

RE: 20060092-01 107 Crossings-Braxton C-Roof Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Capitol City Homes	Project Name: 20060092-01
Lot/Block: 107	Model: Braxton C
Address: Timber Skip Drive	Subdivision: Crossings
City: Spring Lake	State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.3 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 28 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	E13944874	PB1	6/18/2020	21	E13944894	T10	6/18/2020
2	E13944875	T1	6/18/2020	22	E13944895	T11	6/18/2020
3	E13944876	T1A	6/18/2020	23	E13944896	T12	6/18/2020
4	E13944877	T1AA	6/18/2020	24	E13944897	T13	6/18/2020
5	E13944878	T1GE	6/18/2020	25	E13944898	T14	6/18/2020
6	E13944879	T2	6/18/2020	26	E13944899	T15GE	6/18/2020
7	E13944880	T2GE	6/18/2020	27	E13944900	T15GR	6/18/2020
8	E13944881	Т3	6/18/2020	28	E13944901	T16GR	6/18/2020
9	E13944882	T3GE	6/18/2020				
10	E13944883	T4	6/18/2020				
11	E13944884	T4GR	6/18/2020				
12	E13944885	T5	6/18/2020				
13	E13944886	T5GE	6/18/2020				
14	E13944887	T6	6/18/2020				
15	E13944888	T6A	6/18/2020				
16	E13944889	T6AGE	6/18/2020				
17	E13944890	T6GE	6/18/2020				
18	E13944891	T7	6/18/2020				
19	E13944892	T8	6/18/2020				
20	E13944893	Т9	6/18/2020				

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

TOP CHORD

BOT CHORD

Sheathed or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

2x4 SP No.2 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 OTHERS

REACTIONS. All bearings 6-2-13.

(lb) - Max Horz 1=-42(LC 9)

- Max Uplift All uplift 100 lb or less at joint(s) 5, 2, 4 except 1=-106(LC 25)
- Max Grav All reactions 250 lb or less at joint(s) 1, 5, 4, 6 except 2=266(LC 25)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 4 except (it=lb) 1=106.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

📣 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and KEAD NOTES ON THIS AND INCLODED INTER REFERENCE FACE INTERVISED. INCLOSE DEL ONE OCL Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Scale = 1:28.1

Plate Offsets ()	X,Y) [2:0-3-2,0	8-1-0 8-1-0)-0-7], [8:0-2-8.0-7-11], [9:0-3-8.0-3-0]		+		16 8-	2-0 1-0		
LOADING (pst TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	f) 20.0 13.9/20.0 10.0 0.0 * 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.33 BC 0.49 WB 0.12 Matrix-MSH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc -0.05 -0.12 9-18 0.03	l/defl > >999 >999 >999 3 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 73 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3	3 -H 2-6-0, Right 2x4 SP No.3 -H 2-6-0	B T(B	RACING- OP CHORD S OT CHORD F	Sheathed or 4 Rigid ceiling c	-8-15 oc p irectly app	urlins. lied or 9-10-1	5 oc bracing.	
REACTIONS.	(lb/size) 8=56 Max Horz 2=25 Max Uplift 8=-6 Max Grav 8=66	:1/0-10-0, 2=576/0-3-0 :(LC 15) (LC 12), 2=-32(LC 11) :2(LC 2), 2=684(LC 2)							
FORCES. (Ib) TOP CHORD BOT CHORD WEBS) - Max. Comp./M 2-4=-1391/396 2-9=-346/1333 5-9=0/257, 4-9	ax. Ten All forces 250 (lb) or less exce i, 4-5=-1135/281, 5-6=-1142/280, 6-8=-1 i, 8-9=-318/1217 =-325/150	ept when shown. 286/370						

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10; Min. flat roof snow load governs.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Scale = 1:27.7

Diata Offacta (8-1-0 8-1-0				15-7 7-6-	-8 8		16-2-0 0-6-8
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	x, r) [2:0-3-2,0 if) 13.9/20.0 10.0 0.0 * 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.35 BC 0.50 WB 0.12 Matrix-MSH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.05 9 -0.12 9-18 0.03 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 73 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER	R- IORD 2x4 SP No.2 IORD 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 -H 2-6-0, Right 2x4 SP No.3 -H 2-6-0 IORD 2x4 SP No.3 -H 2-6-0, Right 2x4 SP No.3 -H 2-6-0								
REACTIONS.	(lb/size) 8=56 Max Horz 2=25 Max Uplift 8=-6 Max Grav 8=66	5/0-3-8, 2=571/0-3-0 (LC 15) (LC 12), 2=-32(LC 11) 8(LC 2), 2=678(LC 2)							
FORCES. (Ib TOP CHORD BOT CHORD WEBS	 Max. Comp./M 2-4=-1375/392 2-9=-342/1318 4-9=-328/151 	ax. Ten All forces 250 (lb) or less exce 2, 4-5=-1115/276, 5-6=-1121/275, 6-8=-1 5, 8-9=-305/1167	ept when shown. 1238/358						

