Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	CJ1	Jack-Open	4	1	Job Reference (optional)	E14374383

2-2-7

0-6-10

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:27 ID:Lh2ZN6x7tRz5vcAR6?k2LnzJWWi-o88QqLONPjMM8iP_DT9JpBTI?CT?HACvWZdKu4zJGo9

3

2-0-2

Page: 1

4.24 Г 4.24 Г

4-1-7

8

3x5 =

2

s 1.26.8

Scale = 1.20.0	,												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.23 0.14 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Left: 2x4 SP No.3 Structural wood sh 4-1-7 oc purlins. Rigid ceiling direct bracing. (size) 2=0-4-9 Mechan Max Horiz 2=56 (L Max Uplift 2=-36 (I Max Grav 2=248 (neathing directly appli ly applied or 10-0-0 o , 3= Mechanical, 4= ical C 11) LC 11), 3=-29 (LC 15) LC 2), 3=105 (LC 2),	5) ed or 7) oc 8)) 9) 4=46	* This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 3. One RT7A U truss to bear connection is forces. This truss is International R802.10.2 at	as been designe n chord in all area by 2-00-00 wide w y other members er(s) for truss to t hanical connectic c capable of withs SP connectors re ing walls due to L s for uplift only an designed in accoo Residential Code of referenced sta	ed for a livi as where will fit betw s. truss conn on (by oth standing 2 ecommen- JPLIFT at ad does no ordance wi e sections andard AN	e load of 20.1 a rectangle reen the bott ections. ers) of truss i 9 lb uplift at j ded to conne jt(s) 2. This t consider la th the 2015 R502.11.1 a SI/TPI 1.	Opsf om to joint ect and					
FORCES TOP CHORD BOT CHORD	(LC 2) (lb) - Maximum Cc Tension 1-2=0/31, 2-8=-17 2-4=-143/59	mpression/Maximum 1/120, 3-8=-34/27	LC	OAD CASE(S)	Standard								
 NOTES Wind: AS Vasd=100 Cat. II; Ex Exterior (ivertical le forces & I DOL=1.60 TCLL: AS DOL=1.11 Snow); Pf Plate DOI Ct=1.10 Unbalance design. This truss load of 12 overhang 	CE 7-10; Vult=130mp 3mph; TCDL=6.0psf; yp B; Enclosed; MWF 2) zone; cantilever lef ff and right exposed; MWFRS for reactions 0 plate grip DOL=1.3: 3CE 7-10; Pr=20.0 ps 5 Plate DOL=1.15); P =13.9 psf (flat roof sn L=1.15); Category II; wed snow loads have left a has been designed f 2.0 psf or 2.00 times f is non-concurrent with	bh (3-second gust) BCDL=6.0psf; h=25ft RS (envelope) and C t and right exposed ; C-C for members and shown; Lumber 3 f (roof live load: Lumb g=20.0 psf (ground ow: Lumber DOL=1.1 Exp B; Fully Exp.; been considered for th for greater of min roof lat roof load of 13.9 p n other live loads.	; -C end I ber 15 his f live sf on							. ATTITUM.	The second secon	SEA 0306 WGIN	AROL AL 552 EEER. HERIT

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	J1	Jack-Open	4	1	Job Reference (optional)	E14374384

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:30 ID:Lh2ZN6x7tRz5vcAR6?k2LnzJWWi-cIVh4OT7?Z7Vsds7akGk3SiMIcXShuhouV4e6jzJGo3

Page: 1

3x5 =

3-0-0

Scale = 1:26.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.11 0.07 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEDGE BRACING TOP CHORD 30T CHORD 30T CHORD REACTIONS FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASI Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & N DOL=1.6 2) TCLL: ASI DOL=1.15 snow); Pf- Plate DOI Ct=1.10 3) Unbalancu design. 4) This truss load of 12 overthangs	2x4 SP No.2 2x4 SP No.2 Left: 2x4 SP No.3 Structural wood shea 3-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 3 Mechanic: Max Horiz 2=49 (LC Max Uplift 3=2-6 (LC Max Uplift 3=2-6 (LC (LC 2) (lb) - Maximum Com Tension 1-2=0/30, 2-3=-99/54 2-4=-120/45 CE 7-10; Vult=130mph Bmph; TCDL=6.0psf; BG p B; Enclosed; MWFR8 2) zone; cantilever left a ft and right exposed; C- MWFRS for reactions sl 0 plate grip DOL=1.33 CE 7-10; Pr=20.0 psf (lat roof snov ==1.15); Category II; E> ed snow loads have be has been designed for .0 psf or 2.00 times flat s non-concurrent with o	athing directly applied applied or 10-0-0 oc 3= Mechanical, 4= al 15) (2), 3=76 (LC 2), 4=: pression/Maximum 4 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed ; ei C for members and hown; Lumber roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 cp B; Fully Exp.; en considered for thi r greater of min roof I roof load of 13.9 psf ther live loads.	5) * This tr on the t 3-06-00 chord a 6) Refer tr bearing 3. 8) One RT truss to connec forces. 9) This tru Internat 34 R802.1 LOAD CAS	uss has been designed ottom chord in all area tall by 2-00-00 wide v and any other members girder(s) for truss to t mechanical connection plate capable of withs 7A USP connectors re bearing walls due to L ion is for uplift only an as is designed in acco onal Residential Code 0.2 and referenced sta E(S) Standard	ed for a live as where a will fit betw s. truss conn on (by othe standing 2 ecommend UPLIFT at nd does no ordance wi e sections andard AN	e load of 20.0 a rectangle een the botto ections. ers) of truss t 6 lb uplift at j ded to conne jt(s) 2. This it consider la th the 2015 R502.11.1 a SI/TPI 1.	Opsf om to ioint teral and		, Manual Contraction of the second seco		SEA 0306	L 52 ASSIN	A THURSDAY
												A.4. 104	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

May 6,2020

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	J2GR	Half Hip Girder	4	1	Job Reference (optional)	E14374385

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:31 ID:qQfoj4M4eBN7b_LAfssFG9zJWW9-cIVh4OT7?Z7Vsds7akGk3SiLVcX1hutouV4e6jzJGo3

Special

Scale = 1:32.9

Plate Offsets (X, Y): [3:0-5-0,0-2-0]

Loading	(psf)	Spacing	2-0-0		CSI	0.16	DEFL	in 0.00	(loc)	l/defl	L/d	PLATES	GRIP
Snow (Pf/Pg)	18 9/20 0		1.15		BC	0.10	Vert(CT)	-0.00	6-9	~9999	180	101120	244/190
	10.0/20.0	Ren Stress Incr	NO		WB	0.10	Horz(CT)	0.01	2	>000 n/a	n/a		
BCU	0.0*	Code	IRC2015	/TPI2014	Matrix-MP	0.00	11012(01)	0.00	-	n/a	n, a		
BCDL	10.0		11(02010	/1112014								Weight: 24 lb	FT = 20%
		-	5)	This trues ha	s been designed fo	r areata	ar of min roof	flivo				-	
	2x4 SP No 2		5)	load of 12 0 r	sf or 2 00 times fla	t roof lo	ad of 13.9 p	sfon					
BOT CHORD	2x4 SP No 2			overhangs no	n-concurrent with	other liv	e loads.	0. 0.1					
WEBS	2x4 SP No.3		6)	Provide adeq	uate drainage to pr	event v	vater ponding	g.					
BRACING			7)	* This truss h	as been designed f	or a liv	e load of 20.0	Öpsf					
TOP CHORD	Structural wood she	athing directly applie	ed or	on the bottom	chord in all areas	where	a rectangle						
	5-0-0 oc purlins, exe	cept end verticals, a	nd	3-06-00 tall b	y 2-00-00 wide will	fit betw	een the bott	om					
	2-0-0 oc purlins: 3-4		0)	chord and an	y other members.		a atiana						
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	5 8) 9)	Provide mech	anical connection	(by othe	ections. ers) of truss t	to					
REACTIONS	(size) 2=0-3-8, 5	5= Mechanical		5		iung z	o ib upilit at j	joint					
	Max Horiz 2=59 (LC	51)	10)	One RT7A U	SP connectors reco	ommen	ded to conne	ect					
	Max Uplift 2=-17 (LC	11), 5=-20 (LC 8)	,	truss to beari	ng walls due to UP	LIFT at	jt(s) 2. This						
	Max Grav 2=331 (LC	31), 5=232 (LC 2)		connection is	for uplift only and o	does no	t consider la	ateral					
FORCES	(lb) - Maximum Com	pression/Maximum		forces.									
	1 2_0/22 2 2_ 2/2/	14 2 10- 20/15	11)	This truss is o	lesigned in accorda	ance wi	th the 2015						
TOF CHORD	4-10=-20/15 4-5=-78	8/14		R802 10 2 ar	d referenced stand	ections	R502.11.1 a	and					
BOT CHORD	2-6=-62/167. 5-6=-24	4/175	12)	Graphical pu	lin representation (lana / Int	t denict the s	size					
WEBS	3-6=0/95, 3-5=-241/	19	·=,	or the orienta	tion of the purlin al	ong the	top and/or	0.20					
NOTES				bottom chord		Ũ						minin	11111
1) Unbalance	ed roof live loads have	been considered for	r 13)	Hanger(s) or	other connection d	evice(s) shall be					"TH CA	Rolling
this desig	n.			provided suff	cient to support co	ncentra	ted load(s) 8	32 lb			1	R	D. LINI
2) Wind: AS	CE 7-10; Vult=130mph	(3-second gust)		down at 3-0-	no up at 3-0-0 011 i	op choi The d	u, anu 40 ib esian/selecti	on of			in the	FESS	N. S.
Cat II: Ex	n B: Enclosed: MW/FR	SDL=0.0psi, n=25ii, S (envelope): cantile	vor	such connect	ion device(s) is the	respor	sibility of oth	ners.			N	1 1	Min -
left and ric	t exposed : end verti	cal left and right			()	•	,				~		
exposed;	Lumber DOL=1.60 plat	te grip DOL=1.33	14)	In the LOAD	CASE(S) section, le	oads ap	plied to the	face		=	:	SEA	AL : =
3) TCLL: AS	CE 7-10; Pr=20.0 psf (roof live load: Lumbe	er	of the truss a	re noted as front (F) or ba	ck (B).			=	:	0206	52 : -
DOL=1.15	5 Plate DOL=1.15); Pg=	=20.0 psf (ground	LO	AD CASE(S)	Standard					-		0300	52 : 5
snow); Pf=	=18.9 psf (flat roof snov	w: Lumber DOL=1.1	51)	Dead + Sno	w (balanced): Lum	ber Inci	ease=1.15, I	Plate				1	1. 2
Plate DOL	=1.15); Category II; E	kp B; Fully Exp.;		Increase=1.	15							Nº En.	A: AS
(Linhalano)	_u=ou-u-u ad snow loads have be	en considered for th	ie	Uniform Loa	ds (ID/ft)	20					22	GIN	EF
design	Eu Show IDaus Have De		10	Vert: 1-3=	:-40, 3-4=-50, 5-7= d Loade (lb)	-20					1	VK D	195 M
				Vert: 62	28 (F) 3=-22 (F)							Min H.L	- MULIN
				von. 0=-2									111.
												IVI	ay 6,2020

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	J3	Jack-Open	26	1	Job Reference (optional)	E14374386

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:31 ID:Lh2ZN6x7tRz5vcAR6?k2LnzJWWi-5U33lkUmmtFMUnRK8RnzbgFSw0rrQLxx79pCeAzJGo2

5-0-0

3x5 =

Scale =	1.26.7

Ocale = 1.20.7													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.38 0.25 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.06 0.01	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Left: 2x4 SP No.3 Structural wood shea 5-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 3 Mechanic Max Horiz 2=76 (LC Max Uplift 3=-44 (LC Max Grav 2=255 (LC	athing directly applie applied or 10-0-0 or 3= Mechanical, 4= al 15) 2 15) 2 2), 3=131 (LC 2), 4	5) ed or 7) c 8) L(4=61	* This truss I on the bottor 3-06-00 tall It chord and ar Refer to gird Provide mec bearing plate 3. This truss is International R802.10.2 a DAD CASE(S)	has been designe in chord in all area by 2-00-00 wide w y other members er(s) for truss to t hanical connectio e capable of withs designed in accoo Residential Code ind referenced sta Standard	ed for a live as where e vill fit betw s. rruss conn on (by othe standing 4 ordance wi e sections andard AN	e load of 20. a rectangle reen the bott ections. ers) of truss 4 lb uplift at th the 2015 R502.11.1 a SI/TPI 1.	Opsf om to joint and					
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASG Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces lef forces lef forces lef DOL=1.60 2) TCLL: AS DOL=1.16 Snow); Pf: Plate DOL Ct=1.10 3) Unbalancc design. 4) This truss load of 12 overhangs	(lb) - Maximum Com Tension 1-2=0/30, 2-8=-206/9 2-4=-280/109 CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; BG cp B; Enclosed; MWFRS 2) zone; cantilever left a ft and right exposed;C	pression/Maximum 98, 3-8=-63/46 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; c C for members and hown; Lumber roof live load: Lumber 20.0 psf (ground w: Lumber DOL=1.1 xp B; Fully Exp.; een considered for th r greater of min roof t roof load of 13.9 ps ther live loads.	-C end 5 his live sf on									SEA 0306	ARO SOUTH AND

May 6,2020

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	J3GR	Monopitch Girder	1	2	Job Reference (optional)	E14374387

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:32 ID:ME5QWkLStuFG_qm_58L0jyzJWWA-5U33lkUmmtFMUnRK8RnzbgFTM0lOQLxx79pCeAzJGo2

Page: 1

3x5 =

1

THD26

5-0-0 L

Scale = 1:28.4											
Loading (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 13.9/20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing2-0-Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC	-0 5 5 2015/TPI2014	CSI TC BC WB Matrix-MP	0.29 0.60 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.07 0.01	(loc) 3-6 3-6 1	l/defl >999 >867 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 47 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheat 5-0-0 oc purlins, exce BOT CHORD Rigid ceiling directly a bracing. REACTIONS (size) 1=0-3-8, 3= Max Horiz 1=79 (LC 10 Max Uplift 1=-11 (LC 10 Max Uplift 1=-11 (LC 10 Max Grav 1=660 (LC 2) FORCES (lb) - Maximum Compu- Tension TOP CHORD 1-7=-182/59, 2-7=-32/ BOT CHORD 1-8=-41/126, 8-9=-30/ NOTES 1) 2-ply truss to be connected together Top chords connected with 10d (0 follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected with 10d (0 follows: 2x6 - 2 rows staggered at 2) All loads are considered equally age except if noted as front (F) or back CASE(S) section. Ply to ply conne provided to distribute only loads no unless otherwise indicated. 3) Wind: ASCE 7-10; Vult=130mph (2 Vasd=103mph; TCDL=6.0psf; BCI Cat. II; Exp B; Enclosed; MWFRS left and right exposed; end vertica exposed; Lumber DOL=1.60 plate 4) TCLL: ASCE 7-10; Pr=20.0 psf (ro DOL=1.15 Plate DOL=1.15); Pg=2 snow); Pf=13.9 psf (flat roof snow:	thing directly applied or apt end verticals. applied or 10-0-0 oc = Mechanical 0) 11), 3=-36 (LC 11) 2), 3=992 (LC 2) ression/Maximum /56, 2-3=-152/30 /22, 3-9=-30/22 her as follows: .131"x3") nails as d (0.131"x3") nails as d (0.131"x3") nails as 0-9-0 oc. pplied to all plies, < (B) face in the LOAD actions have been oted as (F) or (B), 3-second gust) DL=6.0psf; h=25ft; (envelope); cantilever al left and right a grip DOL=1.33 pof live load: Lumber 20.0 psf (ground : Lumber DOL=1.15	 Unbalanced s design. * This truss h on the bottom 3-06-00 tall b chord and an Refer to girde Provide mect bearing plate 3. One RT7A U truss to beari connection is forces. This truss is a lnternational R802.10.2 ar Use USP TH 12-10d x 1-1/ 2-0-0 cc max 4-0-12 to con Fill all nail ho LOAD CASE(S) Dead + Sno Increase=1. Uniform Loa Vert: 1-2- Concentrate Vert: 8=-5 	snow loads have been as been designed for n chord in all areas w by 2-00-00 wide will fit y other members. er(s) for truss to truss hanical connection (b capable of withstand SP connectors recom- ing walls due to UPLI is for uplift only and dc designed in accordan Residential Code sector and referenced standa D26 (With 18-16d na /2 nails into Truss) or t. starting at 2-0-12 fron- nect truss(es) to from les where hanger is i Standard w (balanced): Lumber 15 ads (lb/ft) =-48, 3-4=-20 ed Loads (lb) 531 (F), 9=-533 (F)	r a live r a live t betw t betw s conn- y othe ding 3(nmence IFT at bes no nce with ctions r equiv on the trian cont is int cont is int cont	sidered for the eload of 20.0 a rectangle een the botto ections. ers) of truss to 5 lb uplift at jo ded to connee jt(s) 1. This t consider lat the 2015 R502.11.1 a SI/TPI 1. o Girder & alent spaced e left end to of bottom ch tact with luml ease=1.15, F	iis Ipsf om obint ct eral I at nd I at oord. oper.				ORTH CA ORTH CA SEA 0306	AROLINA JONESZ

TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

minim

May 6,2020

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T1	Common	7	1	Job Reference (optional)	E14374388

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:32 ID:ptcyaSylel5xWmlegjFHu_zJWWh-ZhcRV4UOXBND5x0Wh9IC8toc0Q5P9k94LpZIAczJGo1 Page: 1

Scale = 1:63.9

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.42	Vert(LL)	-0.14	12-14	>999	240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.62	Vert(CT)	-0.22	12-14	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.26	Horz(CT)	0.03	10	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 137 lb	FT = 20%
LUMBER			3)	TCLL: ASCE	7-10; Pr=20.0 psf	(roof liv	e load: Lumbe	er					
TOP CHORD	2x4 SP No.2			DOL=1.15 P	ate DOL=1.15); Pg	g=20.0 p	sf (ground	_					
BOT CHORD	2x4 SP No.2			snow); Pf=13	8.9 psf (flat roof sno	ow: Lum	ber DOL=1.1	5					
WEBS	2x4 SP No.2			Plate DOL=1	.15); Category II; E	=хр В; Е	ully Exp.;						
SLIDER	Left 2x4 SP No.3 2	2-6-0, Right 2x4 SP	No.3	Cl=1.10	s boon docignod f	or groat	r of min roof	livo					
	load of 12.0 ps for 2.00 times flat roof load of 13.9 ps fon												
	NG JOPD Structural wood sheathing directly applied or overhangs non-concurrent with other live loads.												
TOP CHORD	4-10-14 oc purlins. D. Directly applied of 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle												
BOT CHORD	RD Rigid ceiling directly applied or 10-0-0 oc bracing. on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom on the bottom chord in all areas where a rectangle												
REACTIONS	(size) 2=0-3-8, 1	10=0-3-8	6)	This trues is	ly other members,	VIIII BC	DL = 10.0psi.						
	Max Horiz 2=-191 (Le	C 11)	0)	International	Residential Code	sections	R502 11 1 a	hd					
	Max Grav 2=1049 (LC 25), 10=1050 (LC 26) R802 10 2 and referenced stand ANS/TPL 1												
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LC	AD CASE(S)	Standard								
TOP CHORD	1-2=0/40, 2-3=-439/0	0, 3-4=-1224/237,											
	4-5=-1178/299, 5-6=	-1166/341,											
	6-7=-1169/341, 7-8=	-1181/299,											
	8-9=-1226/237, 9-10)=-437/0, 10-11=0/40)										
BOT CHORD	2-23=-153/1059, 23-	-24=-68/1059,	740									minin	11111
	14-24=-68/1059, 13-	-14=0/712, 13-25=0/	/12,									"THCA	Rolly
	12-20=0/712, 12-20=	=-09/955, 20-27=-09	/955,								S	R	1
WEBS	6-12=-139/612 8-12	-341/235									17	O'LEES	ONVE
WEBO	6-14=-139/606, 4-14	=-341/235									3	10 0	No
NOTES										2			
1) Unbalance	ed roof live loads have	been considered for								Ξ		SFA	1. E E
this desigr	٦.											0200	En E
2) Wind: AS	CE 7-10; Vult=130mph	(3-second gust)								1		0306	52 : 2
Vasd=103	mph; TCDL=6.0psf; B0	CDL=6.0psf; h=25ft;								-			1 3
Cat. II; Ex	p B; Enclosed; MWFR	S (envelope) and C-	с _.							5		·	airi
Exterior (2	2) zone; cantilever left a	and right exposed ; e	end								20	NGIN	EELX
forcos & M	I and right exposed;C-	bown: Lumbor									11	NE	CG N
DOI = 1.60	n = 1.33	nown, Lumber							3	R.L	A5		
DOL-1.00	Plate grip DOL-1.00											in the second se	IIIII.
												Ma	ay 6,2020
													, ,
A													
	VING - Verify design parame	ters and READ NOTES C	IN THIS AND	INCLUDED MITFK	REFERENCE PAGE M	II-7473 rev	10/03/2015 BEE	FORE USE				ENGINEED	ZING BY

