

Trenco 818 Soundside Rd Edenton, NC 27932

Re: Q-2001256-1 156 East Main-Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Peak Truss Builders, LLC.

Pages or sheets covered by this seal: E14474687 thru E14474704

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

June 4,2020

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	156 East Main-Roof	
Q-2001256-1	T1	Common	2	1	Job Reference (optional)	E14474687

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Thu Jun 04 09:29:39 ID:AIUXXEpxU8hdLvHhMJi4PDzBeo0-2eV9wkHoXEhdeHlygCsicqghip7bzt1fA4U?B_z9iQj

Scale = 1:62.7

Plate Offsets (X, Y): [2:0-0-4,Edge]

L oading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.38 0.81 0.64	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.47 -0.70 0.03	(loc) 13-15 13-15 10	l/defl >653 >434 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 179 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.1 2x4 SP No.3 2x4 SP No.3 Structural we 4-2-1 oc pur Rigid ceiling bracing, Ex 5-7-6 oc bra 1 Row at min (size) 2= Max Horiz 2= Max Horiz 2= Max Horiz 2= 12 Max Grav 2 (b) - Maximu	ood shea lins. directly ccept: cing: 12- dpt =-0-3-8, 1 =-138 (LC =-137 (LC 2=-177 (L 2=-177 (L 2=-177 (L 2=-1352 (um Com	athing directly applie applied or 10-0-0 oc -13. 6-13 0=0-3-8, 12=0-3-8 C 9) C 11), 10=-67 (LC 1 ⁻¹ LC 11) C 1), 10=407 (LC 21 LC 1) Dreession/Maximum	2) d or 3) 1), 4) 1), 5)	Wind: ASCE Vasd=95mph B=20ft; L=34 MWFRS (dire 2-4-6, Interior to 20-2-2, Intr left and right exposed;C-C reactions sho DOL=1.60 * This truss h on the bottom 3-06-00 tall b chord and an Provide mech bearing plate joint 2, 177 lb This truss is o International	7-10; Vult=120mph ; TCDL=6.0psf; BC t; eave=4ft; Cat. II; ectional) and C-C E (1) 2-4-6 to 16-9-1 (1) 20-2-2 to 3 exposed ; end verti for members and f wn; Lumber DOL= as been designed f n chord in all areas y 2-00-00 wide will y other members, v nanical connection capable of withstau uplift at joint 12 and designed in accorda Building Code sect	(3-sec DL=6.(Exp B; xterior 2, Exte 4-7-8 z cal left orces & 1.60 pla or a liv, where fit betw vith BC (by othe nding 1 d 67 lb ance with on 230	ond gust) psf; h=30ft; Enclosed; (2) -1-0-0 to (2) -1-0-0 to	12 er ypsf o 10.						
TOP CHORD	Tension 1-2=0/27, 2- 3-4=-1390/1 5-24=-1406/ 6-25=-650/2 7-8=-693/12 10-26=-337/	23=-176 72, 4-5= 285, 6-2 28, 7-25 0, 8-9=-7 36, 10-1	3/243, 3-23=-1729/2 -1378/202, 4=-1341/312, =-715/202, 705/90, 9-26=-301/6: 1=0/27	269, LC 2,	referenced st DAD CASE(S)	andard ANSI/TPI 1 Standard						and a	WITH CA	ROLINI	
BOT CHORD	2-16=-147/1 15-27=0/729 13-28=0/729	611, 15- 9, 14-27= 9, 12-13=	16=-147/1611, ⊧0/729, 14-28=0/729 ⊧-811/216, 10-12=0/2	, 269							4	ÌÌ		A A	7
WEBS	5-15=-339/1 3-15=-428/1 9-13=-160/1	80, 6-15 66, 6-13 567, 9-1	=-142/993, =-342/0, 7-13=-340/ 2=-1608/283	177,							11111		SEA 0363	L 22	WITH I
NOTES I) Unbalance this design	ed roof live load 1.	ds have	been considered for								114.	In the second se	A. G	E.R. K.	un.

ľ

June 4,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	156 East Main-Roof	
Q-2001256-1	T1A	Common	5	1	Job Reference (optional)	E14474688

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Thu Jun 04 09:29:42 ID:pnheTWlpfc3KE8PkZm7viAzBeo5-Obl2_RLxMnJvk2evTmStJuNXtqpReAsOKMBmsBz9iQe

4 09:29:42 Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP17 Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

June 4,2020

Job	Truss	Truss Type	Qty	Ply	156 East Main-Roof	
Q-2001256-1	T1B	Common	7	1	Job Reference (optional)	E14474689

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.57 0.90 0.38	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.58 -0.82 0.09	(loc) 13-15 13-15 11	l/defl >685 >479 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 172 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Right 2x4 SP No.3 Structural wood shea 3-4-15 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 1 Max Horiz 2=133 (LC Max Uplift 2=-197 (L0 Max Grav 2=1374 (L (lb) - Maximum Com Tension 1-2=0/27, 2-23=-242 3-4=-2053/262, 4-5= 5-24=-2052/376, 6-2 6-25=-1901/398, 7-2 7-8=-1948/285, 8-9= 9-26=-2129/331, 10-	2-0-0 athing directly applie applied or 10-0-0 oc 1= Mechanical ; 10) C 11), 11=-161 (LC C 1), 11=1312 (LC opression/Maximum 6/333, 3-23=-2392/3 -2039/292, 4=-1975/403, 5=-1982/372, -1949/255, 26=-2176/313,	2) d or ; 3) 11) 1) 4) 5) 358, 6) LC	Wind: ASCE Vasd=95mph B=20ft; L=33 MWFRS (dird 2-3-6, Interio to 20-1-2, Int left and right exposed;C-C reactions sho DOL=1.60 * This truss h on the bottom 3-06-00 tall b chord and an Refer to girdd Provide mech bearing plate joint 2 and 16 This truss is of International referenced st DAD CASE(S)	7-10; Vult=120mp n; TCDL=6.0psf; Bu ft; eave=4ft; Cat. Il ectional) and C-C I r (1) 2-3-6 to 16-9- erior (1) 20-1-2 to exposed ; end ver c for members and pown; Lumber DOL= has been designed n chord in all areas py 2-00-00 wide will yo other members, er(s) for truss to tru- hanical connections c capable of withsta 51 Ib uplift at joint a designed in accorrc Building Code sec- tandard ANSI/TPI Standard	h (3-sec CDL=6.(; Exp B; Exterior 12, Exte 32-10-0 tical left forces & =1.60 pla for a live s where I fit betw with BC uss conn (by othe anding 1 11. Jance wit tion 230 1.	ond gust))psf; h=30ft; Enclosed; (2) -1-0-0 to (2) -1-0-0 to (2) -1-0-0 to (2) -1-0-0 to (2) -1-0-0 to (2) -0-0 to (2) -0 to (2) -0-0 to (2) -0 to (2) -	12 ver m					
BOT CHORD	10-11=-595/0 2-15=-263/2150, 14- 14-27=-38/1275, 13- 12-13=-229/1883, 11 5-15=-340/181, 6-15	15=-38/1275, 27=-38/1275, -12=-229/1883 148/093								4	111	ORTH CA	ROLIN
NOTES 1) Unbalance this design	3-15=-424/164, 6-13 7-13=-379/187, 9-13 ed roof live loads have n.	=-140/880, =-140/880, =-238/130 been considered for								VIIIIIIIII		SEA 0363	L 22

