

Trenco

818 Soundside Rd Edenton, NC 27932

Re: J0920-4359

Precision/Lot 65 Summerlin/Harnett

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E15039388 thru E15039405

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

October 30,2020

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job Truss Truss Type Qty Ply Precision/Lot 65 Summerlin/Harnett E15039388 J0920-4359 A1-GE **GABLE** Job Reference (optional) Fayetteville, NC - 28314, 8.330 s Oct 7 2020 MiTek Industries, Inc. Fri Oct 30 08:56:39 2020 Page 1 Comtech, Inc. ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-YujEdlWue4hK5X9w6SoXKRGkoczW6BlG_F7o2pyOGrc 34-6-0

4x6 =

Scale = 1:73.2

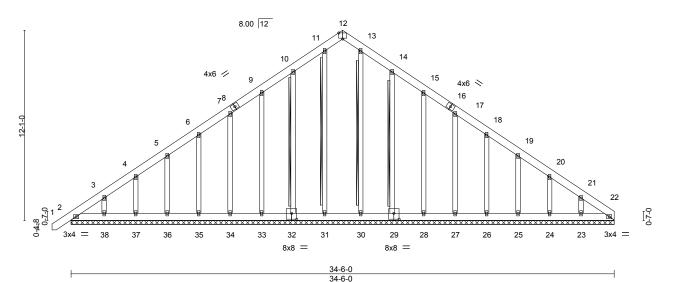


Plate Offsets (X,Y)--[12:0-3-0,Edge], [29:0-4-0,0-4-8], [32:0-4-0,0-4-8] 2-0-0 LOADING (psf) SPACING-DEFL. in (loc) I/defl L/d **PLATES GRIP TCLL** 20.0 Plate Grip DOL 1.15 TC 0.08 Vert(LL) -0.00 n/r 120 MT20 244/190 **TCDL** 10.0 Lumber DOL 1.15 ВС 0.03 Vert(CT) -0.00 120 n/r **BCLL** 0.0 Rep Stress Incr YES WB 0.17 0.01 22 Horz(CT) n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-S Weight: 319 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No 1 **OTHERS** 2x4 SP No 2

BRACING-

TOP CHORD **BOT CHORD** WFBS

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

T-Brace: 2x4 SPF No.2 - 11-31, 10-32, 13-30, 14-29 Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

ORTH

REACTIONS. All bearings 34-6-0

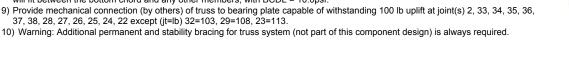
(lb) - Max Horz 2=360(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 2, 33, 34, 35, 36, 37, 38, 28, 27, 26, 25, 24, 22 except

32=-103(LC 12), 29=-108(LC 13), 23=-113(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 31, 32, 33, 34, 35, 36, 37, 38, 30, 29, 28, 27, 26, 25,

24, 23, 22

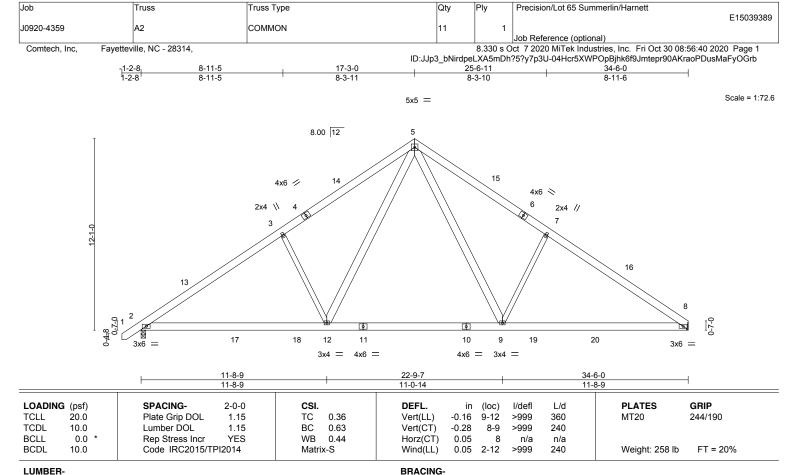

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown

TOP CHORD 2-3=-402/260, 3-4=-319/228, 10-11=-233/259, 20-21=-251/154, 21-22=-340/228 **BOT CHORD** 2-38=-199/304, 37-38=-199/304, 36-37=-199/304, 35-36=-199/304, 34-35=-199/304, 33-34=-199/304, 32-33=-199/304, 31-32=-197/303, 30-31=-197/303, 29-30=-197/303, 28-29=-199/304, 27-28=-199/304, 26-27=-199/304, 25-26=-199/304, 24-25=-199/304,

23-24=-199/304, 22-23=-199/304

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 33, 34, 35, 36, 37, 38, 28, 27, 26, 25, 24, 22 except (jt=lb) 32=103, 29=108, 23=113.


minim October 30,2020

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

WARNING - Verify design parameters and HEAD NOTES ON THIS AND INCLUDE MITER REFERENCE FACE MITERS AND INCLUDE MITER REFERENCE FACE MITERS AND INCLUDE MITERS REPORTED FOR THE MITERS AND INCLUDE MITERS AN fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP/1 Qu Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1

2x6 SP No.1 *Except* **WEBS** 7-9,3-12: 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 8=Mechanical

Max Horz 2=288(LC 9)

Max Uplift 2=-90(LC 12), 8=-73(LC 13) Max Grav 2=1668(LC 19), 8=1597(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

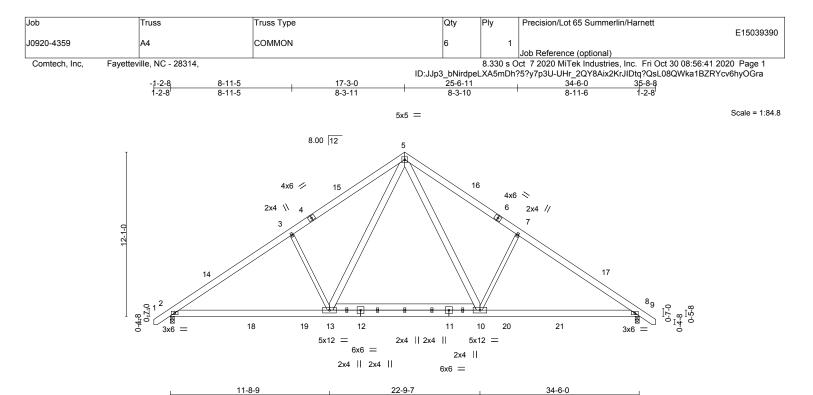
TOP CHORD 2-3=-2304/409, 3-5=-2159/512, 5-7=-2173/527, 7-8=-2317/421

BOT CHORD 2-12=-204/2020, 9-12=0/1306, 8-9=-209/1836

WFBS 5-9=-191/1147, 7-9=-600/347, 5-12=-188/1124, 3-12=-588/339

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-15 to 3-3-14, Interior(1) 3-3-14 to 17-3-0, Exterior(2) 17-3-0 to 21-7-13, Interior(1) 21-7-13 to 34-5-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.



Structural wood sheathing directly applied or 4-8-14 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Edenton, NC 27932

LOADING	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.34	Vert(LL) -0.16 10-13 >999 360	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.62	Vert(CT) -0.27 2-13 >999 240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.43	Horz(CT) 0.05 8 n/a n/a	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.05 2-13 >999 240	Weight: 286 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

11-0-14

11-8-9

Structural wood sheathing directly applied or 4-10-3 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

2x6 SP No.1 *Except* **WEBS** 7-10,3-13: 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 8=0-3-8

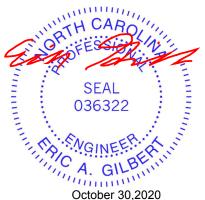
Max Horz 2=293(LC 11)

Max Uplift 2=-89(LC 12), 8=-89(LC 13) Max Grav 2=1664(LC 19), 8=1664(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-2296/406, 3-5=-2152/510, 5-7=-2152/510, 7-8=-2297/406 TOP CHORD

BOT CHORD 2-13=-169/2021, 10-13=0/1307, 8-10=-180/1824


WFBS 5-10=-186/1126, 7-10=-588/338, 5-13=-186/1126, 3-13=-588/338

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-15 to 3-3-14, Interior(1) 3-3-14 to 17-3-0, Exterior(2) 17-3-0 to 21-7-13, Interior(1) 21-7-13 to 35-6-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

11-8-9

- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Precision/Lot 65 Summerlin/Harnett E15039391 J0920-4359 A5-GE **GABLE** Job Reference (optional) Fayetteville, NC - 28314, 8.330 s Oct 7 2020 MiTek Industries, Inc. Fri Oct 30 08:56:43 2020 Page 1 Comtech, Inc. ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-QfzIT6aPiJCla9ShLltTVHRQkDKU2?krvs50BayOGrY

> Scale = 1:73.8 4x6 =

8.00 12 12 13 14 10 4x6 / 15 4x6 > 16 78 18 19 20 21 3x4 38 37 36 35 34 33 32 31 30 28 27 26 25 3v4 29 8x8 = 8x8 =

34-6-0

Plate Oil	Sels (A, f)	[12.0-3-0,Euge], [16.0-0-	0,0-0-0 <u>], [</u> 30.0-	4- 0,0- 4 -0], [33.U- 4 -U,U- 4 -0	9]							
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	-0.00	22	n/r	120	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	-0.00	22	n/r	120			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.17	Horz(CT)	0.01	22	n/a	n/a			
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	x-S						Weight: 322 lb	FT = 20%	

LUMBER-

TOP CHORD 2x6 SP No 1 **BOT CHORD** 2x6 SP No 1 **OTHERS** 2x4 SP No 2 **BRACING-**

TOP CHORD **BOT CHORD** WFBS

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. T-Brace:

2x4 SPF No.2 - 11-32, 10-33, 13-31, 14-30 Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

REACTIONS. All bearings 34-6-0

(lb) - Max Horz 2=-366(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 22, 34, 35, 36, 37, 38, 39, 29, 28, 27, 26, 25, 24 except

33=-103(LC 12), 30=-108(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 22, 33, 34, 35, 36, 37, 38, 39, 31, 30, 29, 28, 27, 26,

25, 24 except 32=253(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown

TOP CHORD 2-3=-399/264, 3-4=-316/231, 10-11=-239/266, 13-14=-239/263, 21-22=-327/235 **BOT CHORD** 2-39=-214/323, 38-39=-214/323, 37-38=-214/323, 36-37=-214/323, 35-36=-214/323, 34-35=-214/323, 33-34=-214/323, 32-33=-212/323, 31-32=-212/323, 30-31=-212/323, 29-30=-214/324, 28-29=-214/324, 27-28=-214/324, 26-27=-214/324, 25-26=-214/324,

24-25=-214/324, 22-24=-214/324

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 22, 34, 35, 36, 37, 38, 39, 29, 28, 27, 26, 25, 24 except (jt=lb) 33=103, 30=108.
- 10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

October 30,2020

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

WARNING - Verify design parameters and HEAD NOTES ON THIS AND INCLUDE MITER REFERENCE FACE MITERS AND INCLUDE MITER REFERENCE FACE MITERS AND INCLUDE MITERS REPORTED FOR THE MITERS AND INCLUDE MITERS AN fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Qu Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Precision/Lot 65 Summerlin/Harnett E15039392 J0920-4359 B1-GE COMMON SUPPORTED GAB Job Reference (optional) Fayetteville, NC - 28314, 8.330 s Oct 7 2020 MiTek Industries, Inc. Fri Oct 30 08:56:46 2020 Page 1 Comtech, Inc. ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-rEet58cH?EaKRcBG0QQA7v3ymRMLFNklbqJgovyOGrV 9-10-12 1-2-8 9-10-12 9-10-12 Scale = 1:44.0 5x5 = 8 6 8.00 12 5 10 11 12 0-Z-0 13 94-8 3x4 = 3x4 22 21 20 17 18 16 15 14 8x8 = 19-9-8

Plate Off	sets (X,Y)	[17:0-4-0,0-4-8]										
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	-0.00	12	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	-0.00	12	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.00	12	n/a	n/a		
BCDL	10.0	Code IRC2015/TP	12014	Matri	x-S						Weight: 154 lb	FT = 20%

19-9-8

LUMBER-

TOP CHORD 2x6 SP No 1

BOT CHORD 2x6 SP No.1 2x4 SP No.2 OTHERS

BRACING-

TOP CHORD **BOT CHORD**

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 19-9-8.

