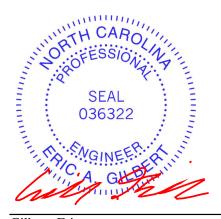


Trenco 818 Soundside Rd Edenton, NC 27932


Re: 20020079 KMB - Cedar Plan

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: E14101460 thru E14101472

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

February 21,2020

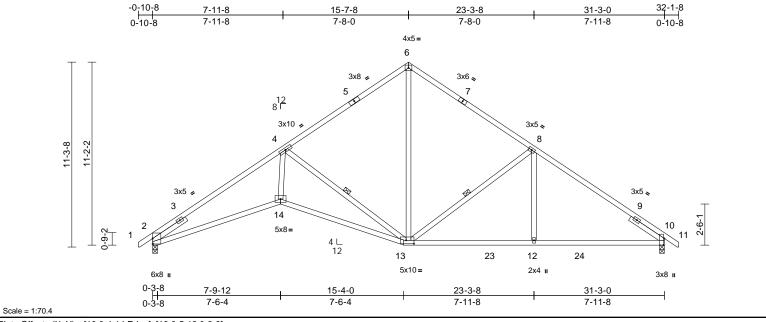
Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	KMB - Cedar Plan	
20020079	A1	Roof Special	7	1	Job Reference (optional)	E14101460

15-7-8

7-8-0


Carter Components (Sanford), Sanford, NC - 27332,

7-11-8

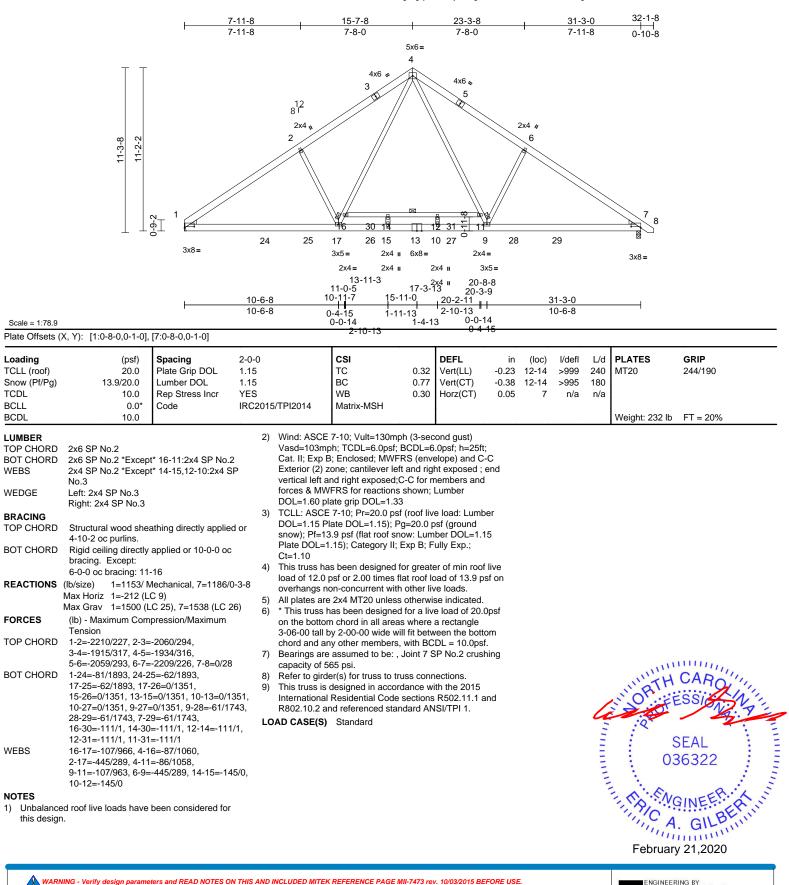
7-11-8

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Fri Feb 21 15:07:32 ID:cDVEMi?PINC5J7HwoVrpuDziy5t-ZvCijBYcaPAbxbEkd?LPaxpvvXHeSgE1Vy67Mrzitdh

Page: 1 32-1-8 0-10-8 23-3-8 31-3-0 7-8-0 7-11-8

Plate Offsets (X, Y): [10:0-4-14,Edge], [13:0-5-12,0-2-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	BC	0.80 0.93 0.75	· · /		(loc) 13-14 13-14 13-14 10	l/defl >999 >766 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 171 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb/size) 2=1098/0- Max Horiz 2=217 (LC Max Grav 2=1300 (L (lb) - Maximum Com Tension 1-2=0/35, 2-3=-584/0 4-5=-1245/315, 5-6= 6-7=-1085/333, 7-8= 8-9=-1708/312, 9-10 2-14=-256/2631, 13- 13-23=-127/1378, 12 12-24=-127/1378, 12 4-14=-70/1727, 4-13 6-13=-181/840, 8-13	t* 2-14:2x4 SP No.1 t* 14-4:2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 athing directly applie applied or 10-0-0 oc 4. 4-13, 8-13 3-8, 10=1098/0-3-8 5 12) C 2), 10=1318 (LC 2 pression/Maximum 0, 3-4=-2970/438, -1100/338, -1230/311, =-601/0, 10-11=0/35 14=-251/2556, 2-23=-127/1378,)-24=-127/1378 =-1824/350, =-715/226, 8-12=0/3	400F No.3 3) d or 4) 5) 26) 6) 7) 8) 8) 556 LC	Vasd=103mj Cat. II; Exp E Exterior (2) z vertical left at forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15 P snow); Pf=13 Plate DOL=1 Ct=1.10 This truss ha load of 12.00 overhangs n * This truss ha on the bottor 3-06-00 tall b chord and ar Bearings are capacity of 5 of 565 psi. Bearing at jo using ANSI/1 designer sho This truss is International	7-10; Vult=130mph bh; TCDL=6.0psf; BC 3; Enclosed; MWFRS one; cantilever left a nd right exposed;C-(FRS for reactions sh ate grip DOL=1.33 (7-10; Pr=20.0 psf (r late DOL=1.15); Pg= 3.9 psf (flat roof snow .15); Category II; Ex sbeen designed for pesf or 2.00 times flat on-concurrent with o has been designed for n chord in all areas w by 2-00-00 wide will f assumed to be: Join 65 psi, Joint 10 SP N int(s) 2 considers pa TPI 1 angle to grain fuld verify capacity of designed in accorda Residential Code se nd referenced standar Standard	CDL=6 S (enviund rig) C for n hown; cof liv c20.0 p c20.0 p c2	.0psf; h=25ft; elope) and C- tt exposed; (nembers and Lumber e load: Lumb sft (ground ber DOL=1.1 ully Exp.; er of min roof vad of 13.9 ps (e loads.) e load of 20.0 a rectangle even the bottt DL = 10.0psf P No.1 crushii ushing capado o grain value a. Building ng surface. th the 2015 R502.11.1 a	C end 5 live sf on 0psf ng city			and the second	UN RTH	CAR SEAL B6322