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10; Min. flat roof snow load governs.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Scale = 1:27.7

Plate Offsets (X Y) [2:0-3-2)	8-1-0 8-1-0 2-0-111 [8:0-2-12 0-4-11] [9:0-3-8 0-3-0				15-7-8 7-6-8		16-2-0 0-6-8
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	sf) 20.0 13.9/20.0 10.0 0.0 * 10.0	SPACING- 1-11-4 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.34 BC 0.48 WB 0.12 Matrix-MSH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.05 9 -0.12 9-18 0.03 8	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 73 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER	10.0 BRACING- 2x4 SP No.2 TOP CHORD Sheathed or 4-10-5 oc purlins. 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SP No.3 Left 2x4 SP No.3 -H 2-6-0, Right 2x4 SP No.3 -H 2-6-0 Rigid ceiling directly applied or 10-0-0 oc bracing.							
REACTIONS.	(Ib/size) 8=54 Max Horz 2=24 Max Uplift 8=-6 Max Grav 8=64	18/0-3-8, 2=553/0-3-0 6(LC 15) (LC 12), 2=-31(LC 11) 17(LC 2), 2=657(LC 2)						
FORCES. (IL TOP CHORD BOT CHORD WEBS	b) - Max. Comp./M 2-4=-1332/380 2-9=-331/1277 4-9=-318/146	lax. Ten All forces 250 (lb) or less exce), 4-5=-1080/267, 5-6=-1086/266, 6-8=-1 ′, 8-9=-296/1130	ept when shown. 199/347					

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10; Min. flat roof snow load governs.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L		16-2-0						
		16-2-0						
Plate Offsets (X,Y) [2:0-3-6,0)-0-3], [10:0-3-6,0-0-3], [14:0-3-0,0-3-0]							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 13.9/20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.17 BC 0.10 WB 0.04 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.00 11 0.01 11 0.00 10	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 69 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2		BR TO BO	ACING- P CHORD S T CHORD R	heathed or 6- igid ceiling di	0-0 oc pur rectly appl	lins. ied or 10-0-0	oc bracing.	

BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

SLIDER Left 2x4 SP No.3 -H 2-0-9, Right 2x4 SP No.3 -H 2-0-9

REACTIONS. All bearings 16-2-0.

(lb) - Max Horz 2=-22(LC 16)

Max Uplift All uplift 100 lb or less at joint(s) 2, 15, 16, 13, 12, 10

Max Grav All reactions 250 lb or less at joint(s) 2, 14, 15, 13, 10 except 16=299(LC 34), 12=300(LC 35)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10; Min. flat roof snow load governs.
- 5) Unbalanced snow loads have been considered for this design.

6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.

9) Gable studs spaced at 2-0-0 oc.

- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 15, 16, 13, 12, 10.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 216 N. Lee Street, Suite 312, Alexandria, VA 22314.

			2-0-0		1				
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 13.9/20.0 TCDL 10.0 DOLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.11 BC 0.04 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.00 -0.00	(loc) 5 5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Code IRC2015/TPI2014	Matrix-MR						Weight: 11 lb	FT = 20%
LUMBER-		BR	ACING-						

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS

2x4 SP No.3

TOP CHORD BOT CHORD

2-0-0

Sheathed or 2-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (lb/size) 4=43/Mechanical, 5=121/0-3-8 Max Horz 5=53(LC 12) Max Uplift 4=-18(LC 12), 5=-8(LC 15) Max Grav 4=53(LC 29), 5=148(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.

Scale = 1.12.5

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-14's rev. Invozoris beroke use. Design valif for use only with MiTeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 13.9/20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.11 BC 0.04 WB 0.00 Matrix-R	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) -0.00	(loc) 1 1 4	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
---	---	--	---	----------------------	-----------------------------	--------------------------	---------------------------------	------------------------------------

BRACING-

TOP CHORD

BOT CHORD

Sheathed or 2-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 6-0-0 oc bracing.

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

REACTIONS. (lb/size) 5=121/2-0-0, 4=43/2-0-0 Max Horz 5=53(LC 12) Max Uplift 5=-8(LC 15), 4=-18(LC 12)

Max Grav 5=148(LC 2), 4=53(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 8) Gable studs spaced at 2-0-0 oc.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-

TOP CHORD

BOT CHORD

Sheathed or 6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

NOTES-

LUMBER-

WEBS

SLIDER

TOP CHORD

BOT CHORD

REACTIONS.