THE PIC G 11111111 June 4,2020

Job	Truss	Truss Type	Qty	Ply	156 East Main-Roof	
Q-2001256-1	T1GE	Common Supported Gable	1	1	Job Reference (optional)	E14474690

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Thu Jun 04 09:29:42 ID:Lb7GGAkBulxTd_qY?2bg9yzBeo6-snsQBnMZ74RmMCD51Tz6s5wk0EH1NjQXY0xJOdz9iQd

Page: 1

June 4,2020

818 Soundside Road Edenton, NC 27932

Scale = 1:61.1

Plate Offsets (X, Y): [3:0-2-8,0-1-8], [15:0-2-8,0-1-8], [34:0-3-0,0-1-4]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC20	015/TPI2014		CSI TC BC WB Matrix-MS	0.26 0.36 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.06 -0.12 0.01	(33 33	loc) 3-35 3-35 39	l/defl >999 >675 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 208 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceili bracing. 1 Row at (size)	o.1 o.3 I wood sheat purlins. ing directly midpt 1=0-3-8, 1 20=27-2-0 23=27-2-0 30=27-2-0 39=27-2-0	athing directly applie applied or 10-0-0 oc 9-27 7=27-2-0, 19=27-2- , 21=27-2-0, 22=27- , 24=27-2-0, 25=27- , 28=27-2-0, 29=27- , 31=27-2-0, 32=27-	o, 2-0, -2-0, -2-0, -2-0, -2-0, -2-0,	TOP CHORD	1. 3. 6. 8. 1. 1. 1. 1. 3. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	-2=-146/66, 2-42= -4=-85/93, 4-5=-1 -7=-84/168, 7-43= -9=-99/246, 9-10= 1-44=-86/199, 11- 2-13=-59/126, 133 -5-16=-81/16, 16-4 7-18=0/27 -35=-27/121, 34-5 -3-34=-27/121, 32- 1-32=-28/129, 28 -7-2828/129, 28 -5-26=-28/129, 24 -22=-28/129, 24 -22=	95/77, 25/101, 95/200 99/245 -12=-71/ 14=-60/ 15=-71/3 35=-27/1 -33=-28/ -31=-28/ -29=-28/ -25=-28/ -25=-28/ -23=-28/ -23=-28/	3-42=-90/89, 5-6=-79/124, 8-43=-76/21(10-44=-76/2(166, 86, 14-15=-67 2, 17-45=-83/1 21, 129,),)9, /42, 9,	3) 4) 5) 6) 7)	Truss only. see S or cor All pla Gable * This on the 3-06-0 chord Provid bearir 1, 30 uplift joint 3 Ib upli	s desig For stu itandar hsult qu ates are s studs t truss l b bottor 00 tall l and ar de mec ng plate lb uplifi at joint 32, 30 ll	ned fo uds ex d Indu ualifiec e 2x4 I space nas be m choi by 2-0 hy othe hanica e capa t at join 30, 10 b uplifi int 23,	r wind loads in the posed to wind (r stry Gable End I d building design MT20 unless oth d at 2-0-0 oc. en designed for rd in all areas who -00 wide will fit er members. al connection (by ble of withstandi nt 28, 37 lb upliff 21 b uplift at join t at joint 25, 40 ll 35 lb uplift at join	he plane of the truss normal to the face), Details as applicable, er as per ANSI/TPI 1. erwise indicated. a live load of 20.0psf here a rectangle between the bottom v others) of truss to ing 6 lb uplift at joint t at joint 29, 50 lb t 31, 140 lb uplift at b uplift at joint 24, 36 nt 22, 42 lb uplift at
	Max Horiz Max Uplift	1=-137 (LC 1=-6 (LC 1 19=-35 (LC 21=-42 (LC 23=-36 (LC 25=-30 (LC 29=-37 (LC 31=-102 (L 39=-25 (L)	C 9) 11), 17=-25 (LC 11), C 11), 20=-34 (LC 1 C 11), 22=-35 (LC 1 C 11), 24=-40 (LC 1 C 11), 24=-40 (LC 1 C 11), 30=-50 (LC 1 LC 20), 32=-140 (LC C 11)	1), 1), 1), 1), 1), 2 11),	WEBS NOTES 1) Unbalance	19 9 6 3 1 1 1 1 1 1	9-20=-23/122, 17 -27=-135/16, 8-28 -30=-141/75, 5-31 -33=-109/73, 2-35 1-24=-119/83, 12 3-22=-117/66, 14 5-20=-106/62, 16 poof live loads hav	-19=-23/ 3=-127/1 1=-22/41 5=0/47, 1 -23=-121 -21=-133 -19=-137 e been c	122 14, 7-29=-116 , 4-32=-287/13 0-25=-127/11 /66, 3/74, 7/93	/82, 33, 4,	8) LO	Joint 2 Ib upli This ti Intern refere	21, 34 li ift at joi russ is lational enced s	b uplif nt 17 desigi Buildi tanda Star	t at joint 20, 35 ll and 25 lb uplift a ned in accordanu ng Code section rd ANSI/TPI 1. ndard	b uplitt at joint 19, 25 it joint 17. ce with the 2015 a 2306.1 and
FORCES	Max Grav (Ib) - Max Tension	1=234 (LC 19=203 (L 21=176 (L 23=161 (L 25=167 (L 28=167 (L 30=225 (L 32=615 (L imum Com	(1), 17=187 (LC 1), C 21), 20=137 (LC 2) C 1), 22=156 (LC 2) C 1), 24=159 (LC 1) C 21), 27=152 (LC 2) C 20), 29=144 (LC 2) C 20), 29=144 (LC 2) C 1), 31=22 (LC 11) C 20), 39=187 (LC 2) pression/Maximum	21), 1), 11), 20), 1)	this design Wind: ASC Vasd=95m B=20ft; L=: MWFRS (c Exterior (2) 20-2-2, Ext and right e exposed;C reactions s DOL=1.60	ph: 34f ire 34f aeri xpc -C ho	7-10; Vult=120mp TCDL=6.0psf; B t; eave=2ft; Cat. I ctional) and C-C (4-6 to 16-9-12, C or (2) 20-2-2 to 3 osed ; end vertica for members and wn; Lumber DOL=	h (3-sec CDL=6.0 I; Exp B; Corner (3) 4-7-8 zor I left and forces 8 =1.60 pla	ond gust))psf; h=30ft; Enclosed; 3) 0-0-0 to 3-4 16-9-12 to he; cantilever I right MWFRS for the grip	-6, eft			Contraction of the second seco		SEA 0363	EER. R. IIII

Job	Truss	Truss Type	Qty	Ply	156 East Main-Roof	
Q-2001256-1	T1SE	Common	1	1	Job Reference (optional)	E14474691

-1-0-0 1-0-0

Scale = 1:61.7

Plate Offsets (X, Y): [2:0-6-0,0-0-6], [11:0-3-4,0-0-2], [27:0-1-15,0-1-0]