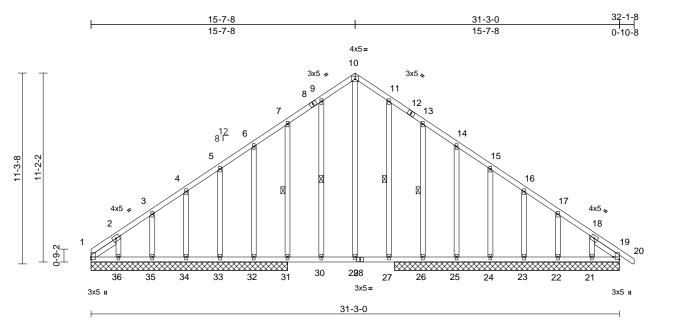

G "Innum February 21,2020

Job	Truss	Truss Type	Qty	Ply	KMB - Cedar Plan	
20020079	A2	Common	10	1	Job Reference (optional)	E14101461

Run: 8.33 S. Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries. Inc. Fri Feb 21 15:07:34 ID:f5_waKiMhOmg08gkjmKaHlziy15-RgSDYYb7eeh1PDXVsrPLkn_il8g0ObHdQa4KWczitdd

818 Soundside Road Edenton, NC 27932

Page: 1



Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to devolve with the evolution of the boots in the design is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	KMB - Cedar Plan	
20020079	A3	Common	1	1	Job Reference (optional)	E14101462

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Fri Feb 21 15:07:34 ID:akj6eKSphephDnNJttuGr7zixyF-RgSDYYb7eeh1PDXVsrPLkn_mP8q7OeadQa4KWczitdd

Page: 1

Scale = 1:68.1

Plate Offsets (X, Y): [19:Edge,0-4-3]

			1			1		· · · ·					1	
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc) l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.13	Vert(LL)	-0.01	29-3) >999	240	MT20	244/190
Snow (Pf/Pg)	1	3.9/20.0	Lumber DOL	1.15		BC	0.19	Vert(CT)	-0.03	27-2	9 >999	180		
TCDL		10.0	Rep Stress Incr	YES		WB	0.09	Horz(CT)	0.01	1	9 n/a	n/a		
BCLL		0.0*	Code	IRC20)15/TPI2014	Matrix-MSH								
BCDL		10.0											Weight: 236 lb	FT = 20%
LUMBER					FORCES	(lb) - Maximum Con	noressi	on/Maximum		3) T	russ desid	nned fo	or wind loads in t	he plane of the truss
TOP CHORD	2x4 SP N	0.2				Tension								normal to the face),
BOT CHORD	2x4 SP N				TOP CHORD	1-2=-134/0, 2-3=-33	30/23. 3	8-4=-320/0.						Details as applicable,
OTHERS		o.2 *Except	t*			4-5=-310/0. 5-6=-30								er as per ANSI/TPI 1.
21112110			5,22-17,21-18:2x4 SI	Р		7-8=-315/51, 8-9=-2	259/55.	9-10=-273/105	5.					of live load: Lumber
	No.3	,00 2,20 10	,,,			10-11=-273/105, 11			,	Ó D	OL=1.15 F	Plate D	OL=1.15); Pg=2	0.0 psf (ground
SLIDER		SP No 3 1	I-10-2, Right 2x4 SP			12-13=-315/48, 13-			5/0,					Lumber DOL=1.15
	No.3 1-					15-16=-300/0, 16-1	7=-311	0, 17-18=-326	/23,	Р	ate DOL=	1.15);	Category II; Exp	B; Fully Exp.;
BRACING	110.0	10 2				18-19=-117/16, 19-2	20=0/3	5		С	t=1.10			
TOP CHORD	Ctructure	lwood obor	athing directly applie	dor	BOT CHORD	1-36=-75/298, 35-3	6=-75/2	298,		5) T	nis truss h	as bee	en designed for g	reater of min roof live
TOP CHORD	6-0-0 oc		atting directly applie	0.01		34-35=-75/298, 33-3	34=-75	/298,		lo	ad of 12.0	psf or	2.00 times flat ro	oof load of 13.9 psf on
BOT CHORD			applied or 10-0-0 oc			32-33=-75/298, 31-3	32=-75	/298,		0	/erhangs i	non-co	ncurrent with oth	er live loads.
SOT CHURD	bracing.	ing directly	applied of 10-0-0 00			30-31=-75/298, 29-3	30=-75	/298,		6) A	I plates ar	e 2x4	MT20 unless oth	erwise indicated.
WEBS	1 Row at	midnt	9-30, 7-31, 11-27, 1	2.26		28-29=-75/298, 27-2	28=-75	/298,		7) G	able stude	s space	ed at 2-0-0 oc.	
						26-27=-75/298, 25-2	26=-75	/298,		8) *	This truss	has be	en designed for	a live load of 20.0psf
REACTIONS	(ID/SIZE)		7-8, 19=267/13-3-8,			24-25=-75/298, 23-2	24=-75	/298,		0	n the botto	om cho	rd in all areas wh	nere a rectangle
			3-8, 22=144/13-3-8,			22-23=-75/298, 21-2	22=-75	/298,						between the bottom
			3-3-8, 24=151/13-3-8			19-21=-75/298							er members.	
			·3-8, 26=267/13-3-8, 1-7-8, 32=73/11-7-8,		WEBS	10-29=-39/148, 9-3							ssumed to be SP	No.2 crushing
			1-7-8, 34=130/11-7-8			6-32=-109/85, 5-33				Ca	apacity of	565 ps	i.	
			1-7-8, 36=78/11-7-8,			3-35=-130/80, 2-36			/63,					
			1-7-8, 41=267/13-3-8			13-26=-191/82, 14-2								1111111
	Max Horiz		C 9), 37=-213 (LC 9)			15-24=-132/81, 16-2							U'TH	CARO
			LC 14), 22=-24 (LC ⁻	14)		17-22=-130/81, 18-2	21=-13	//13/					NAL	
			C 14), 24=-27 (LC 14		NOTES								× 0 .: i	ESSIN
			C 14), 26=-26 (LC 14			roof live loads have	been	considered for					AND'	110
			C 13), 32=-34 (LC 13		this design.								.9	K .
			C 13), 34=-31 (LC 13		2) Wind: ASC	E 7-10; Vult=130mph	n (3-sed	cond gust)				-		:
			C 13), 36=-104 (LC			nph; TCDL=6.0psf; B						-		SEAL :
	Max Grav		C 27), 19=329 (LC 28			B; Enclosed; MWFR						=	0	36322
		21=118 (L	.C 26), 22=173 (LC 2	26).		zone; cantilever left			nd			=		50522
			C 26), 24=184 (LC 2			and right exposed;C						-		
			C 26), 26=321 (LC 26			VFRS for reactions s	shown;	Lumber				5	A.A.	SEAL 36322
			C 25), 32=88 (LC 25		DOL=1.60	plate grip DOL=1.33							1 Co NN	GINEE
		33=185 (L	.C 25), 34=160 (LC 2	25),									1710	ALL
			.C 25), 36=135 (LC 2											. GILB
			C 27), 41=329 (LC 2											

February 21,2020

Cont	injued on page 2
	🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
	Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
	a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
	building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
	is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
	fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
	Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	KMB - Cedar Plan	
20020079	A3	Common	1	1	Job Reference (optional)	E14101462

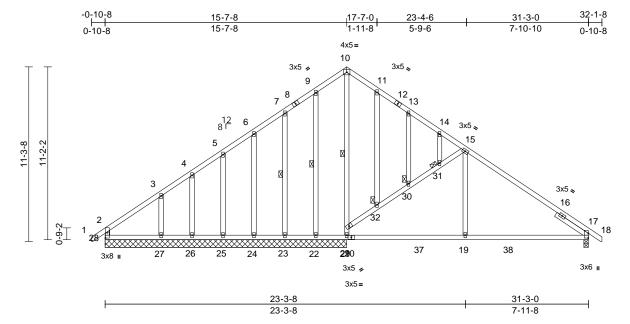
Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Fri Feb 21 15:07:34

