

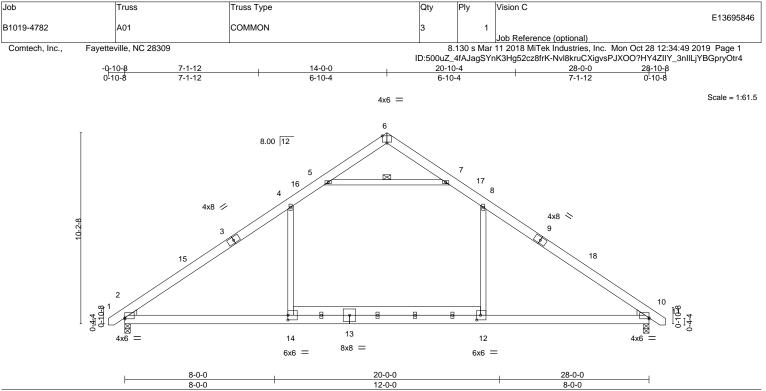
Trenco 818 Soundside Rd Edenton, NC 27932

Re: B1019-4782 Vision C

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E13695846 thru E13695863

My license renewal date for the state of North Carolina is December 31, 2019.


North Carolina COA: C-0844

October 28,2019

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Plate Offsets (X,Y)	[2:0-0-0,0-0-11], [6:0-3-0,Edge], [10:0-0	-0,0-0-11], [12:0-2-8,0-3-0]	, [14:0-0-0,0-3-0]		
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (lo	oc) I/defl L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.68	Vert(LL) -0.30 2-	14 >999 360	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.78	Vert(CT) -0.38 12-	14 >864 240	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.43	Horz(CT) 0.03	10 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.27 2-	14 >999 240	Weight: 202 lb FT = 20%

BOT CHORD

WEBS

Rigid ceiling directly applied or 10-0-0 oc bracing.

5-7

1 Row at midpt

BOT CHORD 2x6 SP No.1 2x4 SP No.3 *Except* WEBS 12-14: 2x6 SP No.1

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

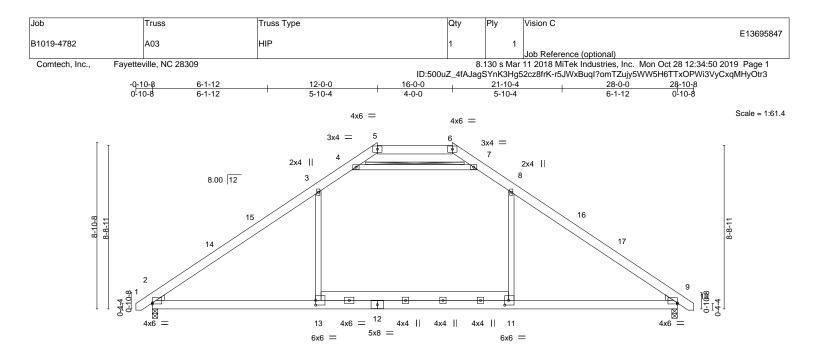
(lb/size) 2=1161/0-3-8, 10=1161/0-3-8 REACTIONS. Max Horz 2=235(LC 11) Max Uplift 2=-69(LC 12), 10=-69(LC 13) Max Grav 2=1309(LC 19), 10=1309(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-4=-1819/293, 4-5=-1257/359, 7-8=-1257/359, 8-10=-1819/293
- BOT CHORD 2-14=-67/1374, 12-14=-67/1374, 10-12=-67/1374
- 8-12=0/571, 4-14=0/571, 5-7=-1566/457 WEBS

NOTES-

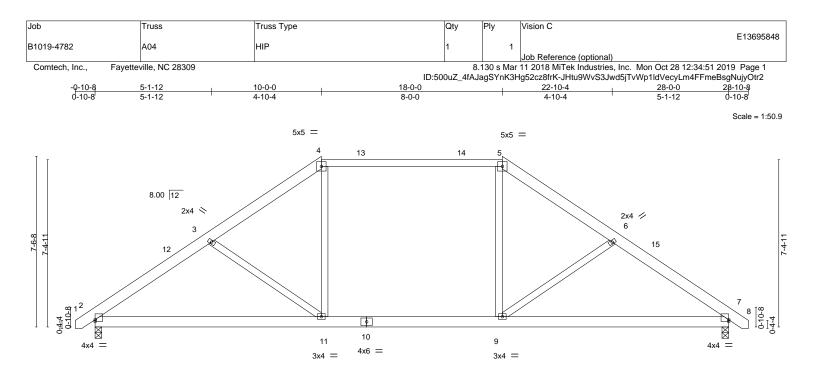
1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-12 to 3-8-1, Interior(1) 3-8-1 to 14-0-0, Exterior(2) 14-0-0 to 18-4-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.
 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


	8-0-0		20-0-0		28-0-	-0	
	8-0-0		12-0-0	1	8-0-	0	
Plate Offsets (X,Y) [2	:0-0-0,0-0-11], [9:0-0-0,0-0-11], [11:0-:	2-8,0-3-0], [13:0-0-0,0-3-0]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.66 BC 0.52 WB 0.62 Matrix-S	Vert(LL) -0.26 Vert(CT) -0.35 Horz(CT) 0.03	2-13 >96	99 360 60 240 n/a n/a	PLATES MT20 Weight: 200 lb	GRIP 244/190 FT = 20%
11-13: 2x WEDGE Left: 2x4 SP No.3, Right: REACTIONS. (lb/size) Max Hor Max Upli	lo.1 lo.3 *Except* 66 SP No.1		BRACING- TOP CHORD BOT CHORD WEBS	2-0-0 oc pu Rigid ceiling T-Brace: Fasten (2X) (0.131"x3")	rlins (10-0-0 max.) g directly applied o 22) T and I braces to	r 10-0-0 oc bracing. x4 SPF No.2 - 4-7 o narrow edge of web 3in minimum end dist	with 10d
TOP CHORD 2-3=-17 7-8=-11 BOT CHORD 2-13=-1	omp./Max. Ten All forces 250 (lb) or Y42/344, 3-4=-1195/407, 4-5=-109/631 196/407, 8-9=-1742/344 I13/1317, 11-13=-118/1317, 9-11=-11: /552, 8-11=0/550, 4-7=-2033/600	, 5-6=-156/776, 6-7=-109/63	11,				
 Wind: ASCE 7-10; Vul MWFRS (envelope) ar to 28-8-12 zone;C-C ft 3) Provide adequate draii This truss has been de * This truss has been de between the bottom cf Provide mechanical cc See Standard Industry designer. Graphical purlin represe 	bads have been considered for this de t=130mph (3-second gust) Vasd=1037 nd C-C Exterior(2) -0-8-12 to 3-8-1, Int for members and forces & MWFRS for nage to prevent water ponding. esigned for a 10.0 psf bottom chord liv designed for a 10.0 psf bottom chord liv designed for a live load of 30.0psf on t ord and any other members, with BCI ponnection (by others) of truss to bearin r Piggyback Truss Connection Detail for sentation does not depict the size or the ermanent and stability bracing for truss	mph; TCDL=6.0psf; BCDL=6 erior(1) 3-8-1 to 12-0-0, Exter reactions shown; Lumber DC e load nonconcurrent with ar he bottom chord in all areas DL = 10.0psf. g plate capable of withstandi or Connection to base truss a e orientation of the purlin alc	prior(2) 12-0-0 to 16-0 DL=1.60 plate grip DC with a clearance greating 100 lb uplift at join as applicable, or cons	-0, Interior(1) DL=1.60 ater than 6-0-6 at(s) 2, 9. ult qualified b tom chord.	22-2-11 0 puilding		CAROUNING SEAL 36322

