Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	CJ1	Jack-Open	1	1	Job Reference (optional)	E14514948

-1-8-8

1-8-8

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue Jun 16 09:46:53 ID:iy1KS7h?mbHRDLRgQJuNL4z5luI-521clXAGx4ywFGTXpcpstF9KxPuhyKvuzE0Au_z5l2Y

2-8-7

2-8-7

2-8-7

Soolo	-	1.25 7
Sudie	_	1.20.7

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.30	Vert(LL)	0.00	4-5	>999	240	MT20	244/190
Snow (Pf/Pg)	1	3.9/20.0	Lumber DOL	1.15		BC	0.10	Vert(CT)	0.00	4-5	>999	180		
TCDL		10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	-0.01	3	n/a	n/a		
BCLL		0.0*	Code	IRC20	5/TPI2014	Matrix-MR								FT 000/
BCDL		10.0											Weight: 12 lb	FI = 20%
LUMBER				5) * This truss h	as been designed	for a liv	e load of 20.	0psf					
TOP CHORD	2x4 SP N	0.2			on the botton	n chord in all areas	where	a rectangle						
BOT CHORD	2x4 SP N	0.2			3-06-00 tall b	y 2-00-00 wide will	fit betw	een the bott	om					
WEBS	2x4 SP N	0.3		0	chord and an	y other members.								
BRACING				6 7) Refer to girde	er(s) for truss to tru	ss conr	ections.	to					
TOP CHORD	Structural	I wood shea	athing directly applie	dor ′	hearing plate	canable of withsta	(by oth nding 2	2 lb unlift at i	ioint					
	2-8-7 oc p	purlins, exc	cept end verticals.		3		nung z	z ib upint at j	joint					
BOT CHORD	Rigid ceili	ing directly	applied or 10-0-0 oc	8) One RT7A U	SP connectors rec	ommen	ded to conne	ect					
DEACTIONS	bracing.	2 Maaha	niaal (Maahaniaal		truss to beari	ng walls due to UP	LIFT at	jt(s) 5. This						
REACTIONS	(size)	3 = 101echa 5 = 0.1.9	nical, 4= Mechanical	,	connection is	for uplift only and	does no	ot consider la	ateral					
	Max Horiz	5=47 (I C	12)	_	forces.									
	Max Uplift	3=-22 (LC	15), 5=-11 (LC 11)	9) This truss is	designed in accord	ance w	th the 2015						
	Max Grav	3=44 (LC	2), 4=22 (LC 13), 5=	252	International	Residential Code s		R502.11.1 a	and					
		(LC 2)	,, (,, -	· .				SI/TFTT.						
FORCES	(lb) - Max	timum Com	pression/Maximum	L	UAD CASE(S)	Standard								
	Tension													
TOP CHORD	2-5=-217/	/169, 1-2=0	/60, 2-6=-45/13,											
	3-6=-28/2	21												
BOT CHORD	4-5=0/0													
NOTES														
1) Wind: AS	CE 7-10; Vu	Ilt=130mph	(3-second gust)										minin	11111
Vasd=10	3mph; ICDL	.=6.0pst; BC	DL=6.0pst; h=25tt;	_									WAH CA	ROUL
Exterior (tilovor loft a	s (envelope) and C-C	, nd								1	2	. Lill
vertical le	eft and right e	vnosed C-	C for members and	nu								E.	OFES	Br. Vin
forces & I	MWFRS for i	reactions sh	nown: Lumber								L	21		13AM
DOL=1.6	0 plate grip D	DOL=1.33	. ,								1	· .	· ? ·	
2) TCLL: AS	SCE 7-10; Pr	=20.0 psf (r	oof live load: Lumbe	r							-	:	SEA	1 : =
DOL=1.1	5 Plate DOL:	=1.15); Pg=	20.0 psf (ground								=		JLA	
snow); Pf	=13.9 psf (fla	at roof snov	v: Lumber DOL=1.15	5									0363	22 : 5
Plate DO	L=1.15); Cat	tegory II; Ex	p B; Fully Exp.;									0		1 - Z
3) Unbalance	ed snow loo	de have he	on considered for thi	e .								-	·	all S
design	Cu 3110W 108	us nave De		3								15	NGIN	EELAN
4) This truss	s has been d	lesianed for	greater of min roof I	ive								11	710	COLUN
load of 12	2.0 psf or 2.0	0 times flat	roof load of 13.9 ps	on									11, A. C	allenin
overhang	s non-concu	irrent with o	ther live loads.										in num	IIIII.
													June	e 16,2020

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	J1	Jack-Open	10	1	Job Reference (optional)	E14514949

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue Jun 16 09:46:55 ID:Pte6YYoGPgX1QtCb?P3klBz5lu8-zpH7auDm_JTMjuml2Rto15J280HRu7vTts_N2lz5l2U

Page: 1

June 16,2020

SINEEDING

818 Soundside Road Edenton, NC 27932

2-0-0

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/	/TPI2014	CSI TC BC WB Matrix-MR	0.16 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & M DOL=1.60 2) TCLL: ASC DOL=1.15 snow); Pf= Plate DOL Plate DOL Ct=1.10 3) This truss load of 12 overhangs	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 2-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=48 (LC Max Uplift 3=-24 (LC Max Uplift 3=-24 (LC Max Grav 3=40 (LC (LC 2) (lb) - Maximum Com Tension 2-5=-159/91, 1-2=0/9 4-5=0/0 CE 7-10; Vult=130mph mph; TCDL=6.0psf; BK p B; Enclosed; MWFR3 cone; cantilever left at t and right exposed(C- WFRS for reactions sis plate grip DOL=1.33 CE 7-10; Pr=20.0 psf (la Plate DOL=1.15); Pg= =13.9 psf (flat roof snov .=1.15); Category II; Ex has been designed for .0 psf or 2.00 times flat s non-concurrent with c	athing directly applie sept end verticals. applied or 10-0-0 oc nical, 4= Mechanica 13) 13) 25), 4=21 (LC 11), 5 pression/Maximum 57, 2-3=-43/35 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-1 and right exposed ; e C for members and hown; Lumber roof live load: Lumber 20.0 psf (ground w: Lumber DOL=1.1! cp B; Fully Exp.; greater of min roof I roof load of 13.9 ps ther live loads.	4) 5) 6) 5: 7) 1, LO 5 5 20 6 7 10 5 5 10 7 10 7 10 7 10 7 10 7 10 7	* This truss h on the bottom 3-06-00 tall b chord and an Refer to girde Provide mech bearing plate 3. This truss is of International R802.10.2 ar AD CASE(S)	as been designed as chord in all area: y 2-00-00 wide wi y other members. sr(s) for truss to tru- nanical connectior capable of withst designed in accorr Residential Code d referenced star Standard	I for a live s where a ll fit betw uss conn (by othe anding 2 dance wi sections idard AN	e load of 20.0 a rectangle een the botto ections. ers) of truss tu 4 lb uplift at jo th the 2015 R502.11.1 a SI/TPI 1.	upsf om opint nd		M. HILLING.		SEA 0363	ROLU 22 EEFRERING	and an
												20000	TITES	

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	T1	Roof Special	5	1	Job Reference (optional)	E14514950

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue Jun 16 09:46:55 ID:e6ly_Yjls79OZaFw1HYms6z5m0?-zpH7auDm_JTMjumI2Rto15Juy04wuuvTts_N2lz5l2U

Page: 1

	-1-2-8	6.6.0		12.0.0		20.0.9			26 10	0		22.2.0	34-5-8
	1-2-8	6-6-0		5-6-0		8-9-8		+	6-1-0)		6-4-8	1-2-8
								4x5=					
9-5-9 			12 3 F 3x5 =		5x6 =	8 ¹² 20 ²	1	5		22	^{3x5}	3x5 x 7	
-4-2 0-4-2	1 2 3x8=	19	3 15 2x4 II		14 5x10=			1312 6x12=			11 4x5		8 10 10x12=
		6-6-0		11-10-4		20-9-8			26-10	-8		33-3-0	
	H	6-6-0		5-4-4		8-11-4		-	6-1-0)	-	6-4-8	
Scale = 1:65.3 Plate Offsets (X	Y): [10:Edge 0-8-2	2] [13:0-1-12 0-3-4]	1 [14:0-5-0	0-3-4]									
	()	_j, [10:0 1 12;0 0 1]], [1 1.0 0 0,						(1)				
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(pst) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁻	15/TPI2014	CSI TC BC WB Matrix-MSH	0.81 0.85 0.96	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.30 -0.63 0.12	(loc) 14-15 13-14 10	l/defl >999 >628 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 178 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2 BOT CHORD 2 WEBS 3 BRACING TOP CHORD 5 BOT CHORD 6 WEBS 6 REACTIONS (si MA MA FORCES (TOP CHORD 1 5 BOT CHORD 1 5 BOT CHORD 1 5 BOT CHORD 1 5 BOT CHORD 1 5 BOT CHORD 1 5 BOT CHORD 1 5 COP CHORD 2 COP COP CHORD 2 COP COP COP COP COP COP COP COP COP COP	2x4 SP No.2 *Excep 2.0E 2x4 SP No.1 2x4 SP No.2 *Excep 3-15,14-4,6-11,10-8 Structural wood she 2-1-7 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt ize) 2=0-3-8, ax Horiz 2=1936 (Li ax Uplift 2=-25 (LC ax Grav 2=1396 (I) ax Uplift 2=-25 (LC ax Grav 2=1396 (I) (lb) - Maximum Con Tension 1-2=0/22, 2-19=-433 3-43-3544/679, 4-21 20-21=-1394/317, 2- 55-22=-139/315 2-15=-780/4165, 14 13-14=-558/3392, 1 11-12=-143/1419, 1 3-15=0/105, 3-14=-5 4-13=-358/152, 6-1 roof live loads have	ot* 4-5:2x4 SP 2400 ot* :2x4 SP No.3 eathing directly app :cept end verticals. / applied or 7-0-14 4-13 10=0-3-8 C 14) C 15) LC 2), 10=1406 (LC npression/Maximum 31/842, 3-19=-4285 0=-1565/312, -21=-1371/341, 22=-1521/335, =-1812/314, 8-9=0/ -15=-780/4165, 2-13=-143/1419, 0-11=-92/393 901/233, 4-14=0/42 13=-185/1122, 1=-15/81, 8-11=-75 e been considered f	2 lied or 3 oc 4 5 5/850, 7 /57, 8 22, L 5/1117 for	 Wind: ASCE Vasd=103m Cat. II; Exp Exterior (2) vertical left a forces & MV DOL=1.60 p TCLL: ASCI DOL=1.15 F snow); Pf=1 Plate DOL= Ct=1.10 Unbalanced design. This truss ha load of 12.0 overhangs r * This truss on the botto 3-06-00 tall chord and a One RT7A I truss to bea connection i forces. This truss is Internationa R802.10.2 a 	 7-10; Vult=130 ph; TCDL=6.0p; TCDL=6.0p; B; Enclosed; MV zone; cantilever and right expose VFRS for reaction late grip DOL=1 7-10; Pr=20.0 Vate DOL=1.15) 3.9 psf (flat roof 1.15); Category snow loads have as been designed psf or 2.00 time ton-concurrent versions has been designed in chord in all are by 2-00-00 wide ny other membe JSP connectors ring walls due to s for uplift only are designed in accord in Residential Co und referenced s Standard 	mph (3-sec sf; BCDL=6 VFRS (env VFRS (env VFRS (or r ns shown; .33 psf (roof liv; snow: Lurr I; Fyg=20.0 ; snow: Lurr	cond gust) .0psf; h=25ft elope) and C. ht exposed ; nembers and Lumber re load: Lumb sf (ground her DOL=1.1 rully Exp.; hsidered for the er of min roof bad of 13.9 p ve loads. re load of 20.1 a rectangle veen the both ded to connet i jt(s) 2. This ot consider la ith the 2015 s R502.11.1 a ISI/TPI 1.	; -C end er 15 his flive sf on Opsf om ect teral		C. minut		OFFESS SEA 0363	ROL 122