ID:akj6eKSphephDnNJttuGr7zixyF-RgSDYYb7eeh1PDXVsrPLkn_mP8q7OeadQa4KWczitdd

Page: 2

Carter Components (Sanford), Sanford, NC - 27332,

- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 31, 32, 33, 34, 35, 36, 26, 25, 24, 23, 22, and 21. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	KMB - Cedar Plan	
20020079	A4	Common Supported Gable	1	1	Job Reference (optional)	E14101463

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Fri Feb 21 15:07:35 ID:MzTP?CcSmKFRZ8zWJF503fzixvT-vs?bmuclPxpu1N6hQYwaH?XooY4L7wnmeEpu22zitdc

Page: 1

Scale = 1:74.5 Plate Offsets (X, Y): [17:0-3-10,0-0-2], [28:0-4-1,0-1-8]

		1							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	1-11-4 1.15 1.15 YES IRC2015/TPI2014	CSI TC 0.66 BC 0.57 WB 0.80 Matrix-MSH	Vert(LL) -0.0		>999 2 >900 1	L/d PLATES 440 MT20 80 n/a Weight: 222	GRIP 244/190 Ib FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x4 SP No.2 *Excep 26-4,27-3,30-13,31- Right 2x4 SP No.3 - Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 30 31, 32 (lb/size) 17=609/(22=-1/15	2-6-0 eathing directly applied of coept end verticals. / applied or 10-0-0 oc 10-21, 9-22, 7-23	TOP CHORD BOT CHORD or WEBS	$\begin{array}{c} 2\text{-28}=\text{-248/83}, 1\text{-2}=0/40, ;\\ 3\text{-4}=\text{-229/111}, 4\text{-5}=\text{-229/1}\\ 6\text{-7}=\text{-324/270}, 7\text{-8}=\text{-384/2}\\ 9\text{-10}=\text{-377/357}, 10\text{-11}=\text{-3}\\ 11\text{-12}=\text{-327/316}, 12\text{-13}=\text{-13}\text{-14}=\text{-300/265}, 14\text{-15}=\text{-15}\text{-16}=\text{-765/308}, 16\text{-17}=\text{-27-28}=\text{-39/154}, 26\text{-27}=\text{-3}\\ 25\text{-26}=\text{-39/154}, 26\text{-27}=\text{-3}\\ 25\text{-26}=\text{-39/154}, 26\text{-27}=\text{-3}\\ 25\text{-26}=\text{-39/154}, 20\text{-21}=\text{-1}\\ 20\text{-37}=\text{-120/611}, 19\text{-37}=\text{-19}\text{-38}=\text{-120/611}, 19\text{-37}=\text{-19}\text{-38}=\text{-120/611}, 19\text{-37}=\text{-30}\text{-31}=\text{-700/193}, 15\text{-31}=\text{-21-29}=\text{-595/0}, 10\text{-29}=\text{-24}\\ 7\text{-23}=\text{-146/95}, 6\text{-24}=\text{-119}\\ 4\text{-26}=\text{-100/61}, 3\text{-27}=\text{-197}\\ 4\text{-30}=\text{-100/61}, 3\text{-27}=\text{-197}\\ 4\text{-30}=\text{-30}-3$	56, 5-6=-280/216, 28, 8-9=-370/335, 19/331, 336/308, 366/282, 303/0, 17-18=0/34 9/154, 9/154, 20/611, 120/611, 120/611, 120/611, 120/611, 120/611, 120/611, 120/611, 75,5/231, 743/222, 0/142, 9-22=-93/49, 75, 5-25=-130/84, 133,	DC snr Pla Ct: 5) Th loa ovr 6) All 7) Ga 8) * T or ch 9) All cal 10) Or tru	DL=1.15 Pla ow); Pf=13.9 ate DOL=1.1 =1.10 is truss has ad of 12.0 ps erhangs nor plates are 2 able studs sg This truss ha the bottom D6-00 tall by ord and any bearings ar pacity of 56 e RT7A US ss to bearin	te DOL=1.15); Pg 9 psf (flat roof snoi 5); Category II; E: been designed fo sf or 2.00 times fla -concurrent with of 2x4 MT20 unless of baced at 2-0-0 oc. s been designed f chord in all areas 2-00-00 wide will other members, v e assumed to be 5 psi. P connectors reco g walls due to UPI	w: Lumber DOL=1.15 xp B; Fully Exp.; r greater of min roof live t roof load of 13.9 psf on other live loads. otherwise indicated. or a live load of 20.0psf where a rectangle fit between the bottom with BCDL = 10.0psf. SP No.2 crushing
FORCES	26=111/2 28=234/2 Max Horiz 28=-222 Max Uplift 17=-72 (I 23=-26 (I 25=-33 (I 27=-78 (I 22=69 (L 24=150 (I 26=132 (28=291 (I	5-7-8, 27=188/15-7-8, 5-7-8 (LC 11) LC 14), 22=-85 (LC 32), LC 13), 24=-29 (LC 13), LC 13), 26=-9 (LC 13), LC 13), 28=-44 (LC 9) LC 26), 21=764 (LC 26) C 29), 23=197 (LC 25), LC 25), 25=173 (LC 25), LC 25), 25=272 (LC 25),	this design 2) Wind: ASC Vasd=103 Cat. II; Exp Exterior (2) , vertical left forces & M DOL=1.60 3) Truss des only. Fors	13-30=-104/67, 14-31=-5 15-19=0/354 ad roof live loads have beer b E 7-10; Vult=130mph (3-se mph; TCDL=6.0psf; BCDL= b B; Enclosed; MWFRS (5 and right exposed; C-C for IWFRS for reactions shown plate grip DOL=1.33 igned for wind loads in the studs exposed to wind (non ard Industry Gable End Det	considered for cond gust) 6.0psf; h=25ft; velope) and C-C ght exposed ; end members and ; Lumber blane of the truss nal to the face),		d does not o	consider lateral for	SEAL

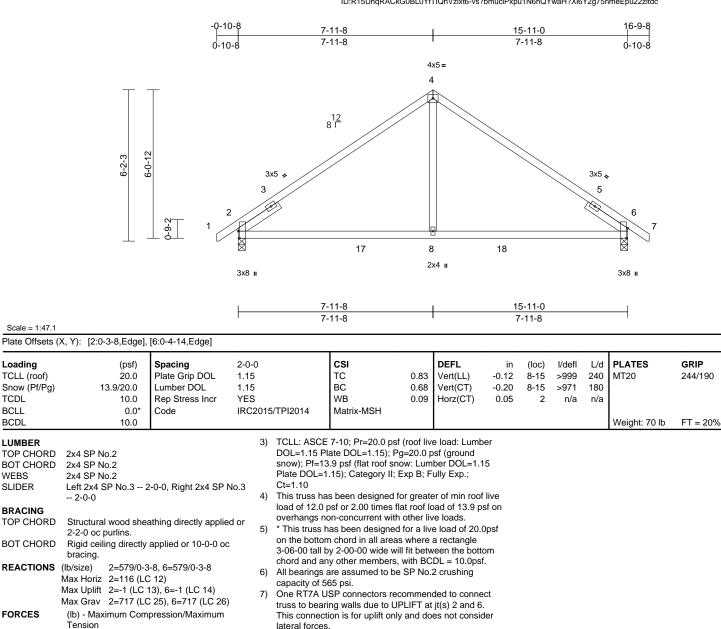
or consult qualified building designer as per ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KMB - Cedar Plan	
20020079	A4	Common Supported Gable	1	1	Job Reference (optional)	E14101463

- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 13) 2 X 4 notch at 20000 o.c. is allowed along the stacked top chord. No notches allowed in overhang and 1008 from left end and 1008 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

LOAD CASE(S) Standard


Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Fri Feb 21 15:07:35 ID:MzTP?CcSmKFRZ8zWJF503fzixvT-vs?bmuclPxpu1N6hQYwaH?XooY4L7wnmeEpu22zitdc Page: 2

Job	Truss	Truss Type	Qty	Ply	KMB - Cedar Plan	
20020079	B1	Common	2	1	Job Reference (optional)	E14101464

Run: 8.33 S. Feb 13 2020 Print: 8.330 S. Feb 13 2020 MiTek Industries. Inc. Fri Feb 21 15:07:35 ID:R15UhqRACkG0BL0YfTIQhVzixt6-vs?bmuclPxpu1N6hQYwaH?Xl6Y2g75nmeEpu22zitdc

Page: 1

TOP CHORD 1-2=0/35, 2-3=-458/217, 3-4=-700/158, 4-5=-700/158, 5-6=-332/93, 6-7=0/35 2-17=-215/605, 8-17=0/605, 8-18=0/605, BOT CHORD 6-18=0/605 WEBS 4-8=0/388

NOTES

FORCES

Scale = 1:47.1

Loading

TCDL

BCLL

BCDL

WEBS

SLIDER

BRACING

TOP CHORD

BOT CHORD

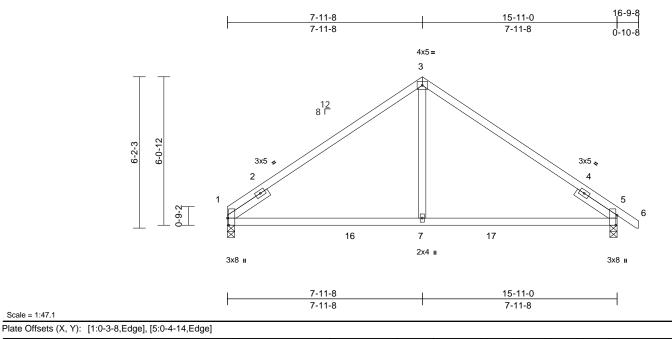
LUMBER

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- lateral forces
- This truss is designed in accordance with the 2015 8) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard



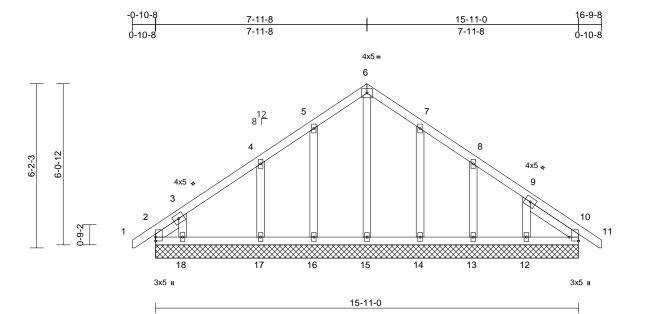
Job	Truss	Truss Type	Qty	Ply	KMB - Cedar Plan	
20020079	B2	Common	3	1	Job Reference (optional)	E14101465

Scale = 1:47.1

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Fri Feb 21 15:07:35 ID:AOS6uZPQppptEO_tiCjeotzixqZ-vs?bmuclPxpu1N6hQYwaH?XlwY2b75nmeEpu22zitdc

Page: 1

Plate Offsets (X, Y): [1:0-3-8,Edge],	[5:0-4-14,Edge]										-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.84 0.69 0.09	- ()	in -0.12 -0.20 0.05	(loc) 7-10 7-10 1	l/defl >999 >939 n/a		PLATES MT20 Weight: 68 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.3 2 2-0-0 Structural wood shea 2-2-0 oc purlins. Rigid ceiling directly a bracing. (lb/size) 1=538/0-3 Max Horiz 1=5-112 (LC Max Uplift 5=-1 (LC 1 Max Grav 1=670 (LC (lb) - Maximum Comp Tension 1-2=-447/200, 2-3=-7 4-5=-332/93, 5-6=0/3 1-16=-220/607, 7-16= 5-17=0/607	athing directly applied applied or 10-0-0 oc -8, 5=580/0-3-8 C 11) (4) 2 25), 5=717 (LC 26) pression/Maximum 703/159, 3-4=-703/15	lo.3 4) d or 5) 6) 7) 59, 8)	DOL=1.15 P snow); Pf=11 Plate DOL=1 Ct=1.10 This truss ha load of 12.0 overhangs n * This truss h on the bottor 3-06-00 tall t chord and ar All bearings capacity of 5 One RT7A U truss to bear connection is forces. This truss is International R802.10.2 at	ISP connectors rec ing walls due to UF s for uplift only and designed in accord Residential Code s nd referenced stand	=20.0 g w: Lum xp B; F or great at roof lo other lin for a liv where l fit betw with BC SP No. SP No. ommen PLIFT at does no lance w sections	besf (ground her DOL=1.1 iully Exp.; er of min roof bad of 13.9 p. ve loads. re load of 20.1 a rectangle veen the both DL = 10.0psl 2 crushing ded to connet t jt(s) 5. This ot consider la ith the 2015 s R502.11.1 a	5 i live sf on Dpsf om f. ect teral					
this desigr	3-7=0/388 ed roof live loads have b		LC	DAD CASE(S)	Standard						4	TUORTH RTH RTH	CAROLIN


Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

818 Soundside Road Edenton, NC 27932

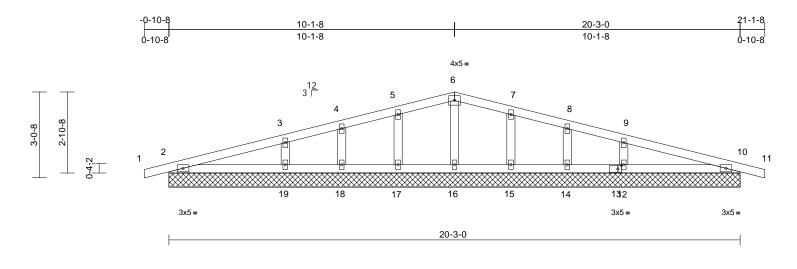
Job	Truss	Truss Type	Qty	Ply	KMB - Cedar Plan	
20020079	B3	Common Supported Gable	1	1	Job Reference (optional)	E14101466

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Fri Feb 21 15:07:36 ID:LVcGCKYKEBBK34K_r?QDkBzixqO-vs?bmuclPxpu1N6hQYwaH?XxfYCp76LmeEpu22zitdc Page: 1

Scale = 1:43.4

Plate Offsets (X, Y): [10:Edge,0-4-3]