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T1A	Common	4	1	Job Reference (optional)	E14374389

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:32 ID:mXF7ayAgAaUFIhiHHC5k9?zJWWO-ZhcRV4UOXBND5x0Wh9IC8toWzQ1b9kv4LpZIAczJGo1 Page: 1

	, , , , , [<u></u> o o ,, <u></u> ogo],	[0:0 0 .;2090]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014 Wind: ASCE Vasd=103mr	CSI TC BC WB Matrix-MSH 7-10; Vult=130mpt	0.81 0.86 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.67 -1.36 0.06	(loc) 13 13 9	l/defl >431 >212 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 153 lb	GRIP 244/190 187/143 FT = 20%	
BOT CHORD WEBS SLIDER	2x4 SP 10.2 2x4 SP 2400F 2.0E 2x4 SP No.3 *Except Left 2x4 SP No.3 2 2-6-0	t* 10-6,15-6:2x4 SP 2-6-0, Right 2x4 SP I	No.2 No.3	Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 pl	s; Enclosed; MWFR one; cantilever left nd right exposed;C FRS for reactions s ate grip DOL=1.33	S (env and rig -C for n	elope) and Contemposed ; hembers and Lumber	, -C end						
BRACING TOP CHORD	Structural wood shea 2-2-1 oc purlins.	athing directly applie	d or 3)	TCLL: ASCE DOL=1.15 P	7-10; Pr=20.0 psf ate DOL=1.15); Pg	(roof liv =20.0 p	e load: Lumb osf (ground	er						
BOT CHORD	Rigid ceiling directly bracing. Except: 6-0-0 oc bracing: 12-	applied or 10-0-0 oc -14	;	snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10										
REACTIONS	(size) 2=0-3-8, 9 Max Horiz 2=187 (LC Max Grav 2=1307 (L	9=0-3-8 C 12) .C 25), 9=1257 (LC 2	4) 26) 5)	 load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. 200.0lb AC unit load placed on the bottom chord, 12-0-0 										
FORCES	(lb) - Maximum Com Tension	pression/Maximum	6)	from left end, supported at two points, 5-0-0 apart.										
TOP CHORD	1-2=0/40, 2-3=-188/4 4-5=-1652/0, 5-6=-18 7-8=-1782/0, 8-9=-22	44, 3-4=-1780/0, 327/153, 6-7=-1831/ 20/51	7) 154,	 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 2.06-00 trail by 2-00-00 wide will be truepen the bottom 										
BOT CHORD	2-15=-38/1465, 15-2 11-25=0/926, 11-26= 10-27=0/926, 9-10=0 28-29=-64/1, 13-29= 30-31=-64/1, 12-31=	4=0/926, 24-25=0/9. =0/926, 26-27=0/926 0/1359, 14-28=-64/1 -64/1, 13-30=-64/1, -64/1	26, 5, 8) ,	chord and ar This truss is International R802.10.2 ar	y other members, y designed in accord Residential Code s nd referenced stand	with BC ance w sections dard AN	DL = 10.0psf th the 2015 R502.11.1 a ISI/TPI 1.	ind			July 1	NITH CA	ROJ	
WEBS	6-12=-26/1107, 10-1 7-10=-356/318, 14-1 6-14=-25/1101, 5-15	2=-122/935, 5=-121/930, =-356/318, 11-13=-3	39/30		Standard						R	SEA		
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for								11111	EC.I.	0306	52 EER THUN	

Scale = 1:68.9

minin May 6,2020

Job	russ Truss Type		Qty	Ply	Johnson-Roof		
20040129-A	T1GE	Common Supported Gable	1	1	Job Reference (optional)	E14374390	

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:33 ID:EjpVnHBIxuc6wqGUrwcziCzJWWN-1tAqjQV0IUV4j5biFspRh5KsFqatuFZEaTIJi2zJGo0 Page: 1

Plate Offsets (X, Y): [10:Edge,0-3-7]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.07 0.03 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 85 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Left 2x4 SP No.3 1 No.3 1-1-14	t* 15-6:2x4 SP No.2 -1-14, Right 2x4 SP	W N 1)	EBS 6 3 9 OTES Unbalanced r this design	-15=-101/36, 5-16= -18=-132/99, 7-14= -12=-135/101 oof live loads have	-139/9 -139/9 been o	3, 4-17=-141 3, 8-13=-141 considered fo	/98, /98, r	11) This Inter R80 LOAD C	truss is national 2.10.2 a ASE(S)	desigr Resid nd refe Star	ned in accordanc lential Code secti erenced standarc ndard	e with the 2015 ons R502.11.1 and . ANSI/TPI 1.
BRACING TOP CHORD BOT CHORD	Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing.	2) Wind: ASCE 7-10; Vult=130mph (3-second gust) vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and											
REACTIONS	(size) 2=14-0-0, 13=14-0-0 16=14-0-0 19=14-0-0 Max Horiz 2=-117 (Ll Max Uplift 2=-50 (LC 12=-61 (Ll 14=-37 (Ll 17=-36 (Ll 17=-36 (Ll 17=-36 (Ll 17=-36 (Ll 17=-36 (Ll 17=-31 (Ll 18=-131 (Ll 14=174 (Ll 16=175 (Ll 18=143 (Ll 23=115 (Ll	10=14-0-0, 12=14-0- , 14=14-0-0, 15=14-0 , 17=14-0-0, 18=14-0 , 23=14-0-0 C 11), 19=-117 (LC 1 9), 10=-18 (LC 10), C 14), 13=-37 (LC 14) C 14), 16=-38 (LC 13) C 13), 18=-69 (LC 13) C 9), 23=-18 (LC 10) ; 26), 10=115 (LC 2), C 26), 13=173 (LC 24) C 26), 15=139 (LC 24) C 25), 17=172 (LC 24) C 25), 19=141 (LC 24) C 25), 19=141 (LC 24) C 25), 19=141 (LC 24) C 25)	forces & MWI DOL=1.60 pla Truss design only. For stur see Standard or consult qua TCLL: ASCE DOL=1.15 Pli snow); Pf=13 Plate DOL=1. Ct=1.10 This truss has load of 12.0 p overhangs no All plates are Gable require	 'FRS for reactions shown; Lumber ate grip DOL=1.33 ned for wind loads in the plane of the truss ids exposed to wind (normal to the face), d Industry Gable End Details as applicable, ialified building designer as per ANSI/TPI 1. :7-10; Pr=20.0 psf (roof live load: Lumber late DOL=1.15); Pg=20.0 psf (ground 3.9 psf (flat roof snow: Lumber DOL=1.15 1.15); Category II; Exp B; Fully Exp.; as been designed for greater of min roof live psf or 2.00 times flat roof load of 13.9 psf on on-concurrent with other live loads. a 2x4 MT20 unless otherwise indicated. 							ROLIN		
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8) 9)	Gable studs s * This truss h	spaced at 2-0-0 oc. as been designed for a chord in all aroas i	or a liv	e load of 20.0	Opsf		THE STATE		SEA	L
TOP CHORD	1-2=0/40, 2-3=-48/61 4-5=-82/64, 5-6=-124 7-8=-65/64, 8-9=-64/ 10-11=0/40 2-18=-67/106, 17-18 16-17=-67/106, 13-1 14-15=-67/106, 10-1	s, 3-4=-91/73, 4/134, 6-7=-124/134, 39, 9-10=-46/56, =-67/106, 6=-67/106, 4=-67/106, 2=-67/106	1(3-06-00 tall b chord and an 0) One RT7A U3 truss to bearin 17, 18, 14, 13 and does not	y 2-00-00 wide will ty y other members. SP connectors reco ng walls due to UPL , and 12. This conn consider lateral fore	fit betw mmen IFT at lection ces.	ded to conne jt(s) 2, 10, 16 is for uplift of	om ct 6, nly			Fran	NGIN ANK R. L	ASSIL

May 6,2020

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T1SE	Common Structural Gable	1	1	Job Reference (optional)	E14374391

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:34 ID:iwNu_dCwiCkzY_rgOd7CEQzJWWM-1tAqjQV0IUV4j5biFspRh5KpNqTsuDwEaTIJi2zJGo0

Page: 1

Scale = 1:66.3 Plate Offsets (X, Y): [5:0-2-4,0-2-4], [18:0-6-0,0-2-4]

-																
Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.32	Vert(LL)	-0.05	18-34	>999	240	MT20	244/190		
Snow (Pf/Pg)	1	3.9/20.0	Lumber DOL	1.15		BC	0.47	Vert(CT)	-0.14	18-34	>999	180				
TCDL		10.0	Rep Stress Incr	YES		WB	0.16	Horz(CT)	-0.01	16	n/a	n/a				
BCLL		0.0*	Code	IRC201	5/TPI2014	Matrix-MSH										
BCDL		10.0											Weight: 207 lb	FT = 20%		
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Except* 20-9,22-7,18-11:2x4 SP No.2 Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0 Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Brace at Jt(s): 25,				DT CHORD	2-24=-53/191, 23-24 22-23=-51/190, 21-2 19-20=0/251, 18-19= 36-37=-30/522, 16-3 9-27=-180/584, 18-2 18-25=-297/183, 14- 22-26=-301/0, 9-26= 12-25=-12/19, 9-20= 21-26=-164/56, 7-22 1-24=-233/152, 10-2 19-27=-112/48, 11-1	=-53/1 2=0/25 60/251 7=-30/ 7=-18 25=-3 -336/0 -17/97 =-138/ 7=-91/ 8=-49/	91, 50, 20-21=0/2 18-36=-30/5 522 1/603, 14/195, , 6-22=-98/88 , 8-26=-135/7 96, 6-23=-64/ 47, 41	50, 22, 2, 29, 39,	 a) Inis rruss has been designed for a live load of 20.0pst on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. b) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 16, 23, and 24. This connection is for uplift only and does not consider lateral forces. 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 						
	6-0-0 OC	puriins.	annliad at 10.0.0 aa	N	OTES						CASE(S)	Star	ndard			
BOICHORD	kigid cell	ing directly	applied or 10-0-0 oc	1)	Unbalanced	roof live loads have	been o	considered for		20/12	5/102(0)	olui	ladia			
JOINTS	bracing. 1 Brace at Jt(s): 25, 26, 27				this design. Wind: ASCE	7-10; Vult=130mph	(3-sec	ond gust)								
FORCES TOP CHORD	(size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=0/40, 4-5=-285, 7-8=-337, 10-11=-61 12-13=-6	2=10-3-8, 22=10-3-8 28=10-3-8 28=-10-3-8 2=-189 (L0 23=-22 (LC 23=-22 (LC 23=25 (L1 23=07 (LC 23=307 (LC 23=307 (LC 23=307 (L 23=307 (L))))))))))))))))))))))))))))))))))))	16=0-3-8, 21=10-3-8, 23=10-3-8, 23=10-3-8, 24=10- C 11), 28=-189 (LC 1 14), 16=-30 (LC 14) C 1), 24=-88 (LC 13) C 14) C 25), 22=479 (LC 2 C 25), 22=479 (LC 2 C 2), 24=318 (LC 25 C 2) pression/Maximum 26, 3-4=-214/84, 284/179, 6-7=-277/19, 887/324, 9-10=-683/2 12=-654/257, 14=-678/251, 16=-383/0, 16-17=0/	s, 3-8, (1), , , , , , , , , , , , , , , , , , ,	Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 pl Truss design only. For stu see Standarc or consult qu TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL= 1.10 This truss ha load of 12.0 p overhangs no All plates are Gable studs	s; Enclosed; MWFRS one; cantilever left a nd right exposed;C-1 FRS for reactions sh ate grip DOL=1.33 red for wind loads in dis exposed to wind 1 Industry Gable Enc alified building desig 7-10; Pr=20.0 psf (tate DOL=1.15); Pg= 8.9 psf (flat roof snow .15); Category II; Ex s been designed for psf or 2.00 times flat on-concurrent with o c 2x4 MT20 unless o spaced at 2-0-0 oc.	S (envi ind rigg) C for n nown; I I betain I betain iner as oof livi 20.0 p v: Lum p B; F greate ther livi ther wis	elope) and C- ht exposed ; e ht exposed ; e hembers and Lumber ane of the tru al to the face) Is as applicat g per ANSI/TP e load: Lumber ber DOL=1.1! ully Exp.; er of min roof bad of 13.9 ps te loads. se indicated.	C end ss , ole, , loer 5 f on		. antitution.	A CONTRACT OF A	SEA 0306 WGIN R. L	EER. HAIN		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

May 6,2020

Job	Truss	Truss Type		Ply	Johnson-Roof				
20040129-A	T2	Common	2	1	Job Reference (optional)	E14374392			

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:34 ID:X6sSwEUssAGxwSmylVfW6tzJWdk-V3kCwmWe2odxLFAvpaKgDIttUEqbdcpNp72sFUzJGo? Page: 1

Scale = 1:61.6

Plate Offsets (X, Y): [6:Edge,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.74 0.44 0.44	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.06 -0.15 0.03	(loc) 7-10 7-10 2	l/defl >999 >951 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 83 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103 Cat. II; Ext Exterior (2 vertical lef forces & M	10.0 2x4 SP No.2 2x4 SP No.3 *Except Left 2x4 SP No.3 *Except Left 2x4 SP No.3 *Except Left 2x4 SP No.3 - 2 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 6 Max Horiz 2=298 (LC Max Uplift 6=-84 (LC Max Grav 2=554 (LC (lb) - Maximum Comp Tension 1-2=0/40, 2-3=-393/0 4-5=-456/234, 5-6=-6 2-12=-507/515, 12-11 7-13=-301/515, 7-14 6-14=-154/170 5-7=-217/629, 4-7=-4 CE 7-10; Vult=130mph mph; TCDL=6.0psf; BC p B; Enclosed; MWFRS b) zone; cantilever left at and right exposed; C-f WFRS for reactions sh	* 6-5:2x4 SP No.2 -6-0 athing directly applie sept end verticals. applied or 10-0-0 oc 5-6 =0-3-8 : 12) 10) : 26), 6=621 (LC 25) pression/Maximum), 3-4=-446/127, 500/304 3=-301/515, =-154/170, 437/302 (3-second gust) DL=6.0psf; h=25ft; 6 (envelope) and C-C ind right exposed ; e C for members and nown; Lumber	3) 4) 5) 6) LC	This truss ha load of 12.0 p overhangs nd * This truss h on the botton 3-06-00 tall b chord and an One RT7A U truss to beari connection is forces. This truss is of International R802.10.2 ar	s been designed fo osf or 2.00 times fla on-concurrent with as been designed in a chord in all areas y 2-00-00 wide will y other members, N SP connectors reco ng walls due to UP for uplift only and designed in accord. Residential Code s id referenced stand Standard	or greate at roof lo other liv for a live where a fit betw with BC ommen cLIFT at does no ance wi sections dard AN	er of min roof vad of 13.9 p: e loads. e load of 20.0 a rectangle een the botto DL = 10.0psf ded to conne jt(s) 6. This t consider la th the 2015 R502.11.1 a SI/TPI 1.	i live sf on Opsf om f. sct teral				Weight: 83 lb	ROUL 52	
DOL=1.60 2) TCLL: AS DOL=1.15 snow); Pf= Plate DOL Ct=1.10	Plate grip DOL=1.33 CE 7-10; Pr=20.0 psf (r Plate DOL=1.15); Pg= =13.9 psf (flat roof snow =1.15); Category II; Ex	oof live load: Lumbe 20.0 psf (ground v: Lumber DOL=1.15 p B; Fully Exp.;	9r 5								FOIL	ANK R.L	EER. 14 ASS 111111 ay 6,2020	nn.

