

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 19120017-A KMB - Cypress II

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: E13837756 thru E13837782

My license renewal date for the state of North Carolina is December 31, 2019.

North Carolina COA: C-0844

December 6,2019

IMPÓRTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	FG	Common Girder	1	2	Job Reference (optional)	E13837756

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:56:03 ID:yRScGHjCVrDkz0TCwP1fCWyC_zf-PSto80PZYiDoN4kyQIBeUBBTkKKNxID20_6MXJyBjXg Page: 1

Scale = 1:32.7

Plate Offsets (X, Y): [1:0-5-8,Edge], [3:0-5-8,Edge]

Loading	(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.42	Vert(LL)	-0.03	1-4	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25		BC	0.67	Vert(CT)	-0.05	1-4	>999	180			
BCLL	0.0	Rep Stress Incr	NO		WB	0.51	Horz(CT)	0.01	3	n/a	n/a			
BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-S							Weight: 87 lb	FT = 20%	
BCDL LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3") Top chords oc. Bottom cho staggered Web conne 2) All loads an except if no CASE(S) s provided to unless other 3) This truss 1 only, except 4) Wind: ASC Vasd=91m I; Exp B; E plate grip I	10.0 2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood sheat 6-0-0 oc purlins. Rigid ceiling directly bracing. (Ib/size) 1=2520/0- (Ib) - Maximum Comp Tension 1-2=-2502/0, 2-3=-25 1-5=0/1951, 5-6=0/1: 4-7=0/1951, 7-8=0/1: 2-4=0/2684 to be connected toget) nails as follows: s connected as follows ords connected as follows: at 0-8-0 oc. ected as follows: 2x4 - re considered equally a oted as font (F) or bad oted as font (F) or bad to be connecked for p particulated. has been checked for p to as noted. E7-10; Vult=115mph ph; TCDL=0.0psf; BCI Enclosed; C-C Exterior DOL=1.00	Code athing directly applie applied or 10-0-0 or 3-8, 3=2070/0-3-8 pression/Maximum 502/0 951, 4-6=0/1951, 951, 3-8=0/1951 her with 10d : 2x4 - 1 row at 0-9- ows: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LC ections have been noted as (F) or (B), uniform roof live loa (3-second gust) DL=0.0psf; h=0ft; Ca (2); Lumber DOL=1	IRC2015 5) 6) 7) ed or 8) LO 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	All bearings : capacity of 5 This truss is International R802.10.2 at Use USP TH 12-10d x 1-1 2-0-0 oc may to connect tr Fill all naih for AD CASE(S) Dead + Roo Plate Increa Uniform Loo Vert: 1-2 Concentrato Vert: 5=-	Matrix-S are assumed to be 65 psi. designed in accor Residential Code nd referenced sta D26 (With 18-16c/ 27 nails into Truss c. starting at 1-0-0 uss(es) to back fa oles where hanger Standard of Live (balanced) ase=1.00 ads (lb/ft) =-58, 2-3=-58, 1-3 ed Loads (lb) 980 (B), 6=-978 (l	e SP No.: rdance wi sections indard AN 1 nails int 1 nails int 1 nails int 1 nails int 2 co of bot : Lumber 3=-19 3), 7=-97	2 crushing th the 2015 R502.11.1 a SI/TPI 1. o Girder & ralent space. left end to 7 iom chord. tact with lum Increase=1. 8 (B), 8=-978	and -0-0 iber. 25, 3 (B)				Weight: 87 lb	CAR SEAL 6673	
												Decemb	er 6,2019	

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	DG	Common Girder	1	2	Job Reference (optional)	E13837757

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:56:00 ID:yRScGHjCVrDkz0TCwP1fCWyC_zf-?tBfW?NhFnrEWd?Nl9exsYZvc7FzkNacK0tiw_yBjXj

Scale = 1:57.7

Plate Offsets (X, Y): [7:0-5-0,0-4-8]

			-										
Loading	(psf)	Spacing	1-11-4		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.60	Vert(LL)	-0.05	1-8	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25		BC	0.84	Vert(CT)	-0.09	1-8	>999	180		
BCLL	0.0	Rep Stress Incr	NO		WB	0.57	Horz(CT)	0.02	6	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-S							Weight: 215 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x6 SP No.2 2x4 SP No.2 *Except Left 2x4 SP No.2 *Except Left 2x4 SP No.2 - 3 Structural wood shee 4-11-7 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 1=4101/0- Max Horiz 1=121 (LC (Ib) - Maximum Com Tension 1-2=-4713/0, 2-9=-46 3-10=-2362/0, 4-10= 5-6=-3493/0	t* 3-8,6-5:2x4 SP No 3-1-3 athing directly applie xcept end verticals. applied or 10-0-0 oc -3-8, 6=5148/0-3-8 C 7) pression/Maximum 625/0, 3-9=-4598/0, -2314/0, 4-5=-2387/	4) .3 5) d or 6) 7) 7) 0, 8) 9)	Wind: ASCE Vasd=91mph II; Exp B; En Interior (1) 3- Lumber DOL All bearings a capacity of 5 This truss is International R802.10.2 ar Use USP TH 12-10d x 1-1, 2-0-0 oc max 11-8-0 to cor Fill all nail hoc Hanger(s) or provided suff	7-10; Vult=115mph ; TCDL=0.0psf; BC closed; C-C Exterior 0-0 to 6-6-0, Exterior =1.60 plate grip DO are assumed to be \$ 55 psi. designed in accorda Residential Code se ad referenced stand: D26 (With 18-16d n '2 nails into Truss) c . starting at 1-8-0 fm nect truss(es) to ba les where hanger is other connection de icient to support cor	(3-sec DL=0.0 r (2) 0-1 or (2) 6 DL=1.00 SP No.3 ance wi ections lard AN tails intro- or equivor om the tack face s in con- evice(s	ond gust) ipsf; h=0ft; C)-0 to 3-0-0, 6-0 to 13-10 2 crushing th the 2015 R502.11.1 a SI/TPI 1. b Girder & ralent space left end to c of bottom c tact with lum shall be ted load(c) 1	Cat. D-4; and d at shord. nber.				·	
BOT CHORD	1-11=0/3445, 11-12= 8-13=0/3445, 13-14= 7-15=-3/28, 6-15=-3/	=0/3445, 8-12=0/344 =0/3445, 7-14=0/344 /28	5, 5,	lb down at 1 selection of s responsibility	3-10-4 on bottom ch uch connection dev of others.	nord. T vice(s) i	he design/ s the	1202					
WEBS	4-7=0/2657, 5-7=0/2 3-8=0/2989	583, 3-7=-2334/0,	LC 1)	DAD CASE(S) Dead + Roo	Standard of Live (balanced): L	.umber	Increase=1.	.25,					uuun.
NOTES			,	Plate Increa	se=1.00							I''''H	CARO
 2-ply truss (0.131"x3" Top chord oc. Bottom chistaggered Web conni All loads a except if n CASE(S) s provided to 	 3-8=0/2989 DTES 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x4 - 2 rows staggered at 0-7-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOA CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 			 Dead + Rool Live (balanced): Lumber increase=1.25, Plate Increase=1.00 Uniform Loads (lb/ft) Vert: 1-4=-58, 4-5=-58, 1-6=-19 Concentrated Loads (lb) Vert: 6=-1202 (B), 7=-1194 (B), 11=-1004 (B), 12=-1194 (B), 13=-1194 (B), 15=-1194 (B) 							SEAL 6673		
unless oth 3) This truss only, exce	erwise indicated. has been checked for pt as noted.	uniform roof live load	I									A A	STRZ

December 6,2019

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	CE	Common Supported Gable	1	1	Job Reference (optional)	E13837758

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:55:59 ID:YtmTdFhKCwq95ZkdFHTyauyC_zi-WgdHJfM3UUjNuTRBBS6iKL0tZj6c?0kT6M79OYyBjXk

Page: 1

Scale = 1:60.6

Plate Offsets (X, Y): [2:0-2-8,0-0-5], [4:0-2-12,0-3-0], [16:0-2-12,0-3-0], [18:0-2-8,0-2-5]

L oading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11 1.00 1.25 YES IRC:	-4 2015/TPI2014	CSI TC BC WB Matrix-S	0.05 0.02 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 18	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 184 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD DTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 26-10,27- Left 2x4 S 1-4-3 Structura 6-0-0 oc p Rigid ceil bracing. 1 Row at (lb/size) Max Uplift Max Grav	0.2 0.2 0.3 *Excep 9,29-8,25-7 SP No.3 - 1 I wood sheat burlins. ing directly midpt 2=115/26- 20=118/26 20=154/26 20=154/26 20=154/26 20=154/26 31=154/26 33=118/26 20=-83 (LL 20=-83 (LL 20=-174 (L 20=-185 (LL 20=174 (L 20=-187 (L 20=-187 (L 31=185 (L 33=174 (L	t* 11,24-12:2x4 SP No.: 1-4-3, Right 2x4 SP No.: athing directly applied applied or 10-0-0 oc 10-26 6-0, 18=115/26-6-0 3-6-0, 21=158/26-6-0 3-6-0, 25=160/26-6-0 3-6-0, 25=160/26-6-0 3-6-0, 32=158/26-6-0 3-6-0, 32=188/26-6-0 3-7-75/26-20 3-7-75/26-	2 No.3 d or), ,,), ,,),	FORCES TOP CHORD BOT CHORD WEBS WEBS 1) This truss H only, excep 2) Wind: ASC Vasd=91m II; Exp B; E Exterior (2) Exterior (2) 27-4-8; Lur 3) Truss desi only. For s see Standa or consult c 4) All plates a 5) Gable requ 6) Gable stud	(lb) - Maxi Tension 1-2=0/13, 4-5=-60/5 7-8=-85/77 10-11=-14 12-13=-85 15-16=-60 17-18=-11 2-33=-777 28-29=-77 28-29=-77 28-29=-77 20-21=-77 10-26=-12 7-30=-146 3-33=-139 12-24=-14 14-22=-14 17-20=-13 mas been ch t as noted. E 7-10; Vul bh; TCDL=1 nclosed; C 2-1-8 to 10 16-3-0 to 2 more that support tuds expos rd Industry uualfied bu re 2x4 MT2 res continus	mum Compressi 2-3=-113/110, 3 8, 5-6=-51/23, 6- 3, 8-9=-114/120, 18/161, 11-12=-1 7/3, 13-14=-58/3 1/58, 16-17=-60/3 3/110, 18-19=0/ 110, 32-33=-777, 1/10, 28-26=-77, 1/110, 29-30=-77, 1/110, 21-22=-777, 1/110, 21-22=-777, 1/110, 21-22=-718, 1/79, 6-31=-146/8 1/87, 11-25=-148, 1/87, 11-25=-148, 1/97, 6-31=-146/8 1/87, 11-25=-148, 1/97, 6-31=-146/8 1/87, 11-25=-148, 1/97, 6-31=-146/8 1/87, 11-25=-148, 1/97, 6-31=-146/8 1/87, 11-25=-148, 1/97, 6-31=-146/8 1/87, 11-25=-148, 1/97, 6-31=-146/8 1/97, 70, 6-31=-146/8 1/97, 71, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72	on/Maximum 4=-60/39, 7=-58/30, 9-10=-148/16 14/120, 10, 14-15=-51, 10, 14-15=-51, 14, 14, 14-15=-51, 14, 14-15=-51, 14, 14, 14-15=-51, 14, 14, 14-15=-51, 14, 14, 14-15=-51, 14, 1	51, /23, 7/110, 8/83, /81, id at. (3-0, iss), ble, PI 1.	7) 8) 9) LO	All be capaa One I truss 29, 33 connu force: This t Interr R802 AD C/	earings city of £ RT7A L to bea cection i s. truss is nationa .10.2 a ASE(S)	are as 565 psi JSP cc JSP cc JSP cc JSP cc are as JSP cc are as JSP cc are as are as as are as as are as as as as as as as as as as	sumed to be SP i. onnectors recommalis due to UPLIF 25, 24, 23, 22, 2 plift only and doe ned in accordance tential Code sect erenced standard ndard	No.2 crushing mended to cor T at jt(s) 2, 26 1, 20, and 18. es not conside we with the 201 ions R502.11. d ANSI/TPI 1.	I inect , 27, This r lateral 15 1 and

