

Run: 8.330 s Mar 10 2020 Print: 8.330 s Mar 10 2020 MiTek Industries, Inc. Wed Apr 8 14:46:07 2020 Page 1 ID:DQNBGUa0ZYb n58NIXTULMzSn8o-U neL77AKRIYsmp6rDuT?itX4sn1 skHfHNvM9zSm6E

Scale = 1:42.7 4x5 =

BRACING-

TOP CHORD

BOT CHORD

Plate Offsets (X,Y)-- [1:0-2-4,Edge], [1:1-0-9,Edge], [5:0-2-4,Edge], [5:1-0-9,Edge], [8:0-4-0,0-4-0]

TCLL (roof) 20.0 Snow (Pf/Pg) 13.9/20.0 TCDL 10.0	SPACING- 1-11-4 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.12 BC 0.43
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Rep Stress Incr NO Code IRC2015/TPI2014	WB 0.70 Matrix-MSH

L/d DEFL. in (loc) I/defl Vert(LL) -0.04 8-9 >999 240 Vert(CT) -0.07 8-9 >999 180 Horz(CT) 0.04 5 n/a n/a

Sheathed or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

MT20 244/190

PLATES

Weight: 266 lb FT = 20%

GRIP

LUMBER-

TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x12 SP 2400F 2.0E *Except*

B2: 2x6 SP 2400F 2.0E

WEBS 2x4 SP No.3

REACTIONS. (lb/size) 1=3796/0-3-8 (min. 0-1-8), 5=3797/0-3-8 (min. 0-1-8)

Max Horz 1=78(LC 31)

Max Grav 1=4408(LC 2), 5=4408(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-8048/0, 2-3=-4844/0, 3-4=-4844/0, 4-5=-8009/0

BOT CHORD $1-10=0/6505,\ 9-10=0/6657,\ 9-11=0/6657,\ 11-12=0/6657,\ 8-12=0/6657,\ 8-13=0/6625,\ 13-14=0/6625,\ 7-14=0/6625,\ 6-7=0/6625,\ 13-14=0/6625$

5-6=0/6468

3-8=0/5043, 2-9=0/2800, 4-7=0/2789, 2-8=-2868/0, 4-8=-2844/0

WEBS NOTES-

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x12 - 2 rows staggered at 0-5-0 oc, 2x6 - 2 rows staggered at 0-6-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.33
- 5) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	20040050
A	T01	ROOF SPECIAL GIRDER	1	3	Job Reference (optional)
Carter Components - Sanford, Sanford, NC				Run: 8. ID:DC	330 s Mar 10 2020 Print: 8.330 s Mar 10 2020 MiTek Industries, Inc. Wed Apr 8 14:46:07 2020 Page 2 NBGUa0ZYb_n58NIXTULMzSn8o-U_neL77AKRIYsmp6rDuT?itX4sn1_skHfHNvM9zSm6E

NOTES-

- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1312 lb down at 4-0-0, 1312 lb down at 6-0-0, 1312 lb down at 8-0-0, and 1312 lb down at 10-0-0, and 1312 lb down at 12-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-46, 3-5=-46, 1-5=-19

Concentrated Loads (lb)

Vert: 10=-1108(B) 6=-1108(B) 11=-1136(B) 12=-1154(B) 13=-1154(B) 14=-1136(B)

Job	Truss	uss Type	Qty	Ply	20040050	
A	T01GE Cor	mmon Supported Gable	1	1	Job Reference (optional)	
Carter Components - Sanford, Sanford, No	 -0-10-8 -0-10-8		4x5 =	Run: 8.3 ID:DQ 14-0-0 7-0-0	330 s Mar 10 2020 Print: 8.330 s M NBGUa0ZYb_n58NIXTULMz\$ 14-10-8 0-10-81	ar 10 2020 MiTek Industries, Inc. Wed Apr 8 14:46:07 2020 Page Sn8o-U_neL77AKRIYSmp6rDuT?itXbstu_0zHfHNvM9zSm Scale = 1:41
	0.4-11 0.4-11 0.4-11	8.00 12 4 5 5 5 5 5 5 5 5 5	5 6 8 8 8 74	7 7 S S T 5		
	3x		12 11	10	3x5 =	
Dieto Offeeto (V.V.) [0:0.0.4.5-4	vo1	1.	4-0-0 4-0-0			
Plate Offsets (X,Y) [8:0-2-4,Edg	Jel					
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 13.9/20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 1-11-4 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.08 BC 0.05 WB 0.04	Vert(CT)	0.00 8 0.00 9	/defl L/d n/r 120 n/r 120 n/a n/a	PLATES GRIP MT20 244/190

BCDL

BCLL

LUMBER-TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

OTHERS 2x4 SP No.3

BRACING-

TOP CHORD Sheathed or 6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 71 lb

FT = 20%

REACTIONS. All bearings 14-0-0.