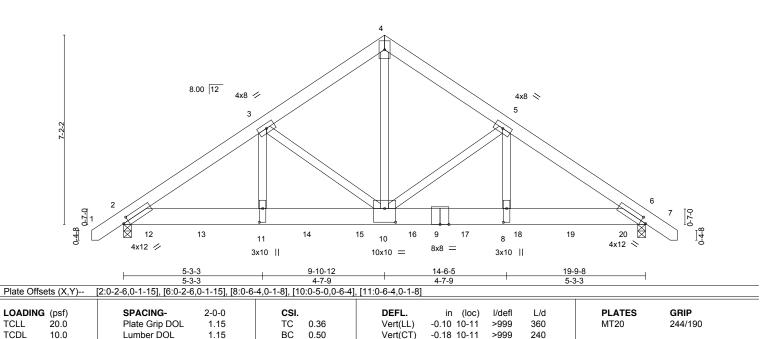
(lb) - Max Horz 2=219(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 2, 19, 20, 21, 22, 17, 16, 15, 14, 12 Max Grav All reactions 250 lb or less at joint(s) 2, 18, 19, 20, 21, 22, 17, 16, 15, 14, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 19, 20, 21, 22, 17, 16, 15, 14, 12.

October 30,2020


Job Truss Truss Type Qty Plv Precision/Lot 65 Summerlin/Harnett E15039393 J0920-4359 B2 COMMON GIRDER 2 Job Reference (optional) Fayetteville, NC - 28314, 8.330 s Oct 7 2020 MiTek Industries, Inc. Fri Oct 30 08:56:48 2020 Page 1 Comtech, Inc. ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-ndmeWqdXXrq2gwLf7rSeCK8D1EwKj3Cb28onsnyOGrT 21-0-0 1-2-8

14-6-5

9-10-12

4-7-9

Scale = 1:43.7 5x8 ||

Horz(CT)

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

0.05

0.06 10-11

n/a

240

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 4-8-13 oc purlins.

n/a

>999

LUMBER-

TCLL

TCDL

BCLL

BCDL

TOP CHORD 2x6 SP No.1 BOT CHORD 2x8 SP 2400F 2.0E WFBS 2x4 SP No 2

0.0

10.0

REACTIONS. (size) 2=0-3-8, 6=0-3-8

Max Horz 2=175(LC 26) Max Uplift 2=-473(LC 8), 6=-483(LC 9) Max Grav 2=8295(LC 2), 6=8503(LC 2)

Rep Stress Incr

Code IRC2015/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-11007/616, 3-4=-7596/486, 4-5=-7597/486, 5-6=-10996/616 TOP CHORD BOT CHORD 2-11=-508/9043 10-11=-508/9043 8-10=-438/9037 6-8=-438/9037

WFBS 4-10=-450/8045, 5-10=-3435/289, 5-8=-154/3857, 3-10=-3444/288, 3-11=-152/3872

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-3-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

WB 0.99

Matrix-S

- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1532 lb down and 91 lb up at 1-0-0, 1531 lb down and 92 lb up at 3-0-0, 1531 lb down and 92 lb up at 7-0-0, 1531 lb down and 92 lb up at 7-0-0, 1531 lb down and 92 lb up at 9-0-0, 1531 lb down and 92 lb up at 11-0-0, 1531 lb down and 92 lb up at 13-0-0, 1531 lb down and 92 lb up at 15-0-0, and 1531 lb down and 92 lb up at 17-0-0, and 1534 lb down and 89 lb up at 19-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-60, 4-7=-60, 2-6=-20

minnin

Weight: 316 lb

FT = 20%

October 30,2020

M WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTesk go comectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Precision/Lot 65 Summerlin/Harnett
J0920-4359	B2	COMMON GIRDER	1		E15039393
30920-4339		COMMON GINDLIN	'	2	Job Reference (optional)

Comtech, Inc,

Fayetteville, NC - 28314,

8.330 s Oct 7 2020 MiTek Industries, Inc. Fri Oct 30 08:56:48 2020 Page 2 ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-ndmeWqdXXrq2gwLf7rSeCK8D1EwKj3Cb28onsnyOGrT

LOAD CASE(S) Standard Concentrated Loads (lb)

Vert: 11=-1350(B) 12=-1352(B) 13=-1350(B) 14=-1350(B) 15=-1350(B) 16=-1350(B) 17=-1350(B) 18=-1350(B) 19=-1350(B) 20=-1354(B)

Job Truss Truss Type Qty Ply Precision/Lot 65 Summerlin/Harnett E15039394 ATTIC J0920-4359 C1-GE Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc.

8.330 s Oct 7 2020 MiTek Industries, Inc. Fri Oct 30 08:56:51 2020 Page 1 ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-BCSm8rgQpmCdXN4Dpz0LqzmolS?kwd21k61RT6yOGrQ

7-10-3 8-11-12 11-3-0 13-6-5 14-7-13 17-2-12 2-6-15 1-1-8 2-3-4 2-3-4 1-1-8 2-6-15

4x6 =

Scale = 1:82.1

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

6 2x4 = 2x4 = 12.00 12

2x4 2x4 || 8 4x6 / 4x6 \ 11-6-0 10 5x8 || 5x8 12 13 2x6 П 2x6 | | 2x6 | | 2x6 | | 6x8 8x8 = 8x8 =

2x6 || 22-6-0 5-3-4 5-11-12 5-11-12 Plate Offsets (X,Y)-- [2:0-2-0,0-4-5], [2:0-1-0,0-1-0], [6:0-3-0,Edge], [10:0-1-0,0-1-0], [10:0-1-15,0-4-5]

				J 3,7 [
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	-0.00	11	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.26	Vert(CT)	-0.00	11	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.15	Horz(CT)	0.00	10	n/a	n/a		
BCDL	10.0	Code IRC2015/TP	12014	Matri	x-S	, ,					Weight: 236 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No 1

2x10 SP No.1 *Except* **BOT CHORD** 12-14: 2x6 SP No.1

WEBS 2x6 SP No.1

WEDGE

Left: 2x4 SP No.2, Right: 2x4 SP No.2

REACTIONS. All bearings 22-6-0.

Max Horz 2=295(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) except 14=-117(LC 12), 12=-116(LC

Max Grav All reactions 250 lb or less at joint(s) except 2=576(LC 1), 14=1026(LC

20), 12=1023(LC 21), 10=576(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-647/29, 4-5=-566/133, 7-8=-565/133, 8-10=-644/24

BOT CHORD 2-14=0/388, 12-14=0/388, 10-12=0/388 **WEBS** 4-14=-524/292, 8-12=-524/293, 5-7=-350/163

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) -1-0-14 to 3-3-15, Exterior(2) 3-3-15 to 11-3-0, Corner(3) 11-3-0 to 15-7-13, Exterior(2) 15-7-13 to 23-6-14 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Ceiling dead load (10.0 psf) on member(s). 4-5, 7-8, 5-7; Wall dead load (5.0psf) on member(s).4-14, 8-12
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 117 lb uplift at joint 14 and 116 lb uplift at joint 12.
- 8) Attic room checked for L/360 deflection.

October 30,2020

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTesk go comectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Precision/Lot 65 Summerlin/Harnett E15039395 C2 ATTIC J0920-4359 6 Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc.

8.330 s Oct 7 2020 MiTek Industries, Inc. Fri Oct 30 08:56:53 2020 Page 1 ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-8aZXZXhgLOSLnhDcwO2pvOr_?FZTOW_KCQWYX?yOGrO

Structural wood sheathing directly applied or 5-4-10 oc purlins.

Rigid ceiling directly applied or 8-4-3 oc bracing.

Scale = 1:82.6

14-7-13 13-6-5 2-3-4 1-1-8 17-2-12 2-6-15 7-10-3 8-11-12 2-6-15 1-1-8 2-3-4 22-6-0

4x6 =

6 2x4 = 2x4 = 12.00 12 2x4 || 2x4 || 8 18 4x6 // 8-2-4 4x6 \ 11-6-0 8x8 = 2x6 || ¹² 14 2x6 || 2x6 || 2x6 ||

> 2x6 II 17-2-12 22-6-0 5-11-12 5-11-12

8x8

6x12 = 10x10 =

Plate Olis	sets (X, Y)	[2:Eage,0-4-12], [2:0-4-5	,0-2-0], [2.0-1-0	ט:טן, נט-ו -טן,	-3-u,⊏agej, [10.Eage,0-4-12], [10.0-4-5	0,0-1-15	j, [10:0-1	1-0,0-1-0 <u>], [12</u>	.0-5-0,0-3-0], [14:0-4-0,	,0-3-4]	
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.15	TC	0.67	Vert(LL)	-0.29	12-14	>911	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.82	Vert(CT)	-0.51	12-14	>522	240			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.18	Horz(CT)	0.01	10	n/a	n/a			
BCDL	10.0	Code IRC2015/Ti	PI2014	Matri	x-S	Wind(LL)	0.10	12-14	>999	240	Weight: 236 lb	FT = 20%	

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x6 SP 2400F 2.0E *Except* TOP CHORD 1-3,9-11: 2x6 SP No.1

BOT CHORD 2x10 SP No.1 *Except* 12-14: 2x6 SP No.1

WEBS 2x6 SP No.1

WEDGE

Left: 2x4 SP No.2, Right: 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 10=0-3-8

Max Horz 2=295(LC 11)

Max Grav 2=1518(LC 20), 10=1518(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-4=-1928/0, 4-5=-1039/146, 5-6=0/385, 6-7=0/386, 7-8=-1038/146, 8-10=-1927/0 TOP CHORD

BOT CHORD 2-14=0/1088, 12-14=0/1088, 10-12=0/1088 **WEBS** 4-14=0/939, 8-12=0/939, 5-7=-1492/196

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-14 to 3-3-15, Interior(1) 3-3-15 to 11-3-0, Exterior(2) 11-3-0 to 15-7-13, Interior(1) 15-7-13 to 23-6-14 zone; C-C for members and forces & MWFRS for reactions shown, Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Ceiling dead load (10.0 psf) on member(s). 4-5, 7-8, 5-7; Wall dead load (5.0psf) on member(s).4-14, 8-12
- 6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 12-14
- 7) Attic room checked for L/360 deflection.

October 30,2020

Job Truss Truss Type Qty Ρlγ Precision/Lot 65 Summerlin/Harnett E15039396 ATTIC J0920-4359 C3 2 Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc.