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

December 6,2019

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	С	Common	6	1	Job Reference (optional)	E13837759

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:55:58 ID:YtmTdFhKCwq95ZkdFHTyauyC_zi-2U3v5JMRjAbWGJs_dlbTn7UboJdgGX3JtiObr6yBjXl

Page: 1

-0-10-8 0-10-8 27-4-8 0-10-8 6-9-4 19-8-12 13-3-0 26-6-0 6-5-12 6-9-4 6-5-12 6-9-4 4x5 u 6 12 8 Г 16 17 2x4 🐝 5 7 2x4 🏿 4 8 9-9-3 9-6-3 18 15 10 11 0-8-3 13 12 14 3x6 II 3x6 II 17-6-13 26-6-0 8-11-3 8-11-3 8-7-11 8-11-3

Scale = 1:62.3 Plate Offsets (X, Y): [2:0-3-4.0-1-5] [10:0-3-4.0-1-5]

	(, .). [=:::::,:::];	[
Loading	(psf)	Spacing	2-0-0		csi		DEFL	jn	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOI	1 00		тс	0.50	Vert(LL)	-0.04	12-14	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25		BC	0.58	Vert(CT)	-0.20	10-12	>999	180			
BCLL	0.0	Rep Stress Incr	YES		WB	0.38	Horz(CT)	0.04	10	n/a	n/a			
BCDL	10.0	Code	IRC2015/	/TPI2014	Matrix-S	0.00		0.01				Weight: 147 lb	FT = 20%	
LUMBER			4)	All bearings	are assumed to b	e SP No.	2 crushing							
TOP CHORD	2x4 SP No.2			capacity of 5	65 psi.									
BOT CHORD	2x4 SP No.2		5)	One RT7A U	SP connectors re	ecommen	ded to conne	ect						
WEBS	2x4 SP No.2			truss to bear	ing walls due to L	JPLIFT at	jt(s) 2 and 1	0.						
SLIDER	Left 2x4 SP No.3 4	4-0-3, Right 2x4 SP	No.3	This connect	ion is for uplift on	ily and do	es not consid	der						
	4-0-3			lateral forces										
BRACING			6)	This truss is	designed in acco	rdance wi	th the 2015							
TOP CHORD	Structural wood she	athing directly applie	ed or	International	Residential Code	sections	K5U2.11.18	and						
	4-1-11 oc purlins.			R802.10.2 ai	nd referenced sta	indard AN	ISI/TPI 1.							
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	; LO	AD CASE(S)	Standard									
REACTIONS	(lb/size) 2=1113/0-	-3-8, 10=1113/0-3-8												
	Max Uplift 2=-377 (L	C 3), 10=-377 (LC 3)											
	Max Grav 2=1194 (L	_C 6), 10=1194 (LC	6)											
FORCES	(lb) - Maximum Com	pression/Maximum												
	Tension	•												
TOP CHORD	1-2=0/13, 2-15=-160	0/453, 3-15=-1555/4	453,											
	3-4=-1446/454, 4-5=	-1493/486,												
	5-16=-1396/486, 6-1	6=-1395/486,												
	6-17=-1395/486, 7-1	7=-1396/486,												
	7-8=-1493/486, 8-9=	-1446/454,												
	9-18=-1555/453, 10-	-18=-1600/453,											111111	
	10-11=0/13											11 dial	CAD	
BOT CHORD	2-14=-299/1213, 13-	-14=-126/770,										"all		14
	12-13=-126/770, 10-	-12=-299/1213										N. O'	Rik.	11
WEBS	6-12=-207/628, 8-12	2=-421/204,										S in OY		4:
	6-14=-207/628, 4-14	=-421/204									-	:0	- XIIII	2 3
NOTES												1 1		1 2
1) This truss	has been checked for	uniform roof live loa	d								=	: 5	SEAL	
only, exce	pt as noted.										=	1	6673	
Wind: ASC	CE 7-10; Vult=115mph	(3-second gust)									=	Z: +	0075	10
Vasd=91n	nph; TCDL=0.0psf; BC	DL=0.0psf; h=0ft; Ca	at.									P:		:63
II; Exp B; I	Enclosed; C-C Exteriol	r (2) -0-10-8 to 2-1-8	,									S. A.	-a.:	53
Interior (1)) 2-1-8 to 10-3-0, Exter	10f(2) 10-3-0 to 16-	3-0,									1. L. NO	GINE	23
27-4-8-1	10-3-0 10 24-4-0, EXIE	arin $DOI = 1.00$										M.V.	······	11
 21-4-0, Lu All platos : 	and 3v5 MT20 unloss of	sherwise indicated										11, 4.	STRL	· ·
5) All plates	are 5x5 witzo unless c	nie wise muicaleu.										1111	mmm	
												Decemb	er 6.2019	
												Docomb	0. 0,2010	

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	A	Roof Special	1	1	Job Reference (optional)	E13837760

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:55:51 ID:4gC5QwgiRdiJUP9RhZyj1gyC_zj-tNvInYDXJoC4SdWtUxvurpWiYtwvBTCiLVDWzFyBjXw

Plate Offsets (X, Y): [2:0-3-8,0-1-1]

Loading TCLL (roof) TCDL BCLL BCDI	(psf) 20.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.25 YES	5/TPI2014	CSI TC BC WB Matrix-S	0.56 0.40 0.64	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.09 0.04	(loc) 12-14 14-15 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Except No.3 Left 2x4 SP No.3 4 Structural wood shea 4-7-4 oc purlins. Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 9-1 (lb/size) 2=1072/0- 11=1491/0	t* 12-7,11-8,15-4:2x I-0-1 athing directly applie applied or 10-0-0 oc 1. 3-8, 9=59/0-3-0, D-3-8	2) 4 SP 2) 4 d or 4) 5 5) 6)	Wind: ASCE Vasd=91mph II; Exp B; Enc Interior (1) 2- Interior (1) 16 32-4-8; Lumb All plates are All bearings a capacity of 56 One RT7A U: truss to beari This connecti lateral forces. One RT16A U truss to beari	7-10; Vult=115mph ; TCDL=0.0psf; BC closed; C-C Exterior 1-8 to 10-3-0, Exter 5-3-0 to 29-4-8, Exter ter DOL=1.60 plate 3x5 MT20 unless c are assumed to be \$ 55 psi. SP connectors reconng walls due to UPI on is for uplift only : USP connectors reconng walls due to UPI	(3-sec DL=0.(r (2) -0- ior (2) erior (2) grip D0 stherwis SP No.: SP No.: IFT at and do	ond gust) ipsf; h=0ft; C 10-8 to 2-1-4 10-3-0 to 16- 29-4-8 to DL=1.00 se indicated. 2 crushing ded to conne jt(s) 2 and 9 es not consident inded to conne it(s) 11. This	at. 3, 3-3-0, ect Jer ject				weight. 17 - ho	11 - 2078
FORCES	Max Horiz 2=-61 (LC Max Uplift 2=-366 (L0 11=-450 (I Max Grav 2=1137 (L 11=1556 ((lb) - Maximum Com	4) C 3), 9=-78 (LC 3), LC 3) C 6), 9=59 (LC 1), (LC 6) pression/Maximum	7)	connection is forces. This truss is of International R802.10.2 ar	for uplift only and c designed in accorda Residential Code so do referenced stand	ance wi ance wi ections ard AN	th the 2015 R502.11.1 a SI/TPI 1.	teral and					
TOP CHORD	Tension 1-2=0/13, 2-16=-153 3-4=-1375/435, 4-5= 5-17=-990/361, 6-17 6-18=-987/360, 7-18 7-8=-1172/368, 8-19 9-19=-122/459, 9-10	1/434, 3-16=-1486/4 -1086/361, =-990/361, =-1068/360, =-122/546, =0/14	434,		Stanuaru							NUN ORTH	CAROLINI
BOT CHORD	2-15=-280/1198, 14- 13-14=-223/995, 12- 11-12=-43/217, 9-11	15=-280/1198, 13=-223/995, =-443/162									11111		SEAL
WEBS NOTES	7-12=-248/88, 8-12= 8-11=-1538/483, 4-1 4-14=-568/217, 6-14 7-14=-335/156	-197/864, 5=-3/147, =-235/686,									1111 March	A I	6673
 This truss only, exce 	has been checked for pt as noted.	uniform roof live loa	d									Min A.	STRZ

818 Soundside Road Edenton, NC 27932

December 6,2019

Page: 1

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	AA	Roof Special	1	1	Job Reference (optional)	E13837761

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

REACTIONS (lb/size)

3-10-9 oc purlins.

Max Horiz 2=-61 (LC 4)

bracing.

Max Grav

Tension

9-11=-454/147

8-11=-1381/433

only, except as noted.

1) This truss has been checked for uniform roof live load

Rigid ceiling directly applied or 6-0-0 oc

11=1556/0-3-8

Max Uplift 2=-359 (LC 3), 9=-63 (LC 3),

11=-472 (LC 3)

11=1623 (LC 6)

3-4=-1338/424, 4-5=-1068/357,

5-16=-972/357, 6-16=-972/357, 6-17=-935/344, 7-17=-1016/344, 7-8=-1437/410, 8-18=-118/561, 9-18=-118/492, 9-10=0/14

2-14=-270/1168, 13-14=-270/1168,

12-13=-274/1260, 11-12=-568/179,

(lb) - Maximum Compression/Maximum

1-2=0/13, 2-15=-1494/423, 3-15=-1449/423,

4-14=-3/145, 4-13=-563/216, 6-13=-226/652,

7-13=-677/229, 7-12=0/92, 8-12=-443/1781,

2=1051/0-3-8, 9=16/0-3-0,

2=1115 (LC 6), 9=16 (LC 1),

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:55:54 ID:YtmTdFhKCwq95ZkdFHTyauyC_zi-iXG02bIlvezDAYz1qB?I44mjsIzpb9jajQgqAuyBjXq

- 3) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
 4) One RTA USP connectors recommended to con
 -) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 9. This connection is for uplift only and does not consider lateral forces.
 - One RT16A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 11. This connection is for uplift only and does not consider lateral forces.
 - This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

TERENGINEERING BY A MITek Atfiliate 818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	AB	Roof Special	5	1	Job Reference (optional)	E13837762

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:55:54 ID:YtmTdFhKCwq95ZkdFHTyauyC_zi-AjqOFxIwgx54oiYDOvXXdHJuciJ2Kczky4QOiLyBjXp

REACTIONS (lb/size) 1=998/ Mechanical, 8=16/0-3-0, 10=1556/0-3-8 Max Horiz 1=-65 (LC 4) Max Uplift 1=-325 (LC 3), 8=-64 (LC 3), 10=-472 (LC 3) Max Grav 1=1084 (LC 6), 8=16 (LC 1), 10=1623 (LC 6) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-1496/429, 2-3=-1340/430, 3-4=-1069/361, 4-14=-973/361, 5-14=-972/361, 5-15=-936/347,

6-15=-1017/347, 6-7=-1438/413,

1-13=-278/1171, 12-13=-278/1171, 11-12=-278/1262, 10-11=-568/177,

This truss has been checked for uniform roof live load

8-10=-453/145

7-10=-1382/434

only, except as noted.

