

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 2000493-2000493A RG14-A01 Stanton Tray Master Nook

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I41899020 thru I41899045

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

July 2,2020

Sevier, Scott

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

July 2,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

July 2,2020

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 ENGINEERING BY REENCO A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12 and 8. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

11-12=-214/976, 9-11=-41/572, 8-9=-88/473 WEBS 4-11=-360/319, 5-11=-202/758, 6-9=-24/341, 4-12=-938/0, 6-8=-996/167, 7-14=-947/153

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Bearing at joint(s) 14 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12 and 14. This connection is for uplift only and does not consider lateral forces.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job 2000493-2000493A 84 Components (Dunn),	Truss A7A	Truss Type	Qty	Ply	RG14-A01 Stanton T	ray Master Nook	141899029
2000493-2000493A 84 Components (Dunn),	A7A	Roof Special					111000020
84 Components (Dunn),			3	1	Job Reference (option	nal)	
	Dunn, NC - 28334,			8.330 s M	lay 6 2020 MiTek Indus	stries, Inc. Thu Jul 2 10:27:5	2 2020 Page 1
	1-2-8 2-3-8	8-3-8 13-6-0	18-3-0		23-3-8		100000220735
	1-2-0 2-3-0	0-0-0 5-2-0	4-9-0		5-0-0		0 1 1 70 0
			6x6 =				Scale = 1:70.6
	_		6				
	4x8 // 3x4 // 4x6 // 3	9.00 12 2x4 5		3x4 7	4x8 =	-0-11	
	ug 1 13	12			17 3x	4 =	
		= 7x12 =	<u> </u>		19		
	3x4 2x4	11 2x4	10 4x8 =		4x8 =		
			470 —		470 —		
	2-3-8	8-3-8 13-6-0		23-3-8			
Plate Offsets (X,Y) [2:0	-2-14,0-2-0], [6:0-3-8,Edge],	8:0-3-8,Edge], [13:0-3-0,0-0-0]		3-3-0		1	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.80 BC 0.89 WB 0.82 Matrix-MS	DEFL. Vert(LL) -0.3 Vert(CT) -0.5 Horz(CT) 0.0	in (loc) 0 9-10 1 9-10 5 17	l/defl L/d >909 240 >540 180 n/a n/a	PLATES GR MT20 197 Weight: 182 lb F	IP '/144 T = 20%
LUMBER-			BRACING-			_	
TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No 4-14,5-11: 2x4 SP No OTHERS 2x4 SP No	2 or 2x4 SPF No.2 2 or 2x4 SPF No.2 *Except* 2x4 SP No.3 3		TOP CHORD BOT CHORD WEBS	Structur except e Rigid ce 1 Row a	al wood sheathing dir end verticals. siling directly applied c at midpt 7	ectly applied or 4-9-15 oc p or 6-0-0 oc bracing. -10, 7-9	urlins,
01HER3 2x4 3P N0	.5						
REACTIONS. (size) Max Horz Max Uplift Max Grav	15=0-3-8, 17=0-3-8 15=287(LC 9) 15=-112(LC 12), 17=-93(LC 15=1003(LC 1), 17=913(LC	12) 19)					
FORCES. (lb) - Max. Con TOP CHORD 2-4=-145 9-16=-64 9-16=-64 BOT CHORD 12-13=-5 WEPS 4.12	np./Max. Ten All forces 250 2/299, 4-5=-1120/238, 5-6=-1 /751, 8-16=-64/751 06/1455, 5-12=-402/294, 9-10	(lb) or less except when shown. 125/432, 6-7=-698/260, 2-15=-96 2=-88/483	57/219,				
4-12=-56 8-17=-91	4/323, 10-12=0/580, 6-12=-3 6/154	55/110, 1-9=-123/134, 2-13=-276/	1131,				
NOTES- 1) Unbalanced roof live loa 2) Wind: ASCE 7-10; Vult= MWFRS (envelope) gab MWFRS for reactions sf 3) This truss has been de will fit between the botto 5) Bearing at joint(s) 17 con capacity of bearing surfa 6) One H2.5A Simpson Str connection is for uplift of	ids have been considered for 130mph (3-second gust) Vas ile end zone and C-C Exterior nown; Lumber DOL=1.60 plat igned for a 10.0 psf bottom cl esigned for a live load of 20.0 m chord and any other memb nsiders parallel to grain value ace. ong-Tie connectors recomment nly and does not consider late	this design. d=103mph; TCDL=6.0psf; BCDL= (2) zone; end vertical left and rigf e grip DOL=1.60 ord live load nonconcurrent with sof on the bottom chord in all area ers, with BCDL = 10.0psf. using ANSI/TPI 1 angle to grain i ended to connect truss to bearing aral forces.	=6.0psf; h=30ft; Cat. II ht exposed;C-C for me any other live loads. is where a rectangle 3 formula. Building des walls due to UPLIFT a	; Exp B; Er mbers and -6-0 tall by igner shoul at jt(s) 15 a	nclosed; I forces & 2-0-0 wide d verify nd 17. This	SEAL 04492	5 PHULIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	RG14-A01 Stanton	Tray Master Nook	