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T2GE	Common Supported Gable	1	1	Job Reference (optional)	E14374393

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:35 ID:F0GwHbtQSi5_2kKpnNhjbQzJWaf-zFIa75XGp6loyPl5NHsvmWQ42dC7M4vX2nnPnxzJGo_

Page: 1

May 6,2020

818 Soundside Road Edenton, NC 27932

Scale = 1:62.1

Plate Offsets ((X, Y): [4:0	-3-0,0-3-0],	[8:0-2-6,Edge], [9:Edg	ge,0-1-8]									-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.63 0.30 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 96 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Left 2x4 S Structura 6-0-0 oc Rigid cei bracing. 1 Row at (size) Max Horiz Max Uplift Max Grav	Io.2 Io.2 Io.3 *Except SP No.3 - 2 Il wood shee purlins, exc ling directly = midpt 2=12-3-8, 11=12-3-8 14=12-3-8 2=298 (LC 2=-67 (LC 10=-45 (L1 12=-42 (L1 12=-42 (L1 14=-85 (L2 10=191 (L 12=177 (L 12=177 (L 14=192 (L	t* 10-7,11-6:2x4 SP N 2-4-14 athing directly applied cept end verticals. applied or 10-0-0 oc 8-9 9=12-3-8, 10=12-3-8, 3, 12=12-3-8, 13=12-3 8, 15=12-3-8 2 12), 15=298 (LC 12) 2 13), 13=-28 (LC 13) C 13), 13=-28 (LC 13) C 13), 13=-28 (LC 13) C 13), 13=-28 (LC 13) C 13), 13=-28 (LC 25), C 13), 13=-67 (LC 9) 2 26), 9=93 (LC 25), C 25), 13=161 (LC 25), C 25), 13=161 (LC 25), C 25), 15=235 (LC 26)		Wind: ASCE Vasd=103mp Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 pl Truss design only. For sttu see Standard or consult qu TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 This truss ha load of 12.00 overhangs ni All plates are Gable requiri Gable studs * This truss the on the bottor	7-10; Vult=130mp bh; TCDL=6.0psf; 3; Enclosed; MWF cone; cantilever lef nd right exposed; (FRS for reactions ate grip DOL=1.3; ned for wind loads ids exposed to wird lindustry Gable E ialified building de: 7-10; Pr=20.0 psi late DOL=1.15); P 3.9 psf (flat roof sn .15); Category II; is been designed f psf or 2.00 times fi con-concurrent with a 2x4 MT20 unless es continuous bott spaced at 2-0-0 on tas been designed n chord in all area by 2-00-00 wide with	bh (3-sec BCDL=6 RS (envit t and rig C-C for n shown; a in the pl nd (norm End Detai signer as f (roof liv g=20.0 p ow: Lum Exp B; F for greate lat roof lo o ther liv s other wit s other wit s other so f a liv s where ill fit between	ond gust) .0psf; h=25ft; elope) and C- nt exposed ; a nembers and Lumber ane of the tru ane of the tru al to the face, Is as applical s per ANSI/TF e load: Lumb ber DOL=1.1 ully Exp.; er of min roof yad of 13.9 ps re loads. se indicated. d bearing. e load of 20.0 a rectangle veen the both	C end iss), ble, Pl 1. er 5 live er 5 live of on			. LU	WITH CA	NROL
FORCES	(lb) - Max Tension	kimum Com	pression/Maximum	9)	chord and ar One RT7A U	by other members. ISP connectors re	commen	ded to conne	ct			Ž	JA A	
I OP CHORD	1-2=0/40 4-5=-396 7-8=-138), 2-3=-127/1 5/371, 5-6=-3 5/147, 8-9=-9	108, 3-4=-458/418, 317/305, 6-7=-257/26′ 90/68	1,	truss to bear 12, 13, and 1 does not con	ing walls due to U I4. This connection sider lateral forces	PLIFT at n is for u s.	jt(s) 9, 2, 10, plift only and	11,				SEA	L
BOT CHORD	2-14=-15 12-13=-1 10-11=-1	0/167, 13-1 57/172, 11- 57/172, 9-1	4=-150/167, 12=-157/172, 0=-157/172	10) This truss is International R802.10.2 a	designed in accor Residential Code nd referenced star	dance wi sections	th the 2015 R502.11.1 a ISI/TPI 1.	nd				0306	.52
WEBS	7-10=-23 5-12=-14	2/175, 6-11 9/105, 4-13	=-156/118, =-133/93, 3-14=-215/*	184 LO	DAD CASE(S)	Standard							ANGIN	EERTH
NOTES													R.L	ASSIL

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	ТЗ	Common	1	1	Job Reference (optional)	E14374394

8-1-4

8-1-4

Carter Components (Sanford), Sanford, NC - 27332

Loading

TCDL

BCLL

BCDL

WEBS

SLIDER

FORCES

WFBS

NOTES

1)

2)

3)

LUMBER

-0-10-8

0-10-8

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:35 ID:eIVePJDADp_hnl?3W29gJrzJWWK-zFIa75XGp6loyPI5NHsvmWQ07d5IM6GX2nnPnxzJGo_

16-2-8

8-1-4

Page: 1

0-10-8

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being real of the set only water the building designer must verify the subject of building designer much the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WWWWWWWWWWW

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T3GE	Common Supported Gable	1	1	Job Reference (optional)	E14374395

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:36 ID:6V30dfEo_77XPSaF4lhvs2zJWWJ-RSsyLRYuaPtfaYKHw?N8ljyNU1bL5aigGRXzINzJGnz

Page: 1

					10-2	2-8							
Scale = 1:46.9			Ι								I		
Plate Offsets (X, Y):	[10:Edge,0-3-7]	, [16:0-3-0,0-3-0]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190	

Snow (Pf/Pg) TCDL	13	3.9/20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES			BC WB	0.04	Vert(CT) Horz(CT)	n/a 0.00	- 10	n/a n/a	999 n/a		211/100
BCLL BCDL		0.0* 10.0	Code	IRC20	15/TPI2014	1	Matrix-MSH							Weight: 105 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER	2x4 SP No 2x4 SP No 2x4 SP No Left 2x4 SI 2-6-7	0.2 0.2 0.3 *Except P No.3 2	t* 15-6:2x4 SP No.2 -6-7, Right 2x4 SP I	I No.3	WEBS NOTES 1) Unbalar	6- 3- 9- nced ro	15=-128/67, 5- 18=-159/109, 7 12=-160/109 pof live loads ha	16=-139/9 7-14=-137/ ave been o	0, 4-17=-135 89, 8-13=-13 considered fo	/92, 5/92, r	11) This Inter R80 LOAD C	truss is mationa 2.10.2 a ASE(S)	design Resid and refo Star	ned in accordand lential Code sec erenced standar ndard	ze with the 2015 tions R502.11.1 and d ANSI/TPI 1.
BRACING TOP CHORD	Structural 6-0-0 oc p	wood shea urlins.	athing directly applie	d or	2) Wind: A Vasd=1 Cat. II; I	SCE 7 03mph Exp B;	'-10; Vult=130n n; TCDL=6.0psi Enclosed; MW	nph (3-sec f; BCDL=6 /FRS (enve	ond gust) .0psf; h=25ft; elope) and C-	-C					
BOT CHORD	kigid ceilir bracing.	ng directly	applied or 10-0-0 oc	;	vertical	left and	d right exposed	d;C-C for m	nembers and	ena					
REACTIONS	(size) Max Horiz Max Uplift Max Grav	2=16-2-8, 13=16-2-8 16=16-2-8 19=16-2-8 2=133 (LC 2=-31 (LC 13=-38 (LC 13=-38 (LC 18=-65 (LC 2=166 (LC 12=185 (L 14=175 (L 14=179 (L 18=193 (L 23=155 (L	10=16-2-8, 12=16-2 4, 14=16-2-8, 15=16- 5, 17=16-2-8, 18=16- 5, 23=16-2-8 12), 19=133 (LC 12 9), 12=-60 (LC 14), C 14), 14=-37 (LC 1 C 13), 17=-34 (LC 12 C 13), 19=-31 (LC 9) C 26), 10=155 (LC 2) C 26), 13=164 (LC 2) C 26), 15=141 (LC 2) C 25), 17=161 (LC 2) C 2), 19=166 (LC 2) C 2)	2-8, -2-8, -2-8, 2) 4), 4), -26), 28), 25), 26), (1) -26), -26, -27, -	forces & DOL=1. 3) Truss of only. Fr see Sta or consi 4) TCLL: <i>A</i> DOL=1. Snow); 1 Plate D Ct=1.10 5) This tru load of overhare 6) All plate	MWF 60 plat designe or stud ndard l ult qual ASCE 7 15 Pla Pf=13.9 OL=1.1) ss has 12.0 ps ngs nor 2 ss are 2 equires	RS for reaction te grip DOL=1. ed for wind load s exposed to w Industry Gable lified building of 7-10; Pr=20.0 p te DOL=1.15); 9 psf (flat roof s 15); Category II been designed sf or 2.00 times n-concurrent w 2x4 MT20 unlet s continuous bo	as shown; 33 ds in the pl vind (norm: End Detail lesigner as sof (roof liv: Pg=20.0 p snow: Lum I; Exp B; F d for greate f flat roof lo ith other liv ss otherwisit	Lumber ane of the tru al to the face Is as applical per ANSI/TF e load: Lumb sf (ground ber DOL=1.1 ully Exp.; er of min roof pad of 13.9 ps re loads. se indicated. d bearing	uss), ble, Pl 1. er 5 live sf on		+	and the second sec		ROL
FORCES	(Ib) - Maxii Tension	mum Com	pression/Maximum	8	B) Gable s	tuds sp	paced at 2-0-0	OC.	a bearing.				L		11 1 E
TOP CHORD	1-2=0/40, 2 4-5=-90/86 7-8=-92/88 10-11=0/4 2-18=-72/1	2-3=-56/26 6, 5-6=-150 3, 8-9=-71/ 0 115, 17-18	6, 3-4=-100/70, 0/156, 6-7=-150/156 '32, 9-10=-54/26, =-72/115, 16-17=-72	, 2/115,	9) * This tr on the b 3-06-00 chord a 10) One RT	tall by nd any 7A US	is been design chord in all are 2-00-00 wide other member P connectors r	ed for a live eas where will fit betw s. ecommen	e load of 20.0 a rectangle reen the botto ded to conne	Opsf om ct		11111	F	0306	52
	15-16=-69 13-14=-69 10-12=-69	/114, 14-1 /114, 12-1 /114	5=-69/114, 3=-69/114,		truss to 18, 14, does no	bearin 13, and ot consi	g walls due to d 12. This conr ider lateral forc	UPLIFT at nection is fo es.	Jt(s) 2, 16, 17 or uplift only a	7, and				ANK R.L	ASSIT

May 6,2020

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	Τ4	Common	1	1	Job Reference (optional)	E14374396

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:36 ID:6V30dfEo_77XPSaF4lhvs2zJWWJ-RSsyLRYuaPtfaYKHw?N8ljyHX1S85TggGRXzINzJGnz Page: 1

Scale = 1:49.3 Plate Offsets (X, Y): [7:0-2-0,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.45 0.63 0.54	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.29 0.01	(loc) 6-8 6-8 6	l/defl >999 >672 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 87 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-6-6 oc purlins, exc Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=155 (LC Max Uplift 2=-13 (LC Max Grav 2=705 (LC (lb) - Maximum Com Tension 1-2=0/30, 2-3=-985/2 4-12=-631/269, 4-13 5-13=-127/122, 5-6= 2-8=-365/816, 7-8=-1 14-15=-160/328, 6-1	* 8-3,6-5:2x4 SP No athing directly applie cept end verticals. applied or 9-8-12 oc i=0-3-8 (14) 15) (2), 6=649 (LC 2) pression/Maximum 261, 3-12=-792/266, =-109/140, -140/120 160/328, 7-14=-160, 5=-160/328	3) 0.3 4) ed or 5) 5 6) 7) , 8) /328, 12	TCLL: ASCE DOL=1.15 PI snow); Pf=13 Plate DOL=1 Ct=1.10 Unbalanced : design. This truss ha load of 12.0 g overhangs not * This truss h on the bottom 3-06-00 tall b chord and an One RT7A U truss to beari connection is forces. This truss is of International R802.10.2 ar	7-10; Pr=20.0 ps ate DOL=1.15); F .9 psf (flat roof sr .15); Category II; snow loads have s been designed osf or 2.00 times f on-concurrent with as been designed n chord in all area y 2-00-00 wide w y other members SP connectors re ng walls due to U for uplift only and designed in accor Residential Code d referenced stat Standard	f (roof livvPg=20.0 p now: Lum Exp B; F been con for greate flat roof lc h other liv d for a livv as where a ill fit betw , with BC comment IPLIFT at d does no redance with a sections ndard AN	e load: Lumb sf (ground ber DOL=1.' ully Exp.; sidered for t er of min rood bad of 13.9 p e loads. e load of 20.1 a rectangle een the bott DL = 10.0ps ded to conne jt(s) 2. This t consider la th the 2015 R502.11.1 a SI/TPI 1.	ber 15 his f live lisf on 0psf com f. ect ateral					
NOTES 1) Unbalance this desig 2) Wind: AS Vasd=100 Cat. II; E> Exterior (ced roof live loads have in. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; BC φ B; Enclosed; MWFRS 2) zone: cantilever left a	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- ind right exposed -	r C and								and the second s	SEA	

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 SEAL 030652 MGINEER, LASS May 6,2020

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T4A	Common	3	1	Job Reference (optional)	E14374397

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:36 ID:bhcOq?FRIQFO0c9RdTC8PGzJWWI-RSsyLRYuaPtfaYKHw?N8ljyHS1S95TegGRXzINzJGnz

Page: 1

Plate Offsets (X, Y): [1:Edge,0-0-14], [6:0-2-0,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.45 0.63 0.55	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.29 0.02	(loc) 5-7 5-7 5	l/defl >999 >674 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 85 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Except Left: 2x4 SP No.3 Structural wood shea 5-6-2 oc purlins, exc Rigid ceiling directly bracing. (size) 1= Mechan Max Horiz 1=-5 (LC 1 Max Uplift 1=-5 (LC 1 Max Grav 1=651 (LC (lb) - Maximum Com Tension 1-2=-990/266, 2-11=-	* 7-2,5-4:2x4 SP No athing directly applied ept end verticals. applied or 9-8-7 oc nical, 5=0-3-8 : 14) 5) 5) 5) 5) 5) 5) 5) 5) 5) 5) 5) 5) 5)	3) -3 d or 5) 6) 7) 8)	TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 Unbalanced s design. * This truss h on the bottom 3-06-00 tall b chord and an Refer to girde Provide mech bearing plate 1. This truss is of International R802.10.2 an	7-10; Pr=20.0 psf ate DOL=1.15); Pg .9 psf (flat roof sno .15); Category II; E snow loads have be as been designed in a chord in all areas y 2-00-00 wide will y 2-00-00 wide will y 2-00-00 wide will y other members, . er(s) for truss to tru- nanical connection capable of withsta designed in accord. Residential Code s ad referenced stance	(roof liv, =20.0 p w: Lum xp B; F een con for a liv, where fit betw with BC ss conn (by othen nding 5 ance wi ections lard AN	e load: Lumb sf (ground ber DOL=1.1 ully Exp.; sidered for th e load of 20.0 a rectangle even the bott DL = 10.0psi ections. ers) of truss i lb uplift at jo th the 2015 R502.11.1 a SI/TPI 1.	ber 15 his Opsf om f. to oint					
BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 Cat. II; Ext Exterior (2 vertical lef forces & M DOL=1.60	4-12=-127/124, 4-5= 1-7=-362/822, 6-7=-1 13-14=-160/329, 5-1- 3-7=-124/587, 2-7=-5 ed roof live loads have l 2E 7-10; Vult=130mph mph; TCDL=6.0psf; BC p B; Enclosed; MWFRS b) zone; cantilever left a t and right exposed;C-C MVFRS for reactions sh plate grip DOL=1.33	140/120 140/120 160/329, 6-13=-160/3 4=-160/329 159/248, 3-5=-548/21 been considered for (3-second gust) CDL=6.0psf; h=25ft; 5 (envelope) and C-C nd right exposed ; ei C for members and lown; Lumber	L(329, 13	DAD CASE(S)	Standard						The second second	SEA 0306	L SS L SS L

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

minim May 6,2020

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T4GE	Monopitch Supported Gable	1	1	Job Reference (optional)	E14374398

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:37 ID:bhcOq?FRIQFO0c9RdTC8PGzJWWI-veQKYnYWLj?WCiuUUiuNrxVWRRwKq1MqV5GWqpzJGny

Page: 1

Scale = 1:42.8			⊢			12-0-0							
Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 13.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.25 0.12 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2018	5/TPI2014	Matrix-MSH							Weight: 72 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Exce Left: 2x4 SP No.3 Structural wood sh 6-0-0 oc purlins, e Rigid ceiling directl bracing. (size) 2=12-0-0 11=12-0 14=12-0 Max Horiz 2=196 (L Max Uplift 2=-1 (LC 10=-21 (14=-41 (Max Grav 2=152 (L 10=184) 14=163	pt* 10-7:2x4 SP No.2 eathing directly applie xcept end verticals. y applied or 10-0-0 or 0, 9=12-0-0, 10=12-0- 0, 12=12-0-0, 13=12 -0, 15=12-0-0 .C 14), 15=196 (LC 1 11), 9=-20 (LC 12), LC 15), 13=-13 (LC 1 LC 15), 15=-1 (LC 11 .C 30), 9=67 (LC 22), (LC 22), 13=159 (LC 2 (LC 2), 13=159 (LC 2	1) ed or 2) c 3) -0-0, 4) 5), 5) 5), 5) 2), 6) 0) 7)	Wind: ASCE Vasd=103mp Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 pl Truss desigg only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 P snow); Pf=13 Plate DOL=1 Ct=1.10 Unbalanced design. This truss ha load of 12.0 overhangs n All plates are Gable requir	7-10; Vult=130m oh; TCDL=6.0psf 3; Enclosed; MVW cone; cantilever le nd right exposed (FRS for reaction ate grip DOL=1.3 ned for wind load dis exposed to w d Industry Gable ialified building di : 7-10; Pr=20.0 pi late DOL=1.15); I 3.9 psf (flat roof s .15); Category II; snow loads have as been designed psf or 2.00 times on-concurrent with a 2x4 MT20 unless es continuous bo	aph (3-sec; BCDL=6 FRS (envised FRS (envised ft and rig) (c-C forn s s shown; 33 s in the pl ind (norm End Detail end Detail end petail end petail end petail end petail end petail end petail end petail for greated flat roof low s otherwist tom chor	ond gust) .0psf; h=25ft; elope) and C. ht exposed; - nembers and Lumber ane of the tru al to the face Is as applical is per ANSI/Tf e load: Lumb sef (ground ber DOL=1.1 ully Exp.; usidered for th er of min roof bad of 13.9 pi re loads. se indicated. d bearing.	; -C end Jss), bble, PI 1. ber 15 his f live sf on					1111.
FORCES	(lb) - Maximum Cor	mpression/Maximum	· 8) 9)	Gable studs * This truss h	spaced at 2-0-0 o nas been designe	oc. ed for a liv	e load of 20.0	Opsf			R	THCA	ROUL

on the bottom chord in all areas where a rectangle

10) One RT7A USP connectors recommended to connect

11) This truss is designed in accordance with the 2015

R802.10.2 and referenced standard ANSI/TPI 1.

chord and any other members.

does not consider lateral forces.

3-06-00 tall by 2-00-00 wide will fit between the bottom

truss to bearing walls due to UPLIFT at jt(s) 2, 9, 10, 11, 12, 13, and 14. This connection is for uplift only and

International Residential Code sections R502.11.1 and

 FORCES
 (Ib) - Maximum Compression/Maximum Tension

 TOP CHORD
 1-2=0/30, 2-3=-377/202, 3-4=-312/175, 4-5=-262/158, 5-6=-207/138, 6-18=-157/107, 7-18=-148/123, 7-8=-99/90, 8-9=-52/46

 BOT CHORD
 2-14=-316/186, 13-14=-101/110, 12-13=-101/110, 11-12=-101/110, 10-11=-101/110, 9-10=-101/110

 WEBS
 7-10=-142/128, 6-11=-119/104, 5-12=-120/98, 4-13=-120/93, 3-14=-120/125

 NOTES
 X

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOAD CASE(S) Standard

May 6,2020

SEAL

030652

Mannin 11

818 Soundside Road Edenton, NC 27932

THILL WANTED

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T5GR	Hip Girder	1	1	Job Reference (optional)	E14374399

Loading

TCDL

BCLL

BCDL

LUMBER

WEBS

WEDGE

BRACING

FORCES

WEBS

NOTES

1)

2)

mm May 6,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Bending of extended flanges is permitted.

