

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0320-1194 Lot 42 Blackberry Manor

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E14415829 thru E14415843

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

May 18,2020

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

F		19-9-4					38-3-0					
1		19-9-4					18-5-12		1			
Plate Offs	sets (X,Y)	[6:0-1-8,Edge], [7:0-1-8,Edge], [16:0-1-8	,Edge], [30:0-1-8,Edge]									
LOADING TCLL TCDL BCLL BCDL	G (psf) 40.0 10.0 0.0 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.89 BC 0.82 WB 0.75 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (-0.32 29 -0.42 29 0.06	loc) l/defl 9-30 >697 9-30 >527 25 n/a	L/d 480 360 n/a	PLATES MT20 M18SHS Weight: 193 lb	GRIP 244/190 244/190 FT = 20%F, 11%E			
LUMBER TOP CHO BOT CHO WEBS	- DRD 2x4 SP DRD 2x4 SP 25-28: 2 2x4 SP	No.1(flat) 2400F 2.0E(flat) *Except* 2x4 SP No.1(flat) No.3(flat)		BRACING- TOP CHOR BOT CHOR	:D Si ex :D Ri	tructural wood ccept end verti igid ceiling dire	sheathing dire icals. ectly applied or	ctly applied or 5-8-3 o 6-0-0 oc bracing.	oc purlins,			
REACTIC	EACTIONS. (size) 44=0-3-8, 25=0-3-8, 34=0-3-8 Max Grav 44=925(LC 3), 25=866(LC 4), 34=2541(LC 1)											
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1947/0, 3-4=-3195/0, 4-5=-3195/0, 5-6=-3706/0, 6-7=-3666/0, 7-8=-3119/134, 8-9=-1889/681, 9-10=-1889/681, 10-12=0/1484, 12-13=0/4055, 13-14=0/4055, 14-15=-83/1814, 15-16=-1813/1045, 16-17=-2768/544, 17-18=-2768/544, 18-19=-3315/0, 19-21=-2908/0, 21-22=-2908/0, 22-23=-1800/0												
BOT CHO	DRD 43-44 37-38 31-32 25-26	⊨0/1160, 42-43=0/2698, 41-42=0/3625, 8=-393/2634, 35-37=-1045/1002, 34-35= 2=-544/2768, 30-31=-544/2768, 29-30=- ≒=0/1084	40-41=0/3666, 39-40=0/3 =-2446/0, 33-34=-2508/0, 176/3264, 27-29=0/3242,	3666, 38-39=0/366 32-33=-1422/107 , 26-27=0/2478,	56, 0,							
WEBS	2-44= 3-42= 7-38= 22-27 16-32	1452/0, 12-34=-2019/0, 2-43=0/1025, =0/634, 10-37=0/1246, 5-42=-549/0, 8-3 1057/0, 6-40=-382/1, 7-39=0/423, 23-2 =-37/549, 14-34=-1941/0, 14-33=0/148; ==-1487/0, 16-31=0/512, 19-27=-426/86,	12-35=0/1584, 3-43=-978/ 7=-1046/0, 8-38=0/800, 6 5=-1357/0, 23-26=0/933, 7, 15-33=-1423/0, 15-32=(18-29=0/351, 18-30=-102	/0, 10-35=-1560/0 5-41=-136/531, 22-26=-881/0, 0/1134, 26/0, 17-30=0/285	, 5							
NOTES- 1) Unbalanced floor live loads have been considered for this design. 2) All plates are MT20 plates unless otherwise indicated. 3) All plates are 3x4 MT20 unless otherwise indicated. 4) Plates checked for a plus or minus 1 degree rotation about its center. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) CAUTION, Do not erect truss backwards. SEAL 036322												