TOP CHORD

2x4 SP No.1

2x4 SP No.2

2x4 SP No.3

2-4=-319/65

Left 2x4 SP No.3 -H 2-6-0

Max Horz 2=72(LC 14)

(lb/size) 5=264/Mechanical, 2=310/0-3-8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

Max Uplift 5=-15(LC 15), 2=-34(LC 11) Max Grav 5=311(LC 2), 2=370(LC 2)

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10; Min. flat roof snow load governs.
- 3) Unbalanced snow loads have been considered for this design.4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD

BOT CHORD 2x4 SP No.2 2x4 SP No.3 WEBS OTHERS 2x4 SP No.3

Left 2x4 SP No.3 -H 2-0-1 SLIDER

REACTIONS. All bearings 8-0-0.

(lb) -Max Horz 2=70(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 9 Max Grav All reactions 250 lb or less at joint(s) 7, 2, 8 except 9=303(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10; Min. flat roof snow load governs.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 9.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters shown, and is for an individual point point, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		L	6-0-0						8-0-0	
		ſ	6-0-0				1		2-0-0	
Plate Offsets (X,Y) [2:0-3-6,0)-0-3]								
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	sf) 20.0 18.9/20.0 10.0 0.0 * 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2015/TPI2014	CSI. TC 0.79 BC 0.48 WB 0.46 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.12 0.02	(loc) 8-11 8-11 2	l/defl >999 >755 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER REACTIONS.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *E; 4-8: 2x4 SP No. Left 2x4 SP No. (lb/size) 7=44 Max Horz 2=71 Max Uplift 7=-1 Max Grav 7=47	ccept* 1 3 -H 2-6-0 0/Mechanical, 2=353/0-3-8 (LC 15) 1(LC 15), 2=-32(LC 11) 5(LC 2), 2=460(LC 35)		BRACING- TOP CHORD BOT CHORD	Sheathe purlins (Rigid ce	d or 6-(5-7-11 i iling dir	0-0 oc pu nax.): 5-4 ectly app	rlins, except 8, 5-6. lied or 10-0-0	t end verticals, and 2-0 0 oc bracing.)-0 oc
FORCES. (III: TOP CHORD BOT CHORD WEBS	 Max. Comp./M 2-4=-407/143, 2-8=-190/395 6-8=-448/1100 	ax. Ten All forces 250 (lb) or less exc 5-8=-264/171, 5-6=-1038/415, 6-7=-46	ept when shown. 4/205							
NOTES-	t roof live loads ha	we been considered for this design								

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 7-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed ; end vertical left and right exposed and for some 8 MWERS for reacting a barrier lumber DOL 4 constrained and right exposed and for some 8 MWERS for reacting a barrier lumber DOL 4 constrained and right exposed and for some 8 MWERS for reacting a barrier lumber DOL 4 constrained and right exposed and for some 8 MWERS for reacting a barrier lumber DOL 4 constrained and right exposed and for some 8 MWERS for reacting a barrier lumber DOL 4 constrained and right exposed and for some 8 MWERS for reacting a barrier lumber DOL 4 constrained and right exposed and for some 8 MWERS for reacting a barrier lumber DOL 4 constrained and right exposed and for some 8 MWERS for reacting a barrier lumber DOL 4 constrained and right exposed and for some 8 MWERS for reacting a barrier lumber DOL 4 constrained and right exposed and for some 8 MWERS for reacting a barrier lumber DOL 4 constrained and right exposed and for some 8 MWERS for reacting a barrier lumber DOL 4 constrained and right exposed and for some 8 MWERS for reacting a barrier lumber DOL 4 constrained and right exposed and for some 8 MWERS for reacting a barrier lumber DOL 4 constrained and right exposed and for some 8 MWERS for reacting a barrier lumber DOL 4 constrained and right exposed and for some 8 MWERS for reacting a barrier lumber DOL 4 constrained and right exposed and for some 8 MWERS for reacting a barrier lumber DOL 4 constrained and right exposed and for some 8 MWERS for reacting a barrier lumber DOL 4 constrained and right exposed and reacting a barrier lumber DOL 4 constrained and right exposed and for some 8 MWERS for reacting a barrier lumber DOL 4 constrained and right exposed and reacting a barrier lumber DOL 4 constrained and reacting a barrier lumber DOL 4 constrained and reacting a barrier
- exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 135 lb down and 46 lb up at 5-10-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	107 Crossings-Braxton C-Roof	
						E13944883
20060092-01	T4	Half Hip	5	1		
					Job Reference (optional)	
Carter Components (Sanford), Sanford, NC - 27332,			8.330 s De	ec 5 2019 MiTek Industries, Inc. Fri Jan 10 10:18:42 2020) Page 2

ID:7p2S9MKN7b?TA?fTu8od_hzaiAU-LBPg7sCgbH7uIIGiDMJKYIEZiA8eWAyufOT2byzwnoR

LOAD CASE(S) Standard Uniform Loads (plf)