BOT CHORD

WEBS

NOTES

1)

7-16=-116/561. 8-16=-116/492. 8-9=0/14

3-13=-4/146, 3-12=-566/223, 5-12=-230/653,

6-12=-677/231, 6-11=0/92, 7-11=-445/1782,

- One RT16A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 10. This connection is for uplift only and does not consider lateral forces.
- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

ioint 1

Page: 1

TREERING BY AMITEK Affiliate 818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	AC	Roof Special	2	1	Job Reference (optional)	E13837763

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:55:55 ID:YtmTdFhKCwq95ZkdFHTyauyC_zi-evOmTHJYRFDxPs7Pyc2m9Vs2C6fH33EtBk9xFnyBjXo

	6-9-4	12-10-0	19-6-4	26-2-8	31-6-0	
	6-9-4	6-0-12	6-8-4	6-8-4	5-3-8	
Scale = 1:65						
						_

Plate Offsets (X, Y): [2:0-3-8,0-1-1], [12:0-2-8,0-2-4]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.25 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-S	0.65 0.43 0.77	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.17 0.05	(loc) 11-12 11-12 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 171 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N No.3 Left 2x4 S Structura 3-10-14 c Rigid ceil bracing. (Ib/size) Max Horiz Max Uplift Max Grav	0.2 0.2 *Excep SP No.3 I wood she co purlins. ing directly 2=1051/C 10=1562 2=-359 (L 2=-359 (L 10=-487 2=1115 (10=1627	ot* 4-13,11-7,10-8:2) 4-0-1 rathing directly applie rapplied or 6-0-0 oc 1-3-8, 9=-51/0-3-0, 10-3-8 2-4) .C 3), 9=-68 (LC 6), (LC 3) LC 6), 9=-5 (LC 3), (LC 6)	4 SP	 Wind: ASCE Vasd=91mpl II; Exp B; En Interior (1) 2: Interior (1) 1: 31-4-8; Luml All bearings capacity of 5 One RT7A U truss to bear This connect lateral forces One RT16A truss to bear connection is forces. This truss is International R802.10.2 ar 	7-10; Vult=115m n; TCDL=0.0psf; E closed; C-C Exter -1-8 to 10-3-0, Ex 6-3-0 to 28-4-8, E ber DOL=1.60 pla are assumed to b 65 psi. ISP connectors re ing walls due to L ion is for uplift on s. USP connectors s ing walls due to L s for uplift only an designed in accoo Residential Code and referenced sta	ph (3-sec 3CDL=0.0 rior (2) -0- terior (2) xterior (2) tte grip DO e SP No.1 ecommend JPLIFT at ly and do recommend JPLIFT at d does no redance wi e sections ndard AN	ond gust) ppsf; h=0ft; C 10-8 to 2-1- 10-3-0 to 16 28-4-8 to DL=1.00 2 crushing ded to conne jt(s) 9 and 2 es not consi nded to conne it(s) 10. This t consider la th the 2015 R502.11.1 a SI/TPI 1.	Cat. 8, -3-0, 2. der nect s ateral						
FORCES	(lb) - Max Tension 1-2=0/13 3-4=-133 5-15=-97 6-16=-93 7-8=-143 9-17=-12	timum Con , 2-14=-14 8/423, 4-5 2/356, 6-1 5/343, 7-10 6/409, 8-1	npression/Maximum 94/422, 3-14=-1449/ =-1068/356, 5=-971/356, 5=-1016/343, 7=-126/561,	1 422,	OAD CASE(S)	Standard							NICORTE	CARO	A.
BOT CHORD	2-13=-27 11-12=-2 9-10=-45	8/1167, 12 8/11258, 1 3/142	-13=-278/1167, 0-11=-568/175,										200		
WEBS	9-10=-453/142 4-13=-3/145, 4-12=-563/216, 6-12=-224/652, 7-12=-676/229, 7-11=0/92, 8-11=-446/1779, 8-10=-1384/447											ATTEN A	3 1	6673	X
NOTES 1) This truss only, exce	has been c pt as noted	hecked for	uniform roof live loa	ad								11.	Decemb	STRZY	En III

December 6,2019

Page: 1

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	BA	Roof Special	6	1	Job Reference (optional)	E13837764

Run: 8.32 E. Nov 19 2019 Print: 8.320 E. Nov 19 2019 MiTek Industries. Inc. Fri Dec 06 09:55:57 ID:UFuE2xjakY5tLtu0MiWQfJyC_zg-65y8gdKABZLo1?icWKZ?iiO9UWuroUD0POvUnDyBjXn

Page: 1

- 4) Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 390 lb uplift at ioint 9. 6)
 - One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

THE MARTIN MANIMUT I SEAL 16673 munn December 6,2019

818 Soundside Road Edenton, NC 27932

N	οт	ES
144		Lu

WFBS

TCDL

BCLL

BCDL

WEBS

SLIDER

BRACING

TOP CHORD

BOT CHORD

REACTIONS

FORCES

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

This truss has been checked for uniform roof live load 1) only, except as noted.

2x4 SP No.2 *Except* 1-3:2x4 SP No.1

Right 2x4 SP No.3 -- 4-0-1

Max Horiz 2=30 (LC 4)

2x4 SP No.2 *Except* 14-3,13-3,10-7:2x4 SP

Structural wood sheathing directly applied.

2=1276/0-3-8, 9=1213/ Mechanical

Rigid ceiling directly applied or 6-4-7 oc

Max Uplift 2=-448 (LC 3), 9=-390 (LC 3) Max Grav 2=1324 (LC 6), 9=1324 (LC 6)

(lb) - Maximum Compression/Maximum

2-14=-832/2991, 13-14=-815/2967,

3-14=-22/34. 3-13=-1402/477 4-13=-638/2148, 4-11=-883/323,

12-13=-415/1605, 11-12=-415/1605, 10-11=-377/1447. 9-10=-377/1447

1-2=0/14, 2-15=-3256/924, 3-15=-3199/924, 3-4=-3812/1139, 4-16=-1463/476, 5-16=-1387/476, 5-17=-1378/466, 6-17=-1379/466, 6-7=-1476/466, 7-8=-1740/540, 8-9=-1895/539

5-11=-376/1172, 7-11=-536/221, 7-10=-2/122

2x4 SP No.2

No 3

bracing.

Tension

(lb/size)

- Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=0.0psf; BCDL=0.0psf; h=0ft; Cat. II; Exp B; Enclosed; C-C Exterior (2) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 14-3-0, Exterior (2) 14-3-0 to 20-3-0, Interior (1) 20-3-0 to 27-6-0, Exterior (2) 27-6-0 to 30-6-0; Lumber DOL=1.60 plate grip DOL=1.00
- Bearings are assumed to be: Joint 2 SP No.2 crushing 3) capacity of 565 psi.

Job	Truss	Truss Type	Qty Ply KMB - Cypress II		KMB - Cypress II	
19120017-A	В	Roof Special	1	1	Job Reference (optional)	E13837765

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:55:56 ID:UFuE2xjakY5tLtu0MiWQfJyC_zg-65y8gdKABZLo1?icWKZ?iiODsWyboZd0POvUnDyBjXn

Page: 1

0.04

9

n/a n/a

Weight: 168 lb

FT = 20%

BCLL BCDL		0.0 10.0	Rep Stress Incr Code	YES	015	/TPI2014	WB Matrix-S	0.62	Horz(CT)	-U (
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP N 2x4 SP N 2x4 SP N No.3 Right 2x4 Structura 4-6-6 oc Rigid ceil bracing, 6-0-0 oc (lb/size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=0/14, 3-4=-130 5-16=-10. 6-17=-10. 7-8=-139 2-14=-62: 12-13=-2: 10-11=-2: 3-14=-21 4-11=-34: 7-11=-55	0.2 0.2 0.2 *Except SP No.3 I wood sheat purlins. ing directly Except: bracing: 2-1 2=72/0-3-6 14=1394/(2=30 (LC - 2=-71 (LC 14=-435 (IC 2=72 (LC 14=-1494 (timum Comp 7/410, 4-16 33/372, 5-1 28/363, 6-7 8/440, 8-9= 2/220, 13-1 26/957, 11- 96/1170, 9- 11/601, 3-1 9/167, 5-11 7/227, 7-10	* 14-3,13-3,10-7:2x 4-0-1 athing directly applie applied or 10-0-0 oc 4. 3, 9=1024/ Mechanic 3, 9=-331 (LC 3), LC 3) 1), 9=1121 (LC 6), LC 6) pression/Maximum /599, 3-15=-189/675 =-1109/372, 7=-1026/363, =-1125/363, -1553/439 4=-234/971, 12=-226/957, 10=-296/1170 3=0/138, 4-13=-15/4 =-262/781, =-3/125	4 SP ed or cal, 0,	2) 3) 4) 5) 6) 7) 8) 9) LO	Wind: ASCE Vasd=91mph II; Exp B; End Interior (1) 2: 30-6-0; Lumt All plates are Bearings are capacity of 5: of 565 psi. Refer to girdd Provide mecl bearing plate joint 9. One RT7A U truss to beari connection is forces. One RT16A I truss to beari connection is forces. This truss is ' International R802.10.2 ar AD CASE(S)	7-10; Vult=11f ; TCDL=0.0ps closed; C-C Ex 1-8 to 14-3-0,)-3-0 to 27-6-0 per DOL=1.60 3x5 MT20 unl assumed to b 65 psi, Joint 14 er(s) for truss t hanical connect capable of wit SP connectors ing walls due to for uplift only USP connector ing walls due to for uplift only USP connectors for uplift only designed in ac Residential CC and referenced si Standard	Simph (3-sec f; BCDL=0.(terior (2) -0 Exterior (2) -0 Exterior (2) plate grip D' ess otherwi e: Joint 2 SF 4 SP No.2 c o truss conr totion (by oth thstanding 3 s recommen to UPLIFT at and does no cordance w bode sections standard AN	bond gust) pord gust) pord, fi=0ft; C 10-8 to 2-1-4 14-3-0 to 20-0) 27-6-0 to DL=1.00 se indicated. P No.2 crushing rushing capa nections. ers) of truss i 31 lb uplift al ded to conne jt(s) 2. This to consider la nded to conner jt(s) 14. This to consider la nded to conner jt(s) 14. This to consider la SI/TPI 1.	at. 3, ·3-0, city to t act and
1) This truss	has been c	hecked for	uniform roof live loa	d						

only, except as noted.

