

Trenco RE: 823690 - H&H-SC/Trillium/ 818 Soundside Rd Site Information: Edenton, NC 27932 Project Customer: H AND H Project Name: 823690 Lot/Block: AA Subdivision: ALL Model: Address: State: NC City: Fayetteville General Truss Engineering Criteria & Design Loads (Individual Truss Design **Drawings Show Special Loading Conditions):** Design Code: IRC2015/TPI2014 Design Program: MiTek 20/20 8.2 Wind Code: ASCE 7-10 Wind Speed: 150 mph Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-10 Roof Load: 40.0 psf Floor Load: N/A psf Mean Roof Height (feet): 25 Exposure Category: C No. Seal# Truss Name Date No. Seal# Truss Name Date 36912809 136912810 136912811 136912812 136912813 136912813 136912814 136912816 136912816 136912817 136912818 136912819 136912820 136912820 35 36 37 38 A01 A02 136912843 136912844 B07 5/1/19 123456789111111111122222222222333333 5/1/19 B08 5/1/19 5/1/19 I36912845 I36912846 B09 B10 (1/19 A03 5/1/195/1/19 A04 /1/19 A05 **3**9 136912847 **B**11 1/19 5/1/19 **4**0 136912848 B12 A06 1/1941 42 I36912849 I36912850 **B**13 A06A 1/19 5/1/1A07 **B**14 /1/19 5/1 43 **B**15 A07A 5/1/19 136912851 5/1/19A08 5/1/19 44 136912852 **B16** 136912853 A09 5/1/19 45 **B**17 46 136912854 **B18** A10 5/1/19 I36912821 I36912822 4Ť 136912855 **B**19 A11 5/1/19 **B**20 A12 48 136912856 5/1/19 B21 B22 136912823 5/1/19 4ğ 136912857 A13 136912824 A14 50 136912858 5/1/19 51 52 136912825 A15 5/1/19 136912859 B23 136912826 A16 136912860 B24 5/1/19 53 54 55 56 136912861 136912862 136912827 5/1/19 B25 136912828 A18 5/1/19 B26 136912829 A19 5/1/19 136912863 B27 136912830 /1/19 136912864 B28 57 58 59 60 136912831 5/1/19 136912865 B29 136912832 136912833 A21A 136912866 **B**30 1/19 A22 /1/19 136912867 B31 136912834 A23 1/19 136912868 61 62 136912835 A24 1/19 136912869 136912836 A25 /19 136912870 B34 63 136912837 B01 /19 136912871 B35 B36 B37 136912838 B02 /19 64 136912872 36

The truss drawing(s) referenced above have been prepared by

B03

B04

B05

B06

136912839

I36912840 I36912841 I36912842

1/19

19

19

65

66

67

68

136912873

136912874

136912875

136912876

1 of 2

B38 B39

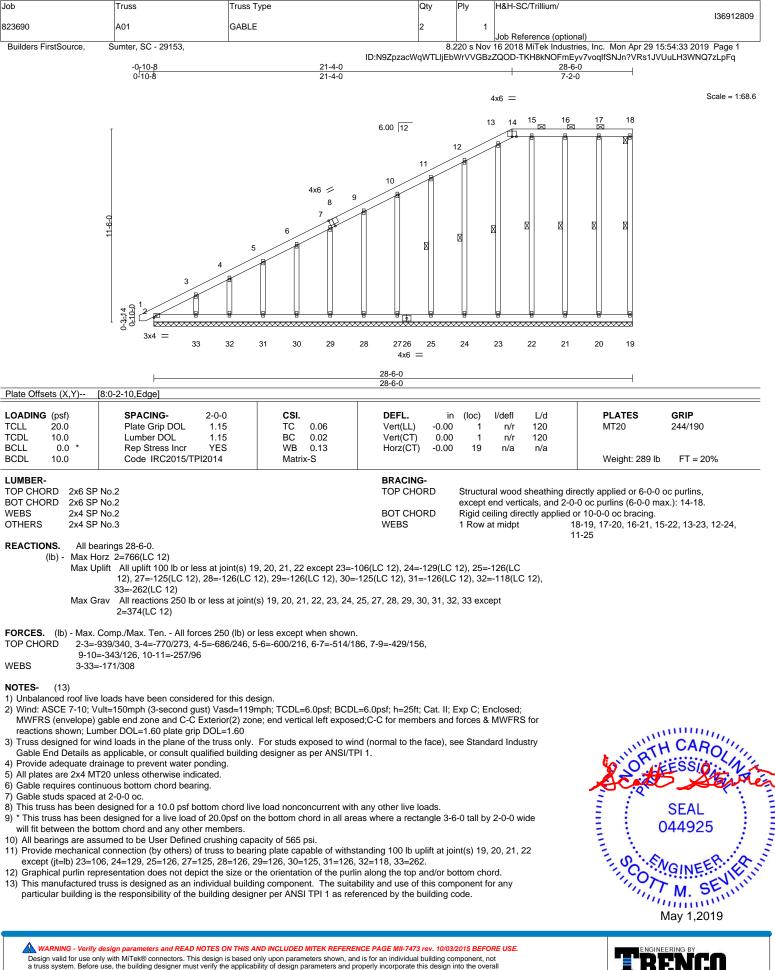
B40

Truss Design Engineer's Name: Sevier, Scott My license renewal date for the state of North Carolina is December 31, 2019 **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSUTED COMPARIANCE.

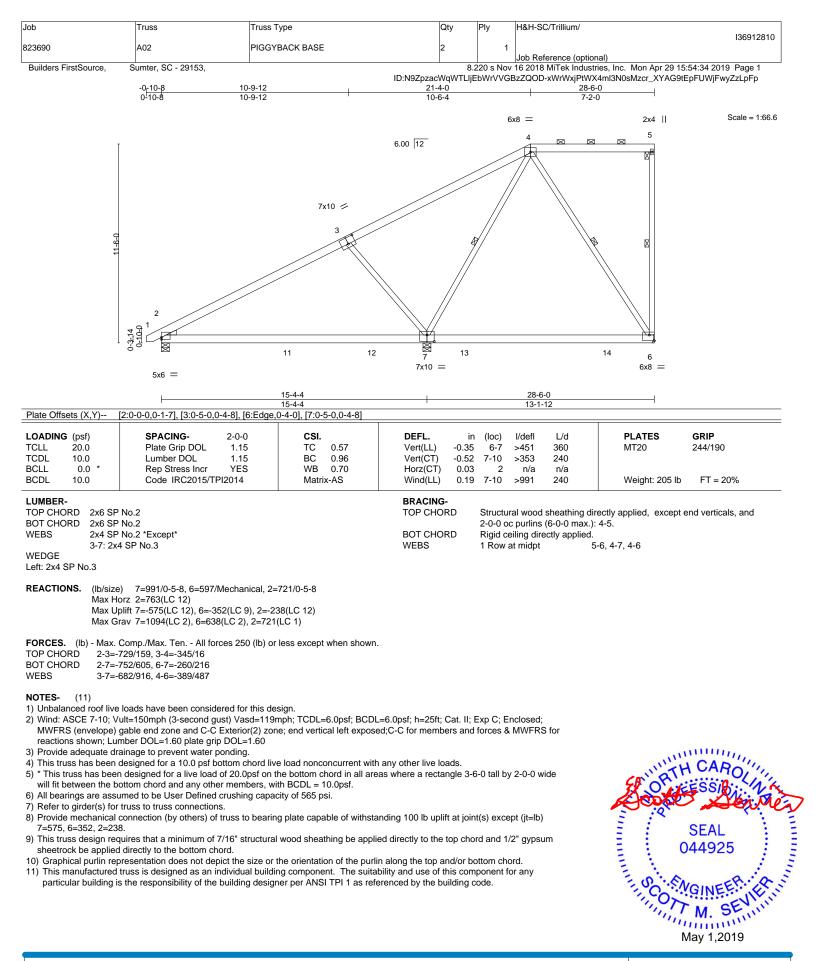
Sevier, Scott

/19

'19

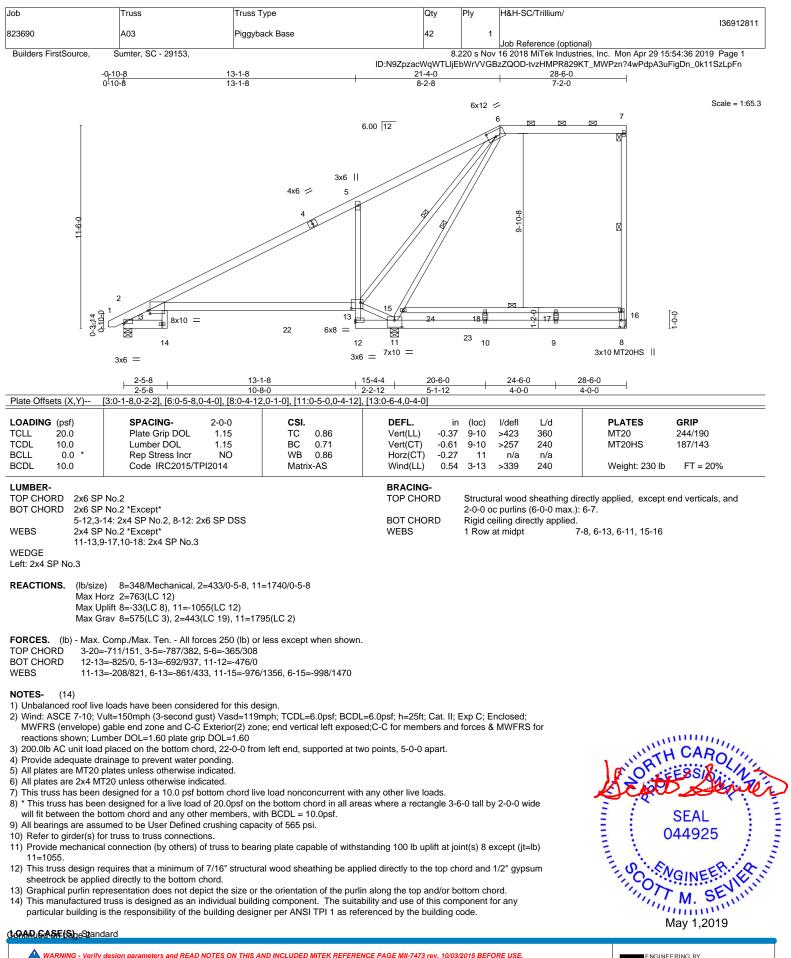

May 1,2019

RE: 823690 - H&H-SC/Trillium/


Trenco 818 Soundside Rd Edenton, NC 27932

No. 69 70 71 72 73 74 75 76 77 78 79	Seal# 136912877 136912878 136912879 136912880 136912880 136912882 136912883 136912883 136912885 136912885 136912887	Job ID# 823690 823690 823690 823690 823690 823690 823690 823690 823690 823690 823690	Truss Name B41 C01 C02 C03 CP01 CP02 CP03 CP04 D01 D02	5/1/19 5/1/19 5/1/19 5/1/19 5/1/19 5/1/19 5/1/19 5/1/19 5/1/19 5/1/19	No. 134 135 136 137 138 139 140 141 142 144	Seal# 136912942 136912943 136912944 136912945 136912945 136912947 136912948 136912948 136912950 136912951 136912951	Job ID# 823690 823690 823690 823690 823690 823690 823690 823690 823690 823690 823690	Truss Name J46 J47 J48 J49 K01 L01 L02 L03 N01 N02 N03	5/1/19 5/1/19 5/1/19 5/1/19 5/1/19 5/1/19 5/1/19 5/1/19 5/1/19 5/1/19
79 80 812 83 84 85 88 88 99 99 99 99 99 99 90 101 203 45 96 78 99 00 102 34 99 99 90 101 203 45 96 78 99 00 102 102 104 50 107 106 107 107 107 107 107 107 107 107 107 107	136912886 136912887 136912887 136912889 136912890 136912890 136912892 136912893 136912895 136912895 136912895 136912895 136912897 136912897 136912902 136912901 136912902 136912904 136912905 136912905 136912906 136912907 136912908 136912910 136912910 136912910 136912911 136912912 136912915 136912915 136912915 136912916 136912917 136912917 136912917 136912917 136912917 136912917 136912917 136912917 136912917 136912917 136912920 136912920 136912920 136912920 136912920 136912920 136912920 136912920 136912920 136912920 136912920 136912920 136912920 136912920 136912920 136912920 136912920	823690 82	D02 E01 E02 G01 H01 H02 H01 H02 J03 J04 J06 J07 J08 J09 J11 J12 J145 J02 J03 J04 J06 J07 J09 J11 J12 J145 J21 J223 J24 J267 J28 J221 J223 J224 J225 G27 J28 J223 J224 J225 J227 J228 J229 J229 J229 J229 J229 J229 J229	5/1/199 5/100 5/100	144 145 147 147 148 149	136912951 136912952 136912952 136912954 136912955 136912956 136912957	823690 823690 823690 823690 823690 823690 823690	N03 PB01 PB02 PB03 PB04 V01	5/1/19 5/1/19 5/1/19 5/1/19 5/1/19 5/1/19
118 119 121 122 123 124 125 126 127 128 127 130 131 132 133	136912926 136912927 136912927 136912928 136912930 136912931 136912932 136912933 136912934 136912935 136912935 136912936 136912937 136912938 136912937 136912938 136912938 136912939 136912931	823690 823690 823690 823690 823690 823690 823690 823690 823690 823690 823690 823690 823690 823690 823690 823690 823690	J30 J31 J32 J33 J35 J36 J37 J38 J39 J40 J41 J42 J43 J44 J45	5/1/19 5/1/19 5/1/19 5/1/19 5/1/19 5/1/19 5/1/19 5/1/19 5/1/19 5/1/19 5/1/19 5/1/19 5/1/19 5/1/19 5/1/19					

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

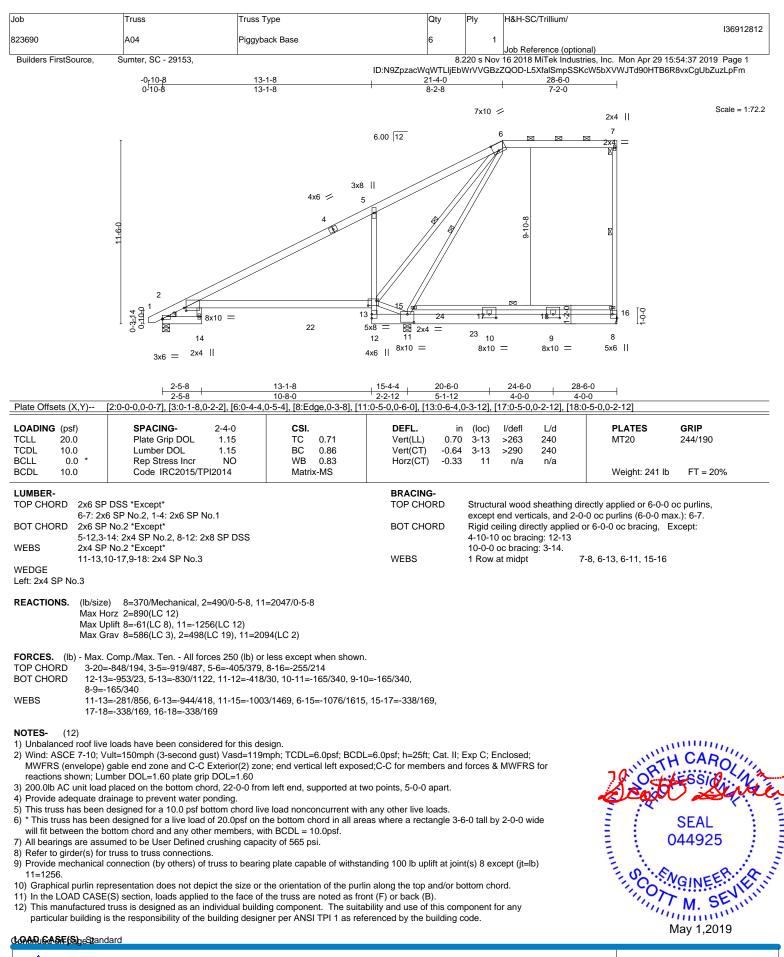
ENGINEERING BY REENCO A MITek Affiliate 818 Soundside Road

Edenton, NC 27932

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
					136912811
823690	A03	Piggyback Base	42	1	
					Job Reference (optional)
Builders FirstSource, S	umter, SC - 29153,		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:54:36 2019 Page 2
		ID:N9ZpzacWqWTLljEbWrVVGBzZQOD-tvzHMPR829KT_MWPzn?4wPdpA3uFigDn_0k11SzLpFn			

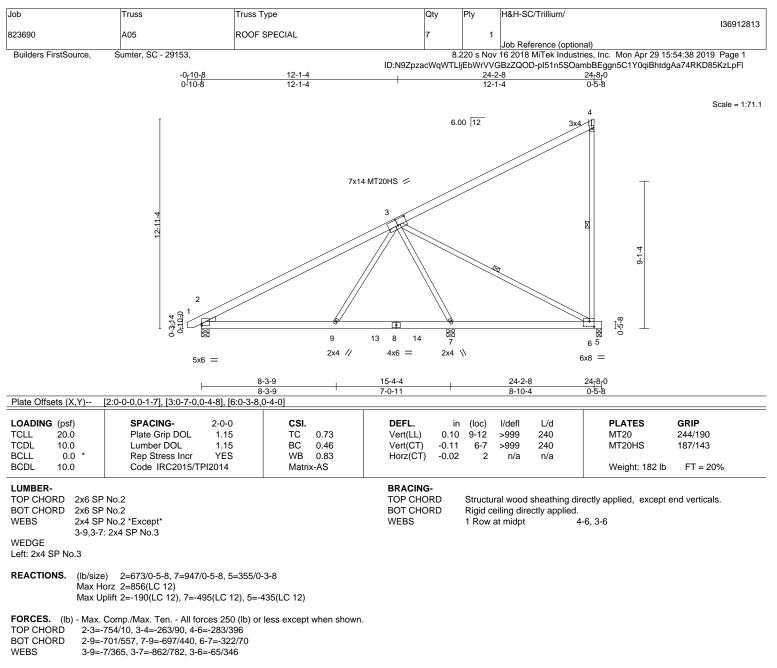

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-6=-60, 6-7=-60, 14-19=-20, 3-13=-20, 8-12=-20 Concentrated Loads (lb)

Vert: 9=-100 23=-100

Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
					136912812
323690	A04	Piggyback Base	6	1	
					Job Reference (optional)
Builders FirstSource, S	umter, SC - 29153,		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:54:37 2019 Page 2
		ID:N9ZpzacWqWTLljEbWrVVGBzZQOD-L5XfalSmpSSKcW5bXVWJTd90HTB6R8vxCgUbZuzLpFm			


LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-70, 3-6=-70, 6-7=-70, 14-19=-23, 3-13=-23, 8-12=-23