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

June 16,2020

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	T1GE	Roof Special Supported Gable	1	1	Job Reference (optional)	E14514951

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue Jun 16 09:46:55 ID:IWwARI2FpDECT7YMJD3t8Wz5m0s-zpH7auDm_JTMjumI2Rto15J1S0FQu53Tts_N2Iz5I2U

Page: 1

INFEDING

818 Soundside Road Edenton, NC 27932

Scale = 1:65.3

Plate Offsets (X, Y): [16:0-3-0,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 20.0 3.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	015/TPI2014	CSI TC BC WB Matrix-MSH	0.21 0.18 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 20	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 201	GRIP 244/1 Ib FT =	, 190 20%
LUMBER TOP CHORD 30T CHORD WEBS BRACING TOP CHORD 30T CHORD WEBS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N 27-12,28- Structural 6-0-0 oc f Rigid ceil bracing. 1 Row at (size) Max Horiz Max Uplift Max Uplift	0.2 0.2 0.3 0.3 *Except 11,29-10,24 I wood shead burlins, exc ing directly midpt 2=33-3-0, 2=33-3-0 2=33-3-0 2=33-3-0 2=33-3-0 2=193 (LC 2=-56 (LC 22=-20 (LC 33=-32 (LC 32=-26 (LC 33=-28 (LC 33=-28 (LC 33=-28 (LC 33=-28 (LC 33=-28 (LC 35=-10 (LC 24=-32 (LC 24=-32 (LC 24=-32 (LC 23=-175 (L 25=223 (L 25=223 (L 25=223 (L 25=23 (L) (L 25=23 (L) (L 25=23 (L) (L 25=23 (L)	* 5-13,24-14:2x4 SP N athing directly applie sept end verticals. applied or 6-0-0 oc 12-27 20=33-3-0, 21=33-3 , 23=33-3-0, 24=33- , 27=33-3-0, 24=33- , 27=33-3-0, 24=33- , 30=33-3-0, 31=33- , 37=33-3-0 : 14), 37=193 (LC 14 11), 21=-58 (LC 16) C 16), 23=-32 (LC 16) C 16), 23=-32 (LC 16) C 16), 25=-24 (LC 11) C 11), 34=-12 (LC 16) C 11), 34=-12 (LC 16) C 11), 36=-22 (LC 16) C 11), 36=-22 (LC 16) C 11), 36=-22 (LC 16) C 11), 36=-22 (LC 16) C 11), 36=-21 (LC 20) C 30), 22=158 (LC 20) C 30), 24=179 (LC 20) C 30), 34=198 (LC 20) C 38), 34=198 (LC 20) C 38), 34=198 (LC 20) C 41)	40.2 d or -0, 3-0, 3-0, 3-0, 3-0, 3-0, 3-0, 4) ,, 5), 5), 5), 5), 5), 5), 30), 40), 32), 29), 41), 38),	FORCES (TOP CHORD 1 BOT CHORD 2 BOT CHORD 2 WEBS 1 NOTES 1 1) Unbalanced 1 this design. 2) Wind: ASCE Vasd=103mp Cat. II; Exp E Exterior (2) z vertical left at forces & MW DOL=1.60 pl	Ib) - Maximum Con Tension -2=0/22, 2-40=-14; -4=-132/81, 4-5=-1 -7=-120/117, 7-8=- -10=-133/152, 10 11-42=-172/207, 11 1-12=-229/266, 12 3-14=-183/213, 14 5-43=-133/140, 15 6-17=-43/39, 17-18 8-20=-169/62 -36=-87/106, 35-37 4-35=-87/106, 35-37 4-35=-87/106, 35-37 4-35=-87/106, 25-37 4-25=-87/106, 25-37 4-25=-122/78, 17-37 roof live loads have 7-10; Vult=130mph th; TCDL=6.0psf; B ; Enclosed; MWFR one; cantilever left oh right exposed; C FRS for reactions s ate grip DOL=1.33	appression 9/62, 3- 23/92, -112/11 112/11 41=-183 -43=-11 -16=-83 3=-73/6 5=-87/1 34=-87/1 34=-87/1 32=-887/1 32=-87/2 22=-81/2 22=-81/2 22=-81/2 22=-142/77 25=-136 21=-161 abeen c (3-sec CDL=6 S (enver and right -C for m shown; I	on/Maximum 40=-139/79, 5-6=-119/100, 9, 8-9=-132/14 //201, 72/213, 19/266, 13/152, 19/266, 13/152, 19/266, 13/152, 19/20, 3, 18-19=0/57 06, 106, 106, 106, 106, 106, 106, 106,	, , , , , , , , , , , , , , , , , , ,	 3) Tri onli see or a or	uss desig y. For st Standar consult q LL: ASCI LL: ASCI LL: ASCI L=1.15 f bw); Pf=1 te DOL= c1.10 obalanced sign. s truss h d of 12.0 erhangs r plates ar ble requi ble studs nis truss the botto 6-00 tall	Ined for uds ex- vid Indu- ualifier 27-10 Plate D 3.9 ps 1.15); snow as beee psf or non-co space has be e 2x4 res co space has be e 2x4 res co space	or wind loads in constry Gable En d building desi ; Pr=20.0 psf ()OL=1.15); Pg if (flat roof sno Category II; E loads have be en designed fo 2.00 times flat ncurrent with a mt20 unless of ntinuous botto ad at 2-0-0 oc. ben designed f rd in all areas 0-00 wide will er members. SEE 036 SEE 036	the plane (normal t d Details a gner as per roof live la =20.0 psf w: Lumber xp B; Fully en consid r greater of t roof load other live l therwise i m chord b or a live la where a ro fit betwee ARO SAL SAL SAL SAL	e of the truss o the face), as applicable, er ANSI/TPI 1. oad: Lumber (ground r DOL=1.15 y Exp.; Jered for this of min roof live tof 13.9 psf on loads. indicated. earing. oad of 20.0psf ectangle en the bottom

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	T1GE	Roof Special Supported Gable	1	1	Job Reference (optional)	E14514951

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue Jun 16 09:46:55 ID:IWwARI2FpDECT7YMJD3t8Wz5m0s-zpH7auDm_JTMjumI2Rto15J1S0FQu53Tts_N2Iz5I2U Page: 2

- 11) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 28, 29, 30, 31, 33, 34, 35, 36, 25, 24, 23, 22, and 21. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	T2	Roof Special	6	1	Job Reference (optional)	E14514952

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue Jun 16 09:46:56 ID:Nkd?m6ugTQrs9E?Wa4m_94z5izB-S?qVoEEOlcbDL2LVc9O1aJs1eQOtdPId6WkxaCz5i2T

Scale = 1:82.9

Plate Offsets (X, Y): [4:0-3-8,0-3-0], [8:0-5-8,0-2-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) Sp 20.0 Pla 13.9/20.0 Lu 10.0 Re 0.0* Co 10.0	pacing late Grip DOL umber DOL ep Stress Incr ode	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.95 0.94 0.76	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.48 -0.98 0.11	(loc) 15-17 15-17 12	l/defl >919 >454 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 238 lb	GRIP 244/190 FT = 20%
LUMBER			NC	DTES									
TOP CHORD BOT CHORD	2x4 SP No.2 *Except* 4- 2x4 SP No.1 *Except* 16 2.0E	-6:2x4 SP No.1 6-14:2x4 SP 2400	1) IF 2)	Unbalanced r this design. Wind: ASCE	oof live loads have 7-10; Vult=130mp	e been o h (3-sec	considered fo	or					
WEBS	2x4 SP No.2 *Except* 3-18,17-4,13-8,12-8,12-9	9:2x4 SP No.3		Vasd=103mp Cat. II; Exp B Exterior (2) z	h; TCDL=6.0psf; E ; Enclosed; MWFF one: cantilever left	BCDL=6 RS (enve and rig	.0psf; h=25ft elope) and C ht exposed :	; -C end					
TOP CHORD BOT CHORD	Structural wood sheathir Rigid ceiling directly app bracing	ng directly applied blied or 2-2-0 oc	I.	vertical left ar forces & MW DOL=1.60 pla	nd right exposed;C FRS for reactions ate grip DOL=1.33	C-C for n shown;	nembers and Lumber						
WEBS REACTIONS	1 Row at midpt 8-12 (size) 2=0-3-8, 10=0 Max Horiz 2=119 (LC 14) Max Uplift 2=-23 (LC 15) Max Grav 2=1454 (LC 2) 12=2379 (LC 14)	2, 5-15, 7-15, 7-13 0-5-4, 12=0-3-8 4)), 10=-200 (LC 47 2), 10=106 (LC 44) 2)	3 3))), 4)	TCLL: ASCE DOL=1.15 Plassow); Pf=13 Plate DOL=1 Ct=1.10 Unbalanced s	7-10; Pr=20.0 psf ate DOL=1.15); Pg .9 psf (flat roof sno 15); Category II; E snow loads have b	(roof liv g=20.0 p ow: Lum Exp B; F een cor	e load: Lumb osf (ground ber DOL=1.1 ully Exp.; usidered for th	ber 15 his					
FORCES	(lb) - Maximum Compres Tension	ssion/Maximum	5)	This truss has load of 12.0 p	s been designed fo osf or 2.00 times fla	or greate at roof lo	er of min roof ad of 13.9 p	f live sf on					
TOP CHORD	1-2=0/22, 2-25=-4572/87 3-26=-3753/662, 4-26=-3 4-5=-4495/925, 5-27=-14 6-27=-1342/363, 6-28=-1 7-28=-1413/329, 7-29=-4 8-29=-628/140, 8-30=-38 9-30=-396/1779, 9-10=-2 10-11=0/22	74, 3-25=-4536/88 3709/677, 425/331, 1331/362, 476/143, 87/1850, 260/1471,	39, 6) 7)	overhangs no * This truss h on the bottom 3-06-00 tall b chord and an One RT7A U truss to beari This connect	n-concurrent with as been designed a chord in all areas y 2-00-00 wide wil y other members, SP connectors rec ng walls due to UF on is for uplift only	other liv for a liv where I fit betw with BC commen PLIFT at	re loads. e load of 20.0 a rectangle reen the botti DL = 10.0psi ded to conne jt(s) 2 and 1	Opsf om f. ect 0.		4	TILL I	OPTH CA	ROLIN
BOT CHORD	2-18=-796/4400, 17-18= 17-31=-182/1869, 16-31 16-32=-182/1869, 15-32 15-33=-44/1121, 14-33=	=-796/4400, 1=-182/1869, 2=-182/1869, =-44/1121,	8)	lateral forces. This truss is o International R802.10.2 ar	designed in accord Residential Code s Id referenced stan	lance wi sections dard AN	th the 2015 R502.11.1 a	and				SEA 0363	L 22
WEBS	14-34=-44/11/21, 13-34= 12-13=0/526, 10-12=-13 3-18=0/99, 3-17=-1054/2 8-13=-52/991, 8-12=-29 9-12=-645/243, 5-17=-58 5-15=-1155/377, 6-15=-2 7-15=-142/168, 7-13=-11	44/1121, 368/302 '280, 4-17=-1826/4 114/526, 85/2928, 268/1226, 105/209	LC 470,	DAD CASE(S)	Standard							ALC A. C	