(lb) - Max Horz 2=-101(LC 11)

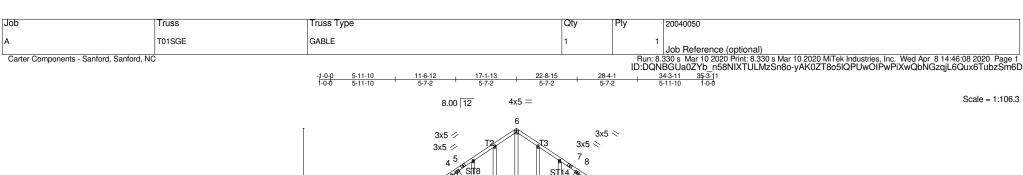
0.0 *

10.0

Max Uplift All uplift 100 lb or less at joint(s) 13, 14, 11, 10

Max Grav All reactions 250 lb or less at joint(s) 2, 8, 12, 13, 14, 11, 10

Code IRC2015/TPI2014


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

Matrix-SH

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 14, 11, 10.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

59 13 60 61 14 16 12 3x5 =4x5 = 3x5 =4x5 = 3x5 =3x6 =3x8 =

DEFI

BRACING-

WEBS

TOP CHORD

BOT CHORD

Plate Offsets (X,Y)-- [2:0-6-0,0-0-8], [10:0-2-4,Edge], [13:0-2-8,0-1-4], [13:0-0-0,0-1-12], [36:0-1-12,0-0-0]

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 13.9/20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 1-11-4 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.53 BC 0.97 WB 0.50 Matrix-MSH
BCDL 10.0	Gode 11102013/11 12014	Matrix-Mori

	(100)	1/ 4011	L/ U	
-0.45 12	2-14	>755	240	
-0.76 12	2-14	>450	180	
0.04	12	n/a	n/a	
	-0.45 12 -0.76 12		-0.45 12-14 >755 -0.76 12-14 >450	-0.45 12-14 >755 240 -0.76 12-14 >450 180

1 Row at midpt

in (loc)

I/dofl

Sheathed or 3-10-7 oc purlins.

1 /4

Rigid ceiling directly applied or 2-2-0 oc bracing.

4-14, 8-14, 8-12

MT20 244/190

PLATES

Weight: 323 lb FT = 20%

GRIP

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 *Except* B3: 2x4 SP No.1

2x4 SP No.2 *Except*

WEBS W7: 2x4 SP No.3

OTHERS 2x4 SP No.3 *Except*

ST10,ST9,ST7,ST12,ST15,ST16: 2x4 SP No.2

REACTIONS. (lb/size) 2=953/0-3-8 (min. 0-1-8), 12=1256/0-3-8 (min. 0-1-14), 10=134/0-3-8 (min. 0-1-8) Max Horz 2=-232(LC 11)

Max Uplift2=-4(LC 13), 10=-22(LC 31)

Max Grav 2=1131(LC 2), 12=1566(LC 26), 10=214(LC 30)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1542/301, 3-4=-1257/269, 4-5=-864/259, 5-6=-789/291, 6-7=-797/290, 7-8=-875/258

BOT CHORD 2-16=-135/1391, 16-59=0/1096, 15-59=0/1096, 14-15=0/1096, 13-14=0/589, 13-60=0/589, 60-61=0/589, 12-61=0/589

WEBS 3-16=-372/186, 4-16=-12/412, 4-14=-638/210, 6-14=-184/623, 8-12=-1190/154, 9-12=-374/236

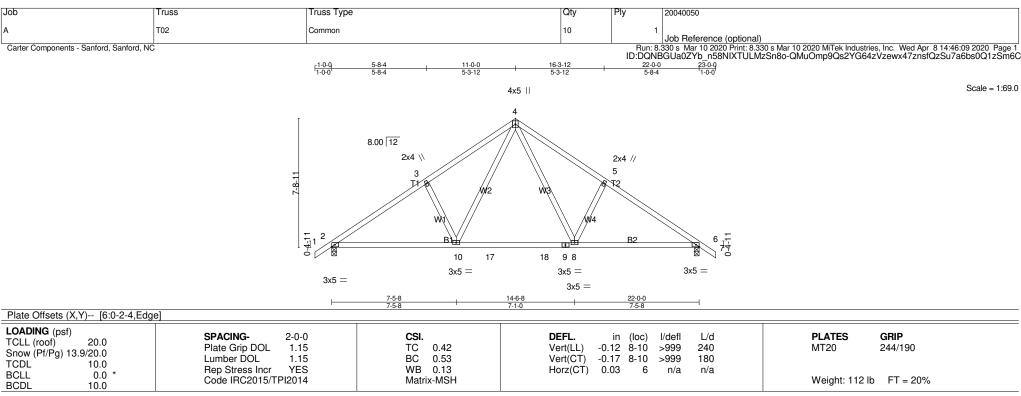
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	20040050
A	T01SGE	GABLE	1	1	Job Reference (optional)

Run: 8.330 s Mar 10 2020 Print: 8.330 s Mar 10 2020 MiTek Industries, Inc. Wed Apr 8 14:46:09 2020 Page 2 ID:DQNBGUa0ZYb_n58NIXTULMzSn8o-QMuOmp9Qs2YG64zVzewx47zI7fJ3SoMa6bs0Q1zSm6C

NOTES-


7) Gable studs spaced at 2-0-0 oc.

1) able strains space at 2-0 oc.

(a) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

(b) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.

(c) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BRACING-

TOP CHORD

BOT CHORD

Sheathed or 4-10-6 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

erection, in accordance with Stabilizer Installation guide.