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	Т6	Нір	1	1	Job Reference (optional)	E14374400

2-8-8

Scale = 1:35.8

Plate Offsets (X, Y): [2:Edge,0-0-14], [3:0-5-4,0-2-0], [5:Edge,0-0-14], [7:0-1-12,0-3-4]

-													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.97	Vert(LL)	-0.07	8-11	>999	240	MT20	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.56	Vert(CT)	-0.14	8-11	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.07	Horz(CT)	0.02	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018	5/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 75 lb	FT = 20%
LUMBER			3)	TCLL: ASCE	7-10: Pr=20.0 psf (roof liv	e load: Lumb	ber					
TOP CHORD	2x4 SP No.2		- /	DOL=1.15 PI	ate DOL=1.15); Pg	=20.0 p	sf (ground						
BOT CHORD	2x4 SP No.2			snow); Pf=18	.9 psf (flat roof sno	w: Lum	ber DOL=1.1	15					
WEBS	2x4 SP No.3			Plate DOL=1	.15); Category II; E:	xp B; F	ully Exp.;						
WEDGE	Left: 2x4 SP No.3			Ct=1.10, Lu=	50-0-0								
	Right: 2x4 SP No.3		4)	Unbalanced	snow loads have be	en cor	sidered for t	his					
BRACING				design.									
TOP CHORD	Structural wood shea	athing directly applied	l, 5)	This truss ha	s been designed for	r greate	er of min roof	live					
	except			load of 12.0 p	ost or 2.00 times the	t root ic	ad of 13.9 p	ston					
	2-0-0 oc purlins (5-7-	-9 max.): 3-4.	6)	Drevide adec	usto drainago to pr		e luaus.	a					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	7)	* This trues h	luate urainaye to pr	oraliv	a load of 20	y. Onef					
	bracing.		''	on the botton	n chord in all areas	where	a rectangle	000					
REACTIONS	(size) 2=0-3-8, 5	=0-3-8		3-06-00 tall b	y 2-00-00 wide will	fit betw	een the bott	om					
	Max Horiz 2=-42 (LC	13)		chord and an	y other members.								
	Max Grav 2=877 (LC	; 38), 5=877 (LC 38)	8)	This truss is	designed in accorda	ance wi	th the 2015						
FORCES	(lb) - Maximum Com	pression/Maximum		International	Residential Code s	ections	R502.11.1 a	and					
TODOUODD				R802.10.2 ar	nd referenced stand	ard AN	SI/TPI 1.						
TOP CHORD	1-2=0/33, 2-15=-111	1/213, 3-15=-9/1/234	4, 9)	Graphical pu	rlin representation of	loes no	t depict the	size					
	J-10=-072/201, 10-1 A-17=-872/261 A-18	7=-072/201, 073/234		or the orienta	ition of the purlin alo	ong the	top and/or						
	5-18=-1112/213 5-6	=0/33		bottom chord									116
BOT CHORD	2-8=-232/868. 7-8=-9	92/873. 5-7=-95/869	LC	AD CASE(S)	Standard							1111 CA	in the second se
WEBS	3-8=0/134, 3-7=-127	/125, 4-7=0/179										TH UA	ROIN
NOTES	,	,									3	On the	T. Mil
1) Unbalance	ed roof live loads have	been considered for									12	1:1	Ning's
this design	۱.											1 A	Chine -
2) Wind: ASC	CE 7-10; Vult=130mph	(3-second gust)								-			
Vasd=103	mph; TCDL=6.0psf; B0	DL=6.0psf; h=25ft;								=	:	SEA	L : =
Cat. II; Ex	p B; Enclosed; MWFRS	6 (envelope) and C-C								=	:	0206	52 : 2
Exterior (2	 zone; cantilever left a 	and right exposed ; er	nd							-		0300	52 : 2
vertical lef	t and right exposed;C-	C for members and										N	1 - E - E - E
forces & N	IWFRS for reactions sh	nown; Lumber								3			AIRE
DOL=1.60	plate grip DOL=1.33										10	GIN	EFIXES
											11	VK	CS N

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

R. LA

6

 \mathbb{X}

4x5 =

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	Т7	Common	2	1	Job Reference (optional)	E14374401

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:39

Scale =	1:41.5
---------	--------

Plate Offsets (X, Y): [2:Edge,0-1-2], [4:Edge,0-1-2], [6:0-3-0,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.81 0.66 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.24 0.03	(loc) 6-12 6-12 2	l/defl >999 >853 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 65 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 2-2-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Max Horiz 2=50 (LC Max Uplift 2=-6 (LC 1 Max Grav 2=733 (LC	athing directly applied applied or 10-0-0 oc =0-3-8 14) 15), 4=-6 (LC 16) ; 2), 4=733 (LC 2)	4) 5) 6) d or 7) 8)	Unbalanced design. This truss ha load of 12.0 p overhangs m * This truss h on the bottor 3-06-00 tall b chord and ar One RT7A U truss to bear This connect lateral forces This truss is International R802.10.2 ar	snow loads have b s been designed for port on 2.00 times fl on-concurrent with las been designed in chord in all areas by 2-00-00 wide will y other members. SP connectors rec ing walls due to Uf ion is for uplift only designed in accord Residential Code ind referenced stan	peen cor or greate at roof k other hi for a liv s where Il fit betw commen PLIFT at v and do dance w sections dard AN	isidered for the sidered for the sidered for the sidered of 13.9 preloads. Is e load of 20.1 a rectangle veen the both ded to conne the both ded to conne the source not consider the source source consider the source sou	his f live sf on Opsf om ect der and					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LC	AD CASE(S)	Standard								
TOP CHORD	1-2=0/30, 2-13=-939 3-14=-777/234, 4-14	/212, 3-13=-777/234 =-939/212, 4-5=0/30	,										
BOT CHORD	2-6=-312/738, 4-6=-7	78/738											
NEBS	3-6=0/240												in the second se
 Unbalance this design Vasd=103 Cat. II; Ext Exterior (2 vertical lef forces & N DOL=1.60 TCLL: AS(DOL=1.15 snow); Pf= Diate DOL 	ed roof live loads have h. CE 7-10; Vult=130mph imph; TCDL=6.0psf; BC p B; Enclosed; MWFRS 2) zone; cantilever left a t and right exposed;C-4 MWFRS for reactions st plate grip DOL=1.33 CE 7-10; Pr=20.0 psf (f i; Plate DOL=1.15); Pg= =13.9 psf (flat roof snow 1.15); Cotager (i) is plate	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C (envelope) and C-C for members and hown; Lumber coof live load: Lu	C nd r								The Fritter	SEA 0306	BOUR L

818 Soundside Road Edenton, NC 27932

mm May 6,2020

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T7GR	Common Girder	1	2	Job Reference (optional)	E14374402

TCDL

BCLL

BCDL

WEBS

WEBS

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:39 ID:ur7K?qyp5FYA_Wbb1eEIIUzJWVO-s1Y5zTantKFER02sc7wrwMamzFXIImg6yPldvizJGnw

Page: 1

NOTES 2-ply truss to be connected together with 10d 1) (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 OC. Bottom chords connected as follows: 2x8 - 2 rows

staggered at 0-5-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

R802.10.2 and referenced standard ANSI/TPI 1. 11) Use USP THDH26-2 (With 20-16d nails into Girder & 8-16d nails into Truss) or equivalent at 5-1-8 from the left end to connect truss(es) to front face of bottom chord.

- 12) Use USP THD26 (With 18-16d nails into Girder & 12-10d x 1-1/2 nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 7-0-12 from the left end to 15-0-12 to connect truss(es) to front face of bottom chord.
- 13) Fill all nail holes where hanger is in contact with lumber.

Marine Contraction of the Contra SEAL 030652 mm May 6,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T8AGR	Roof Special Girder	1	2	Job Reference (optional)	E14374403

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:40 ID:Af_6LbdtSy9?EN10yTFP9ozJWVp-s1Y5zTantKFER02sc7wrwMaiDFPilpp6yPldvizJGnw

Page: 1

exposed; Lumber DOL=1.60 plate grip DOL=1.33

DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground

Plate DOL=1.15); Category II; Exp B; Fully Exp.;

Ct=1.10. Lu=50-0-0

chord and any other members.

6)

7)

8)

9)

10)

desian.

TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber

snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15

Unbalanced snow loads have been considered for this

Provide adequate drainage to prevent water ponding.

on the bottom chord in all areas where a rectangle

Refer to girder(s) for truss to truss connections.

* This truss has been designed for a live load of 20.0psf

3-06-00 tall by 2-00-00 wide will fit between the bottom

Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 115 lb uplift at joint

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; (0.148"x3.25") toe-nails per NDS guidlines. Cat. II; Exp B; Enclosed; MWFRS (envelope); cantilever LOAD CASE(S) Standard left and right exposed ; end vertical left and right
 - 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

818 Soundside Road

Edenton, NC 27932

WEBS 5-10=0/323, 7-9=-36/1579, 3-13=-1716/247,

FORCES

TOP CHORD

BOT CHORD

1-13=-229/4755, 3-12=-107/2688, 4-12=-599/148, 5-12=-315/1350, 6-9=-2/833, 5-9=-4932/243

Max Grav 8=1801 (LC 2), 14=2258 (LC 2)

(lb) - Maximum Compression/Maximum

1-14=-2114/157, 1-15=-4462/214,

2-3=-4462/214, 3-17=-6932/313,

15-16=-4462/214, 2-16=-4462/214,

17-18=-6932/313, 18-19=-6932/313,

6-21=-1200/67, 6-7=-1342/88, 7-8=-1764/63

4-19=-6932/313, 4-20=-6932/313,

5-20=-6932/313, 5-21=-1387/65,

14-22=-131/133, 22-23=-131/133,

23-24=-131/133, 13-24=-131/133,

13-25=-213/4462. 25-26=-213/4462.

26-27=-213/4462, 12-27=-213/4462,

12-28=-219/5783, 11-28=-219/5783,

10-11=-219/5783. 9-10=-222/5765.

Tension

8-9=-44/35

Continued on page 2 • Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

14.

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	E4 407 4 400
20040129-A	T8AGR	Roof Special Girder	1	2	Job Reference (optional)	E14374403

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:40 ID:Af_6LbdtSy9?EN1OyTFP9ozJWVp-s1Y5zTantKFER02sc7wrwMaiDFPilpp6yPldvizJGnw

Page: 2

Vert: 1-5=-58, 5-6=-48, 6-7=-48, 8-14=-20

Concentrated Loads (lb)

Vert: 2=-55 (F), 15=-55 (F), 16=-55 (F), 17=-55 (F),
18=-55 (F), 19=-55 (F), 22=-38 (F), 23=-38 (F),
24=-38 (F), 25=-38 (F), 26=-38 (F), 27=-38 (F),
28=-819 (F)

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T8GR	Hip Girder	1	1	Job Reference (optional)	E14374404

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:45 ID:UYzcxc7boYJBfgfHraU1JRzJWVA-oPfrO9b1PyVyhKCFjYyJ?ng3x29dmdGPQjEkzazJGnu

Page: 1

May 6,2020

818 Soundside Road Edenton, NC 27932

Scale = 1:68.1

Plate Offsets	(X, Y): [3:0-3-0,0-2-7],	[7:0-3-8,0-2-0], [8:0	-3-0,0-2-7], [11:0-3-8,0-2	2-0], [14:0-6-0,0-5-	0], [15:0-	3-8,0-2-0]							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	15/TPI2014	CSI TC BC WB Matrix-MSH	0.79 0.67 0.97	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.57 -1.14 0.20	(loc) 13 13 9	l/defl >806 >401 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS MT18HS Weight: 233 lb	GRIP 244/190 187/143 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS WEBS REACTIONS FORCES TOP CHORD	2x4 SP No.2 *Except 2.0E 2x6 SP 2400F 2.0E 2x4 SP No.3 *Except 4-15,7-11,13-4,12-6: Structural wood shee 2-1-9 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (2-1 Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts (size) 2=0-3-8,9 Max Horiz 2=32 (LC Max Uplift 2=-134 (LI Max Grav 2=2631 (L (lb) - Maximum Com Tension 1-2=0/33, 2-3=-4956 22-23=-4275/260, 25 24-25=-4277/260, 4 -26=-9639/578, 5-6 6-28=-8376/518, 7 -31=-4280/260, 31- 32-33=-4277/260, 3- 8-34=-4275/260, 8-9	t* 3-5,5-8:2x6 SP 24 t* 2x4 SP No.2 athing directly applie ept 1-2 max.): 3-8. applied or 10-0-0 oc 6-12 4-15, 7-11 9=0-3-8 10) C 8), 9=-133 (LC 7) C 2), 9=2631 (LC 2) pression/Maximum /278, 3-22=-4275/260, 25=-4280/260, 27=-9639/578, 29=-8376/518, 30=-8376/518, 32=-4275/260, =-4956/278, 9-10=0	B HOOF ed or c V 1 2) 60, 3 5 //33 6 7 8	/EBS OTES) Unbalanceet this design.) Wind: ASCI Vasd=103m Cat. II; Exp left and righ exposed; LI) TCLL: ASC DOL=1.15 I snow); Pf=1 Plate DOL= Ct=1.10, Lu) Unbalancet design.) This truss h load of 12. overhangs) Provide ade) All plates ai) * This truss on the botto 3-06-00 tall chord and a	2-35=-229/4372, 15-36=-486/8398, 37-38=-486/8398, 37-38=-486/8398, 14-39=-490/8390, 40-41=-490/8390, 13-42=-548/9639, 12-45=-465/8397, 46-47=-465/8397, 11-48=-206/4373, 3-15=0/1757, 8-1. 7-11=-4428/302, 4 6-13=-183/170, 6- d roof live loads ha E 7-10; Vult=130m nph; TCDL=6.0psf; B; Enclosed; MWF tt exposed; end ve umber DOL=1.60 pt E 7-10; Pr=20.0 ps Plate DOL=1.15); F 18.9 psf (flat roof sisted the sist	15-35=-2: 36-37= 14-38= 14-38= 13-41= 42-43=-1 12-44=-1 12-44=-1 12-44=-1 12-44=-1 12-44=-1 12-44=-1 12-44=-1 12-44=-1 12-45=- 12-45=	29/4372, 486/8398, 486/8398, 480/8390, 490/8390, 548/9639, 548/9639, 548/9639, 548/9639, 758/9639, 758/9639, 758/9639, 758/9639, 758/9639, 769/4373, 71, 4-13=-82/ 71, 4-13=-82/ 72, 4-1	/304, 1358, 747 r er 5 live sf on g. d.)psf	 9) One trus This late 10) This late 10) This of the true of tru	e RT7A L s to bea connect ral force s truss is rrationa 2.10.2 a phical phe orient om chor IILED" in 48"x3.2! ager(s) o vided sut own and p at 34- uch conners. he LOAE he truss CASE(S)	USP ccc ring wattion is s. desiggind refe urlin re ation c d. dicate: 5") toe: r other fficient 40 lb 11-4 o ccaSE are noi Star	onnectors recom alls due to UPLII for uplift only an hed in accordan dential Code sec erenced standar presentation dou of the purlin alon s 3-10d (0.148"x -nails per NDS g connection dev to support conc up at 3-0-12, and to device(s) is the E(S) section, loa ted as front (F) con adard SEA 0300	mended to coi T at jt(s) 2 an d does not coi ce with the 20° tions R502.11. d ANSI/TPI 1. as not depict th g the top and/d 3°) or 3-12d uidlines. ice(s) shall be entrated load(s d 212 lb dowr The design/sr responsibility ds applied to th r back (B).	nnect d 9. hsider 15 1 and he size or b) 212 and 40 election of he face

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T8GR	Hip Girder	1	1	Job Reference (optional)	E14374404

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-3=-48, 3-8=-58, 8-10=-48, 16-19=-20 Concentrated Loads (lb)

- Vert: 3=-60 (B), 5=-55 (B), 8=-60 (B), 15=-38 (B),
- Vert: 3=-60 (B), 5=-55 (B), 8=-60 (B), 15=-38 (B), 11=-38 (B), 13=-38 (B), 6=-55 (B), 23=-55 (B), 24=-55 (B), 25=-55 (B), 26=-55 (B), 27=-55 (B), 28=-55 (B), 29=-55 (B), 30=-55 (B), 31=-55 (B), 32=-55 (B), 33=-55 (B), 35=-208 (B), 36=-38 (B), 37=-38 (B), 38=-38 (B), 39=-38 (B), 40=-38 (B), 41=-38 (B), 42=-38 (B), 43=-38 (B), 44=-38 (B), 45=-38 (B), 46=-38 (B), 47=-38 (B), 48=-208 (B)

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:45 ID:UYzcxc7boYJBfgfHraU1JRzJWVA-oPfrO9b1PyVyhKCFjYyJ?ng3x29dmdGPQjEkzazJGnu

Page: 2

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	Т9	Нір	1	1	Job Reference (optional)	E14374405

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:46 ID:Pr_g52KBLG?YkXcb_jJYeXzJWWC-8NTkRsfAEU8En55CW5YUiqNvN3oPRxk8Z_yVfozJGnp

Page: 1

38-10-8 0-10-8 7-0-0 15-0-9 22-11-7 31-0-0 38-0-0 7-0-0 7-10-13 8-0-9 8-0-9 7-0-0 5x10= 5x6= 3x5= 5x6= 4-0-10 0-1-11 24 3 21 4 _{≍1}2223 _™ 5 6 ÷ ÷= R 6¹² 3-11-0 3-11-0 4-3-3 0-6-10 Þ 13 14 12 11 10 9 3x5= 3x5= 2x4 II MT20HS 8x12 = 5x6= 5x6= MT20HS 8x12 = 3x5= 6-10-4 15-0-9 22-11-7 31-1-12 38-0-0 6-10-4 8-2-5 7-10-13 8-2-5 6-10-4

Scale = 1:69

Plate Offsets (X, Y): [4:0-5-0,0-3-0]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.87	Vert(LL)	-0.43	10-12	>999	240	MT20	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.95	Vert(CT)	-0.77	10-12	>596	180	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	YES		WB	0.83	Horz(CT)	0.22	7	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MSH		, í						
BCDL	10.0											Weight: 179 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-10; Vult=130mph	(3-sec	ond qust)						
TOP CHORD	2x4 SP No.1 *Excep	t* 3-4.4-6:2x4 SP 24	00F	Vasd=103mp	h; TCDL=6.0psf; B	CDL=6	.0psf; h=25ft;						
	2.0E	,		Cat. II; Exp B	; Enclosed; MWFR	S (env	elope) and C-	·С					
BOT CHORD	2x4 SP No.1			Exterior (2) z	one; cantilever left	and rig	nt exposed ; e	end					
WEBS	2x4 SP No.3 *Excep	t* 14-4,10-4,9-5:2x4	SP	vertical left a	nd right exposed;C-	-C for n	nembers and						
	No.2			forces & MW	FRS for reactions s	shown;	Lumber						
WEDGE	Left: 2x4 SP No.3			DOL=1.60 pl	ate grip DOL=1.33								
	Right: 2x4 SP No.3		3)	TCLL: ASCE	7-10; Pr=20.0 psf (roof liv	e load: Lumb	er					
BRACING				DOL=1.15 PI	ate DOL=1.15); Pg	=20.0 p	sf (ground	_					
TOP CHORD	Structural wood she	athing directly applie	ed or	snow); Pt=18	.9 psf (flat roof sno	w:Lum	ber DOL=1.1	5					
	2-7-15 oc purlins, ex	cept		Plate DOL=1	. 15); Category II; E.	хр в; г	ully Exp.;						
	2-0-0 oc purlins (2-2	-0 max.): 3-6.	4)	Uphalancod	00-0-0 spow loads bave be		cidorod for th	vie					
BOT CHORD	Rigid ceiling directly	applied or 2-2-0 oc	4)	design				115					
	bracing.		5)	This truss ha	s been designed fo	r areat	er of min roof	live					
WEBS	1 Row at midpt	4-14, 4-10, 5-9	5)	load of 12 0 r	sf or 2 00 times fla	t roof le	ad of 13.9 no	sfon					
REACTIONS	(size) 2=0-3-8, 7	7=0-3-8		overhands no	on-concurrent with a	other liv	ve loads.						
	Max Horiz 2=42 (LC	14)	6)	Provide adec	uate drainage to pr	event	vater ponding	1.					
	Max Grav 2=1607 (L	LC 37), 7=1607 (LC 3	37) ⁷)	All plates are	MT20 plates unles	s other	wise indicate	d.					
FORCES	(lb) - Maximum Com	pression/Maximum	8)	* This truss h	as been designed f	for a liv	e load of 20.0)psf					
	Tension		,	on the botton	n chord in all areas	where	a rectangle						
TOP CHORD	1-2=0/33, 2-3=-3082	2/574, 3-21=-2686/56	62,	3-06-00 tall b	y 2-00-00 wide will	fit betv	een the botto	om				minin	UIII.
	4-21=-2689/562, 4-2	2=-4715/858,		chord and an	y other members.							IN'TH CA	ROUL
	22-23=-4715/858, 5-	-23=-4715/858,	9)	This truss is	designed in accorda	ance w	th the 2015				1	A	
	5-24=-2688/561, 6-2	24=-2685/562,		International	Residential Code s	ections	R502.11.1 a	nd			è	D' .: ESS	A. May
	6-7=-3082/574, 7-8=	=0/33		R802.10.2 ar	nd referenced stand	lard AN	ISI/TPI 1.				57	10	N. P.
BOT CHORD	2-14=-399/2725, 13-	-14=-698/4718,	10) Graphical pu	rlin representation of	does no	ot depict the s	size		-	C	N V	A: -
	12-13=-698/4/18, 1	1-12=-699/4717,		or the orienta	tion of the purlin al	ong the	top and/or			-		054	1 1 5
	7 0- 402/2725	-10=-090/4715,		bottom chord						=		SEA	L <u> </u>
WEBS	3-14=-54/986 4-14=	-2220/329 4-12=0/1	170 LC	DAD CASE(S)	Standard					Ξ		0306	52 E
112B0	4-10=-62/62 5-10=0)/194 5-9=-2220/328	3							-			: :
	6-9=-54/988		-,								- ~		10 3
NOTES											27	S.En	R: 153
1) Unhalance	ed roof live loads have	heen considered for									11	GIN	EF. XVS
this design											1	WK D.	199 IN
												MIL H.L	AUIII
													Univ.