June 16,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	T2GE	Monopitch Supported Gable	1	1	Job Reference (optional)	E14514953

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue Jun 16 09:46:57 ID:kV?AWFaoHduvtrHHsm6Qtz5lyJ-wCOt?aF0Wwj4zBwh9svG7WPODqw7M1fmL9TU6ez5l2S

Page: 1

							8-	7-8						
Scale = 1:29														
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1:	(psf) 20.0 3.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	5/TPI2014	CSI TC BC WB Matrix-MP	0.19 0.17 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceili bracing	0.2 0.3 0.3 0 wood shea purlins, exc ing directly	athing directly applia sept end verticals. applied or 10-0-0 o	3 4 ed or 5 c	TCLL: ASCE DOL=1.15 P snow); Pf=13 Plate DOL=1 Ct=1.10 Unbalanced design. This truss ha load of 12.0 overhangs n	57-10; Pr=20.0 ps late DOL=1.15); F 3.9 psf (flat roof sr 1.15); Category II; snow loads have as been designed psf or 2.00 times f on-concurrent witl	if (roof liv Pg=20.0 p now: Lum Exp B; F been cor for greate flat roof lo h other liv	e load: Lumb isf (ground ber DOL=1.1 ully Exp.; isidered for the er of min roof pad of 13.9 p: re loads.	er 5 his live sf on					
REACTIONS	 Night centing diffectly applied of 10-00 occ bracing. TIONS (size) 2=8-7-8, 6=8-7-8, 7=8-7-8, 8=8-7-8, 9=8-7-8 Max Horiz 2=70 (LC 14), 9=70 (LC 14) Max Uplift 2=-38 (LC 11), 7=-9 (LC 11), 8=-19 (LC 15), 9=-38 (LC 11) Max Grav 2=236 (LC 2), 6=74 (LC 2), 7=94 (LC 2), 9=236 (LC 2) and any other members. One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 6, 7, and 8. This connection is for uplift only and does not 													
	(Ib) - Max Tension		pression/Maximum	1	consider late 0) This truss is	ral forces. designed in accor	rdance w	th the 2015						
	1-2=0/22, 4-13=-61/ 2-837/6	2-3=-109/ 41, 4-5=-40 5 7-837/	/1, 3-13=-62/32, 0/37, 5-6=-53/42		R802.10.2 a	Residential Code	e sections ndard AN	R502.11.1 a SI/TPI 1.	nd				mmm	uum.
WEBS	4-7=-84/6	9, 3-8=-23	B/151	L	OAD CASE(S)	Standard							"TH CA	ROUT
NOTES 1) Wind: ASI Vasd=103 Cat. II; Ex Exterior (2 vertical le forces & N DOL=1.6(2) Truss des only. For see Stanc or consult	CE 7-10; Vu Bmph; TCDL p B; Enclose 2) zone; can ft and right e WWFRS for r WWFRS for r signed for wi studs expos lard Industry qualified bu	It=130mph =6.0psf; B0 ed; MWFRS tilever left a exposed;C-i reactions sil oOL=1.33 ind loads ir ied to wind r Gable End ilding desig	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C: and right exposed; C for members and hown; Lumber a the plane of the tru (normal to the face d Details as applical gner as per ANSI/TF	; end uss), ble, PI 1.							A CONTRACT		SEA 0363	EER. HILL e 16,2020

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	T2SE	Roof Special Structural Gable	1	1	Job Reference (optional)	E14514954

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue Jun 16 09:46:57 ID:MZPbDbFMVei9rKcNcWK5eOz5m?J-wCOt?aF0Wwj4zBwh9svG7WPEoqIDMs1mL9TU6ez5l2S

Page: 1

Scale = 1:82.9

Plate Offsets (X, Y): [5:0-1-0,0-1-8]

Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.79	DEFL Vert(LL)	in -0.47	(lc 28-	oc) l/defl 30 >837	L/d 240	PLATES MT20	GRIP 244/19(0
	1	3.9/20.0	Lumber DOL Rep Stress Incr	1.15 VES		BC	0.86	Horz(CT)	-0.96	28-	30 >415 22 n/a	180 n/a			
BCU		0.0*	Code	IRC2015/TE	912014	Matrix-MSH	0.75	11012(01)	0.00		22 11/a	n/a			
BCDL		10.0	Code	11(02010/11	12014								Weight: 287	b FT = 20)%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD WEBS JOINTS REACTIONS	2x4 SP N 2x4 SP 2 No.1 2x4 SP N 3-31,30-4 2x4 SP N SP No.2 Structura Rigid ceil bracing. 1 Row at 1 Brace a 33, 34, 30 (size) Max Horiz Max Uplift	o.2 400F 2.0E * 0.2 *Except 222-13,16-2 0.3 *Except I wood sheat ing directly midpt at Jt(s): 32, 6, 39 2=0-3-8, 1 21=12-4-0 43=12-4-0 2=19 (LC 2=-22 (LC 20=-15 (LL)	Except* 29-26:2x4 \$ * Except* 29-26:2x4 \$ * 32-6,33-8,27-35:2; athing directly applie applied or 6-0-0 oc 10-36, 22-36 8=12-4-0, 20=12-4-(0, 22=12-4-0, 23=0-3) 2 14) 15), 18=-56 (LC 12) C 16), 21=-262 (LC 4 2 45) 40-26 (LC 4 2	TOP C SP d. b, -8, WEBS 15),	CHORD	1-2=0/22, 2-46=-40 3-47=-3176/527, 4 4-5=-3809/766, 5-4 6-48=-933/269, 6-7-4 6-48=-933/269, 6-7-4 8-9=-965/262, 9-49 10-49=-982/234, 10 11-50=-202/1357, 12-13-289/1411, 14-15=-286/1161, 16-51=-298/1114, 14-15=-286/1161, 16-51=-298/1114, 17-18=-80/355, 18- 2-31=-680/3846, 30 30-52=-101/1486, 20 28-54=0/513, 24-29 22-23=0/513, 21-22 20-21=-332/119, 11 3-31=0/96, 3-30=-11 13-22=-32/506, 22- 38-39=-831/288, 11 16-21=-21/337, 5-33	000/755, 47=-313 48=-1018 2*=908/2 9=-945/2 0-50=-18 11-12=-2 13-14=-2 15-51=-2 15-51=-2 15-51=-2 29-52=-7 28-53=-7 4=0/513 5=0/513 2=-332/1 8-20=-3 (055/296 -38=-852 6-39=-85 30=-504/	3-46=-3965/ 32/542, 3/250, 87, 7-8=-918, 43, 39/1426, 241/1330, 272/1163, 392/142, 52/345, 230/3846, 101/1486, 101/1486, 26-27=0/513; 19, 32/119, 32/119, 3, 4-30=-1586; 3/300, 21/282, 2635,	770, 5/287, 3, 3, 5/417,	2) 1 3) 3 4) 5 5) 6) 7) 4	Wind: ASC Vasd=103r Cat. II; Exp Exterior (2) vertical left forces & M DOL=1.60 Truss desi only. For s see Standa or consult of TCLL: ASC DOL=1.15 snow); Pf= Plate DOL= Ct=1.10 Unbalance design. This truss I load of 12.0 overhangs All plates a	E 7-10 ph; Trt B; Enc zone; and rig WFRS plate g gned fe truds ey F7-10 Plate D 13.9 ps 1.15); d snow mas bee 0 psf or non-co re 2x4	velgin: 201 ; Vult=130mph CDL=6.0psf; BM closed; MWFR: cantilever left a tht exposed;C- for reactions s rip DOL=1.33 or wind loads in qoosed to wind stry Gable End d building desig ; Pr=20.0 psf (DOL=1.15); Pg- f (flat roof snov Category II; E) loads have be en designed for 2.00 times flat ncurrent with c	(3-second ()DL=6.0psf 5 (envelope 1 for memb nown; Lumb 1 the plane of (normal to t 1 Details as gner as per roof live loa -20.0 psf (g :p B; Fully E en consider greater of 1 : roof load o ther live loa	gust) ; h=25ft;) and C-C cosed ; end ers and ver of the truss the face), applicable, ANSI/TPI 1. d: Lumber round DOL=1.15 ixp.; red for this min roof live f 13.9 psf on ads. dicated.
FORCES	Max Grav (Ib) - Max Tension	2=1309 (L 20=327 (L 22=1167 (43=197 (L	C 2), 18–197 (LC 4 C 44), 21=53 (LC 1 (LC 2), 23=1060 (LC C 46) pression/Maximum	-/ 3), 30), 1) Ui th	S nbalancec is design.	5-32=-1006/346, 2/ 7-28=-184/763, 28- 10-34=0/562, 10-33 35-36=-2488/428, 3 22-37=-2301/402, (9-34=-56/12, 27-35 25-36=-66/46, 12-3 24-37=-460/108, 14- 15-39=-46/10, 17-2 d roof live loads have	5-32=-10 -33=0/52 5=-2454 36-37=-2 6-32=-30 5=0/87, 1 87=-303/ 4-38=-65 20=-205/ e been c	567351, 2422/426, 2422/426, 2422/426, 2/25, 8-33=-5 11-36=0/61, 76, 75 considered fo	520, 4/19, r		C		SE ORTHO SE O36	AR SIGNA AL 322 NEER GILBE	A A A A A A A A A A A A A A A A A A A