MiTek recommends that Stabilizers and required cross bracing be installed during truss

LUMBER-

WEBS

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

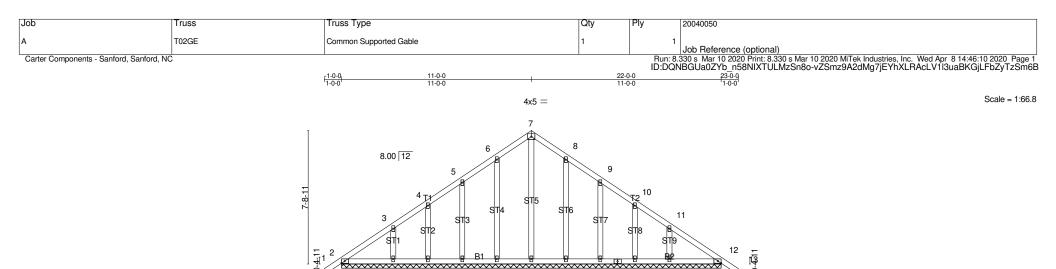
2x4 SP No.2 *Except* W4,W1: 2x4 SP No.3

REACTIONS. (lb/size) 2=793/0-3-8 (min. 0-1-8), 6=793/0-3-8 (min. 0-1-8)

Max Horz 2=158(LC 12)

Max Uplift2=-2(LC 13), 6=-2(LC 14) Max Grav 2=940(LC 2), 6=940(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


TOP CHORD 2-3=-1252/232, 3-4=-1139/295, 4-5=-1139/295, 5-6=-1252/232

BOT CHORD 2-10=-86/1081, 10-17=0/698, 17-18=0/698, 9-18=0/698, 8-9=0/698, 6-8=-89/996

WEBS 4-8=-107/562, 5-8=-334/198, 4-10=-107/562, 3-10=-334/198

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

19

18

BRACING-

TOP CHORD

BOT CHORD

17 16 15

3x5 =

Plate Offsets	(X Y)	[12:0-2-4 Fdge]	

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 13.9/20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 1-11-4 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.09 BC 0.05 WB 0.13
BCDI 10.0	Code IRC2015/TPI2014	Matrix-SH

L/d **DEFL** in (loc) I/defl Vert(LL) 0.00 1Ź n/r 120 Vert(CT) 0.00 13 n/r 120 Horz(CT) 0.00 12 n/a n/a

Sheathed or 6-0-0 oc purlins.

14

3x5

Rigid ceiling directly applied or 10-0-0 oc bracing.

GRIP PLATES MT20 244/190

Weight: 132 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.3 *Except* **OTHERS**

ST5,ST4,ST6: 2x4 SP No.2

REACTIONS. All bearings 22-0-0.

(lb) - Max Horz 2=153(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 2, 20, 21, 22, 23, 18, 17, 15, 14

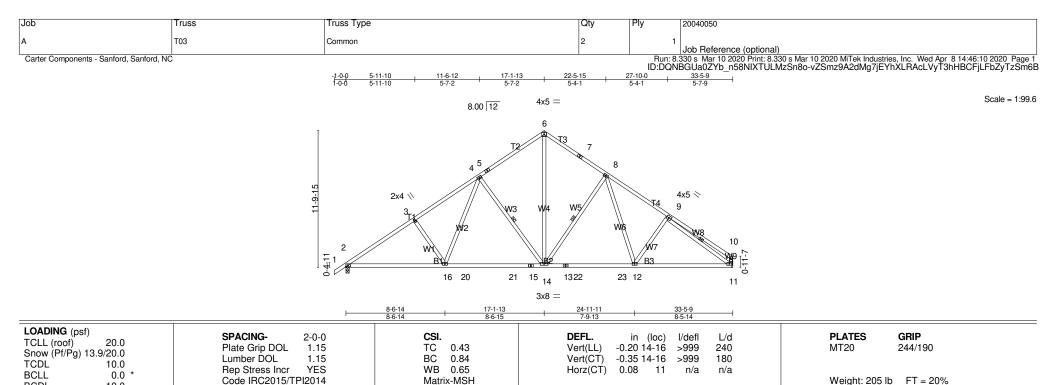
Max Grav All reactions 250 lb or less at joint(s) 2, 19, 20, 21, 22, 23, 18, 17, 15, 14, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For study exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 20, 21, 22, 23, 18, 17, 15, 14.

3x5 =


23

22

21

20

11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BCDL LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS

2x4 SP No.2 *Except*

10.0

W1,W7,W9: 2x4 SP No.3

BRACING-

TOP CHORD **BOT CHORD WEBS**

Sheathed or 3-7-8 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt 4-14. 8-14. 9-11

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=1177/0-3-8 (min. 0-1-10), 11=1127/Mechanical

Max Horz 2=244(LC 12)

Max Grav 2=1403(LC 25), 11=1341(LC 26)

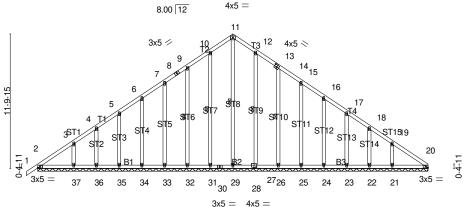
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2082/358, 3-4=-1928/395, 4-5=-1320/340, 5-6=-1239/374, 6-7=-1241/375, 7-8=-1318/355, 8-9=-1734/373, 9-10=-385/128,

