


SPRINKLER DESCRIPTIONS

Most Demanding Single He	ead Information	Most Demanding Two Head	d Information
Information	Results	Information	Results
Flow Required at Head (GPM):	20	Flow Required at Head (GPM):	13
Source Pressure at Head (PSI):	16.7	Source Pressure at Head (PSI):	7.04
Maximum Spacing (length):	20	Maximum Spacing (length):	16
Maximum Spacing (Width):	20	Maximum Spacing (Width):	16
Domestic Flow Added (GPM):	0	Domestic Flow Added (GPM):	0
Sprinkler Model:	RFC49	Sprinkler Model:	RFC49
Elevation of Highest Head:	120	Elevation of Highest Head:	120
K-Factor	4.9	K-Factor	4.9
Temperature Rating:	155	Temperature Rating:	155
Flow Required at Source (GPM)	20	Flow Required at Source (GPM)	26.0331
Pressure Required at Source (psi)	47.66	Pressure Required at Source (psi)	51.5
Source Reference Point:	At Ref Pt STR	Source Reference Point:	At Ref Pt STR
C-Factor of Sprinkler Pipe	150	C-Factor of Sprinkler Pipe	150
C-Factor of Service Line	150	C-Factor of Service Line	150
Head Reference Point:	H.8	Head Reference Point:	H.10 & H.4

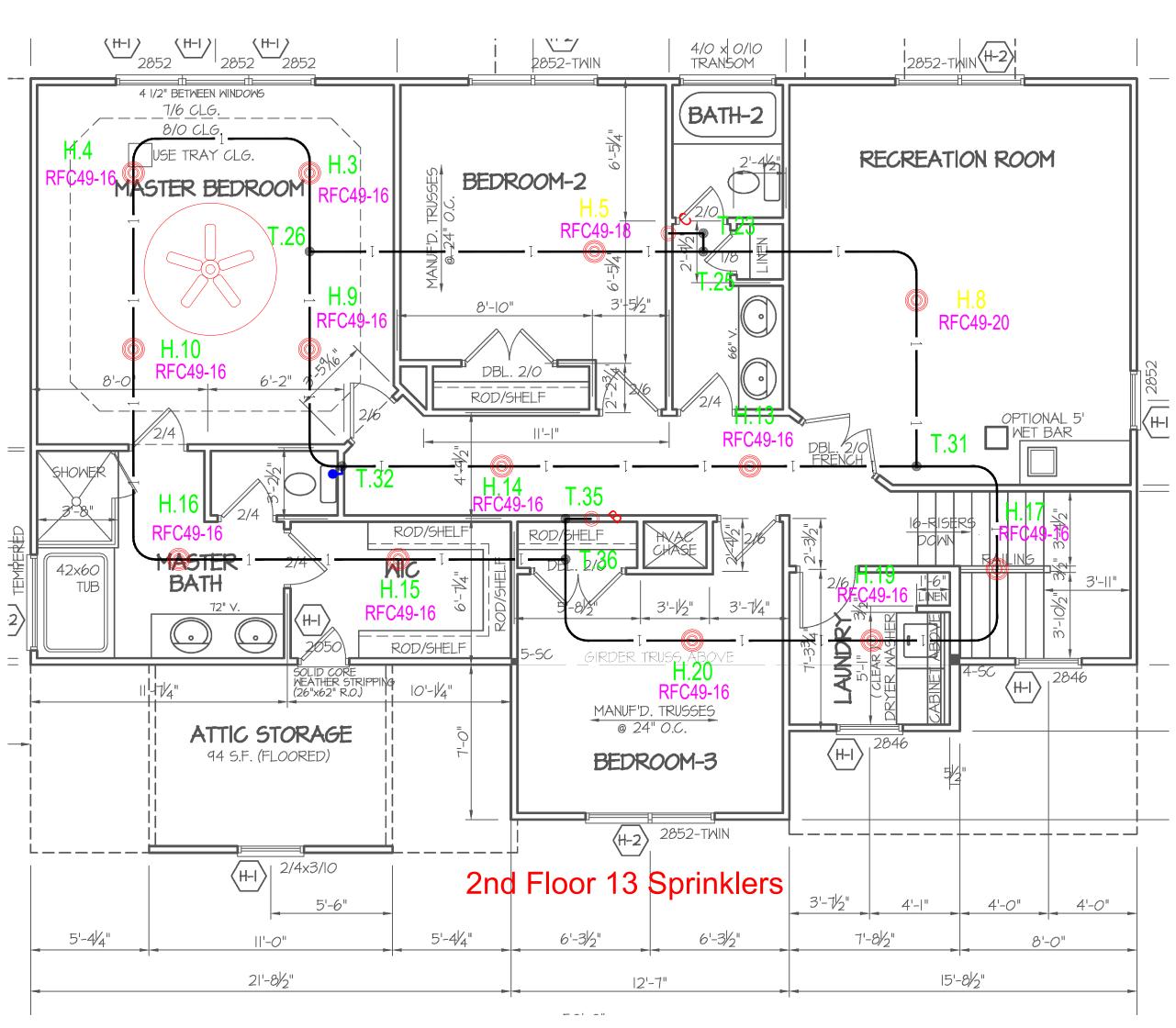
WATER SERVICE DETAIL

LEGEND

- Manifold
- Inter Level Connection
- irAB1+ Hot Water Fixture
- irAB1+ Cold Water Fixture
 - Type K Copper w/ ProPress Fittings
 - Type L Copper w/ ProPress Fittings
- Type M Copper w/ ProPress Fittings

ViegaPEX Ultra	Blue - Cold Plumbing
ViegaPEX Ultra	Red - Hot Plumbing

FP 1 OF 3									
Title:									
1ST FLOOR PLAN									
Quotation no.: FPN	IS2102-001 NC								
Drawn by:	M.S.								
Approv. by:									
Date Submitted:	02/26/2021								
Scale:	1/4" = 1'								
Revision No:	Revision Date:								

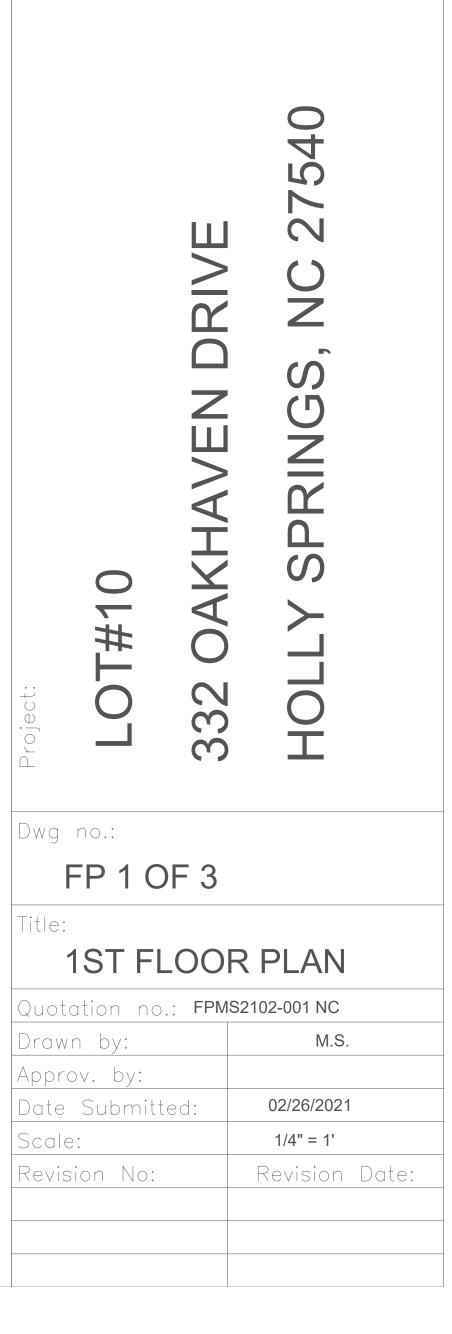

332

 \bigcirc

|Dwg no.:

OH

VIEGA LLC'S DESIGN SERVICES DEPARTMENT HAS PREPARED THIS SERIES OF DRAWINGS AS THE FIRST DESIGN FOR PLUMBING, RADIANT, SNOW MELTING OR FIRE SUPPRESSION SYSTEMS FOR THE USE OF YOU, OUR CUSTOMER, IN PREPARING / OBTAINING SPECIFICATIONS, BIDS AND PROPOSALS IN RELATION TO THE SALE OF THESE SYSTEMS. THESE DRAWINGS ARE BASED UPON INFORMATION PROVIDED BY YOU AND HAVE BEEN PREPARED TO APPROPRIATE PROFESSIONAL STANDARDS OF DESIGN BASED UP THAT INFORMATION. THESE DRAWINGS ARE NOT TO BE CONSIDERED FINAL AND, PRIOR TO PERFORMING ANY WORK ASSOCIATED WITH THESE DESIGNS OR DRAWINGS, YOU MUST:


1.) CHECK AND CONFIRM ALL PIPE SIZES, CALCULATIONS, MATERIALS, PLUMBING AND / OR FIRE CODES USED OR APPLICABLE: AND 2.) PRESENT THE DRAWINGS TO YOUR PROFESSIONAL ENGINEER FOR REVIEW AND APPROVAL

IF YOUR PROFESSIONAL ENGINEER REPORTS ANY ERRORS IN THE DRAWINGS OR MAKES ANY CHANGES IN THE DRAWINGS, THESE ERRORS OR CHANGES MUST BE COMMUNICATED TO VIEGA LLC'S DESIGN SERVICES DEPARTMENT FOR A DETERMINATION IF A REVISION TO THE DESIGN IS NECESSARY.

AND HAVE THE DRAWINGS MARKED "FINAL" BY YOUR PROFESSIONAL ENGINEER.

VIEGA LLC DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, ASSOCIATED WITH THE DESIGN OF THE SYSTEM OR ITS USE. ALL DESIGNS ARE PROVIDED "AS IS" AND IT IS YOUR SOLE RESPONSIBILITY TO CONFIRM AND ENSURE THAT THE SYSTEM TO BE INSTALLED WILL OPERATE AND FUNCTION IN COMPLIANCE WITH ALL APPLICABLE CODES AND IN ACCORDANCE WITH ALL APPLICABLE SPECIFICATIONS.

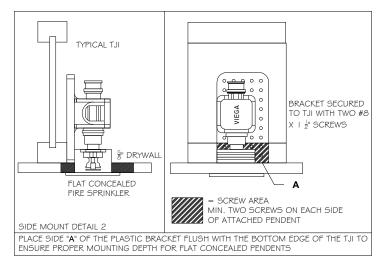
Design Services Department 1900 Southwood Drive - Nashua, NH 03063 Tel: 877-843-4262 x 351 Fax: 316-425-8466

FIRE PROTECTION INSTALLATION NOTES

- I. INSTALLATION OF THE FIRE PROTECTION SYSTEM SHALL BE INSTALLED IN ACCORDANCE WITH THE 2016 EDITION OF NFPA 13D OR SECTION P2904 OF THE 2018 INTERNATIONAL RESIDENTIAL CODE (IRC). NFPA 13D IS THE STANDARD FOR THE INSTALLATION OF SPRINKLER SYSTEMS IN ONE- AND TWO-FAMILY DWELLINGS AND MANUFACTURED HOMES.
- 2. INSTALLATION OF THE FIRE PROTECTION SYSTEM SHALL COMPLY WITH ALL LOCAL RESIDENTIAL FIRE PROTECTION CODES AND ALL APPLICABLE STATE REGULATIONS
- 3. SPRINKLER HEADS SHALL MEET ALL GENERAL CARE AND INSTALLATION REQUIREMENTS OF THE SPRINKLER MANUFACTURER. SUBSTITUTION OF SPRINKLER HEADS IS NOT PERMITTED.
- 4. AFTER INSTALLATION OF THE SPRINKLERS, THE ENTIRE SYSTEM SHALL BE PRESSURE TESTED IN ACCORDANCE WITH STATE AND LOCAL CODE REQUIREMENTS. 5. SPRINKLERS SHALL BE LOCATED PER THE LAYOUT. DO NOT INSTALL SPRINKLERS IN AREAS EXPOSED TO TEMPERATURES THAT EXCEED THE MAXIMUM RECOMMENDED AMBIENT TEMPERATURE FOR THE TEMPERATURE RATING USED. MINIMUM DISTANCE OF SPRINKLER HEADS FROM HEAT SOURCES SHALL COMPLY WITH TABLE 7.5.6.3 IN THE 2016 EDITION OF NFPA 13D, INSTALLATION OF SPRINKLER SYSTEMS IN ONE - AND TWO - FAMILY DWELLINGS AND MANUFACTURED HOMES.
- 6. NO DEVIATIONS FROM THE PLAN SHALL BE ALLOWED WITHOUT APPROVAL FROM THE AUTHORITY HAVING JURISDICTION AND DESIGNER. 7. PIPING AND SPRINKLER FITTINGS SHALL BE SUPPORTED IN COMPLIANCE WITH LOCAL PLUMBING CODE AND THE 2016 EDITION OF NFPA 13D, INSTALLATION OF SPRINKLER SYSTEMS IN ONE - AND TWO - FAMILY DWELLINGS AND MANUFACTURED HOMES
- 8. SMOKE DETECTORS SHALL BE INSTALLED IN ACCORDANCE WITH NFPA 72, NATIONAL FIRE ALARM CODE. WHEN NOT EQUIPPED WITH SMOKE DETECTORS. LOCAL WATERFLOW ALARMS SHALL BE REQUIRED.
- 9. WATER SOFTENERS AND WATER FILTRATION DEVICES SHALL NOT BE INSTALLED IN THE SYSTEM WITHOUT A REVIEW OF THE HYDRAULIC CALCULATIONS OF THE SYSTEM.
- 10. A SIGN SHALL BE AFFIXED ADJACENT TO THE MAIN SHUTOFF VALVE THAT STATES IN MINIMUM 1/4" LETTERS, "WARNING: THE WATER SYSTEM FOR THIS HOME SUPPLIES FIRE SPRINKLERS THAT REQUIRE CERTAIN FLOWS AND PRESSURES TO FIGHT A FIRE. DEVICES THAT RESTRICT THE FLOW OR DECREASE THE PRESSURE OR AUTOMATICALLY SHUT OFF THE WATER TO THE FIRE SPRINKLER SYSTEM, SUCH AS WATER SOFTENERS, FILTRATION SYSTEMS, AND AUTOMATIC SHUT-OFF VALVES, SHALL NOT BE ADDED TO THIS SYSTEM WITHOUT A REVIEW OF THE FIRE SPRINKLER SYSTEM BY A FIRE PROTECTION SPECIALIST. DO NOT **REMOVE THIS SIGN."**
- I. ALL PIPING AND FITTINGS SHALL BE PROPERLY INSULATED AND PROTECTED SO THAT THEY ARE NOT EXPOSED TO TEMPERATURES BELOW 40° F. 12. WHEN THE MAXIMUM STATIC PRESSURE EXCEEDS 80 PSI, A PRESSURE-REDUCING VALVE SHALL BE INSTALLED. NFPA 13D RESTRICTS THE OPERATING PRESSURE OF PEX SYSTEMS TO 80 PSI. PRESSURE DROP THROUGH THE PRESSURE-REDUCING DEVICE SHALL BE INCLUDED IN THE HYDRAULIC CALCULATIONS
- 13. WHEN A FIRE DEPARTMENT CONNECTION IS REQUIRED, PEX TUBING SHALL NOT BE PERMITTED. CONSULT WITH THE AUTHORITY HAVING JURISDICTION (AHJ) ABOUT THIS REQUIREMENT PRIOR TO INSTALLATION.