G minim June 16,2020

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	T2SE	Roof Special Structural Gable	1	1	Job Reference (optional)	E14514954

- 8) Gable studs spaced at 2-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 23.
- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 21, 20, and 18. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue Jun 16 09:46:57 ID:MZPbDbFMVei9rKcNcWK5eOz5m?J-wCOt?aF0Wwj4zBwh9svG7WPEoqlDMs1mL9TU6ez5I2S Page: 2

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	T2V	Roof Special	6	1	Job Reference (optional)	E14514955

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue Jun 16 09:46:58 ID:CQ179nNl2jtAzN3CwUUMnVz5lyZ-OOyFDwFfHErxaLVtjaRVfkxNQE7F5J3wapD1e4z5l2R

Scale = 1:84.5

Plate Offsets	(X, Y): [2:0-1-12,Edge], [4:0-5-8,0-2-12], [1	3:0-4-0,0-2	2-8], [15:0-5-4	,0-2-8], [17:0-5-8,0-	2-4]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.93 0.75 0.74	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.33 0.11	(loc) 13-26 13-26 13	l/defl >639 >303 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 246 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.3 *Excep 17-4,17-5,6-17,16-6,	t* 9-12:2x4 SP No.1 t* 15-7:2x4 SP No.2	WI	EBS	3-20=-647/231, 4-2(4-17=0/138, 5-17=- 6-16=-94/914, 7-16: 7-15=-103/479, 8-1(9-15=-59/1335, 9-1- 10-14=-109/1335, 1)=-1777 538/330 =-431/2 5=-254/ 1=-927/ 0-13=-1	7/336, 4-18=0), 6-17=-347/- 12, '162, '118, 1037/268)/130, 478,	9) This Inte R80 LOAD C	truss is rnational 2.10.2 a ASE(S)	desigi Resic nd refe Star	ned in accordanc lential Code secti erenced standard ndard	e with the 2015 ons R502.11.1 a ANSI/TPI 1.	Ind
FORCES TOP CHORD BOT CHORD	Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-0, 1 20=0-3-8 Max Horiz 2=119 (LC 20=-30 (L Max Uplift 2=-91 (LC 20=-30 (L Max Grav 2=264 (LC 13=1930 ((lb) - Maximum Com Tension 1-2=0/22, 2-27=-110 3-28=-153/739, 4-28 4-29=-943/211, 29-3 5-30=-719/242, 5-6= 6-7=-1313/333, 7-31 31-32=-1627/284, 8 8-9=-1627/284, 8 8-9=-1627/284, 9 8-9=-1627/284, 9 10-33=-125/1444, 12 11-12=0/22 2-20=-392/92, 19-20 17-18=-11/614, 16-1 14-15=-58/109, 13-1 11-13=-1336/190	auning directly applied applied or 3-2-15 oc 5-17 11=0-5-4, 13=0-3-8, C 14) C 15) C 41), 11=-137 (LC 12 C 15) C 41), 11=165 (LC 44 (LC 2), 20=1623 (LC pression/Maximum //426, 3-27=-27/483, i=-138/813, i0=-773/220, i=-93/424, i=-138/813, i0=-773/220, i=-93/1220, i=-93/123, 1-33=-144/1377, i==-6/619, 18-19=-6/6 7=0/705, 15-16=0/10 4=-1610/242,	2. (1) (2) (2), (2), (2) (2) (3) (2) (3) (4) (5) (5) (6) (19, (7) (8)	Unbalanced this design. Wind: ASCE Vasd=103m Cat. II; Exp Exterior (2) vertical left a forces & MV DOL=1.60 p TCLL: ASCI DOL=1.15 F snow; Pf=1 Plate DOL= Ct=1.10 Unbalanced design. This truss h load of 12.0 overhangs r * This truss on the botto overhangs r this truss on the botto 3-06-00 tall chord and a Provide med bearing plat 20. One RT7A I truss to bea	roof live loads have 57-10; Vult=130mpt ph; TCDL=6.0psf; B B; Enclosed; MWFR zone; cantilever left and right exposed;C VFRS for reactions s late grip DOL=1.33 57-10; Pr=20.0 psf Plate DOL=1.15); Pg 3.9 psf (flat roof sno 1.15); Category II; E snow loads have be as been designed fo psf or 2.00 times flat ion-concurrent with has been designed for m chord in all areas by 2-00-00 wide will my other members. chanical connection e capable of withsta JSP connectors recor-	been of (3-sec CDL=6 S (envo and righ- C for m shown; i (roof live=20.0 p w: Lum xp B; F seen con r greate t roof lo other liv for a live where fit betw (by othen nding 3 ommen- LIFT at	considered fo considered fo .0psf; h=25ft; elope) and C- the exposed ; a rembers and Lumber e load: Lumb ber DOL=1.1 ully Exp.; asidered for th er of min roof pad of 13.9 ps ve loads. e load of 20.0 a rectangle veen the botto ers) of truss t 0 lb uplift at ju ded to conne jt(s) 2 and 1'	r C end 5 live sf on 0psf om o ont t.		Charles and a second se		SEA 0363		A MANUTATION

June 16,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	T3SE	Roof Special	1	1	Job Reference (optional)	E14514956

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue Jun 16 09:46:58 ID:h2LLTREMn1HKR2roxpFT0_z5lw9-OOyFDwFfHErxaLVtjaRVfkxSBED45KMwapD1e4z5l2R

Page: 1

TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	20.0 3.9/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.15 1.15 YES IRC20 ⁻	15/TPI2014	TC BC WB Matrix-MSH	0.62 0.38 0.66	Vert(LL) Vert(CT) Horz(CT)	-0.09 -0.18 0.12		27 27 23	>999 >999 n/a	240 180 n/a	MT20 Weight: 284 lb	244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS JOINTS	2x4 SP N 2x4 SP N 2x4 SP N 31-4,31-7 2x4 SP N 34-5,30-9 Structural 4-2-7 oc p Rigid ceili bracing. 1 Row at 1 Brace a 37, 38	o.2 o.3 *Except ,9-31,28-9, o.3 *Except ,35-8,36-6: I wood shea purlins, exc ing directly midpt at Jt(s): 34,	26-11,32-2:2x4 SP N 2x4 SP No.2 athing directly applie cept end verticals. applied or 4-0-8 oc 7-31, 9-31	E No.2 V d or	NOT CHORD	32-33=-139/410, 30-31=0/813, 29- 27-28=0/1150, 26 24-25=-1730/279 22-23=-1536/240 4-32=0/102, 4-34 31-36=-425/164, 31-35=-230/288, 9-37=-79/833, 28 11-28=-371/138, 26-38=-116/493, 14-26=-50/1354, 25-39=-178/1584 16-23=-543/91, 2	31-32=-55 30=0/797, 5-27=0/119 , 23-24=-1 , 21-22=-1 =-404/145 7-31=-255 9-35=-286 -37=-87/9 11-38=-12 13-26=-20 14-25=-10 , 16-39=-1)/1072, , 28-29=0/81' 50, 25-26=0/ 1930/306, 536/240,), 34-36=-45()/110,)/348, 17,)/348, 17,)/0549, 16/125, 192/166, 181/1585, 85, 5-34=-75 26, 24/42	7, 164, 0/177,	5) 6) 7) 8) 9) 10)	Unba desig This load overh All pla Gable * This on th 3-06- chore One truss and 2 consi	alanced gn. truss ha of 12.0 hangs r ates ar e studs s truss e botto -00 tall d and a RT7A L to bea 21. This ider late	snow as bee psf or on-col e 2x4 I space has be m chol by 2-0 hy othe JSP co- ring wa conne eral for	loads have been n designed for g 2.00 times flat ro nourrent with oth MT20 unless oth ad at 2-0-0 oc. een designed for rd in all areas wh 0-00 wide will fit er members. onnectors recom alls due to UPLIF ection is for uplifit ces.	considered for reater of min ro lof load of 13.9 er live loads. erwise indicater a live load of 20 lere a rectangle between the bc mended to com T at jt(s) 33, 19 only and does	r this pof live psf on d. 0.0psf pottom nect 9, 22, not
REACTIONS	(size) Max Horiz Max Uplift Max Grav	19=8-4-0, 23=8-4-0, 33=-217 (l 19=-213 (l 22=-83 (L 40=-213 (l 19=-3 (LC 22=-1 (LC 33=1101 (21=8-4-0, 22=8-4-0 33=0-3-8, 40=8-4-0 LC 13) LC 30), 21=-17 (LC C 30), 33=-6 (LC 15) LC 30) 15), 21=405 (LC 2), 15), 23=1848 (LC 2) LC 2), 40=-3 (LC 15)	,), N), 1 (), 2	IOTES) Unbalance this design) Wind: ASC Vasd=103r	10-37=0/82, 29-3 27-38=0/44, 15-3 17-22=-34/39, 18 d roof live loads ha E 7-10; Vult=130m nph; TCDL=6.0psf		12-38=-74/6 16-24=-417/ 116 considered fo ond gust) .0psf; h=25ft;	2, '94, r	LOA	Interr R802 AD CA	truss is nationa 2.10.2 a ASE(S)	Resid Resid nd refe Star	dential Code sect erenced standard ndard	e with the 2011 ions R502.11.1 J ANSI/TPI 1.	5 I and
FORCES	(lb) - Max	imum Com	pression/Maximum)	Cat. II; Exp Exterior (2)	B; Enclosed; MW zone; cantilever le	FRS (enve eft and righ	elope) and Contemposed ;	-C end			4	23	O. FESO	CV-2	in
TOP CHORD	1-2=0/57, 4-43=-100 5-6=-912/ 8-9=-100 10-44=-13 11-12=-18 13-14=-18 15-16=-91 17-18=-11 19-45=-2 ⁻ 2-33=-104	, 2-3=-1348 01/243, 5-4 /292, 6-7=-{ 1/396, 9-10 368/314, 11 816/353, 12 831/214, 14 0/66, 16-17 74/1584, 19 13/1584, 19 43/256	/227, 3-4=-1230/248 3=-886/263, 885/292, 7-8=-973/3 =-1310/345, -44=-1415/302, 2-13=-1850/303, 1-15=-59/74, =-160/1615, 8-45=-208/1618, 9-20=0/22,	3, 53, <u>3</u> 4	 Vertical felt forces & M DOL=1.60 Truss desi only. For s see Standa or consult c TCLL: ASC DOL=1.15 snow); Pf= Plate DOL= Ct=1.10 	WFRS for reaction plate grip DOL=1. gned for wind load tuds exposed to w ird Industry Gable qualified building d E 7-10; Pr=20.0 p Plate DOL=1.15); 13.9 psf (flat roof s =1.15); Category II	s shown; I 33 Is in the pl ind (norma End Detai esigner as sf (roof liv Pg=20.0 p now: Lum ; Exp B; F	Lumber ane of the tru al to the face Is as applical per ANSI/Tf e load: Lumb isf (ground ber DOL=1.1 ully Exp.;	uss), ble, ⊃I 1. er 5			Contraction		SEA 0363	L 22 ILBER 16,2020	Contraction of the second