8.330 s Oct 7 2020 MiTek Industries, Inc. Fri Oct 30 08:56:55 2020 Page 1 ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-4zhH_Djwt?i20?N?2p4H_pwTx3OVsRDcfk?ectyOGrM

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Scale = 1:82.6

14-7-13 9-5-0 11-3-0 13-1-0 17-2-12 1-6-13 1-10-0 1-10-0 1-6-13 2-6-15 22-6-0 2-6-15 6x8 =

6 5x8 = 5x8 = 12.00 12 17 6x12 || 4x12 || 8 6x8 \ 6x12 / 18 11-6-0 6x12 2x6 || ¹² 14 2x6 || 2x6 || 2x6 || 6x12 = 10x10 =10x10 = 2x6 II 11-3-0 17-2-12 22-6-0

5-11-12

5-3-4 5-11-12 5-3-4 Plate Offsets (X,Y)--[2:Edge,0-1-15], [2:0-1-15,0-4-5], [2:0-1-0,0-1-0], [3:0-6-0,Edge], [4:0-10-13,Edge], [6:0-4-0,Edge], [8:0-11-4,0-0-8], [9:0-4-0,Edge], [10:0-4-5,0-1-15], [10:0-1-0,0-1-0], [10:Edge,0-4-4], [12:0-5-0,0-2-0], [14:0-5-0,0-2-4]

TCLL 20.0 P TCDL 10.0 Li	umber DOL 1.	15 15	ВС	0.13 0.14	DEFL. Vert(LL) Vert(CT)	-0.07 1: -0.12 1:	2-14	I/defl >999 >999	L/d 360 240	PLATES MT20	GRIP 244/190
	tep Stress Incr YE code IRC2015/TPI201	ES 4	WB Matrix	0.07 -S	Horz(CT) Wind(LL)	0.00 0.02	10 14	n/a >999	n/a 240	Weight: 542 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x10 SP 2400F 2.0E *Except* 1-3,9-11: 2x6 SP 2400F 2.0E

BOT CHORD 2x10 SP 2400F 2.0E *Except*

12-14: 2x6 SP No.1

WEBS 2x6 SP No.1

WEDGE

Left: 2x6 SP No.1, Right: 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 10=0-3-8

Max Horz 2=-290(LC 10)

Max Grav 2=1518(LC 20), 10=1518(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown

TOP CHORD 2-4=-1982/0, 4-5=-1093/152, 5-6=-28/512, 6-7=-28/512, 7-8=-1093/152, 8-10=-1981/0

BOT CHORD 2-14=0/1141, 12-14=0/1147, 10-12=0/1140 WEBS 4-14=0/1044, 8-12=0/1044, 5-7=-1721/240

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x10 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-3-0 oc.

Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

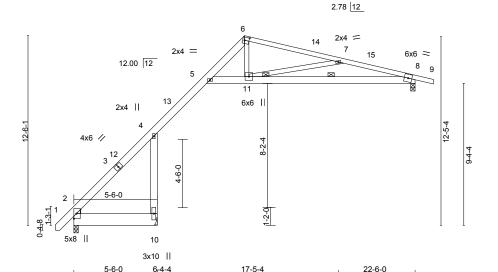
4) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-14 to 3-3-15, Interior(1) 3-3-15 to 11-3-0, Exterior(2) 11-3-0 to 15-7-13, Interior(1) 15-7-13 to 23-6-14 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Ceiling dead load (10.0 psf) on member(s). 4-5, 7-8, 5-7; Wall dead load (5.0psf) on member(s).4-14, 8-12
- 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 12-14

9) Attic room checked for L/360 deflection.

October 30,2020


MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTesk go connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/PTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information, evaluable from Trus Plate betting. 2570 Crisis Highways. fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPH Qu Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Precision/Lot 65 Summerlin/Harnett E15039397 ATTIC J0920-4359 C4 3 Job Reference (optional) Fayetteville, NC - 28314, 8.330 s Oct 7 2020 MiTek Industries, Inc. Fri Oct 30 08:56:57 2020 Page 1 Comtech, Inc. ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-0Mp2PvkBPcymFlXN9E7l3E0hYt4_KDTv72UlgmyOGrK 7-10-3 8₁11-12 11-3-0 22-6-0 5-6-0 1-1-8 6-2-4 5-0-12 . 1-5-15 Scale = 1:76.0

Plate Offsets (X,Y)	[2:0-2-0,0-4-5], [2:0-1-0,0-1-0], [6:0-3-9]	0-2-8]		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/c	
TCLL 20.0	Plate Grip DOL 1.15	TC 0.63	Vert(LL) 0.00 2-10 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.14	Vert(CT) -0.00 2-10 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.60	Horz(CT) 0.29 8 n/a n/a	1
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) -0.00 2-10 >999 240	Weight: 141 lb FT = 20%

11-1-0

BRACING-

WFBS

JOINTS

TOP CHORD

BOT CHORD

5-0-12

1 Row at midpt

1 Brace at Jt(s): 11

Structural wood sheathing directly applied or 4-11-9 oc purlins.

8-11

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x6 SP No.1 *Except* 6-9: 2x4 SP No.1

BOT CHORD 2x10 SP No.1 **WEBS** 2x6 SP No.1 *Except*

6-11,7-11: 2x4 SP No.2

WEDGE

Left: 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 10=Mechanical, 8=0-3-8

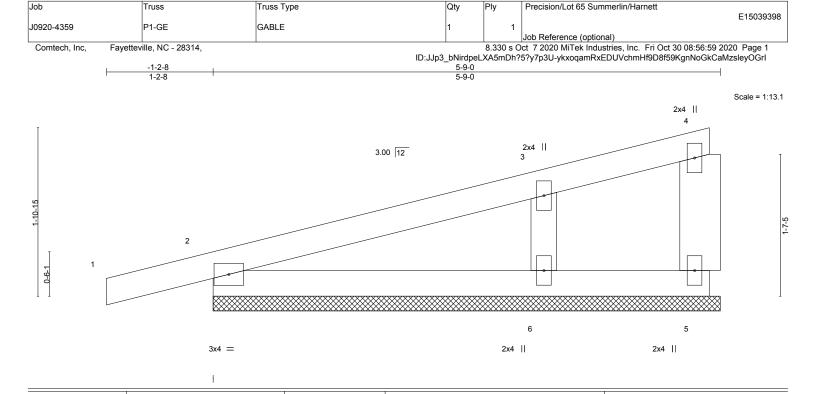
Max Horz 2=345(LC 12)

Max Uplift 2=-86(LC 10), 10=-491(LC 12), 8=-197(LC 9) Max Grav 2=296(LC 12), 10=967(LC 20), 8=548(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown TOP CHORD 2-4=-523/603, 4-5=-395/192, 5-6=-662/468, 6-7=-669/489, 7-8=-1518/982 **WEBS** 5-11=-374/606, 8-11=-924/1454, 7-11=-870/556, 4-10=-1157/854

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-14 to 3-3-15, Interior(1) 3-3-15 to 11-3-0, Exterior(2) 11-3-0 to 15-7-13, Interior(1) 15-7-13 to 23-8-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

5-6-0


0-10-4

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 86 lb uplift at joint 2, 491 lb uplift at joint 10 and 197 lb uplift at joint 8.
- 7) Attic room checked for L/360 deflection.

October 30,2020

DEFL

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

in (loc)

-0.00

0.00

0.00

I/defl

n/r

n/r

n/a

except end verticals.

I /d

120

120

n/a

PLATES

Weight: 23 lb

MT20

Structural wood sheathing directly applied or 5-9-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

GRIP

244/190

FT = 20%

LUMBER-

TCLL

TCDL

BCLL

BCDL

LOADING (psf)

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

20.0

10.0

10.0

0.0

2x6 SP No 1 WFBS OTHERS 2x4 SP No.2

REACTIONS. (size) 5=5-9-0, 2=5-9-0, 6=5-9-0

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2015/TPI2014

Lumber DOL

Max Horz 2=80(LC 8)

Max Uplift 5=-10(LC 8), 2=-93(LC 8), 6=-93(LC 12) Max Grav 5=20(LC 1), 2=210(LC 1), 6=284(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

CSI.

TC

вс

WB

Matrix-P

0.10

0.08

0.04

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

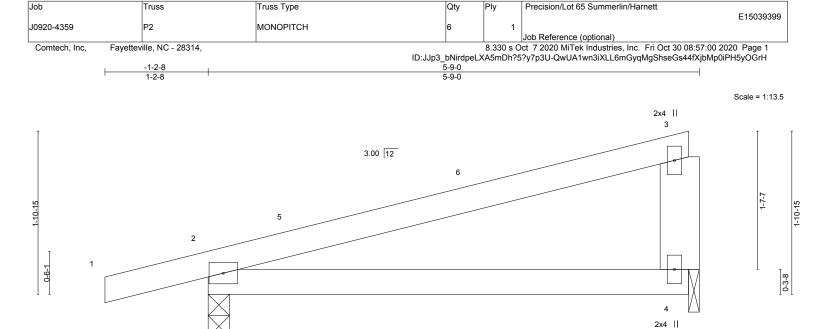
2-0-0

1.15

1.15

YES

- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 5, 93 lb uplift at joint 2 and 93 lb uplift at joint 6.


MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTesk go comectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING	G (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.37	Vert(LL)	-0.04	2-4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.27	Vert(CT)	-0.09	2-4	>728	240		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.00		n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL)	0.10	2-4	>655	240	Weight: 22 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 **WEBS** 2x6 SP No.1

> (size) 2=0-3-0, 4=0-1-8 Max Horz 2=56(LC 8)

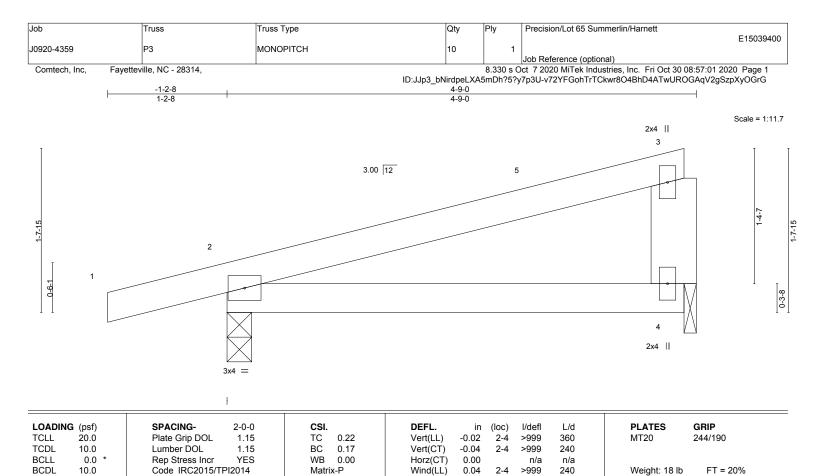
Max Uplift 2=-130(LC 8), 4=-85(LC 8) Max Grav 2=306(LC 1), 4=206(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3x4

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-2-8 to 3-2-5, Interior(1) 3-2-5 to 5-6-4 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 130 lb uplift at joint 2 and 85 lb uplift at joint 4.



Structural wood sheathing directly applied or 5-9-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x6 SP No.1 **WEBS**

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-9-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 4=0-1-8

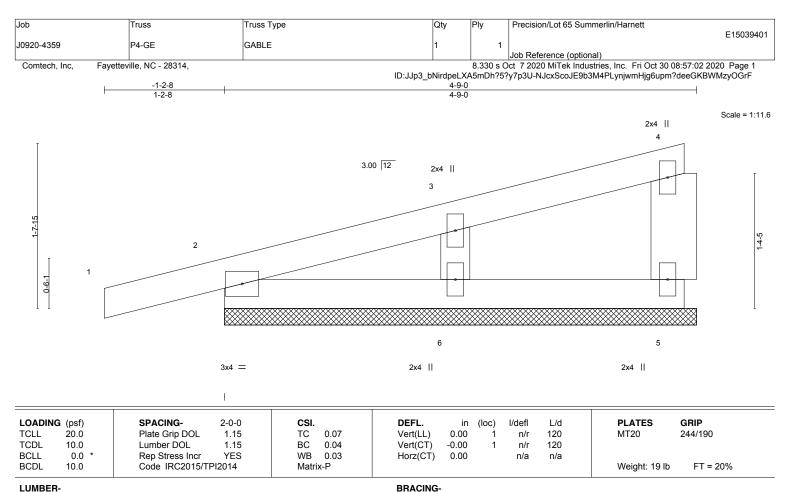
Max Horz 2=48(LC 8)

Max Uplift 2=-117(LC 8), 4=-67(LC 8) Max Grav 2=268(LC 1), 4=164(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-2-8 to 3-2-5, Interior(1) 3-2-5 to 4-6-4 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 117 lb uplift at joint 2 and 67 lb uplift at joint 4.