May 6,2020

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	Т9А	Roof Special	1	1	Job Reference (optional)	E14374406

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:47

Page: 1 ID:?pMObfie2ov8yIUYIkMpP3zJWVj-dZ06fCgo?oG5PFfP4o3jF2w2VT9ZANoloeh2BEzJGno 7-0-0 14-0-0 21-0-0 26-0-0 30-5-0 7-0-0 7-0-0 7-0-0 5-0-0 4-5-0 5x6 II 5 18 19 2x4 🛛 4x5= 3x8= 5x6= 6 _16 ⊠ 2 3 4 0-1-11 _1<u>2</u> 6 Г = 15 4 + Π 7 Ø 11 10 9 8 20 21 3x6= 4x6= 3x5= 2x4 🛛 6x8= 4x5= 6-10-4 14-0-0 21-1-12 30-5-0 6-10-4 7-1-12 7-1-12 9-3-4

Scale = 1:59.3

6-6-10 6-6-10

6 <u>3-11-0</u> 4-0-10

0-1-112-6-0

3-11-0

0-6-10

Plate Offsets (X, Y): [1:Edge,0-0-14]

							1					1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.91	Vert(LL)	-0.24	7-8	>999	240	MT20	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.89	Vert(CT)	-0.47	7-8	>768	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.84	Horz(CT)	0.09	7	n/a	n/a		
BCLL	0.0*	Code	IRC2015	5/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 161 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-10; Vult=130mph	(3-sec	ond gust)						
TOP CHORD	2x4 SP No.2 *Except	t* 2-4:2x4 SP No.1	,	Vasd=103mp	h; TCDL=6.0psf; B0	CDL=6	.0psf; h=25ft	;					
BOT CHORD	2x4 SP No.2 *Except	t* 9-7:2x4 SP No.1		Cat. II; Exp B	; Enclosed; MWFRS	S (enve	elope) and C	-C					
WEBS	2x4 SP No.3 *Except	t* 11-3,8-3,8-5,7-5:2x	(4	Exterior (2) z	one; cantilever left a	and rig	nt exposed ;	end					
	SP No.2			vertical left a	nd right exposed;C-	C for n	nembers and						
WEDGE	Left: 2x4 SP No.3			forces & MW	FRS for reactions sl	hown;	Lumber						
BRACING			0)	DOL=1.60 pla	ate grip DOL=1.33		- I I. I						
TOP CHORD	Structural wood shea	athing directly applied	i, 3)	TCLL: ASCE	7-10; Pr=20.0 pst (i	VII TOOT	e load: Lumb	ber					
	except end verticals,	and 2-0-0 oc purlins		Snow): Pf-18	9 psf (flat roof spor	=20.0 µ w∙lum	ber DOI –1 1	15					
	(2-10-4 max.): 2-4.			Plate DOL=1	.15): Category II: Ex	xp B: F	ully Exp.:	10					
BOT CHORD	Rigid ceiling directly	applied or 7-3-10 oc		Ct=1.10. Lu=	50-0-0								
WEDO	bracing.	044 57	4)	Unbalanced s	snow loads have be	en cor	sidered for t	his					
WEB5	(interview at midpt	3-11, 5-7		design.									
REACTIONS	(Size) 1= Mechai	nicai, 7=0-3-8	5)	Provide adeq	uate drainage to pro	event v	vater ponding	g.					
	Max Holiz 1=149 (LC	, 14) 15) 7- 12 (IC 15)	6)	* This truss h	as been designed for	or a liv	e load of 20.	0psf					
	Max Gray 1-1211 (L	(10), 7 = 12 (10 10) (10), 7 = 1211 (10)		on the botton	h chord in all areas	where	a rectangle						
FORCES				3-06-00 tall b	y 2-00-00 wide will i	fit betw	een the bott	om					
FURGES	(ib) - Maximum Com	pression/waximum	7)	Pofor to girde	y other members, w		DL = 10.0ps	I.					
TOP CHORD	1-15=-2175/413 2-1	5=-2151/445	8)	Provide mech	anical connection (by oth	ections.	to					
	2-16=-1881/450. 3-10	6=-1884/450.	0)	bearing plate	capable of withstar	nding 3	4 lb uplift at	ioint					111.
	3-17=-2238/494, 4-1	7=-2235/495,		1.		lanig o	i io upint ut j	Jonn				N''LL CA	Dille
	4-18=-2487/599, 5-18	8=-2428/613,	9)	One RT7A U	SP connectors reco	mmen	ded to conne	ect				ather	TO !!!
	5-19=-92/131, 6-19=-	-131/119, 6-7=-189/1	15 ′	truss to beari	ng walls due to UPL	LIFT at	jt(s) 7. This				N	O FESS	12. 11.
BOT CHORD	1-11=-515/1907, 10-	11=-644/2912,		connection is	for uplift only and d	does no	ot consider la	ateral			x A	OFL	Nig :
	9-10=-644/2912, 8-9	=-644/2912,		forces.						6	N	<u> 1</u>	June -
	8-20=-216/705, 20-2	1=-216/705,	10) This truss is o	designed in accorda	ance w	th the 2015			Z		0.54	
WERS	7-21=-210/700	1155/176 2 10-0/1/	n	International	Residential Code se	ections	R502.11.1 a	and		=		SEA	LII
WEB3	3-8=-759/156 4-8=-1	1430/433	U, 11	R802.10.2 ar	d referenced stand		151/TPTT.	0.70				0306	52 E
	5-8=-483/2468. 5-7=	-1203/325	11	or the orienta	tion of the purlin alo	ond the	top and/or	SIZE		-		. 0000	: :
NOTES				bottom chord		Jing the					- 1	N	103
1) Unhalance	ed roof live loads have l	been considered for	10	AD CASE(S)	Standard						3	S.ENO	CR:USS
this design).				Standard						11	AGIN	E.F. XVN
											1	KDI	155
												Thin T. L	A LINING

May 6,2020

4-4-2

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T10	Нір	1	1	Job Reference (optional)	E14374407

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:47 ID:I4AKooyNP2Do8wJqDQmWQCzJWWg-dZ06fCgo?oG5PFfP4o3jF2w3uT9KAUNIoeh2BEzJGno Page: 1

Scale = 1:69.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.89 0.85 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.28 -0.58 0.16	(loc) 12-14 12-14 8	l/defl >999 >785 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 177 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SP 2400F 2.0E * No.1 2x4 SP No.1 2x4 SP No.2 *Except 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood sheat except 2-0-0 oc purlins (2-8- Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 8 Max Horiz 2=52 (LC Max Grav 2=1573 (L (lb) - Maximum Comp Tension 1-2=0/33, 2-21=-115 2-3=-2814/563, 3-22 4-22=-2446/567, 4-5 5-6=-3591/690, 6-23 7-23=-2443/567, 7-8 8-24=-1145/109, 8-2 2-14=-362/2471, 13- 12-13=-536/3512, 11 10-11=-537/3510, 8- 3-14=-30/894, 7-10= 5-14=-1294/212, 6-1: 6-10=-1292/212 d roof live loads have	Except* 3-4,4-7:2x4 ** 14-3,10-7:2x4 SP I athing directly applied *10 max.): 3-7. applied or 8-4-14 oc 5-14, 6-10 =0-3-8 14) C 2), 8=1573 (LC 2) pression/Maximum 2/106, 2-21=-1145/1 =-2444/567, =-244/567, =-244/567, =-244/563, 4=-1152/107, 8-9=0/ 14=-536/3512, -12=-537/3510, 10=-364/2471 -30/893, 5-12=0/180 2=0/182, been considered for	2) SP No.3 3) 4, 4) 5) 6) 7) 08, 8) 33 9) 33 LC	Wind: ASCE Vasd=103mp Cat. II; Exp B Exterior (2) zz vertical left ar forces & MWI DOL=1.60 pla TCLL: ASCE DOL=1.15 Pl. snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalanced s design. This truss have load of 12.0 p overhangs no Provide adeq * This truss have solved adeq * This truss have on the bottom 3-06-00 tall b chord and an This truss is of International R802.10.2 ar Graphical put or the orienta bottom chord	7-10; Vult=130mph h; TCDL=6.0psf; BG ; Enclosed; MWFRS one; cantilever left a dright exposed;C- FRS for reactions si ate grip DOL=1.33 7-10; Pr=20.0 psf (ate DOL=1.15); Pg= .9 psf (flat roof snov .15); Category II; Ex 50-0-0 snow loads have be as been designed for or 2.00 times flat on-concurrent with c uate drainage to pro as been designed for or 2.00 times flat on-concurrent with c uate drainage to pro as been designed for or 2.00 times flat on-concurrent with c uate drainage to pro- as been designed for or 2.00 times flat on-concurrent with c uate drainage to pro- as been designed for or 2.00 times flat on-concurrent with c uate drainage to pro- side drainage to pro- si	(3-sec CDL=6 S (enve and rigg C for n nown; i roof livie -20.0 p e20.0 p -20.0	ond gust) .0psf; h=25ft; elope) and C-0 tt exposed; e nembers and Lumber e load: Lumber sf (ground ber DOL=1.1t ully Exp.; sidered for thi er of min roof I bad of 13.9 ps re loads. vater ponding; e load of 20.0[a rectangle reen the botto th the 2015 R502.11.1 ar SI/TPI 1. t depict the si top and/or	C end 5 is live f on psf m nd ize				SEA 0306	ROLL 52 EER.TEL	

minim May 6,2020

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T10A	Roof Special	1	1	Job Reference (optional)	E14374408

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:48 ID:7maSBTRT_LG7x3NWZqUu2ezJWW2-5maVsYhQl5Oy0OEbdWbynFSCQtSRvrGR1IRbjhzJGnn

Page: 1

38-10-8 38-0-0 9-0-0 16-0-0 23-0-0 26-0-0 31-11-4 9-0-0 7-0-0 7-0-0 3-0-0 5-11-4 6-0-12 0-10-8 5x6 II 5 a 3x8= 5x6= 5x6= -9-9 2 23 3 24 4 -2x4 🏿 12 6 Г L ъċ 256 6-9-3 4-11-0 4-11-0 22 ₁21 0-6-10 ∏ 8 A 14 13 12 11 10 26 27 9 5x6= 3x5= 2x4 II 3x5= 4x6= 5x6= 6x10= 4x6 =16-0-0 23-1-12 30-5-4 38-0-0 8-10-4 8-10-4 7-1-12 7-1-12 7-3-8 7-6-12

Scale = 1:69.1

Plate Offsets (X, Y): [7:Edge,0-1-10]

Loading TCLL (roof)	(psf) 20.0	Spacing 2 Plate Grip DOL	2-0-0 1.15		CSI TC	0.97	DEFL Vert(LL)	in -0.24	(loc) 9-10	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.98	Vert(CT)	-0.49	10-12	>924	180	-	
TCDL	10.0	Rep Stress Incr	YES		WB	0.82	Horz(CT)	0.15	7	n/a	n/a		
BCLL	0.0*	Code I	RC2015	/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 191 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP 2400F 2.0E	*Except* 4-5,5-8:2x4 SI	1) P	Unbalanced r this design.	oof live loads have	been o	considered for						
BOT CHORD WEBS	No.2 2x4 SP No.2 *Excep 2x4 SP No.3 *Excep SP No.2	t* 11-7:2x4 SP No.1 t* 14-3,10-3,10-5,9-5:2:	2) x4	Vasd=103mp Cat. II; Exp B Exterior (2) zo	h; TCDL=6.0psf; B(; Enclosed; MWFR ; cantilever left a	(3-sec CDL=6 S (envo and rig	ond gust) .0psf; h=25ft; elope) and C-(nt exposed ; e	C end					
WEDGE	Left: 2x4 SP No.3 Right: 2x4 SP No.3			vertical left ar forces & MWI	nd right exposed;C- FRS for reactions sl	C for n hown;	nembers and Lumber						
BRACING TOP CHORD	Structural wood shea	athing directly applied,	3)	TCLL: ASCE	ate grip DOL=1.33 7-10; Pr=20.0 psf (i	roof liv	e load: Lumbe	ər					
	except 2-0-0 oc purlins (4-2-	-15 max.): 2-4.		snow); Pf=18	ate DOL=1.15); Pg= .9 psf (flat roof snov	=20.0 p v: Lum	ber DOL=1.1	5					
BOT CHORD	Rigid ceiling directly bracing.	applied or 2-2-0 oc		Ct=1.10, Lu=	50-0-0	ф В, Г	ully Exp.,						
WEBS	1 Row at midpt	3-14, 3-10	4)	Unbalanced s	snow loads have be	en cor	sidered for th	is					
REACTIONS	(size) 1= Mecha	nical, 7=0-3-8	5)	This trues has	s been designed for	areata	ar of min roof	livo					
	Max Horiz 1=-71 (LC	; 13)	5)	load of 12 0 r	s been designed for osf or 2 00 times flat	roof lo	ad of 13.9 ns	f on					
	Max Uplift 1=-31 (LC	5 15)		overhangs no	on-concurrent with c	ther liv	e loads.						
	Max Grav 1=1519 (L	_C 2), 7=1573 (LC 2)	6)	Provide adeq	uate drainage to pro	event v	vater ponding						
FORCES	(lb) - Maximum Com	pression/Maximum	7)	* This truss h	as been designed fo	or a liv	e load of 20.0	psf					
	Tension			on the bottom	h chord in all areas	where	a rectangle					minin	11111
TOP CHORD	1-21=-1110/163, 1-2	21=-1095/165,		3-06-00 tall b	y 2-00-00 wide will	fit betw	een the botto	m				W'TH CA	Rollin
	1-22=-2678/559, 2-2	22=-2561/585,		chord and an	y other members, w	ith BC	DL = 10.0psf.				N	8	- Li's
	2-23=-22/6/58/, 3-2	23=-2277/587, 24- 2075/725	8)	Refer to girde	er(s) for truss to trus	s conr	ections.	_			, C	O ESS	01:12:
	4-5=-3330/843, 5-25 6-25=-2616/646, 6-7	5=-2605/678, 2=-2770/643, 7-8=0/30	9)	bearing plate	capable of withstar	by othe iding 3	1 lb uplift at jo	o pint			A	A S	
BOT CHORD	1-14=-384/2298, 13- 12-13=-549/3224, 11 10-11=-549/3224, 10 26-27=-303/2002, 9-	-14=-549/3224, 1-12=-549/3224, 0-26=-303/2002, -27=-303/2002,	10) 11)	This truss is o International R802.10.2 an Graphical pur	designed in accorda Residential Code se Id referenced stand lin representation d	nce wi ections ard AN loes no	th the 2015 R502.11.1 ar SI/TPI 1. t depict the si	nd ize				SEA 0306	L 52
WEBS	7-9=-478/2394 2-14=-38/781, 3-14=	1174/198, 3-12=0/139),	or the orienta bottom chord	tion of the purlin alc	ong the	top and/or			1	I.T.	NGINI	ERIA
	5-10=-426/78, 4-10= 5-10=-485/2341, 5-9	=-1758/505, 6-9=-332/2	28 LO	AD CASE(S)	Standard						14	NKP	ASS
NOTES												Thunny L	inin''

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

May 6,2020

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T11	Нір	1	1	Job Reference (optional)	E14374409

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:49 ID:ArPre90uTHjEdXdbSGrSb2zJWWc-5maVsYhQl5Oy0OEbdWbynFSGstTmvx7R1IRbjhzJGnn

Page: 1

Scale = 1:69.3

Plate Offsets (X, Y): [2:Edge,0-1-10], [9:Edge,0-1-10]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.75	Vert(LL)	-0.19	14	>999	240	MT20	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.90	Vert(CT)	-0.41	14-15	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.39	Horz(CT)	0.14	9	n/a	n/a		
BCLL	0.0*	Code	IRC2015	/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 200 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2 *Except 2.0E 2x4 SP No.1 2x4 SP No.2 *Except	:* 4-5,5-7:2x4 SP 24(:* 3-17,8-11:2x4 SP №	2) 00F No.3	Wind: ASCE Vasd=103mp Cat. II; Exp B Exterior (2) z vertical left an forces & MW	7-10; Vult=130mph h; TCDL=6.0psf; Bi ; Enclosed; MWFR one; cantilever left a nd right exposed;C- EPS for reactions s	(3-sec CDL=6 S (enve and rig C for n	ond gust) .0psf; h=25ft; elope) and C- nt exposed ; e nembers and	C end					
WEDGE	Left: 2x4 SP No.3				ate arin $DOI = 1.33$	nown,	Lumber						
BRACING TOP CHORD	Structural wood sheat 2-6-11 oc purlins, ext 2-0-0 oc purlins (4-7-	athing directly appliec cept -14 max.): 4-7.	3) I or	TCLL: ASCE DOL=1.15 PI snow); Pf=18 Plate DOL=1	7-10; Pr=20.0 psf (ate DOL=1.15); Pg= .9 psf (flat roof snov .15); Category II; E	roof liv =20.0 p w: Lum kp B; F	e load: Lumbe sf (ground ber DOL=1.1 ully Exp.;	er 5					
BOT CHORD	Rigid ceiling directly bracing.	applied or 9-3-4 oc	4)	Ct=1.10, Lu= Unbalanced s	50-0-0 snow loads have be	en cor	sidered for th	iis					
WEBS	1 Row at midpt	6-15, 6-12	E)	design.	a been designed for	aroot	r of min roof	live					
REACTIONS	(size) 2=0-3-8, 9	=0-3-8	5)	Inis truss na	s been designed for	greate		live					
	Max Horiz 2=63 (LC	14)		overbangs no	on concurrent with c	thor liv	au or 13.9 ps						
	Max Grav 2=1608 (L	C 38), 9=1608 (LC 3	8) 6)	Brovido adoa	uato drainago to pr		e ioaus.						
FORCES	(lb) - Maximum Com	pression/Maximum	· 0) 7)	* This trues h	as been designed f	oraliv	a load of 20.0	l. Inef					
	Tension		')	on the botton	as been designed i	where	e load of 20.0 a rectandle	pai					
TOP CHORD	1-2=0/33, 2-24=-275 3-4=-2444/581, 4-25 5-25=-2161/560, 5-6 6-26=-2162/560, 7-2 7-8=-2444/581, 8-27 9-27=-2756/586, 9-1	6/586, 3-24=-2665/6 ⁻ =-2160/561, =-2160/559, 6=-2159/561, =-2665/613, 0=0/33	13, 8) 9)	3-06-00 tall b chord and an This truss is o International R802.10.2 ar Graphical put	y 2-00-00 wide will y other members, w designed in accorda Residential Code so id referenced stand	fit betw vith BC ance wi ections ard AN	ween the botto DL = 10.0psf. th the 2015 R502.11.1 at SI/TPI 1. t depict the s	om nd			, c'	TH CA	ROLIN
BOT CHORD	2-17=-453/2383, 16- 15-16=-453/2383, 15 14-28=-424/2868, 14 13-29=-424/2868, 12 11-12=-457/2384, 9-	17=-453/2383, 5-28=-424/2868, 1-29=-424/2868, 2-13=-424/2868, 11=-457/2384	LO	or the orienta bottom chord	tion of the purlin alo Standard	ong the	top and/or					SEA 0306	L 52
WEBS NOTES 1) Unbalance this design	3-17=0/71, 3-15=-47 6-15=-860/135, 6-14: 7-12=-79/690, 8-12= ed roof live loads have n.	9/163, 4-15=-79/689, =0/358, 6-12=-861/1 -480/163, 8-11=0/71 been considered for	36,								Frankin .	ANK R. L	ASSIL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

