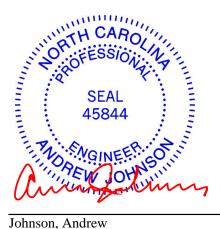
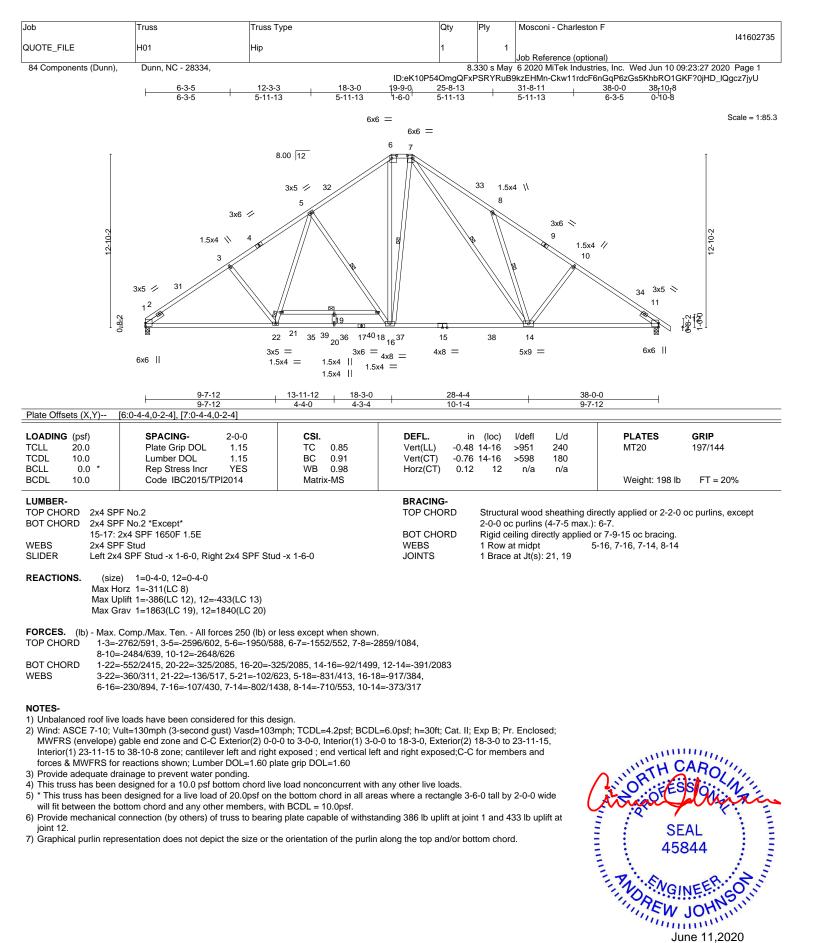


Trenco 818 Soundside Rd Edenton, NC 27932


Re: Quote_File Mosconi - Charleston F

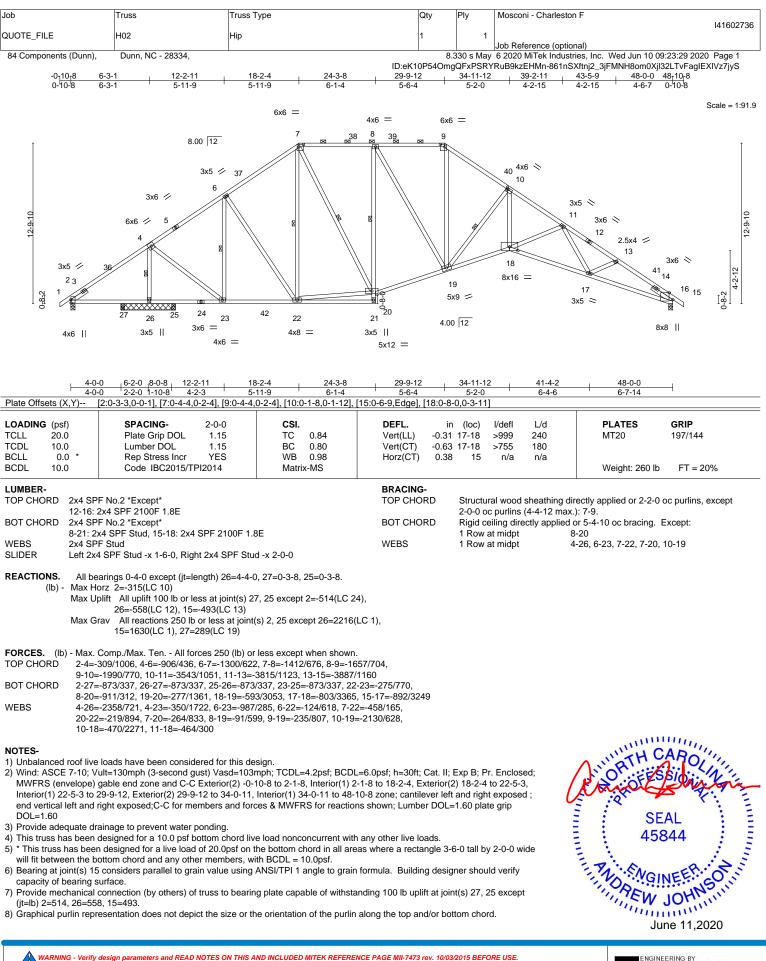
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I41602735 thru I41602791

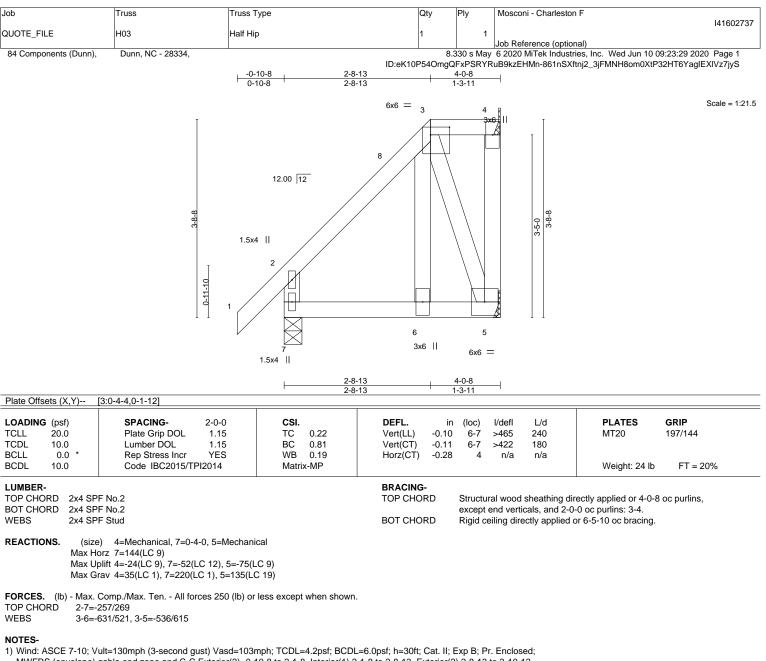

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

June 11,2020


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


A MiTek Affi

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-1473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **NSVITPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 2-8-13, Exterior(2) 2-8-13 to 3-10-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

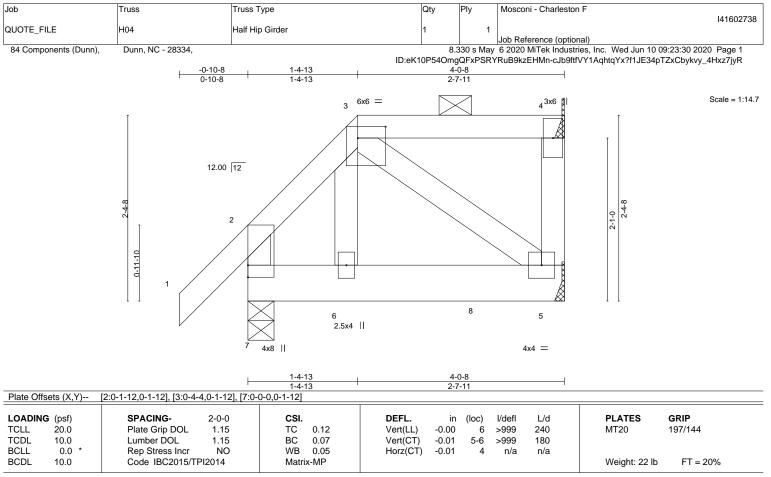
2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 7, 5.


7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

8) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x6 SPF 1650F 1.5E

 WEBS
 2x4 SPF Stud

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-0-8 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 7=0-4-0, 5=Mechanical Max Horz 7=91(LC 9)

Max Holz 7=51(LC 3) Max Uplift 4=-52(LC 8), 7=-70(LC 12), 5=-30(LC 9) Max Grav 4=75(LC 1), 7=234(LC 1), 5=93(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

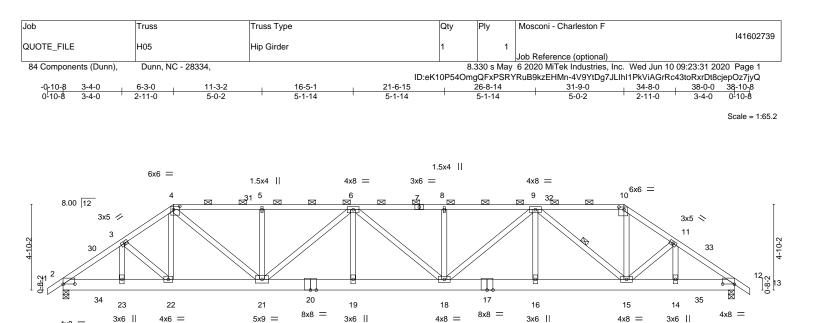
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- Will lit between the bottom chord and any other me
 Defente sinder(s) for twee to twee constants
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 7, 5.

8) Girder carries tie-in span(s): 3-0-0 from 1-0-0 to 3-0-0

- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard


 Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 3-4=-60, 6-7=-20, 6-8=-38(F=-17), 5-8=-20

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

F	3-4-0	6-3-0	11-3-2	16-5-1	21-6-15	26-8-14	31-9-0	34-8-0	38-0-0
Plate Offse	3-4-0	2-11-0	5-0-2 4:0-4-4,0-2-4], [10:0-3-8	5-1-14	5-1-14	5-1-14	5-0-2	2-11-0	3-4-0
	els (A, f)	[2.0-0-0,0-0-2], [4	4.0-4-4,0-2-4], [10.0-3-6	5,0-1-12], [12.0-6-0,0-0	-2]				
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING Plate Grip Lumber D Rep Stres Code IBC	DOL 1.15 OL 1.15	CSI. TC 0.79 BC 0.57 WB 0.88 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) I/de 0.30 18-19 >99 -0.49 18-19 >92 0.08 12 n	9 240	PLATES MT20 Weight: 241 lb	GRIP 197/144 FT = 20%
LUMBER-	RD 2x4 SF				BRACING TOP CHO	RD Structural w	ood sheathing dire	ctly applied or 3-2-4 4-10.	l oc purlins, except
VEBS	2x4 SF	PF Stud			BOT CHO	RD Rigid ceiling	directly applied or	7-3-4 oc bracing.	
REACTION	Max H Max U				WEBS	1 Row at mi	dpt 9-	15	
FORCES. TOP CHOR	RD 2-3=	-3081/1001, 3-4=	n All forces 250 (lb) or -3166/1080, 4-5=-3867	/1348, 5-6=-3867/1348	, 6-8=-4547/1571,				
ВОТ СНОГ	RD 2-23	=-853/2512, 22-2	=-2530/910, 10-11=-31 3=-853/2512, 21-22=-8 5-18=-1255/3899, 15-16	64/2586, 19-21=-1548/	4590,				
WEBS	3-23: 6-19:		-115/433, 4-21=-646/17 299/209, 9-18=-332/883 14=-251/111						
 Wind: A MWFRS Interior(DOL=1. Provide This trus * This trus	SCE 7-10; \ S (envelope) 1) 10-5-15 tr tical left and 60 adequate d ss has been uss has been tuss has been etween the b mechanical 12=639. carries tie-in cal purlin rep OAD CASE(SE(S) Stan	/ult=130mph (3-s gable end zone : o 31-9-0, Exterior right exposed;C- rainage to prever designed for a 10 in designed for a 10 in designed for a 10 obttom chord and connection (by o span(s): 4-0-0 fro resentation does (S) section, loads dard	n considered for this de econd gust) Vasd=103 and C-C Exterior(2) -0- (2) 31-9-0 to 35-11-15, C for members and for the water ponding. 0.0 psf bottom chord live live load of 20.0psf on the any other members. thers) of truss to bearin om 2-0-0 to 36-0-0 not depict the size or the applied to the face of the princrease=1.15, Plate	mph; TCDL=4.2psf; BC 10-8 to 2-1-8, Interior(1 Interior(1) 35-11-15 to ces & MWFRS for reac e load nonconcurrent v he bottom chord in all a ng plate capable of with the orientation of the pur he truss are noted as fr) 2-1-8 to 6-3-0, Ex 38-10-8 zone; canti tions shown; Lumbe vith any other live lo areas where a recta standing 100 lb upli rlin along the top an	terior(2) 6-3-0 to 10-5 ilever left and right ex er DOL=1.60 plate gr vads. ingle 3-6-0 tall by 2-0 ift at joint(s) except (ji	i-15, posed ; p	45 NORFIN	EAL BA4
Continued of	on page 2								une 11,2020
			and READ NOTES ON THIS A				ISE.	ENGI	EERING BY

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 2=639, 12=639.
- 7) Girder carries tie-in span(s): 4-0-0 from 2-0-0 to 36-0-0
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

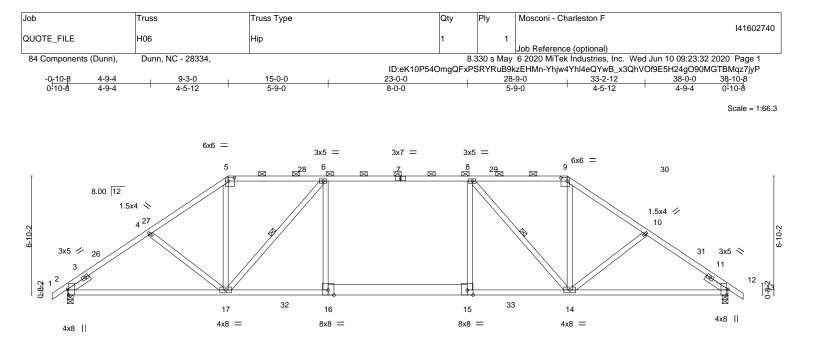
4x8 =

Continued on page 2

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. WARNING - Verify design parameters and KEAD NOTES ON THIS AND INCLUDED MITER KETERENCE PAGE MIT-14's rev. 10/04/2013 BETORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Mosconi - Charleston F
					141602739
QUOTE_FILE	H05	Hip Girder	1	1	
					Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8.3	330 s May	6 2020 MiTek Industries, Inc. Wed Jun 10 09:23:31 2020 Page 2

8.330 s May 6 2020 Millek Industries, Inc. Wed Jun 10 09:23:31 2020 Page 2 ID:eK10P54OmgQFxPSRYRuB9kzEHMn-4V9YtDg7JLlh1PkViAGrRc43toRxrDt8cjepOz7jyQ


LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-4=-60, 4-10=-60, 10-13=-60, 24-34=-20, 34-35=-53(F=-33), 27-35=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	9-3-0	15-0-0	19-0-0	23-0-0		28-9-0		38-0-0	
Plate Offsets (X,)	9-3-0 Y) [2:0-3-15,Edge], [5:0-4-4,0-	5-9-0 2-41 [0:0-4-4 0-2-4] [11	4-0-0	4-0-0		5-9-0		9-3-0	
	1) [2.0-5-15,Euge], [5.0-4-4,0-	2-4], [3.0-4-4,0-2-4], [12	2.0-3-13,Eugej						
LOADING (psf)	SPACING-	2-0-0 CSI	.	DEFL.	in	(loc) l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15 TC	0.83	Vert(LL)	0.31	16-17 >999	240	MT20	197/144
TCDL 10.0	Lumber DOL	1.15 BC	0.86	Vert(CT)	-0.42	16-17 >999	180		
BCLL 0.0	 * Rep Stress Incr 	YES WB	0.46	Horz(CT)	0.12	12 n/a	n/a		
BCDL 10.0	Code IBC2015/TPI2	014 Mat	rix-MS					Weight: 172 lb	FT = 20%
								1	
UMBER-				BRACING-	-	0		dias athe analised an O 44 C	
	x4 SPF No.2			TOP CHOR	D		sneathing	directly applied or 2-11-8	oc puriins,
	x4 SPF No.2 *Except* 5-16: 2x8 SP No.1					except 2-0-0 oc purlins	(2.7.11) m	x \; E 0	
	x4 SPF Stud			BOT CHOR	п			d or 7-1-12 oc bracing.	
	eft 2x4 SPF Stud -x 1-6-0, Right 2	2x4 SPF Stud -x 1-6-0		WEBS	U	1 Row at midpt		6-17. 8-14	
				WEbb		i itow at iniapt		0 11,0 11	
REACTIONS.	(size) 2=0-4-0, 12=0-4-0								
N	Max Horz 2=-168(LC 10)								
N	Max Uplift 2=-395(LC 12), 12=-39	5(LC 13)							
Ν	Max Grav 2=1602(LC 19), 12=160	02(LC 20)							
	Max. Comp./Max. Ten All force								
OP CHORD	2-4=-2263/750, 4-5=-2114/713, 5		22/823, 8-9=-169	4/647,					
OTOUODD	9-10=-2114/713, 10-12=-2263/75				•				
	2-17=-581/1904, 16-17=-627/235				3				
VEBS	4-17=-296/245, 5-17=-222/917, 6	,	1026/431, 9-14=-	222/917,					
	10-14=-296/245, 6-16=0/389, 8-1	5=0/389							