Vert: 1-4=-48, 5-6=-98, 7-9=-20 Concentrated Loads (lb) Vert: 4=-120

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		0-0-0			2-0-0	
Plate Offsets (X,Y) [2:0-3-6,0	-0-3]					
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 18.9/20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2015/TPI2014	CSI. TC 0.86 BC 0.24 WB 0.22 Matrix-MP	DEFL. in (loc Vert(LL) -0.03 8-1 Vert(CT) -0.07 8-1 Horz(CT) 0.01	oc) l/defl L/d 11 >999 240 11 >999 180 2 n/a n/a	PLATES MT20 Weight: 70 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 SLIDER Left 2x4 SP No.3	9 -H 2-6-0	BRACIN TOP CH BOT CH	G- DRD Sheathed or purlins (6-0-(DRD Rigid ceiling	6-0-0 oc purlins, excep 0 max.): 5-8, 5-6. directly applied or 10-0-	t end verticals, and 2-0 0 oc bracing.	-0 oc
REACTIONS. (Ib/size) 7=52: Max Horz 2=71 Max Uplift 7=-14 Max Grav 7=56	5/Mechanical, 2=348/0-3-8 (LC 11) I(LC 11), 2=-32(LC 7) 3(LC 2), 2=455(LC 31)					
FORCES. (lb) - Max. Comp./Ma TOP CHORD 2-4=-385/2, 5-5 BOT CHORD 2-8=-17/374 WEBS 6-8=-39/1040	ax. Ten All forces 250 (lb) or less exc =-251/48, 5-6=-982/42, 6-7=-547/23	ept when shown.				
 NOTES- 1) 2-ply truss to be connected to Top chords connected as follo Bottom chords connected as f Webs connected as follows: 2 2) All loads are considered equa ply connections have been pro 3) Unbalanced roof live loads hat 4) Wind: ASCE 7-10; Vult=130m MWFRS (envelope); cantileve 5) TCLL: ASCE 7-10; Vrl=20.0 ps roof snow: Lumber DOL=1.15 Rain surcharge applied to all e 6) Unbalanced snow loads have 7) This truss has been designed non-concurrent with other live 8) Provide adequate drainage to 9) * This truss has been designed will fit between the bottom cho 10) Refer to girder(s) for truss to 11) Provide and unit nepresentati 	gether with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc. ollows: 2x4 - 1 row at 0-9-0 oc. x4 - 1 row at 0-9-0 oc. Ily applied to all plies, except if noted as voided to distribute only loads noted as ve been considered for this design. ph (3-second gust) Vasd=103mph; TCI r left and right exposed ; end vertical le if (roof live load: Lumber DOL=1.15 Pla Plate DOL=1.15); Category II; Exp B; F exposed surfaces with slopes less than been considered for this design. for greater of min roof live load of 12.0 loads. prevent water ponding. d for a live load of 20.0psf on the bottor rd and any other members. truss connections.	ws: front (F) or back (B) face in the (F) or (B), unless otherwise indi DL=6.0psf; BCDL=6.0psf; h=25f t and right exposed; Lumber DC te DOL=1.15); Pg=20.0 psf (gro ully Exp; Ct=1.10, Lu=50-0-0; 0.500/12 in accordance with IBC psf or 2.00 times flat roof load o in chord in all areas where a rec capable of withstanding 100 lb o ation of the purlin along the ton	LOAD CASE(S) sectio cated. ;; Cat. II; Exp B; Encloss DL=1.60 plate grip DOL und snow); Pf=18.9 psf Viin. flat roof snow load C 1608.3.4. f 13.9 psf on overhangs tangle 3-6-0 tall by 2-0- uplift at joint(s) 7, 2. and/or bottom chord	on. Ply to sed; ==1.33 f (flat I governs. s -0 wide	SEAL 03632	2 P. A.

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Continued on page 2

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A. GIV A. Chin

Job	Truss	Truss Type	Qty	Ply	107 Crossings-Braxton C-Roof	
						E13944884
20060092-01	T4GR	HALF HIP	2	2		
				_	Job Reference (optional)	
Carter Components (Sanford	l), Sanford, NC - 27332,			8.330 s De	ec 5 2019 MiTek Industries, Inc. Fri Jan 10 10:18:43 202	0 Page 2
		ID:7p2	S9MKN7b	?TA?fTu8	od_hzaiAU-pOz3LCDIMbFlwvrvn4qZ5znjNaYdFhy1t2Db7	7OzwnoQ