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

May 18,2020

lob	Truss		Oty Ph	v Lot 42	Blackberny Mano)r	
					Diackberry Marie		E14415830
J0320-1194	F01KW	GABLE	1	1 Job Re	eference (optional)	
Comtech, Inc, Fay	etteville, NC - 28314,		8.330 ID:igBDW2X6YDIBEzGa	s Mar 23 2020) MiTek Industries	s, Inc. Mon May 18 10:35:22 Bfm\/kKbP.IErLicGdbCGgz\	2020 Page 1
0-1-8			12.192211.70121212200		i vavxayourteina		
H1-3-0	1-6-0	1-1-8	7-2-0	ρ	<u>7-</u> 0		0-1 ₁ 8
111 1	I	11 1	I	11	I		Scale = 1:64.9
		2v6 ED -	- av			2×4 —	
4x6 =	3x4 = 3x4 = 3x4 = 3	x4 = 3x4 = 4x6 =	3x4	4x6	6 = 3x4 =	3x6 FP = 3x4 = 3x4	۱ =
1 2	3 4 5 6	7 8 9 10 11	12 13 14 15 16	17 18 19	20	21 22 2324 2	5 26
							51 gr
4 Re Ref		<u>n jaj jaj ar jaj</u>			NG TOT		
49 48	47 46 45	44 43 42 41 40	39 38 37 36	35 34 33	32 31	30 29 28	27
3x6 = 4x6 =	= 3x6 = 3x4 =	3x4 = 4x6 = 4x6 =	$6x8 = 2x6 \parallel$	2x6 6x6	4x4 =	3x6 FP = 3x4 =	3x6 =
		3x6 FP =	2X6 2X6	2X6	3x4 =	= 3x6 $=$	
			21-1-0 23-5-8 25-	-1-0 27-2-0			
	10-10-8	19-7-8	<u>19-9-0</u> <u>22-5-0</u> <u>23₁9-0</u> 0-1-8 <u>1-4-0</u> 1-0-8 1-4	26-5-0 27-3	-8	38-3-0	
Plate Offsets (X V)	[6:0-1-8 Edge] [7:0-1-8 Edge]		1-4-0 0-3-8	0-1-	8		
	[0.0-1-0,Luge], [1.0-1-0,Luge]						
LOADING (psf)	SPACING- 2-0- Plate Grip DOI 1.0	CSI.	DEFL. in ((loc) l/defl	L/d 480	PLATES GRI MT20 244	P (190
TCDL 10.0	Lumber DOL 1.0	BC 0.58	Vert(CT) -0.44 45	5-46 >532	360	W120 244	150
BCLL 0.0 BCDI 5.0	Rep Stress Incr YE Code IRC2015/TPI2014	S WB 0.68 Matrix-S	Horz(CT) 0.05	39 n/a	n/a	Weight: 199 lb F	= 20%F 11%F
TOP CHORD 2x4 SP	No.1(flat)		TOP CHORD SI	tructural wood	d sheathing direc	tly applied or 5-7-6 oc pur	lins,
BOT CHORD 2x4 SP	2400F 2.0E(flat)			xcept end ver	ticals.		
OTHERS 2x4 SP	No.3(flat)		BUT CHURD R	ligia celling all	ectly applied of t	6-0-0 oc bracing.	
	oringo 7.9.0 overst (it length)						
(lb) - Max U	plift All uplift 100 lb or less at j	bint(s) 27 except 38=-121(LC 5)					
Max G	rav All reactions 250 lb or less 39=1393(I C 1) 33=859(I C	at joint(s) 38, 37, 36, 35, 34 exc 1) 33=859(I C 1) 49=966(I C 3	ept 27=515(LC 4), 39=1393()	(LC 1),			
			,				
FORCES. (lb) - Max. TOP CHORD 2-3=-	Comp./Max. Ten All forces 25 2049/0. 3-4=-3398/0. 4-5=-3398	0 (lb) or less except when showr 3/0, 5-6=-4007/0, 6-7=-4049/0, 7-	ı. 8=-3587/0.				
8-9=-	2465/0, 9-10=-2465/0, 10-12=-5	648/82, 12-13=0/2235, 13-14=0/2	235, 14-15=0/2235,				
15-1 20-21	6=0/2235, 16-17=0/2235, 17-18 I=-675/935, 21-23=-1170/430, 2	=0/2235, 18-19=0/2235, 19-20=0 3-24=-1170/430, 24-25=-917/124	1607, 1				
BOT CHORD 48-49	9=0/1213, 47-48=0/2849, 46-47	=0/3872, 45-46=0/4049, 44-45=0,	/4049, 43-44=0/4049,				
42-4 36-37	7=-2235/0, 35-36=-2235/0, 34-3	=-723/0, 38-39=-2235/0, 37-38=- 5=-2235/0, 33-34=-2235/0, 32-33	=-2245/0,				
31-32 WEBS 19-33	2=-1235/263, 29-31=-663/1053,	28-29=-246/1179, 27-28=-37/62 1859/0_2-48-0/1088_12-40-0/	 1721				
3-48=	=-1042/0, 10-40=-1421/0, 3-47=	D/701, 10-42=0/1088, 5-47=-605/	0, 8-42=-904/0,				
8-43= 21-20	=0/574, 7-43=-644/0, 25-27=-77	7/46, 25-28=-114/385, 24-28=-34 /718_20-321099/0_19-32-0/11	1/159, 17			annun	
2120		110, 20 02 1000/0, 10 02 0/1				WH CAR	1111
1) Unbalanced floor live	e loads have been considered fo	or this design				R	Kin't