Loading TCLL (roof) TCDL BCLL BCDI		(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	5/77012014	CSI TC BC WB Matrix-MS	0.66 0.90 0.39	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.53 -0.82 0.09	(loc) 14-16 14-16 11	l/defl >650 >419 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Right 2x6 Structural 3-1-4 oc p Rigid ceili bracing. (size) Max Horiz	2-1 2.1 2.3 2.3 SP No.2 wood sheat purlins. ng directly 2=0-3-8, 1 32=4-6-8 2=133 (LC	2-0-0 athing directly applie applied or 10-0-0 oc 1=4-6-8, 12=4-6-8, : 10)	2; d or ; 3;	 Wind: ASCE Vasd=95mph B=20ft; L=33 MWFRS (dire 2-3-6, Interior to 20-1-2, Intr left and right exposed;C-C reactions sho DOL=1.60 Truss design only. For stu see Standard or consult qu 	7-10; Vult=120m, ; TCDL=6.0psf; E ft; eave=4ft; Cat. ectional) and C-C r (1) 2-3-6 to 16-S erior (1) 20-1-2 to exposed ; end ve for members an wm; Lumber DOL med for wind loads ds exposed to wi I Industry Gable F alified building & 2x4 MT20 unless	ph (3-sec 3CDL=6.0 II; Exp B; Exterior 2-12, Exter 32-10-0 rtical left d forces 8 _=1.60 pla s in the pl nd (norma End Detai ssigner as s otherwite	ond gust) Opsf; h=30ft; Enclosed; (2) -1-0-0 to rifor (2) 16-9 zone; cantile and right & MWFRS fo ate grip ane of the tr al to the face Is as applica- p per ANSI/T	-12 ever or e), able, PI 1.						
FORCES TOP CHORD	Max Hon2 Max Uplift Max Grav (lb) - Maxi Tension 1-2=0/27, 3-4=-203 5-37=-203 6-38=-187 7-8=-1903 9-39=-204 10-11=-50	2=-203 (LC 32=-200 (L 2=1363 (L 12=93 (LC imum Comp 2-36=-240)/273, 4-5= 30/387, 6-3 '0/425, 7-3: 3/314, 8-9= 18/369, 10-: 7/78	C 11), 11=-200 (LC C 11), 11=1233 (LC C 1), 11=1233 (LC c 1), 32=1233 (LC pression/Maximum 3/344, 3-36=-2368/3 -2016/303, 7=-1953/413, 8=-1938/399, -1904/284, 39=-2095/351,	11), 4, 5, 1), 6, 1), 7, 369, 7, 8,	 All plates are Gable studs : This truss h on the bottom 3-06-00 tall b chord and an Provide mech bearing plate joint 2, 200 lb This truss is (International referenced sto 	2x4 M120 unles; spaced at 2-0-0 c as been designe n chord in all area y 2-00-00 wide w y other members; nanical connectio capable of withs o uplift at joint 11 designed in accor Building Codes e andard ANSI/TPI Standard	s otherwis oc. d for a live as where a vill fit betw s, with BC on (by othe tanding 2 and 200 I rdance wi ection 230 I 1.	se indicated. a rectangle veen the bott DL = 10.0ps ers) of truss 03 lb uplift at b uplift at joi th the 2015 6.1 and	Opsf tom tf. to t nt 11.		4		OR.FESS	ROLLER	
BOT CHORD	2-16=-273 15-40=-50 13-14=-26 11-12=-26	3/2143, 15-)/1268, 14-)8/1797, 12)8/1797	16=-50/1268, 40=-50/1268, -13=-268/1797,	L		Standard							SEA 0363	L 22	NULL I
WEBS NOTES 1) Unbalance this design	5-16=-340 3-16=-423 7-14=-387 ed roof live lon.	9/181, 6-16 8/165, 6-14 7/183, 9-14 pads have	=-143/995, =-163/863, =-195/147 been considered for										A. C.	EER. K.	THE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

June 4,2020

Job	Truss	Truss Type	Qty	Ply	156 East Main-Roof	
Q-2001256-1	Т2	Common	6	1	Job Reference (optional)	E14474692

 Common
 6
 1
 Job Reference (optional)

 Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Thu Jun 04 09:29:44
 Page: 1

 ID:HzF1hsmRQvBBsI_w7Te8ENzBeo4-L_QoO7NBuOZd_MolaAULOJSrWeYf68Hhnggsx4z9iQc
 Page: 1

NOTES

1) Unbalanced roof live loads have been considered for this design.

3-12=-449/202

11-23=-8/1144, 11-24=-8/1144, 10-24=-8/1144, 8-10=-156/1747

5-10=-72/737, 7-10=-449/202, 5-12=-72/737,

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=29ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 14-3-8, Exterior (2) 14-3-8 to 17-3-8, Interior (1) 17-3-8 to 29-7-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	156 East Main-Roof	
Q-2001256-1	T2GE	Common Supported Gable	1	1	Job Reference (optional)	E14474693

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Thu Jun 04 09:29:44 ID:mApPuCn3BDJ2URZ7gB9NnbzBeo3-pA_BcTNpfihUbVNU8u?axW?8r22qreSq0KQQTWz9iQb Page: 1

