1.5	0.0019	0.0		0.011		Vel = 0.82
H.16	0.0	0.863	0.	16.000	11.929		
to		150.0	0.0		0.0		
H.20	1.5	0.0019	0.0		0.030		Vel = 0.82
H.20	0.0	0.863	Vptb 18.	4 19.000	11.959		
to	0.0	150.0	Vprt 3.		0.0		
T.31	1.5	0.0018	0.0		0.075		Vel = 0.82
	0.0						
	1.50				12.034		K Factor = 0.43

Viega LLC Technical Services Department 1900 Southwood Drive Nashua, NH 03063 603-882-7171

Job Name : 218 OAKHAVEN DRIVE, LOT 4 - Two Head Calculation (H.20 & H.16)

Building : SINGLE FAMILY RESIDENCE Location : HOLLY SPRINGS NC 27540

System: NFPA 13D

Contract: FPNM2103-002 NC

Data File : FPNM2103-002 NC (218 Oakhaven Drive).wx2

```
HYDRAULIC DESIGN INFORMATION SHEET
```

```
Name - 218 OAKHAVEN DRIVE LOT 4
                                                                       Date - 3/3/2021
Location -
Building - SINGLE FAMILY RESIDENCE
                                                            System No. - NFPA 13D
Contractor - x
                                                            Contract No. - FPNM2103-002 NC
Calculated By - VIEGA LLC Drawing No. - FPNM2103 Construction: (X) Combustible () Non-Combustible Ceiling Height 10
                                                            Drawing No. - FPNM2103-002 NC
OCCUPANCY - RESIDENTIAL
    Type of Calculation: ( )NFPA 13 Residential ( )NFPA 13R (X)NFPA 13D Number of Sprinklers Flowing: ( )1 (X)2 ( )4 ( )
S
Υ
S
    ()Other
Т
    ( )Specific Ruling
                                                Made by
                                                                        Date
Ε
    Listed Flow at Start Point - 13
                                                     System Type (X) Wet ( ) Dry
   MAXIMUM LISTED SPACING 16 x 16
Domestic Flow Added
Listed Pres. at Start Point - 7.04 Psi
                                                    ( ) Deluge ( ) PreAction
Sprinkler or Nozzle
     Domestic Flow Added - 0 Gpm
Additional Flow Added - Gpm
                                             Gpm Make RELIABLE Model RFC49
Ι
     Elevation at Highest Outlet - 117 Feet Size 7/16
                                                                        K-Factor 4.9
                                                     Temperature Rating 155
G
     Note:
Calculation Gpm Required 26.229 Psi Required 50.22 At Ref Pt STR Summary C-Factor Used: Overhead 150 Underground
                                                                    Underground 150
                                   Pump Data:
Rated Cap.
    Water Flow Test:
                                                                 Tank or Reservoir:
    Date of Test - x
Time of Test - x
Static (Psi) - 60
                                                             Cap.
Α
                                    @ Psi
Elev.
                                                               Elev.
                                     Other
   Residual (Psi) - 20
                                                                      Well
                                                         Proof Flow Gpm
Flow (Gpm) - 168
   Elevation
                    - 100
Ρ
    Location: x
Ρ
L
    Source of Information: x
```

Page 2 Date 3/3/2021

City Water Supply: C1 - Static Pressure : 60 Demand: D1 - Elevation : 7.363 D2 - System Flow : 26.229
D2 - System Pressure : 50.217
Hose (Demand) : 26.229
Safety Margin : 26.229 C2 - Residual Pressure: 20 C2 - Residual Flow : 168 150 140 130 P 120 R 110 E 100 s ⁹⁰ s 80 U 70 C1 R 60 E^{50} 40 30 C2 20 10 **D1** 80 120 140 160 180 20 40 60 100 FLOW (N ^ 1.85)

Fittings Used Summary

Viega LLC 218 OAKHAVEN DRIVE, LOT 4 - Two Head Calculation (H.20 & H.16) Page 3 Date 3/3/2021