NOTES-

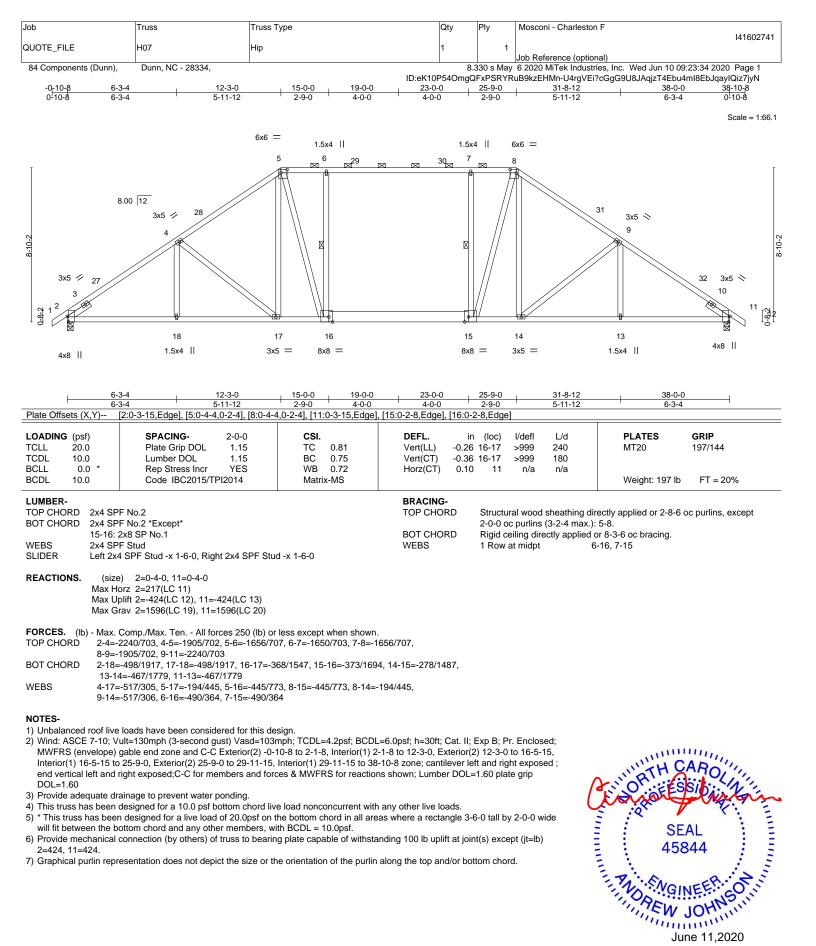
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 9-3-0, Exterior(2) 9-3-0 to 13-5-15, Interior(1) 13-5-15 to 28-9-0, Exterior(2) 28-9-0 to 32-11-15, Interior(1) 32-11-15 to 38-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

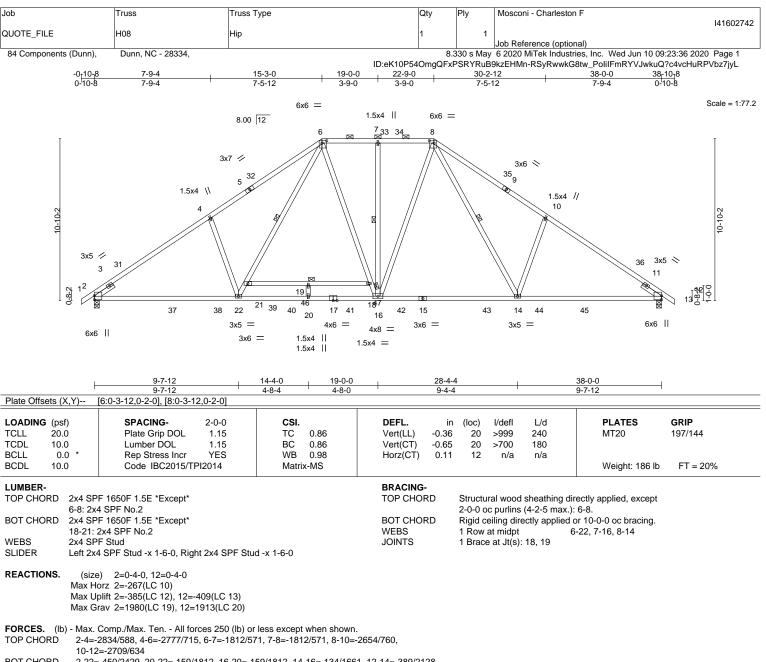
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=395, 12=395.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek

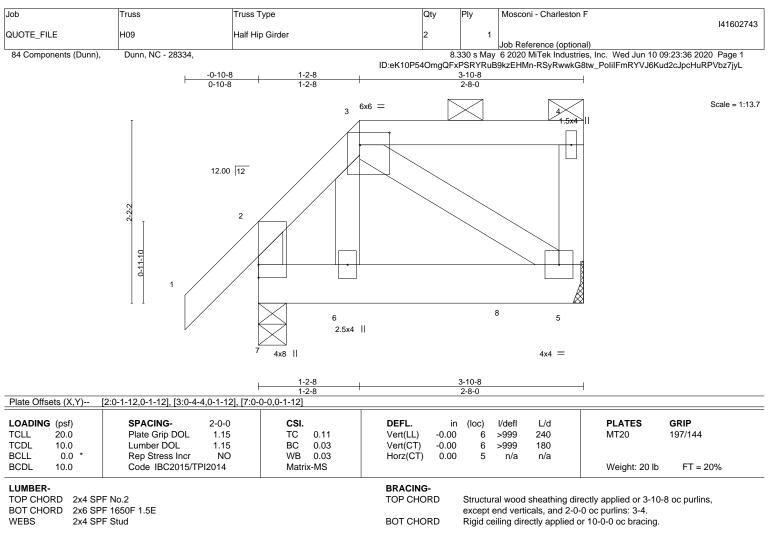
818 Soundside Road Edenton, NC 27932

 BOT CHORD
 2-22=-450/2429, 20-22=-159/1812, 16-20=-159/1812, 14-16=-134/1661, 12-14=-389/2128

 WEBS
 4-22=-554/458, 21-22=-352/958, 6-21=-316/1078, 6-18=-137/438, 16-18=-180/314, 8-16=-107/520, 8-14=-376/916, 10-14=-559/456

NOTES-

1) Unbalanced roof live loads have been considered for this design.


2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8. Interior(1) 2-1-8 to 15-3-0, Exterior(2) 15-3-0 to 19-5-15, Interior(1) 19-5-15 to 22-9-0, Exterior(2) 22-9-0 to 26-11-15, Interior(1) 26-11-15 to 38-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=385, 12=409.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (size) 7=0-4-0, 5=Mechanical

Max Horz 7=84(LC 9)

Max Uplift 7=-70(LC 12), 5=-78(LC 9) Max Grav 7=229(LC 1), 5=152(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

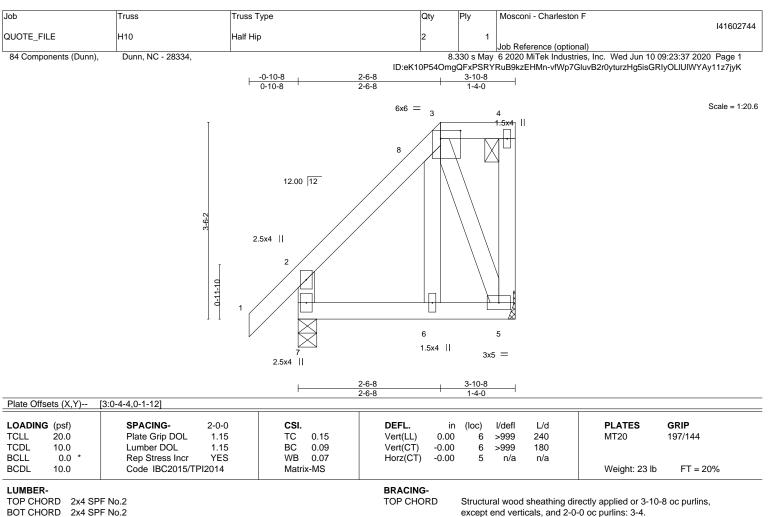
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5.

8) Girder carries tie-in span(s): 3-0-0 from 1-0-0 to 3-0-0

- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 3-4=-60, 6-7=-20, 6-8=-38(F=-17), 5-8=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 SPF No.2 BOT CHORD WEBS 2x4 SPF Stud

REACTIONS. (size) 7=0-4-0, 5=Mechanical

Max Horz 7=137(LC 11) Max Uplift 7=-52(LC 12), 5=-94(LC 9)

Max Grav 7=213(LC 1), 5=147(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

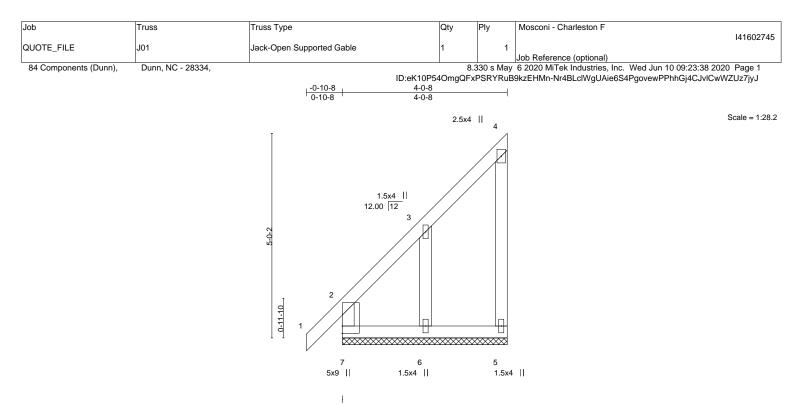
1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 2-6-8, Exterior(2) 2-6-8 to 3-8-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR CEPTERNCE PAGE MIT-1473 TeV. 100/32010 SECORE 052. Design valid for use only with MITER (be connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

OADING (psf) CLL 20.0 CDL 10.0 SCLL 0.0 SCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2015/TPI2014	CSI. TC 0.31 BC 0.14 WB 0.09 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 0.00	(loc) 2 2 5	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20 Weight: 21 lb	GRIP 197/144
LUMBER-	BRACING- TOP CHOR		Structu	ral wood	sheathing di	rectly applied or 4-0-8			

TOP CHORD	2x4 SPF No.2	TOP CHORD	Structural wood sheathing directly applied or 4-0-8 oc purlins,
BOT CHORD	2x4 SPF No.2		except end verticals.
WEBS	2x4 SPF Stud	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
OTHERS	2x4 SPF Stud		

REACTIONS. (size) 7=4-0-8, 5=4-0-8, 6=4-0-8 Max Horz 7=186(LC 9) Max Uplift 7=-57(LC 8), 5=-51(LC 11), 6=-245(LC 12)

Max Grav 7=199(LC 20), 5=72(LC 19), 6=268(LC 19)

10 0 1 101 17 0 0 0 0 1 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-312/320

WEBS 3-6=-320/298

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-0-8, Exterior(2) 2-0-8 to 3-10-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

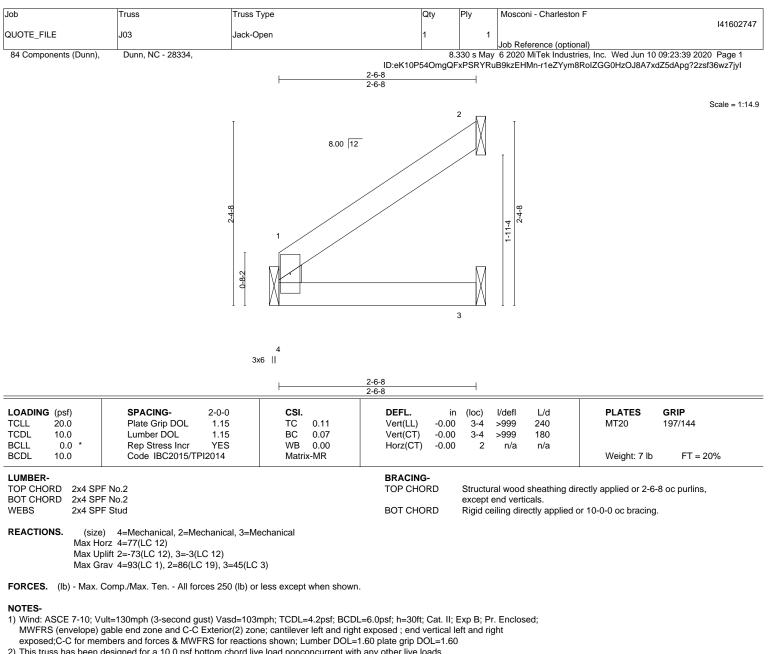
7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5 except (jt=lb) 6=245.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. ENGINEERING BY AMITEK Affiliate B18 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty		Ply	Mosconi - Charleston	F	144000740
QUOTE_FILE	J02	MONO TRUSS	11		1			l41602746
84 Components (Dunn),	Dunn, NC - 28334,	-0-10-8	ID:eK10P54Omg0 4-0-8 4-0-8			Job Reference (option 6 2020 MiTek Industri <zehmn-nr4blclwgu <="" td=""><td>es, Inc. Wed Jun 10 (</td><td></td></zehmn-nr4blclwgu>	es, Inc. Wed Jun 10 (
		0-10-0		.5x4	 3			Scale = 1:28.2
		12.00 12 12.00 12 12.00 12 3x6 # 2 4 5 1.5x4	7	4				
			4-0-8 4-0-8					
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0 Plate Grip DOL 1. Lumber DOL 1.	15 TC 0.41 15 BC 0.14	Vert(CT) -(in 0.01 0.02	4-5 4-5	l/defl L/d >999 240 >999 180	PLATES MT20	GRIP 197/144
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YI Code IBC2015/TPI201		Horz(CT) -(0.00	4	n/a n/a	Weight: 22 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SPF BOT CHORD 2x4 SPF WEBS 2x4 SPF	No.2 Stud		BRACING- TOP CHORD BOT CHORD		except e	I wood sheathing dira nd verticals. ing directly applied o		3 oc purlins,
Max Hor Max Upl	5=0-3-8, 4=0-3-8 z 5=186(LC 9) ift 5=-43(LC 8), 4=-127(LC 9) v 5=253(LC 20), 4=208(LC							
FORCES. (lb) - Max. C BOT CHORD 4-5=-32 WEBS 2-4=-25	20/292	50 (lb) or less except when shown.						
NOTES-								

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-10-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

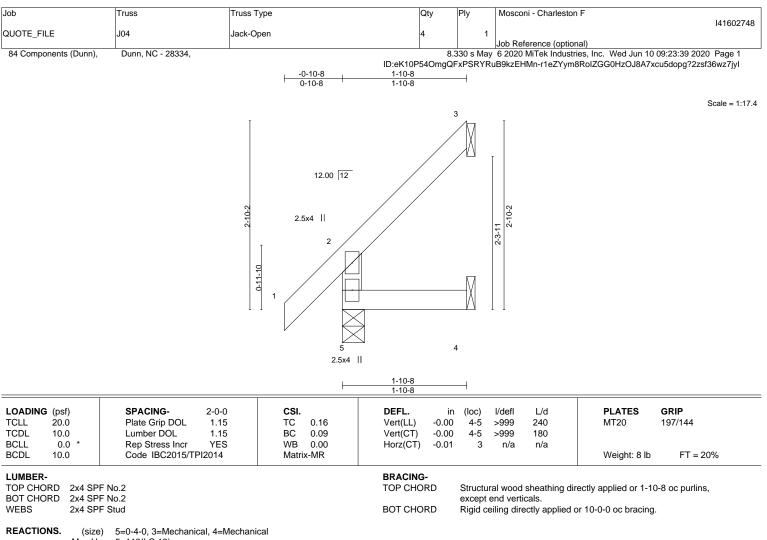

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 4=127.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 3.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Max Horz 5=118(LC 12)

Max Uplift 3=-83(LC 12), 4=-20(LC 12) Max Grav 5=148(LC 1), 3=67(LC 19), 4=34(LC 10)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