Concentrated Loads (lb) Vert: 9=-100 23=-100

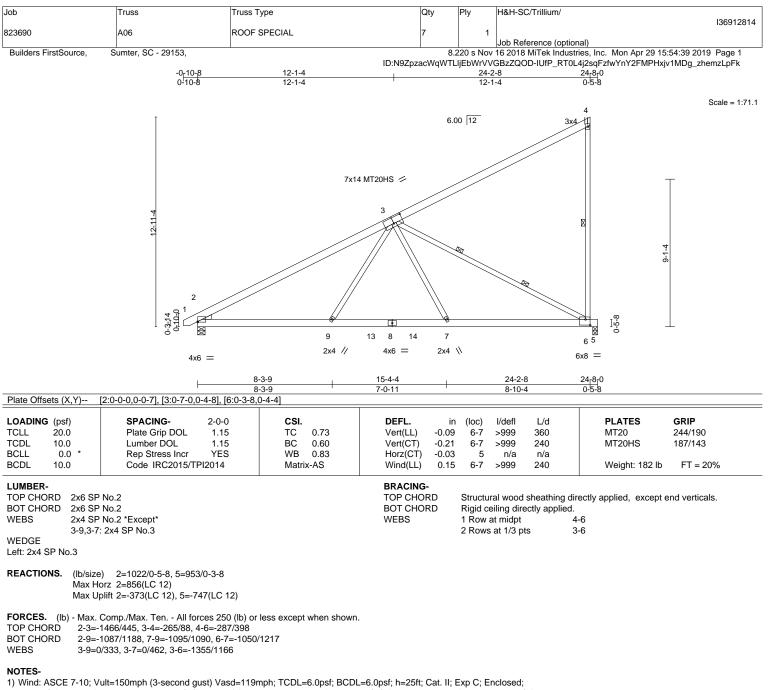
NOTES-

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) All plates are MT20 plates unless otherwise indicated.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=190, 7=495, 5=435.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

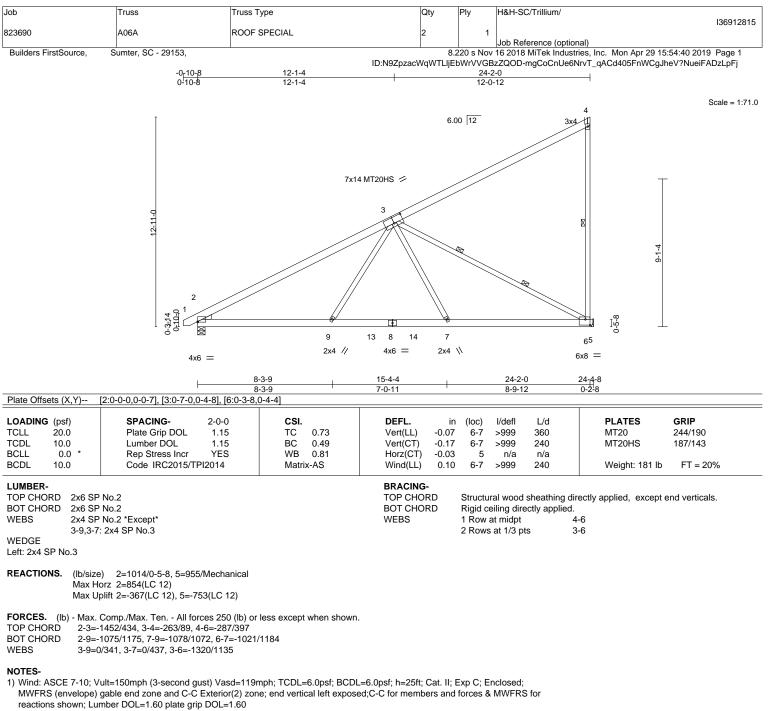
818 Soundside Road Edenton, NC 27932

MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) All plates are MT20 plates unless otherwise indicated.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=373, 5=747.

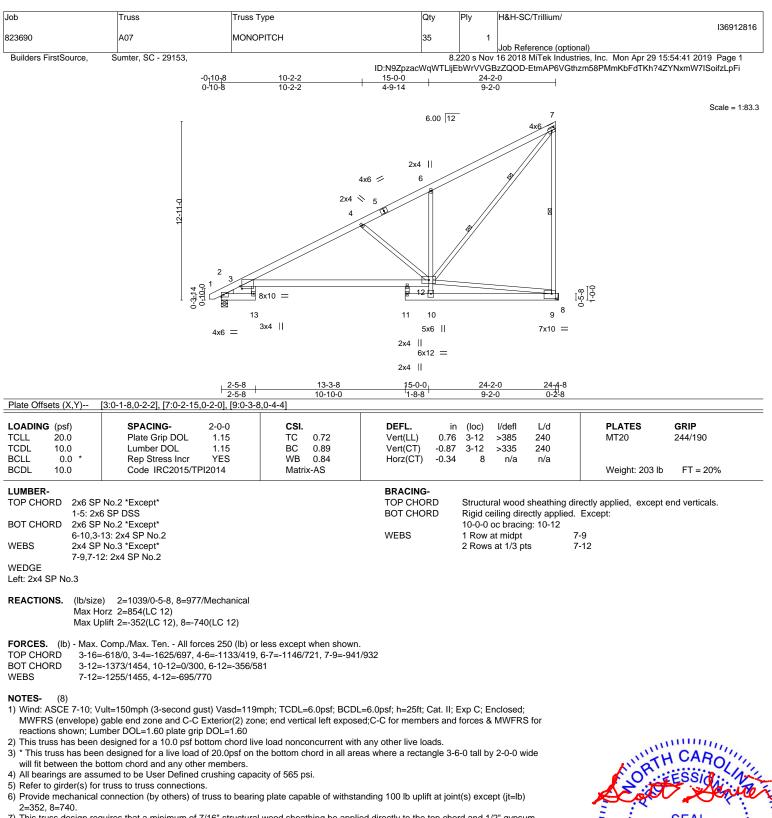
7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

All plates are MT20 plates unless otherwise indicated.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

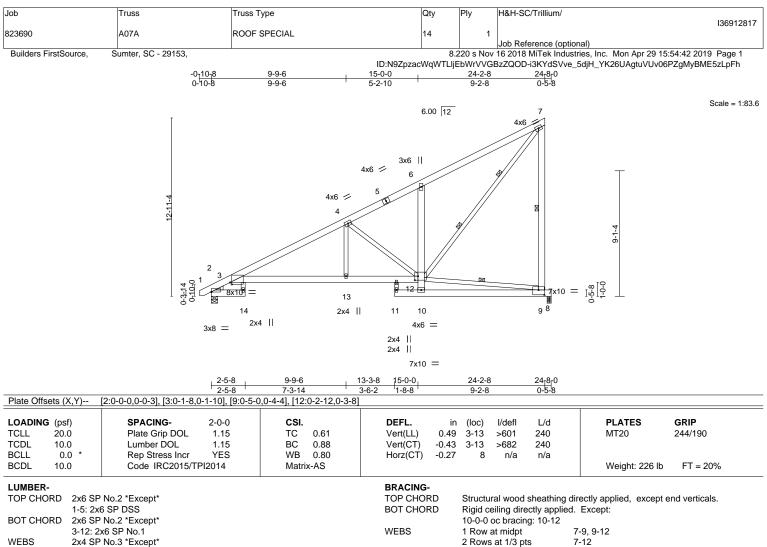
4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=367, 5=753.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.



- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Contraction of the State EAL 44925 minin May 1,2019

818 Soundside Road Edenton, NC 27932

WEBS 2x4 SP No.3 *Except* 7-9: 2x6 SP No.2, 7-12: 2x4 SP No.2

WEDGE Left: 2x4 SP No.3

REACTIONS. (lb/size) 2=1049/0-5-8, 8=972/0-3-8 Max Horz 2=853(LC 12) Max Uplift 2=-358(LC 12), 8=-727(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-17=-632/0, 3-4=-1800/772, 4-6=-1063/383, 6-7=-1102/708, 7-9=-903/914

BOT CHORD 3-13=-1430/1596, 12-13=-1432/1597, 10-12=0/314, 6-12=-382/577, 9-10=-125/334

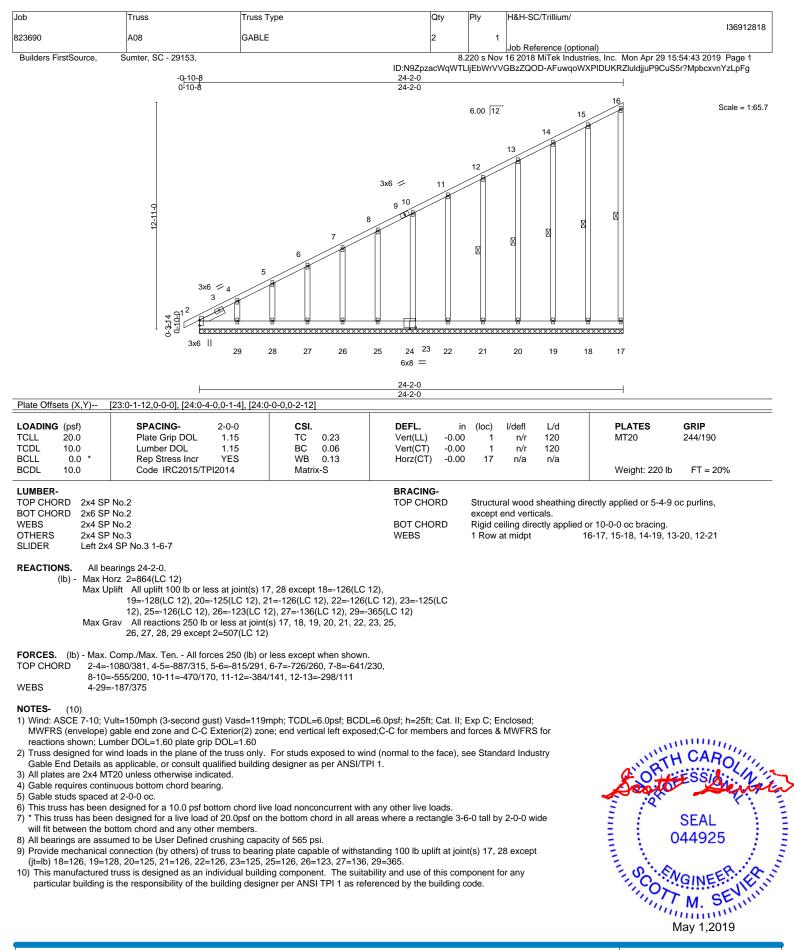
WEBS 4-12=-932/866, 4-13=-100/414, 9-12=-306/92, 7-12=-1208/1371

NOTES-

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

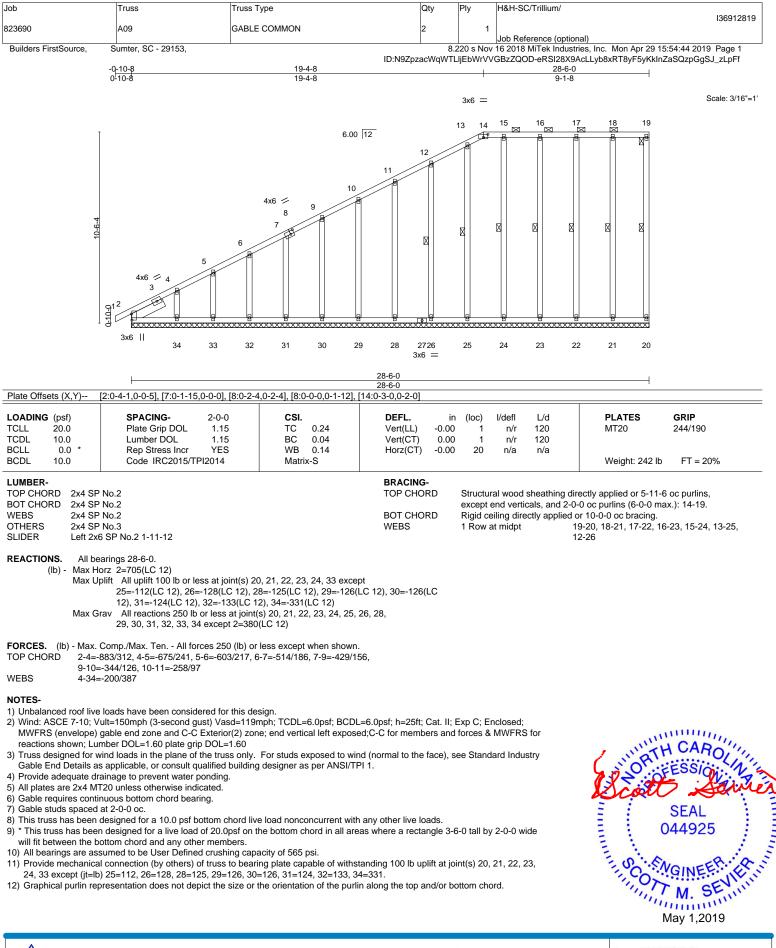
2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

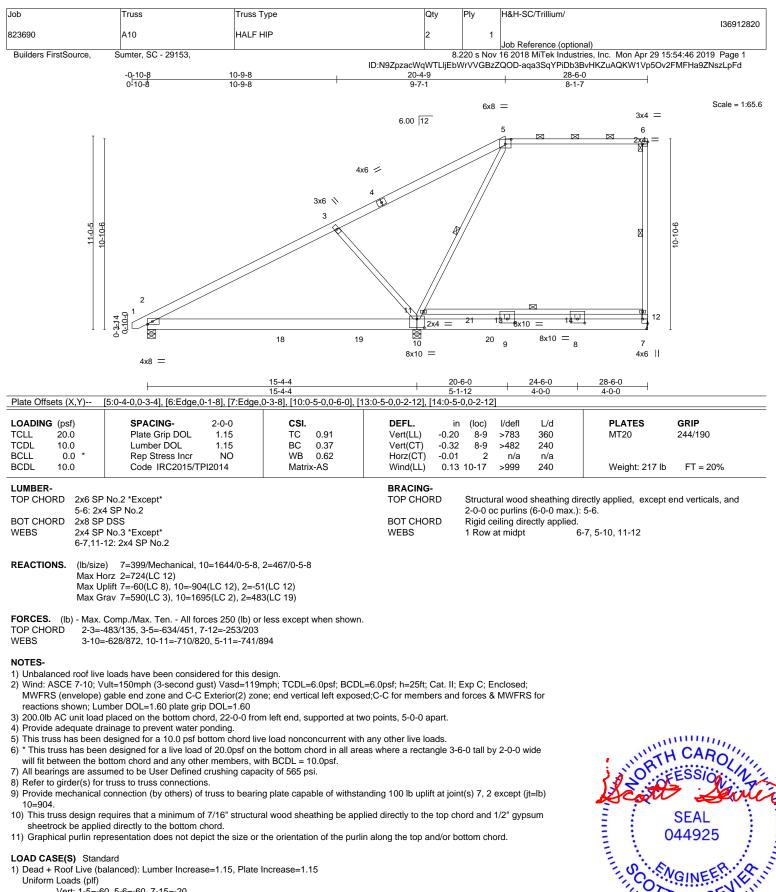
3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=358, 8=727.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

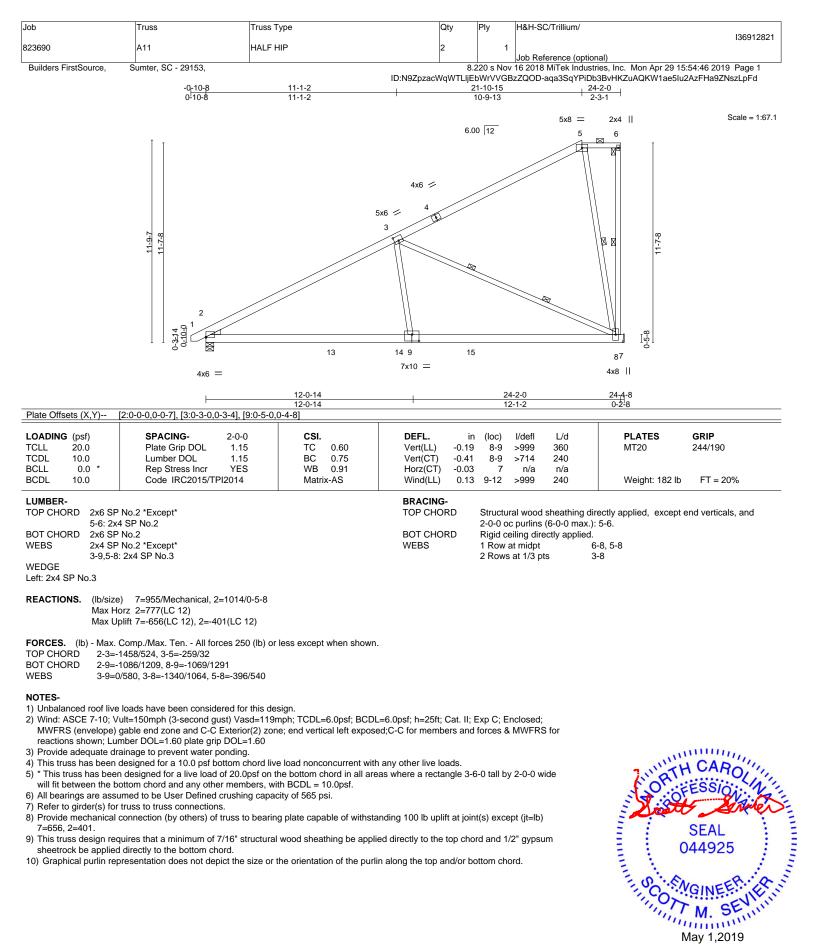
ENGINEERING BY EREPACED A MITEK Attiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

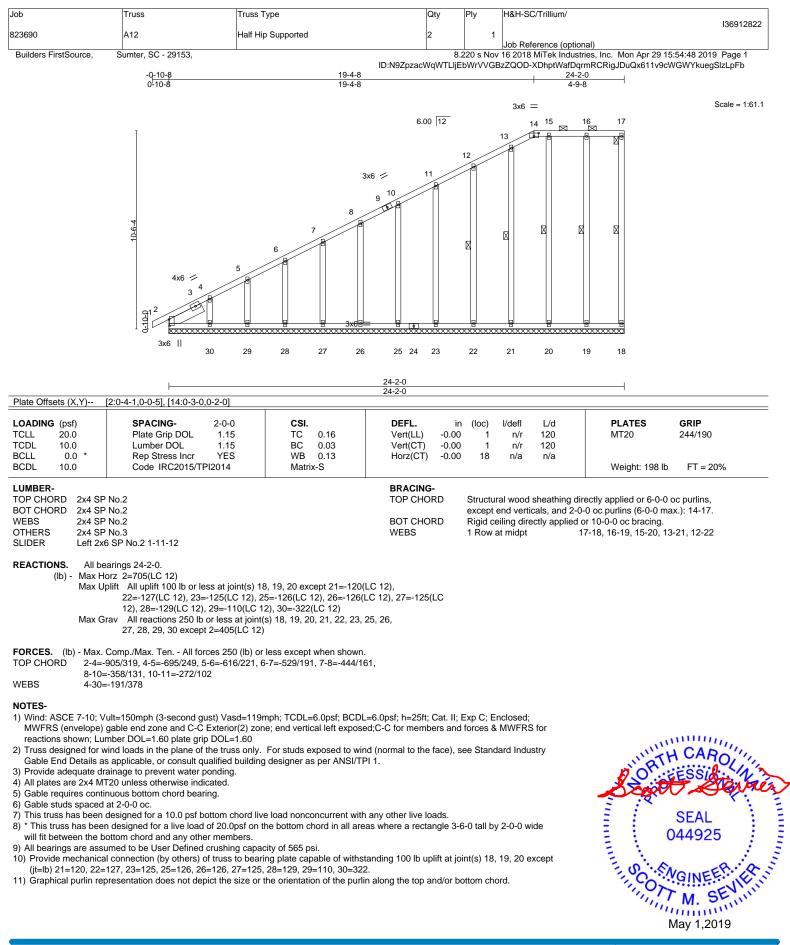
11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