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

October 28,2019

818 Soundside Road Edenton, NC 27932

C

	L	10-0-0				18-0-0					28-0-0	
	I	10-0-0		I		8-0-0		1			10-0-0	I
Plate Offsets (X,Y)	[2:0-0-0,0-0-15], [7:0-0-0,	,0-0-15]	-								
LOADING (ps	sf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.	.Ó	Plate Grip DOL	1.15	TC	0.80	Vert(LL)	-0.17	2-11	>999	360	MT20	244/190
TCDL 10.	.0	Lumber DOL	1.15	BC	0.43	Vert(CT)	-0.24	2-11	>999	240		
BCLL 0	.0 *	Rep Stress Incr	YES	WB	0.21	Horz(CT)	0.03	7	n/a	n/a		
BCDL 10.	.0	Code IRC2015/TF	PI2014	Matri	x-S	Wind(LL)	0.16	2-11	>999	240	Weight: 177 lb	FT = 20%
		1		1		BRACING						

LUMBER-		BRACING-	
TOP CHORD	2x6 SP No.1 *Except*	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except
	4-5: 2x4 SP No.1		2-0-0 oc purlins (3-9-3 max.): 4-5.
BOT CHORD	2x6 SP No.1	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
WEBS	2x4 SP No.3		

REACTIONS. (lb/size) 2=1161/0-3-8, 7=1161/0-3-8 Max Horz 2=-171(LC 10) Max Uplift 2=-52(LC 12), 7=-52(LC 13) Max Grav 2=1195(LC 19), 7=1195(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

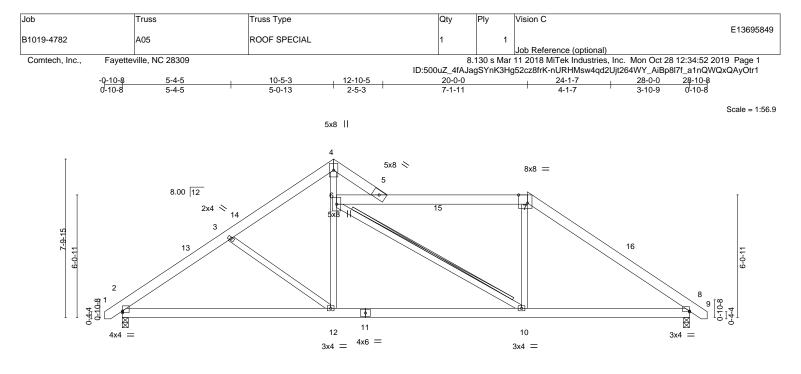
- TOP CHORD 2-3=-1637/417, 3-4=-1471/396, 4-5=-1183/382, 5-6=-1471/397, 6-7=-1637/416
- BOT CHORD 2-11=-257/1344, 9-11=-96/1183, 7-9=-249/1263
- WEBS 3-11=-286/197, 4-11=0/463, 5-9=0/462, 6-9=-286/196

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-12 to 3-8-1, Interior(1) 3-8-1 to 10-0-0, Exterior(2) 10-0-0 to 24-2-11, Interior(1) 24-2-11 to 28-8-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y)	10-5-3 10-5-3 [2:0-0-0,0-0-15], [7:0-5-5.Edge], [8:0-0-0).0-0-71	20-0-0 9-6-13					28-0-0 8-0-0	-	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.65 BC 0.34 WB 0.72 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.13 -0.25 0.03 0.10	12 2-12 8	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 195 lb	GRIP 244/190 FT = 20%	
BCDL 10.0 Code IRC2015/1PI2014 Matrix-S LUMBER- TOP CHORD 2x6 SP No.1 *Except* 6-7: 2x6 SP 2400F 2.0E 6-7: 2x6 SP 2400F 2.0E BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.3 *Except* 4-12,6-10: 2x4 SP No.2			TOP CHORD Struct exce 2-0-C BOT CHORD Rigic WEBS T-Bra			Structural wood sheathing directly applied or 5-11-5 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 6-7. Rigid ceiling directly applied or 10-0-0 oc bracing. T-Brace: 2x4 SPF No.2 - 6-10 Fasten (2X) T and I braces to narrow edge of web with 10d				
	e) 2=1161/0-3-8, 8=1161/0-3-8 lorz 2=180(LC 11) plift 2=-54(LC 12), 8=-97(LC 13)						s, 6in o.c.,wi er 90% of we	th 3in minimum end dist eb length.	tance.	
TOP CHORD 2-3= 7-8=	Comp./Max. Ten All forces 250 (lb) or -1512/370, 3-4=-1308/350, 4-5=-963/279 -1595/366	9, 5-6=-351/145, 5-7=-1209/	/382,							

- BOT CHORD 2-12=-208/1155, 10-12=-82/1088, 8-10=-153/1205
- WEBS 6-12=0/421, 4-6=-123/700, 7-10=0/322

NOTES-

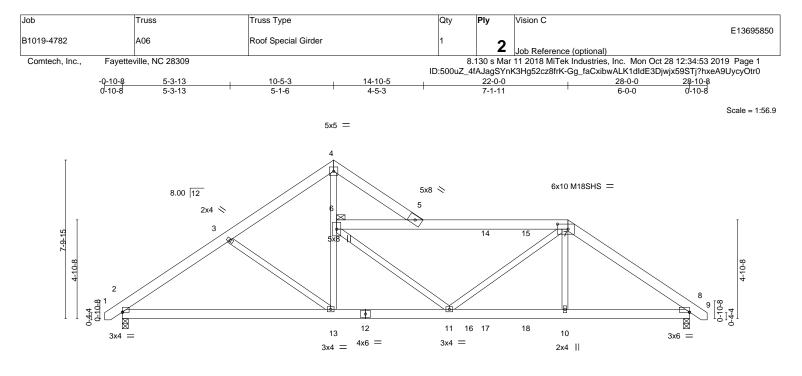
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-12 to 3-8-1, Interior(1) 3-8-1 to 10-5-3, Exterior(2) 10-5-3 to 24-4-13, Interior(1) 24-4-13

to 28-8-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.