June 4,2020

818 Soundside Road Edenton, NC 27932

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2	015/TPI2014	CSI TC BC WB Matrix-MS	0.05 0.02 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loo 3	c) l/defl - n/a - n/a 7 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 166 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing.	lo.1 lo.3 I wood shea purlins. ling directly	athing directly applied applied or 10-0-0 oc	d or	TOP CHORD	1-2=0/27, 2-3=-87/ 4-5=-68/72, 5-6=-7 7-8=-65/125, 8-40= 9-10=-76/204, 10-1 11-41=-53/171, 12: 12-13=-47/129, 13: 15-16=-33/26, 16-1 18-19=0/27 2-33=-28/115, 32-3	/82, 3-4= /9/66, 6-7 =-62/161 11=-76/2 -41=-62/ -14=-42/ 17=-52/9 83=-28/1		7, 1/47, 5, 3/115,	6) G 7) * 0 3 c 8) P b 2 u	able stud: This truss n the botto -06-00 tall hord and a rovide me earing pla , 25 lb upl plift at join	s space has be by 2-0 any othe chanica te capa ft at join t 29, 36	ed at 2-0-0 oc. een designed for . rd in all areas wh 0-00 wide will fit l er members. al connection (by ble of withstandi nt 18, 32 lb uplift 5 lb uplift at joint .	a live load of 20.0psf ere a rectangle between the bottom others) of truss to ng 25 lb uplift at joint at joint 28, 39 lb 30, 36 lb uplift at joint
REACTIONS	(size) Max Horiz Max Uplift	2=28-7-0, 21=28-7-0 24=28-7-0 34=28-7-0 34=28-7-0 2=-113 (L 2=-25 (LC 20=-31 (L 22=-36 (L 24=-39 (L 28=-32 (L 30=-36 (L 30=-38 (L	18=28-7-0, 20=28-7), 22=28-7-0, 23=28-7), 29=28-7-0, 26=28-7), 29=28-7-0, 30=28-7), 32=28-7-0, 33=28-7), 37=28-7-0 C 9), 34=-113 (LC 9) 11), 18=-25 (LC 11) C 11), 21=-38 (LC 11 C 11), 23=-32 (LC 11 C 11), 29=-32 (LC 11 C 11), 31=-36 (LC 11 C 11), 31=-36 (LC 11 C 11), 33=-31 (LC 11 C 11), 33=-31 (LC 11 C 11), 33=-31 (LC 11	-0, 7-0, 7-0, 7-0, 7-0, 1), 1), 1),	WEBS NOTES 1) Unbalanced	30-3128/115, 29: 28-29=-28/115, 27: 26-27=-28/115, 25: 24-25=-28/115, 23: 22-23=-28/115, 21: 20-21=-28/115, 18: 10-26=-104/0, 9-26 3-33=-120/66, 6-31 3-33=-125/90, 11-2 12-24=-119/75, 13: 14-22=-120/68, 15: 17-20=-125/89 roof live loads hav	-30=-28/ -28=-28/ -24=-28/ -22=-28/ -20=-28/ 3=-128/1 =-120/6 25=-128/ -23=-12(-21=-11)	115, 115, 115, 115, 115, 115, 13, 8-29=-118 8, 5-32=-118/ 113, %66, 3/67, considered for	0/75, 67,	3 u 2 9) T Ir 1 1 1 1 1 1 1 1 1 1	1, 38 lb up plift at join 3, 36 lb up plift at join bint 18. his truss is ternationa eferenced D CASE(S	lift at jo t 25, 39 lift at jo t 20, 25 s design d Buildi standa) Star	bint 32, 31 lb uplif b) upliff at joint 2; b) upliff at joint 2; b) upliff at joint 2; ned in accordance ing Code section rd ANSI/TPI 1. ndard	It at joint 33, 32 lb 24, 36 lb uplift at joint fr at joint 21, 31 lb 2 and 25 lb uplift at 2 and 25 lb uplift at 2 and 25 lb and 2 and 25 lb and
FORCES	30=-36 (LC 11), 31=-36 (LC 11), 32=-38 (LC 11), 33=-31 (LC 11), 34=-25 (LC 11), 37=-25 (LC 11) Max Grav 2=157 (LC 1), 18=157 (LC 1), 20=177 (LC 21), 21=155 (LC 1), 22=161 (LC 21), 23=160 (LC 21), 24=159 (LC 1), 25=168 (LC 20), 29=159 (LC 1), 30=160 (LC 20), 31=161 (LC 20), 32=155 (LC 1), 33=177 (LC 20), 34=157 (LC 1), 37=157 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension				 this design. Wind: ASCE Vasd=95mp B=20ft; L=2: MWFRS (dii 2-3-8, Exter 17-3-8, Exter and right ex exposed; C-(reactions sh DOL=1.60 Truss desig only. For st see Standar or consult q All plates ar 	F7-10; Vult=120mp h, TCDL=6.0psf; B 9ff; eave=2ft; Cat. 1 rectional) and C-C (ior (2) 2-3-8 to 14-3 rior (2) 17-3-8 to 25 posed ; end vertica C for members and own; Lumber DOL= ned for wind loads uds exposed to win d Industry Gable E Jailfied building des e 2x4 MT20 unless	h (3-sec CDL=6.(I; Exp B; Corner (: 3-8, Corn 9-7-0 zoo I left and forces 8 =1.60 pla in the pl id (norm nd Detai signer as otherwis	ond gust) physi; h=30ft; Enclosed; 3) -1-0-0 to ter (3) 14-3-8 re; cantilever I right & MWFRS for ate grip ane of the tru: al to the face) Is as applicab per ANSI/TP se indicated.	to left ss , le, I 1.		4	A DAY AND	SEA 0363	

- 4) All plates are 2x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing.

Job	Truss	Truss Type	Qty	Ply	156 East Main-Roof			
Q-2001256-1	T3GE	Common Supported Gable	1	1	Job Reference (optional)	E14474694		

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries. Inc. Thu Jun 04 09:29:45 ID:Lb7GGAkBulxTd_qY?2bg9yzBeo6-pA_BcTNpfihUbVNU8u?axW?7i21srdfq0KQQTWz9iQb

Page: 1

- 14=42 (LC 11) FORCES (lb) - Maximum Compression/Maximum Tension 1-2=-81/275, 2-3=-18/254, 3-4=-16/253, TOP CHORD 4-5=-15/255, 5-6=-17/250, 6-7=-81/277, 7-8=0/33 1-13=-188/122, 12-13=-188/122, BOT CHORD 11-12=-188/122, 10-11=-188/122,
- 9-10=-188/122, 7-9=-188/122 WEBS 4-11=-355/0, 3-12=-121/70, 2-13=-158/93, 5-10=-111/69, 6-9=-170/91
- NOTES

Loading

TCDI

BCLL

BCDL

1) Unbalanced roof live loads have been considered for this design

- chord and any other members. Provide mechanical connection (by others) of truss to
- 8) bearing plate capable of withstanding 100 lb uplift at joint 1, 41 lb uplift at joint 12, 80 lb uplift at joint 13, 39 lb uplift at joint 10, 76 lb uplift at joint 9 and 100 lb uplift at joint 1.
- This truss is designed in accordance with the 2015 9) International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	156 East Main-Roof	
Q-2001256-1	T3GRD	Common Girder	1	3	Job Reference (optional)	E14474695

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Thu Jun 04 09:29:45 ID:AIUXXEpxU8hdLvHhMJi4PDzBeo0-HMYZpoORQ?pLDfygibWpTkYHTRCSa_J_E_9z?yz9iQa Page: 1

Scale = 1:43.2 Plate Offsets (X, Y): [1:0-6-0,0-0-12], [5:0-6-0,0-0-12], [7:0-2-12,0-4-4], [8:0-2-12,0-4-4]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	_
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.19	Vert(LL)	-0.04	7-14	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.83	Vert(CT)	-0.08	7-14	>999	180			
BCLL	0.0*	Rep Stress Incr	NO		WB	0.58	Horz(CT)	0.02	5	n/a	n/a			
BCDL	10.0	Code	IBC2015	5/TPI2014	Matrix-MS							Weight: 233 lb	FT = 20%	
AUDESS NOTES NOTES 1) 3-ply truss (0.131"x3" Top chord BOT CHORD WEBS NOTES 1) 3-ply truss (0.131"x3" Top chord oc. Bottom chust staggered Web connut CASE(S) s provided to unless oth	0.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 2x4 SP No.1 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, Max Horiz 1=-88 (LG Max Uplift 1=-598 (L Max Grav 1=4517 ((lb) - Maximum Con Tension 1-2=-6258/854, 2-3: 3-4=-6588/939, 4-5: 1-15=-633/5194, 15 8-16=-633/5194, 15 8-16=-633/5194, 15 8-16=-633/5194, 8-17: 7 7-19=-675/5538 3-7=-563/4169, 4-7: 3-8=-468/3383, 2-8: 5 to be connected toge 1) nails as follows: s connected as follows: s connected as follow ords connected as follows: 2x4 reconsidered equally oted as front (F) or basection. Ply to ply con o distribute only loads erwise indicated. erwise indicated.	Code Code	NO IBC2015 3) 4) d or 5) 6) 7) 8) 9) LC 1) D	JrPI2014 Unbalanced it this design. Wind: ASCE Vasd=95mph B=20ft; L=20 MWFRS (dire end vertical li plate grip DC * This truss h on the bottom 3-06-00 tall b chord and an Provide mect bearing plate joint 1 and 77 This truss is of International referenced st Use USP HU nails into Tru starting at 1-5 truss(es) to b Fill all nail ho PAD CASE(S) Dead + Roo Plate Increa Uniform Loa Vert: 11-3 Concentrate Vert: 14= 17=-1292	Matrix-MS Matrix-MS toof live loads have I 7-10; Vult=120mph ; TCDL=6.0psf; BCI ft; eave=4ft; Cat. II; I actional); cantilever I aft and right exposed L=1.60 as been designed for chord in all areas v y 2-00-00 wide will f y other members. hanical connection (It capable of withstan 8 lb uplift at joint 5. Jesigned in accorda Building Code section andard ANSI/TPI 1. S26 (With 14-16d nn cass) or equivalent spa- 3-12 from the left end ack face of bottom c les where hanger is Standard f Live (balanced): Lu se=1.15 ds (lb/ft) -60, 3-6=-60, 9-12= d Loads (lb) -1295 (B), 15=-1292 (B), 15=-1292 (B), 1	been c (3-sec DL=6.(Exp B; eft and d; Lum or a live where a it betw by othe ding 5 it betw by othe ding 5 it betw by othe ding 5 ails int aced a d to 12 chord. in con umber a-20 2 (B), 1 19=-12	onsidered fc ond gust) psf; h=30ft; Enclosed; I right exposiser DOL=1.f e load of 20.f a rectangle een the bott of truss f 98 lb uplift at th the 2015 6.1 and of Girder & 6- t 2-1-8 oc ma -6-4 to conn tact with lum Increase=1.	o. 02 or ed; 50 0psf om to t t .16d ax. ect ber. 15,	3			Weight: 233 lb	FT = 20%	