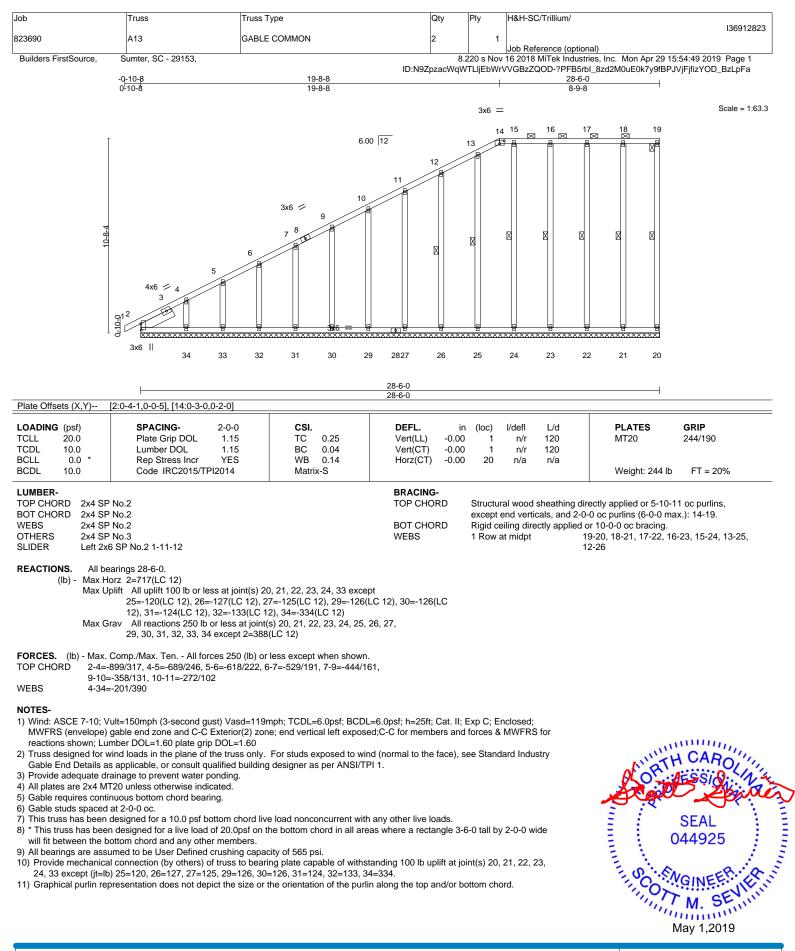

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-5=-60, 5-6=-60, 7-15=-20 Concentrated Loads (lb)

Vert: 8=-100 20=-100

minin May 1,2019


> 818 Soundside Road Edenton, NC 27932

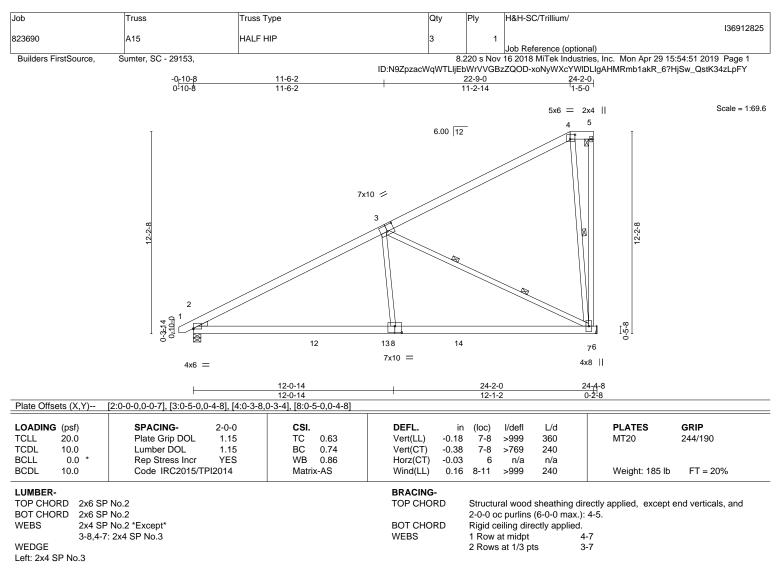
🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REFERENCE FACE INTERCISES. To according to the operation of a second sec fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MITEK Affiliate 818 Soundside Road Edenton, NC 27932



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


ENGINEERING BY EREPACED A MITEK Athilate 818 Soundside Road Edenton, NC 27932

REACTIONS. (Ib/size) 6=955/Mechanical, 2=1014/0-5-8 Max Horz 2=812(LC 12) Max Uplift 6=-695(LC 12), 2=-386(LC 12)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1453/460, 3-4=-254/56, 5-7=-307/195

 BOT CHORD
 2-8=-1055/1200, 7-8=-1046/1247

WEBS 3-8=0/590, 3-7=-1327/1074, 4-7=-535/753

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

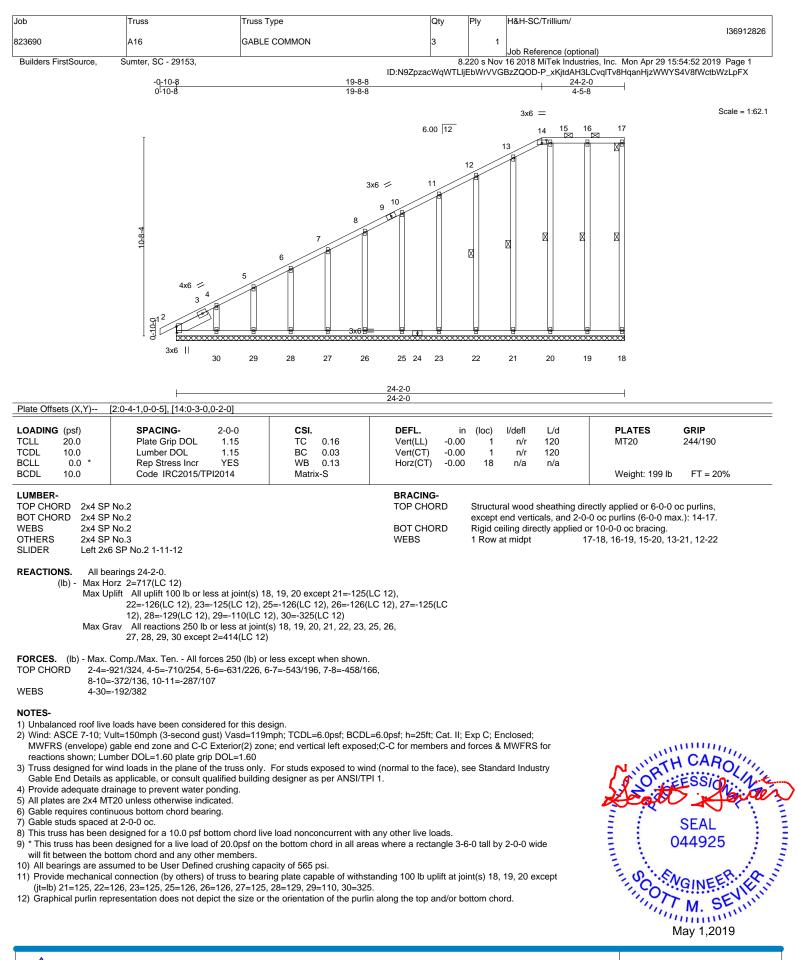
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

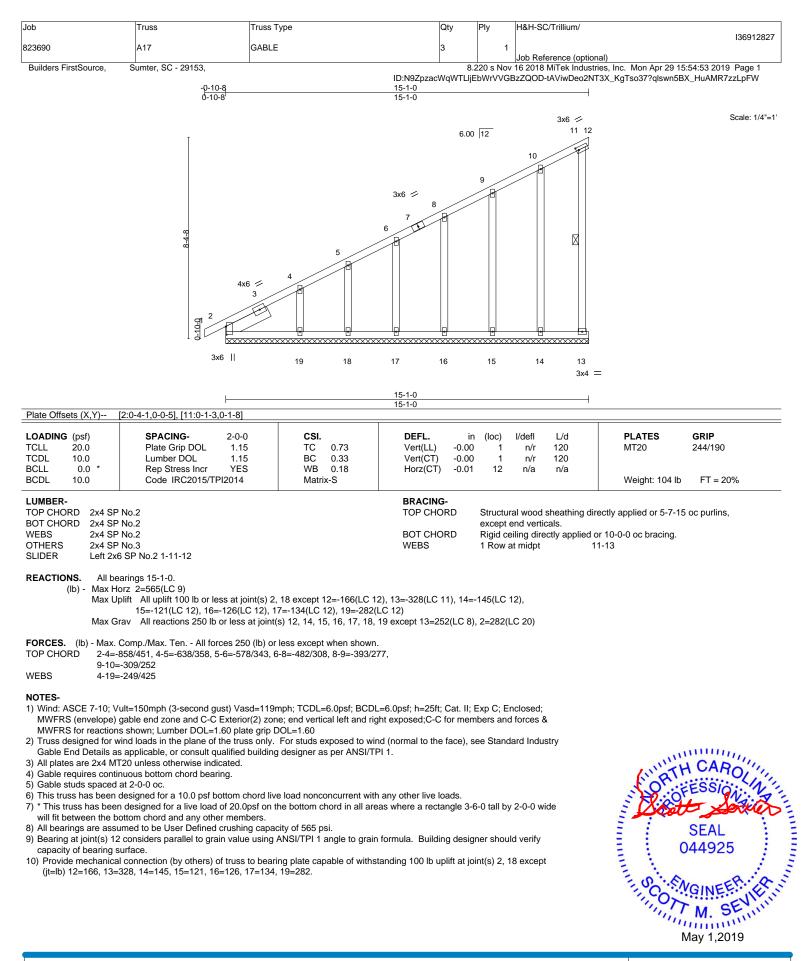
6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

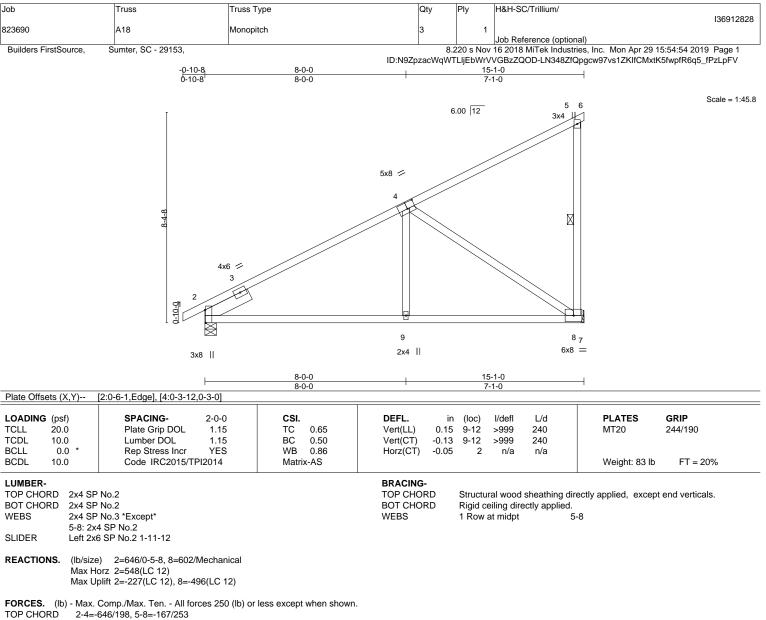
7) Refer to girder(s) for truss to truss connections.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=695, 2=386.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

ENGINEERING BY REENCO A MITek Atfiliate 818 Soundside Road Edenton, NC 27932

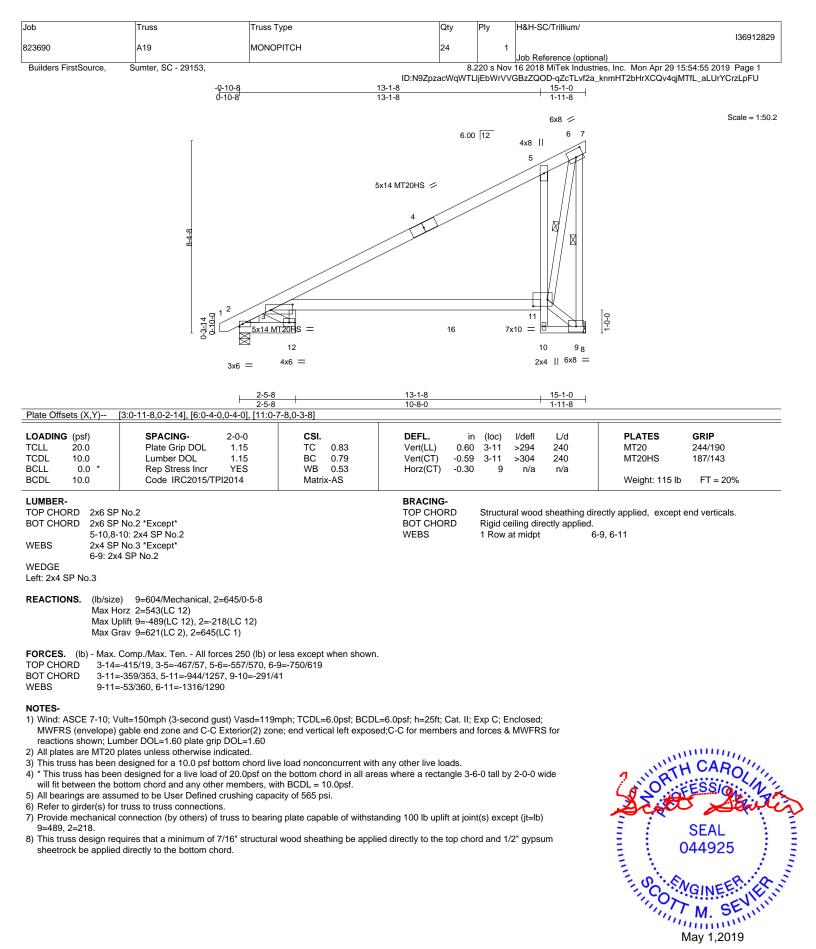
- BOT CHORD 2-9=-603/577, 8-9=-603/578
- WEBS 4-9=0/322, 4-8=-675/711

NOTES-

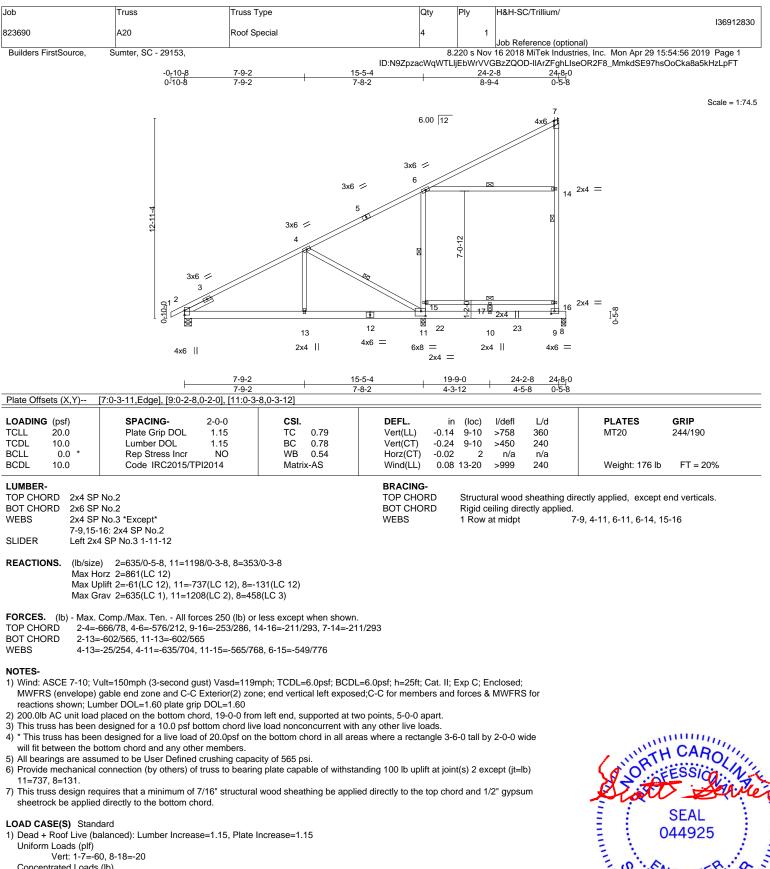
1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

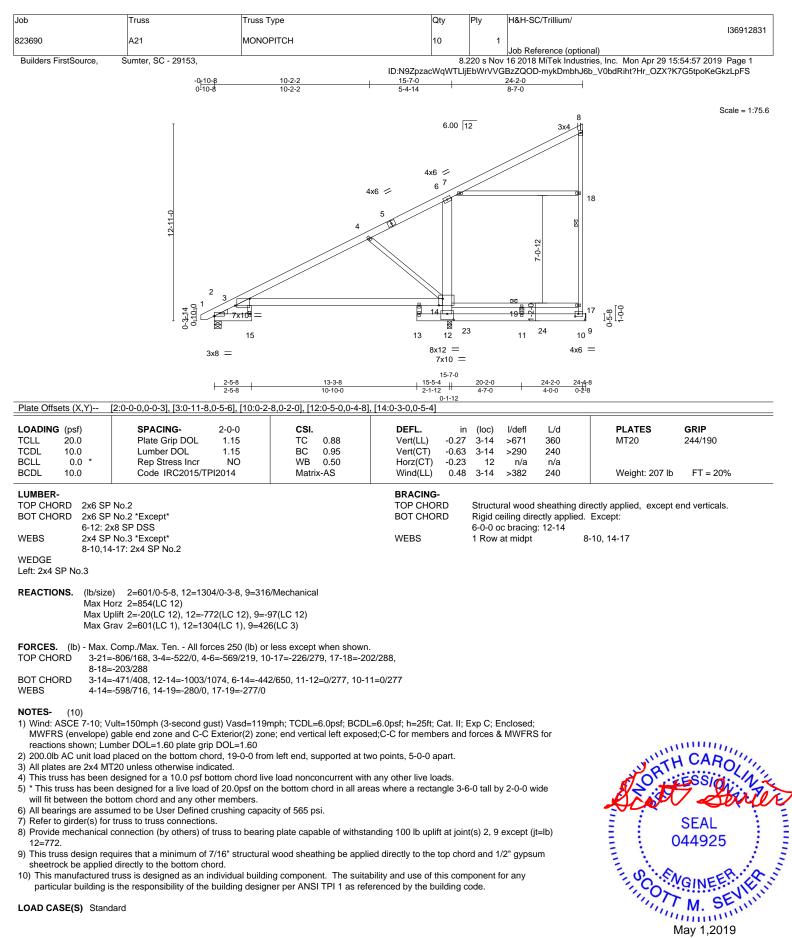
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.