7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

IN DTH CAN RT 0 Van and and and the WWWWWWWW SEAL 036322 G١ minim October 28,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	10-5-3		16-1-11		22-0-0		28-0-0	_
Plate Offsets (X,Y)	<u>10-5-3</u> [2:0-0-0,0-0-3], [7:0-6-4,0-3-0], [8:0-0-0	0-0-31	5-8-9	5	5-10-5	1	6-0-0	1
	[2.0-0-0,0-0-3], [7.0-0-4,0-3-0], [8.0-0-0	,0-0-3]						
OADING (psf) CLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.89	DEFL. Vert(LL)	in (loc -0.23 1		L/d 360	PLATES MT20	GRIP 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.37	Vert(CT)	-0.23 -0.43 2-13		240	M120 M18SHS	244/190
BCLL 0.0 *	Rep Stress Incr NO	WB 0.88	Horz(CT)		8 n/a	n/a	WITCOILC	244/100
3CDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL)	0.22 1		240	Weight: 404 lb	FT = 20%
OT CHORD 2x6 SP	6 SP 2400F 2.0E		BRACING- TOP CHOF BOT CHOF JOINTS	2-0-0 D Rigio) oc purlins	s (6-0-0 max.): ectly applied o	rectly applied or 6-0-0 6-7. or 10-0-0 oc bracing.	oc purlins, except
	x4 SP No.2		001110	. 5.0	x00 at 01(0)			
Max H	e) 2=1704/0-3-8, 8=2284/0-3-8 orz 2=-178(LC 6) plift 2=-207(LC 8), 8=-441(LC 9)							
OP CHORD 2-3=-	Comp./Max. Ten All forces 250 (lb) c 2329/333, 3-4=-2151/361, 4-5=-1789/2 3639/738							
VEBS 3-13=	=-276/1807, 11-13=-200/1907, 10-11=- =-227/258, 6-13=-127/308, 4-6=-170/14 =-29/705	,						
NOTES-								
Top chords connecte Bottom chords conn Webs connected as 2) All loads are conside ply connections have 3) Unbalanced roof live	nected together with 10d (0.131"x3") n ed as follows: 2x6 - 2 rows staggered a ected as follows: 2x6 - 2 rows staggere follows: 2x4 - 1 row at 0-9-0 oc. ered equally applied to all plies, except e been provided to distribute only loads a loads have been considered for this d	t 0-9-0 oc. d at 0-9-0 oc. if noted as front (F) or bac noted as (F) or (B), unles esign.	s otherwise indica	ed.	,		unin H	CARO
MWFRS (envelope);	/ult=130mph (3-second gust) Vasd=103 ; Lumber DOL=1.60 plate grip DOL=1.6		L=6.0pst; h=15ft; C	at. II; Exp C	; enclosed	,	CAR OF	E
	ainage to prevent water ponding. plates unless otherwise indicated.						12	1 del
	designed for a 10.0 psf bottom chord li	/e load nonconcurrent wit	h anv other live loa	ds.			z (SEAL
	n designed for a live load of 30.0psf on				an 6-0-0			
	chord and any other members.						= : 0.	36322 🔅
·	connection (by others) of truss to beari	ng plate capable of withst	anding 100 lb uplif	at joint(s) ex	cept (jt=lb)	18 N 1	
/	stry Piggyback Truss Connection Detai	I for Connection to base tr	uss as applicable,	or consult q	ualified bui	lding	Contraction of the second seco	SEAL 36322
designer.	proportation door not denict the size of	the orientation of the ave	in along the ter an	d/or bottom	chord		1210	ALL ALL
2) Hanger(s) or other	presentation does not depict the size or connection device(s) shall be provided	sufficient to support conc	entrated load(s) 15	0 lb down ar	nd 124 lb u	p at	in A	I. GILD
	b down and 124 lb up at 19-11-4, and 10 20 lb down					and		er 28,2019
	8, 76 lb down at 17-11-4, and 76 lb dov /selection of such connection device(s)			ip at 21-11-4	+ on bottor	n		51 20,2019
				40/02/0015 0	005 1/25		10 10 10 10 10 10 10 10 10 10 10 10 10 1	
Design valid for use only a truss system. Before us building design. Bracing	esign parameters and READ NOTES ON THIS AN with MiTek® connectors. This design is based or se, the building designer must verify the applicabi indicated is to prevent buckling of individual truss ability and to prevent collapse with possible person	ly upon parameters shown, and ity of design parameters and pro web and/or chord members only	is for an individual build perly incorporate this do . Additional temporary	ing component, esign into the ov and permanent	not erall			A MiTek Affiliate

Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

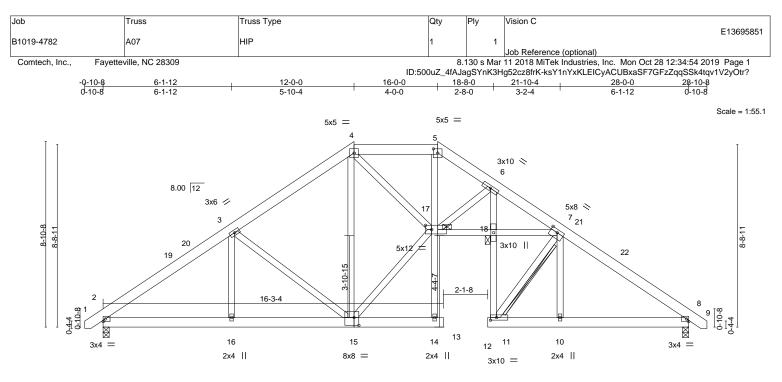
818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Vision C
					E13695850
B1019-4782	A06	Roof Special Girder	1	ົ	
				_	Job Reference (optional)
Comtech, Inc., Fayettev	ille, NC 28309		8.1	130 s Mar	11 2018 MiTek Industries, Inc. Mon Oct 28 12:34:53 2019 Page 2

ID:500uZ_4fAJagSYnK3Hg52cz8frK-Gg_faCxibwALK1dIdE3Djwjx59STj?hxeA9UycyOtr0

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-4=-60, 4-5=-60, 5-7=-60, 7-9=-60, 2-8=-20

Concentrated Loads (lb)

Vert: 7=-110(F) 10=-370(F) 14=-110(F) 15=-110(F) 16=-891(F) 17=-38(F) 18=-38(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y)	6-1-12 6-1-12 [5:0-2-8,0-2-6], [7:0-4-0,0-1-1:	<u>+ 12-0-0</u> <u>5-10-4</u> 2], [11:0-3-8,0-1-8], [15:0-2-12,0-4-	<u>16-0-0</u> 16 <u>4-0-0</u> 0- -8], [17:0-3-8,0-2-8]	3-4 5	-10-4 -7-0	28-0-0 6-1-12	{
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	Plate Grip DOL 1 Lumber DOL 1	0-0 CSI. 15 TC 0.30 15 BC 0.23 FS WB 0.83	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.15 12 -0.29 12 0.26 8	l/defl L/d >999 360 >999 240 p/a p/a	PLATES MT20	GRIP 244/190