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-48, 5-6=-198, 7-9=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			2-0-8						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 13.9/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.09 BC 0.03 WB 0.00 Matrix-MR	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.00 -0.00	(loc) 5 5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Sheathed or 2-0-8 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 5=124/0-3-8, 3=33/Mechanical, 4=16/Mechanical Max Horz 5=33(LC 15) Max Uplift 5=-2(LC 15), 3=-18(LC 15) Max Grav 5=152(LC 2), 3=41(LC 2), 4=18(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTP17 Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y) [2:0-2-1,0-0)-5]								
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL	f) 20.0 13.9/20.0 10.0 0.0 *	SPACING- Plate Grip DOL2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.06 BC 0.03 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.00 0.00	(loc) 1 1 5	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code IRC2015/TPI2014	Matrix-P						Weight: 12 lb	FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3	H 1-6-7		BRACING- TOP CHORD BOT CHORD	Sheathe Rigid cei	d or 2-0 ling dire	-8 oc pur ectly appl	lins, excep ied or 10-0-	ot end verticals. -0 oc bracing.	

5

2x4 ||

REACTIONS. (lb/size) 5=55/2-0-8, 2=116/2-0-8 Max Horz 2=42(LC 12) Max Uplift 5=-9(LC 12), 2=-7(LC 15) Max Grav 5=64(LC 2), 2=140(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

2

2x4 ||

ł

0-8-0

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MITek Affiliat 818 Soundside Road Edenton, NC 27932

Plate Offsets ()	⊢	7-5-0 7-5-0 2,0-2-0], [6:0-3-4,0-2-0],	14-6-9 7-1-8 [10:0-2-12,0-2-0]	, [15:0-1-12,0-0-0	20-9-6 6-2-13], [15:0-5-4,0-3-0],	26-5-7 5-8-1 [16:0-0-0,0-1	-12], [20	32- 5-8 Edge,0-8:	1-8 3-1 3-2], [20:0-1	34-8-0 2-6-8 1-12,0-0-0]		
LOADING (psi TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	f) 20.0 18.9/20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/	2-0-0 1.15 1.15 YES TPI2014	CSI. TC 0.82 BC 0.93 WB 0.84 Matrix-MSH	DEF Vert Vert Horz	L. in LL) -0.14 CT) -0.31 (CT) 0.27	(loc) 13-14 13-14 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight:	S 233 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *E	Except*			BRACING- TOP CHORD BOT CHORD	Sheathe purlins (Rigid ce	ed or 2-7 (4-3-10 n eiling dire	'-13 oc pu nax.): 5-6 ectly appli	urlins, exce i. ied or 10-0-	ept end verticals,	and 2-0- xcept:	-0 oc
REACTIONS.	(lb/size) 12= Max Horz 20=	:1244/0-3-8, 20=1243/0-: :-253(LC 9)	3-8		WEBS	1 Row a	at midpt	j. 1 3- 14.	4-17, 5- <i>*</i>	15		

Max Grav 12=1436(LC 2), 20=1436(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-4=-1875/340, 4-5=-1477/379, 5-6=-1103/370, 6-7=-1551/401, 7-9=-2078/371,

TOP CHORD

9-10=-4292/615, 10-12=-1450/263, 2-20=-1367/303

- BOT CHORD 19-20=-219/518, 17-19=-77/1581, 15-17=0/1179, 14-15=-83/1551, 13-14=-385/3027 WEBS
 - 4-17=-518/197, 5-17=-43/548, 6-15=-101/639, 7-15=-679/232, 7-14=0/420,
 - 9-14=-1501/308, 9-13=-121/1532, 10-13=-456/3443, 2-19=-28/1130

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

5) Provide adequate drainage to prevent water ponding.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 7) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 12.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	<u> </u>	7-5-0	14-6-9		20-9-6		26-5-7		32	-1-8	34-4-8		
Plate Offsets (2	X,Y) [5:0-5-12	,0-2-0], [6:0-3-4,0-2-0],	<u>7-1-8</u> [10:0-2-8,0-2-4],	[14:0-1-12,0	6-2-13 0-0-0], [14:0-5	-4,0-3-0], [15:0-	5-8-1 0-0,0-1-1	2], [19:	5. Edge,0-8	- <u>8-1</u> -2], [19:0-1	-12,0-0-0]		
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	f) 20.0 18.9/20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/1	2-0-0 1.15 1.15 YES 'PI2014	CSI. TC BC WB Matrix	0.81 0.84 0.75 (-MSH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.25 0.22	(loc) 14-16 12-13 11	l/defl >999 >999 n/a	L/d 240 180 n/a	F	PLATES 1T20 Veight: 229 lb	GRIP 244/190 FT = 20%
LUMBER-					BR	ACING-							
TOP CHORD	2x4 SP No.2				TO	P CHORD	Sheather	d or 2-1 1-4-5 m	0-12 oc p	ourlins, ex	cept end v	erticals, and 2-	0-0 oc
WEBS	2x4 SP No.2 *Ex 2x4 SP No.2 *Ex 10-11,9-12,2-19	ccept* : 2x4 SP No.3			BO	T CHORD	Rigid cei 8-7-1 oc	ling dire	ax.). 5-0. ectly appl g: 12-13.	ied or 10-0)-0 oc brac	ng, Except:	
REACTIONS.	(lb/size) 11=1 Max Horz 19=2	185/Mechanical, 19=12 43(LC 12)	34/0-3-8		WE	BS	1 Row at	midpt	-	4-16, 5	-14		