		1					· · · ·			-		1	
Loading	(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.06	Horz(CT)	0.00	10	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MSH		· · · ·						
BCDL	10.0											Weight: 93 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Left 2x4 SP No.3 2-2-15 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly	1-1-6, Right 2x4 SP № athing directly applie	NC No.3 1) 2) d or	DTES Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II; Exp E Exterior (2) z	-18=-175/127, 6-15 -17=-163/106, 7-14 -12=-141/91 roof live loads have 7-10; Vult=130mph h; TCDL=6.0psf; B ; Enclosed; MWFR ; encised; MWFR	4=-129/ been of (3-sec CDL=6 S (envo and rig	79, 8-13=-12 considered for ond gust) .0psf; h=25ft; elope) and C- ht exposed ; 6	5/82, r C end	trus: 17, doe: 12) This Inte R80 13) See Deta con:	s to bea 14, 13, a s not co truss is rnationa 2.10.2 a Standa ail for Co sult qual	ring wa and 12 nsider design d Reside and refe rd Indu onnection	onnectors recom alls due to UPLIF . This connection lateral forces. ned in accordand dential Code sec erenced standar ustry Piggyback ' ion to base truss uilding designer.	mended to connect FT at jt(s) 2, 18, 16, n is for uplift only and ce with the 2015 tions R502.11.1 and d ANSI/TPI 1. Truss Connection as applicable, or
	bracing.				nd right exposed;C-				LOAD C	ASE(S)) Star	ndard	
	12=130/1 14=135/1 16=123/1 18=148/1 23=111/1 Max Horiz 2=112 (LC Max Uplift 2=-55 (LC 13=-27 (L 18=-69 (L 18=-69 (L 12=169 (L 14=167 (L 16=153 (L	C 12), 19=112 (LC 12 C 12), 12=-46 (LC 14), C 14), 14=-30 (LC 14 C 13), 17=-37 (LC 12 C 13), 19=-55 (LC 2) C 26), 10=135 (LC 2) C 26), 13=159 (LC 2 C 26), 15=210 (LC 2 C 25), 17=210 (LC 2 LC 25), 19=108 (LC 2) C 25), 10=108 (LC 2)	$\begin{array}{cccc} 1-0, & & & \\ 1-0, & & & & \\ 1-0, & & & & \\ 1-0, & & & & \\ 0, & & & & & \\ 1, & & & & & $	DOL=1.60 pl Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 This truss ha load of 12.0 µ overhangs nr All plates are Gable requiri Gable studs	FRS for reactions s ate grip DOL=1.33 ned for wind loads in ds exposed to wind l Industry Gable En alified building desi 7-10; Pr=20.0 psf (ate DOL=1.15); Pg: .9 psf (flat roof sno .15); Category II; E s been designed fo ssf or 2.00 times fla on-concurrent with of 2x4 MT20 unless of ss continuous botto spaced at 2-0-0 oc.	n the pi d (norm d Deta gner as (roof liv =20.0 p w: Lum xp B; F r greate t roof lo other liv other wi m chor	ane of the tru la to the face) ls as applicats of per ANSI/TF e load: Lumbu sf (ground ber DOL=1.1 ully Exp.; er of min roof pad of 13.9 ps re loads. se indicated. d bearing.), Dle, Pl 1. er 5 live sf on			Mann.	PROFILE	CARO
FORCES	(lb) - Maximum Com Tension	pression/Maximum	9)	on the bottor	as been designed f	where	a rectangle	•			H	0	SEAL 36322
TOP CHORD	1-2=0/34, 2-3=-65/1 4-5=-81/79, 5-6=-12 7-8=-75/76, 8-9=-56 10-11=0/34 2-18=-58/91, 17-18= 15-16=-58/91, 14-15 12-13=-58/91, 10-12	3/132, 6-7=-124/133, /26, 9-10=-40/22, =-58/91, 16-17=-58/9 5=-58/91, 13-14=-58/9	10 1,	chord and ar	y 2-00-00 wide will y other members. are assumed to be 3 35 psi.			om			Thursday.	CALC .	SEAL 36322 GINEER GILBER


February 21,2020

ENGINEERING BY EREENCO A MITEK Attiliate 818 Soundside Road Edenton, NC 27932

ſ	Job	Truss	Truss Type	Qty	Ply	KMB - Cedar Plan	
	20020079	C1	Common Supported Gable	1	1	Job Reference (optional)	E14101467

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Fri Feb 21 15:07:36 ID:XcnQW5gDeZamtnf5?p7ohWzixqD-N3ZzzEdN9FxlfWhu_FRpqC34fxWKsZpvtuZRaVzitdb

b 21 15:07:36 Page: 1 IZRaVzitdb

Scale = 1:40.8

Plate Offsets (X, Y): [13:0-1-8,0-1-8]

	X, 1). [13.0-1-0,0-1-0]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.14 0.14 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 24	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 79 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (lb/size) 2=159/20 12=267/21 15=152/21 19=267/21 24=159/20 Max Horiz 2=-26 (LC 12=-17 (L 15=-12 (L 15=-12 (L 18=-7 (LC 20=-26 (L Max Grav 2=191 (LC 12=315 (L 15=182 (L 17=182 (L	applied or 10-0-0 oc -3-0, 10=159/20-3-0, 0-3-0, 14=71/20-3-0, 0-3-0, 16=110/20-3-0 0-3-0, 20=159/20-3-0 0-3-0 16), 20=-26 (LC 16) 11), 10=-29 (LC 12) C 16), 14=-7 (LC 12) C 16), 17=-12 (LC 15) C 11), 24=-29 (LC 12) C 12), 10=191 (LC 2), C 35), 14=84 (LC 2) C 34), 18=84 (LC 2) C 34), 18=84 (LC 2) C 34), 20=191 (LC 2)	NC 1) d or 2) , , , , , , , , , , , , ,	DTES Unbalanced this design. Wind: ASCE Vasd=103m Cat. II; Exp f Exterior (2) 2 vertical left a forces & MW DOL=1.60 p Truss desig only. For stt see Standar or consult qu TCLL: ASCE DOL=1.15 P snow); Pf=1: Plate DOL= ² Ct=1.10 Unbalanced design. This truss ha load of 12.0 overhangs n	6-16=-95/17, 5-17 3-19=-208/100, 7- 9-12=-208/100 roof live loads have 7-10; Vult=130mp ph; TCDL=6.0psf; 3; Enclosed; MWF zone; cantilever le ind right exposed; /FRS for reactions late grip DOL=1.3 ned for wind loads uds exposed to wid d Industry Gable E ialified building de 7-10; Pr=20.0 ps late DOL=1.15); F 3.9 psf (flat roof sr 1.15); Category II; snow loads have as been designed psf or 2.00 times 1	15=-135, ve been of ph (3-sec BCDL=6 FRS (env ft and rig C-C for r s shown; 3 s in the p nd (norm End Deta signer au f (roof liv 2g=20.0 p now: Lur Exp B; F been cor for great flat roof liv h other lin	71, 8-14=-77, considered for cond gust) .0psf; h=25ft; elope) and C- th exposed ; e nembers and Lumber lane of the tru al to the face) ils as applicat s per ANS//TF e load: Lumbu ssf (ground uber DOL=1.1 ully Exp.; nsidered for th er of min roof pad of 13.9 ps ve loads.	/52, r C end ss), ble, PI 1. er 5 nis live	trus 19, and 13) Bev surf 14) This Inte	s to bea 15, 14, does no reled pla ace with s truss is rnationa 02.10.2 a	aring wa 12, and ot consiste or sin truss is designal Resid and refin) Star	alls due to UPLIF d 10. This conne- sider lateral force him required to p chord at joint(s) ned in accordand dential Code sec erenced standar	CARO
FORCES	(lb) - Maximum Com Tension 1-2=0/15, 2-3=-73/2/ 4-5=-29/58, 5-6=-39, 7-8=-29/58, 8-9=-36, 10-11=0/15	6, 3-4=-36/40, /81, 6-7=-39/81,	7) 8) 9) 10	Gable requir Gable studs) * This truss I on the bottor 3-06-00 tall I	e 2x4 MT20 unless es continuous bot spaced at 2-0-0 o nas been designed m chord in all area by 2-00-00 wide w	ttom chor oc. d for a liv as where vill fit betv	d bearing. e load of 20.0 a rectangle				THE DAY	•	SEAL 36322 GINEERE
BOT CHORD	2-19=-2/61, 18-19=- 16-17=-2/33, 15-16= 13-14=-2/33, 12-13=	-2/33, 14-15=-2/33,	11		ny other members are assumed to b 65 psi.		2 crushing					ALL ALC A	GINER: RILL