Horz(CT)

0.26

8

n/a

n/a

BCDL 10.	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.09	9 12 >999 240	Weight: 234 lb FT = 20%
LUMBER- TOP CHORD	2x6 SP No.1		BRACING- TOP CHORD	Structural wood sheathing dir	rectly applied or 4-1-5 oc purlins, except
BOT CHORD	2x6 SP No.1			2-0-0 oc purlins (5-9-2 max.):	4-5.
WEBS	2x4 SP No.3 *Except* 7-17: 2x4 SP No.2		BOT CHORD WEBS	Rigid ceiling directly applied of T-Brace: 2	2x4 SPF No.2 - 7-11
				Fasten (2X) T and I braces to (0.131"x3") nails, 6in o.c.,with Brace must cover 90% of we	
			JOINTS	1 Brace at Jt(s): 17, 18	
REACTIONS.	(lb/size) 2=1145/0-3-8, 8=1134/0-3-8				

0.83

Max Horz 2=-202(LC 10) Max Uplift 2=-72(LC 12), 8=-78(LC 13)

Rep Stress Incr

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-1585/376, 3-4=-1180/398, 4-5=-1854/452, 5-6=-2177/488, 6-7=-3400/688,

7-8=-1540/382

0.0 *

BCLL

BOT CHORD 2-16=-214/1198, 15-16=-214/1198, 10-11=-205/1155, 8-10=-206/1153

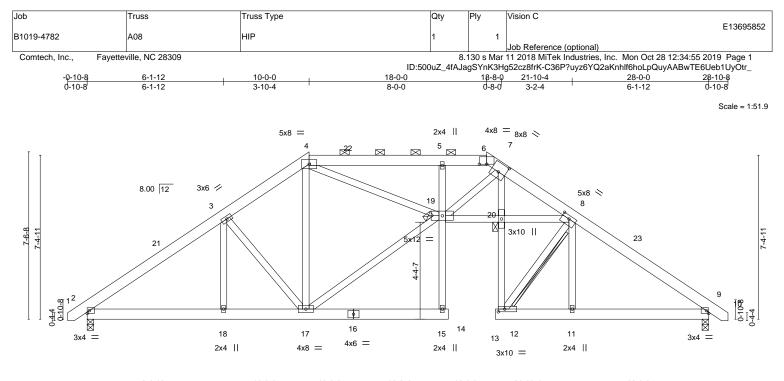
WEBS 3-16=0/254, 3-15=-487/198, 4-15=-660/24, 15-17=-85/1344, 4-17=-105/1370, 17-18=-332/2747, 7-18=-332/2748, 5-17=-147/903, 11-18=-267/1608, 7-11=-1950/346, 6-18=-235/1358, 6-17=-1165/285

YES

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-12 to 3-8-1, Interior(1) 3-8-1 to 12-0-0, Exterior(2) 12-0-0 to 16-0-0, Interior(1) 22-2-11 to 28-8-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8. 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

	1	6-1-12	10-	0-0	12-0-0	16-3-4	18-0-0	0 1	21-10	-4	28-0-0	1
		6-1-12	3-1	0-4	2-0-0	4-3-4	1-8-1	2	3-10-	4	6-1-12	
Plate Of	fsets (X,Y)	[6:0-4-0,0-0-1], [7:0-4-0,0	-4-12], [8:0-4-	0,0-1-12], [1	2:0-3-8,0-1-	8]						
LOADIN	IG (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.29	Vert(LL)	-0.16	13	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.22	Vert(CT)	-0.31	13	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.80	Horz(CT)	0.28	9	n/a	n/a		
PCDI	10.0	Code IRC2015/TE	012017	Motr	iv-S	Wind(LL)	0.10	13	~000	240	Weight: 220 lb	FT - 20%

BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.1		Weight: 229 lb FT = 20%
	2400F 2.0E *Except* 6 SP No.1		BRACING- TOP CHORD	Structural wood sheathing di 2-0-0 oc purlins (4-4-7 max.)	rectly applied or 5-4-7 oc purlins, except
BOT CHORD 2x6 SP WEBS 2x4 SP			BOT CHORD WEBS	Rigid ceiling directly applied	or 10-0-0 oc bracing. 2x4 SPF No.2 - 8-12 to narrow edge of web with 10d
REACTIONS. (Ib/size	e) 2=1145/0-3-8, 9=1134/0-3-8		JOINTS	Brace must cover 90% of we 1 Brace at Jt(s): 19, 20	

Max Horz 2=-170(LC 10) Max Uplift 2=-61(LC 12), 9=-68(LC 13)

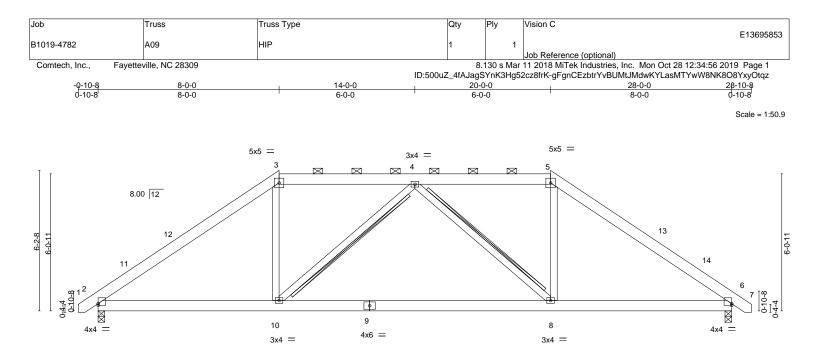
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-1569/402, 3-4=-1279/440, 4-5=-2798/669, 5-6=-2811/675, 6-7=-2595/616, 7-8=-3297/705, 8-9=-1545/408
- BOT CHORD 2-18=-229/1179, 17-18=-229/1179, 11-12=-228/1164, 9-11=-229/1163 WEBS 3-17=-365/171, 4-17=-420/60, 17-19=-146/1253, 4-19=-302/1939, 19-20=-316/2606, 8-20=-316/2606, 12-20=-299/1622, 8-12=-1966/385, 7-20=-270/1397, 7-19=-163/396

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-12 to 3-8-1, Interior(1) 3-8-1 to 10-0-0, Exterior(2) 10-0-0 to 24-2-11, Interior(1) 24-2-11 to 28-8-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

MILLIN CAR Vananovan MANDER IN INTERNET SEAL 036322 G minum October 28,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