PLUMBING INSTALLATION NOTES:

- I. INSTALLATION OF HOT AND COLD WATER DISTRIBUTION SYSTEMS SHALL BE IN ACCORDANCE WITH THE LOCAL PLUMBING CODE. 2. WATER SOFTENERS AND WATER FILTRATION DEVICES SHALL NOT BE INSTALLED WITHOUT A REVIEW OF THE HYDRAULIC CALCULATIONS OF THE SYSTEM.
- 3. FINAL APPROVAL OF MULTIPURPOSE AND PASSIVE PURGE FIRE SPRINKLER INSTALLATIONS SHALL BE FROM THE AUTHORITY HAVING JURISDICTION. TESTING:
- I. EVERY VIEGA NFPA 13D FIRE PROTECTION INSTALLATION SHALL BE PRESSURE TESTED IN ACCORDANCE WITH NFPA 13D, WHICH STATES THAT SYSTEMS WITHOUT FIRE DEPARTMENT CONNECTIONS SHALL BE TESTED FOR LEAKAGE AT THE NORMAL SYSTEM OPERATING WATER PRESSURE.
- 2. THE AUTHORITY HAVING JURISDICTION (AHJ) MAY REQUIRE A FLOW VERIFICATION TEST OF THE MOST HYDRAULICALLY REMOTE SPRINKLER HEAD(S). THIS FLOW VERIFICATION TEST IS AVAILABLE TO ENSURE THE INSTALLED FIRE PROTECTION SYSTEM OPERATES AS DESIGNED. DOCUMENTATION ON HOW TO PERFORM A FLOW VERIFICATION TEST IS AVAILABLE THROUGH VIEGA TECHNICAL SERVICES.
- 3. THE FLOW VERIFICATION TEST SHALL BE PERFORMED AFTER ALL PIPING, FITTINGS, SPRINKLER HEADS AND PLUMBING CONNECTIONS HAVE BEEN INSTALLED AND PRESSURE TESTING OF THE SYSTEM HAS BEEN COMPLETED. THE FLOW TEST SHOULD OCCUR WHILE IN THE "ROUGH" STAGE OF CONSTRUCTION. FLOW TEST RESULTS SHOULD BE COMPARED TO THE SYSTEM DESIGN VALUES. RESIDUAL PRESSURE (PSI) AND FLOW (GPM) MUST BE EQUAL TO OR GREATER THEN THE DESIGN VALUES TO ENSURE A PROPERLY FUNCTIONING SYSTEM.

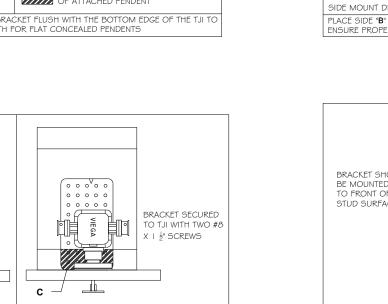

DRAWING AND DESIGN NOTES:

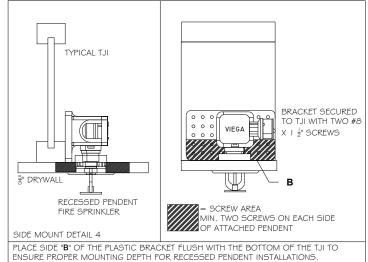
- DESIGN SHALL ENSURE WATER SUPPLY TO THE MOST HYDRAULICALLY DEMANDING SINGLE AND DUAL SPRINKLER HEADS.
- TUBING AND FITTINGS SHALL BE U.L. LISTED FOR RESIDENTIAL FIRE PROTECTION SYSTEMS IN ACCORDANCE WITH NFPA 13D 3. VIEGAPEX ULTRA (BLACK IN COLOR) LISTED TO U.L. 1821 FOR RESIDENTIAL WET-PIPE FIRE PROTECTION SYSTEMS IN ACCORDANCE WITH NFPA 13D. 4. VIEGA PEX PRESS FITTINGS (POLYMER AND BRONZE) LISTED TO U.L. 1821 FOR RESIDENTIAL WET-PIPE FIRE PROTECTION SYSTEMS IN ACCORDANCE WITH
- NFPA 13D. APPROVED SMOKE DETECTION SYSTEMS AND/OR WATER FLOW ALARMS SHALL BE INSTALLED WHERE REQUIRED BY THE AUTHORITY HAVING JURISDICTION (AHJ).

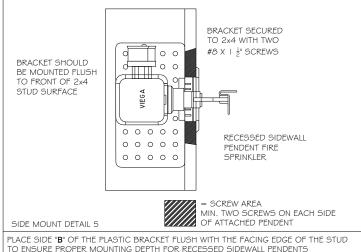
MATERIALS LIST NOTES:

- SERVICE ENTRANCE MATERIALS FROM WATER MAIN CONNECTION TO DISTRIBUTION MANIFOLD ARE EXCLUDED.
- SPRINKLERS AND ASSOCIATED ESCUTCHEONS OR COVER PLATES ARE NOT SUPPLIED BY VIEGA.
- 3. MATERIAL LIST IS SUGGESTED ONLY. CONTRACTOR SHALL CONFIRM REQUIRED MATERIALS PRIOR TO PLACEMENT OF ORDER.

INSTALLATION NOTES

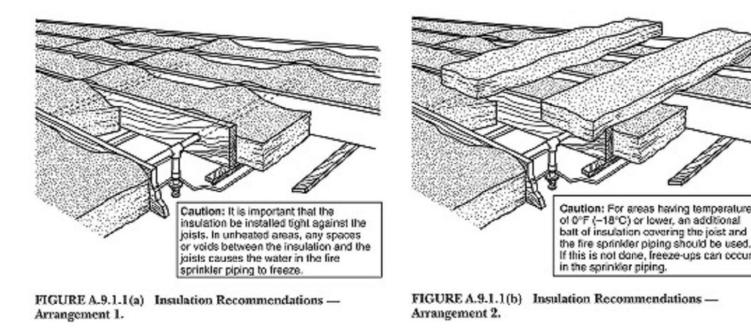

= SCREW AREA

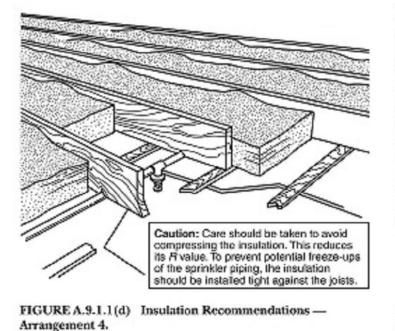

PLACE SIDE "C" OF THE PLASTIC BRACKET FLUSH WITH THE BOTTOM EDGE OF THE TJI TO

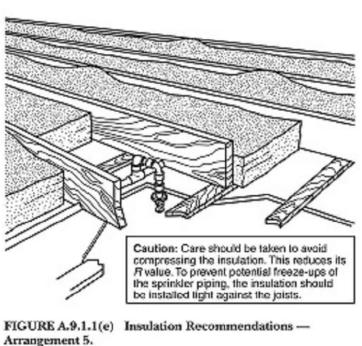

ENSURE PROPER MOUNTING DEPTH FOR RECESSED PENDENT INSTALLATIONS

IN. TWO SCREWS ON EACH SID

ATTACHED PENDENT


INSTALLATION DETAIL - SPRINKLER BRACKETS


TYPICAL TJI


₽ DRYWALL RECESSED PENDEN FIRE SPRINKLER

(PUSH ON THREAD-OFF TYPE

SIDE MOUNT DETAIL 3

INSULATION DETAILS - ANNEX A.9.1.1 (NFPA 13D 2016)