MILLIN MARTIN MARTIN 2 """" SEAL 16673 STF munn December 6,2019

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	FE	Common Supported Gable	1	1	Job Reference (optional)	E13837766

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:56:02 ID:03KsrbiyzEy0jjJqp_?B65yC_zh-xFJQxgPxnP5xlw9lsagPxzeOdw84CPRvoKMp_tyBjXh Page: 1

	9-0-0	
Scale = 1:35.4		
Plate Offsets (X, Y): [2:0-2-0,0-0-5], [8:0-2-0,0-0-5]		

				-										
Loading TCLL (roof) TCDL BCLL	(p 20 10	osf) 0.0 0.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-11-4 1.00 1.25 YES		CSI TC BC WB	0.06 0.04 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10	0.0	Code	IRC2015	5/TPI2014	Matrix-S							Weight: 48 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No 1-6-7 Structural wood 6-0-0 oc purlins Rigid ceiling di bracing. (lb/size) 2=16 10=1 12=1 Max Uplift 2=-8 10=- 12=- Max Grav 2=16 10=2 2 (lb) - Maximum	d shea s. rectly 194/9- 194/9- 194/9- 77 (LC 1113 (L 677 (LC 247 (L 247 (L 247 (L	-6-7, Right 2x4 SP No applied or 10-0-0 oc -0, 8=167/9-0-0, 0-0, 11=77/9-0-0, 0-0 3), 8=-87 (LC 3), _C 3), 11=-6 (LC 4), _C 3) : 1), 8=167 (LC 1), C 6), 11=77 (LC 1), C 6), ression/Maximum	3) 5.3 4) 5) 6) or 7) 8) LC	Truss desigr only. For stu see Standarc or consult qu Gable requir Gable studs All bearings a capacity of 5 One RT7A U truss to beari and 10. This consider late This truss is International R802.10.2 ar	heed for wind loads in ds exposed to wind d Industry Gable En alified building desi es continuous botto spaced at 2-0-0 oc. are assumed to be 56 psi. SP connectors recor- ng walls due to UP connection is for up ral forces. designed in accorda Residential Code s and referenced stand Standard	n the pl I (norm; d Detai gner as m chor SP No.: SP No.: ommen LIFT at blift only ance wi ections lard AN	ane of the trus al to the face), Is as applicab per ANSI/TP d bearing. 2 crushing ded to connec jt(s) 2, 8, 11, 7 and does no th the 2015 R502.11.1 ar SI/TPI 1.	ss , le, l 1. t 12, t nd					
TOP CHORD	 (lb) - Maximum Compression/Maximum Tension 1-2=0/13, 2-3=-90/21, 3-4=-51/22, 4-5=-124/84, 5-6=-124/84, 6-7=-51/22, 7, 8, 00/21, 8, 00/22 												IN BTH	CARDU
BOT CHORD	2-12=0/32, 11- 8-10=0/32	12=0/3	32, 10-11=0/32,										2.00	Children .
WEBS	5-11=-48/37, 4	-12=-1	94/113, 6-10=-194/1	13								-	:20	
 NOTES 1) This truss has been checked for uniform roof live load only, except as noted. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=0.0psf; BCDL=0.0psf; h=0ft; Cat. II; Exp B; Enclosed; C-C Corner (3); Lumber DOL=1.60 plate grip DOL=1.00 				0								transfer and the second se	MARINA A	SEAL 6673 SINEER STRZYZE

December 6,2019

TENGINEERING BY AMITEK Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	EE	Roof Special Supported Gable	1	1	Job Reference (optional)	E13837767

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:56:02 ID:03KsrbiyzEy0jjJqp_?B65yC_zh-xFJQxgPxnP5xlw9lsagPxzeNzw8mCOAvoKMp_tyBjXh

Page: 1

_

SINFERING

818 Soundside Road Edenton, NC 27932

26	0 0	•
ZD-	O-1	

Scale = 1:54.8

Plate Offsets	(X, Y):	[16:0-2-8,0-2-5]
---------------	---------	------------------

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.00 1.25 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-S	0.10 0.06 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 160 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 23-10,24-3 Right 2x4 Structural 6-0-0 oc p Rigid ceili bracing. (Ib/size) Max Horiz Max Uplift Max Uplift Max Grav (Ib) - Maxi Tension	5.2 5.2 5.3 *Except 9,25-8,22-1 SP No.3 wood sheat ourlins. Ing directly 2=169/26- 18=123/26 20=154/26 22=161/26 22=161/26 22=161/26 22=161/26 22=30 (LC 22=-101 (LC 22=-77 (LC 22=-70 (LC 22=-70 (LC 22=-70 (LC 22=-70 (LC 22=-70 (LC 22=-70 (LC 27=-70 (LC 2	 1,21-12:2x4 SP No. 1-5-6 athing directly applie applied or 10-0-0 oc 8-0, 16=114/26-8-0, 3-8-0, 19=158/26-8-0 3-8-0, 21=154/26-8-0 3-8-0, 21=154/26-8-0 3-8-0, 21=154/26-8-0 3-8-0, 21=154/26-8-0 3-8-0, 21=155/26-8-0 3-8-0, 21=156/26-8-0 3-8-0, 21=156/26-8-0 3-8-0, 21=156/26-8-0 3-1, 19=-24 (LC 4), 3), 21=-82 (LC 3), 3), 21=-8148 (LC 6) C 6), 21=186 (LC 6) C 6), 22=129 (LC 1) C 6), 22=129 (LC 1) C 6), 22=129 (LC 4) C 6), 22=129 (LC 6) pression/Maximum 	2 B(d or),),),),),),),),),),),),),	DP CHORD DT CHORD DT CHORD DT CHORD This truss ha only, except Wind: ASCE Vasd=91mp II; Exp B; En Exterior (2) 2 Exterior (2) 2 27-6-8; Lum Truss desig only. For stu see Standar or consult qu All plates are Gable requir Gable requir Gable studs All bearings capacity of 5 One RT7A L truss to bear 25, 27, 28, 2 connection i forces	1-2=0/14, 2-31=-8i 3-4=-39/25, 4-5=-3 6-7=-47/17, 7-8=-7 9-10=-131/145, 10 11-12=-98/103, 12 14-15=-46/40, 15-7 2-30=-62/88, 20-3 27-28=-62/88, 20-3 27-28=-62/88, 20-3 21-22=-62/88, 20-3 21-28, 20-3 21-28, 20-3 7-27=-148/79, 6-24 3-30=-182/128, 11 12-21=-147/82, 13 14-19=-149/81, 15 as been checked fd as noted. 57-10; Vult=115mp h; TCDL=0.0psf; B icolosed; C-C Corne 2-1-8 to 12-4-0, C0 18-4-0 to 24-6-8, C0 ber DOL=1.60 plat ned for wind loads usds exposed to wir d Industry Gable E alified building de- e 2x4 MT20 unless res continuous bott spaced at 2-0-0 or are assumed to be 565 psi. JSP connectors rei ing walls due to U 29, 30, 22, 21, 20, 7 s for uplift only and	0/35, 3-3 0/21, 5-4 (0/57, 8-5 -11=-13: 113=-70/ 166=-82/8 27=-62/8 24=-62/8 24=-62/8 24=-62/8 24=-62/8 24=-150/ 3=-140/7 -20=-14(-18=-13) or uniform h (3-sec CDL=0.6 r (3) -0 rmer (3) orner (3	1=-80/47, 5=-28/33, 9=-98/103, 1/145, 57, 13-14=-2 8, 16-17=0/1, 28-29=-62/ 8, 25-26=-62 8, 25-26=-62 8, 22-23=-62 8,	47/18, 13 (88, 2/88, 2/88, 2/88, 2/88, 47/82, (51, (51, (51, (51, (51, (51, (51, (51	9) Bev surf 10) This Inte R8(LOAD (reled pla face with s truss is mationa 22.10.2 ¢ CASE(S)	te or sil truss desig I Resic nud refe Star	him required to p chord at joint(s) 2 ned in accordance Jential Code sect erenced standard ndard	CA BEAL 6673 CA CA CA CA CA CA CA CA CA CA CA CA CA	ing 5 I and
				101065.								Decemb	er 6,2019		

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	E	Roof Special	12	1	Job Reference (optional)	E13837768

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:56:01 ID:03KsrbiyzEy0jjJqp_?865yC_zh-T3I1jKOJ05z57naZlt9APm50fXbNTpbmZgdFSRyBjXi

Page: 1

818 Soundside Road Edenton, NC 27932

Plate Offsets (X, Y): [8:0-4-0,Edge], [12:0-3-8,0-2-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.25 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-S	0.84 0.83 0.58	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.49 0.06	(loc) 12 8-10 8	l/defl >999 >650 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 138 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.2 *Excep Right 2x4 SP No.3 Structural wood she 2-2-0 oc purlins. Rigid ceiling directly bracing. (lb/size) 2=1122/0 Max Horiz 2=26 (LC Max Uplift 2=-401 (L Max Grav 2=1157 (L	t* 1-3:2x4 SP No.1 t* 12-3:2x4 SP No.3 - 3-5-4 athing directly applie applied or 7-0-12 o -3-8, 8=1113/0-3-8 4) C 3), 8=-379 (LC 3) C 6), 8=1186 (LC 6)	4) 3 5) ed or c 5)	One RT7A U truss to beari This connect lateral forces This truss is International R802.10.2 ar	SP connectors re ing walls due to U ion is for uplift on designed in accound Residential Code and referenced sta Standard	ecommenc IPLIFT at Iy and doe rdance with sections ndard AN	ded to conne jt(s) 2 and 8 es not consid th the 2015 R502.11.1 a SI/TPI 1.	ect der and						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/14, 2-13=-269 3-4=-3176/971, 4-14 5-14=-1231/419, 5-1 6-15=-1308/408, 6-7 7-16=-1533/468, 8-1 2-12=-678/2464, 11- 10-11=-352/1401, 8- 3-12=-1202/414, 4-1 4-10=-778/286, 5-10 6-10=-372/180	pression/Maximum 94/767, 3-13=-2638/ I=-1291/419, 5=-1223/408, 2=-1451/469, 6=-1582/468, 8-9=(-12=-352/1401, -10=-317/1211 2=-547/1768, I=-330/1049,	767,)/13									UNITH STA	CARDU	in the second
NOTES 1) This truss only, exce 2) Wind: ASC Vasd=91m II; Exp B; E Interior (1) 27-6-8; Lu 3) All bearing capacity of	has been checked for pt as noted. CE 7-10; Vult=115mph nph; TCDL=0.0psf; BC Enclosed; C-C Exterior 2-1-8 to 12-4-0, Exter 18-4-0 to 24-6-8, Exter mber DOL=1.60 plate ps are assumed to be \$ f 565 psi.	uniform roof live loa (3-second gust) DL=0.0psf; h=0ft; C r (2) -0-10-8 to 2-1-6 ior (2) 12-4-0 to 18- erior (2) 24-6-8 to grip DOL=1.00 SP No.2 crushing	ad at. 3, 4-0,								"Hummen		EAL 5673 STRZ STRZ Fr 6.2019	HS HILL

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	BE	Roof Special Supported Gable	1	1	Job Reference (optional)	E13837769

Scale = 1:60.6

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:55:57 ID:YtmTdFhKCwq95ZkdFHTyauyC_zi-alWXuzLoysTff9Ho314EEwxVhvOIX7AAe2e2JfyBjXm