Design valid for use only with MiTek® connectors. This design is based only upon parameters and not is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

2x6 SP No 1 WFBS OTHERS 2x4 SP No.2

REACTIONS. (size) 5=4-9-0, 2=4-9-0, 6=4-9-0

Max Horz 2=69(LC 8)

Max Uplift 5=-25(LC 8), 2=-85(LC 8), 6=-65(LC 12) Max Grav 5=70(LC 1), 2=167(LC 1), 6=197(LC 1)

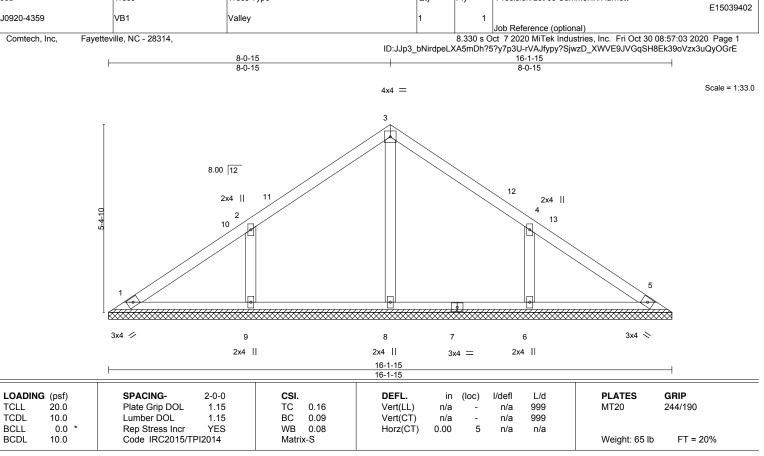
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 5, 85 lb uplift at joint 2 and 65 lb uplift at joint 6.

Structural wood sheathing directly applied or 5-9-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.


MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTesk go comectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Qty

Ply

Precision/Lot 65 Summerlin/Harnett

LUMBER-

Job

Truss

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 2x4 SP No.2 **OTHERS**

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

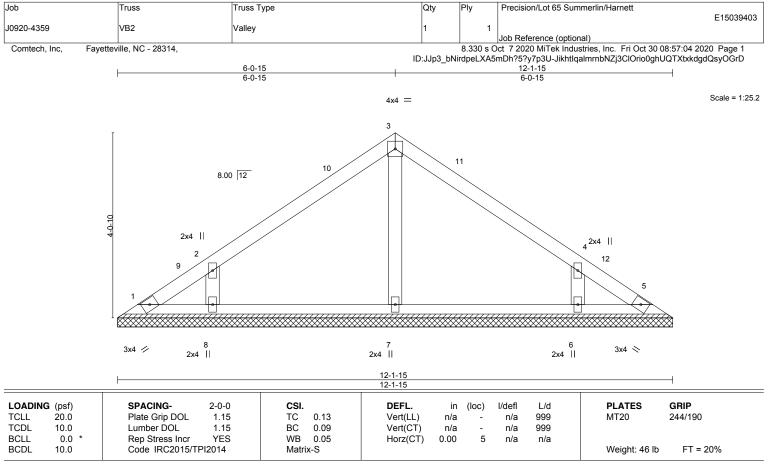
REACTIONS. All bearings 16-1-15.

Max Horz 1=-121(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 9=-108(LC 12), 6=-108(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 8 except 9=385(LC 19), 6=385(LC 20)

Truss Type

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


WEBS 2-9=-322/211, 4-6=-322/211

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-12 to 4-10-9, Interior(1) 4-10-9 to 8-0-15, Exterior(2) 8-0-15 to 12-5-12, Interior(1) 12-5-12 to 15-8-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=108, 6=108,

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 **OTHERS**

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-1-15.

Max Horz 1=89(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 8, 6

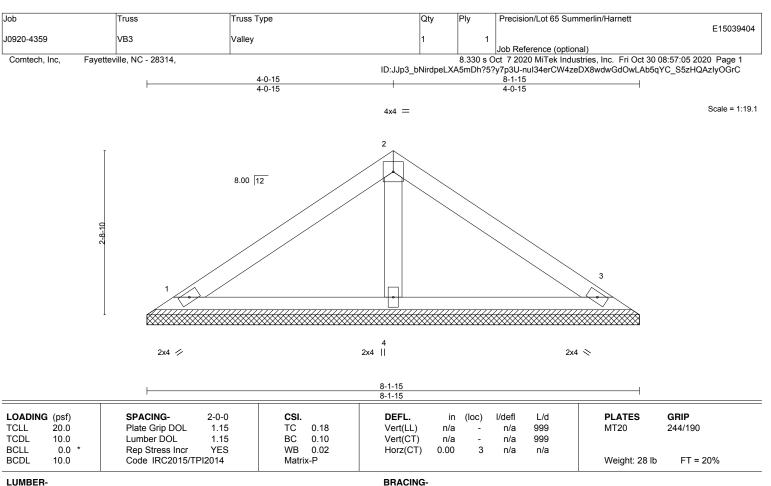
Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=264(LC 1), 8=314(LC 19), 6=314(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-279/203, 4-6=-279/203

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-12 to 4-10-9, Interior(1) 4-10-9 to 6-0-15, Exterior(2) 6-0-15 to 10-5-12, Interior(1) 10-5-12 to 11-8-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 8, 6.



Design valid for use only with MiTesk go comectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 2x4 SP No.2 **OTHERS**

(size) 1=8-1-15, 3=8-1-15, 4=8-1-15

Max Horz 1=-58(LC 8)

Max Uplift 1=-25(LC 12), 3=-30(LC 13)

Max Grav 1=156(LC 1), 3=156(LC 1), 4=263(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Design valid for use only with MiTesk go comectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Precision/Lot 65 Summerlin/Harnett E15039405 VB4 J0920-4359 Vallev Job Reference (optional) Fayetteville, NC - 28314, 8.330 s Oct 7 2020 MiTek Industries, Inc. Fri Oct 30 08:57:06 2020 Page 1 Comtech, Inc. ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-F4sRI_rqHN5Vqhj6Bdnsw7uNgVAuxR4EBx9kVkyOGrB 2-0-15 2-0-15 2-0-15 Scale = 1:9.7 3x4 2 8.00 12 3 2x4 / 2x4 × 4-1-15 Plate Offsets (X,Y)--[2:0-2-0,Edge] LOADING (psf) SPACING-2-0-0 CSI. DEFL. (loc) I/defl L/d **PLATES** GRIP TCLL 20.0 Plate Grip DOL 1.15 TC 0.03 Vert(LL) n/a n/a 999 MT20 244/190

LUMBER-

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

10.0

0.0

10.0

BRACING-

Vert(CT)

Horz(CT)

n/a

0.00

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 4-1-15 oc purlins.

Weight: 12 lb

FT = 20%

Rigid ceiling directly applied or 10-0-0 oc bracing.

999

n/a

n/a

n/a

3

REACTIONS. (size) 1=4-1-15, 3=4-1-15

Max Horz 1=-26(LC 8)

Max Uplift 1=-7(LC 12), 3=-7(LC 13) Max Grav 1=128(LC 1), 3=128(LC 1)

Lumber DOL

Rep Stress Incr

Code IRC2015/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

вс

WB

Matrix-P

0.09

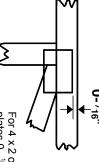
0.00

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

1.15

YES

- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.


Edenton, NC 27932

Symbols

PLATE LOCATION AND ORIENTATION

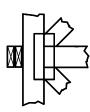
offsets are indicated Center plate on joint unless x, y and fully embed teeth Dimensions are in ft-in-sixteenths Apply plates to both sides of truss

edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

connector plates required direction of slots in This symbol indicates the

* Plate location details available in MiTek 20/20 software or upon request

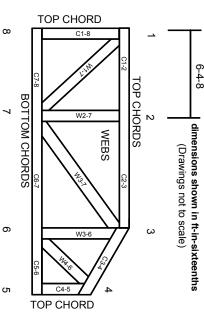
PLATE SIZE


to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

output. Use T or I bracing if indicated. by text in the bracing section of the Indicated by symbol shown and/or

BEARING


Min size shown is for crushing only number where bearings occur. reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings

Industry Standards:

National Design Specification for Metal Guide to Good Practice for Handling **Building Component Safety Information** Design Standard for Bracing Connected Wood Trusses Installing & Bracing of Metal Plate Plate Connected Wood Truss Construction.

DSB-89: ANSI/TPI1:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

truss unless otherwise shown. Trusses are designed for wind loads in the plane of the

established by others. section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Failure to Follow Could Cause Property

- Damage or Personal Injury

 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Ņ Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- ω Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building all other interested parties. designer, erection supervisor, property owner and

4

- Cut members to bear tightly against each other
- Place plates on each face of truss at each locations are regulated by ANSI/TPI 1. joint and embed fully. Knots and wane at joint

ტ 5

- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication

œ

.7

- 9 Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted

4

- Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable project engineer before use environmental, health or performance risks. Consult with
- Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.

RE: J0920-4360

Precision/Lot 65 Summerlin/Harnett

Trenco

818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0920-4360

Lot/Block: Model:
Address: Subdivision:
City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Design Program: MiTek 20/20 8.3

Wind Code: N/A Wind Speed: N/A mph Roof Load: N/A psf Floor Load: 55.0 psf

This package includes 12 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	E14950659	ET1	10/30/2020
2	E14950660	ET2	10/30/2020
3	E14950661	ET3	10/30/2020
4	E14950662	F1	10/30/2020
5	E14950663	F2	10/30/2020
6	E14950664	F3	10/30/2020
7	E14950665	F4	10/30/2020
8	E14950666	F5	10/30/2020
9	E14950667	F6	10/30/2020
10	E14950668	F7	10/30/2020
11	E14950669	F8	10/30/2020
12	E14950670	F9-GR	10/30/2020

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2020

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

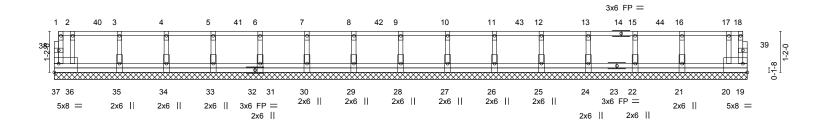
October 30, 2020

Job		Truss	Truss Type	Qty	Ply	Precision/Lot 65 Summerlin/Harnett	
J0920-4	4360	ET1	GABLE	1	1	E149506	59

Comtech, Inc,

0-1_H8

Fayetteville, NC - 28314,


8.330 s Jul 22 2020 MiTek Industries, Inc. Wed Oct 7 09:21:31 2020 Page 1 ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-OHVh2HTzgEP9jn8jwltevlFM9fgkNf5Q7GGs8SyVrel

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

Scale = 1:32.8

0-6-4' 1-4-0 ' Plate Offsets (X,Y)	1-4-0 1-4-0 1-4-0 1- [20:Edge,0-3-0], [20:0-0-12,0-0-0], [36:0	1-0 ' 1-4-0 ' 1-4-0 1-0-12 0-0-01 [37:Edge 0-		1-4-0	1-4-0	1-4-0	1-4-0 ' 1-4-0 '	1-4-0 0-6-4'
1 1010 0110010 (71,17)								
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) I/defl	L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.10	Vert(LL)	n/a	- n/a	999	MT20	244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.00	Vert(CT)	n/a	- n/a	999		
BCLL 0.0	Rep Stress Incr NO	WB 0.04	Horz(CT)	0.00 1	9 n/a	n/a		
BCDL 5.0	Code IRC2015/TPI2014	Matrix-R					Weight: 109 lb	FT = 20%F, 11%E

BRACING-

TOP CHORD

BOT CHORD

Q-6-4, 1-10-4 , 3-2-4 , 4-6-4 , 5-10-4 , 7-2-4 , 8-6-4 , 9-10-4 , 11-2-4 , 12-6-4 , 13-10-4 , 15-2-4 , 16-6-4 , 17-10-4 , 19-2-4 19-8-8

LUMBER-TOP CHORD 2x4 SP No 1(flat)

BOT CHORD

2x4 SP No.1(flat) 2x4 SP No.3(flat) WFBS

OTHERS 2x4 SP No.3(flat)

REACTIONS. All bearings 19-8-8.