June 4,2020

Job	Truss	Truss Type	Qty	Ply	156 East Main-Roof			
Q-2001256-1	Т4	Common	3	1	Job Reference (optional)	E14474696		

-1-0-0

1-0-0

3-4-8

3-4-8

Peak Truss Builders, LLC, New Hill, NC - 27562,

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Thu Jun 04 09:29:46 ID:tOZu2rkY7_pc?qFLRL4RdlzBeo7-IZ5x18P3BJxCrpWtGJ120x4TWrhRJZn7TevWXPz9iQZ

6-9-0

3-4-8

Page: 1

rag

Scale = 1:25.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	-0.01	5-8	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(CT)	-0.01	5-8	>999	180			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	4	n/a	n/a			
BCDL	10.0	Code	IBC2015/TPI2014	Matrix-MP							Weight: 25 lb	FT = 20%	
LUMBER			5) This truss is	designed in acc	ordance wi	th the 2015							
TOP CHORD	HORD 2x4 SP No.1 International Building Code section 2306.1 and												
BOT CHORD	2x4 SP No.1 referenced standard ANSI/TPI 1.												
WEBS	2x4 SP No.3 LOAD CASE(S) Standard												
BRACING													
TOP CHORD	Structural wood she	athing directly applie	ed or										
	6-0-0 oc purlins.												
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	С										
	bracing.												
REACTIONS	(size) 2=0-3-8, 4	4=0-3-8											
	Max Horiz 2=32 (LC	10)											
	Max Uplift 2=-72 (LC	5 11), 4=-30 (LC 11)											
	Wax Grav 2=334 (LC	5 1), 4=200 (LC 1)											
FORCES	(lb) - Maximum Com	pression/Maximum											
		./01 2 12 212/07											
TOF CHORD	3-13-287/100 4-13	2-315/91, 3-12=-313/91,											
BOT CHORD	2-5=-36/280 4-5=-3	6/280											
WEBS	3-5=-2/120	0/200											
NOTES													
1) Unbalanc	ed roof live loads have	been considered fo	r										
this desig	this design.												
2) Wind: ASCE 7-10: Vult=120mph (3-second aust)													
Vasd=95	nph; TCDL=6.0psf; BC	DL=6.0psf; h=30ft;									N''LL CA	D'''	
B=20ft; L:	asd=somph, redL=o.opsi, bedL=o.opsi, n=son, =20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed;												

- B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 3-4-8, Exterior (2) 3-4-8 to 6-2-8, Interior (1) 6-2-8 to 6-9-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 4 and 72 lb uplift at joint 2.

Job	Truss	Truss Type		Ply	156 East Main-Roof			
Q-2001256-1	T4GE	Common Supported Gable	1	1	Job Reference (optional)	E14474697		

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Thu Jun 04 09:29:46 ID:tOZu2rkY7_pc?qFLRL4RdlzBeo7-IZ5x18P3BJxCrpWtGJ120x4TYripJZA7TevWXPz9iQZ

6-9-0

Fay

274 -

Scale - 1.25

00010 = 1.20														
Loading		(psf)	Spacing	2-0-0		CSI	0.45	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
		10.0	Lumber DOL	1.15 VES		BC	0.12	Vert(CT)	n/a	-	n/a	999		
BCDI		10.0	Code	IBC201	5/TPI2014	Matrix-MP	0.02	11012(01)	0.00	10	n/a	n/a	Weight: 25 lb	FT – 20%
		10.0	Couc	100201	5/11/2014								Weight. 2010	11 = 2070
LUMBER TOP CHORE BOT CHORE OTHERS BRACING TOP CHORE	 2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc 	lo.1 lo.1 lo.3 al wood shea purlins.	athing directly applie	3) 4) ed or 5) 6)	Truss desig only. For stu see Standard or consult qu Gable requir Gable studs * This truss h	ned for wind load ids exposed to wi d Industry Gable I ialified building de es continuous boi spaced at 2-0-0 o nas been designe n chord in all are	Is in the pl ind (norm: End Detai esigner as ittom chor oc. ed for a live as where	ane of the tr al to the face Is as applica per ANSI/T d bearing. e load of 20.	uss able, PI 1. Opsf					
BOT CHORL	Rigid ceiling directly applied or 10-0-0 oc of the bottom for an areas where a rectangle													
REACTIONS	bracing. 5 (size) 2=6-9-0, 4=6-9-0, 5=6-9-0, 6=6-9-0, 10=6-9-0, Max Horiz 2=32 (LC 10), 6=32 (LC 10) Max Uplift 2=-67 (LC 11), 4=-26 (LC 11), 5=-8 (LC 11), 6=-67 (LC 11), 10=-26 (LC 11) Max Grav 2=209 (LC 1), 4=140 (LC 1), 5=252 (LC 1), 6=209 (LC 1), 10=140 (LC 1) Max Grav 2=00 (LC 1), 10=140 (LC 1)													
FORCES	(lb) - Max Tension	ximum Com	pression/Maximum											
TOP CHORE	0 1-2=0/27 3-14=-32	, 2-13=-87/ 2/81, 4-14=-	77, 3-13=-46/83, 78/75											
BOT CHORE	2-5=-10/4	41, 4-5=0/4	1											111.
WEBS	3-5=-118	3/73											N''IL CI	D
 NOTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner (3) -1-0-0 to 2-0-0, Exterior (2) 2-0-0 to 3-4-8, Corner (3) 3-4-8 to 6-2-8, Exterior (2) 6-2-8 to 6-9-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 											Contraction of the second seco	A MARTINE AND A	SEA 0363	EER.H.H.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

June 4,2020

Job	Truss	Truss Truss Type Qty		Ply	156 East Main-Roof				
Q-2001256-1	Т5	Common	3	1	Job Reference (optional)	E14474698			

2-3-11

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Thu Jun 04 09:29:46 ID:tOZu2rkY7_pc?qFLRL4RdlzBeo7-IZ5x18P3BJxCrpWtGJ120x4T4riIJZy7TevWXPz9iQZ