May 6,2020

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T11A	Roof Special	1	1	Job Reference (optional)	E14374410

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:49

25-1-12

7-1-12

Page: 1 ID:P6V5fsXsLV88H8PsUo6Xq6zJWVx-Zy8t3ui2WPWpeYpnBD6BKT?PIHqLeHUbGyA9G7zJGnm 26-0-0 <u>5-6-12</u> 5-6-12 25-0-0 11-0-0 18-0-0 31-11-4 38-0-0 5-5-4 7-0-0 7-0-0 5-11-4 6-0-12 1-0-0 5x6 II 5x6= 5x6= 3x8= 6 27 ÷= 3 _25 4 <u>2</u>6 5 12 6 F \boxtimes \boxtimes 2x4 🛛 3x5 🍬 2²⁴ 287 6-9-3 5-11-0 5-11-0 23 0-6-10 ∏ Π 1615 14 29 13 30 12 1131 32 10 4x6= 2x4 II 3x8= 2x4 II 4x6= 5x10= 3x5= 5x6= 4x6=

18-0-0

7-1-12

Scale = 1:69.1

Plate Offsets (X, Y): [1:Edge,0-0-14], [8:Edge,0-1-10]

5-6-12

5-6-12

10-10-4

5-3-8

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.89	DEFL Vert(LL)	in -0.21	(loc) 10-11	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf/Pa)	18.9/20.0	Lumber DOL	1.15		BC	0.87	Vert(CT)	-0.42	11-13	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.89	Horz(CT)	0.13	8	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MSH		. ,						
BCDL	10.0											Weight: 210 lb	FT = 20%
LUMBER			1)	Unbalanced	roof live loads have	been o	considered fo	or					
TOP CHORD	2x4 SP No.2 *Except	t* 3-5:2x4 SP No.1		this design.									
BOT CHORD	2x4 SP No.1		2)	Wind: ASCE	7-10; Vult=130mph	(3-sec	ond gust)						
WEBS	2x4 SP No.2 *Except	t* 2-16,7-10:2x4 SP I	No.3	Vasd=103mp	h; TCDL=6.0psf; B	CDL=6	.0psf; h=25ft	;					
WEDGE	Left: 2x4 SP No.3			Cat. II; Exp E	; Enclosed; MWFR	S (env	elope) and C	-C					
	Right: 2x4 SP No.3			vertical left a	one, cantilever left	C for n	ni exposed ,	ena					
BRACING				forces & MW	FRS for reactions s	hown.	l umber						
TOP CHORD	Structural wood shea	athing directly applied	d,	DOL=1.60 pl	ate grip DOL=1.33	nown,	Lambol						
	2-0-0 oc purlins (3-0-	-1 max): 3-5	3)	TCLL: ASCE	7-10; Pr=20.0 psf (roof liv	e load: Lumb	er					
BOT CHORD	Rigid ceiling directly	applied or 9-2-11 oc		DOL=1.15 PI	ate DOL=1.15); Pg:	=20.0 p	osf (ground						
	bracing.			snow); Pf=18	.9 psf (flat roof sno	w: Lum	ber DOL=1.1	15					
WEBS	1 Row at midpt	4-14, 4-11		Plate DOL=1	.15); Category II; E:	хр В; Е	ully Exp.;						
REACTIONS	(size) 1= Mecha	nical, 8=0-3-8	4)	Ct=1.10, Lu=	50-0-0 pow loodo hovo ho		aidarad for th	hio					
	Max Horiz 1=-71 (LC	: 13)	4)	design	show loads have be			115					
	Max Uplift 1=-31 (LC	: 15)	5)	This truss ha	s been designed fo	r areate	er of min roof	live					
	Max Grav 1=1519 (L	.C 2), 8=1573 (LC 2)	0)	load of 12.0 p	osf or 2.00 times fla	t roof lo	ad of 13.9 p	sfon					
FORCES	(lb) - Maximum Com	pression/Maximum		overhangs no	on-concurrent with o	other liv	/e loads.						
	Tension		6)	Provide adec	uate drainage to pr	event v	water ponding	g.					
TOP CHORD	1-23=-2767/594, 2-2	3=-2677/620,	7)	* This truss h	as been designed f	or a liv	e load of 20.0	Opsf					
	2-24=-2442/559, 3-2	4=-2429/588,		on the botton	n chord in all areas	where	a rectangle					, mining	unin,
	3-25=-2115/566, 4-2	5=-2117/565, 27-2206/604		3-06-00 tall b	y 2-00-00 wide will	fit betv	een the bott	om				N'TH CA	Roill
	4-20=-2306/604, 20- 5-272306/604, 5-6	2585/684	0)	chord and an	y other members, v		DL = 10.0psi	ſ.			1	A Aco	A. 10%
	6-28=-2738/765. 7-2	8=-2748/733.	o) 0)	Provide med	anical connection	by oth	ere) of trues t	to.			1	9. KES	ON
	7-8=-2764/619, 8-9=	:0/30	9)	bearing plate	canable of withstar	nding 3	1 lh unlift at i	oint				is h	Min -
BOT CHORD	1-16=-464/2395, 15-	16=-464/2395,		1.		iung c	i ib upint at j	onn		-	V	Le L	et: =
	14-15=-464/2395, 14	1-29=-427/2716,	10) This truss is	designed in accorda	ance w	ith the 2015			=		SEA	1. ÷ E
	13-29=-427/2716, 13	3-30=-427/2716,		International	Residential Code s	ections	R502.11.1 a	and		=		0200	E
	12-30=-427/2716, 11	1-12=-427/2716,		R802.10.2 ar	nd referenced stand	ard AN	ISI/TPI 1.			=	:	0306	52 : 2
	11-31=-294/2022, 31	1-32=-294/2022,	11) Graphical pu	rlin representation of	loes no	ot depict the s	size					1. 3
WEDO	10-32=-294/2022, 8=	0/165 2 14-06/721		or the orienta	tion of the purlin alo	ong the	top and/or			3		· · ·	aires
WEDS	2-16=0/74, 2-14=-51 4-14821/138 4-13	-0/298 4-11586/9	, 0	bottom chord							20	VGIN'	EELXUN
	5-11=-1505/404 6-1	1=-382/2046.	°, LO	DAD CASE(S)	Standard						11	NK -	CS N
	6-10=-236/599, 7-10	=-359/255									3	11, R.L	ASUN
NOTES	,											in the second se	unit.

38-10-8

0-10-8

8 9

38-0-0

6-0-12

31-11-4

6-9-8

Л

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T12	Hip Structural Gable	1	1	Job Reference (optional)	E14374411

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:50 ID:e1zDrV0WEbr5EhCn0zMh7FzJWWb-18iFHEigHjegGiOzIxdQtgXZHgGNNr_kUcwioZzJGnI

Page: 1

May 6,2020

Scale = 1:68

Plate Offsets (X, Y): [2:Edge,0-0-14], [8:Edge,0-0-14], [14:0-2-8,0-0-4]

Loading	(psf)	Spacing	2-0-0		CSI	<i>.</i>	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.94	Vert(LL)	-0.05	10-12	>999	240	MT20	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.50	Vert(CT)	-0.13	15-21	>/13	180		
TCDL	10.0	Rep Stress Incr	TES		VVB	0.43	Horz(CT)	0.02	9	n/a	n/a		
BCLL	0.0^	Code	IRC201	5/TPI2014	Matrix-MSH								FT 000/
BCDL	10.0											Weight: 206 lb	FI = 20%
LUMBER			1)	Unbalanced	roof live loads have	been o	considered for						
TOP CHORD	2x4 SP No.2			this design.									
BOT CHORD	2x4 SP No.2		2)	Wind: ASCE	7-10; Vult=130mph	(3-sec	ond gust)						
WEBS	2x4 SP No.2 *Except	t* 15-3,9-7:2x4 SP No	0.3	Vasd=103mp	h; TCDL=6.0psf; B	CDL=6	.0psf; h=25ft;	<u>^</u>					
WEDGE	Lett: 2x4 SP No.3 Right: 2x4 SP No.3			Exterior (2) z	one; cantilever left a	and rig	ht exposed ; e	end					
BRACING	5			vertical left a	nd right exposed;C-	C for n	nembers and						
TOP CHORD	Structural wood shea	athing directly applied	lor	forces & MW	FRS for reactions s	hown;	Lumber						
	2-2-0 oc purlins, exc	ept		DOL=1.60 pl	ate grip DOL=1.33								
	2-0-0 oc purlins (5-8-	-7 max.): 4-6.	3)	TCLL: ASCE	7-10; Pr=20.0 psf (roof liv	e load: Lumbe	er					
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc		DOL=1.15 PI	ate DOL=1.15); Pg=	=20.0 p	sf (ground	-					
	bracing.			snow); Pf=18	.9 psf (flat roof snov	N: Lum	ber DOL=1.1	5					
WEBS	1 Row at midpt	5-13, 5-10		Plate DOL=1	. 15); Category II; E	кр в; г	ully Exp.;						
REACTIONS	(size) 2=0-3-0, 9	=0-3-8, 15=0-3-8	4)	Unbalanced	00-0-0 snow loads have be	on cor	sidered for th	ie					
	Max Horiz 2=75 (LC	12)		design	Show loads have be			15					
	Max Uplift 2=-7 (LC 1	15)	5)	This truss ha	s been designed for	r areate	er of min roof	live					
	Max Grav 2=488 (LC	2 38), 9=1585 (LC 38)), 0,	load of 12.0 r	osf or 2.00 times flat	t roof lo	ad of 13.9 ps	fon					
	15=1174 ((LC 2)		overhangs no	on-concurrent with c	other liv	ve loads.						
FORCES	(lb) - Maximum Com	pression/Maximum	6)	Provide adec	uate drainage to pr	event v	vater ponding						
	1_2_0/30 2_22_511	/95 22-23427/107	7)	^ I his truss h	as been designed f	or a liv	e load of 20.0	pst					11
	3-23=-313/126. 3-4=	-800/234.	,	3-06-00 tall b	$\sqrt{2-00-00}$ wide will	where fit hetw	a reclangle	m				1111 CA	
	4-24=-667/256, 5-24	=-670/255,		chord and an	v other members w	vith BC	DI = 10.00sf	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-	N'TH UA	50/11
	5-25=-770/222, 6-25	=-767/223,	8)	One RT7A U	SP connectors reco	mmen	ded to connec	ct			5	ALEGO	in Mile
	6-7=-900/199, 7-26=	-242/541,	- /	truss to beari	ng walls due to UPL	_IFT at	it(s) 2. This				10	1070	N. A.
	26-27=-260/401, 8-2	7=-270/344		connection is	for uplift only and c	loes no	ot consider lat	eral			-6		C
BOT CHORD	2-15=-167/382, 14-1	5=-203/114,		forces.							-		
	13-14=-203/114, 13-	28=-20/1055,	9)	This truss is	designed in accorda	ance w	th the 2015			=		SEA	L 3 5
	12-28=-20/1055, 12-	29=-20/1055,		International	Residential Code se	ections	R502.11.1 ar	nd		=	:	0206	50 : =
	11-29=-20/1055, 10-	11=-20/1055,		R802.10.2 ar	nd referenced stand	ard AN	ISI/TPI 1.			-		0300	52 ; z
WEDO	9-10=0/141, 8-9=-35	0/200 2 95/077 4 12 56	/07)) Graphical pu	rlin representation d	loes no	ot depict the si	ize		-			1 - E - E -
WEDS	5 12 - 594/57 5 12	3=-05/977, 4-13=-50/	/97, A	or the orienta	tion of the purlin ald	ong the	top and/or			3		·	airs
	6-10=-31/134 7-10=	-101/742 7-9=-1444	-, /506 -								20	GIN	EFIX
NOTES	0.0-01/101,710=		L	DAD CASE(S)	Standard						11	Nr	CG N
NULES											3	R.L	ASUN
												in the second se	IIII.

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T12A	Нір	1	1	Job Reference (optional)	E14374412

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:51 ID:ItlcVEaMOjeZmljdjeBT?yzJWVt-VKGdUajl20mXtszAJe8fPu4n64Yp6FbtjGfGK?zJGnk

Scale = 1:68

Plate Offsets (X, Y): [1:Edge,0-1-10], [7:Edge,0-1-6]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.75 0.75 0.60	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.33 0.14	(loc) 12 12-13 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 206 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD WEBS REACTIONS FORCES	2x4 SP No.1 *Except 2x4 SP No.1 *Except 2x4 SP No.2 *Except Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 2-2-0 oc purlins, exce 2-0-0 oc purlins, exce 2-0-0 oc purlins (3-5- Rigid ceiling directly bracing. 1 Row at midpt (size) 1= Mechai Max Horiz 1=-75 (LC Max Grav 1=1601 (L (lb) - Maximum Comp Tension 1-22=-2903/597, 22-: 2-23=-2702/628, 2-3 3-24=-1968/562, 4-2 4-25=-1969/561, 5-2 5-6=-2294/577, 6-266	 * 3-5:2x4 SP No.2 * 14-11:2x4 SP No.2 * 14-11:2x4 SP No.2 * 2-15,6-9:2x4 SP No athing directly applied entry and a second secon	2) 5.3 1 or 3) 4) 5) 8) 6) 7) 8) 8) 9)	Wind: ASCE Vasd=103mp Cat. II; Exp E Exterior (2) z vertical left at forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15 Pl snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. This truss ha load of 12.0 p overhangs no Provide adec * This truss h on the bottom 3-06-00 tall b chord and an Refer to girde This truss is o	7-10; Vult=130mph h; TCDL=6.0psf; B ; Enclosed; MWFR one; cantilever left hd right exposed;C- FRS for reactions s ate grip DOL=1.33 7-10; Pr=20.0 psf (flat roof sno 15); Category II; E 50-0-0 snow loads have be s been designed fo osf or 2.00 times fla on-concurrent with o uate drainage to p as been designed fo octord in all areas y 2-00-00 wide will y other members, or(s) for truss to trus designed in accord	n (3-sec ICDL=6 S (enve and rigit -C for m shown; I (roof livv =20.0 p w: Lum xp B; F een con r greate t roof lc other liv revent v for a livv where s fit betw with BC ss conn ance wi	ond gust) Opst; h=25ft; elope) and C- t exposed ; h=25ft; embers and c- umber a load: Lumb sf (ground ber DOL=1.1 JIIY Exp.; sidered for th er of min roof ad of 13.9 ps e loads. vater ponding e load of 20.0 a rectangle cen the botts DL = 10.0psf ections.	C end er 5 live sf on g. Dpsf om				NULL CA	BOLLIN	
BOT CHORD	1-15=-460/2497, 14- 13-14=-460/2497, 13 13-24=-324/2216, 12 11-29=-324/2216, 10 9-10=-458/2492, 7-9: 2-15=0/111, 2-13=-60	15=-460/2497, 15=-460/2497, 15=-24/2216, -29=-324/2216, -11=-324/2216, =-458/2492 64/213, 3-13=-88/644	10 _{6,} LC	or the orienta bottom chord of CASE(S)	Residential Code s id referenced stand flin representation of tion of the purlin al- Standard	ections dard AN does no ong the	R502.11.1 a SI/TPI 1. t depict the s top and/or	size		. annun	2	SEA 0306	L 52	Lannan III
	4-13=-517/76, 4-12= 5-10=-87/646, 6-10=	0/297, 4-10=-517/77, -659/211, 6-9=0/110									- ~		0	

NOTES

 Unbalanced roof live loads have been considered for this design.