H	8-0-0 8-0-0		20-0-0 12-0-0			<u>28-0-0</u> 8-0-0	
Plate Offsets (X,Y)	[2:0-0-0,0-0-15], [6:0-0-0,0-0-15]	1				1	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.34 BC 0.41 WB 0.20 Matrix-S	DEFL. in Vert(LL) -0.11 Vert(CT) -0.24 Horz(CT) 0.03 Wind(LL) 0.03	6 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 183 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF WEBS 2x4 SF	P No.1		BRACING- TOP CHORD BOT CHORD WEBS	except 2-0-0 oc purlins Rigid ceiling dir T-Brace: Fasten (2X) T	(6-0-0 max.) ectly applied and I braces t s, 6in o.c.,witl	or 10-0-0 oc bracing. 2x4 SPF No.2 - 4-10, 4- o narrow edge of web v h 3in minimum end dist	8 with 10d
	e) 2=1161/0-3-8, 6=1161/0-3-8 łorz 2=138(LC 11) Jplift 2=-39(LC 12), 6=-39(LC 13)					5	

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1582/355, 3-4=-1164/382, 4-5=-1164/382, 5-6=-1582/355

BOT CHORD 2-10=-148/1173, 8-10=-242/1368, 6-8=-138/1173

3-10=0/523, 4-10=-371/179, 4-8=-371/178, 5-8=0/523 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

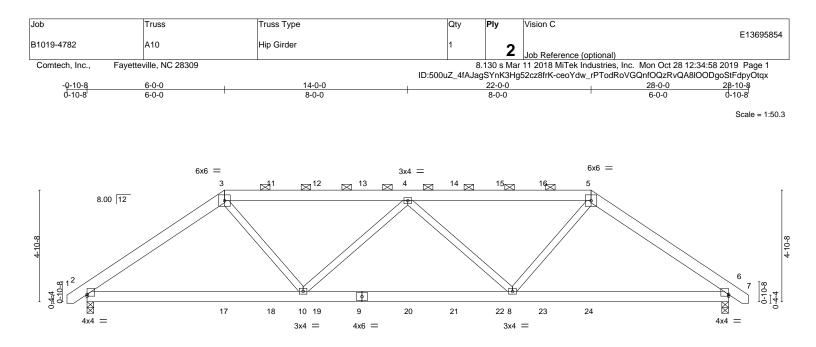
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-12 to 3-8-1, Interior(1) 3-8-1 to 8-0-0, Exterior(2) 8-0-0 to 26-2-11, Interior(1) 26-2-11 to 28-8-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.


8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

9-5-3	18-6-13 9-1-11	
9-5-3 Plate Offsets (X,Y) [2:0-0-0,0-0-15], [6:Edge,0-0-15]	9-1-11	9-5-3
LOADING (psf) SPACING- 2-0-0 TCLL 20.0 Plate Grip DOL 1.15 TCDL 10.0 Lumber DOL 1.15 BCLL 0.0 * Rep Stress Incr NO BCDL 10.0 Code IRC2015/TPI2014 104	CSI. DEFL. in (loc) TC 0.34 Vert(LL) -0.07 2-10 BC 0.49 Vert(CT) -0.16 2-10 WB 0.29 Horz(CT) 0.04 6 Matrix-S Wind(LL) 0.09 2-10	>999 360 MT20 244/190 >>999 240 244/190 244/190 S n/a n/a 1000000000000000000000000000000000000
LUMBER-TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.3	2-0-0	tural wood sheathing directly applied or 6-0-0 oc purlins, except oc purlins (6-0-0 max.): 3-5. ceiling directly applied or 10-0-0 oc bracing.
REACTIONS. (lb/size) 2=2157/0-3-8, 6=2158/0-3-8 Max Horz 2=-108(LC 25) Max Uplift 2=-525(LC 8), 6=-526(LC 9)		
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or l TOP CHORD 2-3=-3027/824, 3-4=-3235/831, 4-5=-3239/833 BOT CHORD 2-10=-706/2387, 8-10=-1126/3764, 6-8=-627/2 WEBS 3-10=-258/1402, 4-10=-778/476, 4-8=-771/475	3, 5-6=-3033/827 2391	
 NOTES- 1) 2-ply truss to be connected together with 10d (0.131"x3") nail: Top chords connected as follows: 2x6 - 2 rows staggered at 0 Bottom chords connected as follows: 2x6 - 2 rows staggered at 0 Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if n ply connections have been provided to distribute only loads no 3) Unbalanced roof live loads have been considered for this des 4) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103m MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live 7) * This truss has been designed for a live load of 30.0psf on the between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing 2=525, 6=526. 9) See Standard Industry Piggyback Truss Connection Detail for designer. 10) Graphical purlin representation does not depict the size or the 11) Hanger(s) or other connection device(s) shall be provided su 6-0-0, 144 lb down and 124 lb up at 8-0-12, 144 lb down and down and 124 lb up at 14-0-12, 144 lb down and 128 lb up and 124 lb up at 19-11-4, and 140 lb down and 128 lb up down at 8-0-12, 76 lb down at 10-0-12, 76 lb down at 12-0 18-0-12, and 76 lb down at 19-11-4, and 370 lb down and 12 	 a) 0-9-0 oc. a) 0-9-0 oc. a) 0-9-0 oc. a) 0-9-0 oc. b) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	enclosed; in 6-0-0 iccept (jt=lb) alified building chord. d 128 lb up at 12-0-12, 144 lb 144 lb down t 6-0-0, 76 lb lb down at

COAD GASE (S)geStandard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

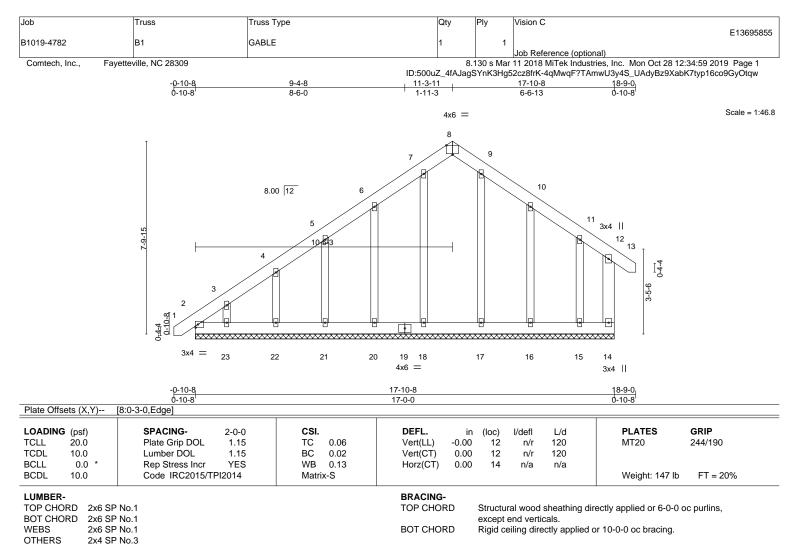
October 28,2019

Job	Truss	Truss Type	Qty	Ply	Vision C
					E13695854
B1019-4782	A10	Hip Girder	1	2	
				_	Job Reference (optional)
Comtech, Inc., Fayettev	rille, NC 28309		8.	130 s Mar	11 2018 MiTek Industries, Inc. Mon Oct 28 12:34:58 2019 Page 2