WATER METER PRESSURE LOSSES (PSI) - TABLE 10.4.4(A) NFPA 13D (2016)										
Meter	Flow (gpm)									
Sıze (ın.)	18 or less	23	26	31	39	52				
5/8"	9	14	18	26	38	*				
3/4"	7		14	22	35	*				
1"	2	3	3	4	6	10				
- /2"	l	I	2	2	4	7				
2"	I	I	I	I	2	3				

TABLE 10.4.4(a) (NFPA 13D 2016)

Heat Source	Ordinary Temp. 135°-170°	Intermediate Temp 175*-225*
Side of Fireplace	36"	12"
Front of Fireplace	60"	36"
Coal or Wood Burning Stove	42"	2"
Kitchen Range	18"	9"
Wall Oven	18"	9"
Hot Air Flues	18"	9"
Uninsulated Heat Ducts	18"	9"
Uninsulated Hot Water Pipes	I 2"	6"
Side of Hot Air Diffusers	24"	2"
Front of Hot Aır Dıffusers	36"	8"
Hot Water Heater or Furnace	6"	3"
Light Fixture O W - 250 W	6"	3"
Light Fixture 250 W - 499 W	2"	6"

TABLE 7.5.6.3 (NFPA 13D 2016)

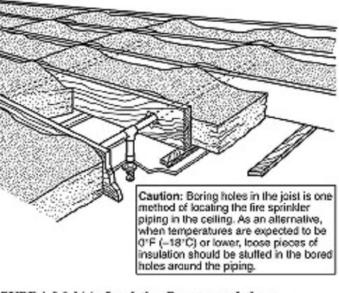


FIGURE A.9.1.1(c) Insulation Recommendations -Arrangement 3.

Veda

VIEGA LLC'S DESIGN SERVICES DEPARTMENT HAS PREPARED THIS SERIES OF DRAWINGS AS THE FIRST DESIGN FOR PLUMBING, RADIANT, SNOW MELTING OR FIRE SUPPRESSION SYSTEMS FOR THI USE OF YOU, OUR CUSTOMER, IN PREPARING / OBTAINING SPECIFICATIONS, BIDS AND PROPOSALS RELATION TO THE SALE OF THESE SYSTEMS. THESE DRAWINGS ARE BASED UPON INFORMATION PROVIDED BY YOU AND HAVE BEEN PREPARED TO APPROPRIATE PROFESSIONAL STANDARDS OF DESIGN BASED UP THAT INFORMATION. THESE DRAWINGS ARE NOT TO BE CONSIDERED FINAL AND, PRIOR TO PERFORMING ANY WORK ASSOCIATED WITH THESE DESIGNS OR DRAWINGS. YOU MUST

1.) CHECK AND CONFIRM ALL PIPE SIZES, CALCULATIONS, MATERIALS, PLUMBING AND / OR FIR CODES USED OR APPLICABLE: AND 2.) PRESENT THE DRAWINGS TO YOUR PROFESSIONAL ENGINEER FOR REVIEW AND APPROVAL AND HAVE THE DRAWINGS MARKED "FINAL" BY YOUR PROFESSIONAL ENGINEER.

IF YOUR PROFESSIONAL ENGINEER REPORTS ANY ERRORS IN THE DRAWINGS OR MAKES ANY CHANGES IN THE DRAWINGS. THESE ERRORS OR CHANGES MUST BE COMMUNICATED TO VIEGA LLC'S DESIGN SERVICES DEPARTMENT FOR A DETERMINATION IF A REVISION TO THE DESIGN IS NECESSARY

VIEGA LLC DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, ASSOCIATED WITH THE DESIGN OF THE SYSTEM OR ITS USE. ALL DESIGNS ARE PROVIDED "AS IS" AND IT IS YOUR SOLE RESPONSIBILITY TO CONFIRM AND ENSURE THAT THE SYSTEM TO BE INSTALLED WILL OPERATE AND FUNCTION IN COMPLIANCE WITH ALL APPLICABLE CODES AND IN ACCORDANCE WITH ALL APPLICABLE SPECIFICATIONS.

Design Services Department 1900 Southwood Drive - Nashua, NH 03063 Tel: 877-843-4262 x 351 Fax: 316-425-8466

2 2

VEN

A

Ż

4

332

Ζ

S

RING

S

0 H

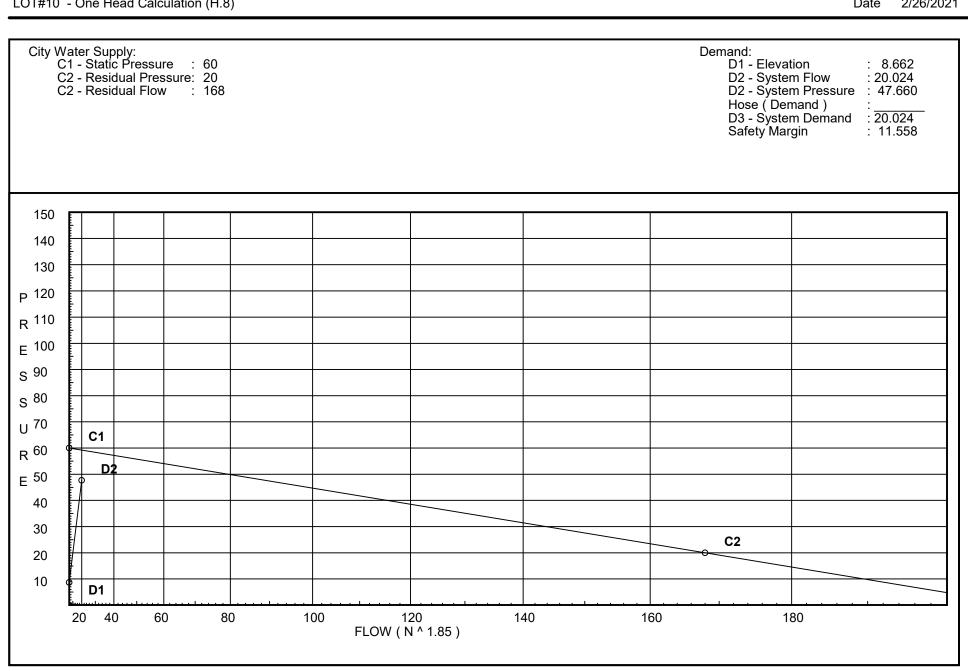
0 #1 \bigcirc

|Dwg no.:

FP 3 OF 3

Title:

NOTES & DETAILS


Quotation no.: FPN	IS2102-001 NC					
Drawn by:	M.S.					
Approv. by:						
Date Submitted:	02/26/2021					
Scale:	N/A					
Revision No:	Revision Date:					

Viega LLC Technical Services Department 1900 Southwood Drive Nashua, NH 03063 603-882-7171

Job Name : LOT#10 - One Head Calculation (H.8) Building : SINGLE FAMILY RESIDENCE Location : 332 OAKHAVEN DRIVE HOLLY SPRINGS NC 27540 System : NFPA 13D Contract : FPMS2102-001 NC Data File : 332 Oakhaven Drive Lot 10.wx1 HYDRAULIC DESIGN INFORMATION SHEET

Name - LOT#10 Date - 02/26/2021 Location - HOLLY SPRINGS NC 27540 Building - SINGLE FAMILY RESIDENCE System No. - NFPA 13D Contractor - x Contract No. - FPMS2102-001 NC Calculated By - VIEGA LLC Drawing No. - FPMS2102-002 Construction: (X) Combustible () Non-Combustible Ceiling Height 10 FT Drawing No. - FPMS2102-001 NC OCCUPANCY - RESIDENTIAL S Type of Calculation: ()NFPA 13 Residential ()NFPA 13R (X)NFPA 13D Number of Sprinklers Flowing: (X)1 ()2 Y ()4 () S ()Other Т () Specific Ruling Made by Date Ε Listed Flow at Start Point - 20 М Gpm System Type Listed Pres. at Start Point - 16.7 Psi (X) Wet () Dry () Deluge () PreAction D MAXIMUM LISTED SPACING 20 x 20 Domestic Flow Added - 0 Additional Flow Added -Е Gpm Sprinkler or Nozzle Additional Flow Added S Gpm Make RELIABLE Model RFC49 Ι Elevation at Highest Outlet - 120 Feet Size 7/16 K-Factor 4.9 G Note: Temperature Rating 155 Ν Calculation Gpm Required 20 At Ref Pt STR Psi Required 47.66 Overhead 150 Summary C-Factor Used: Underground 150 Water Flow Test: Pump Data: W Tank or Reservoir: Date of Test – x Rated Cap. А Cap. Time of Test - x @ Psi Т Elev. Static (Psi) - 60 Elev. E Residual (Psi) - 20 R Other Well Flow (Gpm) - 168 Proof Flow Gpm Elevation - 100 S Ρ Location: x Ρ L Source of Information: x Y