ENGINEERING BY TREENCO A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	T3V	Roof Special	2	1	Job Reference (optional)	E14514957

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue Jun 16 09:46:59 ID:vdAKp0ihh0HLiXdO?eThNCz5ly8-saWdQGGH2XzoCV43HHykCxUZQeS6qoZ3oTybBXz5l2Q

Page: 1

	-1-2-8 1-2-8	6-3-0 6-3-0	<u>12-0-12</u> 5-9-12	+ 14-5-8 2-4-12 5x6	<u>18-4-4</u> 3-10-12 6=	<u>22-5</u> 4-1	- <u>12 2</u> -8 2	5-5-2 -11-6	28-9-4 3-4-2	<u>1</u>		<u>36-11-8</u> 8-2-4	38-2-0 1-2-8	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N 1 2 1 18 10x12=	81 5x6 = 3 17 4x5= 6-3-0 6-3-0	2 22 12-2-8 5-11-8	5 2x4 # 4 16 5x8= 18 6	3x 23 15 5x6	5 * 5 = = <u>22-</u> 4-5	24 2x4 II 7 14 5x8= 7-8 2-0 2	5x 13 3 6L 12 5-6-14 2-11-6	6 = 3 x5 = <u>28-7-6</u> 3-0-10	3x5 = 9 9 12 5x6=	12 t	3 25 36-11-8 8-4-0	10 11 3x5=	0-4-2
$\frac{\text{Scale} = 1:73}{\text{Plate Offsets ()}}$	X, Y): [3:0-3-0,0-3-0],	[12:0-4-0,0-2-8], [14	:0-5-4,0-2-8], [16:0-5-8,0-2-4]	, [18:Edge,0-8-2	2]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TP	I2014	I 3 trix-MSH	0.85 0.77 0.60	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.30 0.12	(loc) 12-21 12-21 12	l/defl >814 >337 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 221 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS FORCES TOP CHORD BOT CHORD BOT CHORD	2x4 SP No.2 *Except 2x4 SP No.2 2x4 SP No.3 *Except 16-3,16-4,5-16,15-5, Structural wood shea 4-2-7 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt (size) 10=0-5-4, Max Horiz 18=-220 (I Max Grav 10=0-61 (I) Max Grav 10=0-61 (I) 18=1096 (I) (1b) - Maximum Com Tension 1-2=0/57, 2-3=-1340 4-22=-884/283, 4-5= 5-23=-1357/349, 6-2 6-24=-1750/1350, 10- 10-11=0/22, 2-18=-1 17-18=-139/411, 16- 15-16=0/804, 14-15= 12-13=-1728/260, 10 3-17=0/98, 3-16=-40 5-16=-276/419, 5-15	t* 8-11:2x4 SP No.1 t* 14-6,17-2:2x4 SP No.1 tathing directly applie cept end verticals. applied or 2-11-15 of 4-16 12=0-3-8, 18=0-3-8 LC 13) LC 12), 18=-7 (LC 19 C 40), 12=2024 (LC (LC 2) pression/Maximum y/247, 3-22=-1005/26 -1004/394, 3=-1431/326, 14=-1818/304, -19/134, 25=-160/1471, 037/255 17=-58/1069, =0/1141, 13-14=-64/)-12=-1438/206 18/156, 4-16=-344/17 :=-92/957.	1) Ur 2) Wi 2) Wi 2) Wi 2) Ca 5) Ca 5) 4) 7) Ca 5) 4) 6) 4) 7) Ca 6) * T 6) * T 6, Ca	abalanced roof I s design. Ind: ASCE 7-10 Isd=103mph; Ti tt. II; Exp B; En terior (2) zone; rtical left and ri; ces & MWFRS DL=1.60 plate g CLL: ASCE 7-10 DL=1.15 Plate I ow); Pf=13.9 pi ate DOL=1.15); =1.10 Ibalanced snow sign. Is truss has be do of 12.0 psf o erhangs non-cc This truss has b the bottom cha D6-00 tall by 2-0 ord and any off the RT7A USP of sis connection w is connection w is connection w is connection w is truss is desig ernational Resis 02.10.2 and e	live loads have b; Vult=130mph CDL=6.0psf; BQ CDL=6.0psf; BQ cantilever left a ght exposed;C-1- for reactions sl grip DDL=1.33 D; Pr=20.0 psf (i DOL=1.15); Pg= sf (flat roof snow Category II; Ex- v loads have be en designed for r 2.00 times flat bocurrent with o een designed for or all areas v DO-00 wide will 4 ber members. connectors reco valls due to UPL s for uplift only a gned in accorda idential Code se ferenced standa	(3-sect CDL=6.: CDL=6.: CDL=6.: Content Conten	onsidered for ond gust) Opsf; h=25ft lope) and C t exposed ; embers and umber cload: Lumb f (ground ber DOL=1.' lilly Exp.; sidered for t r of min rood ad of 13.9 p e loads. cload of 20.1 rectangle een the bott led to connet t(s) 18 and cs not consid h the 2015 R502.11.1 a SJ/TPI 1.	or ;-C end ber 15 f live sf on 0psf oom ect 10. der and				OR OFESS SEA 0363	L 22	
NOTES	6-15=-408/206, 6-14 7-14=-257/164, 8-14 8-13=-994/128, 9-13 9-12=-1077/274, 2-1	=-107/478, =-76/1442, =-123/1429, 7=-11/781	LOAD	UAJE(J) 312						111 m		RIC A. G	EER.	in and a second

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

June 16,2020

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	Т4	Common	2	1	Job Reference (optional)	E14514958

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue Jun 16 09:47:00

Page: 1 ID:ExugXL2N?cjqzLSgNOyBE6z5lv6-Kn40dbHvpr5fqffGr_Tzk91sq1qrZILD17i8jzz5l2P -1-2-8 21-1-8 4-11-11 9-11-8 14-11-5 19-11-0 1-2-8 4-11-11 4-11-13 4-11-13 4-11-11 1-2-8 4x5= 4 12 8 Г 4x5 👟 4x5 🧀 3 5 7-9-9 7-6-7 3x5 🛛 3x5 🛛 2 6 0-10-12 \mathbb{N} 10 ₿ ₿ 9 3x5= 3x5= 5x8= 9-11-8 19-11-0 9-11-8 9-11-8

Scale = 1:53.4

Plate Offsets (X, Y): [9:0-4-0,0-3-0]

														_
Loading ICLL (roof) Snow (Pf/Pg) ICDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.36 0.68 0.44	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.20 0.02	(loc) 9 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 117 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS BRACING TOP CHORD 30T CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Except Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 8=0-3-8, 1	t* 10-2,8-6:2x4 SP N athing directly applie sept end verticals. applied or 10-0-0 oc 0=0-3-8	4) lo.3 5) ed or 5 6)	This truss ha load of 12.0 overhangs n * This truss f on the bottor 3-06-00 tall b chord and ar One RT7A L truss to bear This connect lateral forces	is been designed for psf or 2.00 times fla on-concurrent with has been designed in chord in all areas by 2-00-00 wide will yo other members. SP connectors rec- ing walls due to UP ion is for uplift only	or greate at roof lo other liv for a liv where I fit betw commen PLIFT at and do	er of min roof vad of 13.9 p ve loads. e load of 20.1 a rectangle veen the bott ded to conne jt(s) 10 and es not consid	f live sf on Opsf om ect 8. der						
FORCES	Max Horiz 10=167 (L Max Uplift 8=-4 (LC 1 Max Grav 8=866 (LC (Ib) - Maximum Com	.C 12) 14), 10=-4 (LC 13) C 2), 10=866 (LC 2) pression/Maximum	7) L(This truss is International R802.10.2 a DAD CASE(S)	designed in accord Residential Code s nd referenced stand Standard	lance wi sections dard AN	th the 2015 R502.11.1 a ISI/TPI 1.	and						
TOP CHORD BOT CHORD WEBS	1-2=0/57, 2-3=-371/1 4-5=-768/189, 5-6=-2 2-10=-358/140, 6-8= 9-10=-69/754, 8-9=-6 4-9=-78/517, 3-10=-6 5-9=-250/180, 5-8=-6	100, 3-4=-768/189, 371/100, 6-7=0/57, -358/140 64/728 671/149, 3-9=-250/1 671/148	80,									ann		
NOTES) Unbalanc this desig 2) Wind: AS	ed roof live loads have n. CE 7-10; Vult=130mph	been considered for (3-second gust)								4	1 III	ORTH CA	ROLIN	

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	T4A	Common	1	1	Job Reference (optional)	E14514959

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries. Inc. Tue Jun 16 09:47:00 ID:tW8edGPaAXNiyoAFZ_z_vEz5luf-Kn40dbHvpr5fqffGr_Tzk91sq1qqZIDD17i8jzz5l2P

Page: 1

connection is for uplift only and does not consider lateral

International Residential Code sections R502.11.1 and

This truss is designed in accordance with the 2015

R802.10.2 and referenced standard ANSI/TPI 1.

- bracing. **REACTIONS** (size) 7=0-3-8, 9=0-3-8 Max Horiz 9=161 (LC 12) Max Uplift 9=-4 (LC 13) Max Grav 7=782 (LC 2), 9=869 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/57, 2-3=-371/100, 3-4=-772/191, 4-5=-774/192, 5-6=-329/72, 2-9=-358/140, 6-7=-273/79 BOT CHORD 8-9=-121/747, 7-8=-122/742
- WEBS 4-8=-82/523, 3-9=-675/149, 3-8=-250/180, 5-8=-255/184, 5-7=-683/166

NOTES

Scale = 1:53.4

Loading

TCDL

BCLL

BCDL

WEBS

BRACING

LUMBER

BOT CHORD

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

Variation and and the second 11111111111 SEAL 036322 G mm June 16,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

forces.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	Т5	Common	5	1	Job Reference (optional)	E14514960

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue Jun 16 09:47:00 ID:t29clXkIU?KII6pW5ogK5iz5lZa-Kn40dbHvpr5fqffGr_Tzk91rf1mTZKsD17i8jzz5l2P

Page: 1

GRIP

244/190

OTHERS	2x4 SP No.3										
BRACING											
TOP CHORD	Structural wood sheathing directly applied or 4-5-12 oc purlins except end verticals										
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing. Except: 6-0-0 oc bracing: 10-13										
REACTIONS	(size) 7=0-3-8, 15=0-3-8										
	Max Horiz 15=174 (LC 10)										
	Max Grav 7=1088 (LC 26), 15=1166 (LC 25)										
FORCES	(Ib) - Maximum Compression/Maximum										
TOP CHORD	1-2=0/57, 2-3=-1539/0, 3-4=-1521/65,										
	4-5=-1532/67, 5-6=-1543/0, 2-15=-1163/51, 6-7=-1084/0										
BOT CHORD	14-15=-182/251, 14-16=0/903, 16-17=0/903, 12-17=0/903, 9-12=0/903, 9-18=0/903, 18-19=0/903, 8-19=0/903, 7-8=-88/148, 13-20=-75/0, 20-21=-75/0, 11-21=-75/0										

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber

	DOL=1.15 Plate DOL=1.15); Pg=20.0 pst (ground
	snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15
	Plate DOL=1.15); Category II; Exp B; Fully Exp.;
	Ct=1.10
4)	This truss has been designed for greater of min roof live

	load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on
	overhangs non-concurrent with other live loads.
5)	200 0lb AC unit load placed on the bottom chord

10-11-8 from left end, supported at two points, 5-0-0 apart.