8.130 s Mar 11 2018 MiTek Industries, Inc. Mon Oct 28 12 58 2019 Page 2 ID:500uZ_4fAJagSYnK3Hg52cz8frK-ceoYdw_rPTodRoVGQnfOQzRvQA8lOODgoStFdpyOtqx

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 5-7=-60, 2-6=-20

Concentrated Loads (lb)

Vert: 3=-110(B) 5=-110(B) 9=-38(B) 4=-110(B) 11=-110(B) 12=-110(B) 13=-110(B) 14=-110(B) 15=-110(B) 16=-110(B) 17=-370(B) 18=-38(B) 19=-38(B) 20=-38(B) 10=-38(B) 10=-21=-38(B) 22=-38(B) 23=-38(B) 24=-370(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. All bearings 17-0-0.

(lb) - Max Horz 2=222(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 14, 18, 21, 22 except 2=-116(LC 8), 20=-104(LC 12), 23=-130(LC 12), 16=-114(LC 13), 15=-115(LC 13) Max Grav All reactions 250 lb or less at joint(s) 14, 2, 20, 21, 22, 23, 17, 16, 15 except 18=277(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-271/240

NOTES-

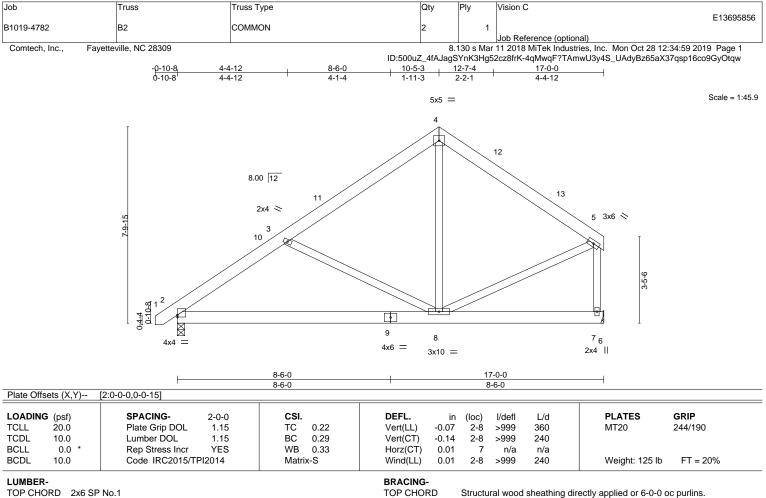
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-8-12 to 3-8-1, Exterior(2) 3-8-1 to 10-5-3, Corner(3) 10-5-3 to 14-10-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0


between the bottom chord and any other members, with BCDL = 10.0psf. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 18, 21, 22

- except (jt=lb) 2=116, 20=104, 23=130, 16=114, 15=115.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

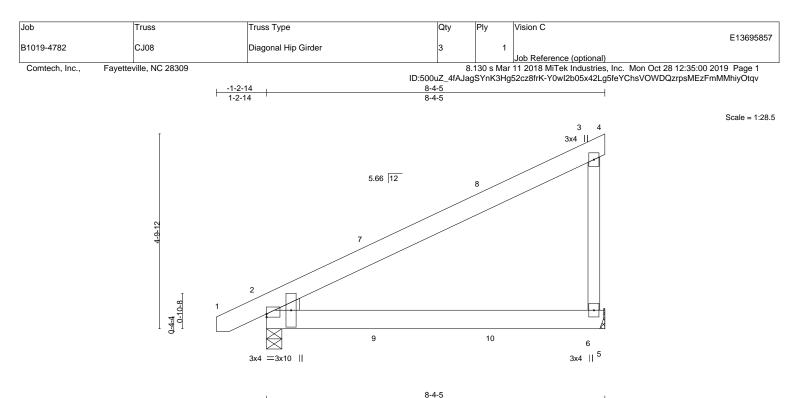
818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

- TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.3 WEBS
- REACTIONS. (lb/size) 2=717/0-3-8, 7=667/Mechanical Max Horz 2=174(LC 9) Max Uplift 2=-44(LC 12), 7=-32(LC 12)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 2-3=-846/229, 3-4=-581/172, 4-5=-546/165
- BOT CHORD 2-8=-234/694
- WEBS 4-8=0/296, 5-7=-625/184, 3-8=-370/220, 5-8=-41/444


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-12 to 3-8-1, Interior(1) 3-8-1 to 10-5-3, Exterior(2) 10-5-3 to 14-10-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7. 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

CA and a substitute SEAL 036322 GI October 28,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y) [2:0-0-0,0-0-15]		8-4-5					
	2.0-0-0,0-0-15]							
_OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.50	Vert(LL) -0.06	2-6	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.32	Vert(CT) -0.12	2-6	>788	240		
BCLL 0.0 *	Rep Stress Incr NO	WB 0.00	Horz(CT) 0.00		n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.00	2	****	240	Weight: 51 lb	FT = 20%
LUMBER-			BRACING-					

TOP CHORD

BOT CHORD

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3

REACTIONS. (lb/size) 6=361/Mechanical, 2=416/0-4-9 Max Horz 2=143(LC 8) Max Uplift 6=-129(LC 8), 2=-51(LC 4)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 3-6=-264/187

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 6=129.

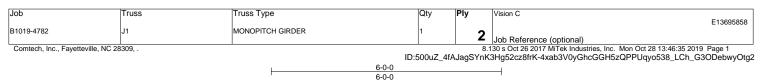
6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

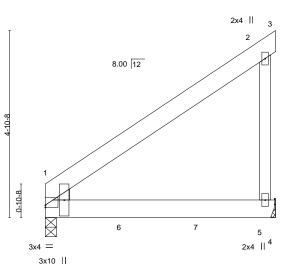
7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 72 lb down and 48 lb up at 2-9-8, 72 lb down and 48 lb up at 2-9-8, and 110 lb down and 93 lb up at 5-7-7, and 110 lb down and 93 lb up at 5-7-7 on top chord , and 2 lb down at 2-9-8, 2 lb down at 2-9-8, and 20 lb down at 5-7-7, and 20 lb down at 5-7-7 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-20, 2-5=-20 Concentrated Loads (lb) Vert: 8=-40(F=-20, B=-20) 10=-17(F=-9, B=-9)