(lb) - Max Uplift All uplift 100 lb or less at joint(s) 37

Max Grav All reactions 250 lb or less at joint(s) 28, 29, 30, 31, 33, 34, 35, 36, 27, 26, 25, 24, 22, 21, 20,

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 37.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 19-37=-10, 1-18=-100

Concentrated Loads (lb)

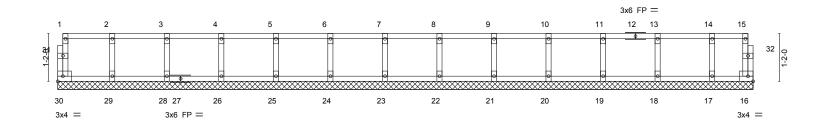
Vert: 18=-72 7=-64 4=-64 10=-64 13=-64 40=-64 41=-64 42=-64 43=-64 44=-64

October 7,2020

Design valid for use only with MiTesk go comectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Precision/Lot 65 Summerlin/Harnett
					E14950660
J0920-4360	ET2	Floor Supported Gable	1	1	
					Joh Reference (ontional)

Comtech, Inc, Fayetteville, NC - 28314,

8.330 s Jul 22 2020 MiTek Industries, Inc. Wed Oct 7 09:21:32 2020 Page 1 ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-sT33GdUbRYX0LxjwT?PtRzoYa30u66UZMw?PguyVreH

0-1-8

Scale = 1:28.2

	17-0-0											
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.01	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	16	n/a	n/a		
BCDL	5.0	Code IRC2015/TPI2	2014	Matri	k-R	, ,					Weight: 71 lb	FT = 20%F, 11%E

17-0-0

LUMBER-BRACING-

TOP CHORD 2x4 SP No.1(flat) TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

2x4 SP No.1(flat) BOT CHORD except end verticals.

2x4 SP No.3(flat) **BOT CHORD** WFBS Rigid ceiling directly applied or 10-0-0 oc bracing. **OTHERS** 2x4 SP No.3(flat)

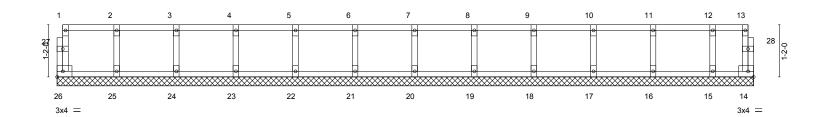
REACTIONS. All bearings 17-0-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 30, 16, 29, 28, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Job	Truss	Truss Type	Qty	Ply	Precision/Lot 65 Summerlin/Harnett
					E14950661
J0920-4360	ET3	Floor Supported Gable	1	1	
					Joh Reference (ontional)


Comtech, Inc,

0-1-8

Fayetteville, NC - 28314,

8.330 s Jul 22 2020 MiTek Industries, Inc. Wed Oct 7 09:21:33 2020 Page 1 ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-KgdRTzUECrftz5I61jw6_AKjKSM6rZkjbalzCLyVreG

Scale = 1:25.8

	15-7-0									
LOADIN	IG (psf)	SPACING- 2-0-0	CSI.	DEFL. i	n (loc)	I/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL 1.00	TC 0.06	Vert(LL) n/	a -	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL 1.00	BC 0.01	Vert(CT) n/	a -	n/a	999			
BCLL	0.0	Rep Stress Incr YES	WB 0.03	Horz(CT) 0.0	0 14	n/a	n/a			
BCDL	5.0	Code IRC2015/TPI2014	Matrix-R	, ,				Weight: 66 lb	FT = 20%F, 11%E	

15-7-0

LUMBER-BRACING-

TOP CHORD 2x4 SP No.1(flat) TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, BOT CHORD 2x4 SP No.1(flat) except end verticals.

2x4 SP No.3(flat) **BOT CHORD** WFBS Rigid ceiling directly applied or 10-0-0 oc bracing. **OTHERS** 2x4 SP No.3(flat)

REACTIONS. All bearings 15-7-0.

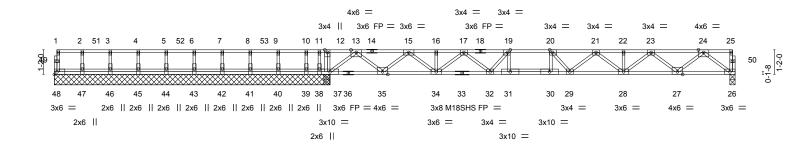
(lb) - Max Grav All reactions 250 lb or less at joint(s) 26, 14, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Job Truss Truss Type Qty Ply Precision/Lot 65 Summerlin/Harnett E14950662 GABLE J0920-4360 F1 1 Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc,


8.330 s Jul 22 2020 MiTek Industries, Inc. Wed Oct 7 09:21:34 2020 Page 1 ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-osBqhJVsz9nkaEtlbQRMXOtq9sbZatNspEUWknyVreF

0-1-8

1-3-0 12-7-8 HH

0-10-0 1-10-8 0-10-0

0-1-8 Scale = 1:54.9

12-7-83-1-8

1-4-0	2-8-0	4-0-0	5-4-0	6-8-0	8-0-0	9-4-0	10-8-0	12-0-0 ₁ 13 ₁ 0 ₁ 0	21-6-8	22-6-12 ₁	32-5-0	1
1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0 0-7-8	8-5-0	1-0-4	9-10-4	1
								0-4-8				
								0_1_8				

Plate Off	sets (X,Y)	[19:0-1-8,Edge], [20:0-1-	8,Edge]									
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.31	Vert(LL)	-0.31 30	Ò-31	>751	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.51	Vert(CT)	-0.43 30	0-31	>547	360	M18SHS	244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.58	Horz(CT)	0.07	26	n/a	n/a		
BCDL	5.0	Code IRC2015/Ti	PI2014	Matri	x-S						Weight: 174 lb	FT = 20%F, 11%E

LUMBER-**BRACING-**

TOP CHORD 2x4 SP 2400F 2 0F(flat) BOT CHORD 2x4 SP 2400F 2.0E(flat) WFBS

2x4 SP No.3(flat) 2x4 SP No.3(flat)

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 13-1-8 except (jt=length) 26=0-3-0.

(lb) - Max Uplift All uplift 100 lb or less at joint(s) except 38=-349(LC 4)

Max Grav All reactions 250 lb or less at joint(s) 48, 47, 46, 45, 44, 43, 42, 41, 40, 39 except 37=1542(LC 1), 37=1542(LC 1), 26=1053(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $13-15 = -2202/0,\ 15-16 = -3838/0,\ 16-17 = -3838/0,\ 17-19 = -4665/0,\ 19-20 = -4845/0,$

20-21=-4674/0, 21-22=-3843/0, 22-23=-3843/0, 23-24=-2267/0 **BOT CHORD** 35-37=0/1333, 34-35=0/3149, 32-34=0/4380, 31-32=0/4845, 30-31=0/4845, 29-30=0/4845,

28-29=0/4386, 27-28=0/3172, 26-27=0/1328

WEBS 12-37=-265/0, 13-37=-1547/0, 13-35=0/1135, 15-35=-1233/0, 15-34=0/881,

24-26=-1663/0, 24-27=0/1223, 23-27=-1178/0, 23-28=0/856, 21-28=-693/0, 21-29=0/376,

17-34=-692/0, 17-32=0/371, 19-32=-277/0, 20-29=-263/0

NOTES-

OTHERS

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) All plates are 1.5x3 MT20 unless otherwise indicated.
- 4) Plates checked for a plus or minus 1 degree rotation about its center.
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 349 lb uplift at joint 38.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 8) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 26-48=-10, 1-25=-100

Concentrated Loads (lb)

Vert: 4=-85 7=-85 10=-85 51=-85 52=-85 53=-85

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTesk go comectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

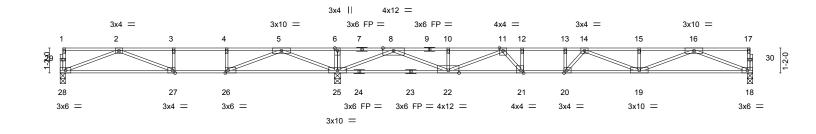
ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Precision/Lot 65 Summerlin/Harnett
10020 4260	Γ2	Floor	1	1	E14950663
J0920-4360	F2	Floor	'	'	Job Reference (ontional)

Comtech, Inc,

Fayetteville, NC - 28314,


8.330 s Jul 22 2020 MiTek Industries, Inc. Wed Oct 7 09:21:35 2020 Page 1 ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-G2lCueWUkTvbCOSV98yb3bQvhGwZJDM?2uE4HDyVreE

0-1-8

0-10-0 1-10-12 0-10-0

0-1-8 Scale = 1:53.9

		7-8-12					
5-4-8	0 6 5 4 0 7 6	6-12 ₁₁ 12-9-12	12-10-0	21-6-4	22-6-10 ₁	32-5-0	
5-4-8		0-2 5-1-0	0-0-4	8-8-4	1-0-6	9-10-6	
	0-1-0	0-2-0					

Plate Offsets (2	(,Y)	[20:0-1-8,Edge], [21:0-1-		0-1-8,Edge], [2	27:0-1-8,Edg	ge]						
LOADING (ps)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 40.	Ó	Plate Grip DOL	1.00	TC	0.64	Vert(LL)	-0.33	19-20	>711	480	MT20	244/190
TCDL 10.)	Lumber DOL	1.00	BC	0.52	Vert(CT)	-0.44	19-20	>524	360		
BCLL 0.)	Rep Stress Incr	YES	WB	0.98	Horz(CT)	0.06	18	n/a	n/a		
BCDL 5.)	Code IRC2015/Ti	PI2014	Matri	x-S						Weight: 155 lb	FT = 20%F, 11%E

LUMBER-

TOP CHORD 2x4 SP 2400F 2.0E(flat) BOT CHORD 2x4 SP 2400F 2.0E(flat)

WFBS 2x4 SP No.3(flat) **BRACING-**TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS.

(size) 28=0-3-0, 25=0-3-8, 18=0-3-0

Max Grav 28=623(LC 3), 25=2067(LC 1), 18=965(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1673/317, 3-4=-1673/317, 4-5=-1673/317, 5-6=0/2340, 6-8=0/2340, 8-10=-2690/0, TOP CHORD

10-11=-2690/0, 11-12=-4029/0, 12-13=-4029/0, 13-14=-4029/0, 14-15=-3473/0,

15-16=-3473/0

BOT CHORD 27-28=-1/1256, 26-27=-317/1673, 25-26=-1085/690, 22-25=-213/874, 21-22=0/3740, 20-21=0/4029, 19-20=0/4054, 18-19=0/2118

WEBS $6-25 = -315/0, \ 2-28 = -1345/1, \ 2-27 = -341/450, \ 5-25 = -1924/0, \ 5-26 = 0/1469, \ 4-26 = -441/0, \ 5-26 = 0/1469, \ 4-26 = 0/1469, \ 4-26 = 0/1469, \ 4-26 = 0/1469, \ 4-26 = 0/1469, \ 4-26 = 0/1469, \$

8-25=-2747/0, 8-22=0/2065, 10-22=-279/0, 16-18=-2272/0, 16-19=0/1462, 15-19=-251/0,

14-19=-628/0, 11-22=-1253/0, 11-21=0/820, 12-21=-502/0, 14-20=-412/340

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 1.5x3 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.

October 7,2020

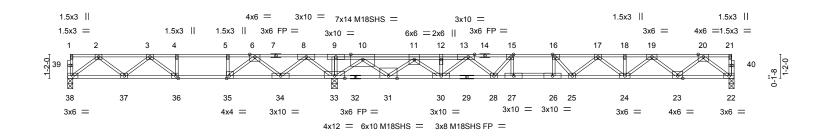
Job Truss Truss Type Qty Ply Precision/Lot 65 Summerlin/Harnett E14950664 J0920-4360 F3 Floor Girder Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc.

8.330 s Jul 22 2020 MiTek Industries, Inc. Wed Oct 7 09:21:37 2020 Page 1 ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-CRtyJKXkG4AlRibtGY_380VA14YhnBJIWCjAL6yVreC

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 6-0-0 oc bracing.


except end verticals.