30-6-0

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc) l/defl	L/d	PLATES	GRIP			
TCLL (roof)		20.0	Plate Grip DOL	1.00		тс	0.20	Vert(LL)	-0.02	2-34	4 >999	240	MT20	244/190			
TCDL		10.0	Lumber DOL	1.25		BC	0.20	Vert(CT)	-0.04	2-34	4 >999	180					
BCLL		0.0	Rep Stress Incr	YES		WB	0.16	Horz(CT)	0.00	19	9 n/a	n/a					
BCDL		10.0	Code	IRC201	5/TPI2014	Matrix-S							Weight: 193 lb	FT = 20%			
LUMBER				T	OP CHORD	1-2=0/14, 2-35	=-81/30, 3-3	5=-81/36,		 One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 19, 2, 26, 27, 29, 30, 31, 33, 25, 24, 23, 22, 21, and 20. This 							
TOP CHORD	2x4 SP N	lo.2				3-4=-61/43, 4-	5=-58/7, 5-6=	-45/23,									
BOT CHORD	2x4 SP N	10.2				6-7=-77/50, 7-8	8=-101/93, 8	9=-134/141,		21, 29, 30, 31, 33, 25, 24, 23, 22, 21, and 20. This							
WEBS	2x4 SP N	10.3				9-10=-170/184		connection is for uplift only and does not consider lateral									
OTHERS	2x4 SP N	lo.3 *Excep	t*	~		11-12=-134/141, 12-13=-102/94, IOICES.							nod in accordance	a with the 2015			
	26-10,27	-9,29-8,25-	11,24-12:2x4 SP No.	2		16-17-53/31	17-1893/8	1, 13-10=-43/-	+2, 34	0) II In) This truss is designed in accordance with the 2015						
BRACING	-			. B		$2_34 = 54/72$	3-3454/72	32-33-54/7	5 7	R	802 10 2 2	and ref	erenced standard	ANSI/TPI 1			
I OP CHORD	Structura	al wood she	athing directly applie	d or D		31-32=-59/76	30-31=-59/7	5 29-30=-59/	_, 76		CASE	Ctor	ndard				
	6-0-0 oc	purlins, ex	cept end verticals.			28-29=-59/76.	27-28=-59/7	6, 26-27=-59/7	76.	LUAL	OASE(S	Sial	nualu				
BOT CHORD	Rigid cei	ling directly	applied or 10-0-0 oc	;		25-26=-59/76.	24-25=-59/7	6. 23-24=-59/	76.								
	Dracing.		10.00			22-23=-59/76,	59/76, 21-22=-59/76, 20-21=-59/76,										
WEDS	I ROW at		10-20			19-20=-59/76											
REACTIONS	(ID/SIZE)	2=243/0-3	3-8, 19=46/26-6-0,	, W	EBS	10-26=-143/88	, 9-27=-152/	76, 8-29=-155	/87,								
		20=130/2	0-0-0, 21=100/20-0-0 6 6 0 22-160/26 6 (),)		7, 5-32=-70/37	7,										
		24-159/2	6-6-0,25-165/26-6-(י, ז	4-33=-236/129, 3-34=-58/61, 11-25=-152/77,												
		26=127/2	6-6-0 27=165/26-6-0),)		/82,											
		29=162/2	6-6-0, 30=149/26-6-0).		14-22=-151/83	, 15-21=-155	/83,									
		31=202/2	6-6-0, 32=31/26-6-0,	- /		17-20=-139/90											
		33=414/2	6-6-0	N	OTES												
	Max Horiz	2=53 (LC	3)	1)	This truss h	as been checke	ed for uniforn	n roof live load	ł								
	Max Uplift	2=-141 (L	C 3), 19=-45 (LC 4),		only, excep	t as noted.											
		20=-113 (LC 3), 21=-80 (LC 3)), 2)	Wind: ASCI	= 7-10; Vult=11											
		22=-83 (L	C 3), 23=-81 (LC 3),		vasa=91mp	on; TCDL=0.0ps	ST; BCDL=0.0	psr; n=utt; Ca	t.								
		24=-86 (L	C 3), 25=-76 (LC 3),		II; EXP B; E		Officer (3) -0-1	0-8 10 2-1-8,	0				"TH	CARA			
		26=-48 (L	C 4), 27=-76 (LC 3),		Exterior (2)	20 2 0 to 27 2	, Corner (3)	27 2 0 to	-0,				NR				
		29=-88 (L	C 3), 30=-75 (LC 3),	2)	30-4-4: Lun	20-3-0 10 27-3-	nlate grin D(27-3-010					CO.C.	Strawll.			
		31=-107 (LC 3), 33=-206 (LC	3) 3)		ned for wind lo	ads in the n	ane of the trus	20				: =C	XMMI -			
	Max Grav	2=243 (LC	(LC 3), 19=75 (LC 3),	5)	only For st	uds exposed to	wind (norm:	al to the face)	55				:0				
		20=100 (L	(LC 6), 21 = 194 (LC 6)	,	see Standa	rd Industry Gab	le End Detai	s as applicab	le.			=	: c				
		22=191 (L 24=103 (I	C 6), 23=191 (LC 6)	,	or consult of	ualified building	designer as	per ANSI/TP	I 1.			=		DEAL :			
	24 = 193 (LC 0), 23 = 192 (LC 0), 26 = 143 (LC 0), 27 = 192 (LC 0), 4)					 All plates are 2x4 MT20 unless otherwise indicated. 						=	_: 1	6673 :_			
		29=196 (LC 6), $30=178$ (LC 6), 5) Gable studs spaced at 2-0-0 oc.									1	3:	18				
		31=239 (LC 6), $32=39$ (LC 6), 6) All bearings are assumed to be SP No.2 crushing									-	7	:0				
		33=416 (L	_C 6)	,	capacity of	565 psi.		-				0	· Mi En	CR. N.S			
FORCES	(lh) - May	(lb) - Maximum Compression/Maximum											1.11	INEFINES			
	Tension	Tension											IL A	OTDI			
													1111	SING			

December 6,2019

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TREENCO AMITek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	DE	Common Supported Gable	1	1	Job Reference (optional)	E13837770

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:56:00 ID:03KsrbiyzEy0jjJqp_?B65yC_zh-?tBfW?NhFnrEWd?Nl9exsYZ0b7SFkTNcK0tiw_yBjXj

-

Page: 1

H

Scale = 1:55.5

Plate Offsets (X, Y): [18:0-4-12,0-1-8]

		-1												
Loading	(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.00		тс	0.16	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25		BC	0.06	Vert(CT)	n/a	-	n/a	999			
BCLL	0.0	Rep Stress Incr	YES		WB	0.13	Horz(CT)	0.00	11	n/a	n/a			
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-R							Weight: 111 lb	FT = 20%	
LUMBER	2x4 SP No.2		1)	This truss ha	s been checked for u as noted.	uniforr	n roof live loa	d						
BOT CHORD	2x4 SP No 2		2)	Wind: ASCE	7-10: Vult=115mph ((3-sec	ond aust)							
WEBS	2x4 SP No.3		,	Vasd=91mpł	n; TCDL=0.0psf; BCD	.0=0	0psf; h=0ft; Ca	at.						
OTHERS	2x4 SP No.3 *Excep	t* 13-7,14-6,12-8:2x	4 SP	II; Exp B; En	closed; C-C Corner (3) -0-	10-8 to 2-1-8,							
	No.2	, ,		Exterior (2) 2	2-1-8 to 6-6-0, Corner	r (3) 6	-6-0 to 13-10-	4;						
BRACING				Lumber DOL	=1.60 plate grip DOL	_=1.00)							
FOP CHORD	Structural wood shea	athing directly applie	dor 3)	Truss desig	ned for wind loads in	the pl	ane of the tru	SS						
	6-0-0 oc purlins, exe	cept end verticals.		only. For stu	ids exposed to wind ((norm	al to the face)	, 						
30T CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	;	or consult qu	a Industry Gable End	Deta ner as	s per ANSI/TP	ole, PI 1.						
WEBS	1 Row at midpt	7-13	4) 5)	All plates are	2X4 M120 Unless of	nerwi	se indicated.							
REACTIONS	(lb/size) 11=92/14-	-0-0, 12=175/14-0-0,	5) 6)	Truss to be f	ully sheathed from or	ne fac	e or securely							
	13=135/14	4-0-0, 14=163/14-0-0 4-0-0 16=163/14-0-0	J, 1	braced agair	st lateral movement	(i.e. d	iagonal web).							
	17=111/1	4-0-0, 10=103/14-0-0 4-0-0, 18=128/14-0-0), 7)	Gable studs	spaced at 2-0-0 oc.									
	Max Horiz 18=155 (L	_C 3)	8)	All bearings	are assumed to be S	P No.	2 crushing							
	Max Uplift 11=-66 (L	C 3), 12=-100 (LC 3)).	capacity of 5	65 psi.									
	14=-95 (L	C 3), 15=-100 (LC 3)), 9)	One RITA U	SP connectors recon	nmen	ded to conned	ct F						
	16=-88 (L	C 3), 17=-150 (LC 3)),	16 17 and 1	Ing walls due to UPLI	foru	JI(S) 18, 14, 1	э,						
	18=-90 (L	C 4)		does not con	sider lateral forces	s ioi u	plint of ity and							
	Max Grav 11=121 (L	_C 6), 12=215 (LC 6)	^{),} 10) One RT16A	USP connectors reco	omme	nded to conne	ect					unne.	
	13=135 (L	_C 1), 14=200 (LC 6)), 10	truss to bear	ing walls due to UPLI	IFT at	it(s) 11. This						CA 5''	
	15=195 (L	_C 6), 16=195 (LC 6)),	connection is	for uplift only and do	bes no	ot consider lat	eral				"TH	CARO	11 production
	17=204 (L	_C 6), 18=128 (LC 1))	forces.								NON.		IN'S
ORCES	(lb) - Maximum Com	pression/Maximum	11) This truss is	designed in accordar	nce wi	th the 2015					S Store		12:
		000 0 0 440/407		International	Residential Code see	ctions	R502.11.1 a	nd					1111	A. 1 & 2
TOP CHORD	2-18=-112/76, 1-2=0	//38, 2-3=-148/137,		R802.10.2 a	nd referenced standa	ard AN	ISI/TPI 1.				- 5	12		10 A 1
	3-4=-70/70, 4-0=-43/ 6 7_ 105/109 7 9_	/30, 3-0=-04/47, 106/100 8 0- 50/44	LC	AD CASE(S)	Standard						=	: 5	SEAL	
	9-10=-3/14 10-11	7/6	,								=	: 1	6672	:
	17-18=-4/5 16-17=-	4/5 15-16=-4/5									1	2: 1	00/3	1 -
	14-15=-4/5, 13-14=-	4/5, 12-13=-4/5,									-			12
	11-12=-4/5	,										D.A.	.0	153
WEBS	7-13=-98/36, 6-14=-	161/95, 5-15=-156/9	9,									· L · NO	INEE	63
	4-16=-158/95, 3-17=	-152/111,										MAN S	1	VS
	8-12=-171/101, 9-11	=-109/72										11, 4.	STRL	111
NOTES												1111	mmm	
												Decemb	er 6,2019	

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	D	Common	2	1	Job Reference (optional)	E13837771

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:55:59 ID:03KsrbiyzEy0jjJqp_?B65yC_zh-WgdHJfM3UUjNuTRBBS6iKL0oaj?E??oT6M79OYyBjXk

Page: 1

Plate Offsets (X, Y): [2:Edge,0-3-4]