2000493-2000493A	в	ATTIC	11	1			141899031
84 Components (Dunn).	Dunn. NC - 28334.			8.330 s M	Job Reference (optio	nal) ustries, Inc. Thu Jul 21():27:57 2020 Page 1
• • • • • · · · · · · · · · · · · · · ·	-1-2-9	. 5.4.4 . 8.0.14 8.0	ID:gobNKKBDjJetl	_acJ4?Twuo	z1QVp-Mu7ezmawTR	ddUB1iZ8DdR0X5Pgf93	oCN3BWRuAz07s0
	1-2-8	5-4-4 2-8-10 0-8	B-9 2-8-8 2-8-8	0-8-9 2-8-10	2 <u>23-0-0</u>) 5-4-4	1-2-8	
			6x6 =				Scale = 1:71.4
			0.00				
	т		8				
		10.00 12					
				0			
		5					
			21				
	m	5x9 1/ 4		X	12 5x9 1		
	-11	3			13		
	7		3-2-4				
	6x6 =		ω	0		6x6 =	
	2			4-10-		14	
			12-0-0		·		
	2-4						
	1 1	20 40	18		47		
	3	x6 8x8 =	8x8 =		8x8 =	3x6	
		5-4-4 11-	6-0 1	7-7-12	23-0-0		
		5-4-4 6-1	-12	6-1-12	5-4-4		
Plate Offsets (X,Y)	17:0-3-8,0-4-12], [19:0-3-8,0-4	-12]					
LOADING (psf)	SPACING- 2-0	0 CSI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
TCDL 20.0	Lumber DOL 1.	5 IC 0.83 5 BC 0.95	Vert(LL) -0.2 Vert(CT) -0.4	29 17-19 15 17-19	>948 240 >611 180	M120	197/144
BCLL 0.0 *	Rep Stress Incr YE	S WB 0.38	Horz(CT) 0.0)1 16	n/a n/a	Waisht 004 lb	FT 200/
BCDL 10.0			Auto -0.	7 17-19	882 300	Weight. 231 lb	FT = 20%
LUMBER- TOP CHORD 2x6 SP	DSS *Except*		BRACING- TOP CHORD	Structur	al wood sheathing di	rectly applied or 2-8-10) oc purlins
6-7,10-1	1: 2x4 SP No.2 or 2x4 SPF N	o.2, 1-3,13-15: 2x6 SP No.2		except e	end verticals.		, eo parme,
BOT CHORD 2x10 SF WEBS 2x4 SP	⁹ No.2 No.3 *Except*		BOT CHORD JOINTS	Rigid ce 1 Brace	at Jt(s): 21. 6. 7. 10.	or 2-2-0 oc bracing. 11	
12-17,4	-19,5-9: 2x4 SP No.2 or 2x4 S	PF No.2					
REACTIONS. (size)) 20=0-3-8, 16=0-3-8						
Max Ho Max Gr	rz 20=325(LC 11)	(1 C 21)					
Wax G	av 20=1429(LC 20), 10=1429	(LC 21)					
FORCES. (lb) - Max. (Comp./Max. Ten All forces 2	50 (lb) or less except when shown					
14-16	=-1504/56	1034/103, 12-14=-1320/0, 2-20=-1					
BOT CHORD 19-20: WEBS 11-17:	=-288/379, 17-19=0/1061 =-13/652, 11-12=-29/592, 6-19	=-13/652.4-6=-29/592.5-7=-1335	5/199.				
7-21=-	-1216/193, 10-21=-1216/193,	9-10=-1335/199, 2-19=0/1002, 14-	17=0/1003				
NOTES-							
1) Unbalanced roof live	loads have been considered f	or this design.	Constitute 20th Cat				
MWFRS (envelope) g	able end zone and C-C Exter	or(2) zone; end vertical left and rig	_=0.0psi, n=30it, Cat. i ht exposed;C-C for me	embers and	forces &		
MWFRS for reactions	shown; Lumber DOL=1.60 pl	ate grip DOL=1.60					
4) This truss has been of	lesigned for a 10.0 psf bottom	chord live load nonconcurrent with	n any other live loads.				
 This truss has been will fit between the bo 	designed for a live load of 20 attom chord and any other me	Opsf on the bottom chord in all are	eas where a rectangle :	3-6-0 tall by	2-0-0 wide	I' ATH	AHOLIN
6) Ceiling dead load (5.0	0 psf) on member(s). 4-5, 9-12	, 5-7, 7-21, 10-21, 9-10; Wall dea	d load (5.0psf) on men	nber(s).11-1	7, 11-12,	Sa HEE	SSIC
6-19, 4-6 7) Bottom chord live loa	d (40.0 psf) and additional bot	tom chord dead load (5.0 psf) appl	lied only to room, 17-1	9	•	Here and a second	
8) Graphical purlin repre	esentation does not depict the	size or the orientation of the purlin	along the top and/or b	ottom chore	d.	E SE	
9) Attic room checked fo	or L/360 deflection.					04/	1925
						= :	
						3. O. A.	aini
						C NGI	NEF
						IIIIT N	SEVIN
						11111	mm