2) All plates are 1.5x3	MT20 unless otherwise indicate	d.				SIN T	
 Plates checked for a Gable studs spaced 	a plus or minus 1 degree rotatior at 1-4-0 oc.	about its center.			U.		T. CI
5) Provide mechanical	connection (by others) of truss	o bearing plate capable of withst	anding 100 lb uplift at joint(s)) 27 except (jt	=lb)	SEAL	Ξ
38=121. 6) Recommend 2x6 str	ongbacks, on edge, spaced at f	0-0-0 oc and fastened to each ti	uss with 3-10d (0.131" X 3")) nails.	E.	036322	E E
Strongbacks to be a	ttached to walls at their outer er	ds or restrained by other means.		•		N	1 3
() CAUTION, Do not e	reci truss dackwards.				1	A: AND TER	AL E
						SO GINER	ERIN
						Min A. GIL	11111
						Mov 19	2020
						way 18	2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	19-5	9-4			29	9-10-0	<u>30-1-8</u>		
Plate Offsets (X,Y)	[6:0-1-8,Edge], [7:0-1-8,Edge], [15:0-1-8	3,Edge], [20:0-3-0,Edge],	[23:0-1-8,Edge]			5-0-12	0-0-0		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.94 BC 0.80 WB 0.69 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.32 32-33 -0.44 32-33 0.05 26	l/defl L/d >730 480 >536 360 n/a n/a	PLATES MT20 Weight: 154 lb	GRIP 244/190 FT = 20%F, 11%E		
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP 21-28: WEBS 2x4 SP	No.1(flat) 2400F 2.0E(flat) *Except* 2x4 SP No.1(flat) No.3(flat)		BRACING- TOP CHOR BOT CHOR	D Structu except D Rigid c	ral wood sheathing di end verticals. eiling directly applied o	rectly applied or 2-2-0 o	oc purlins,		
REACTIONS. (size Max U Max G	e) 36=0-3-8, 20=0-3-0, 26=0-3-8 plift 20=-80(LC 3) rav 36=960(LC 10), 20=456(LC 4), 26=:	2015(LC 1)							
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2035/0, 3-4=-3371/0, 4-5=-3371/0, 5-6=-3967/0, 6-7=-3999/0, 7-8=-3519/0, 8-9=-2376/0, 9-10=-2376/0, 10-12=-460/145, 12-13=0/2508, 13-14=0/2508, 14-15=-325/1335, 15-16=-842/750, 16-17=-842/750, 17-19=-537/119, 19-20=-536/114 BOT CHORD 35-36=0/1206, 34-35=0/2829, 33-34=0/3840, 32-33=0/3999, 31-32=0/3999, 30-31=0/3999, 29-30=0/3083, 27-29=0/1534, 26-27=-1012/0, 25-26=-1760/0, 24-25=-750/842, 23-24=-750/842, 22-23=-308/795 WEBS 20-22=-140/658, 2-36=-1510/0, 12-26=-1877/0, 2-35=0/1080, 12-27=0/1455, 3-35=-1033/0, 10-27=-1431/0, 3-34=0/692, 10-29=0/1110, 5-34=-598/0, 8-29=-933/0, 5-33=-58/319, 8-30=0/655, 6-33=-357/315, 7-30=-844/0, 6-32=-290/96, 7-31=-75/327, 14-26=-1137/0, 14-25=0/892, 15-25=-1111/0, 15-24=-0/306, 17-22=-331/247, 17-23=-565/60									
NOTES- 1) Unbalanced floor live 2) All plates are 3x4 M ² 3) Plates checked for a 4) Provide mechanical 5) Recommend 2x6 str Strongbacks to be at 6) Gap between inside 7) CAUTION, Do not en	e loads have been considered for this de T20 unless otherwise indicated. plus or minus 1 degree rotation about it connection (by others) of truss to bearin ongbacks, on edge, spaced at 10-0-0 ou ttached to walls at their outer ends or res of top chord bearing and first diagonal o rect truss backwards.	esign. s center. g plate capable of withsta c and fastened to each tr strained by other means. r vertical web shall not ex	anding 100 lb uplift uss with 3-10d (0.1 xceed 0.500in.	at joint(s) 20. 131″ X 3″) nails	A Contraction of the second se	SEA 0363	L 22 EER BELIII		

