

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 2000492-2000492A Wellons RG15-A02 Winston

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I41857084 thru I41857105

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

June 30,2020

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Wellons RG15-A02 Winston
					141857084
2000492-2000492A	CGR	COMMON GIRDER	1	2	
				5	Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8	.330 s May	6 2020 MiTek Industries, Inc. Tue Jun 30 07:13:19 2020 Page 2
		ID:3M4xqgv	GuWbK2e	oTF20809	z1Ahy-aQdadAPgd9s3z2?6CwUjxJb256UGu5YVmwaQRgz1A_U

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 10-13=-20

Concentrated Loads (lb)

Vert: 8=-1558(F) 6=-1170(F) 9=-1558(F) 16=-1558(F) 17=-1558(F) 18=-1170(F) 19=-1170(F) 20=-1170(F) 21=-1170(F) 22=-1170(F) 20=-1170(F) 20=

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1				22-0-0						1	
I				22-0-0							
Plate Offsets (X,Y)	[2:Edge,0-1-0], [2:0-1-7,0-	5-8], [12:Edge	e,0-1-0], [12:0-1-7,0-	-5-8]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI	2-0-0 1.15 1.15 YES 2014	CSI. TC 0.10 BC 0.06 WB 0.07 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 0.00	(loc) 13 12 12	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20 Weight: 117 lb	GRIP 197/144 FT = 20%	
LUMBER-			1	BRACING-							

TOP CHORD

BOT CHORD

UMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD OTHERS 2x4 SP No.3 WEDGE

Left: 2x4 SP No.3 , Right: 2x4 SP No.3

REACTIONS. All bearings 22-0-0.

(lb) - Max Horz 2=98(LC 12) Max Uplift All uplift 100 lb or less at joint(s) 2, 19, 20, 22, 23, 17, 16, 15, 14, 12

Max Grav All reactions 250 lb or less at joint(s) 2, 18, 19, 20, 22, 23, 17, 16, 15, 14, 12

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L			43-0-0			1					
430-0											
Plate Offsets (X,Y)	[1:0-3-8,Edge], [1:0-1-1,0-7-0], [1:0-0-8,0	0-1-1], [4:0-2-7,Edge], [20:0	0-2-7,Edge], [23:0-0-8,0	-1-1], [23:0-1-1,0-7-0], [23:0-3	-8,Edge]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.14 BC 0.09 WB 0.14 Matrix-S	DEFL.inVert(LL)0.00Vert(CT)0.00Horz(CT)0.01	(loc) l/defl L/d 23 n/r 120 24 n/r 90 23 n/a n/a	PLATES GRIP MT20 197/144 Weight: 301 lb FT = 1	4 20%					
LUMBER- BRACING- TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. OTHERS 2x4 SP No.3 VEDGE New at midpt 12-35, 11-36, 10-37, 13-34, 14-33											
REACTIONS. All bearings 43-0-0. (lb) - Max Horz 1=-188(LC 17) Max Uplift All uplift 100 lb or less at joint(s) 1, 36, 37, 39, 40, 41, 42, 43, 44, 45, 34, 33, 31, 30, 29, 28, 27, 26, 25 Max Grav All reactions 250 lb or less at joint(s) 1, 35, 36, 37, 39, 40, 41, 42, 43, 44, 34, 33, 31, 30, 29, 28, 27, 26, 23 except 45=285(LC 23), 25=259(LC 24)											
FORCES. (lb) - Max. TOP CHORD 10-11	Comp./Max. Ten All forces 250 (lb) or =-107/280, 11-12=-122/320, 12-13=-122	less except when shown. 2/320, 13-14=-107/280									
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V	loads have been considered for this de ult=130mph (3-second gust) Vasd=103r	sign. nph; TCDL=6.0psf; BCDL=	=6.0psf; h=30ft; Cat. II; E	Exp B; Enclosed;							

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; ICDL=6.0pst; BCDL=6.0pst; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 June 30,2020