February 21,2020

ENGINEERING BY ENGINEERING BY AMITEK Attiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KMB - Cedar Plan	
	C2	Common Girder	1	3	Job Reference (optional)	E14101468

2-10-8

Scale = 1:36.7

Loading

TCDL

BCLL

BCDL

WEBS

WEDGE

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

00

1)

REACTIONS (lb/size)

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

0-4-2

4x6 =

Special

(psf)

20.0

10.0

0.0

10.0

13.9/20.0

2x4 SP 2400F 2.0E

2x6 SP 2400F 2.0E

Left: 2x4 SP No.3

5-4-1 oc purlins.

Max Horiz 1=-25 (LC 42)

4-8=-6221/0, 4-6=0/3071

Top chords connected as follows: 2x4 - 1 row at 0-6-0

Bottom chords connected as follows: 2x6 - 3 rows

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

3-ply truss to be connected together with 10d

(0.131"x3") nails as follows:

staggered at 0-5-0 oc.

bracing.

Tension

Right: 2x4 SP No.3

Run: 8.33 S. Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries. Inc. Fri Feb 21 15:07:36 ID:?LOfs25AOK_oa9rqYgF0buzixpg-N3ZzzEdN9FxlfWhu_FRpqC3xSxMxsQdvtuZRaVzitdb

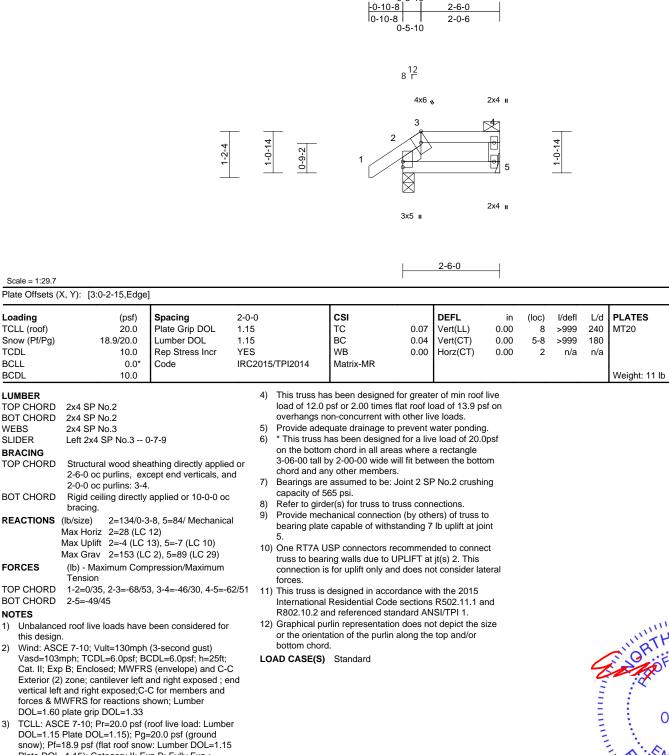
5-6-12 10-1-8 14-8-4 20-3-0 5-6-12 4-6-12 4-6-12 5-6-12 12 3 Г 5x6 = 3 3x5 = 3x5 🕿 15 14 2 4 5 17 19 8 7 21 6 22 16 9 18 20 3x8 = 3x10 u 8x10 = MT20HS 8x12 = 4x6 = 3x8 = THD26 THD26 THD26 THD26 THD26 THD26 3x10 II THD26 THD26 THD26 5-6-12 10-1-8 14-8-4 20-3-0 5-6-12 4-6-12 4-6-12 5-6-12 Plate Offsets (X, Y): [1:0-3-0,Edge], [1:1-3-8,0-3-2], [5:0-3-0,Edge], [5:1-3-8,0-3-2], [8:0-5-0,0-4-12] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP Spacing (loc) Plate Grip DOL 1.15 TC 0.73 Vert(LL) -0.27 8-9 >876 240 MT20 244/190 Lumber DOL 1.15 BC 0.81 Vert(CT) -0.55 8-9 >439 180 MT20HS 187/143 Rep Stress Incr WB NO 0.63 Horz(CT) 0.10 5 n/a n/a IRC2015/TPI2014 Matrix-MSH Code FT = 20% Weight: 304 lb 2) All loads are considered equally applied to all plies, 13) Hanger(s) or other connection device(s) shall be except if noted as front (F) or back (B) face in the LOAD provided sufficient to support concentrated load(s) 1433 Ib down at 0-1-12 on bottom chord. The design/ CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B). selection of such connection device(s) is the 2x4 SP No.3 *Except* 8-3:2x4 SP No.2 unless otherwise indicated. responsibility of others. 3) Unbalanced roof live loads have been considered for LOAD CASE(S) Standard this design. Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Increase=1.15 Structural wood sheathing directly applied or Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Uniform Loads (lb/ft) Cat. II; Exp B; Enclosed; MWFRS (envelope); cantilever Vert: 1-3=-48, 3-5=-48, 1-5=-20 Rigid ceiling directly applied or 10-0-0 oc left and right exposed ; end vertical left and right Concentrated Loads (lb) exposed; Lumber DOL=1.60 plate grip DOL=1.33 Vert: 1=-1142 (F), 8=-1133 (F), 13=-1133 (F), 1=6823/0-3-8, 5=5866/0-3-8 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 16=-1133 (F), 17=-1133 (F), 18=-1133 (F), 19=-1133 DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground (F), 20=-1133 (F), 21=-1133 (F), 22=-1133 (F) Max Grav 1=8423 (LC 3), 5=7222 (LC 3) snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 (lb) - Maximum Compression/Maximum Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10 1-2=-22988/0, 2-14=-16664/0, 6) Unbalanced snow loads have been considered for this 3-14=-16657/0, 3-15=-16658/0, design. 4-15=-16664/0, 4-5=-22786/0 7) All plates are MT20 plates unless otherwise indicated. TH CA 1-16=0/22293, 16-17=0/22293, * This truss has been designed for a live load of 20.0psf 8) 9-17=0/22293. 9-18=0/22293. on the bottom chord in all areas where a rectangle 18-19=0/22293, 8-19=0/22293, 3-06-00 tall by 2-00-00 wide will fit between the bottom 8-20=0/22099, 7-20=0/22099, 7-21=0/22099, chord and any other members. 6-21=0/22099, 6-22=0/22099, 5-22=0/22099 All bearings are assumed to be SP 2400F 2.0E crushing 2-9=0/3188, 2-8=-6423/0, 3-8=0/7690,