May 18,2020

G 100000

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

				27-3-8							
Plate Offecte (X V)	[6:0.1.9 Edge] [7:0.1.9 Edge] [20:0.1.9	19-9-4					7-6-4				
Plate Olisets (A, f)	[0.0-1-0,Euge], [7.0-1-0,Euge], [20.0-1-0	,⊏ugej, [21.0-1-6,⊏ugej									
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.98 BC 0.67 WB 0.69 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.33 28 -0.45 28-29 0.06 22	l/defl >714 >522 n/a	L/d 480 360 n/a	L/d PLATES GRIP 480 MT20 244/190 360 n/a Weight: 138 lb FT = 20%				
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) 2 2400F 2.0E(flat) P No.3(flat)		BRACING- TOP CHORI BOT CHORI	D Structu D Rigid ce	ral wood eiling dire	sheathing dire	- ectly applied, except e r 6-0-0 oc bracing.	and verticals.			
REACTIONS. (siz Max U Max C	e) 32=0-3-8, 19=0-3-8, 22=0-3-8 Jplift 19=-163(LC 3) Grav 32=975(LC 10), 19=313(LC 4), 22=	1877(LC 1)									
FORCES. (lb) - Max. TOP CHORD 2-3= 8-9= 14-1:	Comp./Max. Ten All forces 250 (lb) or -2073/0, 3-4=-3447/0, 4-5=-3447/0, 5-6= -2580/0, 9-10=-2580/0, 10-12=-716/0, 12 5=-387/770, 15-16=-387/770, 16-17=-38	less except when shown. -4079/0, 6-7=-4141/0, 7-8 -13=0/2088, 13-14=0/208 7/770	=-3692/0, 8,								
BOT CHORD 31-3 25-2 19-2	2=0/1226, 30-31=0/2885, 29-30=0/3931, 26=0/3273, 23-25=0/1766, 22-23=-613/0, 0=-264/321	28-29=0/4141, 27-28=0/4 21-22=-1446/0, 20-21=-7	141, 26-27=0/414 70/387,	1,							
WEBS 2-32 6-29 10-2 17-2	19-20=-264/321 WEBS 2-32=-1535/0, 2-31=0/1103, 3-31=-1057/0, 3-30=0/717, 5-30=-619/0, 5-29=-27/355, 6-29=-411/268, 6-28=-269/119, 12-22=-1850/0, 12-23=0/1447, 10-23=-1390/0, 10-25=0/1062, 8-25=-903/0, 8-26=0/625, 7-26=-797/0, 7-27=-99/306, 17-19=-399/330, 17-20=-645/84, 16-20=-78/266, 14-22=-1014/0, 14-21=0/1119, 15-21=-496/0										
NOTES- 1) Unbalanced floor liv 2) All plates are 1.5x3 3) Plates checked for a 4) Provide mechanical 19=163. 5) Recommend 2x6 st	e loads have been considered for this de MT20 unless otherwise indicated. a plus or minus 1 degree rotation about it connection (by others) of truss to bearin	isign. s center. g plate capable of withstar	nding 100 lb uplift a	at joint(s) exce	ept (jt=lb)	4	TH CA	ROLL			

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131° X 3') i Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 42 Blackberry Manor
					E14415833
J0320-1194	F04	Floor	1	1	
					Job Reference (optional)
Comtech, Inc, Fayette	/ille, NC - 28314,		8.3	30 s Mar 2	23 2020 MiTek Industries, Inc. Mon May 18 10:35:25 2020 Page 1

2-9-0	<u>2-9-0</u> 7-10-8 2-9-0 5-1-8		12-0-8		1	7-2-0	19-11	-0		
2-9-0 Plate Offsets (X Y)	5-1-8 [6:0-1-8 Edge] [7:0-1-8 Edge] [20:0-3-0	0-0-0] [21:0-3-0 Edge]	4-2-0		5	i-1-8	2-9-0	0		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.41 BC 0.52 WB 0.60 Matrix-S	DEFL. Vert(LL) -(Vert(CT) -(Horz(CT) (in (loc 0.32 20-21 0.44 20-21 0.07 14) l/defl l >742 l >539 4 n/a	L/d 480 360 n/a	PLATES MT20 M18SHS Weight: 111 lb	GRIP 244/190 244/190 FT = 20%F, 11%E		
LUMBER- TOP CHORD BRACING- TOP CHORD BOT CHORD 2x4 SP 2400F 2.0E(flat) BOT CHORD 2x4 SP 2400F 2.0E(flat) WEBS 2x4 SP No.3(flat)										
REACTIONS. (size Max G	e) 26=0-3-8, 14=0-3-8 rav 26=1075(LC 1), 14=1075(LC 1)									
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2327/0, 3-4=-3929/0, 4-5=-3929/0, 5-6=-4974/0, 6-7=-5396/0, 7-8=-4974/0, 8-9=-3929/0, 9-10=-3929/0, 10-12=-2327/0 BOT CHORD 25-26=0/1359, 24-25=0/3248, 22-24=0/4597, 21-22=0/5396, 20-21=0/5396, 19-20=0/5396, 17-19=0/4597, 15-17=0/3248, 14-15=0/1359 WEBS 12-14=-1702/0, 2-26=-1702/0, 12-15=0/1260, 2-25=0/1260, 10-15=-1198/0, 3-25=-1198/0, 10-17=-852/0, 5-24=-852/0, 8-19=0/553, 5-22=0/553, 7-19=-761/0, 6-22=-761/0, 6-21=-181/340, 7-20=-181/340										

NOTES-

2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 3x6 MT20 unless otherwise indicated.

4) Plates checked for a plus or minus 1 degree rotation about its center.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

¹⁾ Unbalanced floor live loads have been considered for this design.