minim

Edenton, NC 27932

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=124, 11=246.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 17. This
 connection is for uplift only and does not consider lateral forces.
- 9) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ł		0 1 1 2	0.5.0		-	10 10 9		-		10- 4	200	F 1 12	
		0-1-12	9-2-0	0 4 41		10-10-8			9-:	5-0	3-0-0	0-1-12	
Fiate Olisets	s (ʌ, ř <i>)</i>	[1.0-0-0,0-0-8], [5:	.0-2-0,0-0-4], [9:0-0-0,	0-1-4]									
LOADING (F TCLL 2 TCDL 1 BCLL BCDL 1	psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip I Lumber DC Rep Stress Code IRC2	2-0-0 DOL 1.15 DL 1.15 Incr YES 2015/TPI2014	CSI. TC BC WB Matri	0.98 0.73 0.90 x-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.36 -0.63 0.11	(loc) 14-15 14-15 11	l/defl >999 >778 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 348 lb	GRIP 197/144 FT = 20%	
LUMBER- TOP CHORE BOT CHORE WEBS OTHERS WEDGE Left: 2x4 SP	D 2x4 SP D 2x4 SP 13-16: 2 2x4 SP 5-15,5- 2x4 SP No.3 , Righ	No.2 or 2x4 SPF No.1 *Except* 2x4 SP DSS No.3 *Except* 14: 2x4 SP No.2 c No.3 ht: 2x4 SP No.3	No.2 or 2x4 SPF No.2	1		BRACING- TOP CHOR BOT CHOR WEBS	D	Structu Rigid c 1 Row	ral wood eiling dire at midpt	sheathing dir ctly applied c 6	ectly applied. r 6-0-0 oc bracing. -12, 8-11		
REACTIONS	Max Ho Max Ho Max Up Max G	prz 1=0-3-8, 11=0 prz 1=-203(LC 17 plift 1=-205(LC 12 rav 1=1614(LC 2)	/-3-8, 9=0-3-8 /) !), 11=-274(LC 13), 9= i, 11=2147(LC 2), 9=1	REL 45(LC 24)									
FORCES. (TOP CHORE	(lb) - Max. D 1-2=-3 8-9=-2	Comp./Max. Ten. 3093/717, 2-4=-30 260/599	- All forces 250 (lb) or 042/857, 4-5=-2331/7*	less except 16, 5-6=-199	when showr 6/635, 6-8=-	n. 1200/410,							
BOT CHORE	D 1-17= 9-11=	-527/2707, 15-17:	=-316/2193, 14-15=-8	6/1521, 12-1	14=-201/1717	7, 11-12=-94/920,							
WEBS	2-17= 6-14=	-416/293, 4-17=-2 -222/265, 6-12=-1	264/786, 4-15=-741/39 1030/194, 8-12=-29/89	94, 5-15=-28 91, 8-11=-24	2/1159, 5-14 21/632	l=-142/546,							
NOTES- 1) Unbalance 2) Wind: ASG MWFRS (DOL=1.6C 3) Truss des Gable Enc 4) All plates : 5) Gable stur 6) This truss will fit betw 8) One H2.5.5 connection	ed roof live CE 7-10; V (envelope) D plate grip signed for w d Details as are 2x4 MI ds spaced has been the be shas been ween the be A Simpson n is for upli	loads have been ult=130mph (3-se gable end zone ar DOL=1.60 vind loads in the pl s applicable, or co I20 unless otherw at 2-0-0 oc. designed for a 10. designed for a lin ottom chord and a Strong-Tie conne ft only and does n	considered for this de cond gust) Vasd=103 nd C-C Exterior(2) zor lane of the truss only. nsult qualified building ise indicated. 0 psf bottom chord liv /e load of 20.0psf on f inny other members, w cctors recommended t ot consider lateral for	sign. mph; TCDL= ne;C-C for m For studs e g designer a: e load nonce he bottom c th BCDL = 1 o connect tri ces.	=6.0psf; BCD lembers and exposed to wi s per ANSI/T oncurrent wit hord in all are 10.0psf. uss to bearin	L=6.0psf; h=30ft; C forces & MWFRS f ind (normal to the fa PI 1. h any other live loa eas where a rectan g walls due to UPL	Cat. II; E or reac ace), se ds. gle 3-6 IFT at j	Exp B; E tions sh ee Stanc -0 tall b <u></u> it(s) 1 ar	nclosed; own; Lun dard Indu y 2-0-0 w nd 11. Thi	nber stry (de s	AND RTH S S S S S S S S S S S S S S S S S S S	EAL 844	A Summanna A

9) "//" indicates Released bearing: allow for upward movement at joint(s) 9.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12. This 7) connection is for uplift only and does not consider lateral forces.

8) "//" indicates Released bearing: allow for upward movement at joint(s) 10.

minim June 30,2020

JOH

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

connection is for uplift only and does not consider lateral forces.

8) "//" indicates Released bearing: allow for upward movement at joint(s) 10.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- WEBS 3-17=-467/305, 5-17=-1168/123, 5-15=-152/263, 6-15=-137/465, 6-14=-56/346,
- 7-14=-81/281, 7-12=-1212/478, 9-12=-446/292

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 3x6 MT20 unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 17 and 12. This 7) connection is for uplift only and does not consider lateral forces.
- 8) "\" indicates Released bearing: allow for upward movement at joint(s) 10.