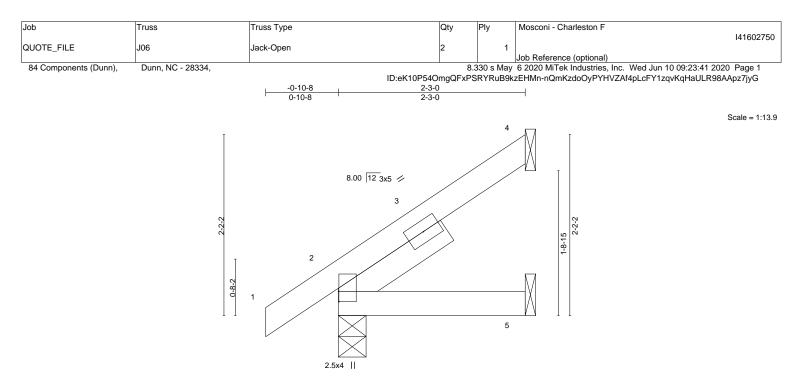
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty Ply	Mosconi - Charleston	
QUOTE_FILE	J05	MONO TRUSS	14 1		I41602749
84 Components (Dunn),	Dunn, NC - 28334,		9.220 c Mc	Job Reference (optiona	al) es, Inc. Wed Jun 10 09:23:40 2020 Page 1
64 Components (Dunn),	Dunn, ng - 20004,	ID:e			QtPbTX5qNjLUk9VzTY6tCCWPceMz7jyH
			1.5x4 3		Scale = 1:27.4
		12.00 12 12.00 12 3x6 // 3x6 // 5	7		
		1.5x4	4x4 =		
		 	3-10-8 3-10-8		
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING-2-0-Plate Grip DOL1.1Lumber DOL1.1	5 TC 0.38 N 5 BC 0.13 N	DEFL. in (loc) /ert(LL) -0.01 4-5 /ert(CT) -0.02 4-5	l/defl L/d >999 240 >999 180	PLATES GRIP MT20 197/144
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YE Code IBC2015/TPI2014		Horz(CT) -0.00 4	n/a n/a	Weight: 22 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPF BOT CHORD 2x4 SPF WEBS 2x4 SPF	No.2	T	except	ral wood sheathing dire end verticals. eiling directly applied or	ctly applied or 3-10-8 oc purlins, [.] 10-0-0 oc bracing.
Max Hor Max Upli	5=0-3-8, 4=0-3-8 z 5=180(LC 9) ft 5=-42(LC 8), 4=-123(LC 9) v 5=246(LC 20), 4=198(LC 1	9)			
FORCES. (lb) - Max. Co BOT CHORD 4-5=-30 WEBS 2-4=-25	9/281	i0 (lb) or less except when shown.			
NOTES- 1) Wind: ASCE 7-10; Vult	=130mph (3-second gust) Va	isd=103mph; TCDL=4.2psf; BCDL=6.0ps	f; h=30ft; Cat. II; Exp B; F	r. Enclosed;	

- MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-8-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 4=123.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	sets (X,Y) [2:0-1-8,0-0-1]										
OADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	-0.00	8	>999	240	MT20	197/144
CDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	-0.00	8	>999	180		
CLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code IBC2015/TI	PI2014	Matri	x-MP						Weight: 9 lb	FT = 20%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2SLIDERLeft 2x4 SPF Stud -x 1-6-0

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-3-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 2=0-4-0, 5=Mechanical

Max Horz 2=92(LC 12) Max Uplift 4=-59(LC 12), 2=-21(LC 12), 5=-7(LC 12)

Max Grav 4=70(LC 19), 2=150(LC 1), 5=38(LC 3)

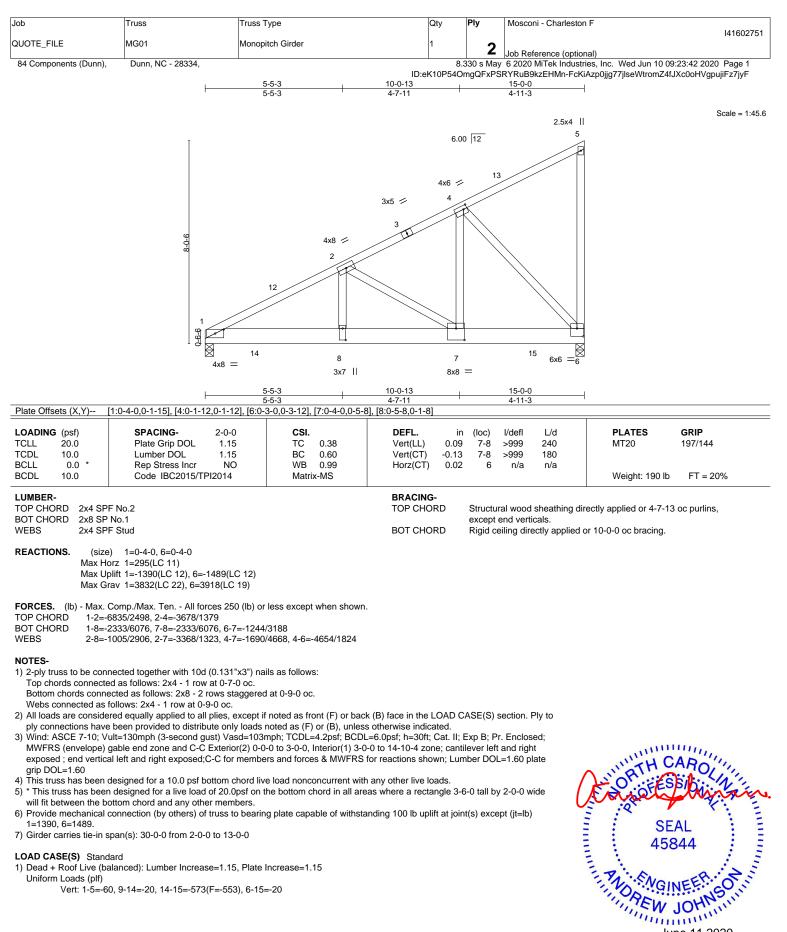
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right

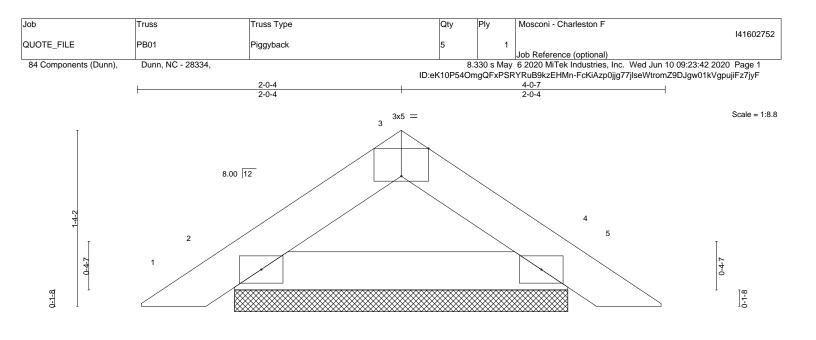
exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2, 5.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



June 11,2020

ENGINEERING BY REENCO A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2.5x4 =

2.5x4 =

Structural wood sheathing directly applied or 4-0-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

4-0-7 4-0-7 Plate Offsets (X,Y)--[3:0-2-8,Edge] SPACING-GRIP LOADING (psf) 2-0-0 CSI. DEFL. in (loc) l/defl L/d PLATES TCLL 20.0 Plate Grip DOL 1.15 тс 0.02 Vert(LL) 0.00 120 MT20 197/144 n/r TCDL 10.0 Lumber DOL 1.15 BC 0.06 Vert(CT) 0.00 4 n/r 90 BCLL 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 4 n/a n/a Code IBC2015/TPI2014 BCDL Matrix-P Weight: 8 lb FT = 20% 10.0 BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

REACTIONS. (size) 2=2-6-9, 4=2-6-9 Max Horz 2=-29(LC 10) Max Uplift 2=-42(LC 12), 4=-42(LC 13) Max Grav 2=132(LC 19), 4=132(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

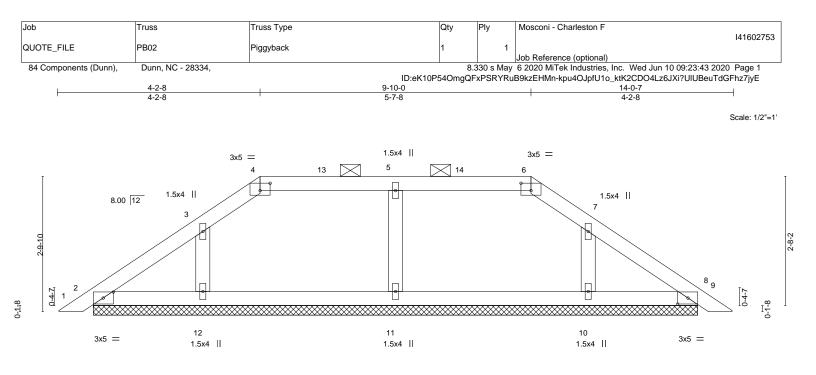
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPERVICE PAGE MIT-14/3 refer to 1000 SEC. Design valid for use only with MITER design connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

OADING	i (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL	20.0	Plate Grip DOL	1.15	TC	0.12	Vert(LL)	0.00	8	n/r	120	MT20	197/144
CDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	0.00	8	n/r	90		
CLL	0.0 *	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	8	n/a	n/a		
CDL	10.0	Code IBC2015/TI	PI2014	Matrix	<-S						Weight: 38 lb	FT = 20%

BOT CHORD2x4 SPF No.22-0-0 oc purlins (6-0-0 max.): 4-6.OTHERS2x4 SPF StudBOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-6-9.

(lb) - Max Horz 2=-65(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 11 except 12=-104(LC 12), 10=-101(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 8 except 11=295(LC 1), 12=254(LC 19), 10=250(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-3-5 to 3-0-4, Interior(1) 3-0-4 to 4-2-8, Exterior(2) 4-2-8 to 8-5-6, Interior(1) 8-5-6 to 9-10-0, Exterior(2) 9-10-0 to 13-9-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

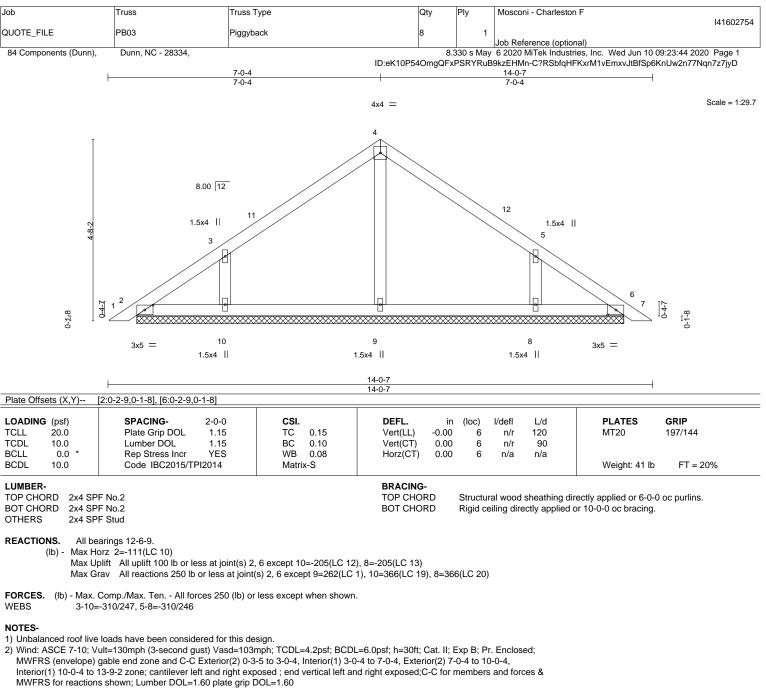
3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 11 except (jt=lb) 12=104, 10=101.


 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

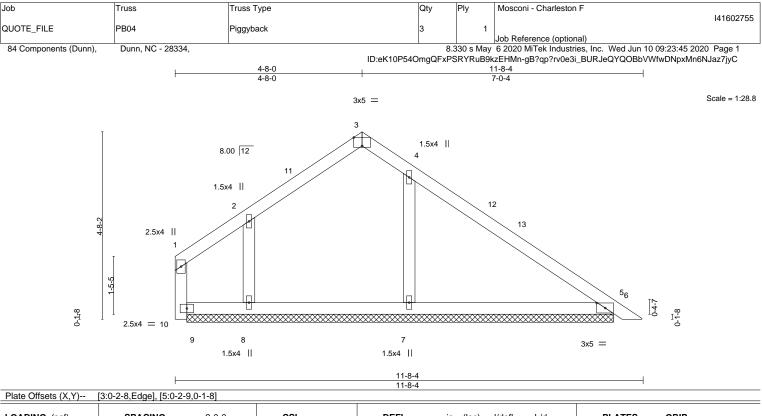
9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss webs and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=205, 8=205.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2015/TPI2014	CSI. TC 0.28 BC 0.17 WB 0.11 Matrix-S	DEFL. ir Vert(LL) 0.01 Vert(CT) 0.02 Horz(CT) 0.00	6 6	l/defl L/d n/r 120 n/r 90 n/a n/a	PLATES GRIP MT20 197/144 Weight: 36 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP	F No.2		BRACING- TOP CHORD	Structura	al wood sheathing dir	ectly applied or 6-0-0 oc purlins,

 BOT CHORD
 2x4 SPF No.2
 except end verticals.

 WEBS
 2x4 SPF Stud
 BOT CHORD
 Rigid ceiling directly applied or 6-0-0 oc bracing.

 OTHERS
 2x4 SPF Stud
 Stud
 Stud

REACTIONS. All bearings 10-7-13.

(lb) - Max Horz 10=-135(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 9, 5 except 7=-223(LC 13), 8=-169(LC 12) Max Grav All reactions 250 lb or less at joint(s) 9, 5 except 7=530(LC 20), 8=294(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 4-7=-399/265

NOTES-

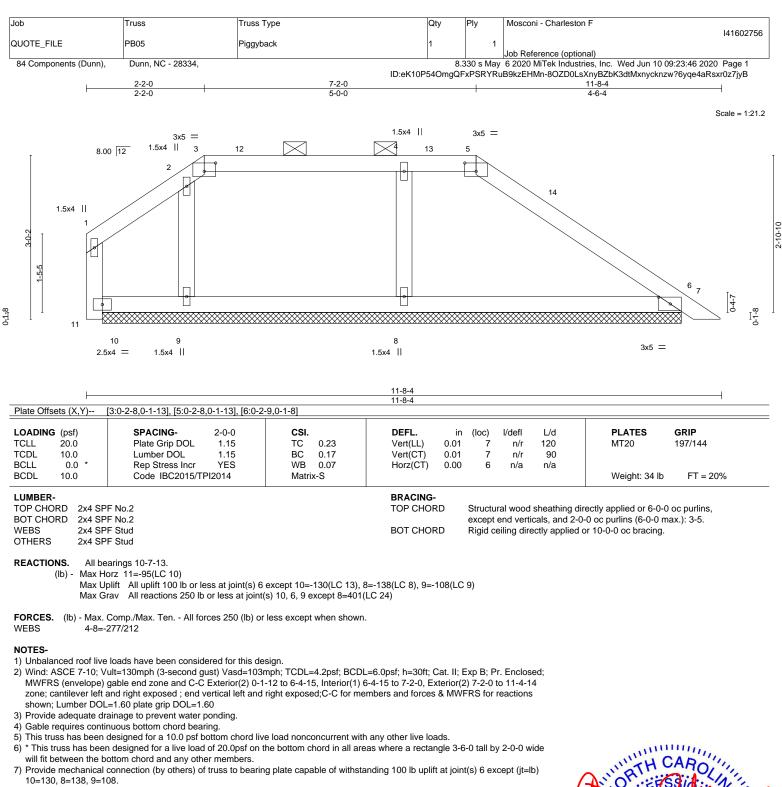
1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 4-8-0, Exterior(2) 4-8-0 to 7-8-0, Interior(1) 7-8-0 to 11-4-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

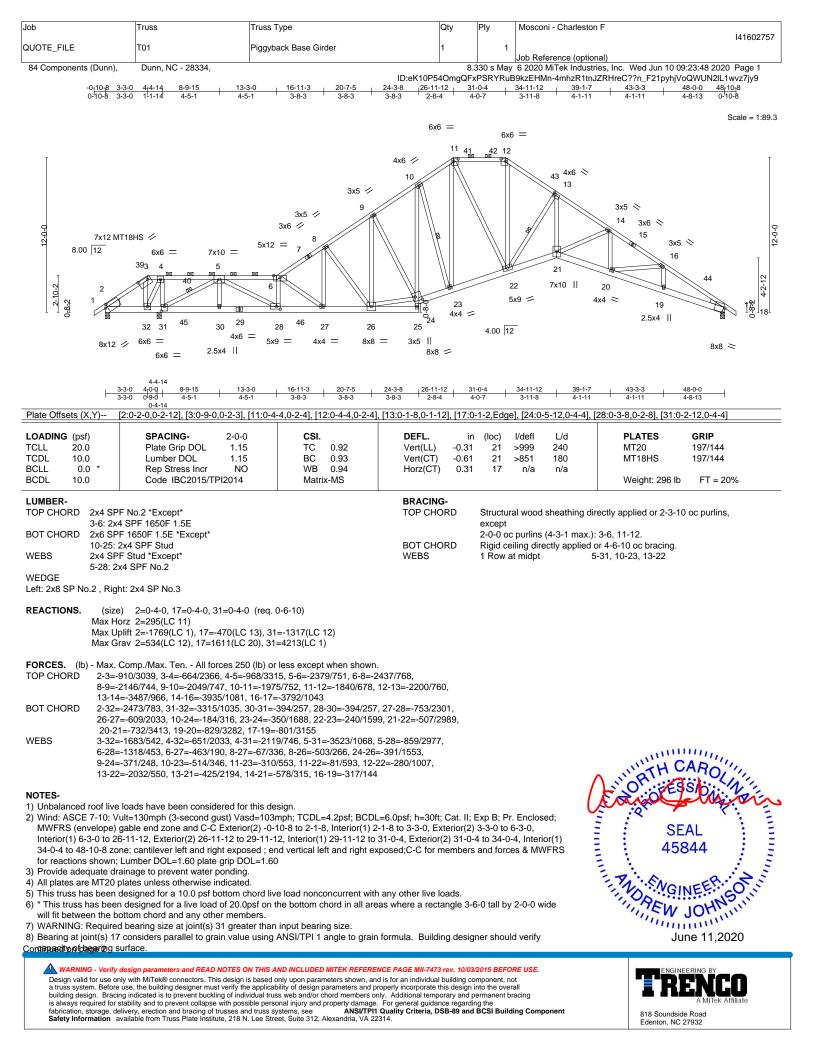
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 5 except (jt=lb) 7=223, 8=169.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Mosconi - Charleston F
					141602757
QUOTE_FILE	T01	Piggyback Base Girder	1	1	
					Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8.3	330 s May	6 2020 MiTek Industries, Inc. Wed Jun 10 09:23:48 2020 Page 2
		ID:eK10P5	40mgQFx	PSRYRuB	9kzEHMn-4mhzR1tnJZRHreC??n_F21pyhjVoQWUN2lL1wvz7jy9

NOTES-

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=1769, 17=470, 31=1317.