5) Refer to girder(s) for truss to truss connections.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=227, 8=496.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.



🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010, 00526. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



Concentrated Loads (lb) Vert: 22=-100 23=-100

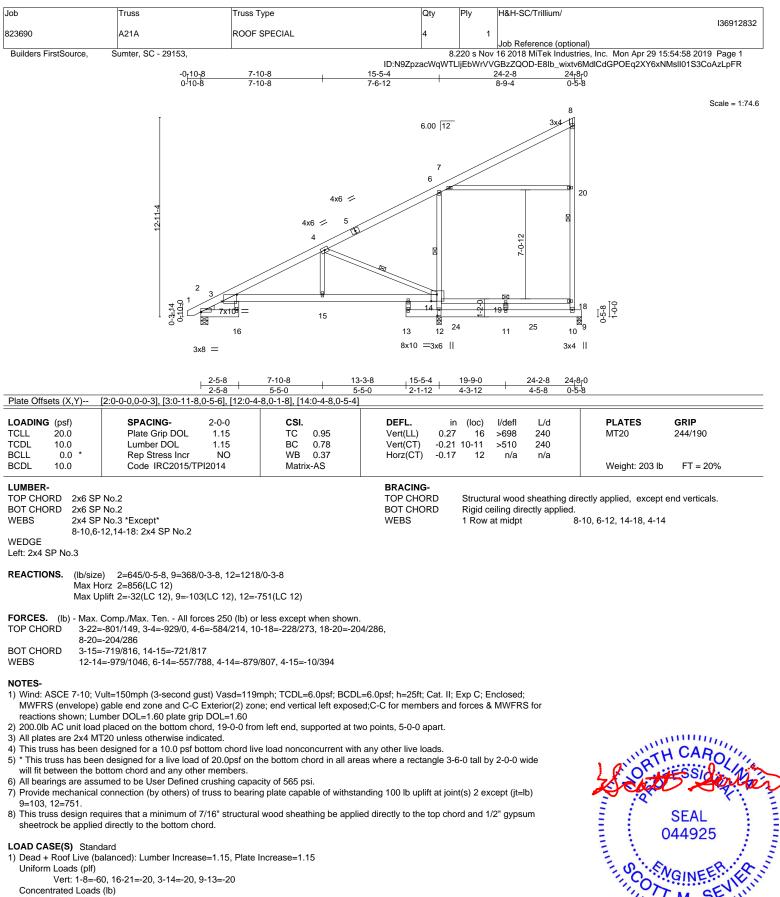
🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REFERENCE FACE INTERCISES. To according to the operation of a second sec fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. TREERING BY A Mi Tek Atfiliate 818 Soundside Road

Edenton, NC 27932

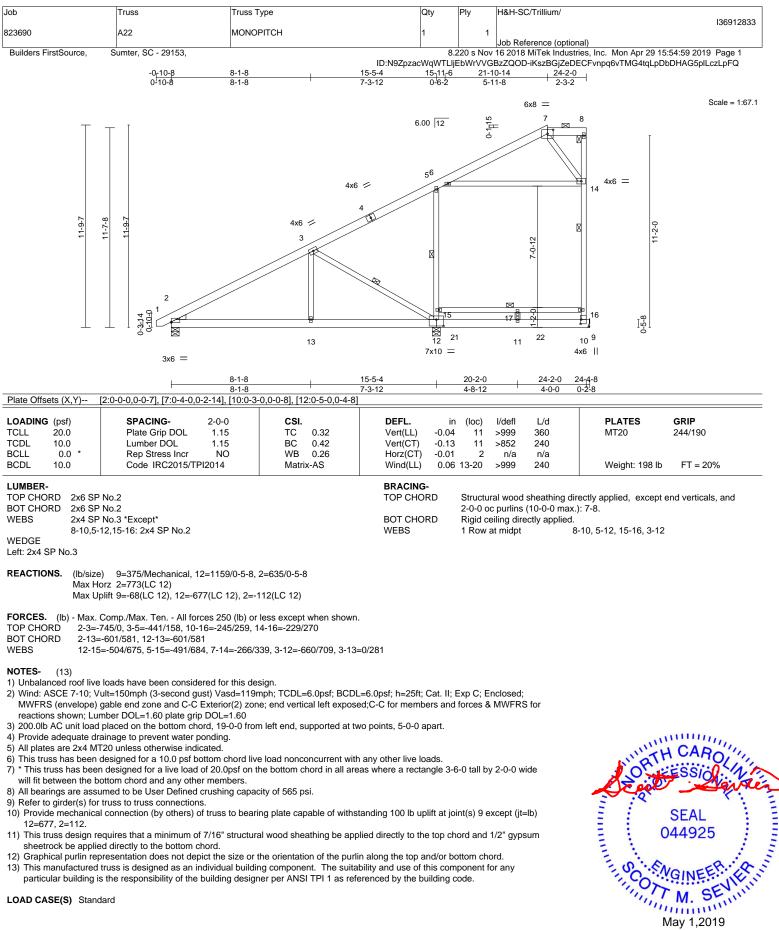
Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
823690	A21	МОЛОРІТСН	10	1	136912831
023090	AZI	MONOPTICH	10		Job Reference (optional)
Builders FirstSource, S	umter, SC - 29153,		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:54:57 2019 Page 2
		ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-mykDmbhJ6b_V0bdRiht?Hr_OZX?K7G5tpoKeGkzLpFS			


LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-8=-60, 15-20=-20, 3-14=-20, 12-13=-20, 9-12=-20

Concentrated Loads (lb) Vert: 23=-100 24=-100



Vert: 24=-100 25=-100

May 1,2019

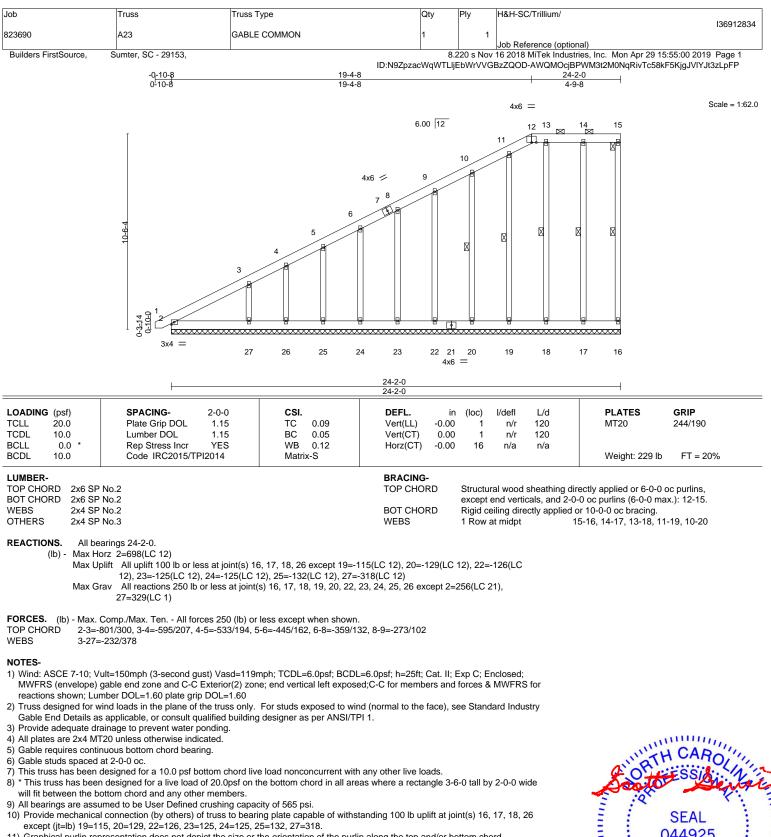
Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
					136912833
823690	A22	MONOPITCH	1	1	
					Job Reference (optional)
Builders FirstSource, S	umter, SC - 29153,		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:54:59 2019 Page 2

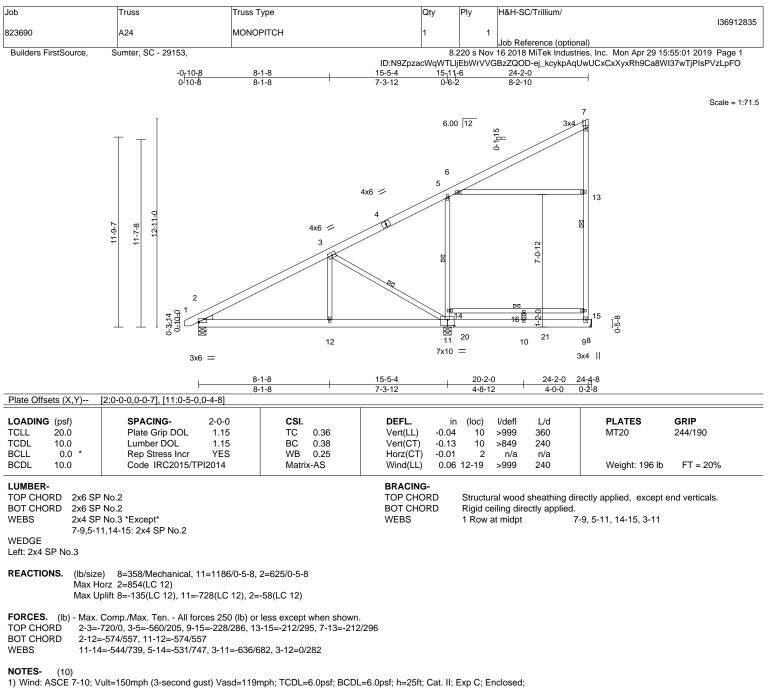
ID:N9ZpzacWqWTLljEbWrVVGBzZQOD-iKszBGjZeDECFvnpq6vTMG4tqLpDbDHAG5plLczLpFQ


LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

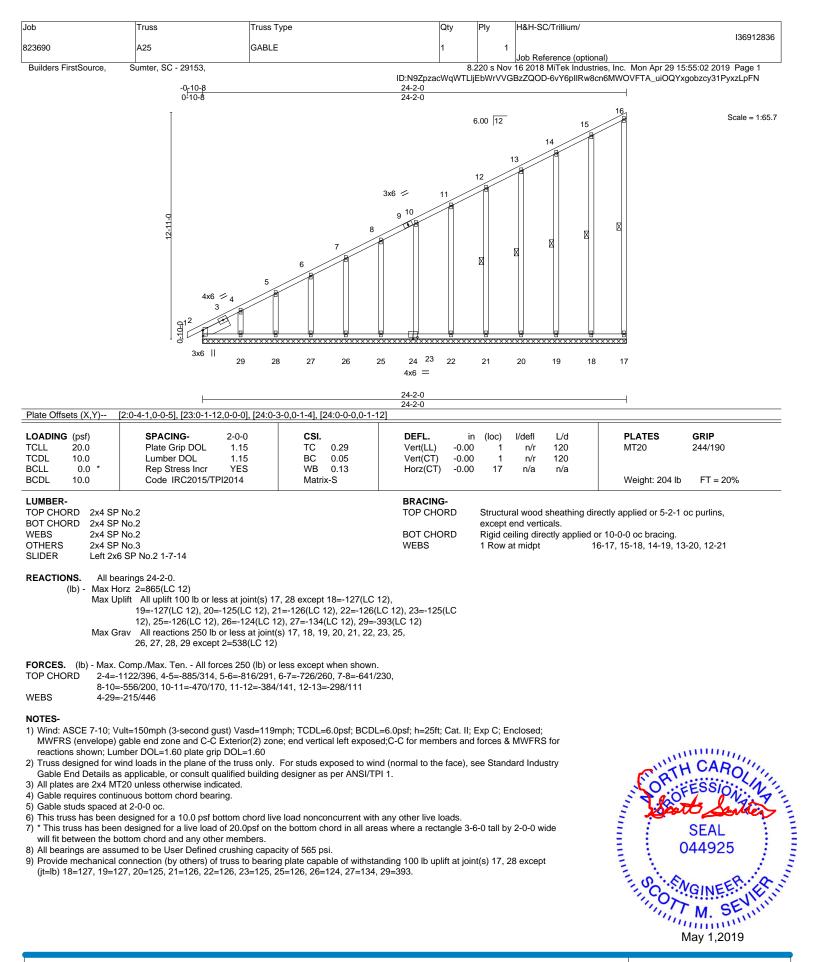
Uniform Loads (plf) Vert: 1-7=-60, 9-18=-20, 7-8=-60 Concentrated Loads (lb)

Vert: 21=-100 22=-100

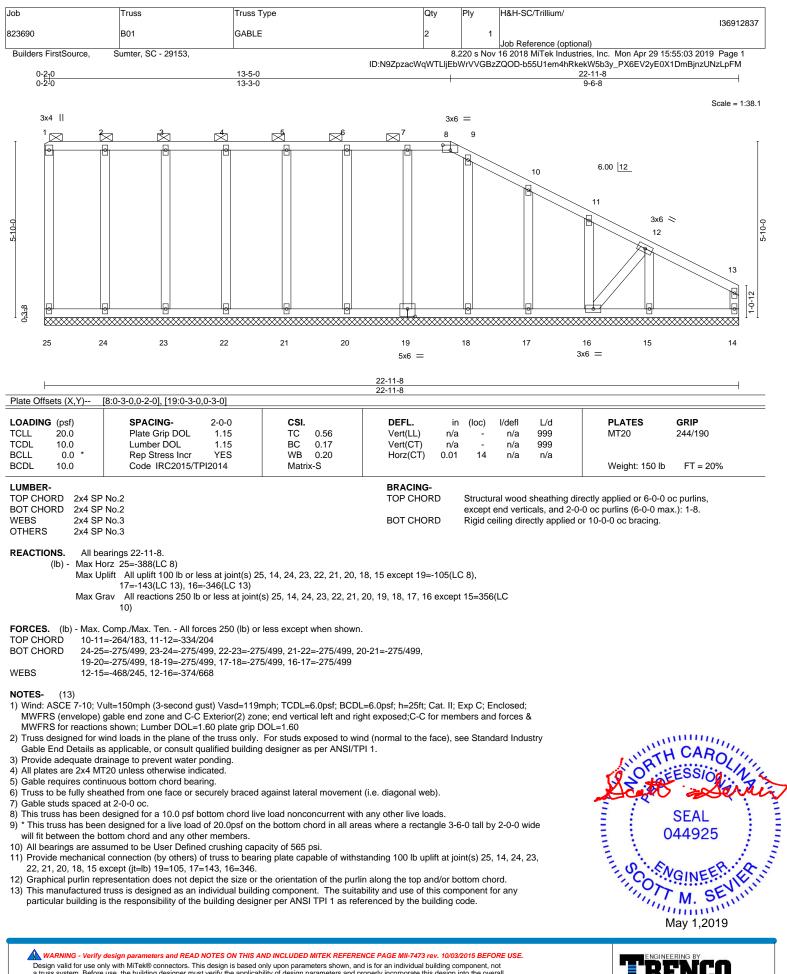


11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

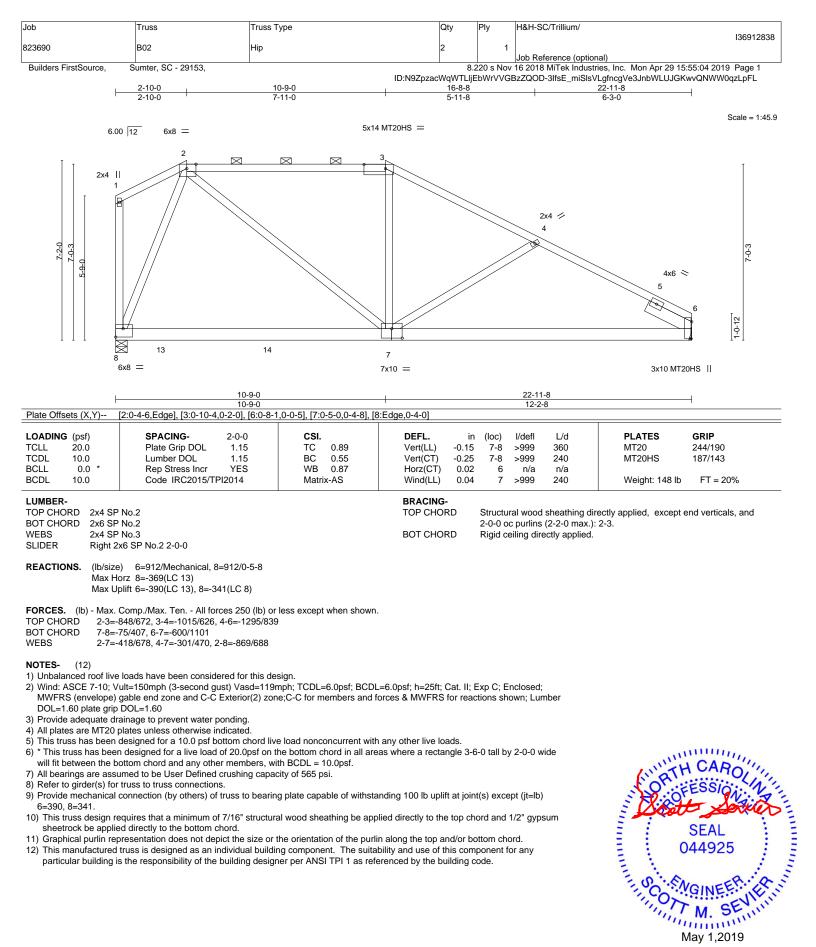
SEAL 044925 MGINEER May 1,2019


> 818 Soundside Road Edenton, NC 27932

- WWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) 200.0lb AC unit load placed on the bottom chord, 19-0-0 from left end, supported at two points, 5-0-0 apart.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 8=135, 11=728.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