Water Supply Curve C

Viega LLC LOT#10 - One Head Calculation (H.8)

Fittings Used Summary

Viega l LOT#	LLC 10 -One Head Calculation (H	1.8)																Pa Da	ige 3 ite 2	} 2/26/202	21
Fitting L Abbrev.		1/2	3⁄4	1	1¼	1½	2	21⁄2	3	3½	4	5	6	8	10	12	14	16	18	20	24
E G T Vpel * Vprt * Vptb *	90' Standard Elbow Generic Gate Valve 90' Flow thru Tee PEX Press 90 Elbow - Poly PEX Press Tee - Run-Poly PEX Press Tee - Branch-Poly	2 1 3 12.6 3.9 14	2 1 4 18.9 3.6 19.1	2 1 5 17.7 3.8 18.4	3 1 6 18.6 6.4 18.7	4 1 8 29.4 7.9 28.3	5 1 10 36.4 10.2 37.5	6 1 12 0 0	7 1 15 0 0	8 1 17 0 0	10 2 20	12 2 25	14 3 30	18 4 35	22 5 50	27 6 60	35 7 71	40 8 81	45 10 91	50 11 101	61 13 121

Units Summary

Diameter Units Length Units Flow Units Pressure Units

Inches Feet US Gallons per Minute Pounds per Square Inch

Viega LLC LOT#10 - One Head Calculation (H.8)

Page 4 Date 2/26/2021

	SUPPLY ANALYSIS									
Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure				
STR	60.0	20	168.0	59.218	20.02	47.66				

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
H.8	120.0	4.9	16.7	20.02	
T.25	120.0		18.06		
T.23	120.0		20.41		
T.24	109.0		27.24		
T.22	109.0		28.59		
H.1	109.0		29.07		
T.27	109.0		31.67		
T.28	109.0		32.06		
S.1	104.0		35.72		
MTR	100.0		44.89		
STR	100.0		47.66		
T.31	120.0		17.9		
H.17	120.0		18.21		
H.19	120.0		18.55		
H.20	120.0		18.76		
T.36	120.0		19.1		
T.35	120.0		20.53		
T.34	109.0		27.15		
T.33	109.0		28.33		
T.29	109.0		28.66		
H.7	109.0		29.46		
H.6	109.0		30.31		
H.13	120.0		17.95		
H.14	120.0		18.02		
T.32	120.0		18.05		
H.9	120.0		18.1		
T.26	120.0		18.14		
H.3	120.0		18.22		
H.4	120.0		18.36		
H.10	120.0		18.49		
H.16	120.0		18.67		
H.15	120.0		18.78		
H.5	120.0		18.08		
H.21	109.0		28.39		
H.18	109.0		28.44		
T.30	109.0		28.58		
H.11	109.0		28.61		
H.12	109.0		28.58		
H.2	109.0		28.59		

Viega LLC LOT#10 - One Head Calculation (H.8)

Page	5
Date	2/26/2021

		Calculation (H					Date 2/26/2021
Hyd. Ref.	Qa	Dia. "C"	Fitting or	Pipe Ftng's	Pt Pe	Pt Pv	****** Notes *****
Point	Qt	Pf/Ft	Eqv. Ln		Pf	Pn	
H.8	11.57	0.863	Vprt 3.8		16.700		K Factor = 4.90
o T.25	11.57	150.0 0.0810	0.0 0.0		0.0 1.360		Vel = 6.35
T.25	-1.45	0.863 150.0	Vptb 18.4 Vpel 17.7		18.060 0.0		
T.23	10.12	0.0632	0.0	37.100	2.346		Vel = 5.55
T.23 >	0.0	0.863 150.0	Vpel 17.7 0.0) 17.700	20.406 4.764		
Г.24 Г.24	<u>10.12</u> 0.0	0.0633	0.0 Vptb 18.4		2.069 27.239		Vel = 5.55
о Т.22	10.12	150.0 0.0632	0.0 0.0	18.400	0.0 1.353		Vel = 5.55
T.22	0.63	0.863	Vprt 3.8	3.000	28.592		
o H.1	10.75	150.0 0.0706	0.0 0.0		0.0 0.480		Vel = 5.90
H.1	0.0	0.863 150.0	Vprt 3.8 0.0		29.072 0.0		
T.27	10.75	0.0706	0.0	36.800	2.599		Vel = 5.90
T.27	9.27	1.025 150.0	0.0 0.0	0.0	31.671 0.0		
T.28 T.28	<u>20.02</u> 0.0	0.0968	0.0 E 2.7		0.387		Vel = 7.78
o S.1	20.02	150.0 0.0966	T 6.7 0.0	9.450	2.166 1.492		Vel = 7.78
S.1	0.0	1.053	2E 2.4	29 50.000	35.716		
o MTR	20.02	150.0 0.0847	0.0 0.0		4.732 4.442		* * Fixed Loss = 3 Vel = 7.38
MTR	0.0	1.049 150.0	E 3.0 T 7.5	022 20.000 555 12.089	44.890 0.0		
STR	20.02	0.0863	G 1.5		2.770		Vel = 7.43
	0.0 20.02				47.660		K Factor = 2.90
H.8 >	8.45	0.863 150.0	Vptb 18.4 0.0		16.700 0.0		
T.31 T.31	8.45 -2.40	0.0453	0.0 Vprt 3.8		1.195 17.895		Vel = 4.63
C		150.0	. 0.0	3.800	0.0		
H.17 H.17	<u>6.05</u> 0.0	0.0245	0.0 Vprt 3.8	3 10.000	0.313 18.208		Vel = 3.32
o H.19	6.05	150.0 0.0244	0.0 0.0		0.0 0.337		Vel = 3.32
H.19	0.0	0.863 150.0	0.0 0.0	9.000	18.545 0.0		
H.20	6.05	0.0244	0.0	9.000	0.220		Vel = 3.32
H.20 ว	0.0	0.863 150.0	Vprt 3.8 0.0		18.765 0.0		
T.36 T.36	6.05 3.85	0.0244	0.0 Vprt 3.8		0.337		Vel = 3.32
T.35 T.35	3.65 9.9	0.863 150.0 0.0606	Vprt 3.6 Vpel 17.7 0.0	21.500	0.0 1.425		Vel = 5.43
1.55	9.9	0.0000	0.0	23.300	1.420		vei - 0.40