12

1.5x3 ||

11

1	2-9-0		5-3-0		9-5-4	1	1	1-11-4	14-8	-4
	2-	9-0	2-6-0		4-2-4			2-6-0	2-9-	0
Plate Of	fsets (X,Y)	[4:0-1-8,Edge], [5	5:0-1-8,Edge]							
LOADIN TCLL TCDL BCLL BCDL	IG (psf) 40.0 10.0 0.0 5.0	SPACING Plate Grip Lumber D Rep Stres Code IRC	- 2-0-0 DOL 1.00 OL 1.00 s Incr YES c2015/TPI2014	CSI. TC 0.32 BC 0.65 WB 0.39 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.13 12-13 -0.18 12-13 0.04 9	l/defl >999 >951 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 74 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)				BRACING- TOP CHORE BOT CHORE	D Structu except D Rigid c	ural wood end verti ceiling dire	sheathing direc cals. ectly applied or	ctly applied or 6-0-0 10-0-0 oc bracing.	oc purlins,	
REACTI	ONS. (size Max G	e) 16=0-3-8, 9= irav 16=788(LC 1	=0-3-8 1), 9=788(LC 1)							
FORCE: TOP CH BOT CH WEBS	S. (lb) - Max. ORD 2-3=- ORD 15-16 9-10= 7-9=- 6-11=	Comp./Max. Ten 1607/0, 3-4=-247 5=0/974, 14-15=0 =0/974 1219/0, 2-16=-12 =0/412, 3-14=0/4	All forces 250 (lb) c 79/0, 4-5=-2741/0, 5-6 //2206, 13-14=0/2741, 219/0, 7-10=0/824, 2-7 12, 5-11=-493/0, 4-14	or less except when shown =-2479/0, 6-7=-1607/0 12-13=0/2741, 11-12=0/2 (5=0/824, 6-10=-779/0, 3-1 =-493/0	741, 10-11=0/2206, 5=-779/0,	,				

NOTES-

3x6 =

1) Unbalanced floor live loads have been considered for this design.

15

14

13

1.5x3 ||

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

10

3x6 =

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		14 14	1-4-4 1-4-4			<u>14-8-4</u> 0-4-0
Plate Offsets (X,Y)	[4:0-1-8,Edge], [5:0-1-8,Edge], [9:0-3-0,E	Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.41 BC 0.79 WB 0.55 Matrix-S	DEFL. in Vert(LL) -0.15 Vert(CT) -0.20 Horz(CT) 0.02	(loc) I/defl L/d 14-15 >999 480 14-15 >838 360 9 n/a n/a	PLATES MT20 Weight: 75 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. (siz	 No.1(flat) No.1(flat) No.3(flat) a) a) a) b) b) a) b) b) b) c) c)	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,	

Max Grav 17=773(LC 1), 9=779(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1570/0, 3-4=-2405/0, 4-5=-2620/0, 5-6=-2074/0, 6-8=-940/0, 8-9=-940/0

BOT CHORD 16-17=0/953, 15-16=0/2155, 14-15=0/2620, 13-14=0/2620, 12-13=0/2620, 11-12=0/1669 WEBS

9-11=0/1154, 2-17=-1193/0, 2-16=0/803, 3-16=-761/0, 3-15=0/397, 4-15=-478/4,

6-11=-931/0, 6-12=0/527, 5-12=-723/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2-9-0	9	9-5-0 12-2-0 6-8-0 2-9-0					
Plate Offsets (X,Y) [11:0-1-8,Edge], [12:0-	1-8,Edge]		200				
LOADING (psf) SPACING- TCLL 40.0 Plate Grip DOL TCDL 10.0 Lumber DOL BCLL 0.0 Rep Stress Incr BCDL 5.0 Code IRC2015/	2-0-0 CSI. 1.00 TC 0.24 1.00 BC 0.37 YES WB 0.28 TPI2014 Matrix-S Image: Comparison of the second seco	DEFL. in (loc) l/defl L/d Vert(LL) -0.06 12-13 >999 480 Vert(CT) -0.09 12-13 >999 360 Horz(CT) 0.02 9 n/a n/a	PLATES GRIP MT20 244/190 Weight: 62 lb FT = 20%F, 11%E				
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)		BRACING- TOP CHORD Structural wood sheathing dir except end verticals. BOT CHORD Rigid ceiling directly applied of	ectly applied or 6-0-0 oc purlins, or 10-0-0 oc bracing.				