-											i	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.25 YES IRC2015/TPI2014	CSI TC BC WB Matrix-S	0.37 0.49 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.20 0.01	(loc) 7-8 7-8 6	l/defl >999 >837 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 97 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep	t* 8-2,6-5:2x4 SP N	5) This truss Internatior R802.10.2 o.3 LOAD CASE(is designed in acco al Residential Cod and referenced sta s) Standard	ordance wi e sections andard AN	th the 2015 R502.11.1 ; SI/TPI 1.	and					
BRACING TOP CHORD BOT CHORD	Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly	athing directly applicept end verticals. applied or 10-0-0 o	ed or c									
REACTIONS	bracing. (Ib/size) 6=546/0-3 Max Horiz 8=143 (LC Max Uplift 6=-213 (LI Max Grav 6=617 (LC	3-8, 8=612/0-3-8 C 3) C 3), 8=-215 (LC 3) C 6), 8=626 (LC 6)										
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD	1-2=0/39, 2-9=-451/ 3-10=-427/149, 4-10 4-5=-408/144, 2-8=-4	159, 3-9=-351/159, =-345/149, 427/208_5-6=-604/2	212									
BOT CHORD WEBS	7-8=-184/451, 6-7=- 4-7=-58/159, 5-7=-80 3-8=-213/10	7/10 0/330, 3-7=-303/17	1,									
NOTES												AUUIII
 This truss only, exce Wind: ASI Vasd=91r II; Exp B; Interior (1 Lumber D 	has been checked for ept as noted. CE 7-10; Vult=115mph mph; TCDL=0.0psf; BCI Enclosed; C-C Exterior) 2-1-8 to 6-6-0, Exteric OL=1.60 plate grip DO	uniform roof live loa (3-second gust) DL=0.0psf; h=0ft; C (2) -0-10-8 to 2-1-8 or (2) 6-6-0 to 13-10 L=1.00	ad at. 3, -4;							unn.	RAN SAL	CAR SEAL

- 3) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6 and 8. 4) This connection is for uplift only and does not consider lateral forces.

818 Soundside Road Edenton, NC 27932

16673

Job	Truss	Truss Type	Qty Ply KMB - Cypress II		KMB - Cypress II		
19120017-A	VC	Valley	1	1	Job Reference (optional)	E13837772	

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:56:07 ID:UFuE2xjakY5tLtu0MiWQfJyC_zg-HD6J_0T4cxkEri2jf8Gae1LEHxr4tgPexc4ag4yBjXc

5-4-7

Scale =	1:36.1	

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-P							Weight: 27 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 5-4-12 oc purlins, e Rigid ceiling directly bracing. (lb/size) 3=94/5-4- 5=37/5-4- Max Horiz 5=-130 (L Max Uplift 4=-172 (L Max Grav 3=94 (LC	athing directly applie xcept end verticals. applied or 10-0-0 oc 7, 4=245/5-4-7, 7 C 3) C 3), 5=-26 (LC 3) 1), 4=315 (LC 6), 5=	7) One RT7A truss to be This conne lateral forc 8) This truss Internation R802.10.2 LOAD CASE(\$	USP connectors re aring walls due to L ction is for uplift on es. s designed in acco al Residential Code and referenced sta 5) Standard	ecommenn JPLIFT at Ily and do rdance wi e sections indard AN	ded to connec jt(s) 5 and 4. es not conside th the 2015 R502.11.1 ar SI/TPI 1.	er nd					
FORCES	(Ib) - Maximum Com	pression/Maximum										
TOP CHORD BOT CHORD WEBS	Tension 1-5=-39/26, 1-2=-51, 4-5=-102/130, 3-4=- 2-4=-254/172	/19, 2-3=-127/130 102/130										
NOTES												
1) This truss	has been checked for	uniform roof live load	Ł									10006
 only, exce 2) Wind: AS0 Vasd=91n II; Exp B; plate grip 3) Truss des only. For see Stancor or consult 4) Gable req 5) Gable stu 6) All bearing capacity consult 	apt as noted. CE 7-10; Vult=115mph nph; TCDL=0.0psf; BC Enclosed; C-C Exterior DOL=1.00 signed for wind loads in studs exposed to wind lard Industry Gable En- qualified building desig uires continuous botton ds spaced at 2-0-0 oc. gs are assumed to be S of 565 psi.	(3-second gust) DL=0.0psf; h=Oft; Ca r (2); Lumber DOL=1 h the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP m chord bearing. SP No.2 crushing	.t. .60 ss le, I 1.							C. Thunner	MARUN A	CAR SEAL 6673 SINEER. Chining

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

December 6,2019

Page: 1

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	VD	Valley	1	1	Job Reference (optional)	E13837773

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:56:08 ID:UFuE2xjakY5tLtu0MiWQfJyC_zg-HD6J_OT4cxkEri2jf8Gae1LE7xrNtgaexc4ag4yBjXc

1	4-4-13

Scale = 1:32.7														
Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.25		CSI TC BC	0.07 0.03	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190	
BCLL	0.0	Rep Stress Incr	YES		WB	0.04	Horiz(TL)	0.00	3	n/a	n/a	Mainte 04 lb	FT 000/	
BCDL	10.0	Code	IRC2015/11	PI2014	Matrix-P							vveight: 21 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 4-5-2 oc purlins, ex	athing directly applie	7) O tri Ia 8) Ti In ed or R LOAL	one RT7A US uss to bearin his connectio ateral forces. his truss is d nternational F 802.10.2 and D CASE(S)	SP connectors rec og walls due to Uf on is for uplift only esigned in accord Residential Code d referenced stan Standard	commend PLIFT at and do dance wi sections dard AN	ded to connec jt(s) 5, 3, and es not conside th the 2015 R502.11.1 ar SI/TPI 1.	et I 4. er nd						
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.													
REACTIONS	Max Horiz 5=-54/4-4 Max Horiz 5=-108 (L Max Uplift 3=-4 (LC (LC 3) Max Grav 3=63 (LC (L C 6)	13, 4=133/4-4-13, 13 C 3) 4), 4=-136 (LC 3), 5: 1), 4=249 (LC 6), 5=												
FORCES	(Ib) - Maximum Con Tension	npression/Maximum												
TOP CHORD BOT CHORD WEBS	1-5=-57/39, 1-2=-45 4-5=-84/108, 3-4=-8 2-4=-201/136	/30, 2-3=-112/105 4/108												
1) This truss	has been checked for	uniform roof live loa	d									annu a	CADIN	
only, exce 2) Wind: ASC Vasd=91n II; Exp B; I plate grip	pt as noted. CE 7-10; Vult=115mph nph; TCDL=0.0psf; BC Enclosed; C-C Exterio DOL=1.00	i (3-second gust) DL=0.0psf; h=0ft; Ca r (2); Lumber DOL=1	at. 1.60									SULLIN ATH	ARD I'L	
 Truss des only. For see Stand or consult 	signed for wind loads in studs exposed to wind ard Industry Gable En qualified building desi	n the plane of the tru I (normal to the face) d Details as applicat gner as per ANSI/TF	iss), ble, PI 1.								THIN W	z 1	6673	
4) Gable req	uires continuous botto	m chord bearing.									-	Pri.	101	
 Gable stud All bearing capacity o 	ds spaced at 2-0-0 oc. gs are assumed to be f 565 psi.	SP No.2 crushing										NON A	STRZY	

December 6,2019

Page: 1

Engineering by EREACO A MITek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II		
19120017-A	VF	Valley	1	1	Job Reference (optional)	E13837774	

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:56:09 ID:UFuE2xjakY5tLtu0MiWQfJyC_zg-EcE3P4UK8Y_y5?B6mYl2kSRZIIWELahxPwZgkzyBjXa Page: 1

Scale	1 = 1	1.26
ocare		1.20

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	V	Valley	1	1	Job Reference (optional)	E13837775

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:56:04 ID:03KsrbiyzEy0jjJqp_?B65yC_zh-teRAMMQBJ0Mf_EJ8_?it10jjvkpbglhCFerw3lyBjXf

Page: 1

14-11-2

Scale - 1:49 1

			-												
Loading		(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.00		тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
		10.0	Lumber DOI	1 25		BC	0.03	Vert(TL)	n/a	-	n/a	999			
BCU		0.0	Ren Stress Incr	VES		WB	0.00	Horiz(TL)	0.00	q	n/a	n/a			
		10.0	Codo		5/TDI2014	Motrix S	0.11		0.00	5	n/a	n/a	Woight: 02 lb	ET - 20%	
BODL		10.0	Code	IKC201	0/1712014	Matrix-3							weight. 92 ib	FT = 20%	
LUMBER				2)	Wind: ASCE	7-10; Vult=115m	ph (3-sec	ond gust)							
TOP CHORD	2x4 SP N	0.2			Vasd=91mph	; TCDL=0.0psf; E	SCDL=0.0)psf; h=0ft; Ca	at.						
BOT CHORD	2x4 SP N	0.2			II; Exp B; End	closed; C-C Exter	rior (2) 0-	4-13 to 3-4-13	3,						
WEBS	3 2x4 SP No.3 Interior (1) 3-4-13 to 5-10-3, Exterior (2) 5-10-3 to														
OTHERS	2x4 SP N	o.2 *Except	t* 14-3.15-2.10-7:2x4	1 SP	14-9-11; Lum	ber DOL=1.60 pl	ate grip [OL=1.00							
	No.3		-, - , -	3)	Truss desigr	ned for wind loads	s in the pl	ane of the tru	SS						
BRACING					only. For stu	ds exposed to wi	nd (norm	al to the face)),						
	Structura		athing directly applie	dor	see Standard	I Industry Gable I	End Deta	Is as applicat	ole,						
	6-0-0 001		cent and verticals	u 01	or consult qu	alified building de	esigner as	per ANSI/TF	기 1.						
	Digid coil	ing directly	applied or 10.0.0 oc	4)	All plates are	2x4 MT20 unles	s otherwi	se indicated.							
	bracing	ing unecuy	applied of 10-0-0 00	5)	Gable require	es continuous bot	tom chor	d bearing.							
			4 0 0 70/4 4 4 0	6)	Gable studs	spaced at 2-0-0 c	C.								
REACTIONS	(Ib/size)	1=81/14-1	1-2, 9=72/14-11-2,	7)	All bearings a	are assumed to b	e SP No.	2 crushing							
		10=162/14	4-11-2, 11=160/14-1	1-2,	capacity of 5	65 psi.									
		12=135/14	+-11-2, 13=100/14-1	1-2, 8)	One RT7A U	SP connectors re	commen	ded to conne	ct						
	Marca 1.1 and -	14=139/14	4-11-2, 15=202/14-1 o	1-2	truss to beari	ng walls due to U	JPLIFT at	jt(s) 1, 9, 12,	13,						
	Max Horiz	1=49 (LC	3) 2) 0 00 (LO 0) 40	110	14, 15, 11, aı	nd 10. This conne	ection is f	or uplift only a	and						
	Max Uplift	1=-5 (LC 3	3), 9=-32 (LC 3), 10=	-11Z	does not consider lateral forces.										
		(LC 3), T	=-90 (LC 3), $12=-40$	(LC 9)	This truss is	designed in acco	rdance wi	th the 2015							
		4), 13=-94	(LC 3), 14=-74 (LC 1)	3),	International Residential Code sections R502.11.1 and										
	Max Cray	15=-120 (1	1 0 92 (1 C C) 10	212	R802.10.2 and referenced standard ANSI/TPI 1.										
	wax Grav	1=01 (LC	-105 (LC 6), 10=	$\frac{2}{12}$	AD CASE(S)	Standard									
		(LC 0), 11	= 195 (LC 0), 12 = 150		()										
		1), 13=200 15=254 (1)	C = (10, 14 = 177)	, 0),										unnes -	
		10=204 (L												CART	(
FORCES	(ID) - Max Tension		pression/Maximum										""ATH	CAROL	111
TOP CHORD	1-2=-46/6	6, 2-16=-59	9/40, 3-16=-19/40,										S.O.		NIA
	3-17=-90	/89, 4-17=-7	75/89, 4-5=-139/149	,								- N			
	5-6=-139	/148, 6-7=-9	93/90, 7-8=-45/34,										:0	MIX.	
	8-9=-67/3	35										=			1 4
BOT CHORD	1-15=0/5	, 14-15=0/5	, 13-14=0/5, 12-13=0	0/5,										SEAL	- E
	11-12=0/	5, 10-11=0/	5, 9-10=0/5									=	1	6673	- E - E
WEBS	5-12=-13	3/78, 4-13=	-163/94, 3-14=-144/	76,								Ξ	3: 1	00/5	: 23
	2-15=-19	5/114, 6-11	=-158/91, 7-10=-169	/108									P		:63
NOTES													· Di A	-A .	23
 This truss 	has been c	hecked for	uniform roof live load	ł									1. 4 NO	GINE	63
only, exce	pt as noted												1.V A		15
													11, 4.	STR4	N
													1111	mum	
													_		