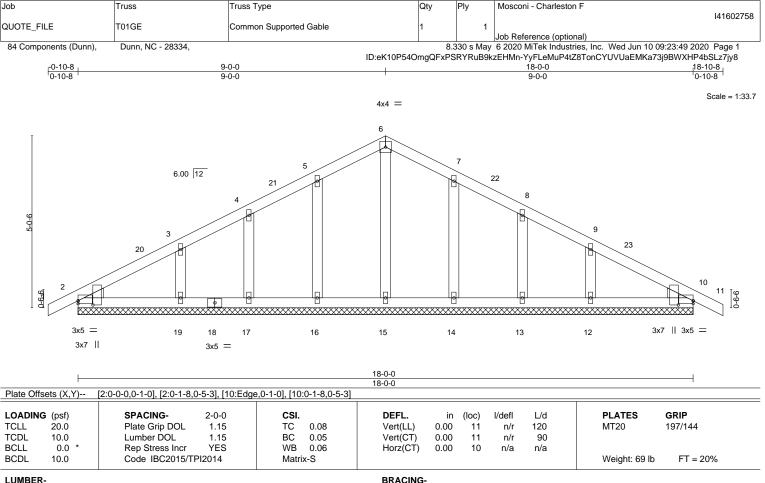
10) Girder carries tie-in span(s): 3-0-0 from 6-0-0 to 14-0-0

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

12) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.

13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3--60, 3-6=-60, 6-11=-60, 11-12=-60, 12-18=-60, 33-45=-20, 45-46=-33(F=-13), 25-46=-20, 21-24=-20, 21-36=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 2x4 SPF No.2 BOT CHORD OTHERS 2x4 SPF Stud WEDGE

Left: 2x4 SPF Stud , Right: 2x4 SPF Stud

REACTIONS. All bearings 18-0-0.

Max Horz 2=82(LC 12) (lb) -Max Uplift All uplift 100 lb or less at joint(s) 2, 16, 17, 14, 13, 10 except 19=-134(LC 12), 12=-132(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 15, 16, 17, 19, 14, 13, 12, 10

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-1-8, Exterior(2) 2-1-8 to 9-0-0, Corner(3) 9-0-0 to 12-0-0, Exterior(2) 12-0-0 to 18-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 1.5x4 MT20 unless otherwise indicated.

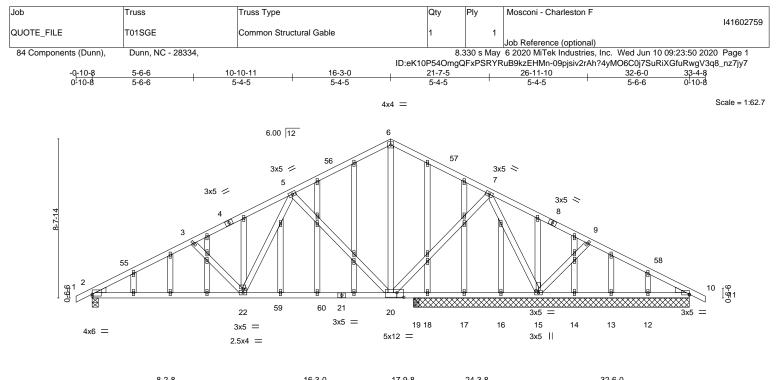
5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 8) will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 16, 17, 14, 13, 10 except (jt=lb) 19=134, 12=132.



818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

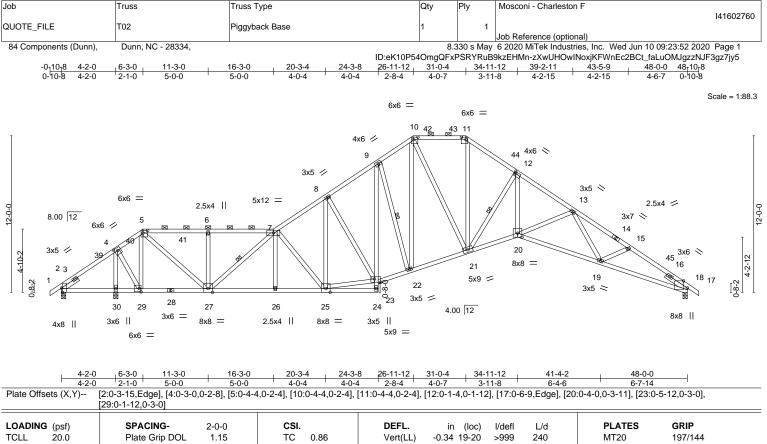
	L	8-2-8	1	16-3-0	17-9-8	24-3-8	1		32-6-0	
		8-2-8	1	8-0-8	1-6-8	6-6-0	1		8-2-8	
Plate Offsets (2	X,Y) [2	<u>2:0-0-0,0-1-4], [10:0-0-0,0-</u>	-0-8], [15:0-1	-8,0-1-8], [20:0-4-8,0-3-	0], [22:0-1-12,0-0-0]				
LOADING (ps	f)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.	0	Plate Grip DOL	1.15	TC 0.38	Vert(LL)	-0.13 20-22	>999 2	240	MT20	197/144
TCDL 10.	-	Lumber DOL	1.15	BC 0.58	Vert(CT)	-0.25 20-22	>857 '	180		
BCLL 0.	0 *	Rep Stress Incr	YES	WB 0.88	Horz(CT)	0.03 15	n/a	n/a		
BCDL 10.	0	Code IBC2015/TPI2	2014	Matrix-MS					Weight: 193 lb	FT = 20%
UMBER-					BRACING	_				
TOP CHORD	2x4 SPF	No 2			TOP CHO		ral wood sh	eathing dir	ectly applied or 4-9-15	oc purlins
BOT CHORD	2x4 SPF				BOT CHO				or 6-0-0 oc bracing.	
WEBS	2x4 SPF				201 0110	te rugia o	oning anoou	iy applied (or o o o oo brading.	
OTHERS	2x4 SPF									
WEDGE	241011	oldd								
	o.3 Right	t: 2x4 SP No.3								
	- , J									
REACTIONS.	All bea	rings 15-0-0 except (jt=lei	ngth) 2=0-4-0), 19=0-3-8.						
(lb) -	Max Ho	rz 2=-143(LC 17)								
	Max Up	lift All uplift 100 lb or less	s at joint(s) 1	2, 10 except 2=-286(LC	12),					
		18=-445(LC 19), 15=-4	46(LC 13), 1	9=-337(LC 12)						
	Max Gra	av All reactions 250 lb or	less at joint	(s) 18, 17, 16, 14, 13, 12	2, 10, 10					
		except 2=894(LC 1), 1	5=1229(LC 1), 19=625(LC 1)						
(/	comp./Max. Ten All force	()							
TOP CHORD		400/450, 3-5=-1199/393,	5-6=-532/269	9, 6-7=-525/271, 7-9=-75	5/442,					
	9-10=-									
BOT CHORD	2-22=-	451/1265, 20-22=-224/86	3							
	7 00	14/400 7 45 1070/044	0 45 040/0-	70 5 00 040/000 5 00	407/470					

WEBS 7-20=-44/433, 7-15=-1070/344, 9-15=-316/278, 5-20=-640/366, 5-22=-107/479, 3-22=-290/264

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 16-3-0, Exterior(2) 16-3-0 to 19-3-0, Interior(1) 19-3-0 to 33-4-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 10, 10 except (jt=lb) 2=286, 18=445, 15=446, 19=337.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BCLL).0).0 *).0	Lumber DOL 1.15 Rep Stress Incr YES Code IBC2015/TPI2014	BC 0.82 WB 1.00 Matrix-MS	Vert(CT) -0.70 Horz(CT) 0.39	0 19-20 >753 180 9 17 n/a n/a	Weight: 267 lb FT = 20%
LUMBER- TOP CHORD		/F No.2 *Except* 4 SPF 1650F 1.5E, 14-18: 2x4 SPF 210	0F 1 8F	BRACING- TOP CHORD	Structural wood sheathing d	irectly applied or 2-0-13 oc purlins,
BOT CHORD 2x4 SPF No.2 *Except* 9-24: 2x4 SPF Stud, 17-20: 2x4 SPF 2100F 1.8E			BOT CHORD	2-0-0 oc purlins (4-2-1 max.): 5-7, 10-11. Rigid ceiling directly applied or 3-0-12 oc bracing.		
WEBS		PF Stud *Except* 27,7-27: 2x4 SPF No.2		WEBS	1 Row at midpt	7-27, 9-22, 12-21
SLIDER	Left 2x4	4 SPF Stud -x 1-6-0, Right 2x4 SPF Stud	d -x 2-0-0			

REACTIONS. (size) 2=0-4-0, 17=0-4-0, 30=0-4-0 (req. 0-5-11) Max Horz 2=-295(LC 10) Max Uplift 2=-1345(LC 1), 17=-482(LC 13), 30=-1114(LC 12) Max Grav 2=384(LC 12), 17=1657(LC 1), 30=3633(LC 1)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD
 2-4=-685/2460, 4-5=-122/777, 5-6=-1133/467, 6-7=-1133/467, 7-8=-2365/823, 8-9=-2155/803, 9-10=-2063/800, 10-11=-1897/713, 11-12=-2266/802, 12-13=-3626/1025, 13-15=-3896/1106, 15-17=-3964/1142

 BOT CHORD
 2-30=-1947/598, 29-30=-1947/598, 27-29=-738/361, 26-27=-734/2338, 25-26=-732/2340, 02-30=-1947/598, 29-30=-1947/598, 27-29=-738/361, 26-27=-734/2338, 25-26=-732/2340, 02-321/252, 22-21/252,

9-23=-211/367, 22-23=-394/1799, 21-22=-274/1688, 20-21=-560/3116, 19-20=-789/3443, 17-19=-878/3314 WEBS 4-30=-3296/1030, 4-29=-624/2398, 5-29=-2109/630, 5-27=-699/2340, 6-27=-353/244,

7-27=-1636/471, 7-25=-677/307, 8-25=-120/283, 23-25=-505/1802, 8-23=-514/305, 9-22=-563/375, 10-22=-342/632, 10-21=-75/570, 11-21=-299/1040, 12-21=-2115/579, 12-20=-466/2314, 13-20=-479/317

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 6-3-0, Exterior(2) 6-3-0 to 9-3-0, Interior(1) 9-3-0 to 26-11-12, Exterior(2) 26-11-12 to 29-11-12, Interior(1) 29-11-12 to 31-0-4, Exterior(2) 31-0-4 to 34-0-4, Interior(1) 34-0-4 to 48-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

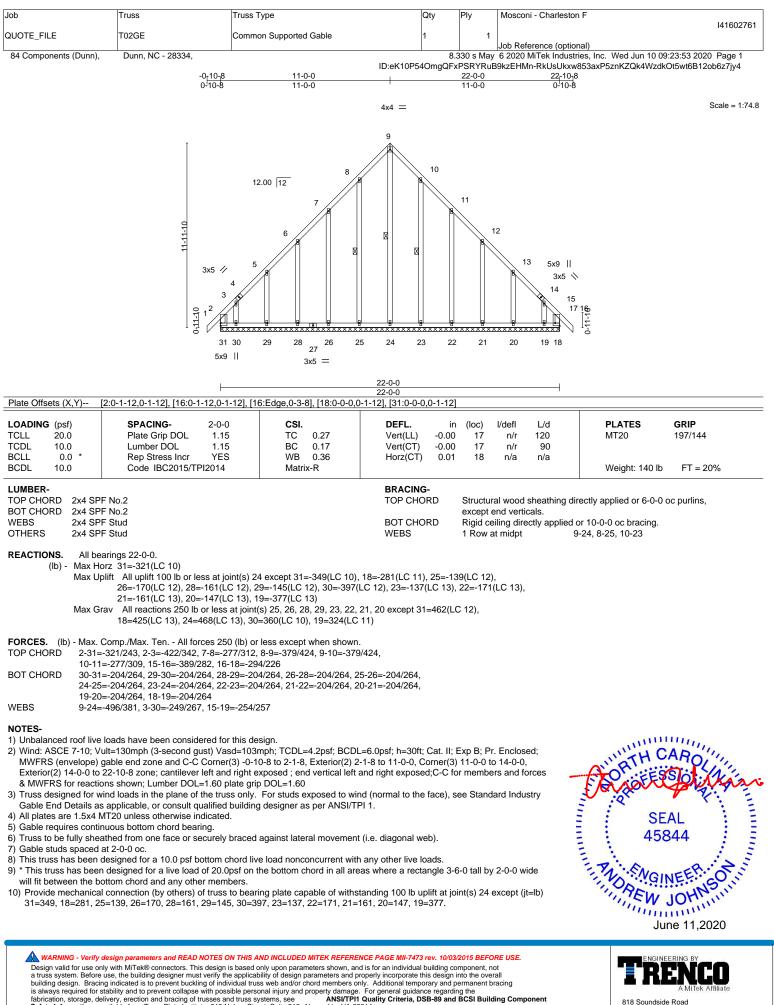
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) WARNING: Required bearing size at joint(s) 30 greater than input bearing size.

7) Bearing at joint(s) 17 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

Continued on page 2

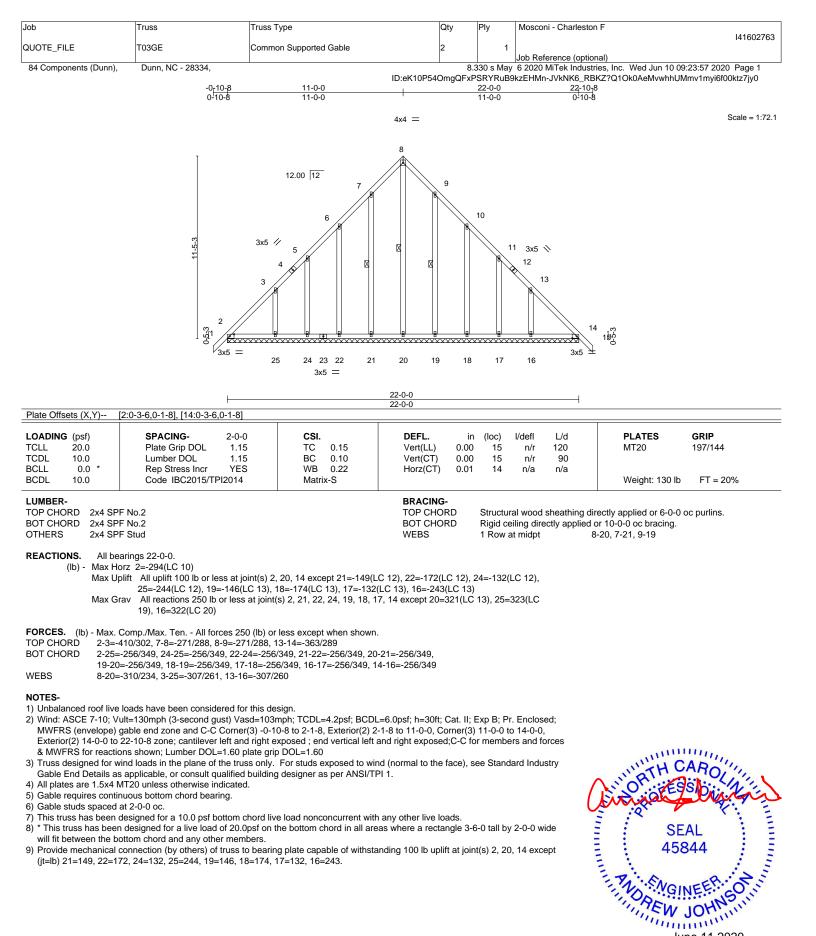
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


Job	Truss	Truss Type	Qty	Ply	Mosconi - Charleston F		
					141602760		
QUOTE_FILE	T02	Piggyback Base	1	1			
					Job Reference (optional)		
84 Components (Dunn),	Dunn, NC - 28334,	8.330 s May 6 2020 MiTek Industries, Inc. Wed Jun 10 09:23:52 2020 Page 2					
	ID:eK10P54OmgQFxPSRYRuB9kzEHMn-zXwUHOwINoxjKFWnEc2BCt_faLuOMJgzzNJF3c			9kzEHMn-zXwUHOwINoxjKFWnEc2BCt_faLuOMJgzzNJF3gz7jy5			