2-16=-245/1828, 16-20=-116/1457, 20-21=-116/1457, 15-21=-116/1457, 14-15=-116/1457, 13-14=-97/1295, 13-22=-97/1295, BOT CHORD

22-23=-97/1295. 12-23=-97/1295. 11-12=-208/1410

WEBS 3-16=-325/191, 4-16=-62/553, 4-14=-632/238, 6-14=-276/1099, 8-14=-535/216, 8-12=-41/373, 9-11=-1540/230


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed: MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B: Fully Exp.: Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 5) All plates are 3x5 MT20 unless otherwise indicated.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Run: 8.330 s Mar 10 2020 Print: 8.330 s Mar 10 2020 MiTek Industries, Inc. Wed Apr 8 14:46:11 2020 Page 1 ID:DQNBGUa0ZYb n58NIXTULMzSn8o-NI09BVAhOgp LO6t42zP9Y2CFTDUwnUtavL7VwzSm6A

Scale = 1:101.3

34-3-11

Plate Offsets (X,Y)-- [13:0-0-0.0-1-12], [13:0-2-8.0-2-4], [14:0-2-2.0-0-0], [20:0-2-4.Edge], [27:0-1-12.0-0-0], [27:0-2-8.0-1-4], [28:0-0-0.0-1-12]

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.2 *Except* **OTHERS**

ST3,ST2,ST1,ST13,ST14,ST15: 2x4 SP No.3

BRACING-

TOP CHORD Sheathed or 6-0-0 oc purlins. BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS 1 Row at midpt 11-29, 10-31, 9-32, 12-27, 14-26

REACTIONS. All bearings 34-3-11.

(lb) - Max Horz 2=228(LC 10)

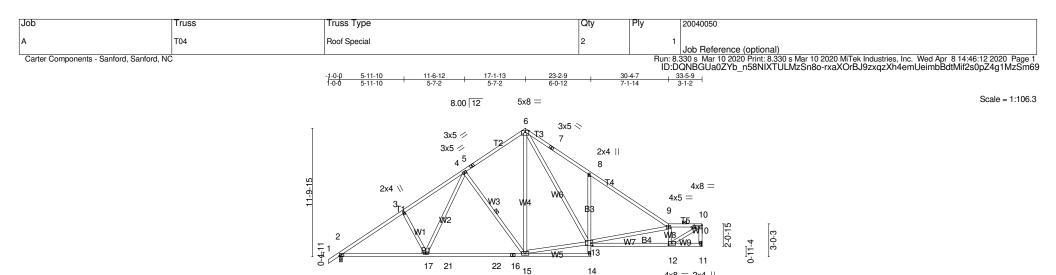
Max Uplift All uplift 100 lb or less at joint(s) 2, 31, 32, 33, 34, 35, 36, 37, 27, 26, 25, 24, 23, 22, 21

Max Grav All reactions 250 lb or less at joint(s) 2, 29, 31, 32, 33, 34, 35, 36, 37, 27, 26, 25, 24, 23, 22, 20 except 21=261(LC 26)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 10-11=-234/263. 11-12=-234/263

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B: Fully Exp.: Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 31, 32, 33, 34, 35, 36, 37, 27, 26, 25, 24, 23, 22, 21.

Job	Truss		Qty	Ply	20040050
A	T03GE	Common Supported Gable	1	1	Job Reference (optional)

Run: 8.330 s Mar 10 2020 Print: 8.330 s Mar 10 2020 MiTek Industries, Inc. Wed Apr 8 14:46:11 2020 Page 2 ID:DQNBGUa0ZYb_n58NIXTULMzSn8o-NI09BVAhOgp_LO6t42zP9Y2CFTDUwnUtavL7VwzSm6A

NOTES-

11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

3x5 =

4x8 =

Plate Offsets (X,Y)-- [12:0-3-8,0-2-0], [13:0-2-0,0-2-12]

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 18.9/20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Inc. TPICS	CSI. TC 0.90 BC 0.91 WB 0.96
BCLL 0.0 BCDL 10.0	Code IRC2015/TPI2014	Matrix-MSH

BRACING-TOP CHORD BOT CHORD

WEBS

14

2x4 ||

DEFL

Vert(LL)

Vert(CT)

Horz(CT)

Sheathed, except end verticals, and 2-0-0 oc purlins (4-0-9 max.): 9-10. Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt 4-15

in (loc)

11

-0.28 15-17

-0.48 15-17

0.08

4x8 = 2x4 | |

I/defl

>999

>833

n/a

L/d

240

180

n/a

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

GRIP

Weight: 216 lb FT = 20%

244/190

PLATES

MT20

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS

2x4 SP No.2 *Except*

W10,W1,W8,W9: 2x4 SP No.3

REACTIONS. (lb/size) 11=1156/Mechanical, 2=1178/0-3-8 (min. 0-1-10)

Max Horz 2=254(LC 10)

Max Grav 11=1332(LC 2), 2=1394(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2060/348, 3-4=-1920/406, 4-5=-1284/340, 5-6=-1187/373, 6-7=-1750/553, 7-8=-1869/517, 8-9=-1880/353, 9-10=-1977/333,