Max Grav 11=1362(LC 2), 19=1426(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-1858/341, 4-5=-1459/381, 5-6=-1082/372, 6-7=-1523/403, 7-9=-2014/377,

9-10=-3827/656, 10-11=-1358/232, 2-19=-1356/304

- BOT CHORD 18-19=-228/508, 16-18=-135/1558, 14-16=0/1155, 13-14=-144/1499, 12-13=-472/2732
- WEBS 4-16=-520/197, 5-16=-43/548, 6-14=-102/621, 7-14=-637/236, 7-13=0/371,
 - 9-13=-1254/334, 9-12=-145/1220, 10-12=-514/3045, 2-18=-30/1118

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

5) Provide adequate drainage to prevent water ponding.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Refer to girder(s) for truss to truss connections.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-1473 rev. 1003/2015 BEFURE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	107 Crossings-Braxton C-Roof
					E13944889
20060092-01	T6AGE	GABLE	1	1	
					Job Reference (optional)
Carter Components (Sanford), Sanford, NC - 27332,			8.330 s De	ec 5 2019 MiTek Industries, Inc. Fri Jan 10 10:18:50 2020 Page 2
		ID:7p	2S9MKN7	b?TA?fTu	8od_hzaiAU-6kuipblhjk8lF_uFh2SCtRZ49PzKNuR3UePTtUzwnoJ

NOTES-

14) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 47, 28, 37, 38, 39, 41, 42, 43, 44, 45, 46, 36, 34, 33, 32, 31, 30, 29, 27.

15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affiliate 818 Soundside Road

Edenton, NC 27932

LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	f) 20.0 18.9/20.0 10.0 0.0 * 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.84 BC 0.98 WB 0.98 Matrix-MSH		DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.33 -0.71 0.07	(loc) 14 14 11	l/defl >999 >579 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 252 lb	GRIP 244/190 FT = 20%
LUMBER-				BR	ACING-						
TOP CHORD	2x4 SP No.2			TO	P CHORD	Sheathe	d, exce	ept end v	erticals, and 2	-0-0 oc purlins (4-9-7	max.):
BOT CHORD	2x4 SP No.1 *Ex	xcept*				5-7, 9-10).				
	15-17: 2x4 SP N	lo.2		BO	T CHORD	Rigid cei	iling dire	ectly app	lied or 2-2-0 o	c bracing. Except:	
WEBS	2x4 SP No.2 *Ex	xcept*				6-0-0 oc	bracing	g: 15-17			
	10-11,9-12,9-11	,2-21,14-16: 2x4 SP No.3		WE	BS	1 Row at	t midpt		6-17, 6-15		
REACTIONS.	(lb/size) 11=1 Max Horz 21=2 Max Grav 11=1	407/Mechanical, 21=1413/0-3-8 238(LC 12) 1601(LC 3), 21=1622(LC 25)									
FORCES. (Ib) - Max. Comp./M	lax. Ten All forces 250 (lb) or less exc	ept when shown.	2/161							
I OF CHORD	8-9=-3230/268	3, 2-21=-1536/168	1399/119, 1-0=-2113	5/101,							
BOT CHORD	20-21=-226/54 11-12=-110/24	19, 18-20=-86/1829, 14-18=0/1511, 13-1 112	4=0/1511, 12-13=-3	86/178	9,						
-											

	11-12=-110/2412
WEBS	4-18=-417/246, 5-18=0/759, 17-18=-304/86, 6-15=-252/117, 13-15=-338/56,
	7-13=0/1103, 8-13=-546/262, 8-12=-191/1095, 9-12=-759/211, 9-11=-2789/101,
	2-20=0/1352

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

5) 200.0lb AC unit load placed on the bottom chord, 17-7-15 from left end, supported at two points, 5-0-0 apart.