NOTES-

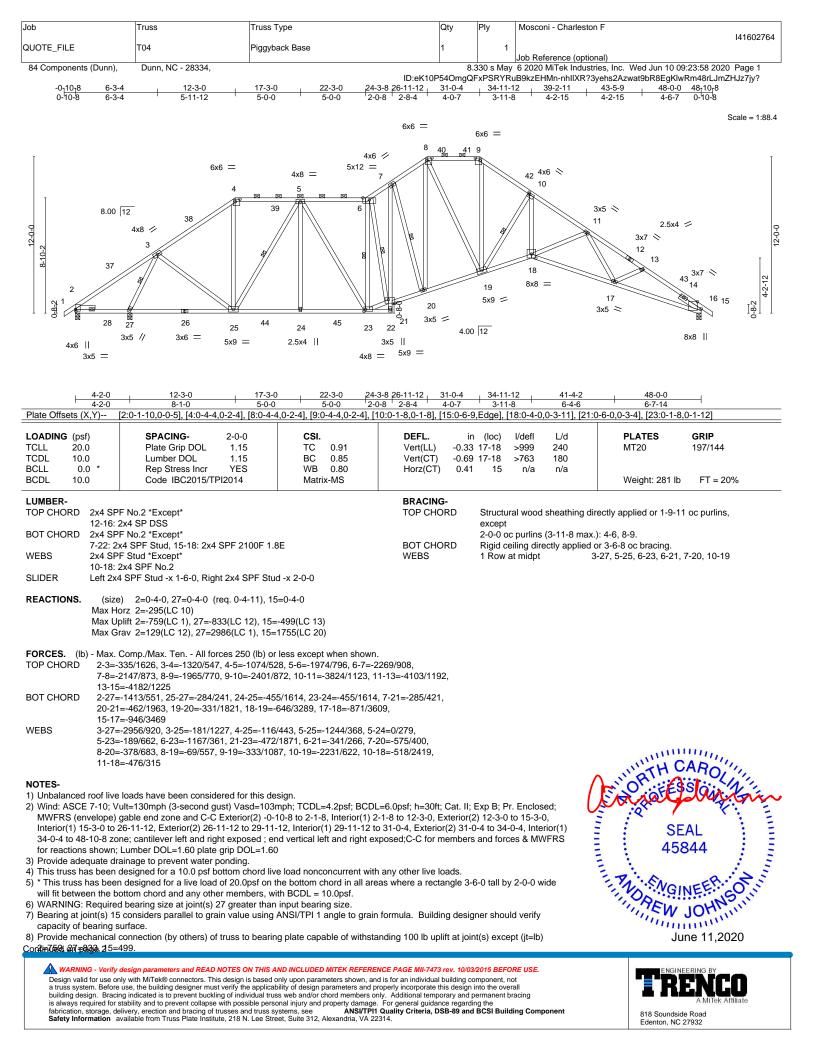
8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=1345, 17=482, 30=1114.
9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
10) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



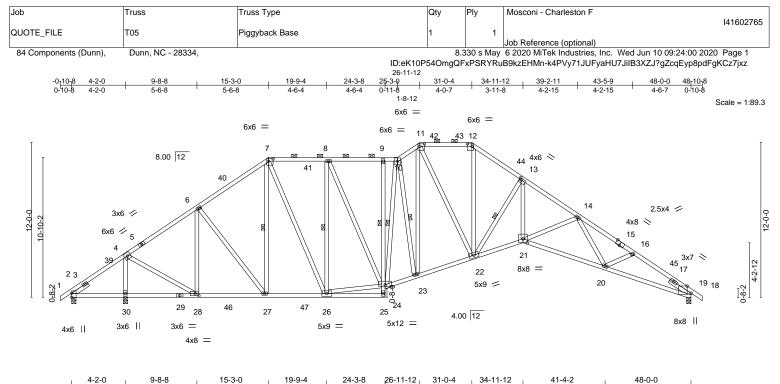
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932



📣 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

June 11,2020


Job	Truss	Truss Type	Qty	Ply	Mosconi - Charleston F
					141602764
QUOTE_FILE	T04	Piggyback Base	1	1	
					Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,	8.330 s May 6 2020 MiTek Industries, Inc. Wed Jun 10 09:23:58 2020 Page 2			
		ID:eK10F	ID:eK10P54OmgQFxPSRYRuB9kzEHMn-nhIIXR?3yehs2Azwat9bR8EgKIwRm48rLJmZHJz7jy?		

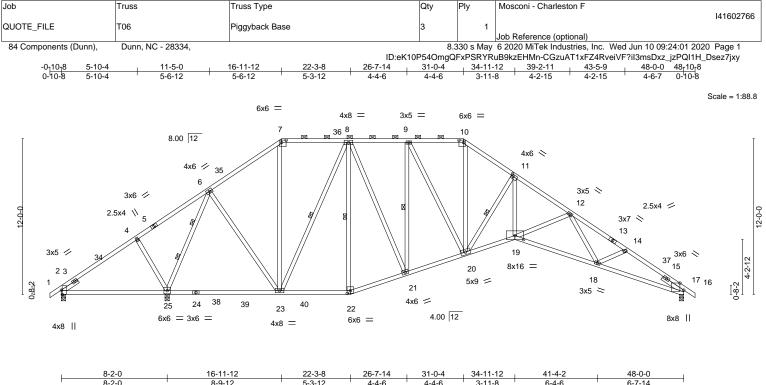
NOTES-

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

4-2-0		4-6-4 4-6-4	26-11-12 31-0-4 2-8-4 4-0-7	34-11-12 41-4		
	[2:0-3-15,Edge], [7:0-4-4,0-2-4], [11:0-					
				,		
_OADING (psf)	SPACING- 2-0-0	CSI.		n (loc) l/defl L/d	PLATES GRIP	
TCLL 20.0	Plate Grip DOL 1.15	TC 0.92	()	3 20-21 >999 240	MT20 197/144	
TCDL 10.0	Lumber DOL 1.15	BC 0.85		9 20-21 >764 180		
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IBC2015/TPI2014	WB 0.92 Matrix-MS	Horz(CT) 0.40) 18 n/a n/a	Weight: 200 lb $ET = 200/$	
BCDL 10.0	Code IBC2015/TFI2014	Wattix-Wio			Weight: 299 lb FT = 20%	
LUMBER-			BRACING-			
FOP CHORD 2x4 SF	PF No.2 *Except*		TOP CHORD	Structural wood sheathin	ng directly applied or 1-9-2 oc purlins, except	
	2x4 SP DSS			2-0-0 oc purlins (4-0-8 m		
SOT CHORD 2x4 SF	•	2-	BOT CHORD		lied or 5-2-2 oc bracing. Except:	
	2x4 SPF Stud, 18-21: 2x4 SPF 2100F 1 PF Stud *Except*	.8E	WEBS	1 Row at midpt 1 Row at midpt	9-24 7-27, 8-26, 10-24, 10-23, 13-22	
	2x4 SPF No.2		WEDS	TROW at midpt	7-27, 8-28, 10-24, 10-23, 13-22	
	4 SPF Stud -x 1-6-0, Right 2x4 SPF St	ud -x 2-0-0				
	e) 2=0-4-0, 30=0-4-0 (req. 0-4-7), 18	8=0-4-0				
	lorz 2=-295(LC 10)					
	Jplift 2=-612(LC 1), 30=-886(LC 12), 18					
Max G	Grav 2=175(LC 12), 30=2830(LC 1), 18	=1753(LC 20)				
FORCES. (Ib) - Max.	Comp./Max. Ten All forces 250 (lb)	or less except when shown.				
	-366/1322, 4-6=-1123/419, 6-7=-1491/		71/757,			
9-10=	=-1774/757, 10-11=-2105/873, 11-12=-	1952/771, 12-13=-2423/873,	,			
13-14	4=-3853/1124, 14-16=-4097/1193, 16-	8=-4175/1226				
	=-1133/381, 28-30=-1133/381, 27-28=-					
	4=-390/1916, 22-23=-318/1842, 21-22=	-647/3314, 20-21=-872/3634	1,			
	0=-947/3472 =-2630/902, 4-28=-524/2102, 6-28=-95	2/228 6 27 126/505 7 27	296/164			
	7-26=-300/831, 8-26=-881/342, 24-26=-301/1311, 8-24=-170/662, 10-24=-649/115, 10-23=-549/399, 11-23=-371/640, 11-22=-69/556, 12-22=-329/1080, 13-22=-2227/622,					
	1=-518/2433, 14-21=-477/315	,,,,,	,		IN CAD	
					in ath ondo	
NOTES-					NO EESSION NO	
	e loads have been considered for this of				Transaction and	
	/ult=130mph (3-second gust) Vasd=10 gable end zone and C-C Exterior(2) -0					
	26-11-12, Exterior(2) 26-11-12 to 29-1				E OFAL	
	one; cantilever left and right exposed ;				E SEAL E	
	; Lumber DOL=1.60 plate grip DOL=1.0		,		= : 45844 ; =	
 Provide adequate di 	rainage to prevent water ponding.				SEAL 45844	
/	T20 unless otherwise indicated.				Entra also	
	designed for a 10.0 psf bottom chord I				A NOWEEN ON	
	en designed for a live load of 20.0psf or		s where a rectangle 3	-6-0 tall by 2-0-0 wide	OD STATISTICS	
	pottom chord and any other members, ad bearing size at joint(s) 30 greater that				EW IOH	
	8 considers parallel to grain value using		ormula. Building desi	aner should verify	"IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
capacity of bearing			Linear Danang door	general constrainty	June 11.2020	
Continued on page 2					SEAL 45844 WGINEERSO	
A						
	/ design parameters and READ NOTES ON THIS				ENGINEERING BY	
a truss system. Before	only with MiTek® connectors. This design is based e use, the building designer must verify the applic	ability of design parameters snown, and is	s for an individual building o perly incorporate this design	i into the overall		
building design. Brac	ing indicated is to prevent buckling of individual to	uss web and/or chord members only	Additional temporary and	permanent bracing		

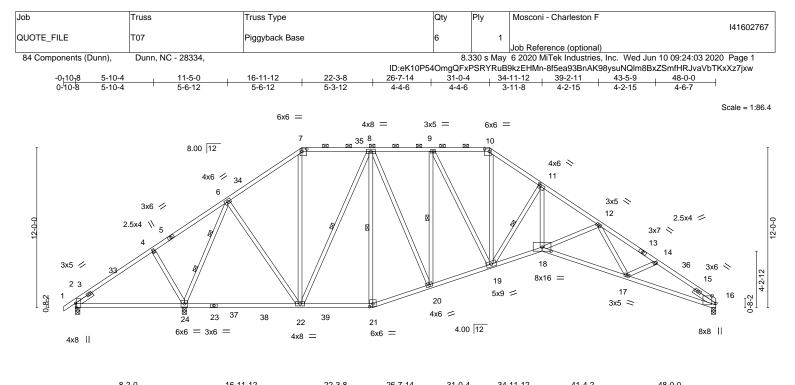
bilding design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANVITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


Job	Truss	Truss Type	Qty	Ply	Mosconi - Charleston F
					141602765
QUOTE_FILE	T05	Piggyback Base	1	1	
					Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8.	330 s May	6 2020 MiTek Industries, Inc. Wed Jun 10 09:24:00 2020 Page 2
		ID:eK10F	254OmgQF	xPSRYRu	B9kzEHMn-k4PVy71JUFyaHU7JilB3XZJ?gZcqEyp8pdFgKCz7jxz

NOTES-

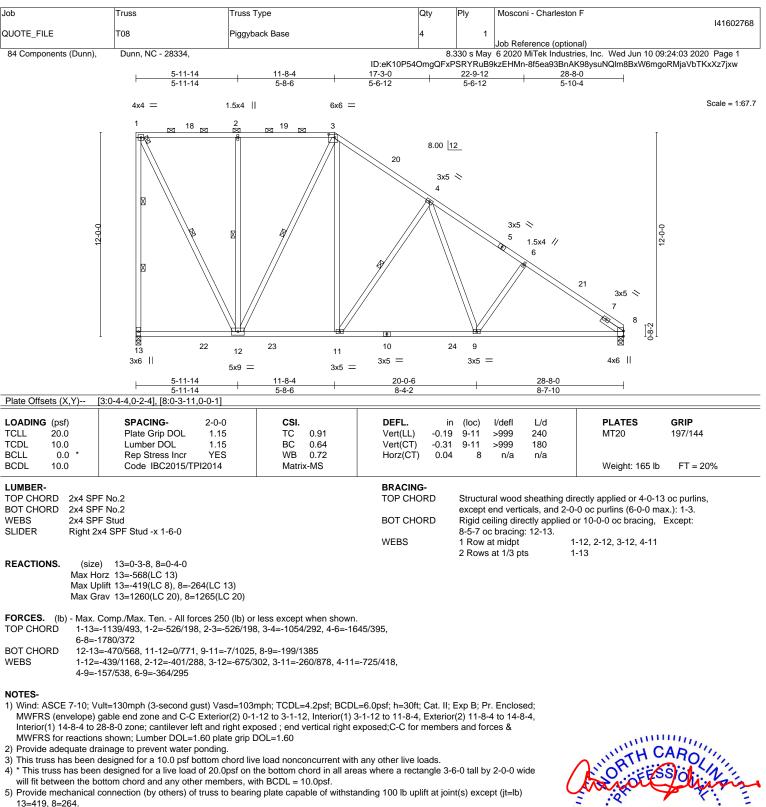
9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=612, 30=886, 18=498.
 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



<u>8-2-0</u> 8-9-12	5-3-12 4-4-6 4-4-6	<u>3-11-8</u> <u>6-4-6</u>	6-7-14
Plate Offsets (X,Y) [2:0-3-15,Edge], [7:0-4-4,0-2-4], [10:0)-4-4,0-2-4], [11:0-1-12,0-1-12], [16:0-6-9,Edge], [1	9:0-8-0,0-3-11], [22:0-3-0,0-2-8]	
LOADING (psf) SPACING- 2-0-0 TCLL 20.0 Plate Grip DOL 1.15 TCDL 10.0 Lumber DOL 1.15 BCLL 0.0 * Rep Stress Incr YES BCDL 10.0 Code IBC2015/TPI2014		in (loc) l/defl L/d 27 18-19 >999 240 57 18-19 >832 180 34 16 n/a n/a	PLATES GRIP MT20 197/144 Weight: 261 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPF No.2 *Except* 13-17: 2x4 SPF 2100F 1.8E BOT CHORD 2x4 SPF No.2 *Except* 16-19: 2x4 SPF 2100F 1.8E WEBS 2x4 SPF Stud SLIDER Left 2x4 SPF Stud -x 1-6-0, Right 2x4 SPF S REACTIONS. (size) 2=0-4-0, 25=0-4-0 (req. 0-4-3), Max Horz 2=-295(LC 10) Max Uplift 2=-436(LC 24), 25=-623(LC 12),	6=0-4-0	2-0-0 oc purlins (4-6-9 max.): Rigid ceiling directly applied 1 Row at midpt	
Max Grav 2=117(LC 8), 25=2671(LC 19), 1 FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) TOP CHORD 2-4=-184/972, 4-6=-118/1061, 6-7=-926/4 9-10=-1585/657, 10-11=-1945/735, 11-12: 14-16=-3599/1066 BOT CHORD 2-25=-812/416, 23-25=-243/274, 22-23=-2 19-20=-479/2736, 18-19=-711/3079, 16-13 WEBS 4-25=-453/317, 6-25=-2281/653, 6-23=-20 9-21=-757/209, 9-20=-85/563, 10-20=-256 12-19=-501/320	or less except when shown. 6, 7-8=-808/465, 8-9=-1375/634, 3190/932, 12-14=-3513/1023, 45/1016, 21-22=-264/1082, 20-21=-279/1379, 6=-813/3010 9/1037, 8-23=-937/345, 8-21=-143/811,		
 NOTES- Unbalanced roof live loads have been considered for this Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=1 MWFRS (envelope) gable end zone and C-C Exterior(2) 21-2-11, Interior(1) 21-2-11 to 31-0-4, Exterior(2) 31-0-4 + exposed ; end vertical left and right exposed;C-C for men grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord 5) * This truss has been designed for a live load of 20.0psf of will fit between the bottom chord and any other members WARNING: Required bearing size at joint(s) 25 greater tf Bearing at joint(s) 16 considers parallel to grain value usi capacity of bearing surface. Provide mechanical connection (by others) of truss to bea 2=436, 25=623, 16=456. Graphical purlin representation does not depict the size of 	D3mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. 0-10-8 to 2-1-8, Interior(1) 2-1-8 to 16-11-12, Exter o 34-11-12, Interior(1) 34-11-12 to 48-10-8 zone; c ibers and forces & MWFRS for reactions shown; L live load nonconcurrent with any other live loads. In the bottom chord in all areas where a rectangle with BCDL = 10.0psf. an input bearing size. Ing ANSI/TPI 1 angle to grain formula. Building dearing plate capable of withstanding 100 lb uplift at j	rior(2) 16-11-12 to antilever left and right umber DOL=1.60 plate 3-6-0 tall by 2-0-0 wide signer should verify pint(s) except (jt=lb)	SEAL 45844 June 11,2020

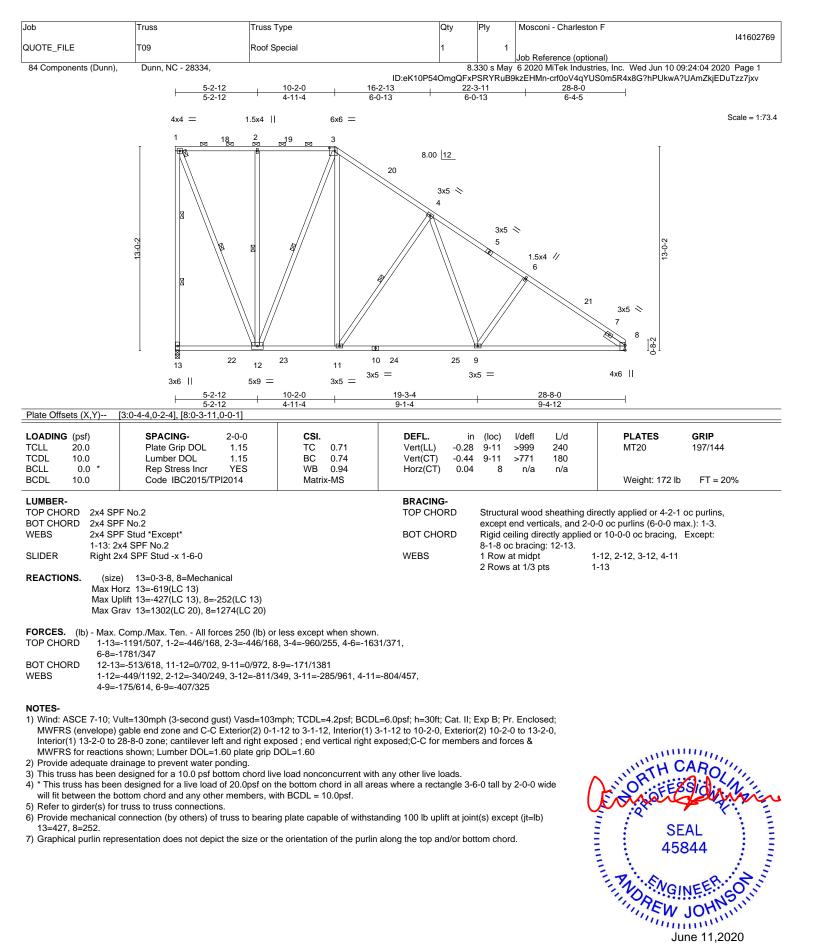
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