> 61 121

Fitting Le	egend																			
Abbrev.	Name	1/2	3/4	1	11/4	1½	2	21/2	3	3½	4	5	6	8	10	12	14	16	18	20
Е	90' Standard Elbow	2	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50
Т	90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101
Vpel *	PEX Press 90 Elbow - Poly	12.6	18.9	17.7	18.6	29.4	36.4	0	0	0										
Vprt *	PEX Press Tee - Run-Poly	3.9	3.6	3.8	6.4	7.9	10.2	0	0	0										
Vptb *	PEX Press Tee - Branch-Poly	14	19.1	18.4	18.7	28.3	37.5	0	0	0										

Units Summary

Diameter Units Inches Length Units Feet

Flow Units US Gallons per Minute Pressure Units Pounds per Square Inch

Page 4 Date 3/3/2021

SUPPLY ANALYSIS	SU	IPPL	.Y	AN.	AL	YSIS
-----------------	----	------	----	-----	----	------

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
STR	60.0	20	168.0	58.712	26.23	50.217

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
H.20	117.0	4.9	7.04	13.0	
T.31	117.0		8.83		
T.32	117.0		11.5		
T.26	108.0		16.83		
T.25	108.0		21.83		
T.33	108.0		22.57		
S.1	104.0		34.46		
MTR	100.0		46.51		
STR	100.0		50.22		
H.16	117.0	4.9	7.29	13.23	
T.30	117.0		8.35		
T.28	117.0		8.76		
T.27	117.0		12.14		
T.29	108.0		17.08		
T.23	108.0		18.95		
H.12	108.0		20.07		
T.22	108.0		21.02		
T.24	108.0		21.42		
H.9	108.0		19.1		
H.4	108.0		19.28		
H.5	108.0		19.5		
H.1	108.0		19.97		
H.3	108.0		20.2		
H.2	108.0		20.46		
H.6	108.0		20.64		
T.21	108.0		20.88		
H.10	108.0		20.94		
H.17	108.0		21.02		
H.19	108.0		21.12		
H.18	108.0		21.15		
H.13	108.0		21.2		
H.14	108.0		21.25		
H.15	108.0		21.3		
H.7	108.0		20.94		
H.11	108.0		21.0		

Viega LLC 218 OAKHAVEN DRIVE, LOT 4 - Two Head Calculation (H.20 & H.16)