Max Grav 14=649(LC 1), 9=649(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1254/0, 3-4=-1848/0, 4-5=-1848/0, 5-6=-1848/0, 6-7=-1254/0

BOT CHORD 13-14=0/799, 12-13=0/1674, 11-12=0/1848, 10-11=0/1674, 9-10=0/799

WEBS 7-9=-999/0, 2-14=-999/0, 7-10=0/593, 2-13=0/593, 6-10=-547/0, 3-13=-547/0, 6-11=-4/408, 3-12=-4/408

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Q-4-0					12-2-0						
0-4-0					11-10-0						1
Plate Offsets (2	(X,Y)	[1:0-3-0,Edge], [5:0-1-8,E	dge], [12:0-1-8,Edge]								
LOADING (ps	sf)	SPACING-	2-0-0 C	SI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 40.	.Ó	Plate Grip DOL	1.00 T(0.25	Vert(LL)	-0.07	11-12	>999	480	MT20	244/190
TCDL 10.	.0	Lumber DOL	1.00 BC	0.43	Vert(CT)	-0.09	11-12	>999	360		
BCLL 0.	.0	Rep Stress Incr	YES W	B 0.45	Horz(CT)	0.01	10	n/a	n/a		
BCDL 5.	.0	Code IRC2015/TP	PI2014 M	atrix-S						Weight: 64 lb	FT = 20%F, 11%E
LUMBER-					BRACING-						
TOP CHORD	2x4 SP	No.1(flat)			TOP CHOR	RD.	Structu	ral wood	sheathing dire	ctly applied or 6-0-0	oc purlins.
BOT CHORD	2x4 SP	No.1(flat)					except	end verti	cals.		
WEBS	WEBS 2x4 SP No.3(flat)				BOT CHOR	RD	Rigid ce	eiling dire	ectly applied or	10-0-0 oc bracing.	
							-	-		-	
REACTIONS.	(size	e) 10=0-3-8, 1=0-3-8									
	Max Gr	rav 10=634(LC 1), 1=641	(LC 1)								

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-768/0, 2-4=-768/0, 4-5=-1577/0, 5-6=-1768/0, 6-7=-1768/0, 7-8=-1217/0

BOT CHORD 14-15=0/1287, 13-14=0/1768, 12-13=0/1768, 11-12=0/1620, 10-11=0/779

1-15=0/943, 4-15=-662/0, 4-14=0/403, 5-14=-395/0, 8-10=-974/0, 8-11=0/570, 7-11=-524/0, 7-12=-16/378

NOTES-

WEBS

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

5) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	/-8-0												
1			7-8-0			I							
Plate Offsets (X,Y)	[1:Edge,0-1-8], [3:0-3-0,Edge], [4:0-3-0,	0-0-0], [8:0-1-8,Edge], [9:0	0-1-8,Edge], [11:0-1-8,0-	1-8], [12:0-1-8,0-1-8]									
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.51 BC 0.83 WB 0.87 Matrix-S	DEFL. in Vert(LL) -0.07 Vert(CT) -0.10 Horz(CT) 0.03	(loc) l/defl L/d 8-9 >999 480 8-9 >926 360 7 n/a n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%F, 11%E							
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,							
REACTIONS. (siz	e) 10=0-3-8, 7=0-3-8 Srav 10=1333(LC 1), 7=1508(LC 1)												

- - -

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-3915/0, 3-4=-3915/0, 4-5=-3915/0

BOT CHORD 9-10=0/2359, 8-9=0/3915, 7-8=0/2563

WEBS 2-10=-2664/0, 2-9=0/1826, 3-9=-861/0, 5-7=-2889/0, 5-8=0/1565, 4-8=-737/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 7-10=-10, 1-6=-100

Concentrated Loads (lb) Vert: 5=-679 13=-679 14=-679

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

lob		Truce		Truce Ty	(00			Otv	DIV		Lot 12	Blackborn Mr	nor				
505		11035		ITUSS TY	pe			Quy	riy		LUI 42	Diackberry wa				F144	15839
J0320-1194		FW01		Floor Su	pported Gable			1		1						2.11	10000
											Job Re	ference (option	nal)				
Comtech, Inc,	Fayettev	/ille, NC - 283	314,						8.330 s I	Mar 2	3 2020	MiTek Industr	ies, Inc. N	/Ion May 18 1	0:35:30 20	020 Pag	e 1
							ID:iqB	BDW?X6Y	DIBFzGaZ	HSel	HRzF7	P-g6OzahleY	hJB9uN10	C?kHewB0q∖	/TR42k8Ly	/AndgzF	2x
0-1 ₁ 8																0-1	8
																Scale	= 1:35.4
										3x6	⁻ Р =						
1	2	3 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
	0	•	e e	0	9	0	0	0	9			0	0	e	0		~ [-
- 5°																٩	38 0
																 	÷
- * **** *	********									××××						******	1
36	35	34 3	3 32	31	30	29	28	27	26	25	24	23	22	21	20	19	
3×4 —									3							3×4	_
									0							0.4	