0-1-8

HI 1-3-0

0_10-0_1-10-12 0_10-0

0-1-8 Scale = 1:56.0

	6-6-10 7-8-12						
5-4-8	6-5-10 ₁ 7-6-12 _{1 1}	12-9-12	12-10-0	21-6-4	22-6-10 ₁	32-5-0	
5-4-8	1-1-2 11-0-2 11	5-1-0	0-0-4	8-8-4	¹ 1-0-6	9-10-6	
	0-1-0 0-2-0						

Plate Offsets (X,Y)	late Offsets (X,Y) [13:0-3-12,Edge], [15:0-1-8,Edge], [16:0-1-8,Edge], [35:0-1-8,Edge]									
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP						
TCLL 40.0	Plate Grip DOL 1.00	TC 0.97	Vert(LL) -0.31 26-27 >737 480	MT20 244/190						
TCDL 10.0	Lumber DOL 1.00	BC 0.74	Vert(CT) -0.43 26 >542 360	M18SHS 244/190						
BCLL 0.0	Rep Stress Incr NO	WB 0.76	Horz(CT) 0.06 22 n/a n/a							
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S		Weight: 173 lb FT = 20%F, 11%E						

BOT CHORD

LUMBER-**BRACING-**TOP CHORD

TOP CHORD 2x4 SP 2400F 2 0F(flat) BOT CHORD 2x4 SP 2400F 2.0E(flat)

2x4 SP No.3(flat) *Except* WFBS 10-31: 2x4 SP No.2(flat)

> (size) 38=0-3-0, 33=0-3-8, 22=0-3-0

Max Uplift 38=-67(LC 4)

Max Grav 38=512(LC 3), 33=2984(LC 1), 22=1064(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

2-3=-939/222, 3-4=-973/1005, 4-5=-973/1005, 5-6=-973/1005, 6-8=0/2192, 8-9=0/3914,

9-10=0/3910, 10-11=-1377/0, 11-12=-4224/0, 12-13=-4224/0, 13-15=-4836/0, 15-16=-4935/0. 16-17=-4761/0. 17-18=-3898/0. 18-19=-3898/0. 19-20=-2295/0

 $37 - 38 = -104/624,\ 36 - 37 = -467/1153,\ 35 - 36 = -1005/973,\ 34 - 35 = -1701/253,\ 33 - 34 = -2609/0,$ **BOT CHORD**

31-33=-1279/0, 30-31=0/3453, 28-30=0/4622, 27-28=0/4935, 26-27=0/4935,

25-26=0/4935, 24-25=0/4453, 23-24=0/3213, 22-23=0/1343

2-38=-779/132, 2-37=-154/410, 3-37=-279/318, 3-36=-699/0, 4-36=0/280, 8-33=-1752/0, 8-34=0/1059, 6-34=-1178/0, 6-35=0/1346, 5-35=-583/0, 20-22=-1682/0, 20-23=0/1240,

19-23=-1195/0, 19-24=0/874, 10-33=-3235/0, 10-31=0/2703, 11-31=-2689/0,

11-30=0/1010, 13-30=-579/0, 13-28=-81/402, 17-24=-709/0, 17-25=0/540,

16-25=-607/79, 16-26=-242/250, 15-28=-441/243, 15-27=-255/237

WEBS

REACTIONS.

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated. 3) All plates are 3x4 MT20 unless otherwise indicated.
- 4) Plates checked for a plus or minus 1 degree rotation about its center.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 67 lb uplift at joint 38.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 983 lb down at 16-10-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 22-38=-10, 1-21=-100

Timinini,

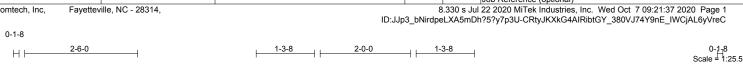
October 7,2020

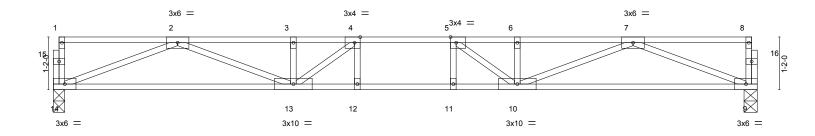
MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

WARNING - Verify design parameters and HEAD NOTES ON THIS AND INCLUDED WITTER REFERENCE FACE MILE AND INCLUDED WITTER REFERENC fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP/1 Qu Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Precision/Lot 65 Summerlin/Harnett
					E14950664
J0920-4360	F3	Floor Girder	1	1	
					Job Reference (optional)

Comtech, Inc,


Fayetteville, NC - 28314,


8.330 s Jul 22 2020 MiTek Industries, Inc. Wed Oct 7 09:21:37 2020 Page 2 ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-CRtyJKXkG4AlRibtGY_380VA14YhnBJIWCjAL6yVreC

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 11=-903(B)

Job	Truss	Truss Type	Qty	Ply	Precision/Lot 65 Summerlin/Harnett		
					E14950665		
J0920-4360	F4	Floor	6	1			
					Job Reference (optional)		
Comtech, Inc, Fayette	ville, NC - 28314,		8	.330 s Jul	22 2020 MiTek Industries, Inc. Wed Oct 7 09:21:37 2020 Page 1		
•		ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-CRtyJKXkG4AIRibtGY_380VJ74Y9nE_IWCjAL6yVreC					

15-7-0 15-7-0											
Plate Offsets (X,Y) [4:0-1-8,Edge], [5:0-1-8,Edge]											
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.39	Vert(LL)	-0.19 11-12	>982	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.71	Vert(CT)	-0.26 11-12	>704	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.53	Horz(CT)	0.05 9	n/a	n/a		
BCDL	5.0	Code IRC2015/TF	PI2014	Matri	x-S					Weight: 77 lb	FT = 20%F, 11%E

BOT CHORD

LUMBER-**BRACING-**TOP CHORD

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)

WEBS 2x4 SP No.3(flat)

REACTIONS. (size) 14=0-3-0, 9=0-3-8

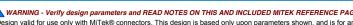
Max Grav 14=837(LC 1), 9=837(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-2816/0, 3-4=-2816/0, 4-5=-3056/0, 5-6=-2816/0, 6-7=-2816/0 TOP CHORD 13-14=0/1801, 12-13=0/3056, 11-12=0/3056, 10-11=0/3056, 9-10=0/1801 **BOT CHORD**

WEBS 2-14=-1931/0, 2-13=0/1095, 7-9=-1931/0, 7-10=0/1095, 5-10=-589/60, 4-13=-589/60

NOTES-


- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 1.5x3 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

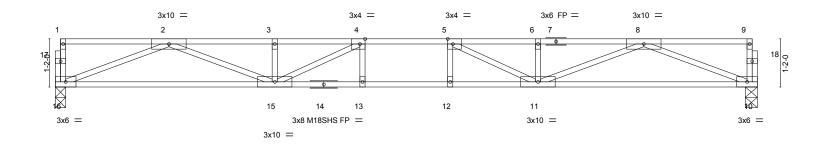
Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss		Truss Type	Qty	Ply	Precision/Lot 65 Summerlin/Harnett	
					E1495	50666
J0920-4360	F5	Floor	10	1		
					Job Reference (optional)	
Comtech, Inc, Fayetteville, NC - 28314,			8.330 s Jul 22 2020 MiTek Industries, Inc. Wed Oct 7 09:21:38 2020 Page 1			
ID:JJp3_bNirdpel.XA5mDh?5?v7p3U-hdQKWaYM0QI93sA4aGVIhE2TwTsMWahSkrSktYvVreB						В

17-0-0 17-0-0										
Plate Offsets (X,Y)	Plate Offsets (X,Y) [4:0-1-8,Edge], [5:0-1-8,Edge]									
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP						
TCLL 40.0	Plate Grip DOL 1.00	TC 0.45	Vert(LL) -0.26 12-13 >774 480	MT20 244/190						
TCDL 10.0	Lumber DOL 1.00	BC 0.84	Vert(CT) -0.36 12-13 >558 360	M18SHS 244/190						
BCLL 0.0	Rep Stress Incr YES	WB 0.63	Horz(CT) 0.06 10 n/a n/a							
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S		Weight: 83 lb FT = 20%F, 11%E						

TOP CHORD

BOT CHORD

LUMBER-**BRACING-**

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)

WEBS 2x4 SP No.3(flat)

REACTIONS. (size) 16=0-3-0, 10=0-3-8

Max Grav 16=915(LC 1), 10=915(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-3211/0, 3-4=-3211/0, 4-5=-3659/0, 5-6=-3211/0, 6-8=-3211/0 TOP CHORD **BOT CHORD** 15-16=0/1994, 13-15=0/3659, 12-13=0/3659, 11-12=0/3659, 10-11=0/1994

WEBS 2-16=-2138/0, 2-15=0/1314, 3-15=-273/17, 8-10=-2138/0, 8-11=0/1314, 6-11=-273/17,

5-11=-800/0. 4-15=-800/0

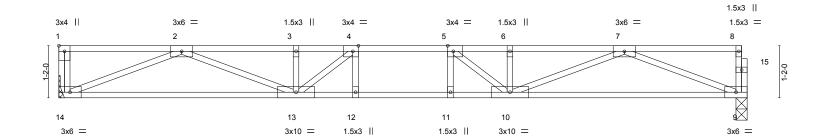
NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) All plates are 1.5x3 MT20 unless otherwise indicated.
- 4) Plates checked for a plus or minus 1 degree rotation about its center.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.



Job Truss Truss Type Qty Ply Precision/Lot 65 Summerlin/Harnett E14950667 J0920-4360 F6 Floor Job Reference (optional) Fayetteville, NC - 28314, 8.330 s Jul 22 2020 MiTek Industries, Inc. Wed Oct 7 09:21:39 2020 Page 1 Comtech, Inc. ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-9p_jk0Z_nhQ0h0IGOz1XERafitFrF8XbzVCHQ_yVreA

2-0-0

1-2-8

Scale = 1:25.8

Plate Offsets (X,Y)	Plate Offsets (X,Y) [1:Edge,0-1-8], [4:0-1-8,Edge], [5:0-1-8,Edge]								
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP					
TCLL 40.0	Plate Grip DOL 1.00	TC 0.39	Vert(LL) -0.18 11-12 >999 480	MT20 244/190					
TCDL 10.0	Lumber DOL 1.00	BC 0.69	Vert(CT) -0.25 11-12 >724 360						
BCLL 0.0 BCDL 5.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.52 Matrix-S	Horz(CT) 0.05 9 n/a n/a	Weight: 77 lb FT = 20%F, 11%E					

BRACING-

TOP CHORD

BOT CHORD

15-5-0

LUMBER-

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)

2-6-0

WEBS 2x4 SP No.3(flat)

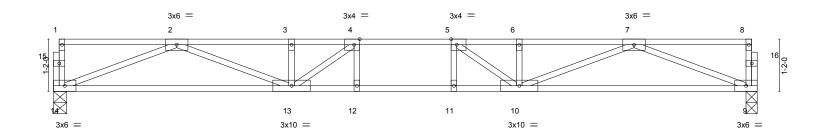
REACTIONS. (size) 14=Mechanical, 9=0-3-0 Max Grav 14=834(LC 1), 9=828(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-2769/0, 3-4=-2769/0, 4-5=-2989/0, 5-6=-2770/0, 6-7=-2770/0 TOP CHORD **BOT CHORD** 13-14=0/1781, 12-13=0/2989, 11-12=0/2989, 10-11=0/2989, 9-10=0/1779 WEBS 2-14=-1916/0, 2-13=0/1067, 7-9=-1907/0, 7-10=0/1070, 5-10=-568/70, 4-13=-568/69

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Refer to girder(s) for truss to truss connections.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.