TREERING BY A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

	8-2-0	16-11-12	22-3-8	26-7-14	31-0-4		1-11-12	41-4-		
	8-2-0	8-9-12	5-3-12	4-4-6	4-4-6		3-11-8	6-4-6	6-7-1	4
Plate Offsets (X	,Y) [2:0-3-15,Edge],	[7:0-4-4,0-2-4], [10:0-4	4,0-2-4], [11:0-1-12,0-1-	12], [16:0-6-9,Edg	je], [18:	0-8-0,0-3	-11], [21:	0-3-0,0-2-8]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0	Plate Grip Lumber D * Rep Stres	DOL 1.15 DOL 1.15 ss Incr YES	CSI. TC 0.76 BC 0.74 WB 0.90	DEFL. Vert(LL) Vert(CT) Horz(CT)	-0.27	(loc) 17-18 17-18 16	l/defl >999 >833 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL 10.0	Code IBC	C2015/TPI2014	Matrix-MS						Weight: 260 lb	FT = 20%
BOT CHORD WEBS	2x4 SPF No.2 *Except* 13-16: 2x4 SPF 2100F 2x4 SPF No.2 *Except* 16-18: 2x4 SPF 2100F 2x4 SPF Stud Left 2x4 SPF Stud -x 1-	1.8E 1.8E	d -x 2-0-0	BRACING TOP CHO BOT CHO WEBS	RD	2-0-0 oc Rigid ce 1 Row a	c purlins (4-6-9 max.): ctly applied c 8	ectly applied or 2-2-0 7-10. or 6-0-0 oc bracing. -22, 8-21, 9-20, 11-19 -24	
	(size) 2=0-4-0, 16= Max Horz 2=290(LC 1 Max Uplift 2=-436(LC 2 Max Grav 2=122(LC 8)	24), 16=-432(LC 13), 24	=-628(LC 12)							
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	2-4=-184/971, 4-6=-14 9-10=-1585/660, 10-1 14-16=-3611/1099 2-24=-810/412, 22-24 18-19=-505/2740, 17-	41/1061, 6-7=-922/472, 1=-1947/743, 11-12=-3 =-240/268, 21-22=-250/ 18=-736/3084, 16-17=-1	less except when shown 7-8=-805/458, 8-9=-1375 194/949, 12-14=-3524/10 /1005, 20-21=-269/1071, 848/3023 037, 8-22=-937/346, 8-2	5/634,)53, 19-20=-285/138(),					
iiibo			29, 11-19=-1932/560, 11-							
 Wind: ASCE MWFRS (env 21-2-11, Inter exposed; env grip DOL=1.6 Provide adeq This truss har * This truss har * This truss har WARNING: F Bearing at joi capacity of be Provide mect 2=436, 16=43 	relope) gable end zone a rior(1) 21-2-11 to 31-0-4 d vertical left and right e oute drainage to prever s been designed for a 1 as been designed for a 1 as been designed for a an the bottom chord and Required bearing size at nt(s) 16 considers paral paring surface. nanical connection (by o 32, 24=628.	econd gust) Vasd=103r and C-C Exterior(2) -0- , Exterior(2) 31-0-4 to 3 exposed;C-C for member at water ponding. 0.0 psf bottom chord live live load of 20.0psf on t any other members, wi joint(s) 24 greater than lel to grain value using a others) of truss to bearin	mph; TCDL=4.2psf; BCDI 10-8 to 2-1-8, Interior(1) 2 4-11-12, Interior(1) 34-11 rs and forces & MWFRS e load nonconcurrent with he bottom chord in all are th BCDL = 10.0psf.	2-1-8 to 16-11-12 I-12 to 48-0-0 zor for reactions sho h any other live lo eas where a recta n formula. Buildir anding 100 lb upli	Exterio ne; canti wn; Lun ads. ngle 3-6 g desig ft at join	r(2) 16-1 ilever left hber DOL 5-0 tall by ner shoul t(s) exce	1-12 to and right =1.60 pla 2-0-0 wi ld verify pt (jt=lb)	ate	458 SNGI SNGI SNGI SNGI	AROKINA SIDIANA AL 344 NEERSOUTHING JOHNSUITHING ne 11,2020
					40/02					

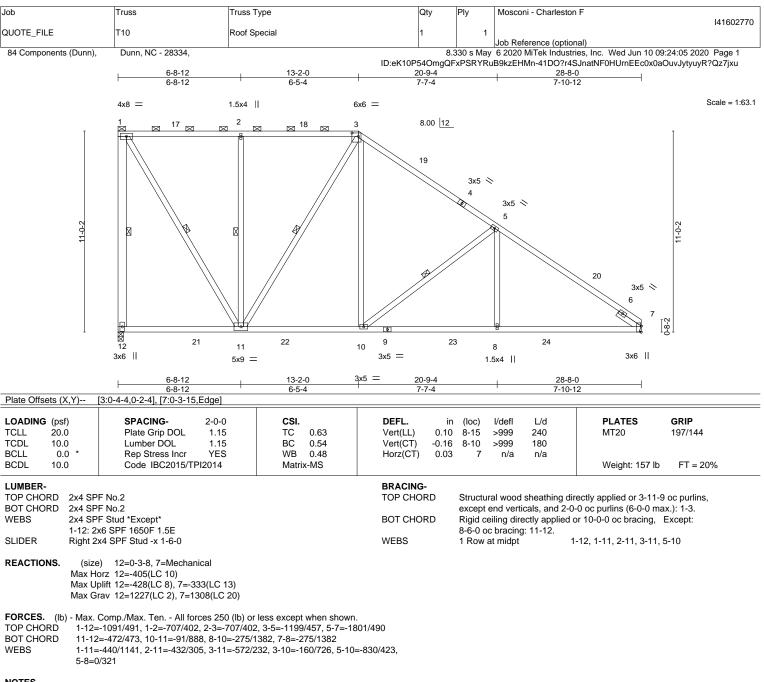
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TRENCO A MITek Atfiliate 818 Soundside Road Edenton, NC 27932



6) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

📣 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

NOTES-

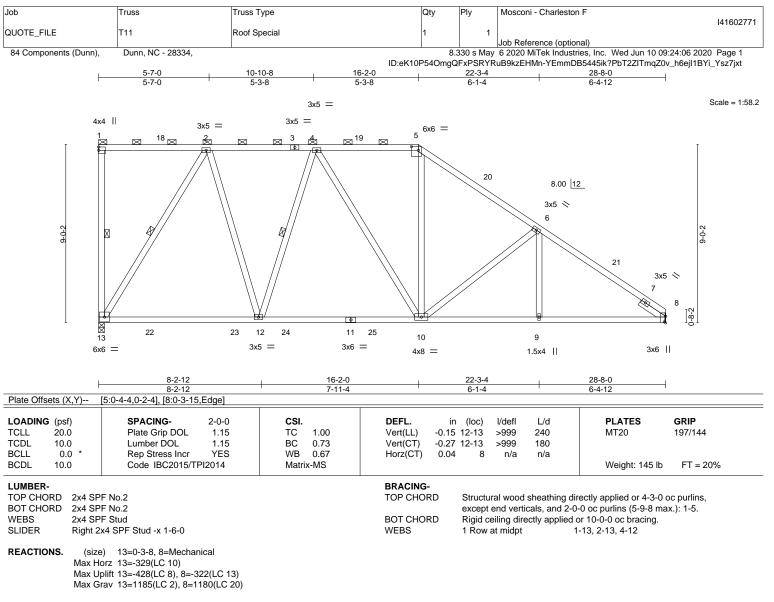
1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-2-12 to 3-2-12, Interior(1) 3-2-12 to 13-2-0, Exterior(2) 13-2-0 to 16-2-0, Interior(1) 16-2-0 to 28-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=428, 7=333.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

📣 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-899/407, 4-5=-1019/468, 5-6=-1291/487, 6-8=-1634/510

BOT CHORD 12-13=-201/697, 10-12=-230/983, 9-10=-312/1269, 8-9=-312/1269

WEBS 2-13=-1133/446, 2-12=-154/735, 4-12=-434/273, 5-10=-72/400, 6-10=-569/336

NOTES-

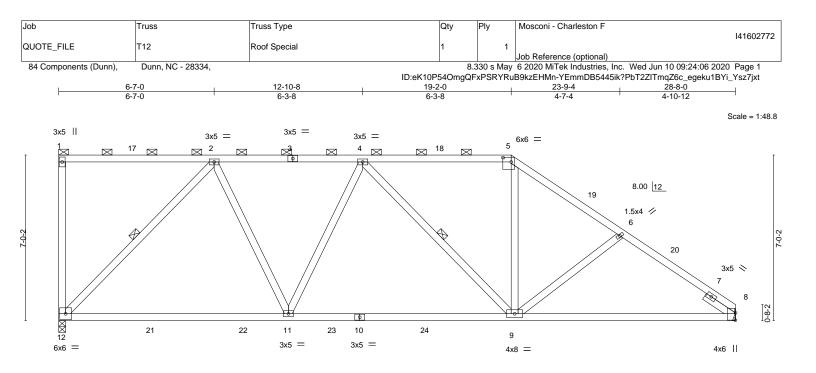
 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 16-2-0, Exterior(2) 16-2-0 to 19-2-0, Interior(1) 19-2-0 to 28-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 13=428, 8=322.

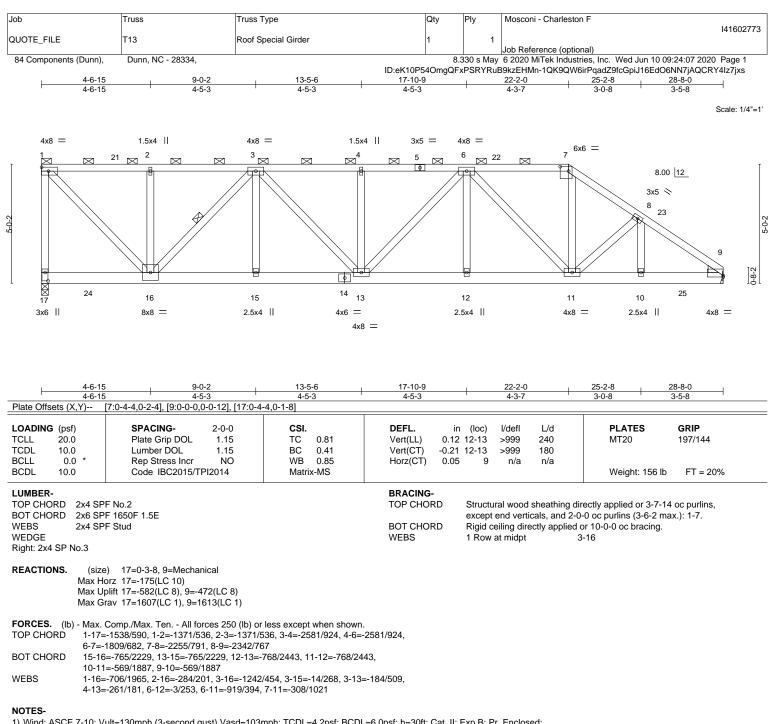
7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

L	9-8-12		19-2-0			28-8-0			
Plate Offsets (X,Y)	<u>9-8-12</u> [5:0-4-4,0-2-4], [8:0-3-11,0-0-1]	I	9-5-4			9-6-0	I		
OADING (psf) CLL 20.0 CDL 10.0 SCLL 0.0 SCLL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2015/TPI2014	CSI. TC 0.63 BC 0.95 WB 0.63 Matrix-MS	()	22 11-12 > 45 11-12 >	/defl L/d 999 240 -765 180 n/a n/a	PLATES MT20 Weight: 127 lb	GRIP 197/144 FT = 20%		
OT CHORD 2x4 S /EBS 2x4 S	SPF No.2 SPF No.2 SPF Stud 2x4 SPF Stud -x 1-6-0		BRACING- TOP CHORD BOT CHORD WEBS	except en	nd verticals, and 2-0- ing directly applied o	rectly applied or 4-3-2 o -0 oc purlins (5-0-4 ma or 2-2-0 oc bracing. 2-12, 4-9			
Max Max	ze) 12=0-3-8, 8=Mechanical Horz 12=-254(LC 10) Uplift 12=-427(LC 8), 8=-302(LC 13) Grav 12=1155(LC 2), 8=1141(LC 1)								
OP CHORD 2-4 BOT CHORD 11-	x. Comp./Max. Ten All forces 250 (lb) o =-1213/457, 4-5=-1121/473, 5-6=-1425/5 12=-313/954, 9-11=-363/1284, 8-9=-359/	05, 6-8=-1610/548 1283	100						

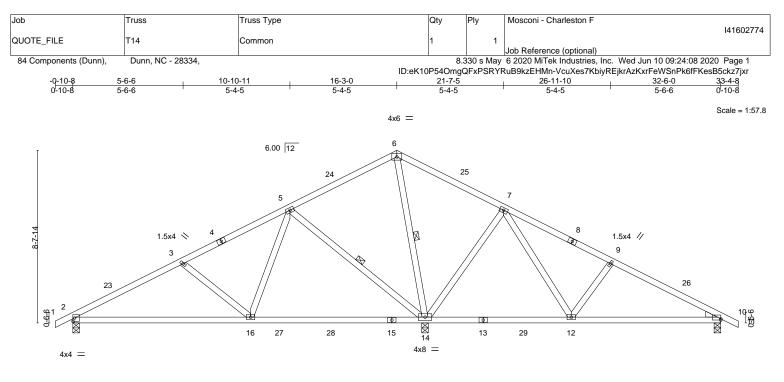
WEBS 2-12=-1248/501, 2-11=-89/625, 4-11=-297/231, 4-9=-254/231, 5-9=-81/490, 6-9=-337/266


NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 19-2-0, Exterior(2) 19-2-0 to 22-2-0, Interior(1) 22-2-0 to 28-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=427, 8=302.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 22-2-0, Exterior(2) 22-2-0 to 25-2-8, Interior(1) 25-2-8 to 28-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 17=582, 9=472.
- 7) Girder carries tie-in span(s): 4-0-0 from 2-0-0 to 27-0-0
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-7=-60, 7-9=-60, 17-24=-20, 24-25=-58(F=-38), 18-25=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	8-11-0 8-11-0	<u>17-8-0</u> 8-9-0		25-0-0 7-4-0	<u>32-6-0</u> 7-6-0	
Plate Offsets (X,Y)	[10:0-0-0,0-0-12]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2015/TPI2014	CSI. TC 0.36 BC 0.59 WB 0.57 Matrix-MS	Vert(LL) -0.1	in (loc) l/defl L/d l1 16-19 >999 240 22 16-19 >954 180 01 14 n/a n/a	PLATES GRIF MT20 197/ Weight: 131 lb FT	
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP WEDGE Right: 2x4 SP No.3	F No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing dird Rigid ceiling directly applied o 6-0-0 oc bracing: 12-14. 1 Row at midpt 5-	, , , , , , , , , , , , , , , , , , , ,	

REACTIONS. (size) 2=0-4-0, 14=0-4-0, 10=0-4-0 Max Horz 2=-143(LC 17) Max Uplift 2=-195(LC 12), 14=-491(LC 12), 10=-172(LC 13) Max Grav 2=635(LC 23), 14=1676(LC 19), 10=513(LC 24)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-841/264, 3-5=-569/172, 5-6=-32/375, 6-7=-48/483, 7-9=-417/191, 9-10=-603/209

BOT CHORD 2-16=-287/696, 14-16=-45/307, 10-12=-96/483

- WEBS 3-16=-332/282, 5-16=-78/490, 5-14=-708/369, 6-14=-620/189, 7-14=-591/370,
 - 7-12=-159/514, 9-12=-310/266

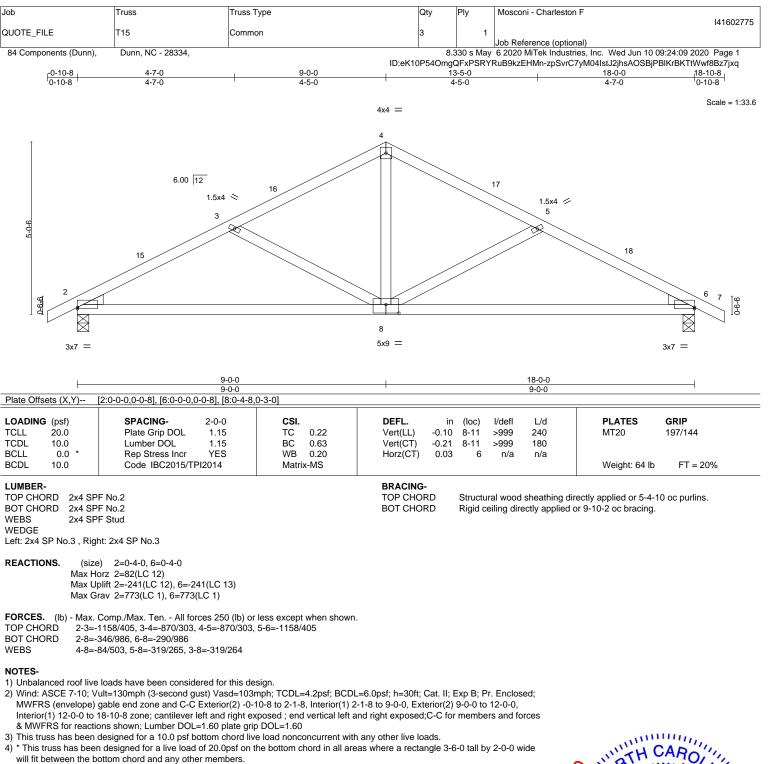
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 16-3-0, Exterior(2) 16-3-0 to 19-3-0, Interior(1) 19-3-0 to 33-4-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