6) Provide adequate drainage to prevent water ponding.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Refer to girder(s) for truss to truss connections.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be doiny water the building designer must verify the subject to based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

C GI minum January 13,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for use only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affiliate 818 Soundside Road

Edenton, NC 27932

REACTIONS. (lb/size) 11=1455/Mechanical, 21=1424/0-3-8 Max Horz 21=291(LC 12) Max Grav 11=1640(LC 3), 21=1621(LC 25)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-2142/122, 4-5=-1928/141, 5-6=-1423/184, 6-7=-1389/174, 7-8=-2054/165,

8-9=-1678/139, 2-21=-1533/168

- BOT CHORD 20-21=-479/730, 18-20=-307/1818, 14-18=-106/1502, 13-14=-106/1502, 12-13=-132/1698, 11-12=-148/965
- WEBS 4-18=-422/251, 5-18=0/751, 17-18=-296/83, 6-15=-252/92, 13-15=-337/33, 7-13=0/1087, 8-13=-517/252, 8-12=-991/12, 9-12=0/1327, 9-11=-1689/163, 2-20=0/1335

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

5) 200.0lb AC unit load placed on the bottom chord, 17-7-15 from left end, supported at two points, 5-0-0 apart.

6) Provide adequate drainage to prevent water ponding.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Refer to girder(s) for truss to truss connections.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being real of the set only water the building designer must verify the subject of building designer much the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

5) 200.0lb AC unit load placed on the bottom chord, 17-7-15 from left end, supported at two points, 5-0-0 apart.

6) Provide adequate drainage to prevent water ponding.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Refer to girder(s) for truss to truss connections.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing tabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	107 Crossings-Braxton C-Roof
					E13944900
20060092-01	T15GR	ROOF SPECIAL GIRDER	1	2	
				_	Job Reference (optional)
Carter Components (Sanford	d), Sanford, NC - 27332,			8.330 s De	ec 5 2019 MiTek Industries, Inc. Fri Jan 10 10:18:34 2020 Page 1
			ID:7p2S9MKN	b?TA?fTu	8od_hzaiAU-afwfS76fUq70LXfAlh9SD3vEqyQ9eS_jp8XdJQzwnoZ
		1-8-6 4-10-11 8-1-0	11-3-5 1	4-5-10 /16	5-2-0 ₁
		1-8-6 3-2-5 3-2-5	3-2-5	3-2-5 ['] 1·	-8-6

Scale = 1:80.2

818 Soundside Road Edenton, NC 27932

| 1-8-6 | 4-10-11 | 8-1-0 | 11-3-5 | 14-5-10 | 16-2-0 | 1-8-6 | 3-2-5 | 3-2-5 | 3-2-5 | 3-2-5 | 3-2-5 | 1-8-6 | [1:0-3-12,0-1-8], [2:0-2-8,0-1-8], [6:0-2-8,0-1-8], [7:0-3-12,0-1-8], [8:Edge,0-2-3], [9:0-4-0,0-4-0], [10:0-3-8,0-4-8], [11:0-5-0,0-4-8], [12:0-3-8,0-4-8 Plate Offsets (X,Y)--