3x5 =

10-11=-1313/213

BOT CHORD 2-17=-324/1784. 17-21=-201/1393. 21-22=-201/1393. 16-22=-201/1393. 15-16=-201/1393. 8-13=-473/303. 12-13=-352/2070

3-17=-322/194, 4-17=-79/600, 4-15=-629/242, 6-15=-104/598, 13-15=-25/1022, 6-13=-312/980, 9-13=-606/166, 9-12=-1138/288,

10-12=-365/2318

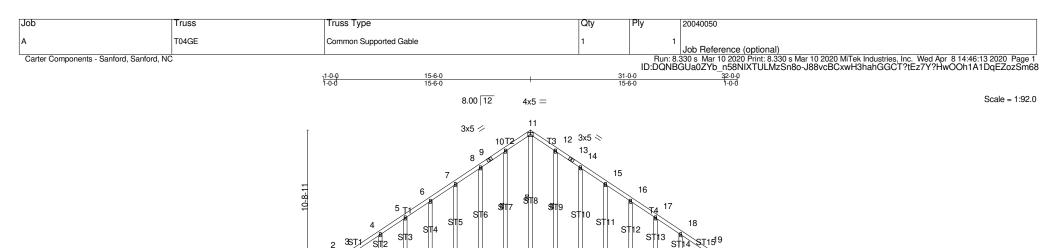
NOTES-

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10: Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15): Pg=20.0 psf (ground snow): Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15): Category II: Exp B: Fully Exp.: Ct=1.10, Lu=50-0-0: Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

3x5 =

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- குநூருந்து நடித்துந்தை in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


Job	Truss	Truss Type	Qty	Ply	20040050
A	T04	Roof Special	2	1	Job Reference (optional)

NOTES-

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.330 s Mar 10 2020 Print: 8.330 s Mar 10 2020 MiTek Industries, Inc. Wed Apr 8 14:46:12 2020 Page 2 ID:DQNBGUa0ZYb_n58NIXTULMzSn8o-rxaXOrBJ9zxqzXh4emUeimbBdtMif2s0pZ4g1MzSm69

Plate Offsets	(X Y)	[20:0-2-4 Edge]	

CADING (psf) CLL (roof) 20.0 SPACING- 1	CSI. 1.15 TC 0.09 1.15 BC 0.05 YES WB 0.13 2014 Matrix-SH	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 21 n/r 120 Vert(CT) -0.00 21 n/r 120 Horz(CT) 0.01 20 n/a n/a	PLATES GRIP MT20 244/190 Weight: 222 lb FT = 20%
---	---	--	--

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 **OTHERS** 2x4 SP No.3 *Except*

ST8,ST7,ST6,ST5,ST9,ST10,ST11: 2x4 SP No.2

BRACING-

29

3x5 =31-0-0

> TOP CHORD Sheathed or 6-0-0 oc purlins. BOT CHORD

26 25

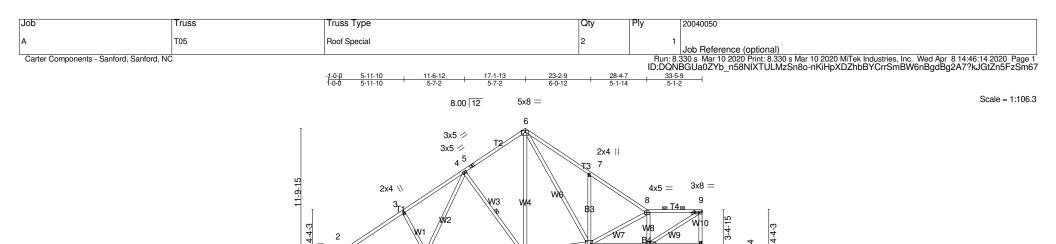
Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 11-30, 10-31, 12-28

22 3x5

REACTIONS. All bearings 31-0-0.

(lb) - Max Horz 2=-211(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 2, 31, 32, 33, 34, 35, 36, 37, 28, 27, 26, 25, 24, 23, 22, 20 Max Grav All reactions 250 lb or less at joint(s) 2, 30, 31, 32, 33, 34, 35, 36, 37, 28, 27, 26, 25, 24, 23, 22, 20


37 36 35 34 33 32 31 30

3x5 =

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For study exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 31, 32, 33, 34, 35, 36, 37, 28, 27, 26, 25, 24, 23, 22, 20.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

3x5 =2x4 || 3x5 =3x5 =6x8 =4x8 =

BRACING-

WEBS

TOP CHORD

21 15 14

Plate Offsets (X,Y)-- [11:0-3-8,0-1-8], [12:0-2-0,0-2-12]

LOADING (psf) TCLL (roof) 20.0	SPACING- 2-0-0	CSI.	DEFL. i
	Plate Grip DOL 1.15	TC 0.51	Vert(LL) -0.2
Snow (Pf/Pg) 18.9/20.0 TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.91 WB 0.74 Matrix-MSH	Vert(CT) -0.4 Horz(CT) 0.0

.28 14-16 >999 240 .48 14-16 >835 180 .07 10 n/a n/a

11

3x10 =

(loc)

13

Sheathed or 3-7-5 oc purlins, except end verticals, and 2-0-0 oc purlins (3-9-14 max.): 8-9.