818 Soundside Road Edenton, NC 27932 Page: 1

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T13	Нір	1	1	Job Reference (optional)	E14374413

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:52 ID:uabuR0I951PaRvnJXaRIZvzJWVf-zXq?ivkxpKuOV0YMsMfuy5dxdUwLriB1ywPpsSzJGnj

Page: 1

Scale = 1:68.1

Plate Offsets (X, Y): [4:0-2-4,0-3-0], [5:0-4-0,0-1-15], [7:0-4-0,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.83 0.60 0.64	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.22 0.02	(loc) 11-13 11-13 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 196 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE	2x4 SP No.2 *Except 2.0E, 1-4,7-9:2x4 SP 2x4 SP No.2 2x4 SP No.2 *Except Left: 2x4 SP No.3 Right: 2x4 SP No.3	1* 5-6:2x4 SP 2400F No.1 1* 3-15,10-8:2x4 SP I	2) No.3	Wind: ASCE Vasd=103mp Cat. II; Exp B Exterior (2) zv vertical left ar forces & MWI DOL=1.60 pla	7-10; Vult=130mph h; TCDL=6.0psf; Bi ; Enclosed; MWFR; one; cantilever left and right exposed;C- FRS for reactions s ate grip DOL=1.33	(3-sec CDL=6 S (enve and rigi C for m hown;	ond gust) .0psf; h=25ft; elope) and C- nt exposed ; e nembers and Lumber	C end						
BRACING TOP CHORD	Structural wood shea 2-2-0 oc purlins, exce 2-0-0 oc purlins (6-0-	athing directly applied ept -0 max.): 5-6.	3) d or	DOL=1.15 Pl snow); Pf=18 Plate DOL=1	7-10; Pr=20.0 psf (ate DOL=1.15); Pg= .9 psf (flat roof snov .15); Category II; E	roof liv =20.0 p w: Lum (p B; F	e load: Lumbe sf (ground ber DOL=1.1 ully Exp.;	er 5						
BOT CHORD	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 9-1	applied or 10-0-0 oc	4)	Ct=1.10, Lu= Unbalanced s design.	50-0-0 snow loads have be	en con	sidered for th	nis						
WEBS REACTIONS	1 Row at midpt (size) 2=0-3-0, 1 Max Horiz 2=86 (LC Max Uplift 2=-24 (LC Max Grav 2=458 (LC 15=1287 (5-11 0=0-3-8, 15=0-3-8 12) 15), 10=-1 (LC 16) 5 53), 10=1613 (LC 3 1C 38)	5) 6) 7) 8),	This truss has load of 12.0 p overhangs no Provide adeq * This truss h on the bottom	s been designed for osf or 2.00 times flat on-concurrent with o uate drainage to pr as been designed f o chord in all areas	greate troof lo other liv event v or a live where	er of min roof pad of 13.9 ps re loads. vater ponding e load of 20.0 a rectangle	live sf on J.)psf						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8)	chord and an Provide mech	y 2-00-00 wide will y other members, w nanical connection (it betw /ith BC by othe	DL = 10.0psf. DL = 10.0psf.	om 0				WH CA	ROUL	
TOP CHORD	1-2=0/30, 2-22=-428/ 3-4=-933/257, 4-5=-9 23-24=-752/284, 6-24 6-7=-957/256, 7-8=-9 9-25=-302/393	/150, 3-22=-342/174 918/295, 5-23=-752/2 4=-752/284, 976/218, 8-25=-289/5	, 284, 9) 507,	bearing plate 10. One RT7A U truss to beari connection is	capable of withstar SP connectors reco ng walls due to UPI for unlift only and c	mmen IFT at	lb uplift at joi ded to connec jt(s) 2. This t consider lat	int ct teral			Ċ	of itess	N. A.	
BOT CHORD	2-15=-203/306, 14-1 13-14=-62/306, 13-2 11-12=-2/734, 10-11	5=-62/306, 6=-2/734, 12-26=-2/7 =0/410, 9-10=-352/3	734, 10 24	forces.) This truss is o International	designed in accorda Residential Code so	ince wi	th the 2015 R502.11.1 ar	nd				SEA 0306	L 52	
WEBS	3-15=-1109/280, 3-1: 5-11=-70/131, 6-11=- 8-10=-1571/582	3=0/605, 5-13=-137/ -118/104, 8-11=-22/5	105, 511, 11	R802.10.2 ar) Graphical pur or the orienta	nd referenced stand rlin representation of tion of the purlin alo	ard AN loes no ong the	SI/TPI 1. It depict the sitting and/or	ize		11.	E.	NGIN	ERIA	
1) Unbalance this design	ed roof live loads have l n.	been considered for	LC	AD CASE(S)	Standard						11	KR.L	ASSIL	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

May 6,2020

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T13A	Нір	1	1	Job Reference (optional)	E14374414

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:53 ID:??m6uC4f27UOLS4lpXysqJzJWWW-RjOOvFlZae0F7A7YQ3A7UJ930uBcaEPAAa9MPuzJGni Page: 1

38-10-8 0-10-8 7-6-12 15-0-0 23-0-0 30-5-4 38-0-0 7-6-12 7-5-4 8-0-0 7-5-4 7-6-12 5x8= 5x6= 8-0-10 0-1-11 0-1-11 H 4 24 5 _23 ⊠ \boxtimes _1<u>2</u> 6 Г 5x10 🖌 5x10 👟 23 67 7-11-0 8-3-3 7-11-0 22 25 0-6-10 ∏ 8 9 **N** 1514 13 26 12 11 10 5x6= 2x4 🛛 3x5= 3x6= 2x4 🛛 5x6= 3x6= 3x8= 7-6-12 14-10-4 23-1-12 30-5-4 38-0-0 7-6-12 7-3-8 8-3-8 7-3-8 7-6-12

Scale = 1:68.2

Plate Offsets ((X, Y): [1:Edge,0-1-10]	, [3:0-3-0,0-3-0], [4:0	0-4-0,0-1-1	15], [6:0-3-0,0-3	3-0], [8:Edge,0-1-6]							-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.98 0.92 0.25	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.23 -0.44 0.14	(loc) 11-13 11-13 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 195 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES	2x4 SP 2400F 2.0E * No.2 2x4 SP No.1 *Except 2x4 SP No.2 *Except Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood sheat except 2-0-0 oc purlins (3-8 Rigid ceiling directly bracing. 1 Row at midpt (size) 1= Mecha Max Horiz 1=-86 (LC Max Grav 1=1640 (L (lb) - Maximum Com Tension 1-22=-3016/613, 2-2 2-3=-2297/530, 3-4= 4-23=-1916/564, 23- 5-24=-1916/564, 23- 5-24=-1916/564, 5-6 6-7=-2297/529, 7-25 8-25=-3011/612, 8-9 1-15=-455/2607, 14 13-14=-455/2607, 14 13-14=-455/2607, 14 10-11=-453/2602, 8 2-15=0/136, 2-13=-7 4-11=-181/183, 5-11 7-10=0/134	Except* 1-3,6-9:2x4 * 14-12:2x4 SP No.: * 2-15,7-10:2x4 SP athing directly applie -2 max.): 4-5. applied or 2-2-0 oc 2-13, 4-11, 7-11 nical, 8=0-3-8 13) C 38), 8=1683 (LC 3 pression/Maximum 2=-2814/637, -2282/568, 24=-1916/564, =-2282/567, =-2809/635, =0/30 15=-455/2607, 3-26=-231/1915, 10=-455/2607, 79/256, 4-13=-29/59 =-28/544, 7-11=-772	2) SP 2 No.3 3) d, 4) 5) 38) 6) 7) 38) 9) 10 20 20 20 20 20 20 20 20 20 2	Wind: ASCE Vasd=103mp Cat. II; Exp E Exterior (2) z vertical left at forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15 Pl snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. This truss ha load of 12.0 p overhangs nc Provide adec * This truss ha on the bottom 3-06-00 tall b chord and an Refer to girdd This truss is International R802.10.2 ar 0) Graphical pu or the orienta bottom chord	7-10; Vult=130mpt h; TCDL=6.0psf; B ; Enclosed; MWFR one; cantilever left nd right exposed;C FRS for reactions s ate grip DOL=1.33 7-10; Pr=20.0 psf ate DOL=1.15; Pg .9 psf (flat roof sno 15); Category II; E 50-0-0 snow loads have but s been designed for sof or 2.00 times flat on-concurrent with juate drainage to p as been designed for sof or 2.00 times flat on-concurrent with juate drainage to p as been designed for sof or 2.00 wide will y other members, v gr(s) for truss to tru designed in accord Residential Code s d referenced stand rlin representation of the purlin al Standard	a (3-sec CDL=6 CS (envi and rig) -C for n shown; (roof liv =20.0 p w: Lum xp B; F een cor or greate ti roof k other liv for a liv where fit betw with BC ss conr ance wi sections dard AN does no ong the	ond gust) .0psf; h=25ft; elope) and C- tembers and Lumber e load: Lumb sf (ground ber DOL=1.1 ully Exp.; isidered for th er of min roof pad of 13.9 ps ve loads. vater ponding e load of 20.0 a rectangle veen the bottt DL = 10.0psf R502.11.1 a ISI/TPI 1. ot depict the s top and/or	C end 5 live sf on 9. 9psf om ·			in the second se	Veigne 19510	RO/ 10 10 10 10 10 10 10 10 10 10 10 10 10
 Unbalance this design 	ed roof live loads have n.	been considered for										ANK R.L	ASSITIA

818 Soundside Road Edenton, NC 27932

May 6,2020

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T14	Нір	1	1	Job Reference (optional)	E14374415

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:53 ID:ikyAi3pvhtAk9qFTuqY9pAzJWVZ-RjOOvFIZae0F7A7YQ3A7UJ930uEYa4gAAa9MPuzJGni

Scale = 1:68.4

Plate Offsets (X, Y): [2:Edge,0-1-6], [5:0-4-0,0-1-15], [9:Edge,0-1-6], [15:0-2-5,0-1-8]

			_										
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.98	Vert(LL)	0.06	16-19	>999	240	MT20	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.73	Vert(CT)	-0.15	16-19	>632	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.88	Horz(CT)	0.03	10	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 210 lb	FT = 20%
LUMBER			1)	Unbalanced r	oof live loads have	been o	considered for			ASE(S)	Sta	ndard	
TOP CHORD	2x4 SP No.1 *Excep	t* 5-6:2x4 SP No.2		this design.									
BOT CHORD	2x4 SP No.2		2)	Wind: ASCE	7-10; Vult=130mph	(3-sec	ond gust)						
WEBS	2x4 SP No.2 *Excep	t* 16-3:2x4 SP No.3		Vasd=103mp	h; TCDL=6.0psf; B0	CDL=6	.0psf; h=25ft;						
WEDGE	Left: 2x4 SP No.3			Cat. II; Exp B	; Enclosed; MWFRS	S (enve	elope) and C-0	С					
	Right: 2x4 SP No.3			Exterior (2) z	one; cantilever left a	and rig	ht exposed ; e	nd					
BRACING				vertical left ar	nd right exposed;C-	C for n	nembers and						
TOP CHORD	Structural wood she	athing directly applied	4	forces & MW	FRS for reactions sl	hown;	Lumber						
	except	at my anoony approc	^ ,	DOL=1.60 pla	ate grip DOL=1.33								
	2-0-0 oc purlins (5-9	-5 max.): 5-6.	3)	TCLL: ASCE	7-10; Pr=20.0 psf (roof liv	e load: Lumbe	er					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		DOL=1.15 Pla	ate DOL=1.15); Pg=	=20.0 p	osf (ground						
	bracing. Except:			snow); Pf=18	.9 psf (flat roof snow	w: Lum	ber DOL=1.15	5					
	6-0-0 oc bracing: 9-1	10.		Plate DOL=1	.15); Category II; Ex	κp B; F	ully Exp.;						
WEBS	1 Row at midpt	5-14, 5-13, 6-13		Ct=1.10, Lu=	50-0-0								
REACTIONS	(size) 2=0-3-0_1	10=0-3-8 16=0-3-8	4)	Unbalanced s	snow loads have be	en cor	sidered for thi	is					
	Max Horiz 2=97 (I.C.	12)	_	design.									
	Max Uplift 2=-43 (LC	: 15) 10=-13 (I C 16)	5)	This truss ha	s been designed for	greate	er of min roof I	live					
	Max Gray 2=498 (10	C 53) 10=1628 (I C 3	8)	load of 12.0 p	ost or 2.00 times flat	root lo	bad of 13.9 ps	f on					
	16=1369	(I C 38)	0),	overnangs no	on-concurrent with o		/e loads.						
FORCES	(lb) - Maximum Com	() pression/Maximum	6)	Provide adeq	uate drainage to pro	event	vater ponding.						
TOROLO	(ib) - Maximum Com	pression/maximum	7)	" I his truss h	as been designed fo	oraliv	e load of 20.0	psr					
	1-2-0/30 2-23/88	2/202 3-23-281/227		on the bottom	1 chord in all areas	wnere	a rectangle						1111
	3-4-1035/283 4-24	1-854/303	,	S-00-00 tall D	y 2-00-00 wide will		DI = 10.0 pcf					N'TH UA	ROUL
	5-24=-787/322 5-6=	-786/338	0)	Brovido moch	y other members, w	by oth	DL = 10.0psi.				1	1:00	7 h.
	6-25=-817/313 7-25	=-875/295	0)	hearing plate	canable of withstar	ding 1	3 lb unlift at io	vint			32	Y 11553	1011.101
	7-8=-1057/274, 8-26	5=-254/571.		10		iung i	S ib upint at jo	/int					Carl -
	9-26=-295/441	,	0)	One RT74 II	SP connectors reco	mmon	ded to connec	*			2		5
BOT CHORD	2-16=-250/349, 15-1	6=-142/490.	5,	truss to beari	na walls due to LIPI	IFT at	it(s) 2 This					SEA	1 1 2
	14-15=-142/490, 14-	27=0/767, 13-27=0/7	67,	connection is	for uplift only and d	loes no	of consider late	eral		=		JLA	5. : 5
	12-13=0/743, 11-12=	=0/743, 10-11=-8/685	,	forces.				or a.		=		0306	52 : =
	9-10=-394/324		1()) This truss is (designed in accorda	ince w	ith the 2015			-			1
WEBS	3-16=-1180/261, 3-1	4=0/375, 5-14=-24/1	10,	International	Residential Code se	ections	R502.11.1 ar	nd			-		ins
	5-13=-122/127, 6-13	8=-67/128, 8-13=-62/1	78,	R802.10.2 ar	d referenced stand	ard AN	ISI/TPI 1.				22	S.SNOW	- FRI USS
	8-11=0/138, 8-10=-1	754/575	1.) Graphical pur	lin representation d	loes no	ot depict the si	ze			11	ANGIN	5
NOTES				or the orienta	tion of the purlin alo	ong the	top and/or				1	iK DI	195
				bottom chord		0						MIL M.L	AUNIN
												111111	1111.

May 6,2020

Page: 1

ENGINEERING BY AMITEK Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T14A	Нір	1	1	Job Reference (optional)	E14374416

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:54 ID:q98N9G9PezEX3NYv9n3G4azJWWQ-vvym7blBLx86kJil_nhM1WiFLIZ?JbwKPEuwxKzJGnh

Page: 1

Scale = 1:68.5

Plate Offsets (X, Y): [1:Edge,0-0-14], [5:0-4-0,0-1-15], [8:Edge,0-1-6]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 18.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.94 0.78 0.62	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.35 0.12	(loc) 10-12 10-12 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0		-									Weight: 213 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING	2x4 SP 2400F 2.0E * No.2, 1-3,6-9:2x4 SP 2x4 SP No.1 *Excepi 2x4 SP No.2 *Excepi Left: 2x4 SP No.3 Right: 2x4 SP No.3	*Except* 4-5:2x4 SP ? No.1 t* 1-15:2x4 SP No.2 t* 14-2,7-10:2x4 SP N	1) 2) No.3	Unbalanced i this design. Wind: ASCE Vasd=103mp Cat. II; Exp B Exterior (2) z vertical left ar forces & MW	roof live loads have 7-10; Vult=130mph h; TCDL=6.0psf; B(; Enclosed; MWFR one; cantilever left a nd right exposed;C- FRS for reactions sl	been of (3-sec CDL=6 S (envo and rig C for n hown;	considered for ond gust) .0psf; h=25ft; elope) and C-(nt exposed ; e nembers and Lumber	C end					
TOP CHORD	Structural wood shea except 2-0-0 oc purlins (3-10	athing directly applied 0-4 max.): 4-5.	l, 3)	DOL=1.60 pla TCLL: ASCE DOL=1.15 Pl	ate grip DOL=1.33 7-10; Pr=20.0 psf (ate DOL=1.15); Pg=	roof liv =20.0 p	e load: Lumbe sf (ground	er -					
BOT CHORD	Rigid ceiling directly	applied or 9-3-13 oc		snow); Pt=18 Plate DOL=1	.9 psf (flat roof snov .15); Category II; E>	v: Lum ‹p B; F	ber DOL=1.15 ully Exp.;	D C					
WEBS REACTIONS	1 Row at midpt (size) 1=0-3-0,8 Max Horiz 1=-97 (LC Max Uplift 1=-75 (LC Max Grav 1=264 (LC 16=1568 (2-16, 2-13, 5-13, 7-12 3=0-3-8, 16=0-4-15 : 13) : 15), 8=-5 (LC 16) C 53), 8=1630 (LC 38) (LC 38)	² 4) 5)	Ct=1.10, Lu= Unbalanced s design. This truss ha load of 12.0 p overhangs no	50-0-0 snow loads have be s been designed for osf or 2.00 times flat on-concurrent with c	en cor greate t roof lo other liv	sidered for the or of min roof l bad of 13.9 ps re loads.	is live f on					
FORCES	(lb) - Maximum Com	pression/Maximum	6) 7)	* This truss h	as been designed for	or a liv	e load of 20.0	psf					
TOP CHORD	1-23=-484/556, 2-23 2-3=-2048/494, 3-24 4-24=-1808/533, 4-5 5-25=-1852/535, 6-2 6-7=-2101/496, 7-26 8-26=-2916/595, 8-9	=-280/305, =-1870/514, =-1672/536, 5=-1926/516, =-2714/619, =0/30	8)	on the botton 3-06-00 tall b chord and an One RT7A U truss to beari This connecti lateral forces	n chord in all areas y y 2-00-00 wide will y other members, w SP connectors reco ng walls due to UPL ion is for uplift only a	where fit betw vith BC mmen _IFT at and do	a rectangle veen the botto DL = 10.0psf. ded to connec jt(s) 1 and 8. es not conside	m ct er			and and a	OB OB OB OB OB OB	ROLITI
BOT CHORD	1-16=-293/502, 15-1 14-15=-389/2098, 13 13-27=-162/1719, 12 11-12=-428/2523, 10 8-10=-428/2523	6=-389/2098, 3-14=-362/2134, 2-27=-162/1719,)-11=-428/2523,	9) 10	This truss is o International R802.10.2 ar) Graphical put or the orienta	designed in accorda Residential Code se Ind referenced standa rlin representation d tion of the purlin alc	ance wi ections ard AN loes no	th the 2015 R502.11.1 ar SI/TPI 1. It depict the si top and/or	nd ize		THE PARTY		SEA 0306	L 52
WEBS	2-16=-2234/300, 2-1 4-13=-61/455, 5-13= 7-12=-904/301, 7-10	4=0/159, 2-13=-518/2 -262/109, 5-12=-66/5 =0/174	231, 5 ^{70,} LC	bottom chord	Standard	ing ald						ANK DIN	EER. HETT
NOTES												Minnin L	in in it.

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

May 6,2020

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T15	Common	4	1	Job Reference (optional)	E14374417

1)

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:55 ID:f64w6IrADUQRP8Ps?FadubzJWVX-O6V8Kxmp6FGyMTHxYUDbakFUvhvD24STeueTTnzJGng

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for use only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T15A	Common	1	1	Job Reference (optional)	E14374418

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:56 ID:7JeIK5so_oYI0Hz2Zz5sQozJWVW-sI3WYHnRtZOp_dr75Bkq6xnfe5FRnXbdtYN0?DzJGnf

818 Soundside Road Edenton, NC 27932

Page: 1

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for use only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	T15B	Common	1	1	Job Reference (optional)	E14374419

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:56 ID:mXF7ayAgAaUFIhiHHC5k9?zJWWO-sl3WYHnRtZOp_dr75Bkq6xndX5EYnTMdtYN0?DzJGnf

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	V1	Valley	1	1	Job Reference (optional)	E14374420

1)

2)

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:57 ID:Pr_g52KBLG?YkXcb_jJYeXzJWWC-KUduldo3esWgbnQKfvF3f9KzxVlqW5dm5C7aYfzJGne

Page: 1

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	V2	Valley	1	1	Job Reference (optional)	E14374421

5-11-15

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:57 ID:Pr_g52KBLG?YkXcb_jJYeXzJWWC-KUduldo3esWgbnQKfvF3f9K_WVmZW5vm5C7aYfzJGne

11-7-4

Page: 1

GRIP

244/190

FT = 20%

11-11-13

LUM	BER	
TOP	CHOR	

Scale = 1:35.1 Loading

TCLL (roof)

TCDL

BCLL

BCDL

1)

this design.