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Af 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Wellons RG15-A02 Winston
					I41857093
2000492-2000492A	DGR	Common Girder	1	2	
				~	Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8	.330 s May	6 2020 MiTek Industries, Inc. Tue Jun 30 07:13:21 2020 Page 2
		ID:3M4xqgvG	uWbK2eo	TF2o809z1	Ahy-WolK1sQw9n6mDM9VJLWB0kgTOv47MvIoDE3XWZz1A_S

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 5-8=-20

Concentrated Loads (lb)

Vert: 4=-1468(B) 11=-1468(B) 12=-1468(B) 13=-1468(B) 14=-1468(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (p TCLL 20 TCDL 10 BCLL 0 BCDL 10	osf) 0.0 0.0 0.0 * 0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 YES 12014	CSI. TC BC WB Matrix	0.16 0.05 0.10 c-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.00	(loc) 9 9 10	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20 Weight: 73 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD	0 2x4 SP 0 2x4 SP	9 No.2 or 2x4 SPF No.2 9 No.2 or 2x4 SPF No.2				BRACING- TOP CHOR	RD	Structur except e	al wood end vertig	sheathing dir cals.	ectly applied or 6-0-0	oc purlins,
WEBS	2x4 SP	9 No.3				BOT CHOR	RD	Rigid ce	iling dire	ectly applied c	or 6-0-0 oc bracing.	

WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3

REACTIONS. All bearings 12-0-0.

(lb) -Max Horz 16=149(LC 11)

Max Uplift All uplift 100 b or less at joint(s) 16, 10, 14, 12 except 15=-117(LC 12), 11=-112(LC 13) Max Grav All reactions 250 lb or less at joint(s) 16, 10, 13, 14, 15, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L			46-0-0						
I			46-0-0						I
Plate Offsets (X,Y)	[2:0-3-8,Edge], [2:0-1-1,0-7-0], [2:0-0-8,	0-1-1], [6:0-2-3,Edge], [22:	0-2-3,Edge], [26:0	-0-8,0	-1-1], [2	6:0-1-1,0	-7-0], [26:0-3	3-8,Edge]	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.10 BC 0.07 WB 0.13 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 0.00 0.01	(loc) 1 1 26	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20 Weight: 335 lb	GRIP 197/144 FT = 20%
LUMBER- BRACING- TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 DOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 DOP CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. OTHERS 2x4 SP No.3 WEBS 1 Row at midpt 14-38, 13-39, 12-40, 11-41, 15-37, 16-36, 17-35 WEDGE If: 2x4 SP No.3, Right: 2x4 SP No.3 If: 2x4 SP No.3, Right: 2x4 SP No.3 If: 2x4 SP No.3, Right: 2x4 SP No.3									
REACTIONS. All be (lb) - Max H Max U Max G	arings 46-0-0. orz 2=200(LC 12) plift All uplift 100 lb or less at joint(s) 2, 31, 30, 29, 28, 27 rav All reactions 250 lb or less at joint(33, 32, 31, 30, 29, 28, 27, 26	39, 40, 41, 43, 44, 45, 46, s) 2, 38, 39, 40, 41, 43, 44	, 47, 48, 49, 37, 36 I, 45, 46, 47, 48, 49	3, 35, 3 9, 37, 3	33, 32, 36, 35,				

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-252/88, 12-13=-113/292, 13-14=-128/332, 14-15=-128/332, 15-16=-113/292