				21-3-8							
ļ	21-3-8										
LOADING (pr TCLL 40 TCDL 10 BCLL 0 BCDL 5	osf) 0.0 0.0 0.0 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-R	DEFL. Vert(LL) n Vert(CT) n Horz(CT) 0.0	in (loc) ′a - ′a - /0 19	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 88 lb	GRIP 244/190 FT = 20%F, 11%E		
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP 2x4 SP 2x4 SP 2x4 SP 2x4 SP	No.1(flat) No.1(flat) No.3(flat) No.3(flat)		BRACING- TOP CHORD BOT CHORD	Struct excep Rigid	ural wood t end verti ceiling dire	sheathing dire cals. ectly applied o	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,		

REACTIONS. All bearings 21-3-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 36, 19, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 24, 23, 22, 21, 20

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job		Truss		Tr	uss Type			C	Qty	Ply	Lot 42 BI	ackberry M	anor			E44	115040
J0320-1194		FW02		Fl	oor Supporte	ed Gable		1		1	Job Refer	ence (ontio	nal)			E144	13640
Comtech, Inc,	Fayettev	ille, NC	- 28314,					ID:iqBDW?X	8.3 (6YDIBF:	30 s Mar 2 zGaZHSeH	3 2020 M RzF7sP-9	iTek Indust	ries, Inc. ?R2m2yE	Mon May 18 DmjFWA8j9Mi	10:35:31 2 JpepVzHa	2020 Pag cvL97zFl	je 1 2w
0-1 ₁ 8																0-1	- ⁸
																Scale	= 1:33.1
											3x6 F	P =					
1	2	3	4	5	6	7	8	9	10	1	1 12	13	14	15	16	37 17	
1-2 6			<u>.</u>	0	0	0	0	0	0				0	0	0	•	36 1-2-0
			~~~~~	*****	*****			******		******							1
34	33	32	31	30	29	28	27	26	25	2	4 23	22	21	20	19	18	
3x4 =											3x6 FP	=				3x4	=

L						19-11-0						
	19-11-0											
LOADING (ps TCLL 40. TCDL 10. BCLL 0. BCDL 5.	sf) ).0 ).0 ).0 ).0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.00 1.00 YES 12014	CSI. TC BC WB Matriz	0.07 0.01 0.03 x-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 18	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 83 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E
LUMBER-           TOP CHORD         2x4 SP No.1(flat)           BOT CHORD         2x4 SP No.1(flat)           WEBS         2x4 SP No.3(flat)						BRACING- TOP CHOR BOT CHOR	:D :D	Structur except Rigid ce	ral wood end verti eiling dire	sheathing dir cals. ectly applied o	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,

## OTHERS 2x4 SP No.3(flat)

REACTIONS. All bearings 19-11-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 34, 18, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 22, 21, 20, 19

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

- Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

## LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 18-34=-10, 1-17=-100 Concentrated Loads (lb) Vert: 37=-35

![](_page_12_Picture_16.jpeg)

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Type Oty Ply Lot 42 Blackberry Manor J0320-1194 FW03 Floor Supported Gable 1 1 1 Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.330 s Mar 23 2020 MTek Industries, Inc. Mon May 18 10:35:31 : ID:iqBDW?X6YDIBFzGaZHSeHRzF7sP-9JxLn1JGJ?R2m2yDmjFWA8j9EupcpVzHa 01-8 1 2 3 4 5 6 7 8 9 1 3 12 3x4 =										_
$\frac{1}{3320-1194}$ $\frac{1}{334}$ $\frac{1}{1}$ $\frac{1}$		Truss	Truss Type		Qty	Ply	Lot 42 Blackberry Manor			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									E14415841	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	)-1194	FW03	Floor Supported Gable		1	1				
Contrach, Inc, Fayetteville, NC - 28314, 0 1 2 3 4 5 6 7 8 9 1 4 13 12 3 4 5 6 15 14 13 12							Job Reference (optional)			
$0 \stackrel{1}{\vdash 9}$ $0 \stackrel{1}{\vdash 9}$ $1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8 \qquad 9 \qquad 9$	ntech, Inc, Fayettev	ville, NC - 28314,			8.3	30 s Mar 2	3 2020 MiTek Industries, Ind	c. Mon May 18 10:35:31 2	020 Page 1	
0 + 1 + 3 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 9 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1				ID:iqBDW	?X6YDIBF	zGaZHSeł	HRzF7sP-9JxLn1JGJ?R2m2	2yDmjFWA8j9EupcpVzHac	vL97zFl2w	
$ \frac{1}{24} = \frac{2}{34} + \frac{5}{6} + \frac{6}{7} + \frac{8}{8} + \frac{9}{9} + \frac{9}{14} + \frac{9}{14} + \frac{1}{14} + \frac{9}{14} + \frac{1}{14} + \frac{1}{13} + \frac{1}{12} + \frac{1}{14} + \frac$	0-1-8								0-1-8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Η								۳H۵	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									Casla 4:00	~
$1 2 3 4 5 6 7 8 9$ $1 \frac{1}{2} \frac{1}{2$									Scale = $1:20$ .	.0