Scale =	1:25
---------	------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	0.00	6-12	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	6-9	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IBC2015/TPI2014	Matrix-MP							Weight: 24 lb	FT = 20%
LUMBER			5) This truss is	designed in accor	dance wi	ith the 2015						
TOP CHORD	2x4 SP No.1		International	Building Code se	ction 230	6.1 and						
BOT CHORD	2x4 SP No.1		referenced s	tandard ANSI/TPI	1.							
WEBS	2x4 SP No.3		LOAD CASE(S)	Standard								
BRACING												
TOP CHORD	Structural wood she	athing directly applie	ed or									
	5-11-0 oc purlins.											
BOT CHORD	 Rigid ceiling directly bracing 	applied or 10-0-0 o	C									
REACTIONS	(size) 2=0-3-8 4	4=0-3-8										
	Max Horiz 2=-29 (LC	; 9)										
	Max Uplift 2=-64 (LC	; 11), 4=-64 (LC 11)										
	Max Grav 2=297 (LC	C 1), 4=297 (LC 1)										
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension	•										
TOP CHORD	1-2=0/27, 2-13=-290	/68, 3-13=-251/73,										
	3-14=-251/73, 4-14=	-290/68, 4-5=0/27										
BOT CHORD	2-6=-4/229, 4-6=0/22	29										
WEBS	3-6=0/94											
NOTES												
1) Unbalance	ced roof live loads have	been considered fo	r									
2) Wind AS	CE 7-10: Vult-120mph	(3-second qust)										11.
Vasd=95	mph: TCDL=6.0psf: BC	DL=6.0psf: h=30ft:									11111 01	in the
B=20ft: L	=20ft: eave=4ft: Cat. II:	Exp B: Enclosed:									"TH UF	ROUT
MWFRS	(directional) and C-C Ex	xterior (2) -1-0-0 to								X	A	56.91A.11
2-0-0, Int	erior (1) 2-0-0 to 2-11-8	, Exterior (2) 2-11-8						/	52	·inter	- Alan	
5-11-0, Ir	nterior (1) 5-11-0 to 6-11	I-0 zone; cantilever							Ũ		1000	
and right	exposed ; end vertical I	eft and right								()	ix i	
exposed;	C-C for members and for	orces & MWFRS for							=		SEA	(L : E
reactions	shown; Lumber DOL=1	1.60 plate grip							=		0202	100 : -
DOL=1.6	U								-	•	0363	

 This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 64 lb uplift at joint 2 and 64 lb uplift at joint 4.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affili 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	156 East Main-Roof			
Q-2001256-1	T5GE	Common Supported Gable	1	1	Job Reference (optional)	E14474699		

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Thu Jun 04 09:29:47 ID:tOZu2rkY7_pc?qFLRL4RdlzBeo7-DlfJEUQixd43Sz53p0ZHZ9deqF2l20THile44rz9iQY

2x4 II

5-11-0

2x4 =

			i			· · · · · · · · · · · · · · · · · · ·								
Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.07	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.02	Horz(CT)	0.00	4	n/a	n/a		
BCDL		10.0	Code	IBC20	15/TPI2014	Matrix-MP							Weight: 24 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	LUMBER TOP CHORD 2x4 SP No.1 30T CHORD 2x4 SP No.1 DTHERS 2x4 SP No.3 BRACING FOP CHORD FOP CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. SOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=5-11-0, 4=5-11-0, 6=5-11-0, 7=5-11-0, 6=5-11-0, 7=5-11-0, 11=5-11-0 Max Horiz 2=-29 (LC 9), 7=-29 (LC 9) Max Uplift 2=-69 (LC 11), 4=-69 (LC 11), 7=-69 (LC 11), 11=-69 (LC 11), 7=-69 (LC 1), 11=-191 (LC 1), 6=21 (LC 1), 7=191 (LC 1), 7=-191 (LC 1), 11=191 (LC 1) FORCES (lb) - Maximum Compression/Maximum				 Truss design only. For stu see Standard or consult qu Gable requirin Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 2, 69 lb uplift uplift at joint This truss is International 	hed for wind loads in ds exposed to winc l Industry Gable En alified building desi as continuous botto spaced at 2-0-0 oc. as been designed 1 n chord in all areas y 2-00-00 wide will y other members. nanical connection capable of withsta at joint 4, 69 lb upl 4. Building Code sect	n the pl d (norm d Detai gner as m chor for a liv where fit betw (by oth nding 6 ift at joi ance w ion 230	ane of the tru al to the face) Is as applicat per ANSI/TF d bearing. e load of 20.0 a rectangle veen the botto ers) of truss to 9 lb uplift at jo nt 2 and 69 lb th the 2015 6.1 and	iss), ble, PI 1. Dpsf om oint					
		(LC 1), 7= 1)	191 (LC 1), 11=191 (LC	referenced s	andard ANSI/TPI 1	•							
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	L	LOAD CASE(S) Standard									
TOP CHORD	1-2=0/27, 3-15=-33/	, 2-14=-69/7 /87, 4-15=-6	76, 3-14=-32/81, 59/82, 4-5=0/27											
BOT CHORD	2-6=0/45,	4-6=0/41												
WEBS	3-6=-103/	/46												Un.
NOTES													White CA	Dalle
 Unbalance this design Vasd=95n B=20ft; L= MWFRS (2-0-0, Ext 5-11-0, Ex and right e exposed;C reactions s DOL=1.60 	ed roof live I n. CE 7-10; Vu nph; TCDL= 20ft; eave= directional) erior (2) 2-0 cterior (2) 2-0 cterior (2) 5- exposed ; er C-C for mem shown; Lum	lads have lt=120mph 6.0psf; BCl 2ft; Cat. II; and C-C Cc -0 to 2-11-6 11-0 to 6-1 nd vertical linbers and for ber DOL=1	been considered for (3-second gust) DL=6.0psf; h=30ft; Exp B; Enclosed; orner (3) -1-0-0 to 8, Corner (3) 2-11-8 tt 1-0 zone; cantilever le eft and right orces & MWFRS for .60 plate grip	o eft							William		SEA 0363	L L L L L B H B H H H H H H H H H H H H

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

June 4,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	156 East Main-Roof	
Q-2001256-1	V1	Valley	1	1	Job Reference (optional)	E14474700

Scale = 1:39.2

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Thu Jun 04 09:29:47 ID:mApPuCn3BDJ2URZ7gB9NnbzBeo3-DlfJEUQixd43Sz53p0ZHZ9dddF3y2?ZHile44rz9iQY