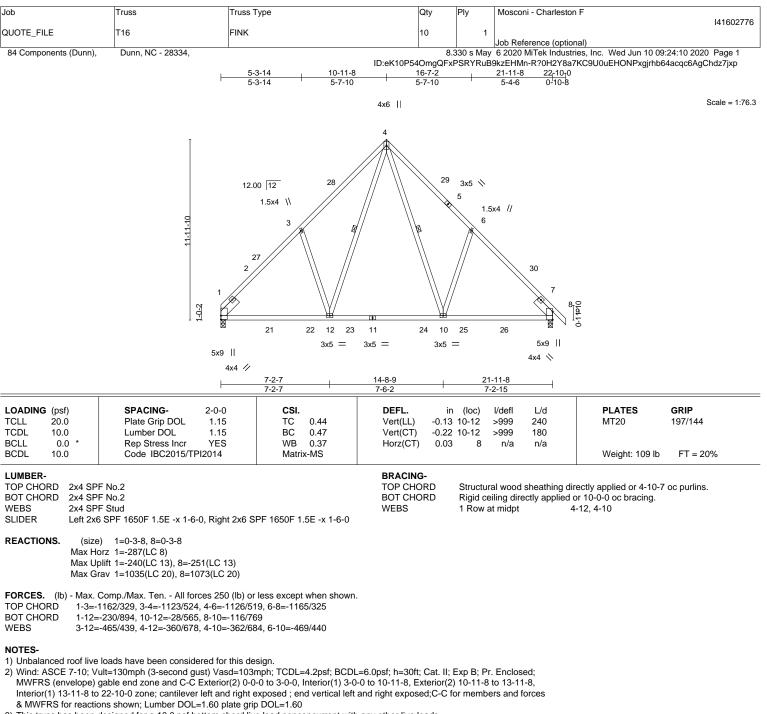
3) All plates are 3x5 MT20 unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=195, 14=491, 10=172.

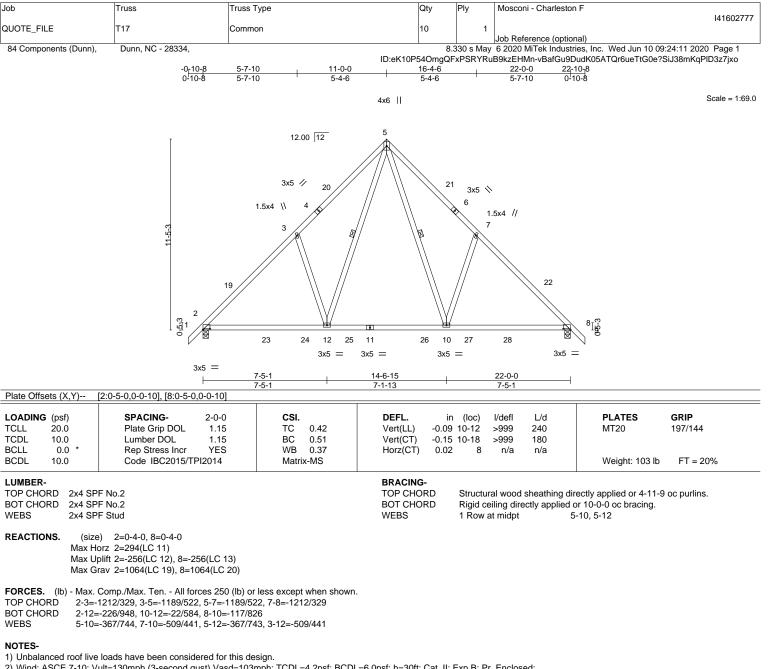
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=241, 6=241.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

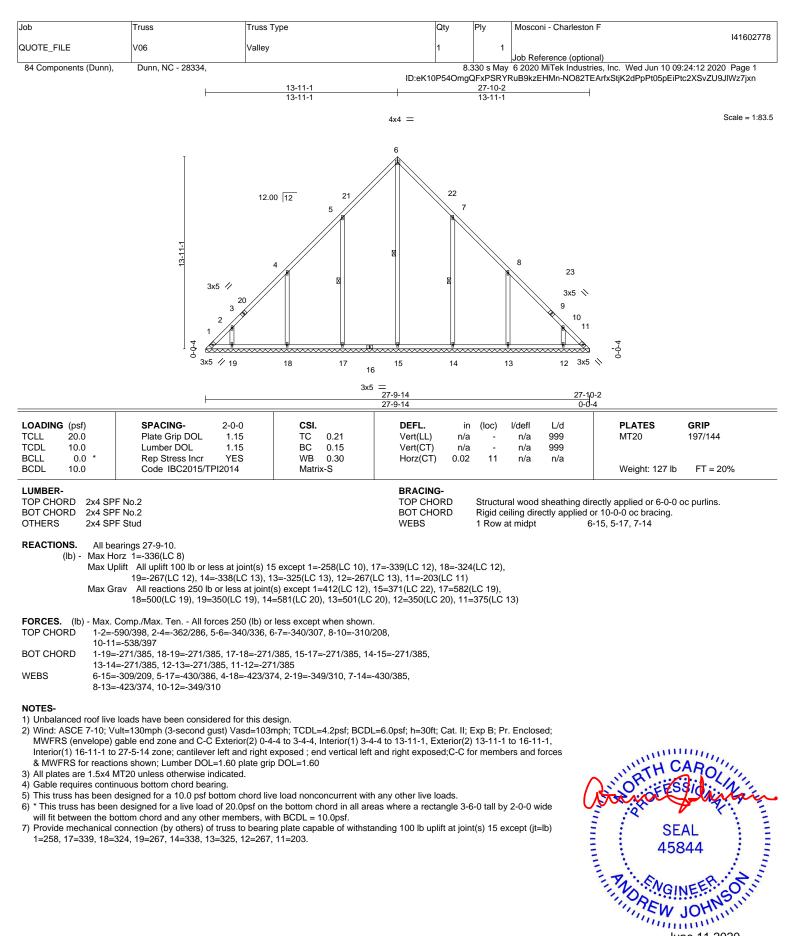
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=240, 8=251.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

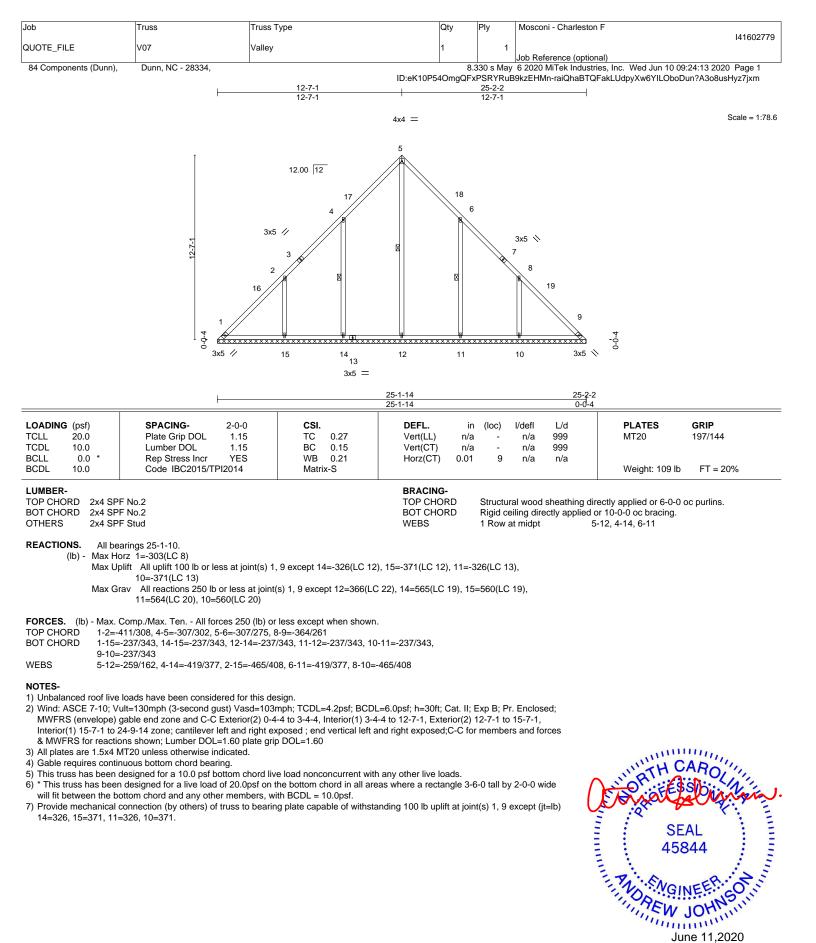
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 11-0-0, Exterior(2) 11-0-0 to 14-0-0, Interior(1) 14-0-0 to 22-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

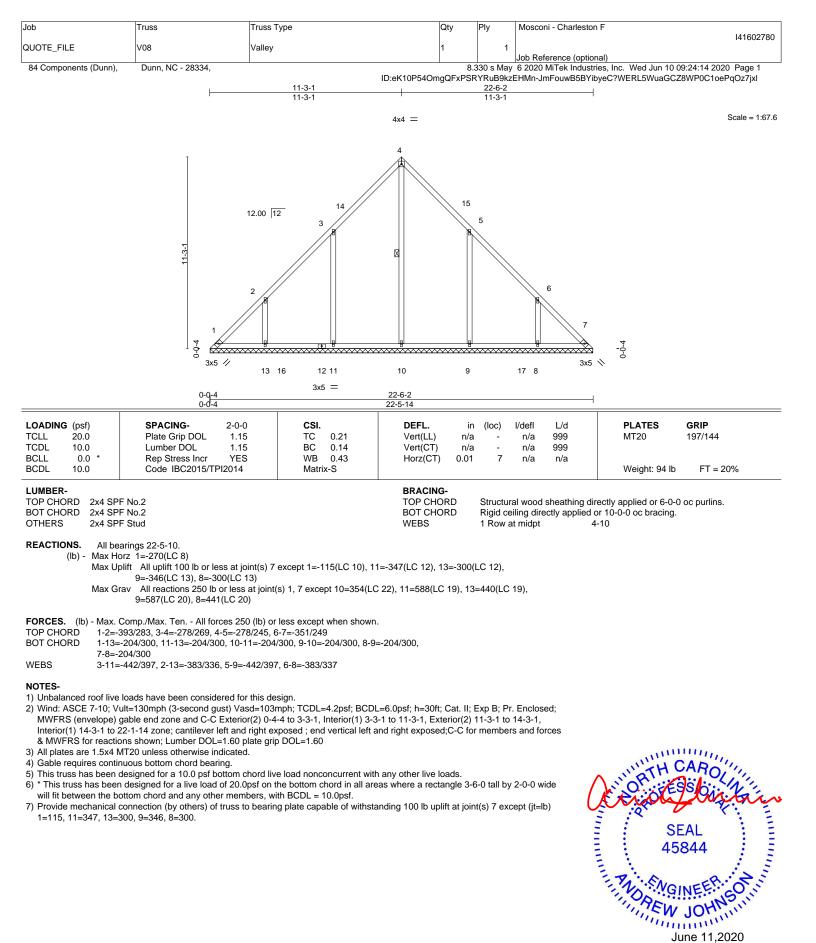
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=256, 8=256.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