$1 2 3 4 5 6 7 8 9$ $1 \frac{1}{2} \frac{1}{2$										
1 2 3 4 5 6 7 8 9 $1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$										
1 2 3 4 5 6 7 8 9 $1 4 5 6 7 8 9$ $1 4 5 6 7 8 9$ $1 4 5 6 7 8 9$ $1 4 5 6 7 8 9$ $1 4 5 6 7 8 9$ $1 4 5 6 7 8 9$ $1 4 5 6 7 8 9$ $1 4 5 6 7 8 9$ $1 4 5 6 7 8 9$ $1 4 5 6 7 8 9$ $1 4 5 6 7 8 9$ $1 4 5 6 7 8 9$ $1 4 5 6 7 8 9$										
1 2 3 4 5 6 7 8 9 $1 4 5 6 7 8 9$ $1 4 5 6 7 8 9$ $1 4 5 6 7 8 9$ $1 4 5 6 7 8 9$ $1 4 5 6 7 8 9$ $1 4 5 6 7 8 9$ $1 4 5 6 7 8 9$										
$\begin{array}{c} 1 \\ 21 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	1 2	3	4	5 6		7	8	9	10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-			,	3			т
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•		•	•		•	•	•		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Π	Π	П П				F	22	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-	9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										1
$\begin{vmatrix} \bullet & & & \bullet & \bullet & \bullet & & \bullet & \bullet & & \bullet $										
20   19   18   17   16   15   14   13   12   3x4 =	•   · · · · · · · · · · · · · · · · ·		•	-   <del>0</del>   <del>0</del>		•	•	•		
20   19   18   17   16   15   14   13   12   3x4 =										-
3x4 =	20 19	18	17	16 15	^^^^^	14	13	12	11	
3x4 =	20 10	10		10 10			10			
	3x4 =								3x4 =	

	<u>12-2-0</u> 12-2-0										
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	f) 0 0 0 0	SPACING-         2-0-0           Plate Grip DOL         1.00           Lumber DOL         1.00           Rep Stress Incr         YES           Code         IRC2015/TPI2014	0 <b>CSI.</b> 1 TC 0.08 1 BC 0.01 2 WB 0.03 1 Matrix-R	DEFL. Vert(LL) r Vert(CT) r Horz(CT) 0.	in (lo /a /a 00	loc) l/defl - n/a - n/a 11 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 52 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E		
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP 2x4 SP 2x4 SP 2x4 SP 2x4 SP	No.1(flat) No.1(flat) No.3(flat) No.3(flat)		BRACING- TOP CHORD BOT CHORD	Str exc Riç	ructural wood cept end ver gid ceiling di	d sheathing dii ticals. rectly applied o	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,		

REACTIONS. All bearings 12-2-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 20, 11, 19, 18, 17, 16, 15, 14, 13, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

![](_page_13_Picture_12.jpeg)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

![](_page_13_Picture_14.jpeg)

![](_page_14_Figure_0.jpeg)

<u>11-3-0</u> 11-3-0										
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	<b>CSI.</b> TC 0.06 BC 0.01 WB 0.03 Matrix-R	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	i (loc) l/defl L/d - n/a 999 - n/a 999 11 n/a n/a	<b>PLATES</b> MT20 Weight: 63 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E				
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S OTHERS 2x4 S	P No.1(flat) P No.1(flat) P No.3(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	ectly applied or 6-0-0 or 10-0-0 oc bracing.	) oc purlins,				

## REACTIONS. All bearings 11-3-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 20, 11, 19, 18, 17, 16, 15, 14, 13, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

#### NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

![](_page_14_Picture_12.jpeg)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

![](_page_14_Picture_14.jpeg)

![](_page_15_Figure_0.jpeg)

		1-4-0	2-0-0		4-0-0	J	-4-0			0-0-0	0-1-0	
		1-4-0	1-4-0	1	1-4-0	' 1	-4-0	1		1-4-0	1-5-8	1
Plate Offs	ets (X,Y)	[15:0-1-8,0-1-8]										
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.01	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	8	n/a	n/a		
BCDL	5.0	Code IRC2015/	TPI2014	Matri	x-R						Weight: 36 lb	FT = 20%F, 11%E

#### LUMBER-

BRACING-TOP CHORD 2x4 SP No.1(flat) TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, BOT CHORD 2x4 SP No.1(flat) except end verticals. 2x4 SP No.3(flat) BOT CHORD WEBS Rigid ceiling directly applied or 10-0-0 oc bracing. OTHERS 2x4 SP No.3(flat)

#### REACTIONS. All bearings 8-1-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 14, 8, 13, 12, 11, 10, 9

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

#### NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

![](_page_15_Picture_16.jpeg)

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

![](_page_15_Picture_18.jpeg)

![](_page_16_Figure_0.jpeg)