July 2,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ENGINEERING BY AMITEK Atfiliate 818 Soundside Road Edenton, NC 27932

Job	Iruss	Truss Type	Qty	Ріу	RG14-A01 Stanton T	ray Master Nook	141899032	
2000493-2000493A	BE	GABLE	1	1				
84 Components (Dunn)	Dunn NC - 28334			8 330 s M	Job Reference (option	nal) stries Inc. Thu Jul 2.10	:27:59 2020 Page 1	
ou components (Dunin),	1-2-8	5-4-4 8-0-14 8-9-8 5-4-4 2-8-10 0-8-9	ID:gobNKKBDjJe 11-6-0 14-2-8 14 2-8-8 2-8-8	etLacJ4?Tw 4 ₇ 11 ₇ 2 17-7-1)-8-9 2-8-10	uoz1QVp-IHFOOSbB?2 2 23-0-0 5-4-4	2tLjVB4gZF5WRdQuULo <u>24-2-8</u> 1-2-8	dXihfWV?Xy3z07s_	
			6x6 =				Scale = 1:71.4	
			<i>ono</i>					
	6x6 =	10.00 12 5x9 / 4 6 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 21 8 8 7 7 8 8 7 7 7 8	9	11 12 5x9 ×	6x6 =		
			12-0-0			14 15		
	2-4-8		•			2-4-8 0-4-7		
		19 ¹	18		17	16		
	3x	5 8x8 = ^{8x}	(8 =		8x8 =	3x6		
Plate Offsets (X X) [1	7:0-3-8 0-4-12] [19:0-3-8 0-4-	5-4-4 11-6-0 5-4-4 6-1-12	2 17 2 6	-7-12 -1-12	23-0-0 5-4-4	—		
	1.0 0 0,0 1 12], [10.0 0 0,0 1							
LOADING (psf)	SPACING- 2-0-0 Plate Grip DOI 1 15	CSI. TC 0.83	DEFL. i Vert(LL) -0.2	n (loc) 9 17-19	I/defI L/d	PLATES MT20	GRIP 197/144	
TCDL 10.0	Lumber DOL 1.15	BC 0.95	Vert(CT) -0.4	5 17-19	>611 180			
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MS	Attic -0.1	1 16 7 17-19	n/a n/a 882 360	Weight: 246 lb	FT = 20%	
LUMBER-			BRACING-					
TOP CHORD 2x6 SP I 6-7,10-1 6-7,10-1 BOT CHORD 2x10 SP WEBS 2x4 SP N 12-17,4- 0THERS 0THERS 2x4 SP N	LUMBER- BRACING- TOP CHORD 2x6 SP DSS *Except* TOP CHORD TOP CHORD Structural wood sheathing directly applied or 2-8-10 oc purlins, except end verticals. BOT CHORD 2x10 SP No.2 BOT CHORD BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. WEBS 2x4 SP No.3 *Except* JOINTS 1 Brace at Jt(s): 21, 6, 7, 10, 11 OTHERS 2x4 SP No.3 ST No.2 ST No.2							
REACTIONS. (size) Max Hor Max Gra	20=0-3-8, 16=0-3-8 z 20=325(LC 11) v 20=1429(LC 20), 16=1429(I	C 21)						
FORCES. (lb) Max. C TOP CHORD 2-4=-11 14-16= BOT CHORD 19-20= WEBS 11-17= 7-21=-7	omp./Max. Ten All forces 25 520/6, 4-5=-1095/165, 9-12=-1 -1504/56 -288/379, 17-19=0/1061 -13/652, 11-12=-29/592, 6-19= 1216/193, 10-21=-1216/193, 9	0 (lb) or less except when shown. 094/165, 12-14=-1520/6, 2-20=-150 -13/652, 4-6=-29/592, 5-7=-1335/19 10=-1335/199, 2-19=0/1002, 14-17	14/56, 99, =0/1003					
 NOTES- 1) Unbalanced roof live I 2) Wind: ASCE 7-10; Vui MWFRS (envelope) g MWFRS for reactions 3) Truss designed for win Gable End Details as 4) All plates are 2x4 MTZ 5) Gable studs spaced a 6) This truss has been did 7) * This truss has been did 9) Bottom chord live load 10) Graphical purlin reprint 11) Attic room checked for 	bads have been considered fo t=130mph (3-second gust) Va able end zone and C-C Exteric shown; Lumber DOL=1.60 pla nd loads in the plane of the trus applicable, or consult qualified 00 unless otherwise indicated. t 2-0-0 oc. seigned for a 10.0 psf bottom of designed for a live load of 20.0 tom chord and any other mem psf) on member(s). 4-5, 9-12, 1 (40.0 psf) and additional botto esentation does not depict the or L/360 deflection.	this design. d=103mph; TCDL=6.0psf; BCDL=6 r(2) zone; end vertical left and right e grip DOL=1.60 is only. For studs exposed to wind is building designer as per ANSI/TPI 1 hord live load nonconcurrent with an psf on the bottom chord in all areas pers. 5-7, 7-21, 10-21, 9-10; Wall dead low m chord dead load (5.0 psf) applied size or the orientation of the purlin a	6.0psf; h=30ft; Cat. II exposed;C-C for me (normal to the face), 1. where a rectangle 3 pad (5.0psf) on mem d only to room. 17-19 along the top and/or l	; Exp B; Er mbers and see Stand -6-0 tall by ber(s).11-1	nclosed; forces & ard Industry 2-0-0 wide 17, 11-12, rd.	SE O44	AROL SIGN N AL 925 NEER, IR	