818 Soundside Road Edenton, NC 27932

December 6,2019

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	VA	Valley	1	1	Job Reference (optional)	E13837776

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:56:05 ID:03KsrbiyzEy0jjJqp_?B65yC_zh-Lq?YZiRq4KUWcOuKXjD6ZcGuO89aPmmLUIbTbCyBjXe

Page: 1

13-4-9

Scale = 1:43.5	5
----------------	---

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.25 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-S	0.09 0.05 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 72 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 *Excep Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (lb/size) 1=108/13- 9=168/13- 11=129/13 13=238/13 Max Horiz 1=19 (LC Max Uplift 1=-26 (LC (LC 3), 10 4), 12=-81 Max Grav 1=108 (LC (LC 6), 10 1), 12=173	t* 11-4:2x4 SP No.2 athing directly applied cept end verticals. applied or 10-0-0 oc 4-9, 8=84/13-4-9, 4-9, 10=163/13-4-9, 3-4-9 3) : 3), 8=-10 (LC 3), 9= =-94 (LC 3), 13=-145 (LC 2), 13=-145 (LC 2), 13=4(LC 1), 9= =200 (LC 6), 11=129 3 (LC 6), 13=301 (LC	4) 5) d or 6) , 9) -127 (LC 23) 225 (LC 6)	Truss design only. For stu see Standard or consult qui All plates are Gable require Gable studs s All bearings a capacity of 56 One RT7A U truss to beari 13, 10, and 9 not consider This truss is of International R802.10.2 ar DAD CASE(S)	ed for wind loads i ds exposed to wind Industry Gable En alified building desi 2x4 MT20 unless os continuous botto spaced at 2-0-0 oc. re assumed to be 55 psi. SP connectors recon ng walls due to UP. This connection is ateral forces. Jesigned in accord: Residential Code s d referenced stand Standard	n the pl I (norma d Detai gner as otherwis m chore SP No.? SP No.? ommene LIFT at s for upl ance wi ections lard AN	ane of the tru al to the face is as applical per ANSI/TF se indicated. d bearing. 2 crushing ded to conne jt(s) 1, 8, 11, ift only and d th the 2015 R502.11.1 a SI/TPI 1.	uss), ble, PI 1. ct , 12, loes ind					
FORCES	(lb) - Maximum Com Tension 1-2=-70/44, 2-14=-1(3-4=-131/130, 4-5=-'	pression/Maximum 03/76, 3-14=-63/76, 133/132, 5-6=-93/70,										unin TH	CARO
BOT CHORD WEBS	1-13=-11/21, 12-13= 10-11=-11/21, 9-10= 4-11=-107/61, 3-12= 5-10=-163/96, 6-9=-	-10 -11/21, 11-12=-11/21 -11/21, 8-9=-11/21 -144/84, 2-13=-231/1 176/116	I, I37,									icon ce	M
NOTES 1) This truss only, exce 2) Wind: AS Vasd=91r II; Exp B; Interior (1 13-3-2; Lu	thas been checked for spt as noted. CE 7-10; Vult=115mph nph; TCDL=0.0psf; BC Enclosed; C-C Exterior) 3-3-10 to 4-3-10, Exte umber DOL=1.60 plate	uniform roof live load (3-second gust) DL=0.0psf; h=0ft; Ca (2) 0-4-13 to 3-3-10, rrior (2) 4-3-10 to grip DOL=1.00	t.								THE REAL PROPERTY OF THE PROPE	MARUN A.	SEAL 6673

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

December 6,2019

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	VB	Valley	1	1	Job Reference (optional)	E13837777

5-8-2

5-8-2

Carter Components (Sanford), Sanford, NC - 27332,

4-9-0

4-5-

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:56:06 ID:03KsrbiyzEy0jjJqp_?B65yC_zh-p1Ywn2SSrdcNEYTX5QkL6pp4qYVD8DSVjyK08eyBjXd

11-0-1

5-4-0

11-4-3

6

3 5 12 10 Г

11-4-3

4x5 = 4

Scale = 1:37.9													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.00	тс	0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25	BC	0.02	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	7	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-S							Weight: 54 lb	FT = 20%	
LUMBER			6) Gable studs	spaced at 2-0-0	0 oc.								
TOP CHORD	2x4 SP No.2		All bearings	are assumed to	be SP No.	2 crushing							
BOT CHORD	2x4 SP No.2		capacity of	565 psi.									

OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural	I wood sheathing directly applied or
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	1=50/11-4-3, 7=50/11-4-3,
		8=145/11-4-3, 9=170/11-4-3,
		10=117/11-4-3, 11=170/11-4-3,
		12=145/11-4-3
	Max Uplift	8=-94 (LC 3), 9=-108 (LC 3),
		11=-108 (LC 3), 12=-94 (LC 3)
	Max Grav	1=50 (LC 1), 7=50 (LC 1), 8=184
		(LC 6), 9=214 (LC 6), 10=117 (LC
		1), 11=214 (LC 6), 12=184 (LC 6)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-55/4	7, 2-3=-61/16, 3-4=-100/73,
	4-5=-100/	/73, 5-6=-61/16, 6-7=-55/47
BOT CHORD	1-12=-38/	/54, 11-12=-38/54, 10-11=-38/54,
	9-10=-38/	/54, 8-9=-38/54, 7-8=-38/54
WEBS	4-10=-77/	4, 3-11=-173/108, 2-12=-145/92,
	5-9=-173/	(108, 6-8=-145/92

NOTES

- This truss has been checked for uniform roof live load 1) only, except as noted.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=0.0psf; BCDL=0.0psf; h=0ft; Cat. II; Exp B; Enclosed; C-C Exterior (2); Lumber DOL=1.60 plate grip DOL=1.00
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.

- capacity of 565 psi.
- 8) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 11, 12, 9, and 8. This connection is for uplift only and does not consider lateral forces.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	VE	Valley	1	1	Job Reference (optional)	E13837778

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:56:08 ID:UFuE2xjakY5tLtu0MiWQfJyC_zg-mPghBkTiNFs5TrdvDrnpBEuQ7LBic7toAGp7CXyBjXb

Scale =	1:30.5
---------	--------

Loading TCLL (ro TCDL BCLL BCDL	of)		(psf) 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.25 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-P	0.06 0.02 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%	
LUMBEF TOP CHI BOT CHI DTHERS BRACIN TOP CHI BOT CHI REACTION	R ORD ORD G ORD ORD ORD	2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (Ib/size) Max Uplift	0.2 0.2 0.3 I wood shea purlins. ing directly 1=62/8-1- 6=180/8-1 8=180/8-1 1=-2 (LC 3), 8=	athing directly applie applied or 10-0-0 oc 13, 5=62/8-1-13, I-13, 7=108/8-1-13, I-3 3), 5=-2 (LC 3), 6=-1 -123 (LC 3)	8) d or : LC	One RT7A U truss to beari 6. This conne consider late This truss is (International R802.10.2 ar	SP connectors reco ng walls due to UPl ection is for uplift on ral forces. Jesigned in accorda Residential Code si Id referenced stand Standard	ommen LIFT at lly and ance wi ections lard AN	ded to conner it(s) 1, 5, 8, a does not th the 2015 R502.11.1 a SI/TPI 1.	ct and nd				Weight. OF ID	11-2070	
FORCES	5	Max Grav	1=62 (LC (LC 6), 7=	1), 5=62 (LC 1), 6=2 108 (LC 1), 8=231 (pression/Maximum	:31 LC 6)											
	ORD	Tension 1-2=-37/3 4-5=-37/3	34, 2-3=-87, 34	/51, 3-4=-87/51,												
	URD	5-6=-24/3	87, 7-0=-24/ 87 8 2 9 - 190	/37, 0-7=-24/37,												
VEDS		3-7=-00/0	, 2-0=-109/	123, 4-0=-109/123											MILLING.	
NOTES 1) This only, 2) Wind Vasc II; Ex plate 3) Trus only. see S	truss exce d: ASC d=91m (p B; E grip I ss des For s Standa	has been c pt as noted CE 7-10; Vu ph; TCDL= Enclosed; C DOL=1.00 signed for w studs expos ard Industry qualified b	hecked for It=115mph 0.0psf; BC C-C Exterior ind loads ir sed to wind / Gable Enc	uniform roof live loar (3-second gust) DL=0.0psf; h=0ft; Ca (2); Lumber DOL=1 h the plane of the tru (normal to the face) d Details as applicat more as per ANS/TC	d at. .60 ss , ile,								"THILLING	A I	CAPO SEAL 6673	IN THE REAL PROPERTY OF
 Gabl 	e requ	uires contin	uous bottor	m chord bearing.										· Di En	-8.	1.2

4)

5) Gable studs spaced at 2-0-0 oc.