Structural wood sheathing directly applied or 6-0-0 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

Job	Truss	Truss Type	Qty	Ply	Precision/Lot 65 Summerlin/Harnett	
					E149506	86
J0920-4360	F7	Floor	4	1		
					Job Reference (optional)	
Comtech, Inc, Fayettev	ille, NC - 28314,		8	.330 s Jul	22 2020 MiTek Industries, Inc. Wed Oct 7 09:21:39 2020 Page 1	
		ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-9p_jk0Z_nhQ0h0lGOz1XERafOtENF8NbzVCHQ_yVreA				

0-1-8 0-1-8 Scale = 1:25.7 2-6-0 2-0-8 $H \vdash$

15-8-8 15-8-8									
Plate Offsets (X,Y) [4:0-1-8,Edge], [5:0-1-8,Edge]									
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L	./d PLATES GRIP					
TCLL 40.0	Plate Grip DOL 1.00	TC 0.41	Vert(LL) -0.19 11-12 >961 4	80 MT20 244/190					
TCDL 10.0	Lumber DOL 1.00	BC 0.72	Vert(CT) -0.27 11-12 >689 3	60					
BCLL 0.0	Rep Stress Incr YES	WB 0.53	Horz(CT) 0.05 9 n/a r	n/a					
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S		Weight: 77 lb FT = 20%F, 11%E					

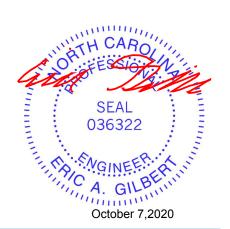
BOT CHORD

LUMBER-**BRACING-**TOP CHORD

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)

WEBS 2x4 SP No.3(flat)

REACTIONS. (size) 14=0-3-8, 9=0-3-0


Max Grav 14=844(LC 1), 9=844(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-2850/0, 3-4=-2850/0, 4-5=-3105/0, 5-6=-2850/0, 6-7=-2850/0 TOP CHORD 13-14=0/1818, 12-13=0/3105, 11-12=0/3105, 10-11=0/3105, 9-10=0/1818 **BOT CHORD**

WEBS 2-14=-1950/0, 2-13=0/1113, 7-9=-1950/0, 7-10=0/1113, 5-10=-607/51, 4-13=-607/51

NOTES-

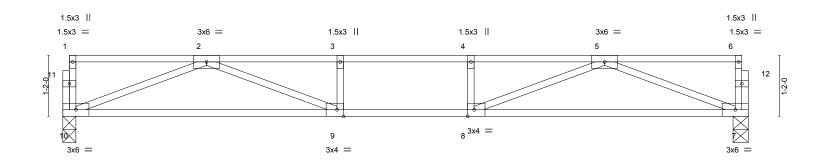
- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 1.5x3 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type		Qty	Ply	Precision/Lot 65 Summerlin/Harnett	
						E14950669)
J0920-4360	F8	FLOOR		7	1		
						Job Reference (optional)	
Comtech, Inc, Fayettev	/ille, NC - 28314,			8	.330 s Jul	22 2020 MiTek Industries, Inc. Wed Oct 7 09:21:40 2020 Page 1	
•			ID:J.	lp3 bNirdp	eLXA5mD	h?5?y7p3U-d0Y5xMadY?Ytl9KSxhYmmf7pYHd0_dllC9xryRyVre9	
0-1-8				. – .			
0-1-8							
∟ ∟ 2-6	3-0		2-4-8			0- <u>1-</u> 8	
111	Į.					Scale = 1:22	.1

	6-5-12 6-5-12		7-7-0 1-1-4	1	13-1-8 5-6-8		
Plate Offsets (X,Y)	[8:0-1-8,Edge], [9:0-1-8,Edge]						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.51 BC 0.57 WB 0.43 Matrix-S	(/	in (loc) l/defl -0.20 9-10 >787 -0.27 9-10 >569 0.03 7 n/a		PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%F, 11%E

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x4 SP No.1(flat) TOP CHORD 2x4 SP No.1(flat)

BOT CHORD **WEBS** 2x4 SP No.3(flat)

REACTIONS. (size) 10=0-3-0, 7=0-3-8

Max Grav 10=702(LC 1), 7=702(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-2160/0, 3-4=-2160/0, 4-5=-2160/0 TOP CHORD BOT CHORD 9-10=0/1456, 8-9=0/2160, 7-8=0/1456

WEBS 2-10=-1560/0, 2-9=0/870, 5-7=-1560/0, 5-8=0/870

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

Job Truss Truss Type Qty Ply Precision/Lot 65 Summerlin/Harnett E14950670 J0920-4360 F9-GR FLOOR GIRDER Job Reference (optional) Fayetteville, NC - 28314, 8.330 s Jul 22 2020 MiTek Industries, Inc. Wed Oct 7 09:21:40 2020 Page 1 Comtech, Inc. ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-d0Y5xMadY?Ytl9KSxhYmmf7vvHh9_dylC9xryRyVre9 1-3-0 1-10-12 0-1-8 Scale = 1:10.1 3x6 || 4x6 -11 6x6 = 2x6 || 2 3 9 1-2-0 1.5x3 || 3x6 =3x4 =3x6 = 1-7-8 0-11-6 0-11-6 1-7-8 Plate Offsets (X,Y)--[2:0-3-0,Edge], [4:0-3-0,Edge], [7:0-1-8,Edge], [9:0-1-8,0-0-8] LOADING (psf) SPACING-2-0-0 DEFL. in (loc) I/defl L/d **PLATES** GRIP TCLL 40.0 Plate Grip DOL 1.00 TC 0.10 Vert(LL) -0.02 6-7 >999 480 MT20 244/190 **TCDL** вс -0.02 10.0 Lumber DOL 1.00 0.30 Vert(CT) 6-7 >999 360 WB **BCLL** 0.0 Rep Stress Incr 0.38 0.01 Horz(CT) n/a n/a **BCDL** 5.0 Code IRC2015/TPI2014 Matrix-P Weight: 37 lb FT = 20%F, 11%E

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)

WEBS 2x4 SP No.3(flat)

REACTIONS. (size) 8=Mechanical, 5=0-3-8

Max Grav 8=1003(LC 1), 5=997(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1355/0

BOT CHORD 7-8=0/1355, 6-7=0/1341, 5-6=0/1341

WEBS 2-8=-1640/0, 3-5=-1616/0

NOTES-

- 1) Plates checked for a plus or minus 1 degree rotation about its center.
- 2) Refer to girder(s) for truss to truss connections.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) CAUTION, Do not erect truss backwards.
- 5) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 734 lb down at 1-10-4, and 734 lb down at 3-10-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 6) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

 Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 5-8=-10, 1-4=-100 Concentrated Loads (lb)

Vert: 2=-734(F) 3=-734(F)

SEAL 036322

Structural wood sheathing directly applied or 5-1-12 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

October 7,2020

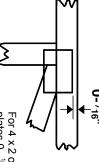
MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITE-Rice Modes on the Sand Involude mit at Herence Face min-14/3 rev. 3/19/20/20 EPCHE USE.

Design valid for use only with MITE-Rice component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Symbols

PLATE LOCATION AND ORIENTATION

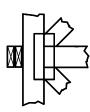
offsets are indicated Center plate on joint unless x, y and fully embed teeth Dimensions are in ft-in-sixteenths Apply plates to both sides of truss

edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

connector plates required direction of slots in This symbol indicates the

* Plate location details available in MiTek 20/20 software or upon request

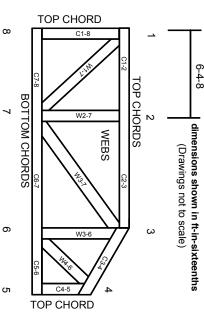
PLATE SIZE


to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

output. Use T or I bracing if indicated. by text in the bracing section of the Indicated by symbol shown and/or

BEARING


Min size shown is for crushing only number where bearings occur. reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings

Industry Standards:

National Design Specification for Metal Guide to Good Practice for Handling **Building Component Safety Information** Design Standard for Bracing Connected Wood Trusses Installing & Bracing of Metal Plate Plate Connected Wood Truss Construction.

DSB-89: ANSI/TPI1:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

truss unless otherwise shown. Trusses are designed for wind loads in the plane of the

established by others. section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Failure to Follow Could Cause Property

- Damage or Personal Injury

 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Ņ Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- ω Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- 4 Provide copies of this truss design to the building all other interested parties. designer, erection supervisor, property owner and
- Cut members to bear tightly against each other
- Place plates on each face of truss at each locations are regulated by ANSI/TPI 1. joint and embed fully. Knots and wane at joint

ტ 5

- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication

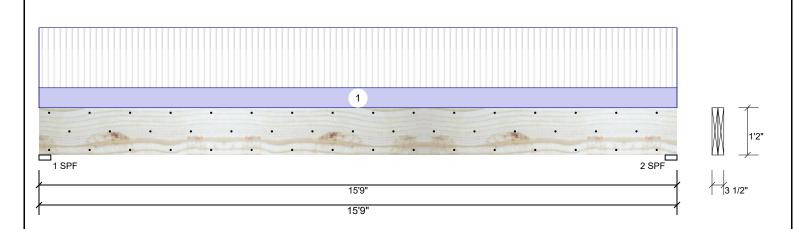
œ

.7

- 9 Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted

4

- Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable project engineer before use environmental, health or performance risks. Consult with
- Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.


Client: Project: Address: 10/30/2020

Designer: Neal Baggett Job Name: Lot 65 Summerlin

Project #:

1.750" X 14.000" 2-Ply - PASSED **Kerto-S LVL**

Level: Level

Member Information Reactions UNPATTERNED Ib (Uplift) Application: Brg Dead Snow Wind Type: Floor Live Const Plies: 2 Design Method: ASD 2701 984 0 0 0 1 Moisture Condition: Dry **Building Code:** IBC 2012 2701 2 984 0 0 0 Deflection LL: 360 Load Sharing: No Deflection TL: 240 Deck: Not Checked Importance: Normal Temp <= 100°F Temperature: **Bearings** Bearing Length Cap. React D/L lb Total Ld. Case Ld. Comb. 1-SPF 3.500" 984 / 2701 3685 L D+L 2 - SPF 3.500" 71% 984 / 2701 3685 L D+I

Analysis Results

Analysis Actual Location Allowed Capacity Comb. Case Moment 13676 ft-lb 7'10 1/2" 26999 ft-lb 0.507 (51%) D+L L Unbraced 13676 ft-lb 7'10 1/2" 13717 ft-lb 0.997 (100%) D+L L Shear 3565 lb 1'4 3/4" 10453 lb 0.341 (34%) D+L L LL Defl inch 0.287 (L/639) 7'10 9/16" 0.510 (L/360) 0.560 (56%) L L TL Defl inch 0.392 (L/468) 7'10 9/16" 0.765 (L/240) 0.510 (51%) D+L L	•						
Unbraced 13676 ft-lb 7'10 1/2" 13717 ft-lb 0.997 (100%) D+L L Shear 3565 lb 1'4 3/4" 10453 lb 0.341 (34%) D+L L LL Defl inch 0.287 (L/639) 7'10 9/16" 0.510 (L/360) 0.560 (56%) L L	Analysis	Actual	Location	Allowed	Capacity	Comb.	Case
(100%) Shear 3565 lb 1'4 3/4" 10453 lb 0.341 (34%) D+L L LL Defl inch 0.287 (L/639) 7'10 9/16" 0.510 (L/360) 0.560 (56%) L L	Moment	13676 ft-lb	7'10 1/2"	26999 ft-lb	0.507 (51%)	D+L	L
LL Defl inch 0.287 (L/639) 7'10 9/16" 0.510 (L/360) 0.560 (56%) L L	Unbraced	13676 ft-lb	7'10 1/2"	13717 ft-lb		D+L	L
	Shear	3565 lb	1'4 3/4"	10453 lb	0.341 (34%)	D+L	L
TL Defl inch 0.392 (L/468) 7'10 9/16" 0.765 (L/240) 0.510 (51%) D+L L	LL Defl inch	0.287 (L/639)	7'10 9/16"	0.510 (L/360)	0.560 (56%)	L	L
	TL Defl inch	0.392 (L/468)	7'10 9/16"	0.765 (L/240)	0.510 (51%)	D+L	L

Design Notes

- 1 Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not to exceed 6".
- 2 Refer to last page of calculations for fasteners required for specified loads.
- 3 Girders are designed to be supported on the bottom edge only.
- 4 Top must be laterally braced at a maximum of 7'4 7/8" o.c.
- 5 Bottom braced at bearings.
- 6 Lateral slenderness ratio based on single ply width.