ENGINEERING BY AMITEK Affiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek@ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek . 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	RG14-A01 Stanton Tr	ay Master Nook	141899035
2000493-2000493A	CGR	Common Girder	1	2		N	111000000
84 Components (Dunn),	Dunn, NC - 28334,			8.330 s M	Job Reference (option ay 6 2020 MiTek Indus	al) tries, Inc. Thu Jul 2 10:28:0	8 2020 Page 1
		5-8-10 . 11-1-12 .	D:gobNKKBDjJe 16-6-14	tLacJ4?T	wuoz1QVp-X0IoHXiqtp 22-3-8	03luNpiyvCOKV_06XE8em_	bOgWm2z07rr
		5-8-10 5-5-2	5-5-2		5-8-10		
		5x9	П				Scale = 1:66.4
	6x6 = 1	3 10.00 12 3x7 1/2 2			3x7 № 4	x6 = 5	
				<u> •</u>		T I-́	
	11 6x6 =	12 13 10 14 9 15 8 $5x16$ MT18HS =	16 17	7 ¹	8 19 20 6	6 <6 =	
	0.0 -	8x8 = 8x8	=	8x8	3 = 0.		
		5-8-10 11-1-12	16-6-14	1	22-3-8	I	
Plate Offsets (X Y) [1·F	dae 0-2-8] [5:Edae 0-2-8] [7	5-8-10 5-5-2 '.0-3-8 0-4-12] [8:0-4-0 0-4-8] [10:0-3-8 0	5-5-2 4-12]	1	5-8-10		
				(1)	1/-1		
TCLL 20.0	Plate Grip DOL 1.15	TC 0.81 Veri	-L. In t(LL) -0.08	(IOC) 8-10	>999 240	MT20 197	7/144
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr NO	BC 0.47 Vert WB 0.90 Hor.	t(CT) -0.16 z(CT) 0.02	8-10 6	>999 180 n/a n/a	MT18HS 244	4/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MS				Weight: 381 lb F	T = 20%
LUMBER- TOP CHORD 2x6 SP No. BOT CHORD 2x6 SP DS WEBS 2x4 SP No. 3-8,1-11,5-1	2 S 3 *Except* 6: 2x4 SP No.2 or 2x4 SPF N	BRA TOF BOT	CHORD	Structura except e Rigid cei	al wood sheathing dire nd verticals. Iling directly applied o	ectly applied or 5-11-12 oc r 10-0-0 oc bracing.	purlins,
REACTIONS. (size) Max Horz Max Uplift Max Grav	11=0-3-8, 6=0-3-8 11=-262(LC 8) 11=-655(LC 12), 6=-647(LC 11=6150(LC 1), 6=6073(LC	13) 1)					
FORCES. (lb) - Max. Com TOP CHORD 1-2=-679 5-6=-5211 5-6=-5211 BOT CHORD 10-11=-32 WEBS 3-8=-779/ 1-10=-429 1-10=-429	np./Max. Ten All forces 250 8/825, 2-3=-4912/723, 3-4=-4 7/646 22/969, 8-10=-605/5116, 7-8: /5806, 4-8=-2002/397, 4-7=-2 9/4337, 5-7=-432/4348	9 (lb) or less except when shown. 1912/723, 4-5=-6786/824, 1-11=-5223/647, =-554/5107, 6-7=-129/823 248/2372, 2-8=-2138/399, 2-10=-250/2606,					
NOTES- 1) 2-ply truss to be connect Top chords connected as Bottom chords connected as Bottom chords connected as folloads are considered ply connections have bea 3) Unbalanced roof live load 4) Wind: ASCE 7-10; Vult=' MWFRS (envelope) gabl MWFRS (envelope) gabl MWFRS for reactions sh 5) All plates are MT20 plate 6) This truss has been desis 7) * This truss has been desis 8) * This truss has been	ted together with 10d (0.120": s follows: 2x6 - 2 rows stagged d as