Viega LLC LOT#10 - One Head Calculation (H.8) Page 6 Date 2/26/2021

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Notes *****
T.350.00.863Vpel17.713.00020.527to150.00.017.7004.764T.349.90.06070.030.7001.862Vel = 5.43 T.340.00.863Vptb18.41.00027.153to150.00.018.4000.01.177Vel = 5.43 T.339.90.06070.019.4001.177Vel = 5.43 T.33-2.260.863Vprt3.85.00028.330to150.00.03.8000.01.177Vel = 4.19 T.297.640.03750.08.8000.330Vel = 4.19 T.291.640.863Vprt3.811.00028.660150.0to150.00.03.8000.01.177Vel = 5.09 H.79.280.05380.014.8000.796Vel = 5.09	
o150.00.017.7004.764T.349.90.06070.0 30.700 1.862 Vel = 5.43T.340.00.863Vptb 18.4 1.000 27.153 o150.00.0 18.400 0.0T.339.90.06070.0 19.400 1.177 Vel = 5.43T.33-2.260.863Vprt 3.8 5.000 28.330 o150.00.0 3.800 0.0 7.29 T.297.640.03750.0 8.800 0.330 Vel = 4.19T.291.640.863Vprt 3.8 11.000 28.660 o150.00.0 3.800 0.0 7.96 Vel = 5.09H.79.280.05380.0 14.800 0.796 Vel = 5.09H.70.00.863Vprt 3.8 12.000 29.456	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
T.339.90.06070.019.4001.177Vel = 5.43 T.33-2.260.863Vprt3.8 5.000 28.330p150.00.03.8000.0T.297.640.03750.08.8000.330T.291.640.863Vprt3.811.00028.660p150.00.03.8000.0H.79.280.05380.014.8000.796Vel = 5.09 H.70.00.863Vprt3.812.00029.456	
o 150.0 0.0 3.800 0.0 T.29 7.64 0.0375 0.0 8.800 0.330 Vel = 4.19 T.29 1.64 0.863 Vprt 3.8 11.000 28.660 o 150.0 0.0 3.800 0.0 150.0 Vel = 5.09 H.7 9.28 0.0538 0.0 14.800 0.796 Vel = 5.09 H.7 0.0 0.863 Vprt 3.8 12.000 29.456	
T.29 1.64 0.863 Vprt 3.8 11.000 28.660 b 150.0 0.0 3.800 0.0 H.7 9.28 0.0538 0.0 14.800 0.796 Vel = 5.09 H.7 0.0 0.863 Vprt 3.8 12.000 29.456	
H.7 0.0 0.863 Vprt 3.8 12.000 29.456	
H.6 9.28 0.0538 0.0 15.800 0.850 Vel = 5.09	
H.6 0.0 0.863 Vptb 18.4 7.000 30.306 o 150.0 0.0 18.400 0.0	
T.27 9.28 0.0537 0.0 25.400 1.365 Vel = 5.09	
0.0 9.28 31.671 K Factor =	1.65
T.312.400.863Vprt3.88.00017.895o150.00.03.8000.0	
o150.00.03.8000.0H.132.40.00440.011.8000.052Vel = 1.32	
H.13 0.0 0.863 Vprt 3.8 12.000 17.947 o 150.0 0.0 3.800 0.0	
H.14 2.4 0.0044 0.0 15.800 0.070 Vel = 1.32	
H.14 0.0 0.863 0.0 8.000 18.017 o 150.0 0.0 0.0 0.0	
T.32 2.4 0.0044 0.0 8.000 0.035 Vel = 1.32 T.32 0.0 0.863 Vprt 3.8 7.000 18.052	
o 150.0 0.0 3.800 0.0	
H.9 2.4 0.0044 0.0 10.800 0.047 Vel = 1.32 H.9 0.0 0.863 Vprt 3.8 5.000 18.099	
o 150.0 0.0 3.800 0.0	
T.26 2.4 0.0044 0.0 8.800 0.039 Vel = 1.32	
T.261.440.863Vprt3.84.00018.138o150.00.03.8000.0	
H.3 3.84 0.0105 0.0 7.800 0.082 Vel = 2.11	
H.3 0.0 0.863 Vprt 3.8 9.000 18.220	
o 150.0 0.0 3.800 0.0 H.4 3.84 0.0105 0.0 12.800 0.135 Vel = 2.11	
H.4 0.0 0.863 Vprt 3.8 9.000 18.355	
o 150.0 0.0 3.800 0.0 H.10 3.84 0.0105 0.0 12.800 0.135 Vel = 2.11	
H.10 0.0 0.863 Vprt 3.8 13.000 18.490	
o 150.0 0.0 3.800 0.0 H.16 3.84 0.0105 0.0 16.800 0.177 Vel = 2.11	
H.16 0.0 0.863 0.0 11.000 18.667	
o150.00.00.00.0H.153.840.01050.011.0000.116Vel = 2.11	

Computer Programs by Hydratec Inc. Route 111 Windham N.H. USA 03087

Viega LLC LOT#10 - One Head Calculation (H.8)

Page	7
Date	2/26/2021

LOTINIO		Calculation (H	1.0)				Date 2/26/2021
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fitting or Eqv. Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes ******
H.15	0.0	0.863	Vptb 18.4	8.000	18.783		
to		150.0	Vprt 3.8	22.200	0.0		
T.36	3.84	0.0106	0.0	30.200	0.319		Vel = 2.11
	0.0						
	3.84				19.102		K Factor = 0.88
T.25	1.45	0.863	Vprt 3.8	5.000	18.060		
o		150.0	0.0	3.800	0.0		
H.5	1.45	0.0018	0.0	8.800	0.016		Vel = 0.80
H.5	0.0	0.863	Vptb 18.4	14.000	18.076		
to		150.0	Vprt 3.8	22.200	0.0		
T.26	1.45	0.0017	0.0	36.200	0.062		Vel = 0.80
	0.0						
	1.45				18.138		K Factor = 0.34
T.33	2.26	0.863	Vprt 3.8	11.000	28.330		
io LL o (150.0	0.0	3.800	0.0		
H.21	2.26	0.0039	0.0	14.800	0.058		Vel = 1.24
H.21	0.0	0.863	0.0	14.000	28.388		
to		150.0	0.0	0.0	0.0		
H.18	2.26	0.0040	0.0	14.000	0.056		Vel = 1.24
H.18	0.0	0.863	Vptb 18.4	12.000	28.444		
to T 20	0.00	150.0	Vprt 3.8	22.200	0.0		(a) = -1.04
T.30	2.26	0.0039	0.0	34.200	0.135		Vel = 1.24
T.30	-0.62	0.863	Vprt 3.8	11.000	28.579		
to	1.64	150.0	0.0	3.800	0.0		$\lambda = 0.00$
H.11	1.64	0.0022	0.0	14.800	0.032		Vel = 0.90
H.11	0.0	0.863	Vptb 18.4	4.000	28.611		
	1.64	150.0	0.0	18.400	0.0		Vel = 0.90
T.29	1.64	0.0022	0.0	22.400	0.049		ver – 0.90
	0.0				20.660		K Factor = 0.31
	1.64				28.660		K Factor = 0.31
T.30	0.62	0.863	0.0	4.000	28.579		
to LI 12	0.60	150.0	0.0	0.0	0.0		$V_{0} = 0.24$
H.12	0.62	0.0002	0.0	4.000	0.001		Vel = 0.34
H.12	0.0	0.863	Vprt 3.8	11.000	28.580		
to LID	0.60	150.0	0.0	3.800	0.0		$V_{0} = 0.24$
H.2	0.62	0.0004	0.0	14.800	0.006		Vel = 0.34
H.2	0.0	0.863	Vprt 3.8	13.000	28.586		
to T 22	0.60	150.0	0.0	3.800	0.0		$V_{0} = 0.24$
T.22	0.62	0.0004	0.0	16.800	0.006		Vel = 0.34
	0.0				00 500		
	0.62				28.592		K Factor = 0.12

Viega LLC Technical Services Department 1900 Southwood Drive Nashua, NH 03063 603-882-7171

Job Name:LOT#10 - Two Head Calculation (H.10 & H.4)Building:SINGLE FAMILY RESIDENCELocation:332 OAKHAVEN DRIVE HOLLY SPRINGS NC 27540System:NFPA 13DContract:FPMS2102-001 NCData File:332 Oakhaven Drive Lot 10.wx2