* This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

11-22=-75/0, 22-23=-75/0, 10-23=-75/0 WEBS 4-10=0/843, 8-10=-33/700, 5-8=-344/228, 13-14=-29/687, 4-13=0/828, 3-14=-330/220, 2-14=0/1115, 6-8=0/1151, 9-11=-42/15

NOTES

Scale = 1:64.9

Loading

TCDL

BCLL

BCDL

WEBS

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

1) Unbalanced roof live loads have been considered for this design.

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

3)

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	T5GE	Common Supported Gable	1	1	Job Reference (optional)	E14514961

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue Jun 16 09:47:01 ID:3RrCd63JucsKfQyvkgAvDcz5lZ8-ozeOrxIXa9DVRpESOi_CHMZ4dRKnloAMGnRiFPz5l2O

818 Soundside Road Edenton, NC 27932

Page: 1

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	Т6	Нір	1	1	Job Reference (optional)	E14514962

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue Jun 16 09:47:01 ID:cGCpLGX9fu4mdYdndLxQO1z5ldi-ozeOrxIXa9DVRpESOi_CHMZ?jRB3lhcMGnRiFPz5l2O

Plate Offsets (X, Y): [4:0-4-0,0-1-9], [5:0-4-0,0-1-9], [10:0-3-4,0-3-0]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.48	DEFL Vert(LL)	in -0.04	(loc) 9-10	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190		
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.61	Vert(CT)	-0.26	10-11	>999	180	-			
TCDL	10.0	Rep Stress Incr	YES		WB	0.69	Horz(CT)	0.04	8	n/a	n/a				
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MSH										
BCDL	10.0											Weight: 142 lb	FT = 20%		
LUMBER			2)	Wind: ASCE	7-10; Vult=130mpl	n (3-sec	ond gust)								
TOP CHORD	2x4 SP No.2			Vasd=103mp	oh; TCDL=6.0psf; E	SCDL=6	.0psf; h=25ft	;							
BOT CHORD	2x4 SP No.2			Cat. II; Exp E	3; Enclosed; MVVFF	S (env	elope) and C-	-C ond							
WEBS	2x4 SP No.2 *Except	t^ 11-2,8-7:2x4 SP f	NO.3	vertical left a	vertical left and right exposed;C-C for members and orces & MWFRS for reactions shown; Lumber										
BRACING	o			forces & MW											
TOP CHORD	5 1 1 oc purling	atning directly applie	nd or	DOL=1.60 pl	ate grip DOL=1.33	,									
	2-0-0 oc purlins, exc	-0 max). $4-5$	3)	TCLL: ASCE	7-10; Pr=20.0 psf	(roof liv	e load: Lumb	er							
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	• ·	DOL=1.15 PI	DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground										
	bracing.			snow); Pf=18	f=18.9 psf (flat roof snow: Lumber DOL=1.15										
REACTIONS	(size) 8=0-3-8, 1	1=0-3-8		Plate DOL=1	.15); Category II; E	xp B; F	ully Exp.;								
	Max Horiz 11=160 (L	C 12)	4)	Ct=1.10, Lu=	:50-0-0 anour loodo horro h		aidarad for th	aia							
	Max Uplift 11=-1 (LC	15)	4)	 Unbalanced snow loads have been considered for this design 											
	Max Grav 8=1128 (L	C 38), 11=1212 (LC	38) ₅₎	This truss ha	s been designed fo	or areat	er of min roof	live							
FORCES	(lb) - Maximum Com	pression/Maximum	0)	load of 12.0	ad of 12.0 psf or 2.00 times flat roof load of 13.9 psf on										
	Tension			overhangs no	on-concurrent with	other liv	/e loads.								
TOP CHORD	1-12=0/42, 2-12=0/5	7, 2-3=-487/88,	6)	Provide adec	uate drainage to p	revent	vater ponding	g.							
	3-13=-1139/191, 13-	14=-1000/206,	7)	* This truss h	as been designed	for a liv	e load of 20.0	Opsf							
	4-14=-942/221, 4-5=	-836/227,		on the botton	n chord in all areas	where	a rectangle								
	6-16-11/7/102 6-7	0=-1000/200, /38/61		3-06-00 tall b	by 2-00-00 wide will	fit betv	een the botto	om					11. S		
	2-11=-490/134 7-8=	-372/72	0)		SP connectors roc	ommon	dod to conno	ot				1111100			
BOT CHORD	10-11=-143/1088. 9-	10=-2/836.	0)	truss to bear	ing walls due to LIP	I IFT at	it(s) 11 This					TH UA	ROUL		
	8-9=-144/1100	,		connection is	for uplift only and	does no	ot consider la	, teral			1	A	i Anil		
WEBS	4-10=-29/313, 4-9=-1	110/110, 5-9=-33/31	9,	forces.							20	100	Nisin		
	3-11=-998/190, 3-10	=-316/176,	9)	This truss is	designed in accord	ance w	ith the 2015					:0	1.1		
	6-9=-326/180, 6-8=-1	1055/206		International	Residential Code s	sections	R502.11.1 a	ind		-					
NOTES				R802.10.2 ar	nd referenced stand	dard AN	ISI/TPI 1.			=	:	SEA	L : =		
1) Unbalance	ed roof live loads have	been considered for	r 10) Graphical pu	rlin representation	does no	ot depict the s	size		Ξ		0363	22 E		
this desig	า.			bottom chore	alion of the punin a	ong the	top and/or					. 0000			
					Standard						-		1 3		
				DAD CASE(S)	Sianuaru						- 1	N. ENO	- FRI'L S		
											1	S, GIN	EF AN		
											1	10	akin		

GIL

818 Soundside Road Edenton, NC 27932

Page: 1

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	Т7	Нір	1	1	Job Reference (optional)	E14514963

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue Jun 16 09:47:02 ID:SQU3Xp4OnKACxlK?R?KbLxz5li9-G9Cm2HJ9LSLM3zoeyPVRqa64JrZB1B0VURBFnrz5l2N

Page: 1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.87 0.43 0.49	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.11 0.03	(loc) 9-11 11-12 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 131 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Except SP No.3 Structural wood shea 5-3-4 oc purlins, exc 2-0-0 oc purlins (3-2- Rigid ceiling directly si bracing, 1 Row at midpt (size) 8=0-3-8, 1 Max Horiz 12=133 (LI	* 12-3,3-11,6-9,6-8:2 thing directly applied tept end verticals, and 2 max.): 4-5. applied or 10-0-0 oc 4-9 2=0-3-8 C 14) 2 applied of 4.0 (4.0 a)	2) x4 (or 3) 4) 20) 5)	Wind: ASCE Vasd=103mp Cat. II; Exp B Exterior (2) z vertical left ar forces & MW DOL=1.60 pli TCLL: ASCE DOL=1.15 Pl snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. This truss ha	7-10; Vult=130mph h; TCDL=6.0psf; BG ; Enclosed; MWFR one; cantilever left a nd right exposed;C FRS for reactions sl ate grip DOL=1.33 7-10; Pr=20.0 psf (ate DOL=1.15); Pg= .9 psf (flat roof snov .15); Category II; Ex 50-0-0 snow loads have be s been designed for	(3-sec CDL=6 S (enve and rigi C for n hown; roof liv =20.0 p v: Lum cp B; F en cor	ond gust) .0psf; h=25ft; elope) and C- ht exposed ; e hembers and Lumber e load: Lumber sf (ground ber DOL=1.1: ully Exp.; isidered for th er of min roof	C end 5 iis live					
FORCES	(lb) - Maximum Comp	pression/Maximum	30)	load of 12.0 p overhangs no	ost or 2.00 times flat on-concurrent with c	ther liv	oad of 13.9 ps /e loads.	ston					
TOP CHORD	1-2=0/68, 2-3=-299/8 4-13=-792/231, 13-14 5-14=-792/231, 5-6=- 6-15=-224/62, 7-15=-	 6) Provide adequate drainage to prevent water ponding. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 											
BOT CHORD	11-12=-150/937, 10-1 9-1056/788 8-91	11=-56/788,	8)	I his truss is o International	designed in accorda Residential Code se	ections	th the 2015 R502.11.1 a	nd			- 51	HTH CA	ROLIN
WEBS	4-11=0/266, 4-9=-82/ 3-12=-1007/192, 3-1 6-9=-220/125, 6-8=-9	/87, 5-9=0/266, 1=-200/120, 999/202	9)	Graphical put or the orienta bottom chord	lin representation d tion of the purlin alc	oes no ong the	top and/or	ize		4	in	2 P. P. P.	A A A A A A A A A A A A A A A A A A A
NOTES			LO	AD CASE(S)	Standard					Ξ	- 1	SEA	L i i
 Unbalance 	ed roof live loads have l	been considered for								-		0262	nn · -

this design.

manut E 1111111 G June 16,2020

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	Т8	Нір	1	1	Job Reference (optional)	E14514964