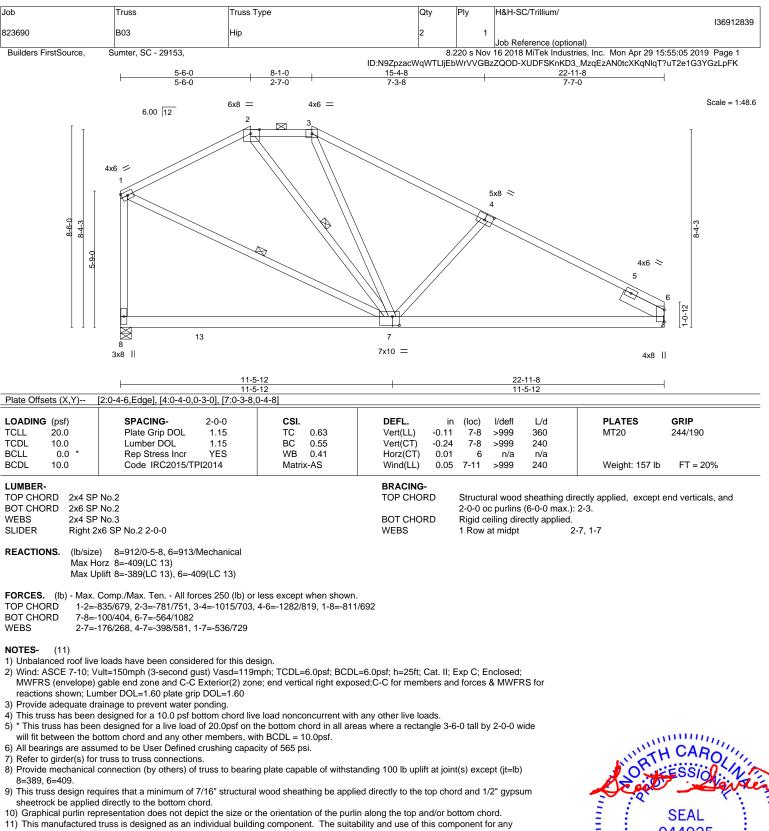


818 Soundside Road Edenton, NC 27932



ENGINEERING BY RENOLO A MITER Atfiliate 818 Soundside Road

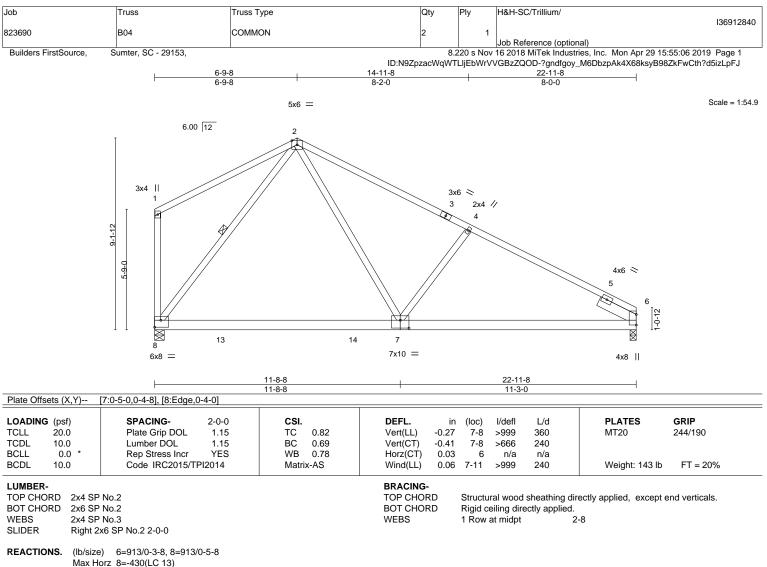
Edenton, NC 27932



a truss system. Before used with the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building denigner must verify the applicability of design parameters and properly incorporate this design into the overall building denigner must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building deriver and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component** 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932



particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

SEAL 044925 MGINEER, HANNIN May 1,2019

> ENGINEERING BY ENGINEERING BY A MITER Atfiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Max Horz 8=-430(LC 13) Max Uplift 6=-414(LC 13), 8=-423(LC 13) Max Grav 6=913(LC 1), 8=937(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-1040/761, 4-6=-1239/817, 1-8=-214/258

BOT CHORD 7-8=-47/520, 6-7=-557/1078

WEBS 2-7=-403/750, 4-7=-445/621, 2-8=-767/560

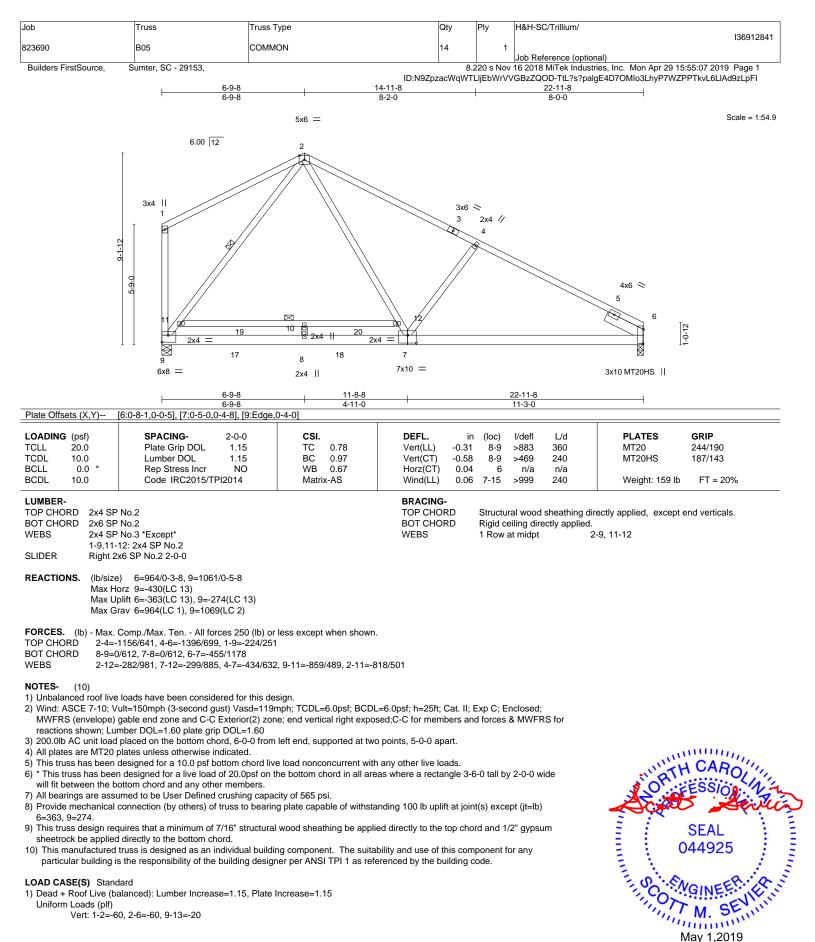
NOTES- (8)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.


- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=414, 8=423.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

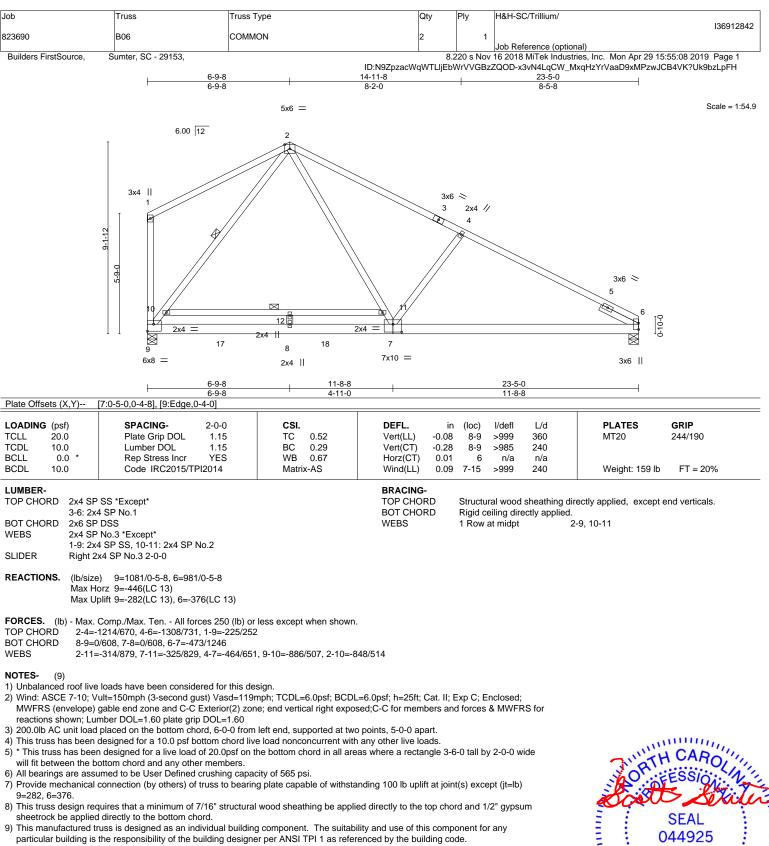
Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affiliate 818 Soundside Road

Edenton, NC 27932

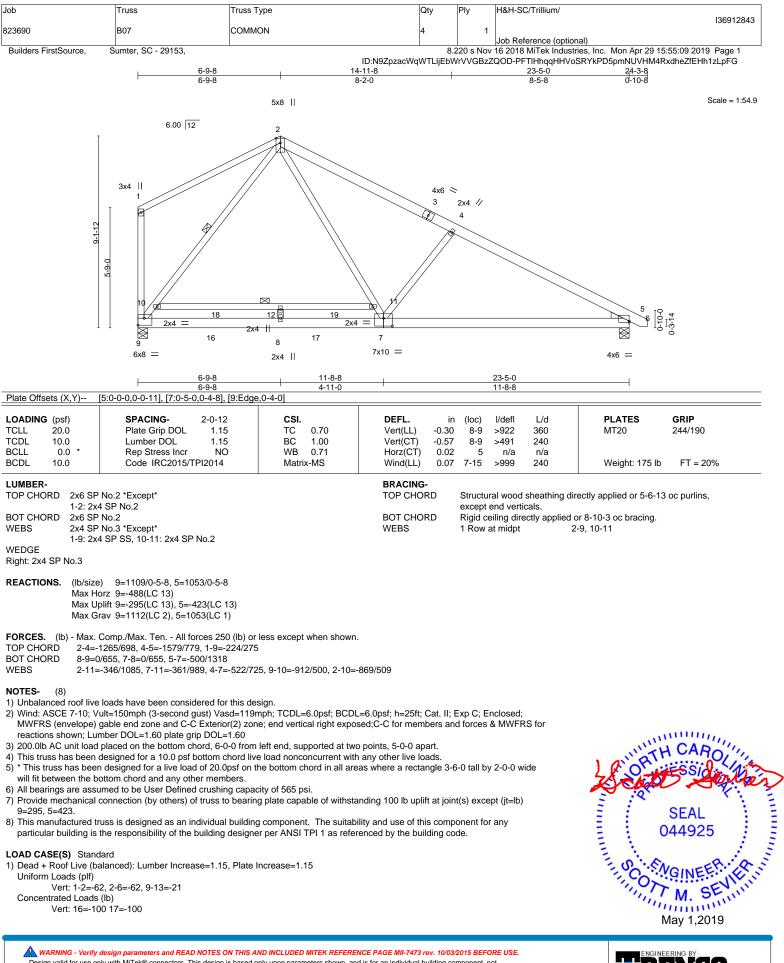
Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
					136912841
823690	B05	COMMON	14	1	
					Job Reference (optional)
Builders FirstSource, Sumter, SC - 29153,					16 2018 MiTek Industries, Inc. Mon Apr 29 15:55:07 2019 Page 2


ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-TtL?s?palgE4D7OMIo3LhyP7WZPPTkvL6LIAd9zLpFI

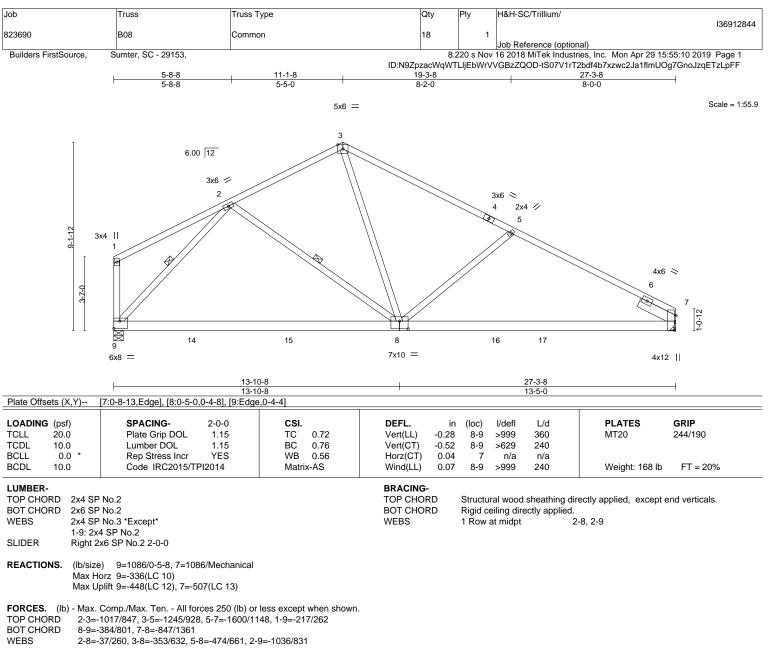
LOAD CASE(S) Standard

Concentrated Loads (Ib) Vert: 17=-100 18=-100

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

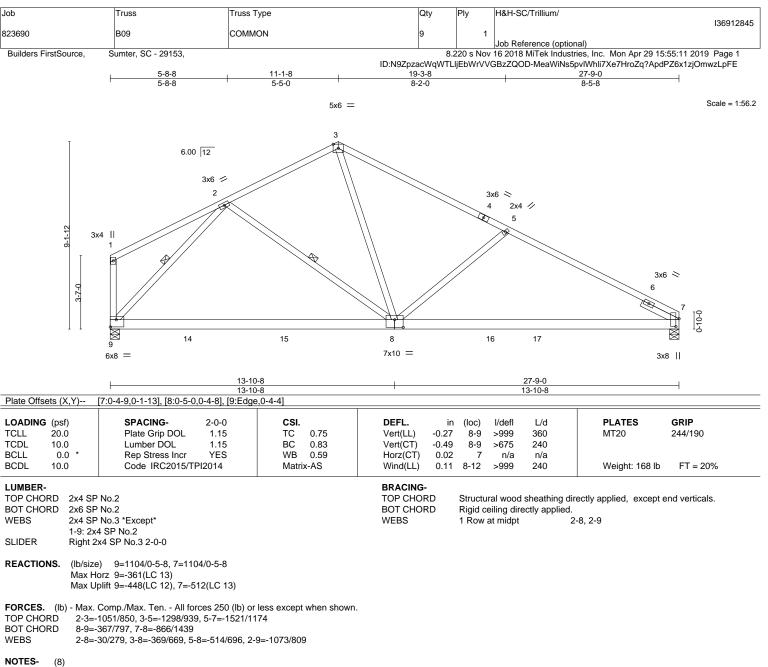


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


818 Soundside Road Edenton, NC 27932

Design valid for use only with MiTek onnectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932


NOTES- (9)

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces &
- MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Bearings are assumed to be: Joint 9 User Defined crushing capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=448, 7=507.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical right exposed; C-C for members and forces & MWFRS for

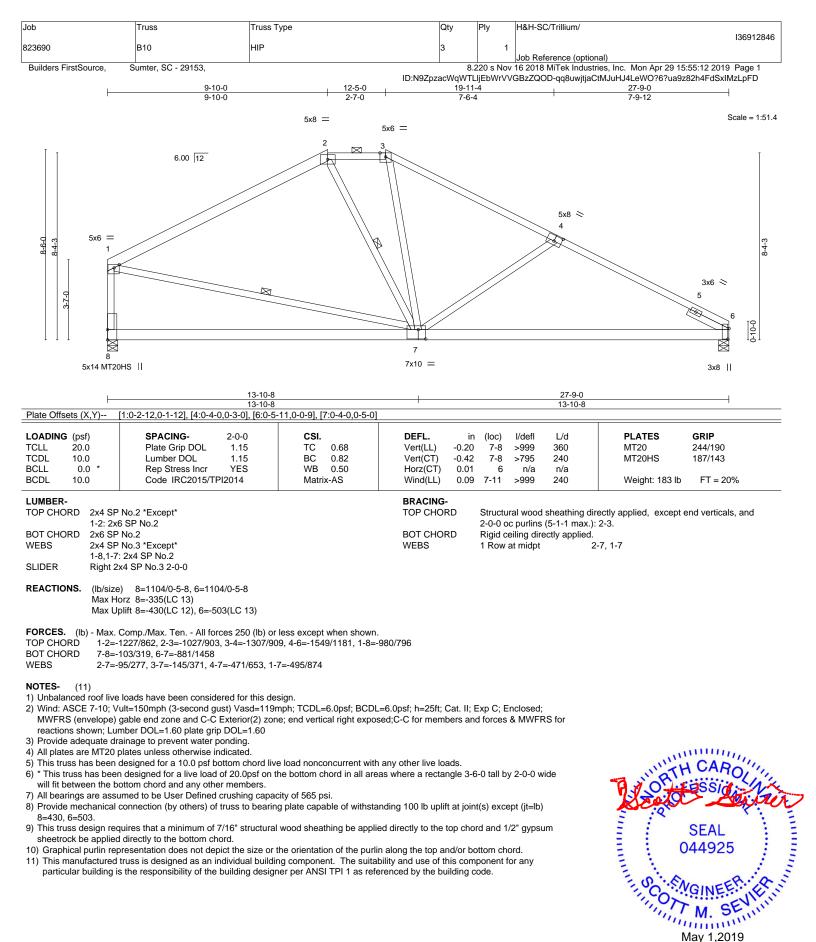
reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

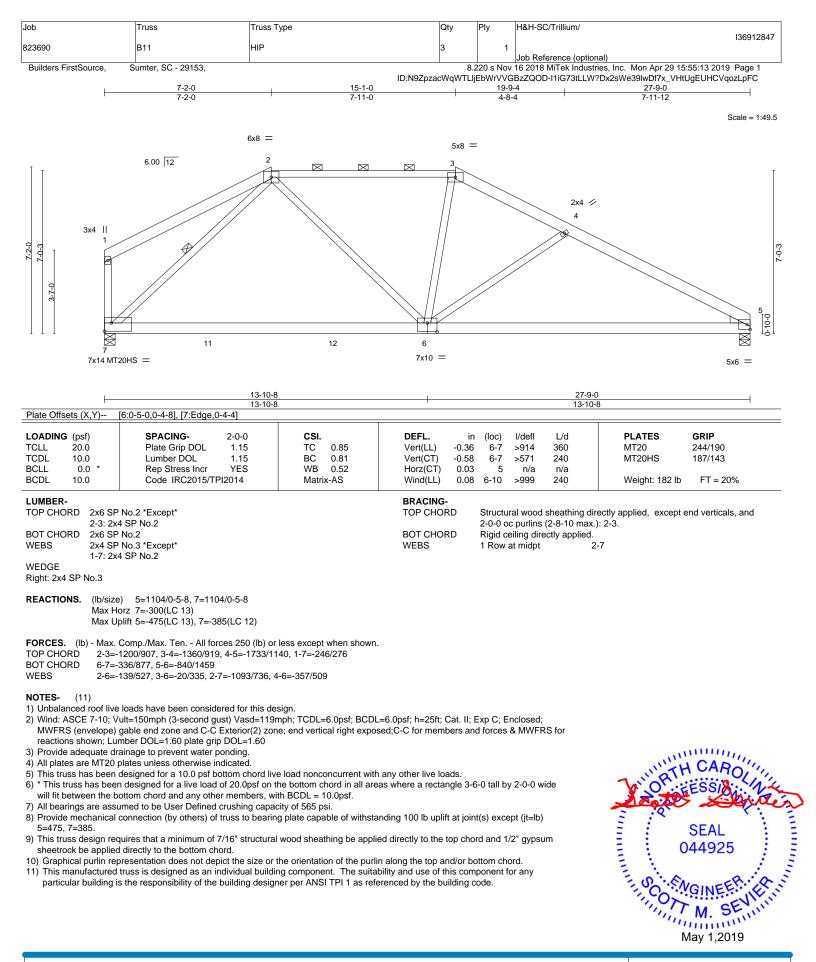
4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=448, 7=512.