- capacity of 805 psi. 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Use USP THD26 (With 18-16d nails into Girder & 12-10d x 1-1/2 nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 2-3-8 from the left end to 18-3-8 to connect truss(es) to front face of bottom chord.
- 12) Fill all nail holes where hanger is in contact with lumber.
- ORTH CITICO MANDALINE SEAL 036322 G February 21,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	KMB - Cedar Plan	
20020079	G1	Half Hip	1	1	Job Reference (optional)	E14101469

0-5-10


Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Fri Feb 21 15:07:37 ID:?vU3fXYNbzPdq5yycmTeCtzixHW-sF7MBae?wZ3cGgG4Yzz2MQcGTLuFb0h36YI_6xzitda

Page: 1

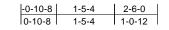
GRIP

244/190

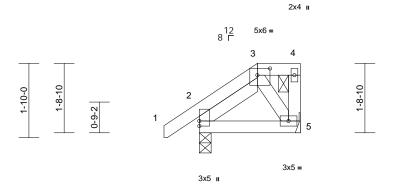
A. GILUN February 21,2020

A. GI

C


818 Soundside Road Edenton, NC 27932

Snow (Pf/Pg) TCDL	20.0 18.9/20.0 10.0	Lumber DOL Rep Stress Incr	1.15 1.15 YES		BC WB	0.04	Vert(LL) Vert(CT) Horz(CT)	0.00 0.00 0.00	8 5-8 2	>999 >999 n/a	240 180 n/a	MT20	244/190	
BCLL	0.0*	Code		5/TPI2014	Matrix-MR	0.00	11012(01)	0.00	-	n/a	n/a			
BCDL	10.0											Weight: 11 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 C Structural wood shea 2-6-0 oc purlins, exc 2-0-0 oc purlins: 3-4. Rigid ceiling directly bracing. (lb/size) 2=134/0-3 Max Horiz 2=28 (LC Max Uplift 2=-4 (LC Max Grav 2=153 (LC (lb) - Maximum Com	athing directly applie cept end verticals, ar applied or 10-0-0 oc 6-8, 5=84/ Mechanica 12) 13), 5=-7 (LC 10) 2 2), 5=89 (LC 29)	nd 7) 8) al 9)	load of 12.0 overhangs n Provide ader * This truss f on the bottor 3-06-00 tall t chord and ar Bearings are capacity of 5 Refer to gird Provide mec bearing plate 5. O One RT7A L truss to bear	is been designed psf or 2.00 times on-concurrent wit uate drainage to has been designe been designe y 2-00-00 wide w by other members assumed to be: 65 psi. er(s) for truss to t hanical connection capable of withs ISP connectors re- ing walls due to U s for uplift only an	flat roof Ic th other liv prevent v d for a liv as where vill fit betw s. Joint 2 SF russ conn on (by oth- standing 7 ecommen- JPLIFT at	ad of 13.9 per re loads. vater ponding e load of 20.0 a rectangle veen the botto P No.2 crushi nections. ers) of truss t Ib uplift at jo ded to conne jt(s) 2. This	sf on g. Dpsf om ing to int						
this design 2) Wind: AS(Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & N DOL=1.6C 3) TCLL: AS DOL=1.15 snow); Pf=	2-5=-49/45 ed roof live loads have n. CE 7-10; Vult=130mph Bmph; TCDL=6.0psf; BG p B; Enclosed; MWFR3 2) zone; cantilever left a ft and right exposed;C- MWFRS for reactions sl 0 plate grip DOL=1.33 CE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pg= =18.9 psf (flat roof snov _=1.15); Category II; Ex	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-(and right exposed ; e C for members and hown; Lumber roof live load: Lumbe -20.0 psf (ground w: Lumber DOL=1.1	12) LO C nd	International R802.10.2 a Graphical pu		e sections andard AN n does no	R502.11.1 a SI/TPI 1. t depict the s				Wannun	THE REAL	CAR SEAL 36322	A State of the second second


Job	Truss	Truss Type	Qty	Ply	KMB - Cedar Plan	
20020079	G2	Half Hip	1	1	Job Reference (optional)	E14101470

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Fri Feb 21 15:07:37 ID:XFzXapy4p6ZxIAz11CZN1rzixH?-sF7MBae?wZ3cGgG4Yzz2MQcGULuRb0S36YI_6xzitda Page: 1

YI_6xzitda

2-6-0

Scale = 1:28.5

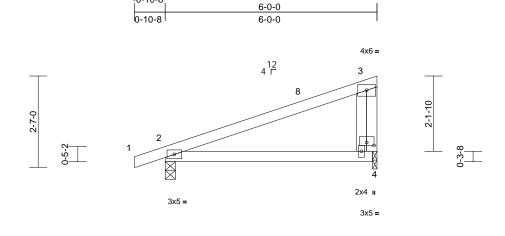
Plate Offsets (X, Y): [3:0-3-12,0-2-0]

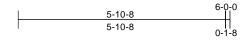
	X, Y): [3:0-3-12,0-2-0]		-										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.07 0.02 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103/ Cat. II; Exy Exterior (2 vertical left forces & M DOL=1.60 2) TCLL: ASC DOL=1.15 snow); Pf= Plate DOL Ct=1.10, L	2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood shea 2-6-0 oc purlins; exc 2-0-0 oc purlins; 3-4. Rigid ceiling directly bracing. (lb/size) 2=124/0-3 Max Horiz 2=46 (LC Max Uplift 2=-6 (LC 1 Max Grav 2=200 (LC (lb) - Maximum Com Tension 1-2=0/40, 2-3=-59/30 2-5=-62/55 3-5=-65/54 E 7-10; Vult=130mph mph; TCDL=6.0psf; BC b B; Enclosed; MWFRS b 2 ne; cantilever left a and right exposed; C-1 WFRS for reactions st plate grip DOL=1.33 CE 7-10; Pr=20.0 psf (l Plate DOL=1.15); Pg= 18.9 psf (flat roof snow =1.15); Category II; Ex	athing directly applie cept end verticals, ar applied or 10-0-0 oc -8, 5=78/ Mechanica 14) 15), 5=-12 (LC 12) 2 35), 5=95 (LC 34) pression/Maximum 3, 3-4=-25/27, 4-5=-4 (3-second gust) CDL=6.0psf; h=25ft; 5 (envelope) and C-0 and right exposed ; e C for members and hown; Lumber roof live load: Lumber -20.0 psf (ground v: Lumber DOL=1.15 ps ; Fully Exp.;	5) 6) d or nd 7) : 8) 9) 10) 40/22 11) 12) 12) C LO er 5	load of 12.0 j overhangs no Provide adder * This truss h on the botton 3-06-00 tall b chord and an Bearings are capacity of 5 Refer to girdt Provide mecl bearing plate 5. One RT7A U truss to beari connection is forces. This truss is International R802.10.2 ar	er(s) for truss to trus hanical connection capable of withstar SP connectors recor- ing walls due to UP for uplift only and of designed in accorda Residential Code s and referenced stand rlin representation of this purlin alo	at roof lo other liv revent v for a liv where fit betw int 2 SF ss conr (by othen nding 1 ommen LIFT at does no ections dard AN does no	pad of 13.9 ps re loads. vater ponding e load of 20.0 P No.2 crushin ections. ers) of truss to 2 lb uplift at jo ded to conner jt(s) 2. This to consider lat th the 2015 R502.11.1 an (SI/TPI 1. th depict the s	f on psf m ng oint ct eral			Manutan		CAROL SEAL 36322 GINEER GILBER