Structural wood sheathing directly applied or 6-0-0 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON MICLODED MITER REPERIENCE PAGE mit-14/3 at 900, 1002/015 BEPORE 052. Design valid for use only with MITeR we connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WB 0.02

Matrix-P

	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES
L	1.15	TC 0.11	Vert(LL)	-0.05	1-5	>999	360	MT20
	1 15	BC 0.58	Vert(CT)	-0 11	1-5	\623	240	

0.00

0.04

1-5

n/a

>999

n/a

240

Horz(CT)

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

6-0-0 6-0-0

11	JM	BE	R-

TCLL

TCDI

BCLL

BCDL

LOADING (psf)

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.3 WEBS WEDGE Left: 2x4 SP No.3

20.0

10.0

10.0

0.0

Plate Offsets (X,Y)-- [1:Edge,0-0-11]

REACTIONS. (lb/size) 5=911/Mechanical, 1=841/0-3-8 Max Horz 1=141(LC 8) Max Uplift5=-125(LC 8), 1=-11(LC 8)

SPACING-

Plate Grip DOI

Rep Stress Incr

Code IRC2015/TPI2014

NO

Lumber DOL

FORCES. (Ib) - Maximum Compression/Maximum Tension

- TOP CHORD 1-2=-109/97, 2-3=-3/0
- BOT CHORD 1-6=0/0, 6-7=0/0, 5-7=0/0, 4-5=0/0
- WEBS 2-5=-195/116

NOTES

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 125 lb uplift at joint 5 and 11 lb uplift at joint 1
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 647 lb down and 52 lb up at 2-0-12, and 647 lb down and 52 lb up at 4-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S)

1) Dead + Roof Live (balanced): Lumber Increase=1.15. Plate Increase=1.15

Continued on page 2

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being real of the set only water the building designer must verify the subject of building designer much the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

GRIP

Weight: 76 lb

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

244/190

FT = 20%

Scale = 1:30.0

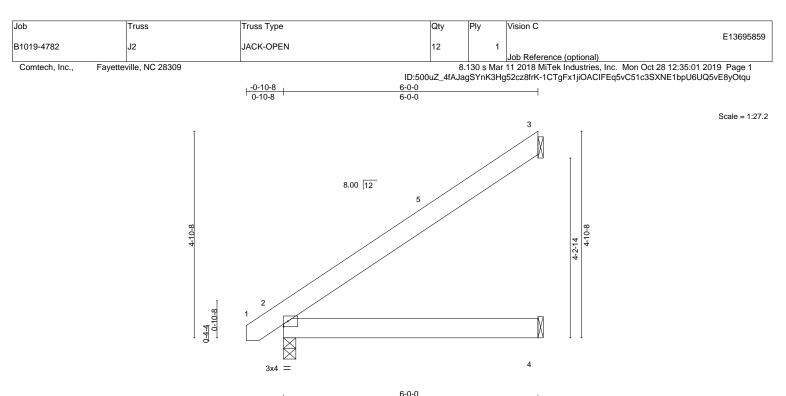
Job	Truss	Truss Type	Qty	Ply	Vision C
B1019-4782	J1	MONOPITCH GIRDER	1	_	E13695858
				Z	Job Reference (optional)
Comtech Inc. Equatteville NC 28	309			8 1	30 s Oct 26 2017 MiTek Industries Inc. Mon Oct 28 13:46:36 2010 Page 2

ID:500uZ_4fAJagSYnK3Hg52cz8frK-Y88_Hr1a1?k7tRf9_7wjN9LGpXKax8EPI2yB8MyOtg1

LOAD CASE(S) Uniform Loads (plf) Vert: 1-2=-60, 2-3=-20, 1-4=-20 Concentrated Loads (lb) Vert: 6=-647(B) 7=-647(B) 2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-50, 2-3=-20, 1-4=-20 Concentrated Loads (lb) Vert: 6=-565(B) 7=-565(B) 3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-20, 1-4=-40 Concentrated Loads (lb) Vert: 6=-468(B) 7=-468(B) 4) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-13, 2-3=-20, 1-4=-12 Horz: 1-2=1, 2-3=8 Concentrated Loads (lb) Vert: 6=44(B) 7=44(B) 5) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=11, 2-3=4, 1-4=-12 Horz: 1-2=-23, 2-3=-16 Concentrated Loads (lb) Vert: 6=44(B) 7=44(B) 6) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-35, 2-3=-28, 1-4=-20 Horz: 1-2=15, 2-3=8 Concentrated Loads (lb) Vert: 6=52(B) 7=52(B) 7) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-11, 2-3=-4, 1-4=-20 Horz: 1-2=-9, 2-3=-16 Concentrated Loads (lb) Vert: 6=52(B) 7=52(B) 8) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=21, 2-3=14, 1-4=-12 Horz: 1-2=-33, 2-3=-26 Concentrated Loads (lb) Vert: 6=44(B) 7=44(B) 9) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=9, 2-3=2, 1-4=-12 Horz: 1-2=-21, 2-3=-14 Concentrated Loads (lb) Vert: 6=44(B) 7=44(B) 10) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=21, 2-3=14, 1-4=-12 Horz: 1-2=-33. 2-3=-26 Concentrated Loads (lb) Vert: 6=44(B) 7=44(B) 11) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=9, 2-3=2, 1-4=-12 Horz: 1-2=-21, 2-3=-14 Concentrated Loads (lb) Vert: 6=44(B) 7=44(B) 12) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-1, 2-3=6, 1-4=-20 Horz: 1-2=-19, 2-3=-26 Concentrated Loads (lb) Vert: 6=52(B) 7=52(B) 13) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-13, 2-3=-6, 1-4=-20 Horz: 1-2=-7, 2-3=-14 Concentrated Loads (lb) Vert: 6=52(B) 7=52(B)

Continued on page 3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


Job	Truss	Truss Type	Qty	Ply	Vision C
B1019-4782	J1	MONOPITCH GIRDER	1	2	E13695858
				Z	Job Reference (optional)
Comtech, Inc., Fayetteville, NC 2	8309, .			8.	130 s Oct 26 2017 MiTek Industries, Inc. Mon Oct 28 13:46:36 2019 Page 3

8.130 s Oct 26 2017 MiTek Industries, Inc. Mon Oct 28 13:46:36 2019 Page 3 ID:500uZ_4fAJagSYnK3Hg52cz8frK-Y88_Hr1a1?k7tRf9_7wjN9LGpXKax8EPI2yB8MyOtg1