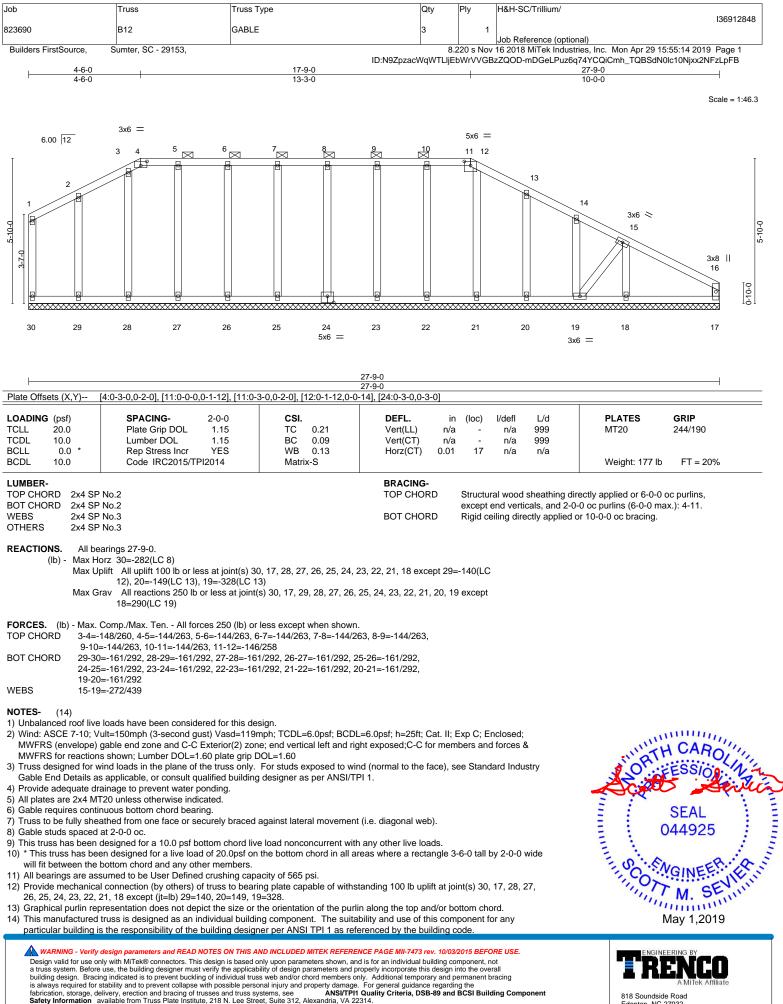

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

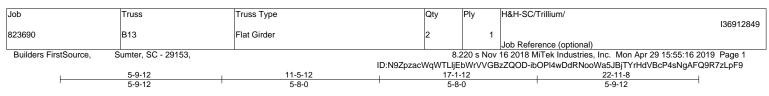
8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

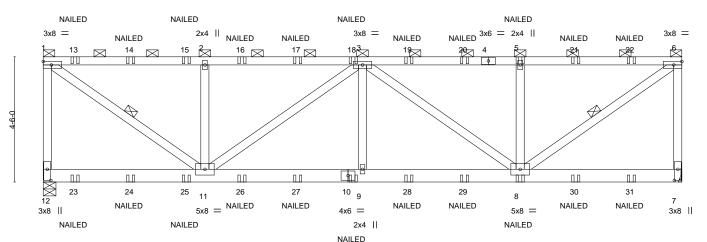

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **NSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


Edenton, NC 27932

Edenton, NC 27932

Scale = 1:41.4

1	5-9-12	11-5-12	17-1-12	22-11-8	I
	5-9-12	5-8-0	5-8-0	5-9-12	1
Plate Unsets ()	K,Y) [7:0-4-12,0-1-8], [12:0-4-12,0-	1-8]			

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.96 BC 0.40 WB 0.46 Matrix-MS	DEFL. in (loc) I/defl L/d PLATES GRIP Vert(LL) 0.18 9-11 >999 240 MT20 244/190 Vert(CT) -0.12 9-11 >999 240 MT20 244/190 Horz(CT) -0.03 7 n/a n/a Weight: 155 lb FT = 20%				
LUMBER- TOP CHORD 2x4 SF	P No.2		BRACING- TOP CHORD 2-0-0 oc purlins (4-2-13 max.): 1-6. except end verticals.				

BOT CHORD

WEBS

Rigid ceiling directly applied or 4-11-5 oc bracing.

1-11, 6-8

1 Row at midpt

BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.2

- REACTIONS. (lb/size) 12=1266/0-5-8, 7=1245/Mechanical Max Uplift 12=-1562(LC 4), 7=-1501(LC 4) Max Grav 12=1306(LC 29), 7=1252(LC 29)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 1-12=-1200/1508, 1-2=-1423/1700, 2-3=-1423/1700, 3-5=-1419/1695, 5-6=-1419/1695,
- 6-7=-1169/1465
- BOT CHORD 9-11=-2223/1858, 8-9=-2223/1858 WFBS 1-11=-2054/1724, 2-11=-509/758, 3-11=-538/648, 3-9=-99/316, 3-8=-543/654, 5-8=-508/755, 6-8=-2050/1721

NOTES-

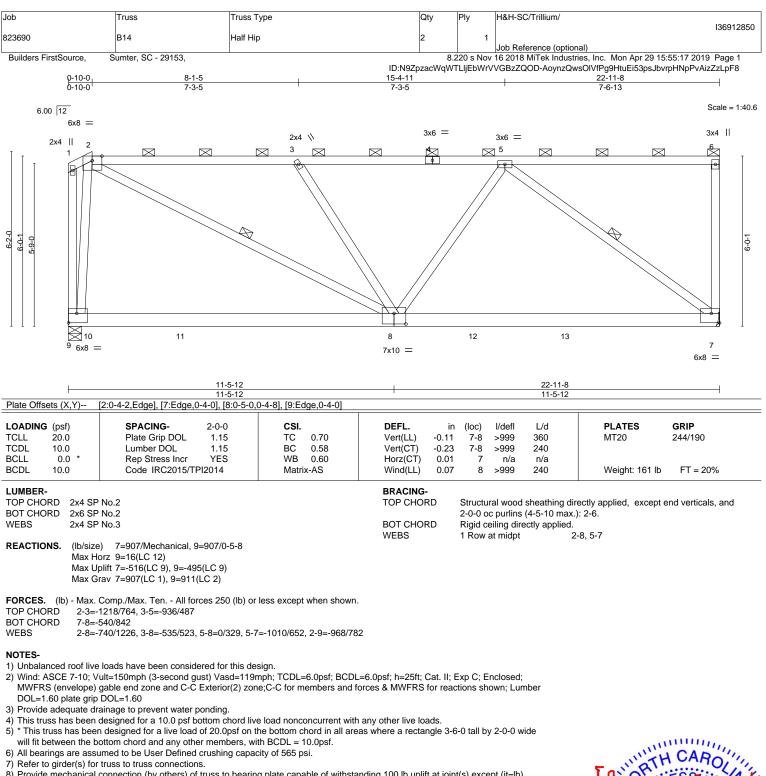
1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=1562, 7=1501.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)

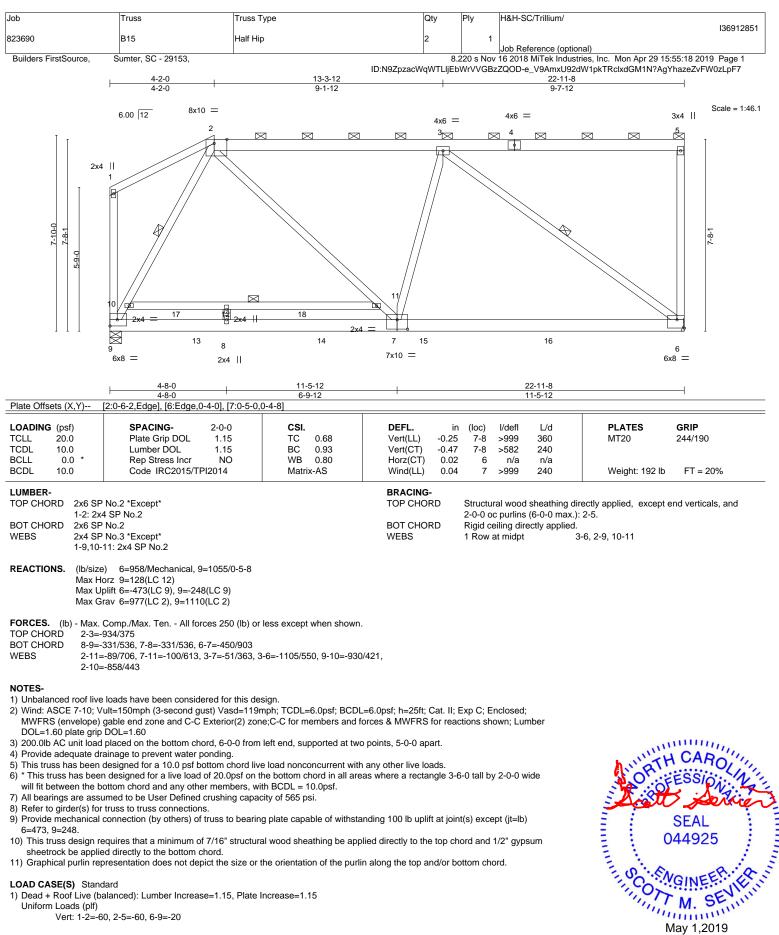
Vert: 1-6=-60, 7-12=-20


Concentrated Loads (lb)

Vert: 10=-18(F) 5=-46(F) 8=-18(F) 13=-46(F) 14=-46(F) 15=-46(F) 16=-46(F) 17=-46(F) 18=-46(F) 19=-46(F) 20=-46(F) 18=-46(F) 18 21=-46(F) 22=-46(F) 23=-18(F) 24=-18(F) 25=-18(F) 26=-18(F) 27=-18(F) 28=-18(F) 29=-18(F) 30=-18(F) 31=-18(F)

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=516, 9=495.


9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

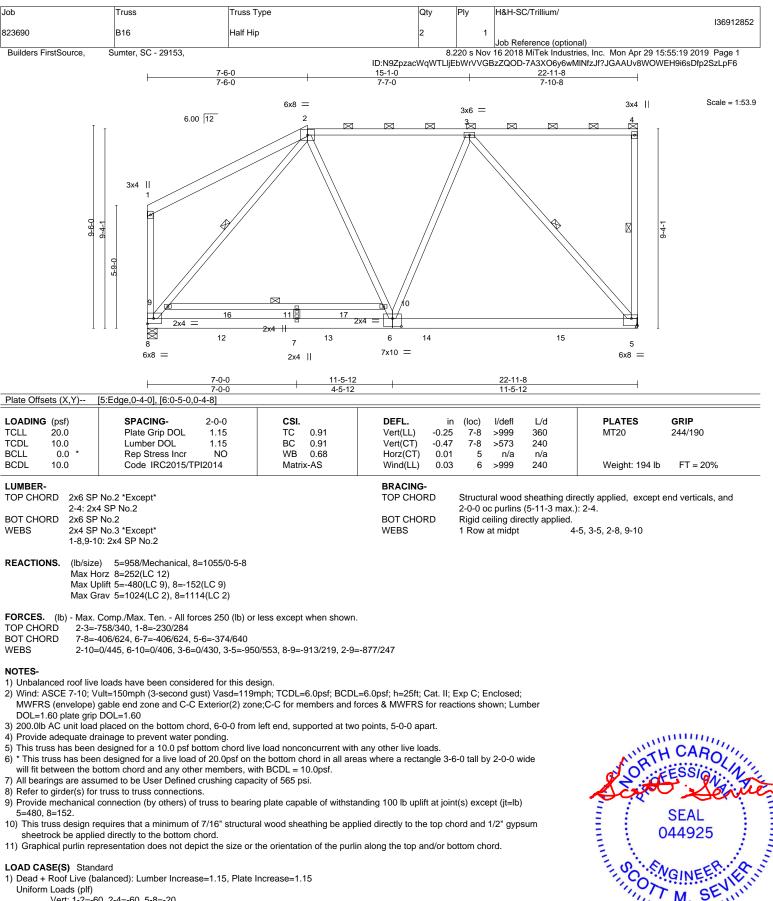
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. A MITEK Atfiliate B18 Soundside Road Edenton, NC 27932

	Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
						136912851
	823690	B15	Half Hip	2	1	
						Job Reference (optional)
Builders FirstSource, Sumter, SC - 29153,					220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:55:18 2019 Page 2


ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-e_V9AmxU92dW1pkTRclxdGM1N?AgYhazeZvFW0zLpF7

LOAD CASE(S) Standard

Concentrated Loads (Ib) Vert: 13=-100 14=-100

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Vert: 1-2=-60, 2-4=-60, 5-8=-20

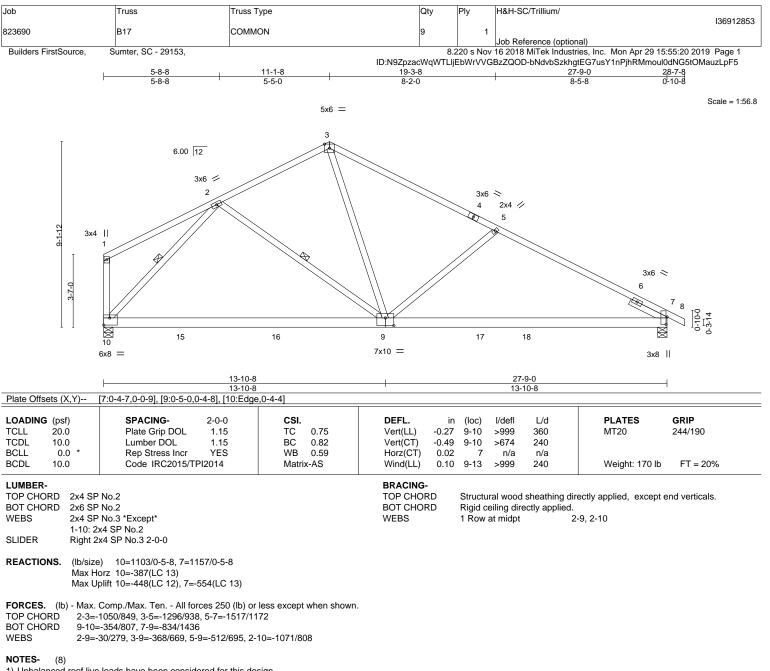
Continued on page 2

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

(IIIIIII) May 1,2019

Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
					136912852
823690	B16	Half Hip	2	1	
					Job Reference (optional)
Builders FirstSource, S	umter, SC - 29153,		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:55:19 2019 Page 2


ID:N9ZpzacWqWTLljEbWrVVGBzZQOD-7A3XO6y6wMINfzJf?JGAAUv8WOWEH9i6sDfp2SzLpF6

LOAD CASE(S) Standard

Concentrated Loads (Ib) Vert: 12=-100 13=-100

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical right exposed; C-C for members and forces & MWFRS for

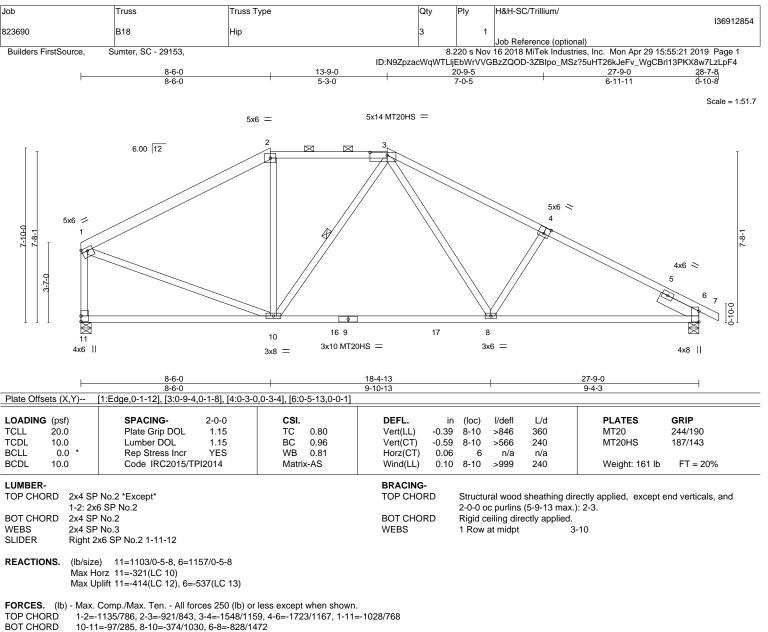
reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=448, 7=554

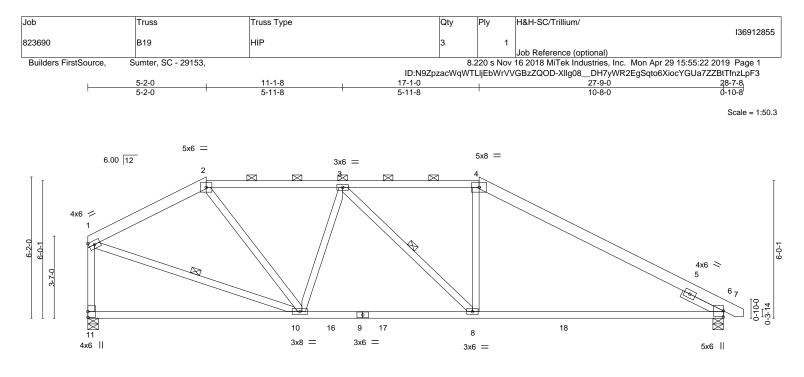

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

- WEBS 3-10=-276/266, 3-8=-369/573, 4-8=-323/505, 1-10=-520/911


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) All bearings are assumed to be User Defined crushing capacity of 565 psi
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=414, 6=537.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

I	9-4-3			17-1-0	27-9-0			1		
	9-4-3		-	7-8-13	1		10)-8-0		
Plate Offsets (X,Y) [6:0-3-2,0-0-1]										
	SPACING- 2-0-0		CSI	DEEL	in (loc)	l/defl	L/d	PLATES	GRIP	

LOADING (psi TCLL 20.4	,	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC	0.71	DEFL. Vert(LL)	in -0.20	(loc) 8-14	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
TCDL 10.	-	Lumber DOL	1.15	BC	0.89	Vert(CT)	-0.45		>738	240		
BCLL 0. BCDL 10.	0 *	Rep Stress Incr Code IRC2015/TF	YES PI2014	WB Matrix	0.44 x-AS	Horz(CT) Wind(LL)	0.04 0.24	6 8-14	n/a >999	n/a 240	Weight: 163 lb	FT = 20%
LUMBER- TOP CHORD 2x6 SP No.2 *Except* 2-4: 2x4 SP No.2						BRACING- TOP CHOR				sheathing dii (4-7-5 max.):	rectly applied, except e	end verticals, and
BOT CHORD						BOT CHORD Rigid ceiling directly applied.						
WEBS SLIDER	2x4 SP N Right 2x4	№.3 4 SP No.3 1-11-12				WEBS		1 Row	at midpt	3	3-8, 1-10	

REACTIONS. (lb/size) 11=1104/0-5-8, 6=1146/0-5-8 Max Horz 11=-286(LC 10) Max Uplift 11=-391(LC 9), 6=-485(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1230/870, 2-3=-1173/889, 3-4=-1349/1036, 4-6=-1591/975, 1-11=-1016/752

BOT CHORD 10-11=-100/291, 8-10=-567/1308, 6-8=-592/1342

WEBS 2-10=-36/312, 3-10=-426/393, 4-8=-30/327, 1-10=-740/1065

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

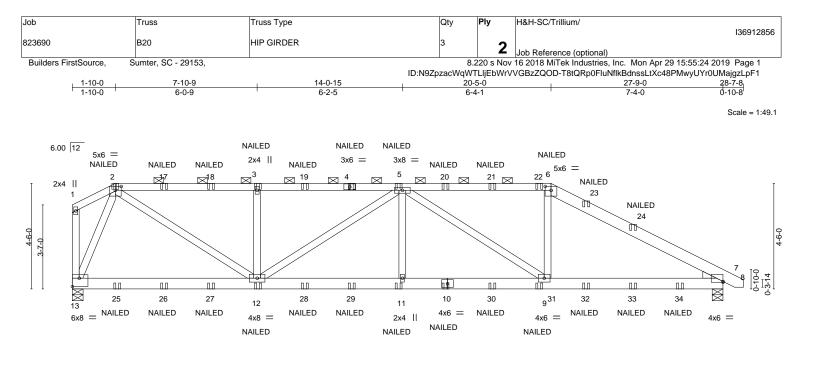
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=391, 6=485.