/iega LLC 218 OAKH		VE, LOT 4 - T	wo Head Calculati	on (H.20 & H.16	6)		Page 5 Date 3/3/2021
Hyd.	Qa	Dia.	Fitting	Pipe	Pt	Pt	
Ref.	O+	"C"	or Fav. In	Ftng's	Pe	Pv	****** Notes *****
Point	Qt	Pf/Ft	Eqv. Ln.	Total	Pf	Pn	
H.20	8.27	0.863	Vptb 18.4	19.000	7.040		K Factor = 4.90
) T 04	0.07	150.0	Vprt 3.8	22.200	0.0		\/_1
T.31 T.31	8.27 5.97	0.0435 0.863	0.0 Vpel 17.7	41.200 1.000	1.792 8.832		Vel = 4.54
1.31	5.97	150.0	Vpel 17.7 Vprt 3.8	21.500	0.032		
T.32	14.24	0.1188	0.0	22.500	2.673		Vel = 7.81
T.32	0.0	0.863	0.0	12.000	11.505		
) T 00	44.04	150.0	0.0	0.0	3.898		Val - 7.04
T.26	14.24	0.1188	0.0	12.000	1.426		Vel = 7.81
T.26 o	0.0	0.863 150.0	Vpel 17.7 Vptb 18.4	6.000 36.100	16.829 0.0		
T.25	14.24	0.1188	0.0	42.100	5.002		Vel = 7.81
T.25	11.99	0.863	0.0	2.000	21.831		
) T 00	00.00	150.0	0.0	0.0	0.0		
T.33	26.23	0.3680	0.0	2.000	0.736		Vel = 14.39
T.33	0.0	0.863 150.0	Vpel 17.7 T 2.92	7.000 20.620	22.567 1.732		
S.1	26.23	0.3679	0.0	27.620	10.162		Vel = 14.39
S.1	0.0	1.053	2E 2.429	50.000	34.461		
)		150.0	0.0	2.429	4.732		* * Fixed Loss = 3
MTR	26.23	0.1396	0.0	52.429	7.320		Vel = 9.66
MTR o	0.0	1.049 150.0	2E 6.044 0.0	20.000 6.044	46.513 0.0		
STR	26.23	0.1422	0.0	26.044	3.704		Vel = 9.74
	0.0						
	26.23				50.217		K Factor = 3.70
H.20	4.73	0.863	0.0	16.000	7.040		
o H.16	4.73	150.0 0.0155	0.0 0.0	0.0 16.000	0.0 0.248		Vel = 2.59
H.16	13.23	0.863	Vprt 3.8	2.000	7.288		K Factor = 4.90
)	10.20	150.0	0.0	3.800	0.0		K1 actor = 4.30
T.30	17.96	0.1826	0.0	5.800	1.059		Vel = 9.85
T.30	-11.99	0.863	Vptb 18.4	2.000	8.347		
) T 21	F 07	150.0	0.0	18.400	0.0		Vel = 3.27
Т.31	5.97 0.0	0.0238	0.0	20.400	0.485		Vei - 3.27
	5.97				8.832		K Factor = 2.01
T.30	11.99	0.863	Vprt 3.8	1.000	8.347		-
)		150.0	0.0	3.800	0.0		
T.28	11.99	0.0865	0.0	4.800	0.415		Vel = 6.58
T.28	0.0	0.863	Vptb 18.4	3.000	8.762		
o T.27	11.99	150.0 0.0864	Vpel 17.7 0.0	36.100 39.100	0.0 3.380		Vel = 6.58
T.27	0.0	0.863	0.0	12.000	12.142		V 01 0.00
)	0.0	150.0	0.0	0.0	3.898		
T.29	11.99	0.0865	0.0	12.000	1.038		Vel = 6.58
Г.29	0.0	0.863	Vpel 17.7	4.000	17.078		
T 22	11.00	150.0	0.0	17.700	0.0		Val = 6.59
T.23	11.99	0.0865	0.0	21.700	1.876		Vel = 6.58

Viega LLC 218 OAKHAVEN DRIVE, LOT 4 - Two Head Calculation (H.20 & H.16)