Weight: 221 lb FT = 20%

GRIP

244/190

PLATES

MT20

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. 1 Row at midpt 4-14

10

2x4 ||

L/d

I/defl

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 **WEBS**

2x4 SP No.2 *Except*

W10,W1,W8: 2x4 SP No.3

REACTIONS. (lb/size) 10=1173/Mechanical, 2=1180/0-3-8 (min, 0-1-10)

Max Horz 2=268(LC 10)

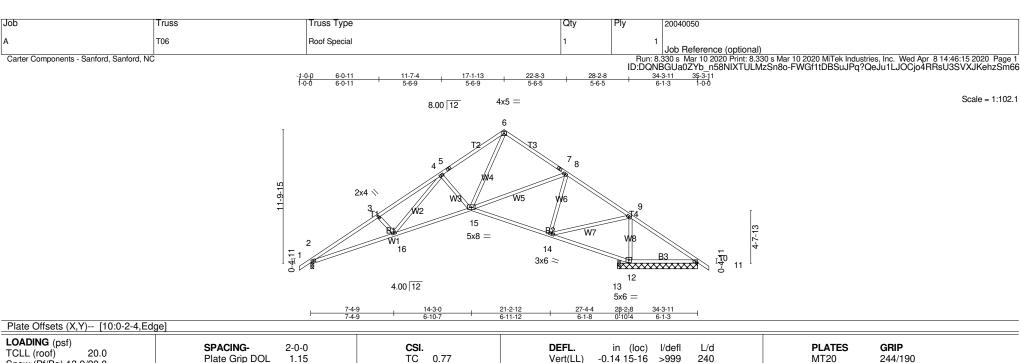
Max Grav 10=1332(LC 2), 2=1394(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2061/348. 3-4=-1921/407, 4-5=-1284/340, 5-6=-1184/373, 6-7=-1847/546, 7-8=-1820/365, 8-9=-1777/331, 9-10=-1285/254 BOT CHORD 2-16=-385/1783, 16-20=-262/1392, 20-21=-262/1392, 15-21=-262/1392, 14-15=-262/1392, 7-12=-406/257, 11-12=-339/1825 **WEBS** 3-16=-323/195, 4-16=-79/601, 4-14=-628/241, 6-14=-98/600, 12-14=-110/1003, 6-12=-301/954, 8-12=-427/125, 8-11=-1028/265,

9-11=-349/2084

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B: Fully Exp.: Ct=1.10, Lu=50-0-0: Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

16 20

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- இதாகுந்குந்துந்து persentation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type	Qty	Ply	20040050
A	T05	Roof Special	2	1	Job Reference (optional)

Run: 8,330 s Mar 10 2020 Print: 8,330 s Mar 10 2020 MiTek Industries, Inc. Wed Apr 8 14:46:14 2020 Page 2 ID:DQNBGUa0ZYb_n58NIXTULMzSn8o-nKiHpXDZhbBYCrrSmBW6nBgdBg2A7?kJGtZn5FzSm67

SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.77 BC 0.65 WB 0.61 Matrix-MSH
	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES

BRACING-

TOP CHORD BOT CHORD

Vert(CT)

Horz(CT)

Sheathed or 3-4-6 oc purlins.

13

>999

n/a

-0.32 15-16

0.19

Rigid ceiling directly applied or 5-1-11 oc bracing.

180

n/a

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Weight: 185 lb FT = 20%

LUMBER-TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 *E

2x4 SP No.2 *Except* W1,W3,W8: 2x4 SP No.3

REACTIONS. All bearings 7-1-3 except (it=length) 2=0-3-8. 13=0-3-8.

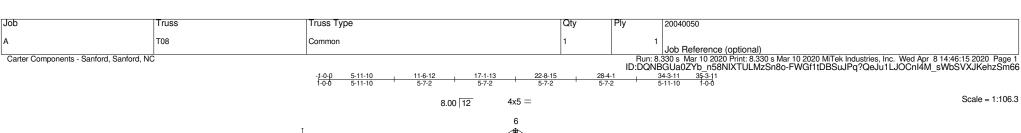
(lb) - Max Horz 2=-239(LC 11)

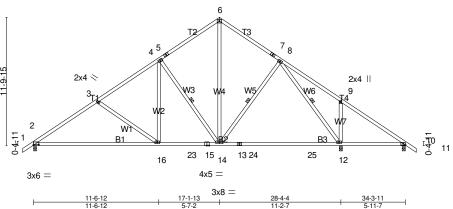
Max Uplift All uplift 100 lb or less at joint(s) 2, 12 except 10=-505(LC 29), 10=-369(LC 1)
Max Grav All reactions 250 lb or less at joint(s) 10, 13 except 2=1027(LC 2), 12=2184(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2560/389, 3-4=-2347/404, 4-5=-1465/220, 5-6=-1363/253, 6-7=-884/197, 7-8=-983/164, 8-9=-663/185, 9-10=-96/1335

BOT CHORD 2-16=-235/2285, 15-16=0/1638, 14-15=0/354, 13-14=-1157/192, 12-13=-1135/188, 10-12=-1016/160


WEBS 3-16=-295/191, 4-16=-174/743, 4-15=-556/258, 6-15=-118/1027, 8-15=-65/572, 8-14=-711/122, 9-14=-73/1590, 9-12=-1743/295