8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oblesse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 2234.

	7-10-9 7-10-9	14-0-15 6-2-5	20-5-0 6-4-1		27-9-0 7-4-0	
Plate Offsets (X,Y)	[2:0-3-0,0-2-0], [6:0-3-0,0-2-0],	[7:0-0-0,0-0-7], [13:Edge,0-4-4]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0Plate Grip DOL1.Lumber DOL1.Rep Stress IncrNCode IRC2015/TPI201	15 TC 0.60 15 BC 0.36 O WB 0.45	DEFL. in (loc) I/def Vert(LL) 0.15 11 >999 Vert(CT) -0.10 11 >999 Horz(CT) -0.04 7 n/a	9 240 9 240	PLATES MT20 Weight: 353 lb	GRIP 244/190 FT = 20%
6-8: 2x BOT CHORD 2x6 SF	P No.2 *Except* k6 SP No.2 P No.2 P No.2		except end v	od sheathing directly a erticals, and 2-0-0 oc p directly applied or 9-2-	ourlins (6-0-0 max	
Max H Max L	e) 7=1546/0-5-8, 13=1521/0- lorz 13=-253(LC 25) Jplift 7=-1468(LC 9), 13=-1735(Grav 7=1546(LC 1), 13=1638(L	LC 4)				
TOP CHORD2-3=BOT CHORD12-1WEBS6-9=	-2408/2604, 3-5=-2408/2604, 5 3=-708/777, 11-12=-3029/2973	50 (lb) or less except when shown. -6=-2205/2342, 6-7=-2571/2544 , 9-11=-3029/2973, 7-9=-2146/224(2239/2114, 5-11=-96/319, 3-12=-				
Top chords connect Bottom chords connected webs connected as 2) All loads are consid ply connections hav 3) Unbalanced roof liv 4) Wind: ASCE 7-10; 1 MWFRS (envelope) 5) Provide adequate d 6) This truss has been 7) * This truss has been 7) * This truss has been will fit between the l 8) All bearings are as 9) Provide mechanical 7=1468, 13=1735. 10) Graphical purlin re	hected as follows: 2x6 - 2 rows as s follows: 2x4 - 1 row at 0-9-0 or lered equally applied to all plies ve been provided to distribute or le loads have been considered f Vult=150mph (3-second gust) V gable end zone; end vertical le rainage to prevent water pondin designed for a 10.0 psf bottom en designed for a 10.0 psf bottom sound to be User Defined crush connection (by others) of truss presentation does not depict th s 3-10d (0.148"x3") or 3-12d (0	9-0 oc, 2x6 - 2 rows staggered at 0- staggered at 0-9-0 oc. except if noted as front (F) or back ly loads noted as (F) or (B), unless or this design. asd=119mph; TCDL=6.0psf; BCDL ft and right exposed; Lumber DOL= ig. chord live load nonconcurrent with .0psf on the bottom chord in all area mbers. ing capacity of 565 psi. to bearing plate capable of withstar	 (B) face in the LOAD CASE(S) section otherwise indicated. =6.0psf; h=25ft; Cat. II; Exp C; Enclose 1.60 plate grip DOL=1.60 any other live loads. as where a rectangle 3-6-0 tall by 2-0-0 anding 100 lb uplift at joint(s) except (jt= n along the top and/or bottom chord. 	ed;		SEAL 44925 M. SEVILITION
Continued on page 2					IVI	ay 1,2019
	y design parameters and READ NOTES	ON THIS AND INCLUDED MITEK REFEREN	ICE PAGE MII-7473 rev. 10/03/2015 BEFORE US	E.	ENGINEE	RING BY

818 Soundside Road Edenton, NC 27932

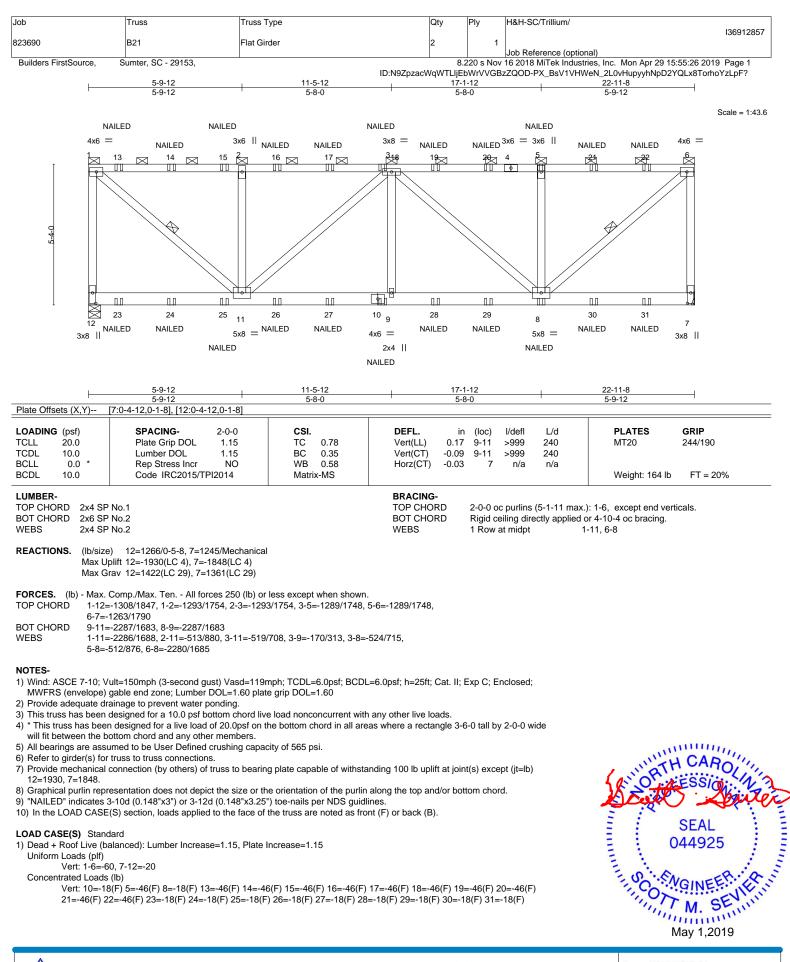
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-1473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Truss Type	Qty	Ply	H&H-SC/Trillium/
			136912856
HIP GIRDER	3	2	
		_	Job Reference (optional)
C - 29153,	8.3	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:55:24 2019 Page 2
ŝ		HIP GIRDER 3	HIP GIRDER 3 2

ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-T8tQRp0FluNflkBdnssLtXc48PMwyUYr0UMajgzLpF1

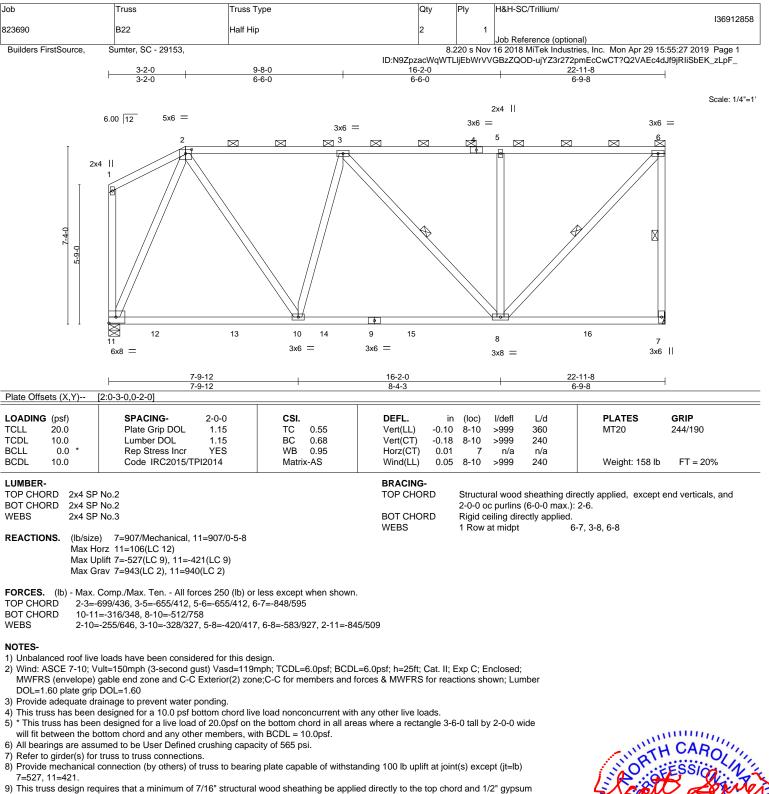
LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-2=-60, 2-6=-60, 6-8=-60, 13-14=-20

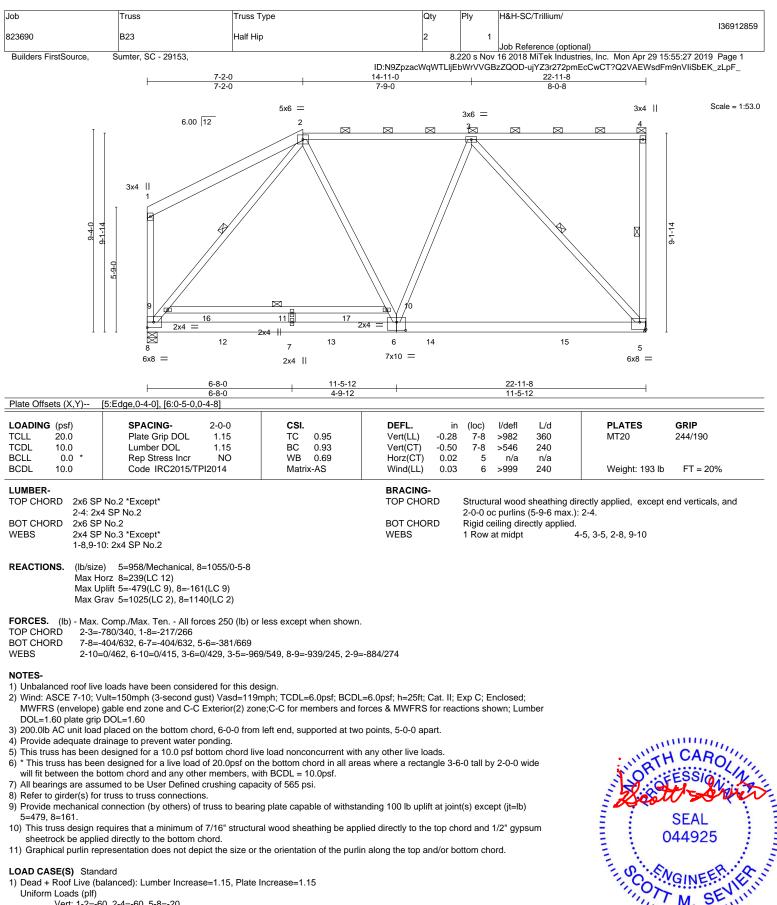
Concentrated Loads (lb)

Vert: 2=-46(B) 42=-46(B) 10=-18(B) 5=-46(B) 12=-18(B) 11=-18(B) 3=-46(B) 17=-46(B) 18=-46(B) 19=-46(B) 20=-46(B) 21=-46(B) 22=-46(B) 24=-2(B) 25=-18(B) 26=-18(B) 27=-18(B) 27=-18(B) 30=-18(B) 31=-18(B) 32=-97(B) 33=-61(B) 34=-23(B)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932


sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

unnun 1 May 1,2019

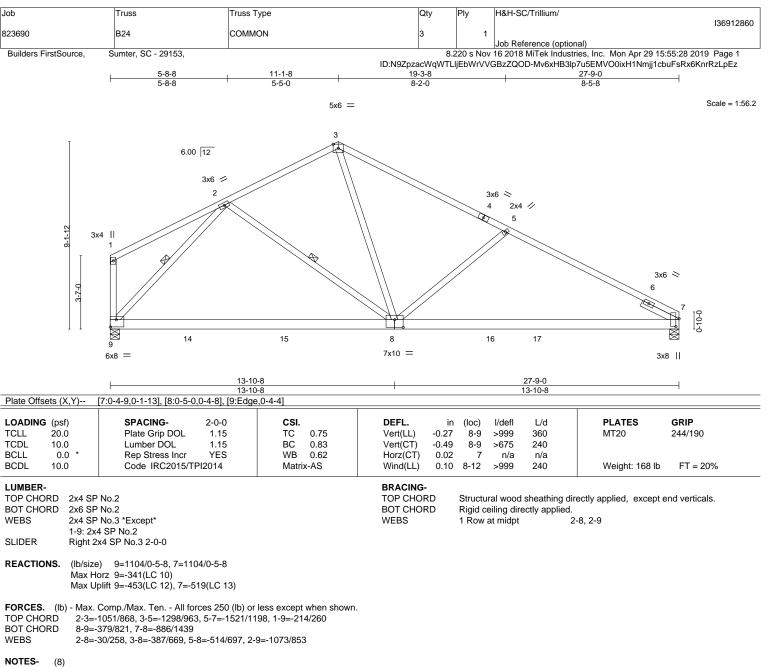
818 Soundside Road Edenton, NC 27932

Vert: 1-2=-60, 2-4=-60, 5-8=-20

Continued on page 2

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
					136912859
823690	B23	Half Hip	2	1	
					Job Reference (optional)
Builders FirstSource, S	Sumter, SC - 29153,		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:55:27 2019 Page 2
		Half Hip	2 8.2		


ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-ujYZ3r272pmEcCwCT?Q2VAEWsdFm9nVliSbEK_zLpF_

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 12=-100 13=-100

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1) Unbalanced roof live loads have been considered for this design.

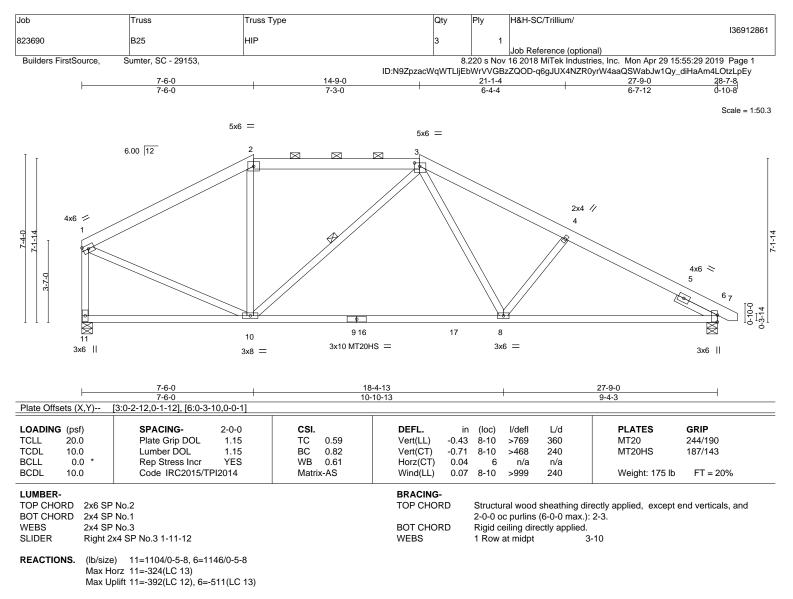
 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces &

MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

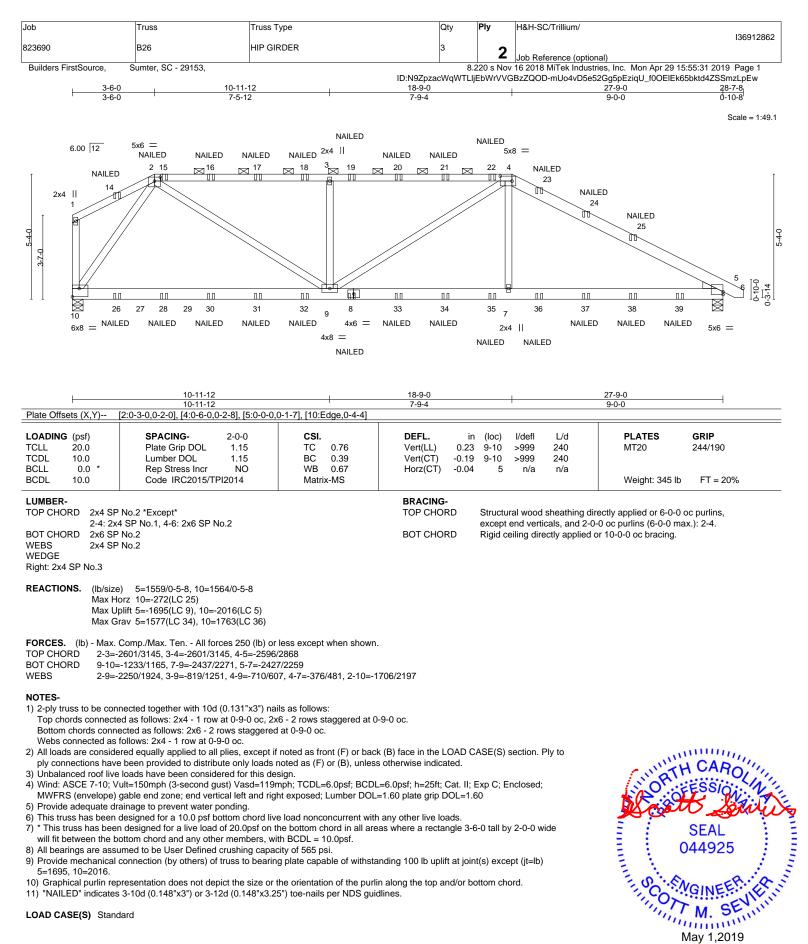

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=453, 7=519.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 1-2=-1115/730, 2-3=-924/789, 3-4=-1574/1102, 4-6=-1763/1159, 1-11=-1050/743
- BOT CHORD 10-11=-65/309, 8-10=-456/1123, 6-8=-859/1509
- WEBS 3-10=-350/281, 3-8=-265/557, 4-8=-271/456, 1-10=-518/970