LOAD CASE(S) 14) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-3=-20, 1-4=-20 Concentrated Loads (lb) Vert: 6=-317(B) 7=-317(B) 15) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-61, 2-3=-26, 1-4=-20 Horz: 1-2=11, 2-3=6 Concentrated Loads (lb) Vert: 6=-7(B) 7=-7(B) 16) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-43, 2-3=-8, 1-4=-20 Horz: 1-2=-7, 2-3=-12 Concentrated Loads (lb) Vert: 6=-7(B) 7=-7(B) 17) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel); Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-36, 2-3=-1, 1-4=-20 Horz: 1-2=-14, 2-3=-19 Concentrated Loads (lb) Vert: 6=-7(B) 7=-7(B) 18) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-45, 2-3=-10, 1-4=-20 Horz: 1-2=-5, 2-3=-10 Concentrated Loads (lb) Vert: 6=-7(B) 7=-7(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			6-0-0			
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.22	DEFL. in Vert(LL) -0.02	(loc) l/defl 2-4 >999		PLATES GRIP MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.13	Vert(CT) -0.03	2-4 >999	240	W120 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.00 Matrix-P	Horz(CT) -0.00 Wind(LL) 0.00	3 n/a 2 ****		Weight: 34 lb FT = 20%

```
LUMBER-
```

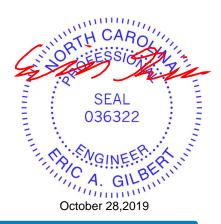
TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

REACTIONS. (Ib/size) 3=170/Mechanical, 2=288/0-3-8, 4=58/Mechanical Max Horz 2=144(LC 12)

Max Uplift 3=-111(LC 12)

Max Grav 3=191(LC 19), 2=288(LC 1), 4=116(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

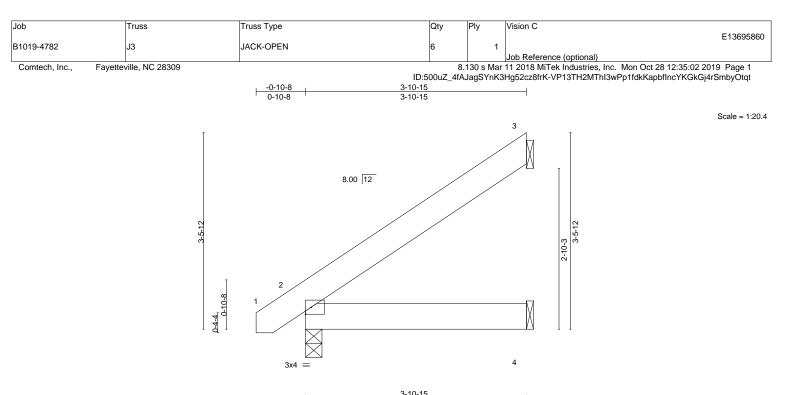

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-12 to 3-8-1, Interior(1) 3-8-1 to 5-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=111.

6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

			3-10-15			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.09	Vert(LL) -0.0	00 2-4	>999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.05	Vert(CT) -0.0	01 2-4	>999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.	00 3	n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.	00 2	**** 240	Weight: 23 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

REACTIONS. (lb/size) 3=105/Mechanical, 2=207/0-3-8, 4=37/Mechanical Max Horz 2=99(LC 12) Max Uplift 3=-75(LC 12) Max Grav 3=120(LC 19), 2=207(LC 1), 4=74(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-10-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

			1-10-15 1-10-15	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.02	Vert(LL) -0.00 2 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.01	Vert(CT) -0.00 2 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 3 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.00 2 **** 240	Weight: 13 lb FT = 20%

LUMBER-

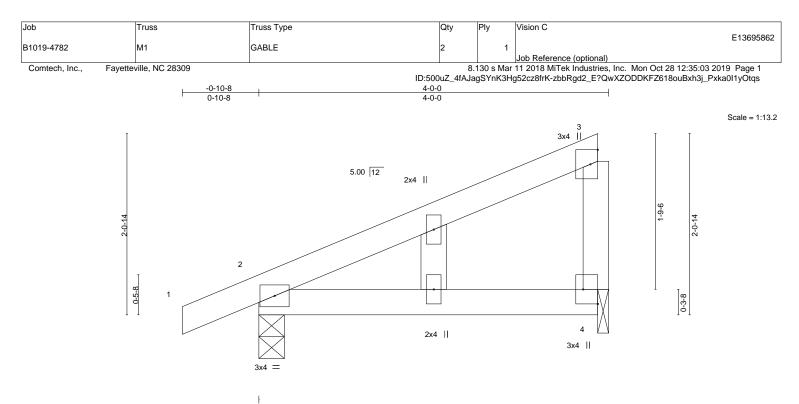
TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

REACTIONS. (Ib/size) 3=47/Mechanical, 2=129/0-3-8, 4=19/Mechanical Max Horz 2=56(LC 12) Max Uplift 3=-40(LC 12) Max Grav 3=56(LC 19), 2=129(LC 1), 4=37(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0
- between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 1-10-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

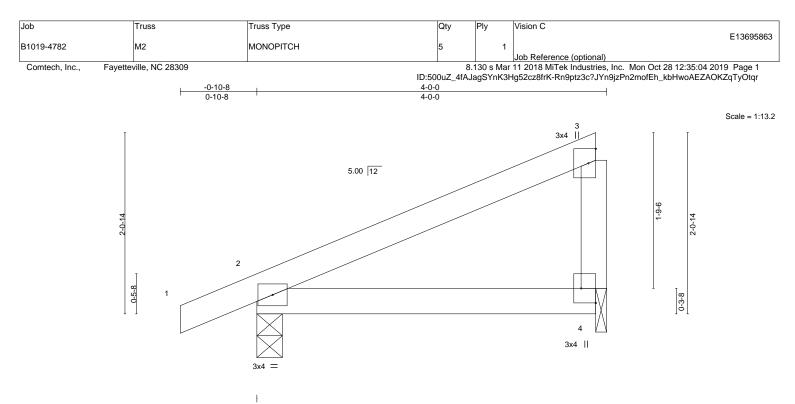
_OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
FCLL 20.0	Plate Grip DOL 1.15	TC 0.23	Vert(LL) -0.01	2-4	>999	360	MT20	244/190
FCDL 10.0	Lumber DOL 1.15	BC 0.12	Vert(CT) -0.02	2-4	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00	4	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.00	2	****	240	Weight: 17 lb	FT = 20%

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.3 WEBS OTHERS 2x4 SP No.3

Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=218/0-3-8, 4=138/0-1-8 Max Horz 2=62(LC 12) Max Uplift 2=-22(LC 8), 4=-26(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Corner(3) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-14's rev. Invozoris beroke use. Design valif for use only with MiTeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.16		-0.01	2-4	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.12	Vert(CT)	-0.02	2-4	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	-0.00	4	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL)	0.00	2	****	240	Weight: 16 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1WEBS2x4 SP No.3

REACTIONS. (Ib/size) 2=218/0-3-8, 4=138/0-1-8 Max Horz 2=62(LC 12)

Max Uplift 2=-22(LC 8), 4=-26(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

Structural wood sheathing directly applied or 4-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