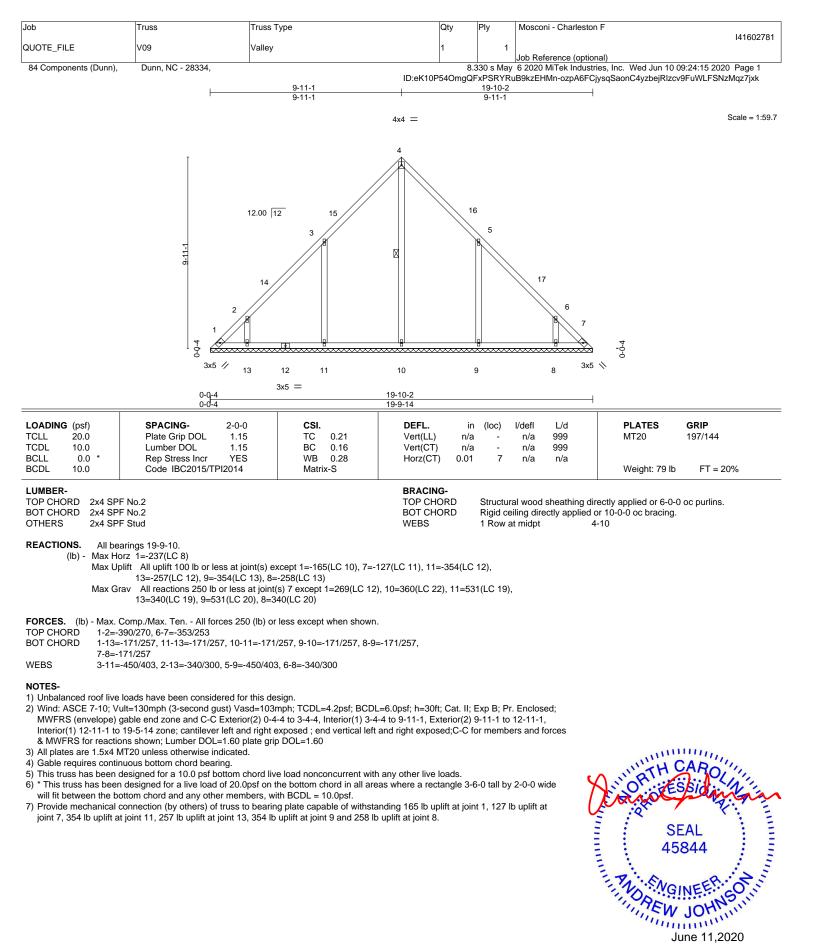
June 11,2020

818 Soundside Road Edenton, NC 27932

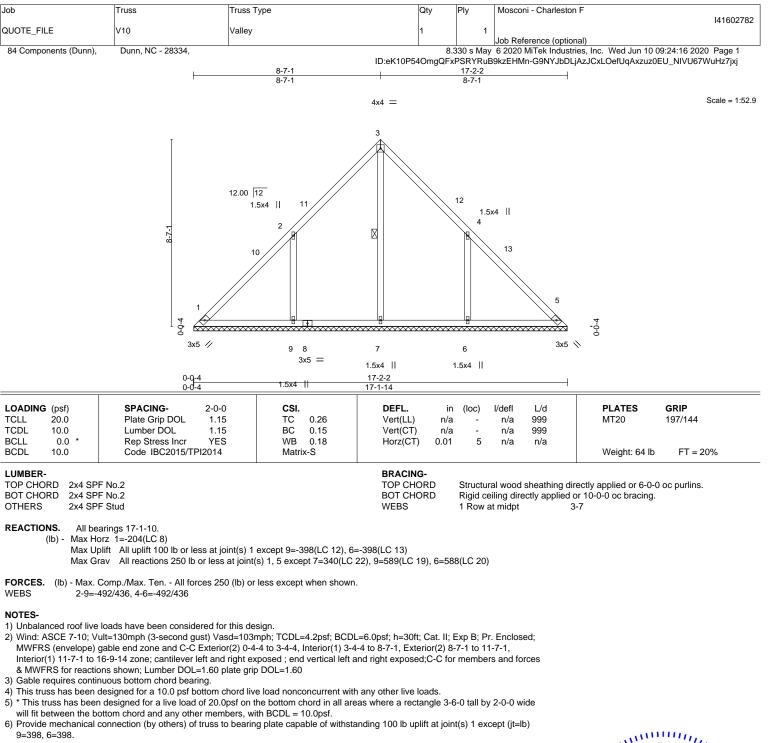

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

AMITEK Affiliate

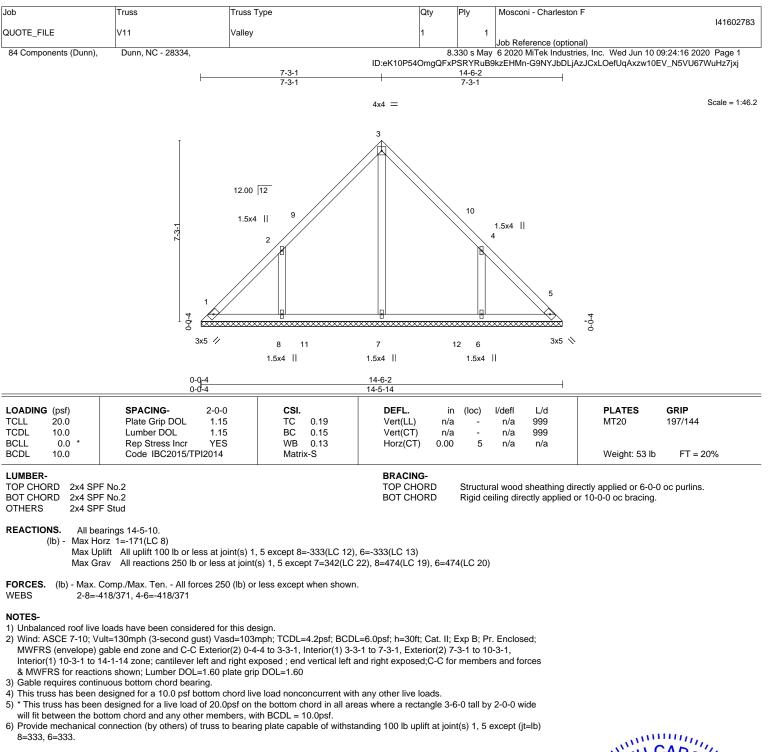

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

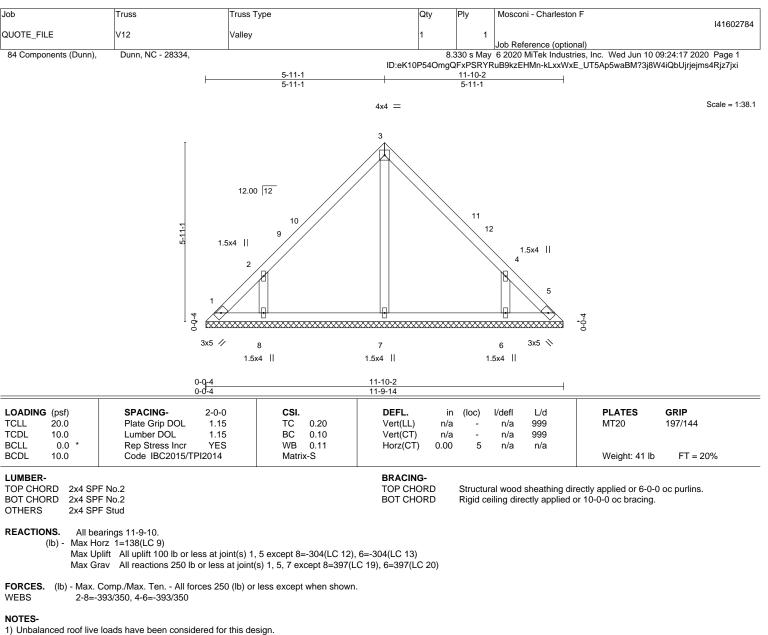

RENC

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. TRENCO A MiTek Affiliate


818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

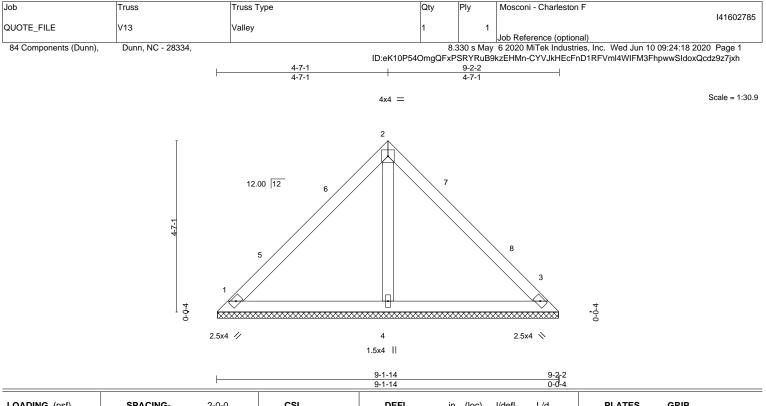
TRENCO A MITCH Attiliate 818 Soundside Road

Edenton, NC 27932

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-4-4 to 3-4-4, Interior(1) 3-4-4 to 5-11-1, Exterior(2) 5-11-1 to 8-11-1, Interior(1) 8-11-1 to 11-5-14 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=304, 6=304.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

TCLL 20.0 Plate Grip TCDL 10.0 Lumber D BCLL 0.0 * Rep Stress BCDL 10.0 Code IBC	DL 1.15	TC 0.24 BC 0.15 WB 0.07 Matrix-S	Vert(LL) Vert(CT) Horz(CT)	n/a n/a 0.00	- - 3	n/a n/a n/a	999 999 n/a	MT20 Weight: 29 lb	197/144 FT = 20%
--	---------	---	----------------------------------	--------------------	-------------	-------------------	-------------------	-----------------------	---------------------

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD

2x4 SPF No.2 OTHERS 2x4 SPF Stud

REACTIONS. 1=9-1-10, 3=9-1-10, 4=9-1-10 (size) Max Horz 1=-105(LC 8) Max Uplift 1=-78(LC 13), 3=-78(LC 13), 4=-48(LC 12) Max Grav 1=199(LC 20), 3=199(LC 20), 4=303(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

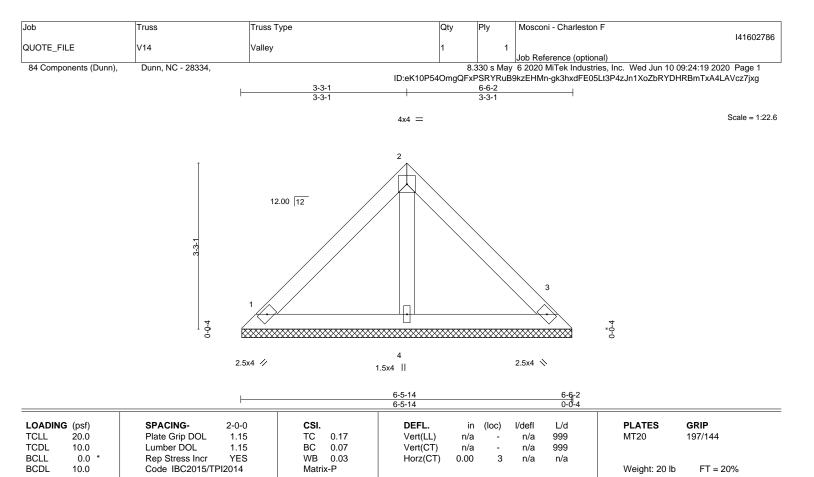
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-4-4 to 3-4-4, Interior(1) 3-4-4 to 4-7-1, Exterior(2) 4-7-1 to 7-7-1, Interior(1) 7-7-1 to 8-9-14 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.



🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD

2x4 SPF No.2 OTHERS 2x4 SPF Stud

REACTIONS. 1=6-5-10, 3=6-5-10, 4=6-5-10 (size) Max Horz 1=-72(LC 8) Max Uplift 1=-67(LC 13), 3=-67(LC 13), 4=-5(LC 12) Max Grav 1=148(LC 20), 3=148(LC 20), 4=184(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

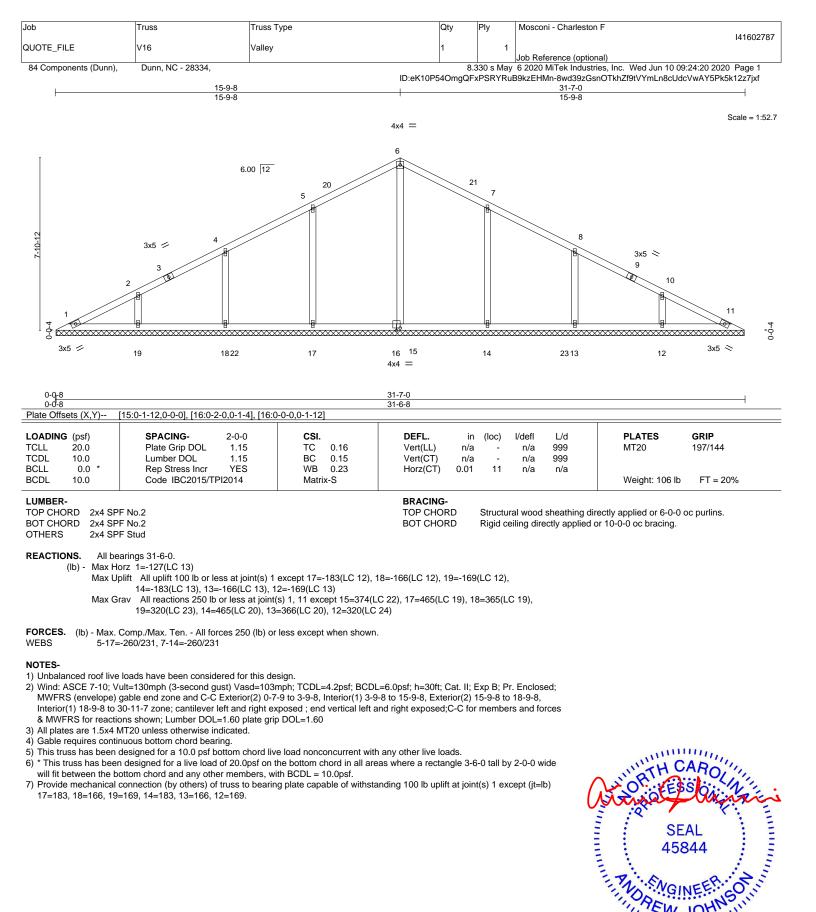
3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5)

will fit between the bottom chord and any other members.

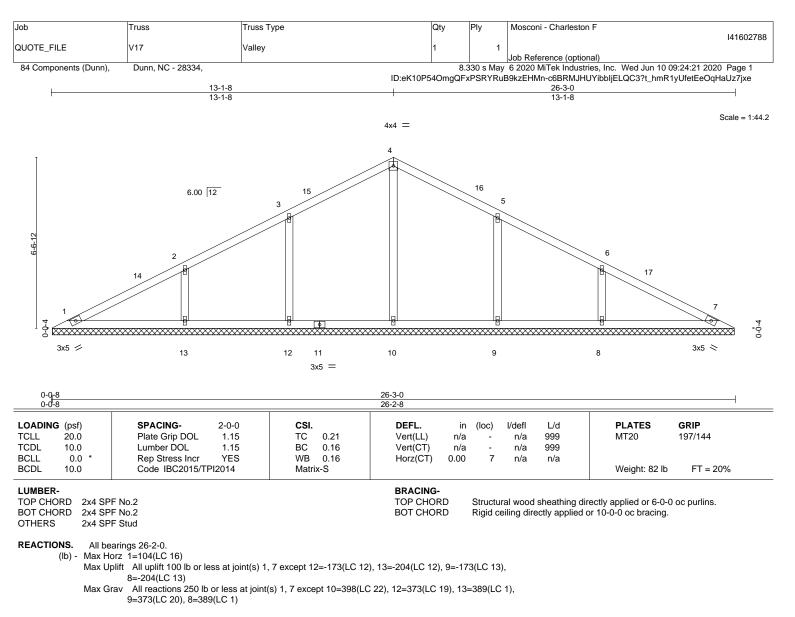
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

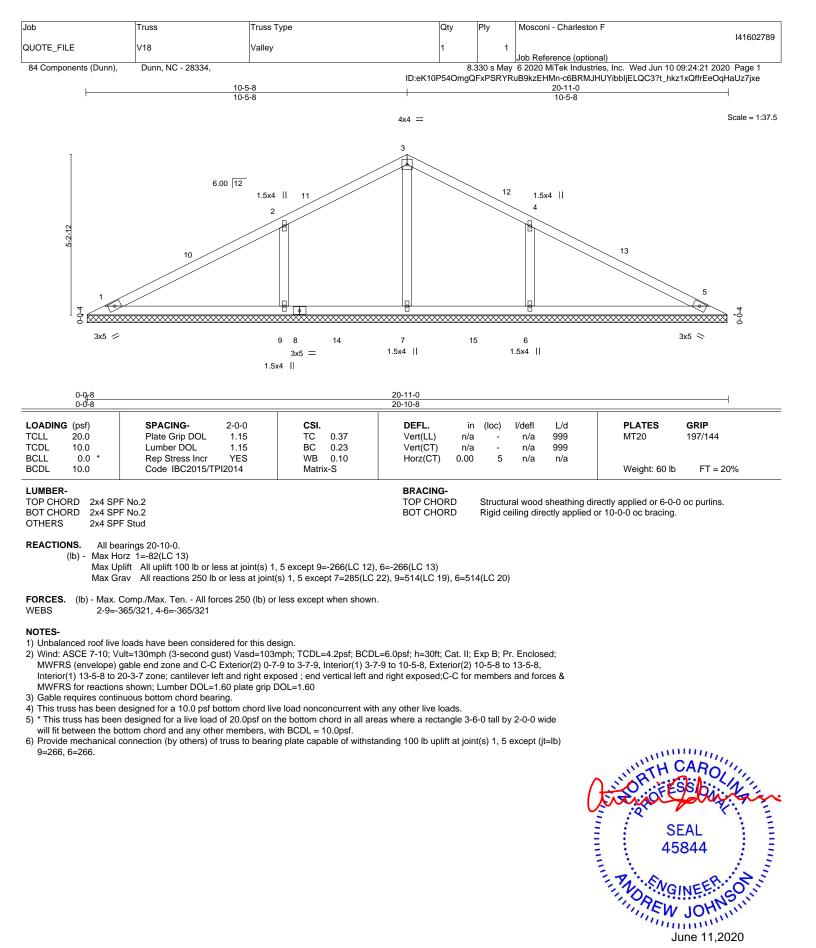


June 11,2020

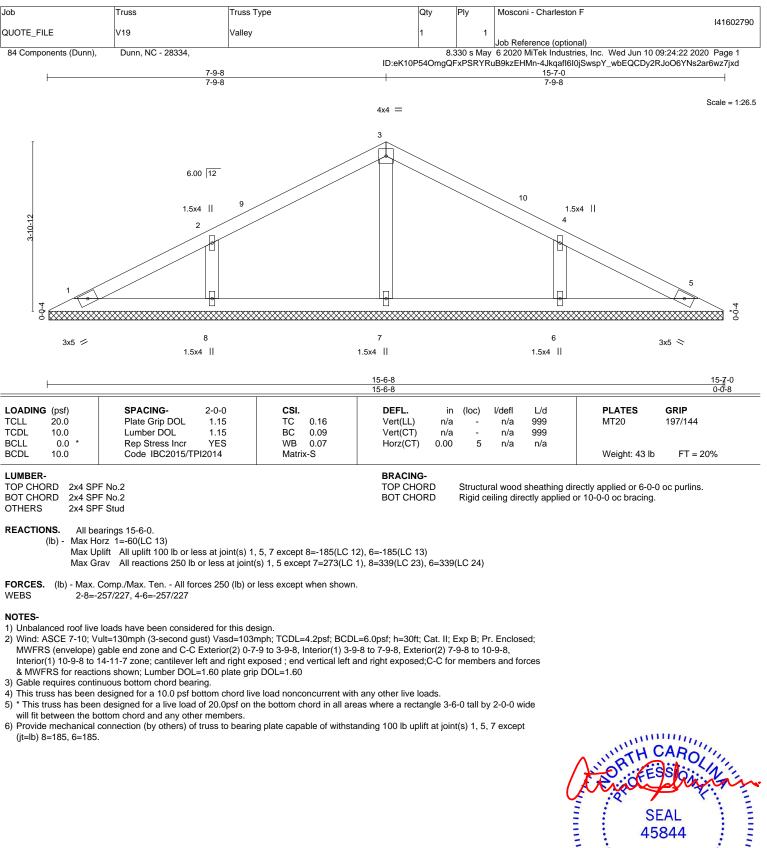
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

WEBS

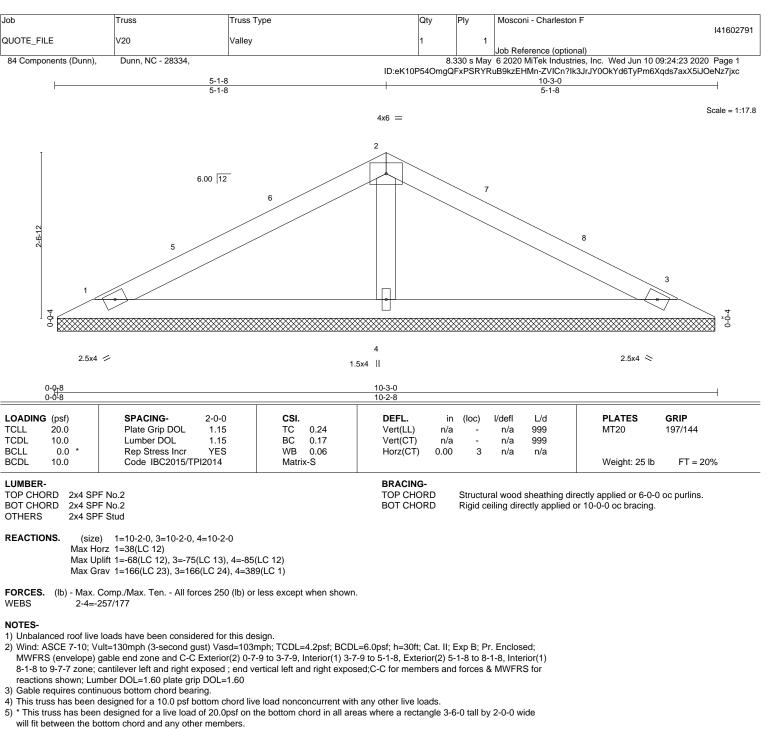
- NOTES-
- 1) Unbalanced roof live loads have been considered for this design.


2-13=-285/250, 6-8=-285/250

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-7-9 to 3-7-9, Interior(1) 3-7-9 to 13-1-8, Exterior(2) 13-1-8 to 16-1-8, Interior(1) 16-1-8 to 25-7-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 1.5x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7 except (jt=lb) 12=173, 13=204, 9=173, 8=204.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