follows: 2x6 - 2 rows stagged memory and the stagged for a log lates as unless otherwise indicated gned for a 10.0 psf bottom cf signed for a 10.0 psf bottom cf signed for a live load of 20.0 m chord and any other memb considers parallel to grain val ice. ong-Tie connectors recommen hy and does not consider late nection device(s) shall be pro nd 123 lb up at 4-0-12, 1105 at 10-0-12, 1046 lb down and 12 extion of such connection device	x3") nails as follows: pred at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. tiggered at 0-7-0 oc. xcept if noted as front (F) or back (B) face i loads noted as (F) or (B), unless otherwise this design. d=103mph; TCDL=6.0psf; BCDL=6.0psf; h (2) zone; end vertical left and right exposed e grip DOL=1.60 ord live load nonconcurrent with any other bit on the bottom chord in all areas where a pers. ue using ANSI/TPI 1 angle to grain formula ended to connect truss to bearing walls due eral forces. wided sufficient to support concentrated load i b down and 123 lb up at 12-0-12, 1046 lb down and 3 lb up at 18-0-12, and 1096 lb down and tice(s) is the responsibility of others.	n the LOAD C. = indicated. = 30ft; Cat. II; E d;C-C for mem live loads. a rectangle 3-6 a. Building des to UPLIFT at j ad(s) 1105 lb d down and 123 123 lb up at 12	ASE(S) set Exp B; En bers and -0 tall by igner sho t(s) 11 ar own and lb up at -0-12, 10 0-0-12 on	ection. Ply to closed; forces & 2-0-0 wide ruld verify nd 6. This 123 lb up at 8-0-12, 1105 146 lb down bottom	SEAL 04492	5 5 2,2020
WARNING - Verify des. Design valid for use only wa a truss system. Before use building design. Bracing in is always required for stab fabrication, storage, delive Safety Information availa	ign parameters and READ NOTES (vith MiTek® connectors. This design , the building designer must verify th ndicated is to prevent buckling of indi ility and to prevent collapse with pos. ry, erection and bracing of trusses a able from Truss Plate Institute, 2670	DN THIS AND INCLUDED MITEK REFERENCE PAGE I is based only upon parameters shown, and is for an in e applicability of design parameters and properly incorr vidual truss web and/or chord members only. Addition sible personal injury and property damage. For genera d truss systems, see ANSUTPI Quality Cri Crain Highway, Suite 203 Waldorf, MD 20601	MII-7473 rev. 10/03 dividual building or porate this design al temporary and p al guidance regardi teria, DSB-89 and	2015 BEFC omponent, n into the ove bermanent b ng the BCSI Build	DRE USE. lot rall racing ding Component	A 818 Soundside Roa Edenton, NC 27932	s BY NCO MITek Affiliate d