PREPARENCE AMITEK Attillate 818 Soundside Road Edenton, NC 27932

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	KMB - Cedar Plan	
20020079	J1	Monopitch	7	1	Job Reference (optional)	E14101471


-0-10-8


Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Fri Feb 21 15:07:37 ID:RFby?6_Ua_UP2KZH5vijX7ziyX?-sF7MBae?wZ3cGgG4Yzz2MQcA4LpCb0h36YI_6xzitda

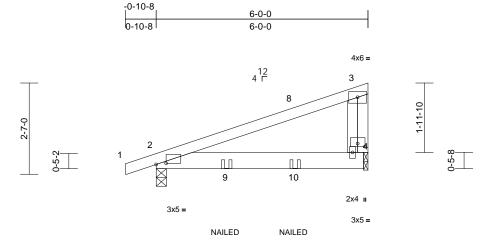
Page: 1

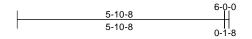
Pag

Scale = 1:32.6

Plate Offsets (X, Y): [4:0-2-8,0-1-0]

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				-								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.48 0.36 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.05 -0.10 0.01	(loc) 4-7 4-7 2	l/defl >999 >657 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 2=230/0-3-8, 4=184/0-1-8 Max Horiz Max Uplift 2=-29 (LC 11), 4=-12 (LC 15) Max Grav 2=274 (LC 2), 4=218 (LC 2)			6)	load of 12.0 overhangs n * This truss h on the bottor 3-06-00 tall h chord and ar Bearings are capacity of 5 565 psi. Bearing at jo using ANSI/ designer sho Provide mec	as been designed fo psf or 2.00 times fla on-concurrent with has been designed in m chord in all areas by 2-00-00 wide will ny other members. e assumed to be: Jo 665 psi, Joint 4 SP N wint(s) 4 considers p TPI 1 angle to grain build verify capacity of thanical connection e at joint(s) 4.	troof k other lin for a liv where fit betv int 2 SI lo.3 cru arallel t formulion	bad of 13.9 p ve loads. e load of 20.1 a rectangle veen the bott ^D No.2 crushi ushing capac o grain value a. Building ng surface.	sf on Opsf om ing ity of					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/20, 2-8=-81/4 3-4=-146/122		9)	 One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider 									
BOT CHORD NOTES	2-4=-84/88 CE 7-10; Vult=130mph	10	lateral forces. 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.										
Vasd=103 Cat. II; Exp Exterior (2 vertical lef forces & N	be 7-10, vitile isompti mph; TCDL=6.0psf; B(p B; Enclosed; MWFR3 2) zone; cantilever left at t and right exposed;C- /WFRS for reactions sl plate grip DOL=1.33	CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and	С	DAD CASE(S)							Win	THORTH ORTH	CAROL


- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.


SEAL 036322 February 21,2020

Job	Truss	Truss Type	Qty	Ply	KMB - Cedar Plan	
20020079	J2	Monopitch Girder	1	1	Job Reference (optional)	E14101472

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Fri Feb 21 15:07:37 ID:RFby?6_Ua_UP2KZH5vijX7ziyX?-sF7MBae?wZ3cGgG4Yzz2MQcBALoTb0h36YI_6xzitda Page: 1

Scale = 1:32.6

Plate Offsets (X, Y): [2:0-3-6,0-0-6], [4:0-2-8,0-1-0]

Loading	(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.41	Vert(LL)	-0.03	4-7	>999		MT20	244/190	
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.41	Vert(CT)	-0.06	4-7	>999	180			
TCDL	10.0	Rep Stress Incr	NO		WB	0.00	Horz(CT)	0.00	2	n/a	n/a			
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MP									
BCDL	10.0											Weight: 29 lb	FT = 20%	
LUMBER			5)	* This truss	nas been designed	d for a liv	e load of 20.	0psf						
TOP CHORD	2x4 SP No.2			on the botto	n chord in all area	s where	a rectangle							
BOT CHORD	2x6 SP No.2			3-06-00 tall	oy 2-00-00 wide w	ill fit betw	een the bott	tom						
WEBS	2x4 SP No.3				ny other members									
OTHERS	2x4 SP No.3		6)		assumed to be: .									
BRACING					65 psi, Joint 4 SP	No.3 cru	ishing capac	ity of						
TOP CHORD	Structural wood she	athing directly applie	ed or _	565 psi.										
	6-0-0 oc purlins, ex	7)	7) Bearing at joint(s) 4 considers parallel to grain value											
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc				using ANSI/TPI 1 angle to grain formula. Building										
	bracing.				designer should verify capacity of bearing surface.8) Provide mechanical connection (by others) of truss to									
REACTIONS (lb/size) 2=299/0-3-8, 4=262/0-1-8				bearing plate at joint(s) 4.										
Max Horiz 2=64 (LC 32)				9) One RT7A USP connectors recommended to connect										
	Max Uplift 2=-49 (LC 7), 4=-34 (LC 11)				truss to bearing walls due to UPLIFT at it(s) 2 and 4.									
	Max Grav 2=340 (LC	C 2), 4=286 (LC 2)			tion is for uplift onl									
FORCES	(lb) - Maximum Com	pression/Maximum		lateral forces		,								
	Tension		1()) This truss is	designed in accor	dance w	th the 2015							
TOP CHORD	TOP CHORD 1-2=0/20, 2-8=-88/0, 3-8=-27/31, 3-4=-127/30			International Residential Code sections R502.11.1 and										
BOT CHORD 2-9=-22/102, 9-10=-22/16, 4-10=-22/16				R802.10.2 and referenced standard ANSI/TPI 1.										
NOTES			11		dicates 3-10d (0.1									
	CE 7-10; Vult=130mph				i") toe-nails per NI									
	mph; TCDL=6.0psf; B		,		CASE(S) section			face						
Cat. II; Exp B; Enclosed; MWFRS (envelope); cantilever				 (0.148"x3.25") toe-nails per NDS guidlines. 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate 									CARO	
	pht exposed ; end verti	L	LOAD CASE(S) Standard								N'R'			
exposed; Lumber DOL=1.60 plate grip DOL=1.33												ESCION V.		
	CE 7-10; Pr=20.0 psf (er	Increase=1							4	JAP.	1 Nov	
	Plate DOL=1.15); Pg=		5	Uniform Lo	· · ·						-		SEAL 36322	
	=13.9 psf (flat roof snov _=1.15); Category II; Ex		0		=-46, 4-5=-19						-	: .	SEAL :	
Ct=1.10	, Calegory II, E	мр D, Fully Exp.,			ed Loads (lb)						=	•		
	ed snow loads have be	en considered for th	nis	Vert: 9=-	70 (B), 10=-76 (B))					Ξ.	0	36322 :	
design.			10									80		
	has been designed for	r areator of min roof	live								-			

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

TREERING BY A MITEK AIfiliale 818 Soundside Road Edenton, NC 27932

February 21,2020