Hyd.	Qa	Dia.	Fitting	Pipe	Pt	Pt	
Ref.	04	"C"	or E-mi - L	Ftng's	Pe	Pv	****** Notes *****
Point	Qt	Pf/Ft	Eqv. Ln.	Total	Pf	Pn	
T.23	-4.17	0.863	Vptb 18.4	10.000	18.954		
o H.12	7.82	150.0 0.0393	0.0 0.0	18.400 28.400	0.0 1.115		Vel = 4.29
H.12	0.0	0.863	Vptb 18.4	2.000	20.069		-
o T.22	7.82	150.0 0.0392	Vprt 3.8 0.0	22.200 24.200	0.0 0.949		Vel = 4.29
T.22	1.89	0.863	Vprt 3.8	3.000	21.018		1.20
0 T 24	0.71	150.0	0.0 0.0	3.800	0.0 0.398		Vel = 5.33
T.24 T.24	9.71 2.28	0.0585 0.863	Vprt 3.8	6.800 1.000	21.416		Vei - 5.55
0		150.0	0.0	3.800	0.0		
T.25	11.99 0.0	0.0865	0.0	4.800	0.415		Vel = 6.58
	11.99				21.831		K Factor = 2.57
T.23	4.17	0.863	Vprt 3.8	8.000	18.954		
o H.9	4.17	150.0 0.0123	0.0 0.0	3.800 11.800	0.0 0.145		Vel = 2.29
H.9	0.0	0.863	Vprt 3.8	11.000	19.099		V 01 2.20
0	4 47	150.0	0.0	3.800	0.0		Val - 0.00
H.4 H.4	4.17 0.0	0.0122 0.863	0.0 Vprt 3.8	14.800 14.000	0.181 19.280		Vel = 2.29
to		150.0	0.0	3.800	0.0		
H.5	4.17	0.0122	0.0	17.800	0.218		Vel = 2.29
H.5 to	0.0	0.863 150.0	Vprt 3.8 0.0	35.000 3.800	19.498 0.0		
H.1	4.17	0.0122	0.0	38.800	0.475		Vel = 2.29
H.1	0.0	0.863 150.0	Vprt 3.8 0.0	15.000 3.800	19.973 0.0		
:o Н.3	4.17	0.0122	0.0	18.800	0.230		Vel = 2.29
H.3	0.0	0.863	Vprt 3.8	17.000	20.203		
ю Н.2	4.17	150.0 0.0123	0.0 0.0	3.800 20.800	0.0 0.255		Vel = 2.29
H.2	0.0	0.863	Vprt 3.8	11.000	20.458		V 01 2.20
to	4 47	150.0	0.0	3.800	0.0		Val - 0.00
H.6 H.6	4.17 0.0	0.0122 0.863	0.0 Vptb 18.4	14.800 1.000	0.181 20.639		Vel = 2.29
0		150.0	0.0	18.400	0.0		
T.21	4.17	0.0122	0.0	19.400	0.237		Vel = 2.29
T.21 o	-1.89	0.863 150.0	Vprt 3.8 0.0	13.000 3.800	20.876 0.0		
H.10	2.28	0.0040	0.0	16.800	0.068		Vel = 1.25
H.10	0.0	0.863 150.0	Vprt 3.8 0.0	16.000 3.800	20.944 0.0		
to H.17	2.28	0.0040	0.0	3.800 19.800	0.0		Vel = 1.25
H.17	0.0	0.863	Vprt 3.8	19.000	21.024		
ю Н.19	2.28	150.0 0.0040	0.0 0.0	3.800 22.800	0.0 0.091		Vel = 1.25
H.19	0.0	0.863	0.0	8.000	21.115		1.20
to		150.0	0.0	0.0	0.0		V 1 4 2 7
H.18	2.28	0.0041	0.0	8.000	0.033		Vel = 1.25

Viega LLC 218 OAKHAVEN DRIVE, LOT 4 - Two Head Calculation (H.20 & H.16)

Page Date 7 3/3/2021

Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fittin or Eqv.		Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes *****
H.18	0.0	0.863	Vprt	3.8	9.000	21.148		
to		150.0		0.0	3.800	0.0		
H.13	2.28	0.0040		0.0	12.800	0.051		Vel = 1.25
H.13	0.0	0.863	Vprt	3.8	8.000	21.199		
to		150.0		0.0	3.800	0.0		
H.14	2.28	0.0040		0.0	11.800	0.047		Vel = 1.25
H.14	0.0	0.863	Vprt	3.8	10.000	21.246		
to		150.0		0.0	3.800	0.0		
H.15	2.28	0.0041		0.0	13.800	0.056		Vel = 1.25
H.15	0.0	0.863	Vptb	18.4	10.000	21.302		
to		150.0	·	0.0	18.400	0.0		
T.24	2.28	0.0040		0.0	28.400	0.114		Vel = 1.25
	0.0							
	2.28					21.416		K Factor = 0.49
T.21	1.88	0.863	Vprt	3.8	19.000	20.876		
to		150.0		0.0	3.800	0.0		
H.7	1.88	0.0029		0.0	22.800	0.065		Vel = 1.03
H.7	0.0	0.863	Vprt	3.8	16.000	20.941		
to		150.0	'	0.0	3.800	0.0		
H.11	1.88	0.0028		0.0	19.800	0.055		Vel = 1.03
H.11	0.0	0.863	Vprt	3.8	4.000	20.996		
to		150.0	'	0.0	3.800	0.0		
T.22	1.88	0.0028		0.0	7.800	0.022		Vel = 1.03
	0.0							
	1.88					21.018		K Factor = 0.41