Page 1 Date 2/26/2021

HYDRAULIC DESIGN INFORMATION SHEET

Name - LOT#10 Date - 02/26/2021 Location - HOLLY SPRINGS NC 27540 Building - SINGLE FAMILY RESIDENCE System No. - NFPA 13D Contractor - x Contract No. - FPMS2102-001 NC Calculated By - VIEGA LLC Drawing No. - FPMS2102-002 Construction: (X) Combustible () Non-Combustible Ceiling Height 10 FT Drawing No. - FPMS2102-001 NC OCCUPANCY - RESIDENTIAL S Type of Calculation: ()NFPA 13 Residential ()NFPA 13R (X)NFPA 13D Number of Sprinklers Flowing: ()1 (X)2 Y ()4 () S ()Other Т () Specific Ruling Made by Date Ε Listed Flow at Start Point - 13 М Gpm System Type Listed Pres. at Start Point - 7.04 Psi (X) Wet () Dry () Deluge () PreAction D MAXIMUM LISTED SPACING 16 x 16 Domestic Flow Added - 0 Additional Flow Added -Е Gpm Sprinkler or Nozzle Additional Flow Added S Gpm Make RELIABLE Model RFC49 Ι Elevation at Highest Outlet - 120 Feet Size 7/16 K-Factor 4.9 G Note: Temperature Rating 155 Ν Calculation Gpm Required 26.0331 Psi Required 51.5 At Ref Pt STR Summary C-Factor Used: Overhead 150 Underground 150 Water Flow Test: Pump Data: W Tank or Reservoir: Rated Cap. Date of Test – x А Cap. Time of Test - x @ Psi Т Elev. Static (Psi) - 60 Elev. E Residual (Psi) - 20 R Other Well Flow (Gpm) - 168 Proof Flow Gpm Elevation - 100 S Ρ Location: x Ρ L Source of Information: x Y

ity Water Supply: C1 - Static Pressure : 60 C2 - Residual Pressure: 20 C2 - Residual Flow : 168	Demand: D1 - Elev D2 - Syst D2 - Syst Hose (De D3 - Syst Safety Ma	ation : 8.662 em Flow : 26.033 em Pressure : 51.497 emand) : em Demand : 26.033 argin : 7.233
150		
40		
30		
20	 	
10		
00		
0		
0		
0		
0 D2 0 v		
0		
0	C2	
[°] [°] [⊧ D1		

Water Supply Curve C

Viega LLC LOT#10 - Two Head Calculation (H.10 & H.4) Page 2 Date 2/26/2021

Fittings Used Summary

Viega I LOT# ²	LLC 10 -Two Head Calculation (H	H.10 & F	H.4)															Pa Da	ge 3 ite 2	3 2/26/202	21
Fitting L Abbrev.		1/2	3⁄4	1	1¼	1½	2	21⁄2	3	31⁄2	4	5	6	8	10	12	14	16	18	20	24
E G T Vpel * Vprt * Vptb *	90' Standard Elbow Generic Gate Valve 90' Flow thru Tee PEX Press 90 Elbow - Poly PEX Press Tee - Run-Poly PEX Press Tee - Branch-Poly	2 1 3 12.6 3.9 14	2 1 4 18.9 3.6 19.1	2 1 5 17.7 3.8 18.4	3 1 6 18.6 6.4 18.7	4 1 8 29.4 7.9 28.3	5 1 10 36.4 10.2 37.5	6 1 12 0 0 0	7 1 15 0 0 0	8 1 17 0 0 0	10 2 20	12 2 25	14 3 30	18 4 35	22 5 50	27 6 60	35 7 71	40 8 81	45 10 91	50 11 101	61 13 121

Units Summary

Diameter Units Length Units Flow Units Pressure Units

Inches Feet US Gallons per Minute Pounds per Square Inch

Viega LLC LOT#10 - Two Head Calculation (H.10 & H.4)

Page 4 Date 2/26/2021

			SUPPLY ANALYSIS								
Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure					
STR	60.0	20	168.0	58.73	26.03	51.497					

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
H.10	120.0	4.9	7.04	13.0	
H.16	120.0		8.32		
H.15	120.0		9.16		
T.36	120.0		11.46		
T.35	120.0		14.04		
T.34	109.0		22.17		
T.33	109.0		24.3		
T.29	109.0		24.89		
H.7	109.0		26.19		
H.6	109.0		27.59		
T.27	109.0		29.83		
T.28	109.0		30.46		
S.1	104.0		35.05		
MTR	100.0		47.0		
STR	100.0		51.5		
H.4	120.0	4.9	7.07	13.03	
H.3	120.0		8.72		
T.26	120.0		9.72		
H.5	120.0		11.33		
T.25	120.0		11.72		
T.23	120.0		15.13		
T.24	109.0		22.9		
T.22	109.0		24.86		
H.1	109.0		25.64		
H.9	120.0		9.96		
T.32	120.0		10.25		
H.14	120.0		10.47		
H.13	120.0		10.91		
T.31	120.0		11.23		
H.8	120.0		11.53		
H.17	120.0		11.29		
H.19	120.0		11.35		
H.20	120.0		11.39		
H.21	109.0		24.42		
H.18	109.0		24.53		
T.30	109.0		24.8		
H.11	109.0		24.83		
H.12	109.0		24.8		
H.2	109.0		24.83		

Viega LLC LOT#10 - Two Head Calculation (H.10 & H.4)

Page Date 5 2/26/2021

LOT#10 -	- Two Head	Calculation (H.10 & H.4	.)				Date 2/26/2021
Hyd. Ref.	Qa	Dia. "C"	Fittin or	-	Pipe Ftng's	Pt Pe	Pt Pv	****** Notes *****
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn	
H.10	11.20	0.863	Vprt	3.8	13.000	7.040		K Factor = 4.90
to H.16	11.2	150.0 0.0762		0.0 0.0	3.800 16.800	0.0 1.280		Vel = 6.14
H.16	0.0	0.863		0.0	11.000	8.320		
to		150.0		0.0	0.0	0.0		
H.15	11.2	0.0761	\ / in the	0.0	11.000	0.837		Vel = 6.14
H.15 to	0.0	0.863 150.0	Vptb Vprt	18.4 3.8	8.000 22.200	9.157 0.0		
T.36	11.2	0.0762		0.0	30.200	2.301		Vel = 6.14
T.36	2.44	0.863	Vprt	3.8	2.000	11.458		
to T.35	13.64	150.0 0.1098	Vpel	17.7 0.0	21.500 23.500	0.0 2.580		Vel = 7.48
T.35	0.0	0.863	Vpel		13.000	14.038		
to		150.0		0.0	17.700	4.764		
T.34	13.64	0.1098		0.0	30.700	3.372		Vel = 7.48
T.34 to	0.0	0.863 150.0	Vptb	18.4 0.0	1.000 18.400	22.174 0.0		
T.33	13.64	0.1098		0.0	19.400	2.130		Vel = 7.48
T.33	-3.26	0.863	Vprt	3.8	5.000	24.304		
to	40.00	150.0		0.0	3.800	0.0		
T.29	10.38	0.0662	Vort	0.0	8.800	0.583		Vel = 5.69
T.29 to	1.74	0.863 150.0	Vprt	3.8 0.0	11.000 3.800	24.887 0.0		
H.7	12.12	0.0882		0.0	14.800	1.305		Vel = 6.65
H.7	0.0	0.863	Vprt	3.8	12.000	26.192		
to H.6	12.12	150.0 0.0882		0.0 0.0	3.800 15.800	0.0 1.394		Vel = 6.65
H.6	0.0	0.863	Vptb	18.4	7.000	27.586		
to		150.0	-	0.0	18.400	0.0		
T.27	12.12	0.0882		0.0	25.400	2.241		Vel = 6.65
T.27 to	13.91	1.025 150.0		0.0 0.0	4.000 0.0	29.827 0.0		
T.28	26.03	0.1570		0.0	4.000	0.628		Vel = 10.12
T.28	0.0	1.025	E	2.7	6.000	30.455		
to	26.02	150.0	Т	6.75	9.450	2.166		$V_{0} = 10.12$
<u>S.1</u> S.1	26.03 0.0	0.1570	2E	0.0	15.450 50.000	2.425		Vel = 10.12
to	0.0	150.0	2L	0.0	2.429	4.732		* * Fixed Loss = 3
MTR	26.03	0.1377		0.0	52.429	7.218		Vel = 9.59
MTR	0.0	1.049	E	3.022	20.000	46.996		
to STR	26.03	150.0 0.1403	T G	7.555 1.511	12.089 32.089	0.0 4.501		Vel = 9.66
	0.0	0.1100	<u> </u>		02.000			
	26.03					51.497		K Factor = 3.63
H.10	1.80	0.863	Vprt	3.8	9.000	7.040		
to H.4	1.8	150.0 0.0026		0.0 0.0	3.800 12.800	0.0 0.033		Vel = 0.99
H.4	13.04	0.863	Vprt	3.8	9.000	7.073		K Factor = 4.90
to		150.0	• • • •	0.0	3.800	0.0		
H.3	14.84	0.1283		0.0	12.800	1.642		Vel = 8.14