5-10-4

Scale = 1:43.9

Plate Offsets ((X, Y): [2:0-3-8,Edge],	[3:0-4-0,0-1-9], [5:0-	-4-0,0-1-9]	, [6:0-3-8,Edge	9]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.83 0.63 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.27 0.02	(loc) 8-10 8-10 7	l/defl >999 >972 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 121 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Except SP No.2 Structural wood shea 3-2-2 oc purlins, exc 2-0-0 oc purlins (5-6- Rigid ceiling directly bracing. (size) 7=0-3-8, 1 Max Horiz 11=107 (L Max Grav 7=880 (LC (lb) - Maximum Comp Tension 1-2=0/68, 2-12=-1166 3-13=-930/219, 4-13: 4-14=-936/220, 5-14 5-15=-1119/201, 6-11 2-11=-972/232, 6-7= 10-11=-180/398, 9-11	* 10-2,8-6,4-10,4-8: athing directly applie tept end verticals, at 1 max.): 3-5. applied or 10-0-0 oc 1=0-3-8 C 12) : 38), 11=1009 (LC 3 pression/Maximum 2/170, 3-12=-1114/2 =-932/219, =-932/219, =-933/221, 5=-1163/168, =842/171 0=-172/1230, =-108/282	3) 22x4 4) 2d or 5) 5 6) 7) 38) 8) 204, 9) LC	TCLL: ASCE DOL=1.15 P snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. This truss ha load of 12.0 overhangs n Provide adee * This truss fa on the bottor 3-06-00 tall t chord and ar This truss is International R802.10.2 a Graphical pu or the orient bottom chore DAD CASE(S)	7-10; Pr=20.0 psf late DOL=1.15); Pt 3.9 psf (flat roof sm 1.15); Category II; I 50-0-0 snow loads have b as been designed fi psf or 2.00 times fl on-concurrent with quate drainage to p has been designed in chord in all areas by 2-00-00 wide will by other members. designed in accorre Residential Code ind referenced stan irlin representation ation of the purlin a J. Standard	(roof liv, g=20.0 p ow: Lum Exp B; F opeen corr or greate at roof lo other liv orevent w for a liv, s where Il fit betw dance wi sections dard AN does no along the	e load: Lumb sf (ground ber DOL=1.1 ully Exp.; sidered for the or of min roof aad of 13.9 p re loads. vater pondin, e load of 20.1 a rectangle reen the both th the 2015 R502.11.1 a SI/TPI 1. of depict the s top and/or	ber 15 his f live sf on g. 0psf om and size					NRO VIII	
WEBS	3-10=0/353, 5-8=0/3- 6-8=0/828, 4-10=-402	46, 2-10=-4/803, 2/111, 4-8=-397/108	3								i	OFFESS	De 1	
NOTES											n			
 Unbalance this design Wind: ASC Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & N DOL=1.60 	ed roof live loads have l n. CE 7-10; Vult=130mph mph; TCDL=6.0psf; BC p B; Enclosed; MWFRS 2) zone; cantilever left a ft and right exposed;C- /WFRS for reactions sh 0 plate grip DOL=1.33	been considered for (3-second gust) DDL=6.0psf; h=25ft; 6 (envelope) and C- ind right exposed ; e C for members and hown; Lumber	r C end							1111111111		SEA 0363	L 22 EEP. K	

10-2-8

G minim June 16,2020 5x8 =

Į.

5-10-4

6

2x4 🛛

7 Ø

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	Т9	Нір	1	1	Job Reference (optional)	E14514965

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue Jun 16 09:47:03 ID:KaZ0ylvvsDq5AhrAhQZcMGz5ljh-kMl8GdJn6mTDh6NrW70gMnfGtFsHmfwfj5woKIz5l2M

|-1-2-8 | 1-2-8 4-0-0 10-11-8 17-11-0 21-11-0 4-0-0 6-11-8 6-11-8 4-0-0 8 Г 4x8 = 3x8 = 4x8 = 0-1-13 3-6-12 0-1-13 3 13 4 14 5 \bowtie \bowtie \bowtie \bigtriangledown \bowtie \bowtie 3-9-14 3-5-0 3-5-0 1 3x6 🍫 3x6 💊 2 6 0-10-12 . A + д, 12 7 T I Ā \mathbb{R} 11 10 9 8 2x4 II 2x4 II 4x8 = 3x5 = 4x8 = 2x4 II 3-10-4 10-11-8 18-0-12 21-11-0 3-10-4 7-1-4 7-1-4 3-10-4

Scale = 1:43.8

Plate Offsets (X, Y): [3:0-4-0,0-1-9], [5:0-4-0,0-1-9]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MSH	0.75 0.63 0.45	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.17 0.05	(loc) 9 8-9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 *Except 2x4 SP No.2 2x4 SP No.3 *Except Structural wood shea 4-10-4 oc purlins, et 2-0-0 oc purlins (4-9 Rigid ceiling directly bracing, Except:	* 3-5:2x4 SP No.1 * 11-4,8-4:2x4 SP N athing directly applie ccept end verticals, a -8 max.): 3-5. applied or 10-0-0 oc	3) lo.2 d or 4) and 5) ;	TCLL: ASCE DOL=1.15 PI snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. This truss ha load of 12.0 p overhangs no Provide adec	7-10; Pr=20.0 psf ate DOL=1.15); Pg .9 psf (flat roof sno. .15); Category II; E 50-0-0 snow loads have b s been designed fo ssf or 2.00 times fla on-concurrent with uate drainage to p	(roof liv =20.0 p w: Lum xp B; F een cor r greate t roof lo other liv revent v	e load: Lumb sf (ground ber DOL=1.1 ully Exp.; sidered for th er of min roof nad of 13.9 p: re loads. water ponding	er 5 nis flive sf on				weight. 117 ib	11-2070
WEBS REACTIONS	6-0-0 oc bracing: 11- 1 Row at midpt (size) 7=0-3-8, 1 Max Horiz 12=81 (LC Max Grav 7=951 (LC	·12. 4-11, 4-8 2=0-3-8 ; 14) ; 37), 12=991 (LC 37	7) 7)	* This truss h on the botton 3-06-00 tall b chord and an	as been designed in chord in all areas y 2-00-00 wide will y other members.	for a liv where fit betw	e load of 20.0 a rectangle veen the botto	om					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	/ 8)	International	Residential Code s	ections	R502.11.1 a	ind					
TOP CHORD	1-2=0/68, 2-3=-1319 4-13=-1100/217, 4-1 5-14=-1102/219, 5-6 2-12=-962/232, 6-7=	/218, 3-13=-1097/21 4=-1106/219, =-1324/217, -921/170	7, 9)	Graphical pu or the orienta bottom chord	tion of the purlin al	does no ong the	t depict the s top and/or	size					un.
BOT CHORD	11-12=-77/152, 10-1 9-10=-288/2079, 8-9	1=-288/2079, =-288/2079, 7-8=-45	5/131	IAD CASE(S)	Standard							"TH CA	ROY
WEBS	3-11=0/376, 4-11=-1 4-8=-1070/162, 5-8= 6-8=-97/1063	076/168, 4-9=0/146, 0/375, 2-11=-88/107	, 76,							4	AN S	OFFESS	
NOTES 1) Unbalance this design 2) Wind: ASG Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & N DOL=1.60	ed roof live loads have n. CE 7-10; Vult=130mph imph; TCDL=6.0psf; BC p B; Enclosed; MWFRS 2) zone; cantilever left a ft and right exposed;C-1 /WFRS for reactions sh 0 plate grip DOL=1.33	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-0 ind right exposed ; e C for members and hown; Lumber	C							THUNKY,		SEA 0363	EER.KI

June 16,2020

Page: 1

RE USE. ot ali acing Component B18 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	T10	Half Hip Girder	1	1	Job Reference (optional)	E14514966

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue Jun 16 09:47:04 ID:4GTMLvmSZFcg0AJzhDVU?3z5lsu-kMl8GdJn6mTDh6NrW70gMnfD4FphmbBfj5woKIz5l2M

Page: 1

Scale = 1:44.7

Plate Offsets (X, Y): [3:0-3-4,0-2-0], [7:Edge,0-1-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.93	Vert(LL)	-0.24	9-11	>999	240	MT20	244/190	
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.80	Vert(CT)	-0.42	8-9	>622	180			
TCDL	10.0	Rep Stress Incr	NO		WB	0.68	Horz(CT)	0.09	8	n/a	n/a			
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MSH									
BCDL	10.0											Weight: 107 lb	FT = 20%	
LUMBER			2)	Wind: ASCE	7-10; Vult=130mph	n (3-sec	ond gust)		13) In th	ne LOAD	CAS	E(S) section, loa	ds applied to th	e face
TOP CHORD	2x4 SP No.2		,	Vasd=103mp	h; TCDL=6.0psf; B	CDL=6	.0psf; h=25ft;		of th	ne truss a	are no	ted as front (F) o	or back (B).	
BOT CHORD	2x4 SP No.1			Cat. II; Exp B	; Enclosed; MWFR	S (env	elope); cantile	ever		ASE(S)	Sta	ndard	. ,	
WEBS	2x4 SP No.3 *Except	t* 4-11,6-8:2x4 SP N	lo.2	left and right	exposed ; end verti	ical left	and right		1) De	ad + Sn	ow (ba	alanced): Lumbe	r Increase=1.15	. Plate
BRACING	·			exposed; Lur	nber DOL=1.60 pla	te grip	DOL=1.33		Inc	rease=1	.15	,		,
TOP CHORD	Structural wood shea	athing directly applie	ed or ³⁾	TCLL: ASCE	7-10; Pr=20.0 psf ((roof liv	e load: Lumb	er	Un	iform Lo	ads (II	b/ft)		
	4-7-6 oc purlins, exc	cept end verticals, ar	nd	DOL=1.15 PI	ate DOL=1.15); Pg	=20.0 p	sf (ground	_		Vert: 1-2	=-48,	2-3=-48, 3-7=-5	3, 8-12=-20	
	2-0-0 oc purlins (2-5-	10 max.): 3-7.		snow); Pf=18	.9 psf (flat roof sno	w: Lum	ber DOL=1.1	5	Co	ncentrat	ed Lo	ads (lb)		
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc		Plate DOL=1	15); Category II; E	хр В; Е	ully Exp.;			Vert: 10	=2 (B)	, 11=3 (B), 9=2 (B), 21=2 (B), 22	2=2
	bracing.		4)	Ct=1.10, Lu=	50-0-0					(B), 23=	2 (B),	24=2 (B), 25=2 (B), 26=2 (B), 27	7=2 (B)
WEBS	1 Row at midpt	4-11, 6-8	4)	Unbalanced s	snow loads have be	en cor	isidered for th	115						
REACTIONS	(size) 8=0-3-8, 1	2=0-3-8	5)	This trues ha	s been designed fo	r aroate	ar of min roof	livo						
	Max Horiz 12=70 (LC	8)	3)	load of 12 0 r	s been designed to sf or 2 00 times fla	t roof lo	ad of 13.9 ps	af on						
	Max Uplift 8=-56 (LC	8), 12=-43 (LC 8)		overhands no	on-concurrent with a	other liv	ve loads							
	Max Grav 8=1173 (L	C 30), 12=1109 (LC	; 30) 6)	Provide adeo	uate drainage to pr	revent v	vater ponding	1						
FORCES	(lb) - Maximum Com	pression/Maximum	7)	* This truss h	as been designed f	for a liv	e load of 20.0) Dosf						
	Tension		.,	on the botton	chord in all areas	where	a rectangle							
TOP CHORD	1-2=0/68, 2-3=-1338/	/35, 3-13=-1161/39,		3-06-00 tall b	y 2-00-00 wide will	fit betw	een the botto	om						
	13-14=-1161/39, 14-	15=-1161/39,		chord and an	y other members.									
	4-15=-1161/39, 4-16	=-3208/88,	8)	One RT7A U	SP connectors reco	ommen	ded to conne	ct						
	5-16=-3208/88, 5-17	=-3208/88,		truss to beari	ng walls due to UP	LIFT at	jt(s) 8 and 12	2.				mm	11111	
	6-17=-3208/88, 6-18	=-136/9, 18-19=-136	6/9,	This connecti	on is for uplift only	and do	es not consid	ler				WAH CA	ROUL	
	19-20=-136/9, 7-20=	-136/9, 7-8=-271/48	,	lateral forces							N	R	ALIL	
	2-12=-1151/13	000/0000	9)	This truss is a	designed in accorda	ance w	th the 2015				x.	O' FES	1012V	3
BOICHORD	11-12=-95/28, 11-21:	=-223/3230,		International	Residential Code s		R502.11.1 a	nd			15			4
	21-22=-223/3230, 22 10-23=-223/3230, 0-1	10-223/3230	10	Craphical pur	lin representation		JOI/IFII.	izo				.2	K :	13
	9-24=-203/2867 24-	25=-203/2867	10) Graphical pu	tion of the purlin of	and the	top and/or	ize		-		CE/	a 1.	
	25-26=-203/2867 26	5-27=-203/2867		bottom chord	uon or the putilitian	ung ine	top anu/or			=		SEF	۱L :	=
	8-27=-203/2867	2. 200/2001,	11) "NAILED" ind	icates 3-10d (0 148	R"v3") c	r 3-12d			=	:	0363	22 :	
WEBS	3-11=0/389. 2-11=-2	8/1249. 4-9=-25/180).	(0 148"x3 25) toe-nails per NDS	illiun 2				-				-
	4-11=-2157/184, 6-9	=0/418, 6-8=-2856/2	207 12) Hanger(s) or	other connection d	evice(s) shall be					Sec. 1		3
NOTES				provided suff	cient to support co	ncentra	ted load(s) 8	7 lb			21	S. SNOW	-ER. A	5
1) Unbalance	ed roof live loads have l	been considered for		down and 58	lb up at 2-0-0 on t	op choi	d, and 20 lb	-			1	SGIN	Fr. A.	2
this design	n.			down and 24	lb up at 2-0-0 on b	ottom	chord. The				1	CA .	II BEIN	
				design/select	ion of such connec	tion de	vice(s) is the					11, 4. (11-111	
				responsibility	of others.								TUN	