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 5) All plates are 3x5 MT20 unless otherwise indicated.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12 except (jt=lb) 10=505, 10=505.
- 9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 13.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	20040050
A	T06	Roof Special	1	1	Job Reference (optional)

Run: 8.330 s Mar 10 2020 Print: 8.330 s Mar 10 2020 MiTek Industries, Inc. Wed Apr 8 14:46:15 2020 Page 2 ID:DQNBGUa0ZYb_n58NIXTULMzSn8o-FWGf1tDBSuJPq?QeJu1LJOCjo4RRsU3SVXJKehzSm66

BRACING-

WEBS

TOP CHORD

BOT CHORD

Plate Offsets (X,Y)-- [2:0-6-0.0-0-8], [10:0-2-4,Edge]

TCLL (roof) 20.0 Snow (Pf/Pg) 13.9/20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.55 BC 1.00 WB 0.51 Matrix-MSH
---	---	--

DEFL. in (loc) I/defl L/d Vert(LL) -0.46 12-14 >732 240 Vert(CT) -0.78 12-14 >435 180 Horz(CT) 0.04 12 n/a n/a

1 Row at midpt

Sheathed or 3-9-1 oc purlins.

Rigid ceiling directly applied or 2-2-0 oc bracing.

4-14. 8-14. 8-12

erection, in accordance with Stabilizer Installation guide.

MiTek recommends that Stabilizers and required cross bracing be installed during truss

MT20 244/190

PLATES

Weight: 201 lb FT = 20%

GRIP

LUMBER-

WEBS

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 *Except*

B3: 2x4 SP No.1

2x4 SP No.2 *Except*

W7: 2x4 SP No.3

(lb/size) 2=984/0-3-8 (min. 0-1-8), 12=1296/0-3-8 (min. 0-1-15), 10=139/0-3-8 (min. 0-1-8)

Max Horz 2=239(LC 12)

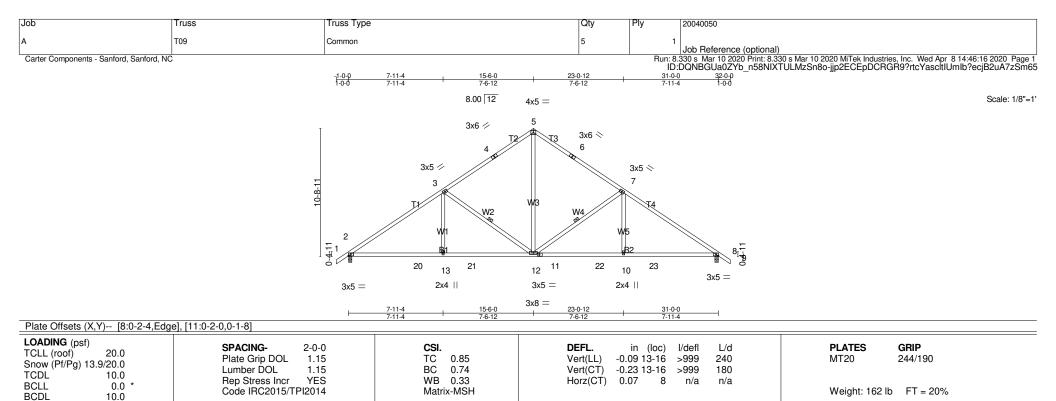
Max Uplift2=-4(LC 13), 10=-23(LC 31)

Max Grav 2=1167(LC 2), 12=1617(LC 26), 10=221(LC 30)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1592/311, 3-4=-1298/278, 4-5=-892/267, 5-6=-815/301, 6-7=-822/300, 7-8=-903/266, 8-9=-66/255

BOT CHORD 2-16=-139/1436, 16-23=0/1131, 15-23=0/1131, 14-15=0/1131, 13-14=0/608, 13-24=0/608, 24-25=0/608, 12-25=0/608


WEBS 3-16=-384/192, 4-16=-13/426, 4-14=-659/217, 6-14=-190/643, 8-12=-1228/159, 9-12=-386/243

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B: Fully Exp.: Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 5) All plates are 3x5 MT20 unless otherwise indicated.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	20040050
A	T08	Common	1	1	Job Reference (optional)

Run: 8.330 s Mar 10 2020 Print: 8.330 s Mar 10 2020 MiTek Industries, Inc. Wed Apr 8 14:46:15 2020 Page 2 ID:DQNBGUa0ZYb_n58NIXTULMzSn8o-FWGf1tDBSuJPq?QeJu1LJOCnI4M_sWbSVXJKehzSm66