Page: 1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC201	5/TPI2014	CSI TC BC WB Matrix-S	0.14 0.06 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 61 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=15-2-1: 7=15-2-1: Max Horiz 1=-86 (LC Max Upliff 6=-108 (L Max Grav 1=117 (LC 8=339 (LC 8=339 (LC	athing directly applied applied or 10-0-0 oc 5, 5=15-2-15, 6=15-2- 5, 8=15-2-15 2 9) C 11), 8=-108 (LC 11 C 17), 5=115 (LC 1), C 21), 7=250 (LC 1), C 20)	3) 4) i or 5) 6) ^{15,} 7)) 8)	Truss design only. For stu see Standard or consult qu Gable require Gable studs s * This truss h on the bottom 3-06-00 tall b chord and an Provide mech bearing plate joint 8 and 10 This truss is o International referenced st	ed for wind loads i ds exposed to wind Industry Gable En alified building desi scontinuous botto spaced at 4-0-0 oc. as been designed fa chord in all areas y 2-00-00 wide will y other members. nanical connection capable of withsta 8 lb uplift at joint 6 designed in accord. Building Code sect andard ANSI/TPI 1 Standard	n the pla d (norma d Detai gner as m chord for a live where a fit betw (by othe nding 1 ance wi ion 230	ane of the tru al to the face) Is as applicat per ANSI/TF d bearing. e load of 20.0 a rectangle een the botto ers) of truss to 08 lb uplift at th the 2015 6.1 and	ss ole, ole, olesf om					
FORCES	(lb) - Maximum Com Tension	pression/Maximum			Clandard								
TOP CHORD	1-9=-103/44, 2-9=-5 3-10=-84/94, 3-11=- 4-12=-24/41, 5-12=-	3/67, 2-10=-116/70, 84/94, 4-11=-115/70, 81/14											
BOT CHORD	1-8=-23/53, 7-8=-23 5-6=-23/53	/53, 6-7=-23/53,											
WEBS	3-7=-171/0, 2-8=-25	7/151, 4-6=-257/151										WHY CA	Della
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95n B=20ft; L= MWFRS (3-0-6, Inte 10-7-13, Ih left and rig exposed;C reactions : DOL=1.60	ed roof live loads have DCE 7-10; Vult=120mph ph; TCDL=6.0psf; BC 20ft; eave=4ft; Cat. II; directional) and C-C E prior (1) 3-0-6 to 7-7-13 interior (1) 10-7-13 to 1 ht exposed ; end verti C-C for members and f shown; Lumber DOL=	been considered for (3-second gust) DL=6.0psf; h=30ft; Exp B; Enclosed; xterior (2) 0-0-6 to s, Exterior (2) 7-7-13 t 5-3-5 zone; cantileve cal left and right orces & MWFRS for 1.60 plate grip	o							Contraction of the second		SEA 0363	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

GI 11111111 June 4,2020

Job	Truss	Truss Type	Qty	Ply	156 East Main-Roof	
Q-2001256-1	V2	Valley	1	1	Job Reference (optional)	E14474701

Scale = 1:34.8

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Thu Jun 04 09:29:47 ID:mApPuCn3BDJ2URZ7gB9NnbzBeo3-DlfJEUQixd43Sz53p0ZHZ9daRF162?NHile44rz9iQY

Page: 1

Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.35	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code	IBC201	5/TPI2014	Matrix-S	0.09	HONZ(TL)	0.00	3	n/a	n/a	Weight: 44 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: AS(Vasd=95n B=20ft; L= MWFRS (3-0-6, Inte 9-1-13, Int and right e exposed;(C) (3-0-6, Inte 9-1-16, Inte 9-16, Inte 9	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Structural wood s 6-0-0 cc purlins. Rigid ceiling direc bracing. (size) 1=12-2 Max Horiz 1=-68 (Max Uplift 1=-47 (4=-18 (Max Grav 1=227 (LC 1) (lb) - Maximum C Tension 1-5=-160/44, 2-5= 3-6=-160/45 1-4=-3/69, 3-4=-3 2-4=-285/79 ed roof live loads ha h. CE 7-10; Vult=120m nph; TCDL=6.0psf; I -20ft; eave=4ft; Cat. directional) and C-C rior (1) 3-0-6 to 6-1- terior (1) 9-1-13 to 1 exposed ; end vertic C-C for members an shown; Lumber DOD signed for wind load studs exposed to wi ard Industry Gable qualified building d uires continuous bo	heathing directly appl tly applied or 10-0-0 -15, 3=12-2-15, 4=12 LC 9) LC 11), 3=-47 (LC 11 LC 11), 3=-47 (LC 11), ULC 1), 3=227 (LC 1), ompression/Maximun -86/65, 2-6=-71/65, /69 ve been considered f ph (3-second gust) 3CDL=6.0psf; h=30ft; II; Exp B; Enclosed; Exterior (2) 6-0-6 to 13, Exterior (2) 6-0-6 to 13, Exterior (2) 6-0-6 to 13, Exterior (2) 6-0-7 to 13, Exterior (2) 6-0-7 to 13, Exterior (2) 6-0-7 to 13, Exterior (2) 6-0-7 to 13, Exterior (2) 6-1-1 2-3-5 zone; cantileve al left and right d forces & MWFRS fc =1.60 plate grip s in the plane of the ti nd (normal to the fac End Details as applica signer as per ANSI/1 tom chord bearing.	5) 6) -2-15), L 4=453 n or 3 to r left or russ e), able, PI 1.	Gable studs s * This truss h on the bottom 3-06-00 tall b chord and an Provide mech bearing plate 1, 47 lb uplift This truss is of International referenced st DAD CASE(S)	spaced at 4-0-0 oc. as been designed in chord in all areas y 2-00-00 wide will y other members. nanical connection capable of withsta at joint 3 and 18 lb designed in accord. Building Code sect andard ANSI/TPI 1 Standard	for a liv, where fit betw (by oth- nding 4 uplift a ance wi ion 230	e load of 20.0 a rectangle een the bottc ers) of truss tu 7 lb uplift at ju t joint 4. th the 2015 6.1 and	Ppsf pm point		An		SEA O363	ROUTE L 22 ILBERTITI	
												Jur	ne 4,2020	

Job	Truss	Truss Type	Qty	Ply	156 East Main-Roof	
Q-2001256-1	V3	Valley	1	1	Job Reference (optional)	E14474702