June 16,2020

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	V1	Valley	1	1	Job Reference (optional)	E14514967

8-0-2

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.33 E May 6 2020 Print: 8.330 E May 6 2020 MiTek Industries, Inc. Tue Jun 16 11:22:37 ID:nwYitWh3D5kgg5HdnFtrCaz5lt?-Y4tqom1pl6EcAsfvDHaoQI14PTJRmsxmR6sjEcz5kX0

15-7-1

7-6-15

Page: 1

xo 15-10-2 0-3-1

Scale = 1:40.6

Loa TCI Snc TCI BCI BCI	ading _L (roof) ow (Pf/Pg) DL LL DL	(ps 20. 13.9/20. 10. 0. 10.	f) 0 0 0 0* 0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20)15/TPI2014	CSI TC BC WB Matrix-MSH	0.24 0.12 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 64 lb	GRIP 244/190 FT = 20%
LUI TOI BO' OTI BR TOI BO' RE FOI BO' WE NO' 1) 2)	VIBER CHORD CHORD CHORD HERS ACING CHORD T CHORD T CHORD ACTIONS CHORD T CHORD BS TES Unbalance this design Wind: ASG Vasd=102 Cat. II; Ex Exterior (2 vertical left	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood 10-0-0 oc purlins Rigid ceiling dire bracing. (size) 1=16- 7=16- Max Horiz 1=-10 Max Uplift 1=-2 ((LC 1: Max Grav 1=99) (LC 2: 24) (lb) - Maximum C Tension 1-2=-127/173, 2- 4-5=-119/143 1-8=-116/120, 7- 5-6=-116/120, 7- 5-7=-100, 7- 5-7	shea ctly 0-4, 0 3 (LC 2 3) (LC 2) (LC 2) (LC 2) (LC 2) (athing directly applied applied or 6-0-0 oc 5=16-0-4, 6=16-0-4, 8=16-0-4 C 11) 9), 6=-68 (LC 14), 8= 25), 5=99 (LC 29), 6= 350 (LC 2), 8=388 (pression/Maximum 32/131, 3-4=-32/123, 116/82, 6-7=-116/82, 0/168, 4-6=-279/168 been considered for (3-second gust) CDL=6.0psf; h=25ft; 3 (envelope) and C-C ind right exposed ; en C for members and	d or -69 =386 (LC	 4) TCLL: ASCE DOL=1.15 P Snow); Pf=1: Plate DOL=1 Ct=1.10 5) Gable requir 6) Gable studs 7) * This truss I on the bottor 3-06-00 tall I chord and ar 8) Provide mec bearing plate 1. 9) One RT4 US truss to bear This connecilateral forces 10) Beveled plat surface with LOAD CASE(S) 	7-10; Pr=20.0 psf late DOL=1.15); P 3.9 psf (flat roof sn .15); Category II; I es continuous bott spaced at 4-0-0 or has been designed n chord in all area: by 2-00-00 wide wi hy other members. hanical connectior e capable of withst CP connectors reco ing walls due to UI ion is for uplift only capable of at joint Standard	f (roof liv (g=20.0 p low: Lum Exp B; F tom chor c. d for a liv s where ill fit betw n (by oth randing 2 pommend PLIFT at y and do I to provit t(s) 5.	L e load: Lumb sf (ground ber DOL=1.1 ully Exp.; d bearing. e load of 20.0 a rectangle veen the botto ers) of truss t l b uplift at joi ed to connect jt(s) 8 and 6. es not consid de full bearing	er 5 Dpsf om o int t ler g				NUMERAL OF ID	ROLUNI
3)	DOL=1.60 Truss des only. For see Stand or consult	D plate grip DOL=1. igned for wind load studs exposed to v dard Industry Gable qualified building o	33 s in vind Enc lesig	the plane of the trus: (normal to the face), d Details as applicabl gner as per ANSI/TPI	s le, l 1.									A. C.	EER. HILLING

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	V2	Valley	1	1	Job Reference (optional)	E14514968

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue Jun 16 09:47:05 ID:OBRGXdtfKbZOxNhna?X8Hrz5ljj-hktuhJL2eNjxwQXDdY38RCkIE2gDEfWyBPPvOAz5l2K

11-7-1

Page: 1

12-0-4

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	V3	Valley	1	1	Job Reference (optional)	E14514969

4-0-2

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue Jun 16 09:47:05 ID:wpTA1jU0Yztlx3WOVVRsJOz5lix-hktuhJL2eNjxwQXDdY38RCkkN2gAEfnyBPPvOAz5l2K

3-6-15 0-5-3

7-7-1

8-0-4

8-0-4

Scale = 1:27.6

Loading	(psf	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.24	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.09	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.04	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0	Code	IRC2015	5/TPI2014	Matrix-P								
BCDL	10.0		_									Weight: 28 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood s 6-0-0 oc purlins. Rigid ceiling direct bracing. (size) 1=8-0- Max Horiz 1=-47 Max Uplift 1=-13	neathing directly applie tly applied or 10-0-0 or , 3=8-0-4, 4=8-0-4 LC 9) _C 13), 3=-17 (LC 14)	5) 6) 7) ed or 8) c 9)	Gable require Gable studs a * This truss h on the bottom 3-06-00 tall b chord and an One RT16A L truss to bear This connecti lateral forces This truss is a International	es continuous botto spaced at 4-0-0 oc. as been designed f n chord in all areas y 2-00-00 wide will y other members. JSP connectors rec ng walls due to UP on is for uplift only designed in accorda Residential Code s d reformanced change	m chor for a live where fit betw comme LIFT at and do ance wi ections	d bearing. e load of 20.0 a rectangle een the botto nded to conni- jt(s) 1 and 3. es not consid th the 2015 R502.11.1 a	0psf om ect ler nd					
	Max Grav 1=154 (LC 2)	LC 2), 3=154 (LC 2), 4	⁴⁼²⁶² LO	AD CASE(S)	Standard	ard AN	51/TPI 1.						
FORCES	(lb) - Maximum C Tension	mpression/Maximum											
TOP CHORD BOT CHORD WEBS	1-2=-88/44, 2-3=- 1-4=-8/37, 3-4=-8 2-4=-173/64	34/44 '37											
NOTES													
1) Unbalance	ed roof live loads ha	ve been considered for	r										
, this desig	n.											MILLI	1111
2) Wind: ASG Vasd=103 Cat. II; Ex Exterior (2 vertical let forces & M DOL=1.60	CE 7-10; Vult=130m 3mph; TCDL=6.0psf p B; Enclosed; MWU 2) zone; cantilever le ft and right exposed MWFRS for reaction 0 plate grip DOL=1.3	bh (3-second gust) BCDL=6.0psf; h=25ft; RS (envelope) and C- ft and right exposed ; e C-C for members and shown; Lumber 3	-C end							4	ren la	OR FESS	ROUN
 Truss des only. For see Stand or consult TCLL: AS DOL=1.15 snow); Pfs Plate DOL Ct=1.10 	signed for wind load studs exposed to w lard Industry Gable qualified building d CE 7-10; Pr=20.0 p 5 Plate DOL=1.15); =13.9 psf (flat roof s =1.15); Category II	s in the plane of the trund (normal to the face) End Details as applicat signer as per ANSI/TF f (roof live load: Lumb /g=20.0 psf (ground low: Lumber DOL=1.1 Exp B; Fully Exp.;	iss), ble, Pl 1. er 5							HILLAR.	K. K. K.		EER. K

June 16,2020

Job	Truss	Truss Type	Qty	Ply	Johnson Job-Roof	
20060022-A	V4	Valley	1	1	Job Reference (optional)	E14514970

0-0-4

1-4-5

2-0-2

2-0-2

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue Jun 16 09:47:05 ID:_EwhJT4I002LJbmptHpMojz5liA-hktuhJL2eNjxwQXDdY38RCknV2gGEfNyBPPvOAz5l2K

3-7-1

1-6-15

4-0-4

Page: 1

3x5 = 2 8 T

4-0-4

Scale = 1:22.6

(X X), [2:0.2.9 Edg

Plate Offsets ((X, Y): [2:0-2-8,Edge]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-P	0.04 0.08 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%	
Lumber M (1) This trues has been beside used of 200 galaxies (1) This trues has been beside used of 200 galaxies (1) This trues has been beside used of 200 galaxies (1) This trues has been beside used of 200 galaxies (1) This trues has been beside (1) the 2015 of 100 Galaxies (1) the 100 Galaxies (
WARI	NING - Verify design parame	ters and READ NOTES O	N THIS AND INCLUDED MITE	(REFERENCE PAGE M	111-7473 rev	10/03/2015 BEF	ORE USE.				ENGINEEI		