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 13.9/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2015/TPI2014	CSI. TC 0.59 BC 0.39 WB 0.90 Matrix-MSH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.10 10-11 -0.21 10-11 0.35 8	l/defl L/ >999 24 >906 18 n/a n/	′d 0 0 ′a	PLATES MT20 Weight: 300 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x4 SP No.2 Except* 9-13: 2x6 SP 2400F 2.0E TOP CHORD 2x4 SP No.2 *Except* 9-13: 2x6 SP 2400F 2.0E BOT CHORD 80T CHORD Sheathed or 3-3-12 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 2x4 SP No.2 *Except* 1-14,7-8,6-10,6-9,2-12,2-13: 2x4 SP No.3 BOT CHORD Sheathed or 3-12 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS. (lb/size) 14=5594/0-3-8, 8=6576/0-3-8 Max Horz 14=5594/0-3-8, 8=6576/0-3-8 Max Horz Max Horz 14=-263(LC 5) Max Grav 14=6162(LC 3), 8=7250(LC 3)									
FORCES. (lb) - Max. Comp./N TOP CHORD 1-14=-5982/0, 6-7=-10582/0, 607 BOT CHORD 13-14=-490/37 WEBS 4-11=0/7106, 3-11=-2315/0, -2315/0,	DRCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. DP CHORD 1-14=-5982/0, 1-2=-10815/0, 2-3=-6663/0, 3-4=-4668/0, 4-5=-4667/0, 5-6=-6783/0, 6-7=-10582/0, 7-8=-5851/0 DT CHORD 13-14=-490/377, 12-13=0/6060, 11-12=0/3985, 10-11=0/4056, 9-10=0/5955 EBS 4-11=0/7106, 5-11=-2460/0, 5-10=0/3731, 6-10=-2148/0, 6-9=0/3983, 7-9=0/6834, 3-11=-2315/0, 3-12=0/3508, 2-12=-2361/0, 2-13=0/4361, 1-13=0/6978								
 NOTES- 1) 2-ply truss to be connected to Top chords connected as foll Bottom chords connected as Webs connected as follows: 2 2) All loads are considered equa ply connections have been pl 3) Unbalanced roof live loads hat 4) Wind: ASCE 7-10; Vult=130n MWFRS (envelope); cantilew 5) TCLL: ASCE 7-10; Vult=130n MWFRS (envelope); cantilew 5) TCLL: ASCE 7-10; Vult=130n 6) * This truss has been designe will fit between the bottom ch 7) Bearing at joint(s) 14, 8 consi capacity of bearing surface. 8) Hanger(s) or other connection down at 3-11-4, 1620 lb dow down at 13-11-4, and 1352 ll responsibility of others. LOAD CASE(S) Standard 	Igether with 10d (0.131"x3") nails as follo bys: 2x4 - 1 row at 0-7-0 oc. follows: 2x4 - 1 row at 0-3-0 oc, 2x6 - 2 r 2x4 - 1 row at 0-9-0 oc. ally applied to all plies, except if noted as a ve been considered for this design. typh (3-second gust) Vasd=103mph; TCD er left and right exposed ; end vertical lef 5 (roof live load: Lumber DOL=1.15 Plat 5 Plate DOL=1.15); Category II; Exp B; F ad for a live load of 20.0psf on the botton ord and any other members. iders parallel to grain value using ANSI/T n device(s) shall be provided sufficient to n at 5-11-4, 1670 lb down at 7-11-4, 16 b down at 16-0-4 on bottom chord. The	ws: ows staggered at 0-5-0 o front (F) or back (B) face (F) or (B), unless otherwis NL=6.0psf; BCDL=6.0psf; t and right exposed; Lum e DCL=1.15); Pg=20.0 p ully Exp.; Ct=1.10 n chord in all areas where 'PI 1 angle to grain formu o support concentrated loa 36 lb down at 9-11-4, 15 design/selection of such	bc. a in the LOAD CAS se indicated. h=25ft; Cat. II; Ex ber DOL=1.60 pla sf (ground snow); a a rectangle 3-6-0 ila. Building desig ad(s) 1530 lb down 30 lb down at 11 connection device	SE(S) section. F ate grip DOL=1. Pf=13.9 psf (fla 0 tall by 2-0-0 w gner should veri n at 1-8-6, 153 -11-4, and 1581 e(s) is the	Ply to 33 it ide fy 0 lb I b	Manna Manna	SEAL 036322	2 BHR 1000	

Continued on page

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

ſ	Job	Truss	Truss Type	Qty	Ply	107 Crossings-Braxton C-Roof	
							E13944900
	20060092-01	T15GR	ROOF SPECIAL GIRDER	1	2		
						Job Reference (optional)	
	Carter Components (Sanford), Sanford, NC - 27332,			8.330 s De	ec 5 2019 MiTek Industries, Inc. Fri Jan 10 10:18:34 2020	D Page 2
			ID:7p	2S9MKN7	b?TA?fTu	3od_hzaiAU-afwfS76fUq70LXfAlh9SD3vEqyQ9eS_jp8XdJ	JQzwnoZ

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-48, 4-7=-48, 13-14=-20, 9-13=-20, 8-9=-20

Concentrated Loads (lb)

Vert: 8=-1175(B) 13=-1383(B) 11=-1453(B) 15=-1410(B) 16=-1435(B) 17=-1438(B) 18=-1414(B) 19=-1387(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Ib down and 1 lb up at 1-3-4, 1342 lb down at 3-3-4, 7 lb down and 1 lb up at 3-3-4, 1342 lb down at 5-3-4, 7 lb down and 1 lb up at 5-3-4, 1342 lb down at 7-3-4, 7 lb down and 1 lb up at 7-3-4, and 1347 lb down at 9-3-4, and 10 lb down and 0 lb up at 9-3-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Continued on page 2

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for use only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. January 13,2020

GI minum

C

Job	Truss	Truss Type	Qty	Ply	107 Crossings-Braxton C-Roof
					E13944901
20060092-01	T16GR	Flat Girder	1	2	
				_	Job Reference (optional)
Carter Components (Sanford	d), Sanford, NC - 27332,			8.330 s De	ec 5 2019 MiTek Industries, Inc. Fri Jan 10 10:18:35 2020 Page 2

8.330 s Dec 5 2019 MiTek Industries, Inc. Fri Jan 10 10:18:35 2020 Page 2 ID:7p2S9MKN7b?TA?fTu8od_hzaiAU-2rU1fT6HF7FtygEMJOhhmHRMJMeUNw1s2oHArszwnoY

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-58, 4-6=-20

Concentrated Loads (lb)

Vert: 1=-14 3=-14 5=-1271 (F=0, B=-1271) 11=-1271 (F=0, B=-1271) 12=-1271 (F=0, B=-1271) 13=-1271 (F=0, B=-1271) 14=-1275 (F=-0, B=-1275) (F=-

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