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	L	8-1-12	17-6-12		1	28-5-4		-	37	7-10-4	46-0-	0
	1	8-1-12	9-5-0		1	10-10-8				9-5-0	8-1-1	2
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/	2-0-0 1.15 1.15 YES TPI2014	CSI. TC BC WB Matri	0.85 0.98 0.90 x-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.40 -0.70 0.10	(loc) 13-14 13-14 10	l/defl >999 >652 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 249 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHOF BOT CHOF WEBS WEDGE Left: 2x4 SF	2X4 SP 2D 2x4 SP 12-15: 2 2x4 SP 6-13,6- P No.3 , Righ	No.2 or 2x4 SPF No.2 No.2 or 2x4 SPF No.2 2x4 SP No.1 No.3 *Except* 14: 2x4 SP No.2 or 2x4 ht: 2x4 SP No.3	*Except* SPF No.2			BRACING- TOP CHOR BOT CHOR WEBS	2D 2D	Structu Rigid c 1 Row 2 Rows	ral wood eiling dire at midpt s at 1/3 pt	sheathing dire cetly applied of 6- s 5-	ectly applied. r 2-2-0 oc bracing. 14 16	
REACTION	I S. (size Max Ho Max Up Max Go	e) 2=0-3-8, 16=0-3-8, orz 2=203(LC 12) plift 2=-59(LC 12), 16=- rav 2=361(LC 23), 16=	10=Mechanical 225(LC 12), 10≕ 2088(LC 2), 10=	-201(LC 13) 1488(LC 1)	1							
FORCES. TOP CHOR BOT CHOR WEBS	(lb) - Max. (2D 2-3=- 9-10= 2D 14-16 6-13= 5-16=	Comp./Max. Ten All f 158/307, 3-5=-122/339, 2802/661 =-121/1173, 13-14=-54 283/1164, 7-13=-744/3 1991/355, 3-16=-478/3	orces 250 (lb) or 5-6=-1499/539, /1243, 11-13=-28 395, 7-11=-267/7 307	less except 6-7=-2027/6 35/1921, 10- 97, 9-11=-4	when shown 657, 7-9=-275 -11=-498/244 19/294, 5-14:	52/800, 15 =0/476,						
NOTES- 1) Unbalan 2) Wind: AS MWFRS DOL=1.6	ced roof live SCE 7-10; V (envelope) 30 plate grip	loads have been consi ult=130mph (3-second gable end zone and C-I DOL=1.60	dered for this des gust) Vasd=103r C Exterior(2) zon	sign. nph; TCDL= e;C-C for m	6.0psf; BCDL embers and f	L=6.0psf; h=30ft; C forces & MWFRS f	Cat. II; E for reac	Exp B; E tions sh	nclosed; iown; Lun	nber		

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 59 lb uplift at joint 2 and 201 lb uplift at joint 10.
- 7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 16. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- DOL=1.60 plate grip DOL=1.60
- 3) All plates are 3x6 MT20 unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
 One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 16 and 11. This connection is for uplift only and does not consider lateral forces.
- 8) "//" indicates Released bearing: allow for upward movement at joint(s) 10.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 9=410(LC 23), 6=410(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-9=-303/197, 4-6=-303/197

WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. All bearings 14-1-15.

(lb) - Max Horz 1=-52(LC 17)

Max Uplift All uplift 100 lb or less at joint(s) 1, 8, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=287(LC 1), 8=311(LC 23), 6=311(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

					6-2-8 6-2-8					<u> </u>	3 <u>-</u> 0 5-8
Plate Offsets (X,Y)	[2:0-2-0,Edge]										
LOADING (psf)	SPACING-	2-0-0	CSI.	0.19	DEFL.	in n/o	(loc)	l/defl	L/d	PLATES	GRIP
TCDL 10.0	Lumber DOL	1.15	BC	0.53	Vert(CT)	n/a	-	n/a	999	WIT20	244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IRC2015/TF	PI2014	Matri	0.00 x-P	Horz(CT)	0.00	3	n/a	n/a	Weight: 17 lb	FT = 20%
LUMBER-					BRACING-					-	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.3 2x4 SP No.3 BOT CHORD

REACTIONS. (size) 1=6-1-15, 3=6-1-15 Max Horz 1=-20(LC 17) Max Uplift 1=-23(LC 12), 3=-23(LC 13)

Max Grav 1=197(LC 1), 3=197(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

С and a summer of the Summer in SEAL 45844 mm June 30,2020

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. Invozoris Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek A 818 Soundside Road Edenton, NC 27932

Max Grav 1=176(LC 1), 3=176(LC 1), 4=268(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

SEAL 45844 June 30,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 1=6-2-10, 3=6-2-10, 4=6-2-10

Max Horz 1=56(LC 11)

Max Uplift 1=-26(LC 13), 3=-33(LC 13)

Max Grav 1=124(LC 1), 3=124(LC 1), 4=189(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 🥢

2x4 🚿

Structural wood sheathing directly applied or 3-11-10 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Plate Offsets (X,Y)	[2:0-2-0,Edge]		3-11-6 3-11-6			<u>3-11</u> 10 0-0-5
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.07 BC 0.20 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 3	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P				Weight: 12 lb FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3

REACTIONS. (size) 1=3-11-1, 3=3-11-1 Max Horz 1=33(LC 11) Max Uplift 1=-12(LC 12), 3=-12(LC 13)

Max Grav 1=127(LC 1), 3=127(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

SEAL 45844 June 30,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