Truss	Truss Type	Qty	Ply	RG14-A01 Stanton Tray Master Nook
				141899035
CGR	Common Girder	1	ົ	
			_	Job Reference (optional)
Dunn, NC - 28334,			8.330 s M	ay 6 2020 MiTek Industries, Inc. Thu Jul 2 10:28:08 2020 Page 2
	Truss CGR Dunn, NC - 28334,	Truss Type CGR Common Girder Dunn, NC - 28334,	Truss Truss Type Qty CGR Common Girder 1 Dunn, NC - 28334,	Truss Truss Type Qty Ply CGR Common Girder 1 2 Dunn, NC - 28334, 8.330 s M.

ID:gobNKKBDjJetLacJ4?Twuoz1QVp-X0IoHXiqtp03IuNpiyvCOKV_06XE8em_bOgWm2z07rr

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 6-11=-20

Concentrated Loads (lb)

Vert: 9=-1046(B) 12=-1046(B) 13=-1046(B) 14=-1046(B) 15=-1046(B) 16=-1046(B) 17=-1046(B) 18=-1046(B) 19=-1046(B) 20=-1046(B) 10=-1046(B) 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		6.4	n	-	n
		IVI	-	-	к.
_	÷		_	_	••

10.0

BCDL

 TOP CHORD
 2x4 SP No.2 or 2x4 SPF No.2

 BOT CHORD
 2x4 SP No.2 or 2x4 SPF No.2

 WEBS
 2x4 SP No.3

 OTHERS
 2x4 SP No.3

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

Weight: 71 lb

FT = 20%

REACTIONS. All bearings 11-0-0.

(lb) - Max Horz 16=-180(LC 10)

 Max Uplift
 All uplift 100 lb or less at joint(s) 10, 14, 12 except 16=-105(LC 8), 15=-112(LC 12), 11=-109(LC 13)

 Max Grav
 All reactions 250 lb or less at joint(s) 16, 10, 13, 14, 15, 12, 11

Matrix-R

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2015/TPI2014

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek A 818 Soundside Road Edenton, NC 27932

TOP CHORD

BOT CHORD

LUMBER-

2x4 SP No.3 TOP CHORD 2x4 SP No.3 BOT CHORD OTHERS

2x4 SP No.3

REACTIONS. (size) 1=9-7-14, 3=9-7-14, 4=9-7-14

Max Horz 1=-92(LC 8)

Max Uplift 1=-30(LC 13), 3=-42(LC 13), 4=-7(LC 12) Max Grav 1=186(LC 1), 3=186(LC 1), 4=339(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 1=6-0-11, 3=6-0-11, 4=6-0-11

Max Horz 1=-55(LC 8)

Max Uplift 1=-25(LC 13), 3=-32(LC 13) Max Grav 1=121(LC 1), 3=121(LC 1), 4=183(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

L	U	VI	в	E	ĸ	•

BCDL

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3 OTHERS 2x4 SP No.3

10.0

OTHERS 2x4 SP No.3

REACTIONS. (size) 1=9-1-2, 3=9-1-2, 4=9-1-2

Max Horz 1=86(LC 9)

Max Uplift 1=-29(LC 13), 3=-39(LC 13), 4=-7(LC 12)

Code IRC2015/TPI2014

Max Grav 1=175(LC 1), 3=175(LC 1), 4=318(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-S

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Weight: 34 lb

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 SP No.3 BOT CHORD OTHERS 2x4 SP No.3

REACTIONS. (size) 1=5-5-14, 3=5-5-14, 4=5-5-14

Max Horz 1=-49(LC 8)

Max Uplift 1=-23(LC 13), 3=-29(LC 13)

Max Grav 1=108(LC 1), 3=108(LC 1), 4=164(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