Snow (Pf/Pg)

TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N	0.2							
OTHERS	2x4 SP N	0.3							
BRACING									
TOP CHORD	Structural 6-0-0 oc p	Structural wood sheathing directly applied or 6-0-0 oc purlins.							
BOT CHORD	Rigid ceili bracing.	Rigid ceiling directly applied or 10-0-0 oc bracing.							
REACTIONS	(size)	1=11-11-13, 7=11-11-13,							
		8=11-11-13, 9=11-11-13,							
		10=11-11-13, 11=11-11-13,							
		12=11-11-13							
	Max Horiz	1=-83 (LC 9)							
	Max Uplift	1=-11 (LC 9), 8=-36 (LC 14), 9=-38							
		(LC 14), 11=-39 (LC 13), 12=-36 (LC 13)							
	Max Grav	1=74 (LC 25), 7=62 (LC 24), 8=166 (LC 25), 9=177 (LC 25), 10=123 (LC 2), 11=178 (LC 24), 12=166 (LC 24)							
FORCES	(lb) Mov								
FURGES	(ID) - Max Tension	inum compression/maximum							
TOP CHORD	1-2=-80/6	6, 2-3=-79/49, 3-4=-95/94,							
	4-5=-95/9	4, 5-6=-59/23, 6-7=-60/46							
BOT CHORD	1-12=-44/	/64, 11-12=-44/64, 10-11=-44/64,							
	9-10=-44/	/64, 8-9=-44/64, 7-8=-44/64							
WEBS	4-10=-83/ 5-9=-145/	/3, 3-11=-145/100, 2-12=-131/90, /100, 6-8=-131/90							
NOTES									

Unbalanced roof live loads have been considered for

- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 6)
- Gable studs spaced at 2-0-0 oc. 7)
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1, 11, 12, 9, and 8. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

May 6,2020

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON MICLODED MITER REPERIENCE PAGE mit-14/3 at 900, 1002/015 BEPORE 052. Design valid for use only with MITeR works connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	V3	Valley	1	1	Job Reference (optional)	E14374422

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:57 ID:t1Y2IOKq6a7PMhBnYRqnBkzJWWB-KUduldo3esWgbnQKfvF3f9K_JVmIW5rm5C7aYfzJGne

/5rm5C7aYfzJGne

Scale = 1:30.9

			1			1							i	
Loading	(p	sf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20	0.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20	0.0	Lumber DOL	1.15		BC	0.04	Vert(TL)	n/a	-	n/a	999		
TCDL	10	0.0	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	(0.0*	Code	IRC201	5/TPI2014	Matrix-SH								
BCDL	10	0.0											Weight: 38 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood 6-0-0 oc purlins Rigid ceiling dii bracing. (size) 1=9- 7=9- Max Horiz 1=-6 Max Uplift 6=-4 Max Grav 1=85 (LC 24)	d shea 5. rectly 3-13, 3-13, 3 (LC 7 (LC 5 (LC 5 (LC 5 (LC 5 (LC 5 (LC 5 (LC 5 (LC 5 (LC 5 (LC)))	athing directly applied applied or 10-0-0 oc 5=9-3-13, 6=9-3-13, 8=9-3-13 11) 14), 8=-47 (LC 13) 25), 5=83 (LC 2), 6= =107 (LC 2), 8=215	4) d or 5) 6) 7) 8) 215 (LC 9)	TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 Gable require Gable studs : * This truss h on the bottom 3-06-00 tall b chord and am One RT7A U truss to beari This connect lateral forces This truss is 0	7-10; Pr=20.0 psf ate DOL=1.15); Pg .9 psf (flat roof sno. .15); Category II; E es continuous botto spaced at 2-0-0 oc. as been designed n chord in all areas y 2-00-00 wide will y other members. SP connectors reco ng walls due to UP ion is for uplift only designed in accord a	(roof liv =20.0 p ww: Lum xp B; F om chor for a liv where fit betw ommen LIFT at and do ance w	e load: Lumb sf (ground ber DOL=1.1 ully Exp.; d bearing. e load of 20.0 a rectangle reen the botto ded to conne jt(s) 8 and 6. es not consic th the 2015	er 5 Dpsf ct der					
FORCES	(lb) - Maximum Tension	Com	pression/Maximum		R802.10.2 ar	nd referenced stand	dard AN	SI/TPI 1.	ina					
TOP CHORD	1-2=-75/53, 2-3 4-5=-60/37	8=-77/	72, 3-4=-77/72,		JAD CASE(S)	Standard								
BOT CHORD	1-8=-31/48, 7-8 5-6=-31/48	8=-31/	48, 6-7=-31/48,											19 S.
WEBS	3-7=-77/0, 2-8=	-167/	115, 4-6=-167/115											1111
NOTES												-	TH UA	ROW
 Unbalance this design Wind: ASC 	ed roof live loads	have	been considered for								ā	N.V.	OFFESS	ION NIT
 Vinit. Active Vasid=103; Cat. II; Exp Exterior (2 vertical left forces & M DOL=1.60 Truss des only. For s see Standa or consult 	b) Control (10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	sf; BC WFRS r left a ed;C-(ons sh 1.33 ads in wind le Enc desig	(c) c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)	C nd ss le, l 1.							2000 110 110 V	Frint	SEA 0306 NGIN NK R. L	EEP. THUNN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affiliat B18 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	V4	Valley	1	1	Job Reference (optional)	E14374423

3-3-15

3-3-15

Carter Components (Sanford), Sanford, NC - 27332,

2-2-8

0-0-4

2-6-3

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:58 ID:t1Y2IOKq6a7PMhBnYRqnBkzJWWB-ohBHyzphPAeXDx?WDcmIBMt7Zv69FYBvKss745zJGnd

6-3-4

2-11-5

6-7-13

2x4 💊

Page: 1

4x5 = 2 9¹² 3 0

2x4 🍫

6-7-13

Scale = 1:26.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 13.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.16 0.06 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCLL BCDL	0.0* 10.0	Code	IRC2015/7	IRC2015/TPI2014 Matrix-P Weigh									FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=6-7-13, Max Horiz 1=43 (LC Max Uplift 1=-11 (LC Max Grav 1=130 (LC (LC 2)	athing directly applie applied or 10-0-0 oc 3=6-7-13, 4=6-7-13 10) : 13), 3=-15 (LC 14) C 2), 3=130 (LC 2), 4	Gable require Gable studs s * This truss h on the bottor 3-06-00 tall b chord and an One RT7A U truss to beari This connecti lateral forces This truss is c International R802.10.2 ar AD CASE(S)	es continuous botto spaced at 2-0-0 oc as been designed a chord in all areas y 2-00-00 wide will y other members. SP connectors rec- ng walls due to UP on is for uplift only designed in accord Residential Code s d referenced stand Standard	om chore for a live s where I fit betw commen- PLIFT at and do lance wi sections dard AN	d bearing. e load of 20.0 a rectangle veen the botto ded to conne jt(s) 1 and 3. es not consid th the 2015 R502.11.1 a ISI/TPI 1.	Dpsf om ct ler nd							
FORCES	(IC 2) (Ib) - Maximum Com	pression/Maximum												
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & M DOL=1.60 3) Truss des only. For see Stand or consult 4) TCLL: ASI DOL=1.15 snow); Pf= Plate DOL Ct=1.10	1-2=-80/40, 2-3=-76, 1-4=-8/34, 3-4=-8/34 2-4=-134/48 ed roof live loads have b. CE 7-10; Vult=130mph imph; TCDL=6.0psf; BK p B; Enclosed; MWFR3 b; Zone; cantilever left at t and right exposed; C- MWFRS for reactions si plate grip DOL=1.33 signed for wind loads ir studs exposed to wind lard Industry Gable Enc qualified building desig CE 7-10; Pr=20.0 psf (1 5 Plate DOL=1.15); Pg= =13.9 psf (flat roof snov .=1.15); Category II; Es	/40 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and hown; Lumber n the plane of the tru (normal to the face) d Details as applicat gner as per ANS/ITP roof live load: Lumbe =20.0 psf (ground x: Lumber DOL=1.1! xp B; Fully Exp.;	C end ss , le, 11. er 5								and the second second	SEA 0306 WGIN	EER TER	AMALLITIT.

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	V5	Valley	1	1	Job Reference (optional)	E14374424

1-11-15

1-11-15

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:58 ID:t1Y2IOKq6a7PMhBnYRqnBkzJWWB-ohBHyzphPAeXDx?WDcmIBMt9Mv6qFYPvKss745zJGnd

> 3-7-4 1-7-5

3-11-13

Page: 1

3-11-13

Scale = 1:23.8

			1											
Loa	ding	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCL	L (roof)	20.0	Plate Grip DOL	1.15		TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Sno	w (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.02	Vert(TL)	n/a	-	n/a	999		
TCE	DL	10.0	Rep Stress Incr	YES		WB	0.01	Horiz(TL)	0.00	3	n/a	n/a		
BCL	.L	0.0*	Code	IRC2015	5/TPI2014	Matrix-P								
BC	DL	10.0	10.0 Weight: 13 lb FT = 20%											
LUN TOF BOT OTH BR/ TOF	ABER CHORD CHORD HERS ACING CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 4-0-8 oc purlins. Bigid exiling directly	athing directly applie	5) 6) 7) ed or 8)	Gable require Gable studs s * This truss h on the bottom 3-06-00 tall b chord and an One RT7A U truss to beari	es continuous botto spaced at 2-0-0 oc. as been designed la chord in all areas y 2-00-00 wide will y other members. SP connectors reco ng walls due to UP	for a live where fit betw ommene LIFT at	d bearing. e load of 20.0 a rectangle reen the botto ded to conner it(s) 1 and 3.	0psf om ct					
БОТ	CHORD	bracing.	applied of 10-0-0 oc	,	This connect	on is for uplift only	and do	es not consid	er					
REA	bracing. Image: Strategy of the construction of the construc													
FOF	RCES	(lb) - Maximum Com Tension	pression/Maximum											
TOF BOT WEI	CHORD CHORD BS	1-2=-44/22, 2-3=-41/ 1-4=-4/19, 3-4=-4/19 2-4=-73/27	/22											
NO	TES													
1)	Unbalance	ed roof live loads have	been considered for											
	this desigi	n.											min	1111
2)	Wind: AS(Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & N DOL=1.60	CE 7-10; Vult=130mph mph; TCDL=6.0psf; B(p B; Enclosed; MWFR3 2) zone; cantilever left a ft and right exposed;C- MWFRS for reactions si 0 plate grip DOL=1.33	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-1 and right exposed ; e C for members and hown; Lumber	C end								and a	SEA	ROL
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCI L ASCE 7-10: Pt=20.0 psf (roof live load) Lumber										52				
,	DOL=1.15 snow); Pf= Plate DOL Ct=1.10	5 Plate DOL=1.15); Pg= =13.9 psf (flat roof snov _=1.15); Category II; E>	=20.0 psf (ground w: Lumber DOL=1.15 xp B; Fully Exp.;	5									ANK R.L	ASSITUTI

May 6,2020

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	V6	Valley	1	1	Job Reference (optional)	E14374425

3-3-0

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:58

Page: 1

ID:t1Y2IOKq6a7PMhBnYRqnBkzJWWB-ohBHyzphPAeXDx?WDcmIBMt95v6JFY8vKss745zJGnd 6-5-8 9-8-8 6-5-8 3-3-0 4x5 = 4 14 3 5 6 ba 1-7-8

		L				9-8-8							
Scale = 1:30.2		-									7		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDI	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.06 0.05 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 1=9-8-8, 7 9=9-8-8, 1 Max Horiz 1=63 (LC Max Uplift 7=-4 (LC 10=-22 (L Max Grav 1=81 (LC	athing directly applied cept end verticals. applied or 6-0-0 oc 7=9-8-8, 8=9-8-8, 10=9-8-8, 11=9-8-8 12) 15), 8=-21 (LC 16), C 15), 11=-19 (LC 15 2), 7=25 (LC 29), 8=1	3) 4) 1 or 5) 6) 7) 8) 9) 49	Truss desig only. For st see Standar or consult ql TCLL: ASCI DOL=1.15 F snow); Pf=1 Plate DOL= Ct=1.10 Unbalanced design. All plates ar Gable studs * This truss on the botto 3-06-00 tall	ned for wind load uds exposed to w d Industry Gable Jalified building d E 7-10; Pr=20.0 p; Vate DOL=1.15); J.3.9 psf (flat roof s 1.15); Category II; snow loads have e 2x4 MT20 unles res continuous bo spaced at 2-0-0 has been designe m chord in all are: by 2-00-00 wide v	Is in the pl ind (norm End Detai esigner as sf (roof liv Pg=20.0 p now: Lum ; Exp B; F e been cor as otherwis totom chor oc. ed for a liv as where will fit betw	ane of the tr al to the face is as applica per ANSI/T e load: Lumt ber DOL=1. ully Exp.; isidered for t se indicated. d bearing. e load of 20. a rectangle reen the bott	uss e), able, IPI 1. ber 15 this 0psf					

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-110/52, 2-3=-49/38, 3-4=-55/92, 4-14=-46/92, 5-14=-55/84, 5-6=-30/40, 6-7=-25/29 BOT CHORD 1-11=-66/88, 10-11=-25/28, 9-10=-25/28, 8-9=-25/28, 7-8=-25/28

32), 11=204 (LC 2)

WEBS 4-9=-112/34, 3-10=-125/107, 2-11=-132/99, 5-8=-115/96

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 2) Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- chord and any other members. 10) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7, 10, 11, and 8. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof	
20040129-A	V7	Valley	1	1	Job Reference (optional)	E14374426

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:58 ID:ME5QWkLStuFG_qm_58L0jyzJWWA-ohBHyzphPAeXDx?WDcmlBMt8vv6OFY2vKss745zJGnd

ID:ME5QWkLStuFG_qm_58L0jyzJWWA-ohBHyzphPAeXDx?WDcmIBMt8vv6OFY2vKss 4-5-8 7-8-8 4-5-8 3-3-0

7-8-8

Scale = 1:24.1

Plate Offsets (X, Y): [6:0-3-7,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.07 0.05 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORE BOT CHORE WEBS DTHERS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sheat 6-0-0 oc purlins, exit Rigid ceiling directly bracing. (size) 1=7-8-8, 6 8=7-8-8, 9 Max Horiz 1=32 (LC Max Grav 1=79 (LC (LC 2), 8= 	athing directly applied cept end verticals. applied or 10-0-0 oc 5=7-8-8, 7=7-8-8, 5=7-8-8 12) 11), 7=-23 (LC 16), 9= 32), 6=19 (LC 33), 7= 127 (LC 2), 9=219 (LC	3) 4) or 5) 6) 7) -27 8) 162 22) 9)	Truss design only. For stu see Standarc or consult qu TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 Unbalanced s design. Gable require Gable studs s * This truss h on the botton 3-06-00 tall b chord and an One RT7A U	hed for wind loads ds exposed to wind lindustry Gable E alified building de 7-10; Pr=20.0 ps ate DOL=1.15); P ap sf (flat roof sr .15); Category II; snow loads have as continuous bot spaced at 2-0-0 o as been designed n chord in all area y 2-00-00 wide w y other members SP connectors re	s in the pl nd (norma End Detai signer as f (roof livv 2g=20.0 p ow: Lum Exp B; F been con tom chore c. d for a live s where a ill fit betw commend	ane of the tru al to the face is as applicat per ANSI/TF e load: Lumb ber DOL=1.1 ully Exp.; sidered for th d bearing. e load of 20.0 a rectangle een the botto ded to conne	uss), ble, PI 1. er 5 bis Dpsf pm ct						
F ORCES TOP CHORE BOT CHORE WEBS	 (Ib) - Maximum Com Tension 1-2=-98/43, 2-3=-44/ 4-12=-43/77, 4-5=-1 1-9=-48/82, 8-9=-7/7 3-8=-94/10, 2-9=-150 	pression/Maximum /81, 3-12=-30/80, 1/24, 5-6=-13/16 /, 7-8=-7/7, 6-7=-7/7 0/124, 4-7=-124/113	10)	truss to beari This connecti lateral forces This truss is of International R802.10.2 ar	ng walls due to U ion is for uplift onl designed in accor Residential Code nd referenced star	PLIFT at ly and do dance wi sections ndard AN	jt(s) 6, 9, and es not consid th the 2015 R502.11.1 a SI/TPI 1.	d 7. ler nd				TH CA	ROI	7
NOTES 1) Unbalan this designed 2) Wind: AS Vasd=10 Cat. II; E Exterior vertical life forces & DOL=1.6	ced roof live loads have gn. SCE 7-10; Vult=130mph 3mph; TCDL=6.0psf; BK xp B; Enclosed; MWFRS (2) zone; cantilever left a eft and right exposed;C-1 MWFRS for reactions sl 00 plate grip DOL=1.33	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed ; en C for members and hown; Lumber	LO d	AD CASE(S)	Standard					"THURNESS	ALL	SEA 0306	L 52 EFR: Q	and an

May 6,2020

Job	Truss	Truss Type	Qty	Ply	Johnson-Roof			
20040129-A	V8	Valley	1	1	Job Reference (optional)	E14374427		

2-5-8

2-5-8

Carter Components (Sanford), Sanford, NC - 27332,

Scale = 1:22.1

Loading

TCDL

TCLL (roof)

Snow (Pf/Pg)

Plate Offsets (X, Y): [2:0-2-8,Edge]

(psf)

20.0

10.0

13.9/20.0

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed May 06 08:45:59 ID:ME5QWkLStuFG_qm_58L0jyzJWWA-GtlfAJpKAUnOr5ainKHXkaPKrJRO_?t3ZWchcYzJGnc

4-4-1

1-10-9

4-11-0

0-6-15

L/d

l/defl

n/a 999

n/a 999

n/a n/a

(loc)

-

-

3

PLATES

MT20

GRIP

244/190

12 6 Г 0-11-4 0-0-4 2x4 🧔 4-11-0 2-0-0 CSI DEFL Spacing in тс Plate Grip DOL 1.15 0.06 Vert(LL) n/a BC 0.13 Lumber DOL 1.15 Vert(TL) n/a Rep Stress Incr YES WB 0.00 Horiz(TL) 0.00 IRC2015/TPI2014 Matrix-P Code

5) Unbalanced snow loads have been considered for this design.

6) Gable requires continuous bottom chord bearing.

FRI 030652 mm May 6,2020

BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-P			
BCDL	10.0					Weight: 14 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood shea 5-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=4-11-0, Max Horiz 1, 10.0 C	athing directly applie applied or 10-0-0 or 3=4-11-0	7) Gable studs 8) * This truss h on the botton 3-06-00 tall b chord and ar 9) This truss is International R802.10.2 ar LOAD CASE(S)	spaced at 2-0-0 oc. has been designed for a liv n chord in all areas where by 2-00-00 wide will fit betw by other members. designed in accordance wi Residential Code sections nd referenced standard AN Standard	e load of 20.0psf a rectangle veen the bottom ith the 2015 s R502.11.1 and ISI/TPI 1.		
	Max Horiz 1=-10 (LC Max Grav 1=150 (LC	: 11) C 2), 3=150 (LC 2)					
FORCES	(lb) - Maximum Com Tension	pression/Maximum					
TOP CHORD	1-2=-145/100, 2-3=-	145/100					
BOT CHORD	1-3=-58/111						
 Unbalance this design 	ed roof live loads have n.	been considered for	r				
 Wind: ASC Vasd=103 Cat. II; Exp 	CE 7-10; Vult=130mph mph; TCDL=6.0psf; B0 b B; Enclosed; MWFR	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-	с				11111
Exterior (2 vertical lef forces & N) zone; cantilever left a t and right exposed;C- IWFRS for reactions sl	and right exposed ; e C for members and hown; Lumber	end			IN OR FESS	ROIN
 Truss des 	igned for wind loads in	the plane of the tru	ISS			E A	A.
only. For see Stand	studs exposed to wind ard Industry Gable End qualified building design	(normal to the face) d Details as applicat), ble, Bl 1			SEA	۱L.