Viega LLC LOT#10 - Two Head Calculation (H.10 & H.4)

Page Date 6 2/26/2021

Hyd. Ref.	Qa	Dia. "C"	Fitting or	Pipe Ftng's	Pt Pe	Pt Pv	****** Notes *****
Point	Qt	Pf/Ft	Eqv. Ln.	Total	Pf	Pn	
		0.000		4.000	0.745		
1.3	0.0	0.863 150.0	Vprt 3.8 0.0	4.000 3.800	8.715 0.0		
o T.26	14.84	0.1282	0.0	7.800	1.000		Vel = 8.14
T.26	-6.46	0.863	Vptb 18.4	14.000	9.715		
C		150.0	Vprt 3.8	22.200	0.0		
H.5	8.38	0.0446	0.0	36.200	1.615		Vel = 4.60
H.5	0.0	0.863	Vprt 3.8	5.000	11.330		
o T.25	8.38	150.0 0.0445	0.0 0.0	3.800 8.800	0.0 0.392		Vel = 4.60
T.25	4.01	0.863	Vptb 18.4	1.000	11.722		VCI - 4.00
)	4.01	150.0	Vpel 17.7	36.100	0.0		
T.23	12.39	0.0919	0.0	37.100	3.408		Vel = 6.80
T.23	0.0	0.863	Vpel 17.7	15.000	15.130		
	40.00	150.0	0.0	17.700	4.764		
T.24	12.39	0.0919	0.0	32.700	3.004		Vel = 6.80
T.24 ว	0.0	0.863 150.0	Vptb 18.4 0.0	3.000 18.400	22.898 0.0		
, Т.22	12.39	0.0919	0.0	21.400	1.966		Vel = 6.80
Г.22	1.52	0.863	Vprt 3.8	3.000	24.864		
)	-	150.0	0.0	3.800	0.0		
H.1	13.91	0.1138	0.0	6.800	0.774		Vel = 7.63
H.1	0.0	0.863	Vprt 3.8	33.000	25.638		
o T.27	13.91	150.0	0.0	3.800	0.0 4.189		$V_{0} = 7.62$
1.27	0.0	0.1138	0.0	36.800	4.109		Vel = 7.63
	13.91				29.827		K Factor = 2.55
T.26	6.45	0.863	Vprt 3.8	5.000	9.715		
0	0.10	150.0	0.0	3.800	0.0		
H.9	6.45	0.0275	0.0	8.800	0.242		Vel = 3.54
H.9	0.0	0.863	Vprt 3.8	7.000	9.957		
) T 22		150.0	0.0	3.800	0.0		$\lambda = 2.54$
T.32	6.45	0.0274	0.0	10.800	0.296		Vel = 3.54
T.32	0.0	0.863 150.0	0.0 0.0	8.000 0.0	10.253 0.0		
, H.14	6.45	0.0275	0.0	8.000	0.220		Vel = 3.54
H.14	0.0	0.863	Vprt 3.8	12.000	10.473		
C		150.0	0.0	3.800	0.0		
H.13	6.45	0.0275	0.0	15.800	0.434		Vel = 3.54
H.13	0.0	0.863	Vprt 3.8	8.000	10.907		
) Г.31	6.45	150.0 0.0275	0.0 0.0	3.800 11.800	0.0 0.325		Vel = 3.54
г.зт Г.31	-2.45	0.863	Vptb 18.4	8.000	11.232		vu = 0.0 1
)	-2.40	150.0	0.0	18.400	0.0		
Н.8	4.0	0.0114	0.0	26.400	0.300		Vel = 2.19
H.8	0.0	0.863	Vprt 3.8	13.000	11.532		
2		150.0	0.0	3.800	0.0		
T.25	4.0	0.0113	0.0	16.800	0.190		Vel = 2.19

البرا	0-	Dia	F ittin	Dine	Dt	D+	
Hyd. Ref.	Qa	Dia. "C"	Fitting or	Pipe Ftng's	Pt Pe	Pt Pv	****** Notes *****
Point	Qt	Pf/Ft	Eqv. Ln.	Total	Pf	Pn	Notes
	4.00				11.722		K Factor = 1.17
T.31	2.45	0.863	Vprt 3.8	9.000	11.232		
0	0.45	150.0	0.0	3.800	0.0		
H.17	2.45	0.0045	0.0	12.800	0.058		Vel = 1.34
H.17	0.0	0.863	Vprt 3.8	10.000	11.290		
ю Н.19	2.45	150.0 0.0046	0.0 0.0	3.800 13.800	0.0 0.063		Vel = 1.34
							VEI – 1.34
H.19 to	0.0	0.863 150.0	0.0 0.0	9.000 0.0	11.353 0.0		
H.20	2.45	0.0046	0.0	9.000	0.041		Vel = 1.34
H.20	0.0	0.863	Vprt 3.8	10.000	11.394		
to	0.0	150.0	0.0	3.800	0.0		
T.36	2.45	0.0046	0.0	13.800	0.064		Vel = 1.34
	0.0						
	2.45				11.458		K Factor = 0.72
T.33	3.27	0.863	Vprt 3.8	11.000	24.304		
to		150.0	0.0	3.800	0.0		
H.21	3.27	0.0078	0.0	14.800	0.116		Vel = 1.79
H.21	0.0	0.863	0.0	14.000	24.420		
to	0.07	150.0	0.0	0.0	0.0		
H.18	3.27	0.0078	0.0	14.000	0.109		Vel = 1.79
H.18	0.0	0.863 150.0	Vptb 18.4	12.000	24.529		
to T.30	3.27	0.0078	Vprt 3.8 0.0	22.200 34.200	0.0 0.267		Vel = 1.79
T.30	-1.53	0.863	Vprt 3.8	11.000	24.796		
1.50 to	-1.55	150.0	0.0	3.800	0.0		
H.11	1.74	0.0024	0.0	14.800	0.036		Vel = 0.95
H.11	0.0	0.863	Vptb 18.4	4.000	24.832		
to		150.0	0.0	18.400	0.0		
T.29	1.74	0.0025	0.0	22.400	0.055		Vel = 0.95
	0.0						
	1.74				24.887		K Factor = 0.35
T.30	1.52	0.863	0.0	4.000	24.796		
io	4 50	150.0	0.0	0.0	0.0		
H.12	1.52	0.0018	0.0	4.000	0.007		Vel = 0.83
H.12	0.0	0.863	Vprt 3.8	11.000	24.803		
to H.2	1.52	150.0 0.0020	0.0 0.0	3.800 14.800	0.0 0.029		Vel = 0.83
							Vei - 0.03
H.2 to	0.0	0.863 150.0	Vprt 3.8 0.0	13.000 3.800	24.832 0.0		
.0 T.22	1.52	0.0019	0.0	16.800	0.032		Vel = 0.83
	0.0	0.0010	0.0		0.002		
	1.52				24.864		K Factor = 0.30
	1.02				21.007		