		3 1 7									
ID	Load Type	Location	Trib Width	Side	Dead 0.9	Live 1	Snow 1.15	Wind 1.6	Const. 1.25	Comments	
1	Uniform			Near Face	114 PLF	343 PLF	0 PLF	0 PLF	0 PLF	F4	
	Self Weight				11 PLF						

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

- LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals Damaged Beams must not be used
- Design assumes top edge is laterally restrained
 Provide lateral support at bearing points to avoid
 lateral displacement and rotation

6. For flat roofs provide proper drainage to prevent ponding

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633

Manufacturer Info

Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC USA 28314 910-864-TRUS

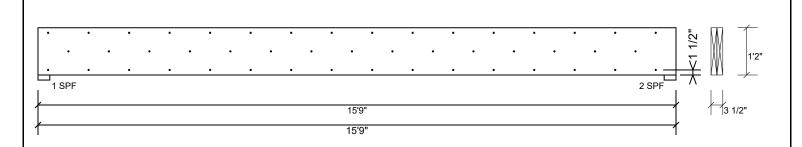
Page 1 of 6

This design is valid until 12/11/2021

isDesign™

Client: Project: Address:

10/30/2020 Designer: Neal Baggett


Job Name: Lot 65 Summerlin

Page 2 of 6

Project #:

1.750" X 14.000" 2-Ply - PASSED **Kerto-S LVL**

Level: Level

Multi-Ply Analysis

Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c.. Maximum end distance not to exceed 6"

1 3		•	
Capacity	93.1 %		
Load	228.5 PLF		
Yield Limit per Foot	245.6 PLF		
Yield Limit per Fastener	81.9 lb.		
Yield Mode	IV		
Edge Distance	1 1/2"		
Min. End Distance	3"		
Load Combination	D+L		
Duration Factor	1.00		

Notes

NOtes
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

- Informing & Installation

 I. VIL beams must not be cut or drilled

 Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals

 Damaged Beams must not be used

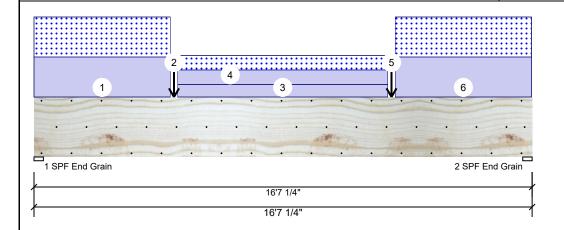
 Design assumes top edge is laterally restrained

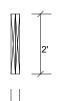
 Design assumes top edge is laterally restrained is provide lateral support at bearing points to avoid lateral displacement and rotation

For flat roofs provide proper drainage to prevent ponding

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633

Manufacturer Info


Client: Project: Address: 10/30/2020


Designer: Neal Baggett Job Name: Lot 65 Summerlin

Project #:

1.750" X 24.000" 2-Ply - PASSED **Kerto-S LVL**

Level: Level

Page 3 of 6

Member Information

Type: Plies: 2 Moisture Condition: Dry Deflection LL: 480 Deflection TL: 360 Importance: Normal Temperature: Temp <= 100°F

Application: Floor Design Method: ASD **Building Code:** IBC 2012

Load Sharing: No

Deck: Not Checked

Reactions UNPATTERNED Ib (Uplift)

Brg	Live	Dead	Snow	Wind	Const
1	0	5660	5085	0	0
2	0	5646	5072	0	0

Bearings

Grain

Bearing Length Cap. React D/L lb Total Ld. Case Ld. Comb. 1-SPF 3.750" 5660 / 5085 10745 L D+S End Grain 2 - SPF 3.750" 5646 / 5072 10718 L D+S End

Analysis Results

Analysis	Actual	Location	Allowed	Capacity	Comb.	Case
Moment	41877 ft-lb	8'3 7/8"	84163 ft-lb	0.498 (50%)	D+S	L
Unbraced	41877 ft-lb	8'3 7/8"	41979 ft-lb	0.998 (100%)	D+S	L
Shear	9001 lb	2'2 7/8"	20608 lb	0.437 (44%)	D+S	L
LL Defl inch	0.146 (L/1324)	8'3 11/16"	0.403 (L/480)	0.360 (36%)	S	L
TL Defl inch	0.315 (L/615)	8'3 11/16"	0.538 (L/360)	0.590 (59%)	D+S	L

Design Notes

- 1 Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not to exceed 6".
- 2 Refer to last page of calculations for fasteners required for specified loads.
- 3 Girders are designed to be supported on the bottom edge only.
- 4 Top loads must be supported equally by all plies.
- 5 Top must be laterally braced at a maximum of 4'1 7/8" o.c.
- 6 Bottom braced at bearings.
- 7 Lateral slenderness ratio based on single ply width.

ID	Load Type	Location	Trib Width	Side	Dead 0.9	Live 1	Snow 1.15	Wind 1.6	Const. 1.25	Comments
1	Part. Uniform	0-0-0 to 4-6-8		Тор	380 PLF	0 PLF	380 PLF	0 PLF	0 PLF	C2
2	Point	4-8-0		Тор	2873 lb	0 lb	2873 lb	0 lb	0 lb	C3
3	Part. Uniform	4-9-8 to 11-9-8		Тор	120 PLF	0 PLF	0 PLF	0 PLF	0 PLF	WALL
4	Part. Uniform	4-9-8 to 11-9-8		Тор	137 PLF	0 PLF	137 PLF	0 PLF	0 PLF	C4
5	Point	11-11-0		Тор	2873 lb	0 lb	2873 lb	0 lb	0 lb	C3
6	Part. Uniform	12-0-8 to 16-7-0		Тор	380 PLF	0 PLF	380 PLF	0 PLF	0 PLF	C2
	Self Weight				19 PLF					

Notes

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive
- Handling & Installation
- LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code

 - Damaged Beams must not be used

 - Design assumes top edge is laterally restrained
 Provide lateral support at bearing points to avoid
 lateral displacement and rotation

6. For flat roofs provide proper drainage to prevent ponding

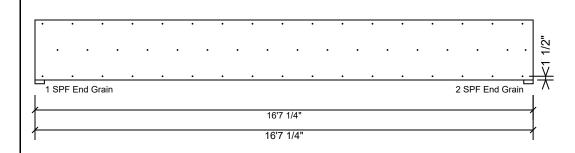
This design is valid until 12/11/2021

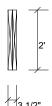
Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633

Manufacturer Info

isDesign™

Client:


Project: Address: 10/30/2020


Designer: Neal Baggett Job Name: Lot 65 Summerlin

Project #:

1.750" X 24.000" 2-Ply - PASSED **Kerto-S LVL**

Level: Level

Page 4 of 6

Multi-Ply Analysis

Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c.. Maximum end distance not to exceed 6"

Capacity	0.0 %
Load	0.0 PLF
Yield Limit per Foot	245.6 PLF
Yield Limit per Fastener	81.9 lb.
Yield Mode	IV
Edge Distance	1 1/2"
Min. End Distance	3"
Load Combination	
Duration Factor	1.00

Notes

NOtes
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

- Handling & Installation

 1. UVI beams must not be cut or drilled

 2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals

 3. Damaged Beams must not be used

 4. Design assumes top edge is laterally restrained

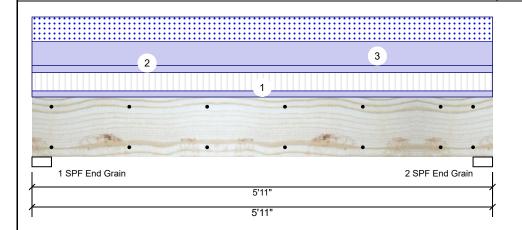
 5. Provide lateral support at bearing points to avoid lateral displacement and rotation

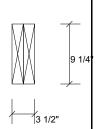
6. For flat roofs provide proper drainage to prevent ponding

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633

Manufacturer Info

Client: Project: Address:


10/30/2020 Designer: Neal Baggett


Project #:

1.750" X 9.250" 2-Ply - PASSED **Kerto-S LVL**

Level: Level

Job Name: Lot 65 Summerlin

Page 5 of 6

Member Information

Type: Plies: 2 Moisture Condition: Dry Deflection LL: 480 Deflection TL: 360 Importance: Temperature: Temp <= 100°F

Normal

Application: Design Method: ASD **Building Code:** IBC 2012 Load Sharing: No Deck: Not Checked

Reactions UNPATTERNED Ib (Uplift)

Brg	Live	Dead	Snow	Wind	Const
1	926	1915	1231	0	0
2	926	1915	1231	0	0

Analysis Results

Analysis Actual Location Allowed Capacity Comb. Case Moment 4583 ft-lb 2'11 1/2" 14423 ft-lb 0.318 (32%) D+0.75(L+S) L Unbraced 4583 ft-lb 2'11 1/2" 11027 ft-lb 0.416 (42%) D+0.75(L+S) L 2388 lb Shear 4'11 1/2" 7943 lb 0.301 (30%) D+0.75(L+S) L LL Defl inch 0.033 (L/2040) 2'11 1/2" 0.139 (L/480) 0.240 (24%) 0.75(L+S) L TL Defl inch 0.071 (L/934) 2'11 1/2" 0.185 (L/360) 0.390 (39%) D+0.75(L+S) L

Bearings

End

Grain

Bearing Length Cap. React D/L lb Total Ld. Case Ld. Comb. 1-SPF 3.000" 1915 / 1617 3532 L D+0.75(L+S) End Grain 2 - SPF 3.000" 1915 / 1617 D+0.75(L+S) 3532 L

Design Notes

- 3 Girders are designed to be supported on the bottom edge only.
- 4 Top loads must be supported equally by all plies.

Uniform

- 5 Top braced at bearings.
- 6 Bottom braced at bearings.

1 Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not
to exceed 6".
2 Refer to last page of calculations for fasteners required for specified loads.

7 Lateral slenderness ratio based on single ply width.

ID	Load Type	Location	Trib Width	Side	Dead 0.9	Live 1	Snow 1.15	Wind 1.6	Const. 1.25	Comments
1	Uniform			Тор	104 PLF	313 PLF	0 PLF	0 PLF	0 PLF	
2	Uniform			Тор	120 PLF	0 PLF	0 PLF	0 PLF	0 PLF	

Top

Self Weight 7 PLF

3

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code

Damaged Beams must not be used

Design assumes top edge is laterally restrained
Provide lateral support at bearing points to avoid
lateral displacement and rotation

6. For flat roofs provide proper drainage to prevent ponding

This design is valid until 12/11/2021

416 PLF

0 PLF

416 PLF

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633

Manufacturer Info

0 PLF

0 PLF

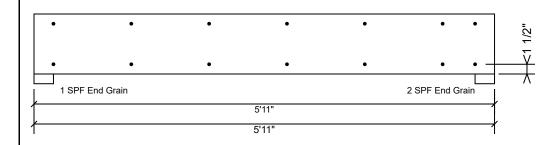
isDesign™

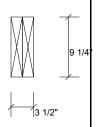
Client: Project:

Address:

10/30/2020

Designer: Neal Baggett Job Name: Lot 65 Summerlin


Project #:


Kerto-S LVL

1.750" X 9.250"

2-Ply - PASSED

Level: Level

Page 6 of 6

Multi-Ply Analysis

Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12" o.c.. Maximum end distance not to exceed 6"

1 3	` ,
Capacity	0.0 %
Load	0.0 PLF
Yield Limit per Foot	163.7 PLF
Yield Limit per Fastener	81.9 lb.
Yield Mode	IV
Edge Distance	1 1/2"
Min. End Distance	3"
Load Combination	
Duration Factor	1.00

Notes

NOtes
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

- Handling & Installation

 1. UVI beams must not be cut or drilled

 2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals

 3. Damaged Beams must not be used

 4. Design assumes top edge is laterally restrained

 5. Provide lateral support at bearing points to avoid lateral displacement and rotation

6. For flat roofs provide proper drainage to prevent ponding

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633

Manufacturer Info

Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC USA 28314 910-864-TRUS

This design is valid until 12/11/2021