All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 6)

STP A. STRL December 6,2019

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	VG	Valley	1	1	Job Reference (optional)	E13837779

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:56:10 ID:UFuE2xjakY5tLtu0MiWQfJyC_zg-EcE3P4UK8Y_y5?B6mYI2kSRaYIXILaQxPwZgkzyBjXa

4-11-6

Scale = 1:28.5				I									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	_
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25	BC	0.03	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	3	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2	014 Matrix-P							Weight: 18 lb	FT = 20%	_
LUMBER			8) This	truss is designed in ac	cordance wi	th the 2015							
TOP CHORD	2x4 SP No.2		Inter	national Residential Co	ode sections	R502.11.1 a	nd						
BOT CHORD	2x4 SP No.2		R80	2.10.2 and referenced	standard AN	ISI/TPI 1.							
OTHERS	2x4 SP No.3		LOAD C	ASE(S) Standard									
BRACING													
TOP CHORD	Structural wood shea	athing directly applie	ed or										
	5-0-0 oc purlins.		_										
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	С										
REACTIONS	(lb/size) 1=96/4-11 4=143/4-1	I-6, 3=96/4-11-6, I1-6											
	Max Uplift 1=-50 (LC (LC 3)	3), 3=-50 (LC 3), 4	=-39										
	Max Grav 1=112 (LC (I C 6)	C 6), 3=112 (LC 6),	4=151										
FORCES	(lb) - Maximum Com	pression/Maximum											
		10.4											
POT CHORD	1-2=-04/24, 2-3=-04/	/24											
WEBS	1-4=-1/21, 3-4=-1/21 2_400/30												
NOTES	2-4=-33/33												
1) This trues	has been checked for	uniform roof live los	ad										
only exce	ant as noted												
 Wind: AS(CE 7-10: Vult=115mph	(3-second aust)									annin 1	0.0.1111	
Vasd=91n	nph; TCDL=0.0psf; BC	DL=0.0psf; h=0ft; C	at.								"TH	UARO !!!	
II; Exp B;	Enclosed; C-C Exterior	r (2); Lumber DOL=	1.60								Nor	Sil Init	
plate grip	DOL=1.00											XIMIA	
3) Truss des	signed for wind loads in	n the plane of the tru	, ,							-	:0		Ξ
only. For	studs exposed to wind	(normal to the face), blo							=			=
or consult	and industry Gable End	u Details as application	DIE, PI 1							=		SEAL :	=
 Gable reg 	uires continuous bottor	m chord bearing.								- 8	1	6673	- 5
5) Gable stu	ds spaced at 2-0-0 oc.									- 3	3: 1	:5	Ξ
6) All bearing	gs are assumed to be S	SP No.2 crushing								-	7.	:0	-
capacity c	of 565 psi.										· PI· EN	ER. N.	-
7) One RT7/	A USP connectors reco	mmended to conne	ect								1. 11	AINER 14	Ŧ
truss to be	earing walls due to UPL	LIFI at jt(s) 1, 3, and	d 4.								IL A	CTRTY IN	
I NIS CONN	ection is for uplift only a	and does not consid	lei								1111	STRUM	
1010	663.										1.11		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

December 6,2019

Page: 1

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	VH	Valley	1	1	Job Reference (optional)	E13837780

1-9-0

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:56:10 ID:UFuE2xjakY5tLtu0MiWQfJyC_zg-iooRcPVyus6pi9mIKGpHGfzIN9t_41f4daIEHPyBjXZ

Page: 1

818 Soundside Road Edenton, NC 27932

5-2-4

Scale = 1:26.3

						-								
Loading		(psf)	Spacing	1-11-4		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.00		тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.25		BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0	Rep Stress Incr	YES		WB	0.02	Horiz(TL)	0.00	3	n/a	n/a		
BCDL		10.0	Code	IRC2015	5/TPI2014	Matrix-P							Weight: 17 lb	FI = 20%
LUMBER				8)	One RT7A U	SP connectors re	commen	ded to conne	ct					
TOP CHORD	2x4 SP N	0.2			truss to bear	ng walls due to U	JPLIFT at	jt(s) 4. This						
BOT CHORD	2x4 SP N	0.2			connection is	for uplift only and	d does no	ot consider la	teral					
OTHERS	2x4 SP N	0.3		9)	This truss is	designed in accor	rdance wi	th the 2015						
	Structure	wood abo	othing directly opplie	dor U	International	Residential Code	sections	R502.11.1 a	nd					
TOP CHORD	5-3-0 oc i	ourlins	aming directly applie	u 01	R802.10.2 ar	nd referenced sta	ndard AN	ISI/TPI 1.						
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 oc	LO	AD CASE(S)	Standard								
	bracing.	• •												
REACTIONS	(lb/size)	1=90/5-2-	4, 3=90/5-2-4,											
	Max Uplift	4=153/5-2 1=-46 (LC	:-4 :3) 3=-46 (IC3) 4=	-47										
	maxopiin	(LC 3)	0), 0 10 (20 0), 1											
	Max Grav	1=104 (LC (LC 6)	C 6), 3=104 (LC 6), 4	=164										
FORCES	(lb) - Max	imum Com	pression/Maximum											
TOP CHORD	1-2=-53/2	0 2-3=-53	/20											
BOT CHORD	1-4=0/18,	3-4=0/18												
WEBS	2-4=-112	47												
NOTES														
1) This truss	has been c	hecked for	uniform roof live load	d										
only, exce	pt as noted.		(a. 1. 1)											attenne.
2) Wind: ASC	CE 7-10; Vu	It=115mph	(3-second gust)										"TH	CARO
II: Exp B: I	Enclosed: C	о.opsi, во -C Exterio	(2) Lumber DOI =1	at. 60									N'R'	······································
plate grip	DOL=1.00	C Exterior		.00									.Cong	A Stary III.
3) Truss des	signed for w	ind loads ir	the plane of the true	SS										
only. For	studs expos	ed to wind	(normal to the face)	,								-	14	
see Stand	lard Industry	Gable En	d Details as applicab	le,								=		SEAL :
 Gable regi 	uires contin	uous botto	n chord bearing	11.								=	1	6673
5) Gable stud	ds spaced a	t 2-0-0 oc.	n onora boaring.									Ξ	3: 1	
6) All bearing	gs are assur	ned to be S	SP No.2 crushing									-	P.	:0
capacity o	of 565 psi.											0	= 72. SA	OWEER. S.
7) One RT16	BA USP con	nectors rec	ommended to conne	ect									1. N	GINE 14
This conne	ection is for	unlift only	LIF I at Jt(s) 1 and 3.	ər									11, A	STRZ
lateral for	ces.	apint only i											1111	in the second se
													Decemh	per 6,2019
													2000.116	

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II		
19120017-A	NE	Monopitch Supported Gable	1	1	Job Reference (optional)	E13837781	

Run: 8.32 E. Nov 19 2019 Print: 8.320 E. Nov 19 2019 MiTek Industries. Inc. Fri Dec 06 09:56:04 ID:03KsrbiyzEy0jjJqp_?B65yC_zh-teRAMMQBJ0Mf_EJ8_?it1OjgtknwgJSCFerw3lyBjXf

Page: 1

					4	-3-8							
Scale = 1:22.8													
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.00	тс	0.27	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25	BC	0.14	Vert(CT)	n/a	-	n/a	999			

WB

LOAD CASE(S) Standard

Matrix-P

0.00 Horz(CT)

n/a

n/a n/a

Weight: 16 lb

FT = 20%

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	4-3-8 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(lb/size) 2=217/4-3-8, 4=155/4-3-8
	Max Horiz 2=114 (LC 3)
	Max Uplift 2=-204 (LC 3), 4=-142 (LC 3)
	Max Grav 2=217 (LC 1), 4=165 (LC 6)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/14, 2-3=-46/34, 3-4=-125/142
BOT CHORD	2-4=0/0
NOTES	

0.0

10.0

Rep Stress Incr

Code

YES

IRC2015/TPI2014

BCLL

BCDL

- 1) This truss has been checked for uniform roof live load only, except as noted.
- Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=0.0psf; BCDL=0.0psf; h=0ft; Cat. II; Exp B; Enclosed; C-C Corner (3); Lumber DOL=1.60 plate grip DOL=1.00
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- All bearings are assumed to be SP No.2 crushing 6) capacity of 565 psi.
- 7) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4 and 2. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2015 8) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

annin an mining NICH NICH MULLIN III SEAL 16673 MAT. STF munn December 6,2019

Job	Truss	Truss Type	Qty	Ply	KMB - Cypress II	
19120017-A	WE	Monopitch Supported Gable	1	1	Job Reference (optional)	E13837782

Run: 8.32 E Nov 19 2019 Print: 8.320 E Nov 19 2019 MiTek Industries, Inc. Fri Dec 06 09:56:11 ID:1HPKC_mKOo_ehEKQ6qCFTDyBm9x-A_MpqlWafAEgKJLUuzKWptWwaZCrpT2EsE2npsyBjXY

Casla	4.00.0	

5-3-8

Loading TCLL (roof) (psf) 20.0 Spacing Plate Grip DOL 1-11-4 CSI DEFL in (loc) I/defl L/d PLATES GRIP TCLL (roof) 20.0 Plate Grip DOL 1.00 TC 0.11 Vert(LL) n/a - n/a 999 MT20 244/190 BCLL 0.0 Rep Stress Incr YES WB 0.07 Horz(CT) n/a - n/a n/a 999 Weight: 23 lb FT = 20%	
TCLL (roof) 20.0 Plate Grip DOL 1.00 TC 0.11 Vert(LL) n/a n/a 999 MT20 244/190 TCDL 10.0 Lumber DOL 1.25 BC 0.06 Vert(CT) n/a 999 MT20 244/190 BCLL 0.0 Rep Stress Incr YES WB 0.07 Horz(CT) n/a n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-P Weight: 23 lb FT = 20%	
TCDL 10.0 Lumber DOL 1.25 BC 0.06 Vert(CT) n/a - n/a 999 BCLL 0.0 Rep Stress Incr YES WB 0.07 Horz(CT) n/a n/a n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-P Weight: 23 lb FT = 20%	
BCLL 0.0 Rep Stress Incr YES WB 0.07 Horz(CT) n/a n/a	
BCDL 10.0 Code IRC2015/TPI2014 Matrix-P Weight: 23 lb FT = 20%	
LUMBER 7) One RT7A USP connectors recommended to connect	
TOP CHORD 2x4 SP No.2 truss to bearing walls due to UPLIFT at jt(s) 5, 2, and 6.	
BOT CHORD 2x4 SP No.2 This connection is for uplift only and does not consider	
WEBS 2x4 SP No.3 lateral forces.	
OTHERS 2x4 SP No.3 8) This truss is designed in accordance with the 2015	
BRACING International Residential Code sections R502.11.1 and	
TOP CHORD Structural wood sheathing directly applied or R802.10.2 and referenced standard ANSI/TPI 1.	
5-3-8 oc purins, except end verticals LOAD CASE(S) Standard	
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.	
REACTIONS (lb/size) 2=164/5-3-8, 5=33/5-3-8, 6=253/5-3-8	
Max Horiz 2=168 (LC 3)	
Max Uplift 2=-128 (LC 3), 5=-34 (LC 3),	
6=-248 (LC 3)	
Max Grav 2=164 (LC 1), 5=34 (LC 6), 6=273 (LC 6)	
FORCES (Ib) - Maximum Compression/Maximum Tension	
TOP CHORD 1-2=0/13, 2-3=-113/58, 3-4=-31/7, 4-5=-26/34	
BOT CHORD 2-6=0/0, 5-6=0/0	
WEBS 3-6=-206/248	
NOTES	
1) This truss has been checked for uniform roof live load only, except as noted.	1
2) Wind: ASCE 7-10; Vult=115mph (3-second gust)	14
Vasd=91mph; TCDL=0.0psf; BCDL=0.0psf; h=0ft; Cat.	1 -
II; Exp B; Enclosed; C-C Corner (3); Lumber DOL=1.60	1 2
plate grip DOL=1.00	÷ =
3) Truss designed for wind loads in the plane of the truss SEAL	1 E
only. For studs exposed to wind (normal to the face),	1 -
see Standard Industry Gable End Details as applicable,	1 - 2
or consult qualified outliding designer as per ANSI/TPT1.	: X :
4) Gabie requires continuous bottom chora bearing.	SE
5) Gable studies spaced at 2-0-0 cc.	5.2
6) All bearings are assumed to be SP No.2 crushing	5
Capacity of 505 por	S
December 6,2019	