2-9-8

0-0-4

3-1-4

9-2-15 4-7-7 8-9-12 4-7-7 4-2-4 4x5 = 2 6 7 12 8 Г 5 8 3 4 2x4 🍃 2x4 💊 2x4 🛚

9-2-15

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Thu Jun 04 09:29:48

ID:mApPuCn3BDJ2URZ7gB9NnbzBeo3-hxDhSqQKiwCw47gFNk4W5MAoqfOanTGQxyOdcHz9iQX

Page: 1

Scolo -	1.20.2
SUGIE =	1.2.7

Loading		(psf)	Spacing	2-0-0)	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15			0.18	Vert(LL)	n/a	-	n/a	999	M120	244/190	
		10.0	Lumber DOL	1.15 VEC		BC	0.10	Vert(IL)	n/a	-	n/a	999			
BCLL BCDL		10.0	Code	IBC2	015/TPI2014	Matrix-S	0.05	HOUS(IL)	0.00	3	n/a	n/a	Weight: 32 lb	FT = 20%	
					5) Oakla atuda								0		
		~ 1			5) Gable studs	spaced at 4-0-0	OC. od for o liv	a load of 20 0	nof						
	2X4 SP N	0.1			on the botton	n chord in all are	eu iui a iiv	e ioau oi 20.0 a rectande	psi						
OTHERS	2x4 SF N	0.1			3-06-00 tall b	v 2-00-00 wide	will fit betw	een the botto	m						
BRACING	2.0.01	0.0			chord and ar	y other member	s.								
TOP CHORD	Structural	wood shea	athing directly applie	dor	7) Provide mec	hanical connecti	on (by othe	ers) of truss to	C						
	6-0-0 oc r	ourlins.	and a set of applied		bearing plate	capable of with	standing 3	5 lb uplift at jo	oint						
BOT CHORD	Rigid ceili	ng directly	applied or 10-0-0 oc		1, 35 lb uplift	at joint 3 and 13	3 lb uplift a	t joint 4.							
	bracing.	• •			8) This truss is	designed in acco	ordance wi	ith the 2015							
REACTIONS	(size)	1=9-2-15,	3=9-2-15, 4=9-2-15		International	Building Code s		6.1 and							
	Max Horiz	1=-50 (LC	9)												
	Max Uplift	1=-35 (LC	11), 3=-35 (LC 11),		LUAD CASE(S)	Standard									
		4=-13 (LC	11)												
	Max Grav	1=167 (LC	1), 3=167 (LC 1), 4	=333											
FORCES	(lb) Mov	(LC I)	reasion/Maximum												
FURCES	(ib) - iviax Tension														
TOP CHORD	1-5=-118/	28, 5-6=-64	/33, 2-6=-46/48,												
	2-7=-46/4	8, 7-8=-54/	33, 3-8=-118/28												
BOT CHORD	1-4=-2/51	, 3-4=-2/51													
WEBS	2-4=-210/	58													
NOTES															
1) Unbalance	ed roof live l	oads have I	been considered for										mini	1111	
this design	1.												WHILL CA	Palle	
Wind: ASC	CE 7-10; Vu	lt=120mph	(3-second gust)									1	alrio	10/11	
Vasd=95m	iph; ICDL=	6.0pst; BCL	DL=6.0pst; h=30tt;									A.	O'EES	10-N	1.0
B=2011; L=	ZUII; eave=	and C C Ev	EXP B; Enclosed;									11	1P	14:3	11
3-0-6 Inte	rior (1) 3-0-1	6 to 4-7-13	Exterior (2) 4-7-13 1	0									.0.		12
7-7-13 Int	erior (1) 7-7	'-13 to 9-3-	5 zone: cantilever lef	t									CEA	a i	
and right e	exposed ; er	nd vertical le	eft and right	•							=		SEA		=
exposed;C	-C for mem	bers and fo	orces & MWFRS for								1	:	0363	22 :	
reactions s	shown; Lum	ber DOL=1	.60 plate grip								-	6			-
DOL=1.60												-	1. Sec. 1. Sec		3
 Truss des 	igned for wi	ind loads in	the plane of the trus	s								2.0	N. SNOIN	EER. X	2
only. For s	studs expos	ed to wind	(normal to the face),									1	A	F. ER	
or consult	aru muustry analified bu		i Details as applicad	ie, ∣1									AC	ILBUIN	
 Gable regi 	lires contini	uous hotton	n chord bearing										11111	in in it.	
., Cabie lequ			. enera boaring.											ne / 2020	
													Ju	16 4,2020	

Job	Truss	Truss Type	Qty	Ply	156 East Main-Roof	
Q-2001256-1	V4	Valley	1	1	Job Reference (optional)	E14474703

3-1-7

3-1-7

Peak Truss Builders, LLC, New Hill, NC - 27562.

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Thu Jun 04 09:29:48 ID:mApPuCn3BDJ2URZ7gB9NnbzBeo3-hxDhSqQKiwCw47gFNk4W5MAp7fPVnTeQxyOdcHz9iQX

5-9-12

2-8-4

6-2-15

6-2-15

Scole 1.25.2

Scale = 1.25.2	<u>.</u>													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC20	15/TPI2014	CSI TC BC WB Matrix-P	0.09 0.04 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORE BOT CHORE OTHERS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Structural wood sheat 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=6-2-15, Max Horiz 1=32 (LC Max Uplift 1=-29 (LC Max Grav 1=117 (LC (LC 1) 	athing directly applie applied or 10-0-0 or 3=6-2-15, 4=6-2-15 10) : 11), 3=-29 (LC 11) : 1), 3=117 (LC 1), 4	ed or c ¹ 5 4=193	 5) * This truss h on the botton 3-06-00 tall b chord and ar 7) Provide meci bearing plate 1 and 29 lb u 8) This truss is International referenced si LOAD CASE(S) 	as been desig n chord in all a yy 2-00-00 wid yy other memb hanical conne capable of wi plift at joint 3. designed in ac Building Code tandard ANSI/ Standard	gned for a live areas where a le will fit betw pers. ction (by othe ithstanding 2 ccordance wi a section 230 (TPI 1.	e load of 20.1 a rectangle een the bott ers) of truss t 9 lb uplift at j th the 2015 6.1 and	0psf om to joint						
FORCES TOP CHORE BOT CHORE WEBS NOTES 1) Unbaland this desig 2) Wind: AS Vasd=95	(lb) - Maximum Com Tension 0 1-2=-66/30, 2-3=-66, 0 1-4=-3/30, 3-4=-3/30 2-4=-127/38 ced roof live loads have n. GCF 7-10; Vult=120mph mph; TCDL=6.0psf; BC	pression/Maximum /30) been considered fo (3-second gust) DL=6.0psf; h=30ft;	r										111111 10	

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.

Job	Truss	Truss Type	Qty	Ply	156 East Main-Roof	
Q-2001256-1	V5	Valley	1	1	Job Reference (optional)	E14474704

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Thu Jun 04 09:29:48 ID:EMNn6YohyXRv5b7JEugcKozBeo2-hxDhSqQKiwCw47gFNk4W5MAqMfPYnT1QxyOdcHz9iQX

Page: 1

818 Soundside Road Edenton, NC 27932

1-7-7 2-9-12 1-7-7 1-2-4

3x4 =

Scale = 1:23.5

Plate Offsets (X, Y): [2:0-2-0,Edge]

	(/(, 1). [2.0 2 0,20g0]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2015/TPI2014	CSI TC BC WB Matrix-P	0.02 0.03 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORI BOT CHORI BRACING TOP CHORI BOT CHORI REACTIONS	 D 2x4 SP No.1 D 2x4 SP No.1 D Structural wood sheater 3-2-15 oc purlins. D Rigid ceiling directly bracing. S (size) 1=3-2-15, Max Horiz 1=14 (LC Max Uplift 1=-12 (LC Max Grav 1=94 (LC	athing directly applie applied or 10-0-0 oc 3=3-2-15 10) : 11), 3=-12 (LC 11) 1), 3=94 (LC 1)	 7) Provide me bearing plat 1 and 12 lb 8) This truss is Internationa referenced LOAD CASE(S) 	chanical connection ice capable of withsta uplift at joint 3. designed in accord il Building Code sec standard ANSI/TPI 1) Standard	(by othe nding 1 lance wi tion 230 1.	ers) of truss to 2 lb uplift at jo th the 2015 6.1 and	int					
FORCES TOP CHORI BOT CHORI NOTES 1) Unbalan this desi 2) Wind: AS Vasd=92 B=20ft; I MWFRS cantileve right exp for react DOL=1.6 3) Truss di only. Fo see Star or consu 4) Gable re 5) Gable st 6) * This tru on the b 3-06-00 chord an	(lb) - Maximum Com Tension D 1-2=-79/29, 2-3=-79, D 1-3=-7/53 ced roof live loads have gn. SCE 7-10; Vult=120mph 5mph; TCDL=6.0psf; BC 20ft; eave=4ft; Cat. II; (directional) and C-C E: er left and right exposed ioossd;C-C for members a ions shown; Lumber DO 60 esigned for wind loads ir or studs exposed to wind idard Industry Gable Em, lt qualified building desig quires continuous bottor udus spaced at 4-0-0 oc. uss has been designed fo ottom chord in all areas i tall by 2-00-00 wide will id any other members.	pression/Maximum /29 been considered for (3-second gust) DL=6.0psf; h=30ft; Exp B; Enclosed; xterior (2) zone; ; end vertical left and and forces & MWFR: L=1.60 plate grip in the plane of the true (normal to the face) d Details as applicab gner as per ANSI/TP in chord bearing. or a live load of 20.0 where a rectangle fit between the botto	d S ss , le, 11. psf m						M. GUILLIN,		SEA 0363	EER. R. HUMAN
												•