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 **WEBS**

BRACING-

TOP CHORD Sheathed or 2-4-4 oc purlins. **BOT CHORD**

Rigid ceiling directly applied or 10-0-0 oc bracing. **WEBS**

1 Row at midpt 7-12. 3-12

> MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

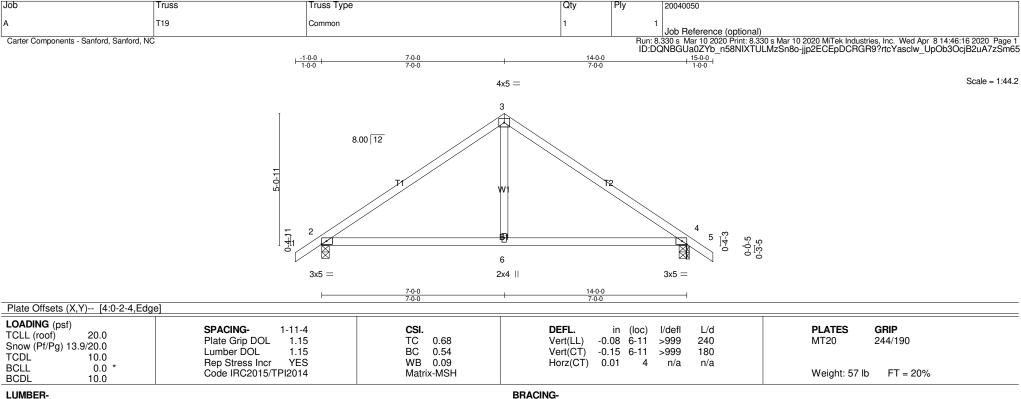
REACTIONS. (lb/size) 2=1097/0-3-8 (min. 0-1-9), 8=1097/0-3-8 (min. 0-1-9)

Max Horz 2=-218(LC 11)

Max Grav 2=1333(LC 25), 8=1333(LC 26)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1905/320, 3-4=-1280/305, 4-5=-1161/327, 5-6=-1161/327, 6-7=-1280/305, 7-8=-1906/320


BOT CHORD 2-20=-128/1649, 13-20=-128/1649, 13-21=-128/1649, 12-21=-128/1649, 11-12=-131/1500, 11-22=-131/1500, 10-22=-131/1500,

10-23=-131/1500, 8-23=-131/1500

WEBS 5-12=-174/928. 7-12=-768/237. 7-10=0/337. 3-12=-768/237. 3-13=0/337

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II;
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD

BOT CHORD

Sheathed or 5-2-11 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

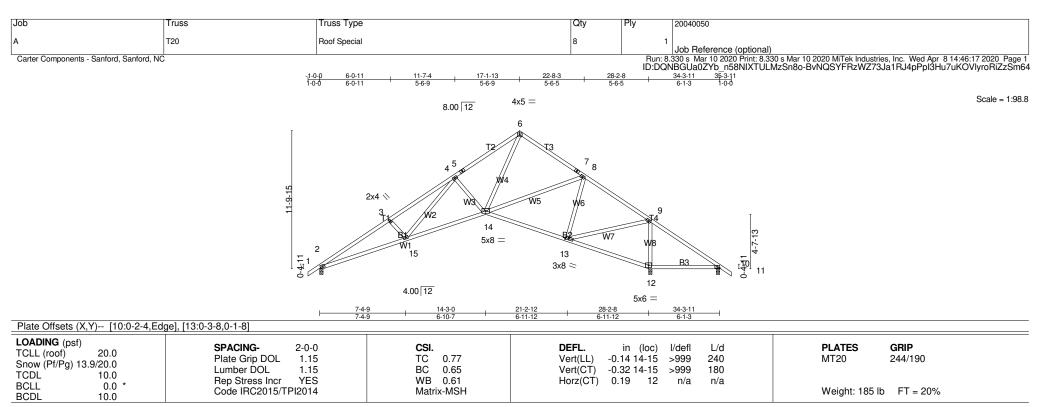
2x4 SP No.3 WEBS

REACTIONS. (lb/size) 2=507/0-3-8 (min. 0-1-8), 4=505/0-1-8 (min. 0-1-8), 4=505/0-1-8 (min. 0-1-8)

Max Horz 2=102(LC 12)

Max Uplift2=-5(LC 13), 4=-4(LC 14)

Max Grav 2=602(LC 2), 4=600(LC 2), 4=505(LC 1)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-665/133, 3-4=-664/133

BOT CHORD 2-6=0/467, 4-6=0/467

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed: MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4, 4,
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 8) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 4.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.2 *Except*

W1,W3,W8: 2x4 SP No.3

BRACING-

TOP CHORD BOT CHORD Sheathed or 3-4-5 oc purlins.

Rigid ceiling directly applied or 5-1-3 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS.

(lb/size) 2=867/0-3-8 (min. 0-1-8), 12=1927/0-3-8 (min. 0-2-11), 10=-375/0-3-8 (min. 0-1-8)

Max Horz 2=-239(LC 11)

Max Uplift2=-6(LC 13), 10=-513(LC 29)

Max Grav 2=1028(LC 2), 12=2275(LC 2), 10=19(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2564/386, 3-4=-2351/401, 4-5=-1468/218, 5-6=-1367/251, 6-7=-886/196, 7-8=-985/163, 8-9=-672/180, 9-10=-91/1345

BOT CHORD 2-15=-233/2289. 14-15=0/1641. 13-14=0/362. 12-13=-1168/189. 10-12=-1024/155

WEBS 3-15=-294/191, 4-15=-173/743, 4-14=-556/258, 6-14=-115/1030, 8-14=-69/564, 8-13=-705/125, 9-13=-63/1606, 9-12=-1756/287

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 5) All plates are 3x5 MT20 unless otherwise indicated.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (it=lb) 10=513.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.