NOTES-


1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=392, 6=511.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Continued on page 2

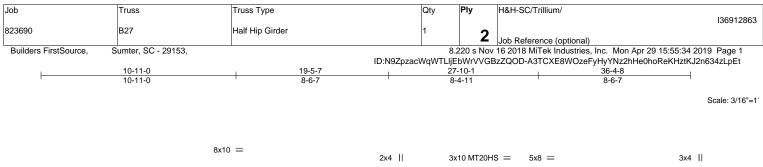
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

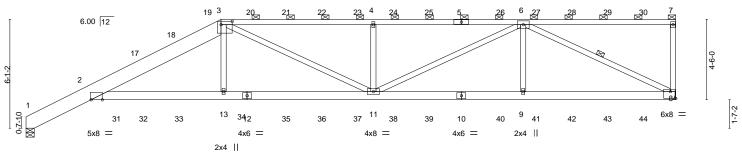
TREAST AMITEK ATfillate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/			
					136912862			
823690	B26	HIP GIRDER	3	2	lab Rafaranaa (antional)			
				_	Job Reference (optional)			
Builders FirstSource, S	umter, SC - 29153,		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:55:31 2019 Page 2			
		ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-mUo4vD5e52Gg5pEziqU_f0OEIEk65bktd4ZSSmzLpEw						

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-2=-60, 2-4=-60, 4-6=-60, 10-11=-20


Concentrated Loads (lb)

Vert: 8=-18(B) 15=-46(B) 16=-46(B) 17=-46(B) 18=-46(B) 19=-46(B) 20=-46(B) 21=-46(B) 22=-46(B) 22=-17(B) 26=-101(B) 28=-18(B) 30=-18(B) 32=-18(B) 32=-18(B) 33=-18(B) 33=-18(B) 33=-18(B) 33=-18(B) 33=-18(B) 33=-18(B) 33=-18(B) 35=-18(B) 35=-17(B) 35=-17(B) 35=-17(B) 35=-18(B) 35=-18(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

<u>3-7-12</u> 3-7-12	10-11-0	<u>19-5-7</u> 8-6-7	27-10-1	+	36-4-8 8-6-7						
	[2:0-7-8,Edge], [3:0-7-8,0-2-4], [8:Edge		0-4-11		8-0-7						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.97 BC 0.93 WB 0.58 Matrix-MS	DEFL. in (loc) //defl Vert(LL) 0.66 13-16 >650 Vert(CT) -0.52 13-16 >832 Horz(CT) -0.32 8 n/a	240	PLATES MT20 MT20HS Weight: 451 II	GRIP 244/190 187/143 p FT = 20%					
			except end ve	erticals, and 2-0-0 lirectly applied or	ctly applied or 6-0-0 oc purlins (4-9-15 7-7-1 oc bracing.						
REACTIONS. (Ib/size) 1=2102/0-5-8, 8=2016/Mechanical Max Horz 1=391(LC 8) Max Uplift 1=-1842(LC 8), 8=-2353(LC 5) Max Grav 1=2102(LC 1), 8=2180(LC 32)											
TOP CHORD 1-2=- BOT CHORD 2-13= WEBS 3-13=	BOT CHORD 2-13=-4312/4029, 11-13=-4325/4049, 9-11=-3940/3640, 8-9=-3940/3640										
Top chords connected Bottom chords connected Bottom chords connected as 2) All loads are conside ply connections have 3) Wind: ASCE 7-10; V MWFRS (envelope) 4) Provide adequate dr 5) All plates are MT20 6) This truss has been 7) * This truss has been will fit between the b 8) All bearings are ass 9) Refer to girder(s) for 10) Bearing at joint(s) ' capacity of bearing 11) Provide mechanica 1=1842, 8=2353.	Inected together with 10d (0.131"x3") na ed as follows: 2x10 - 2 rows staggered follows: 2x4 - 1 row at 0-9-0 cc. ered equally applied to all plies, except i e been provided to distribute only loads /ult=150mph (3-second gust) Vasd=119 gable end zone; Lumber DOL=1.60 pla ainage to prevent water ponding. plates unless otherwise indicated. designed for a 10.0 psf bottom chord lin n designed for a live load of 20.0psf on ototom chord and any other members. umed to be User Defined crushing capa truss to truss connections. 1 considers parallel to grain value using surface. al connection (by others) of truss to bear	at 0-9-0 oc, 2x4 - 1 row at 0 d at 0-9-0 oc. f noted as front (F) or back noted as (F) or (B), unless mph; TCDL=6.0psf; BCDL= te grip DOL=1.60 e load nonconcurrent with the bottom chord in all area city of 565 psi. ANSI/TPI 1 angle to grain ing plate capable of withsta	(B) face in the LOAD CASE(S) section otherwise indicated. =6.0psf; h=25ft; Cat. II; Exp C; Enclose any other live loads. Is where a rectangle 3-6-0 tall by 2-0-0 formula. Building designer should veri anding 100 lb uplift at joint(s) except (jt	d;	HOR CONTRACTOR	H CAROLAN ESSION SEAL 044925 VGINEER M. SEVIET					

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

May 1,2019

Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
823690	B27	Half Hip Girder			136912863
023090	D27		I	2	Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,		8.	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:55:34 2019 Page 2

NOTES-

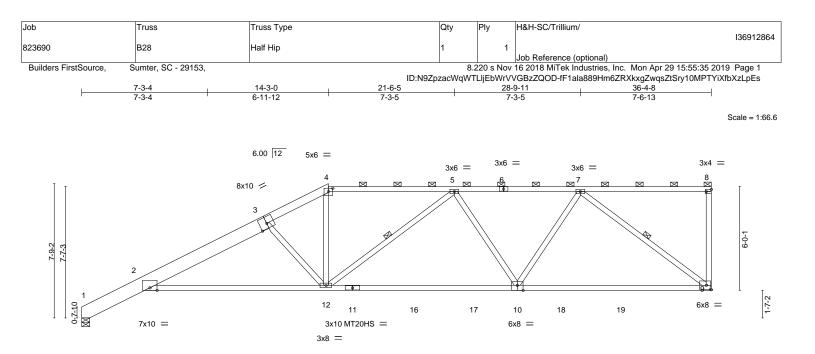
ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-A3TCXE8WOzeFyHyYNz2hHe0hoReKHztKJ2n634zLpEt

13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 37 lb down and 89 lb up at 6-6-12, 19 lb down and 48 lb up at 8-6-12, 167 lb down and 195 lb up at 10-6-12, 177 lb down and 189 lb up at 12-6-12, 177 lb down and 189 lb up at 14-6-12, 177 lb down and 189 lb up at 18-6-12, 177 lb down and 189 lb up at 18-6-12, 177 lb down and 189 lb up at 22-6-12, 177 lb down and 189 lb up at 22-6-12, 177 lb down and 189 lb up at 22-6-12, 177 lb down and 189 lb up at 22-6-12, 177 lb down and 189 lb up at 22-6-12, 177 lb down and 189 lb up at 22-6-12, 177 lb down and 189 lb up at 22-6-12, 177 lb down and 189 lb up at 22-6-12, 177 lb down and 189 lb up at 22-6-12, 177 lb down and 189 lb up at 24-6-12, and 177 lb down and 189 lb up at 32-6-12, and 177 lb down and 189 lb up at 34-6-12 on top chord, and 238 lb down and 195 lb up at 50-0-12, 46 lb down and 48 lb up at 6-6-12, 86 lb down and 125 lb up at 8-6-12, 51 lb down and 54 lb up at 10-6-12, 55 lb down and 62 lb up at 12-6-12, 55 lb down and 62 lb up at 12-6-12, 55 lb down and 62 lb up at 12-6-12, 55 lb down and 62 lb up at 12-6-12, 55 lb down and 62 lb up at 22-6-12, 55 lb down and 62 lb up at 22-6-12, 55 lb down and 62 lb up at 22-6-12, 55 lb down and 62 lb up at 22-6-12, 55 lb down and 62 lb up at 22-6-12, 55 lb down and 62 lb up at 22-6-12, 55 lb down and 62 lb up at 22-6-12, 55 lb down and 62 lb up at 22-6-12, 55 lb down and 62 lb up at 22-6-12, 55 lb down and 62 lb up at 22-6-12, 55 lb down and 62 lb up at 22-6-12, 55 lb down and 62 lb up at 22-6-12, 55 lb down and 62 lb up at 22-6-12, 55 lb down and 62 lb up at 32-6-12, and 55 lb down and 62 lb up at 32-6-12, and 55 lb down and 62 lb up at 32-6-12, and 55 lb down and 62 lb up at 32-6-12, and 55 lb down and 62 lb up at 32-6-12, and 55 lb down and 62 lb up at 32-6-12, and 55 lb down and 62 lb up at 32-6-12, and 55 lb down and 62 lb up at 32-6-12, and 55 lb down and 62 lb up at 32-6-12, and 55 lb down and 62 lb up at 32-6-12, and 55 lb down and 62 lb up at 32-6-12, and

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

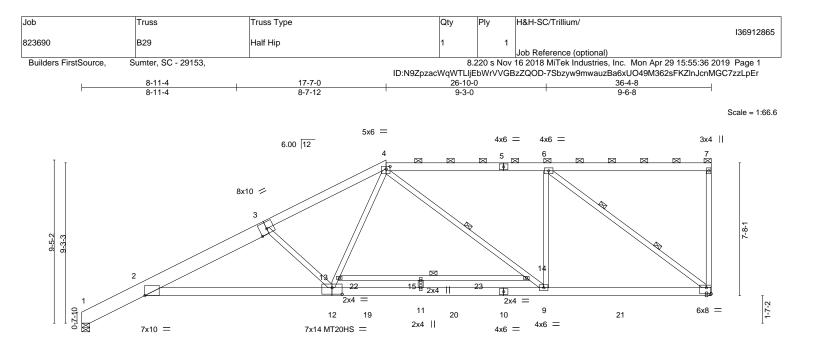
Uniform Loads (plf)


Vert: 1-15=-82, 3-15=-60, 3-7=-60, 8-14=-20

Concentrated Loads (lb)

Vert: 5=-46(F) 12=-18(F) 10=-18(F) 17=-18(F) 19=-47(F) 20=-46(F) 21=-46(F) 22=-46(F) 23=-46(F) 24=-46(F) 25=-46(F) 25=-46(F) 27=-46(F) 28=-46(F) 29=-46(F) 30=-46(F) 31=-238(F) 32=-46(F) 33=-84(F) 35=-18(F) 35=-18(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


<u> </u>			<u>25-2-0</u> 10-11-0		<u>36-4-8</u> 11-2-8	
Plate Offsets (X,Y)	[3:0-5-0,0-3-8], [4:0-3-0,0-2-4], [8:Edge	0-1-8], [10:0-4-0,Edge]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.91 BC 0.97 WB 0.89 Matrix-AS	DEFL. in (loc) Vert(LL) -0.34 10-12 Vert(CT) -0.76 12-15 Horz(CT) 0.32 9 Wind(LL) 0.49 12-15	2 >999 360 5 >571 240 9 n/a n/a	PLATES MT20 MT20HS Weight: 208 lb	GRIP 244/190 187/143 FT = 20%
3-4: 2x BOT CHORD 2x4 SF WEBS 2x4 SF		1	2-0-0 BOT CHORD Rigid	ctural wood sheathing oc purlins (2-10-14 m ceiling directly applied w at midpt		end verticals, and
F ORCES. (lb) - Max. TOP CHORD 1-2=- BOT CHORD 2-12:	plift 9=-424(LC 9), 1=-273(LC 12) Comp./Max. Ten All forces 250 (lb) oi 640/0, 2-3=-2954/1869, 3-4=-2575/169: 2088/2791, 10-12=-1518/2235, 9-10=- 813/789, 4-12=-456/840, 5-10=-525/5:	2, 4-5=-2227/1550, 5-7=- 1023/1524	1953/1222			
 Wind: ASCE 7-10; MWVFRS (envelope) grip DOL=1.60 Provide adequate di All plates are MT20 This truss has been will fit between the b This truss has been will fit between the b All bearings are ass Refer to girder(s) foi Bearing at joint(s) 1 capacity of bearing : Provide mechanica 	e loads have been considered for this de /ult=150mph (3-second gust) Vasd=119 and C-C Exterior(2) zone;C-C for memil rainage to prevent water ponding. plates unless otherwise indicated. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on nottom chord and any other members, w umed to be User Defined crushing capa t russ to truss connections. considers parallel to grain value using A surface. al connection (by others) of truss to bear	mph; TCDL=6.0psf; BCD bers and forces & MWFR the bottom chord in all ar tith BCDL = 10.0psf. city of 565 psi. INSI/TPI 1 angle to grain	S for reactions shown; Lumber I h any other live loads. eas where a rectangle 3-6-0 tall formula. Building designer sho	DOL=1.60 plate by 2-0-0 wide uld verify	Street.	SSION A
9=424, 1=273.						SEAL :

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

SEAL 044925 MGINEER, HALIN May 1,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

3-7-1			9-7-0	26-10-0	-	36-4-8	
3-7-1			5-1-8	7-3-0	•	9-6-8	
Plate Offsets (X,Y)	[3:0-5-0,0-3-8], [4:0-2-12,0-1-12], [8:Ed	ge,0-4-4], [12:0-7-0,0-4-	.8]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.93 BC 0.88 WB 0.97 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) l/defl -0.38 9-11 >999 -0.75 9-11 >574 0.29 8 n/a 0.46 12-18 >930	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 276 lb	GRIP 244/190 187/143 FT = 20%
10.0		Maanx 710		0.10 12 10 2000	210	Wolght. 210 lb	11 - 2070
LUMBER- BRACING- TOP CHORD 2x6 SP No.2 *Except* TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0-0 co purlins (5-2-0 max.): 4-7. BOT CHORD 2x6 SP No.1 *Except* BOT CHORD BOT CHORD Rigid ceiling directly applied, except end verticals, and 2-0-0 co purlins (5-2-0 max.): 4-7. BOT CHORD 2x6 SP No.1 *Except* BOT CHORD Rigid ceiling directly applied. 2-12: 2x6 SP DSS WEBS 1 Row at midpt 4-9, 13-14 WEBS 2x4 SP No.3 *Except* 2 Rows at 1/3 pts 6-8							end verticals, and
Max H Max U	a) 8=1547/Mechanical, 1=1562/0-5-8 lorz 1=422(LC 12) plift 8=-312(LC 9), 1=-189(LC 12) rav 8=1584(LC 2), 1=1562(LC 1)						
FOP CHORD 1-2= 3OT CHORD 2-12= WEBS 3-12=	Comp./Max. Ten All forces 250 (lb) o .698/0, 2-3=-3326/1637, 3-4=-2945/138 =-2002/3125, 11-12=-1140/2096, 9-11= =-894/932, 12-13=-475/1303, 4-13=-456 D/918, 6-8=-2164/1052	7, 4-6=-1733/852 1140/2096, 8-9=-850/17	733				
2) Wind: ASCE 7-10; V MWFRS (envelope) grip DOL=1.60 8) 200.0lb AC unit load	e loads have been considered for this de /ult=150mph (3-second gust) Vasd=119 and C-C Exterior(2) zone;C-C for mem	mph; TCDL=6.0psf; BCl bers and forces & MWFI	RS for reactions she	own; Lumber DOL=1.60		1111111	CARO

- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=312, 1=189.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

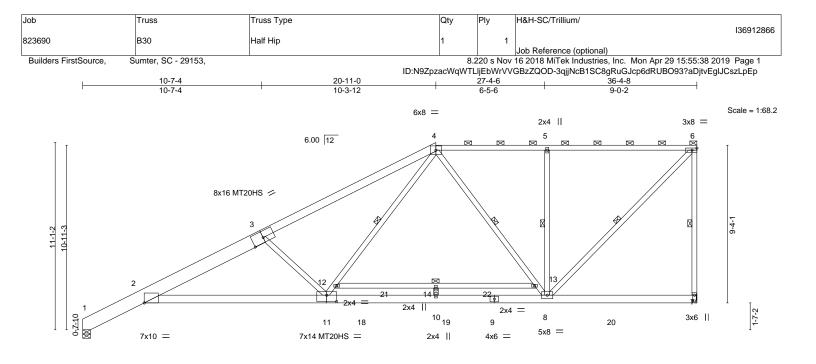
LOAD CASE(S) Standard Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/	
					136912865	
823690	B29	Half Hip	1	1		
					Job Reference (optional)	
Builders FirstSource, S	ilders FirstSource, Sumter, SC - 29153, 8.220 s Nov 16 2018 MiTek Industries, Inc. Mon Apr 29 15:55:37 2019 Page					

ID:N9ZpzacWqWTLljEbWrVVGBzZQOD-be9L9GAPhu0ppkh725bOvHeDcfgoUDZm?00mgPzLpEq

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-17=-82, 4-17=-60, 4-7=-60, 8-16=-20 Concentrated Loads (lb)

Vert: 19=-100 20=-100

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

3-7-1		20-11		27-4-6 6-5-6	<u>36-4-8</u> 9-0-2	———————————————————————————————————————		
	[3:0-8-0,0-3-8], [7:0-4-4,0-1-8], [11:0-7-0		4	0-5-0	9-0-2			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.94 BC 0.91 WB 0.78 Matrix-AS	()	in (loc) l/defl -0.42 10 >999 -0.85 10-11 >507 0.28 7 n/a 0.47 11-17 >912	360 MT20 240 MT20HS n/a	GRIP 244/190 187/143 5 lb FT = 20%		
4-6: 2x BOT CHORD 2x6 SF 2-11: 2 WEBS 2x4 SF	P No.2 *Except* 4 SP No.1, 1-3: 2x10 SP DSS P No.1 *Except* x6 SP DSS P No.2 *Except* 8,10-14: 2x4 SP No.3		BRACING- TOP CHORE BOT CHORE WEBS	FOP CHORD Structural wood sheathing directly applied, except end ver 2-0-0 oc purlins (3-1-0 max.): 4-6. 80T CHORD Rigid ceiling directly applied.				
Max H Max U	e) 7=1547/Mechanical, 1=1562/0-5-8 orz 1=506(LC 12) plift 7=-305(LC 9), 1=-195(LC 12) irav 7=1610(LC 2), 1=1562(LC 1)							
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-708/0, 2-3=-3396/1715, 3-4=-2902/1404, 4-5=-1261/674, 5-6=-1261/674, 6-7=-1489/901 BOT CHORD 2-11=-2243/3210, 10-11=-1013/1672, 8-10=-1013/1672 WEBS 3-11=-1067/1192, 11-12=-705/1464, 4-12=-722/1582, 4-13=-533/510, 8-13=-622/524, 6-8=-934/1778, 5-8=-533/502								

818 Soundside Road Edenton, NC 27932

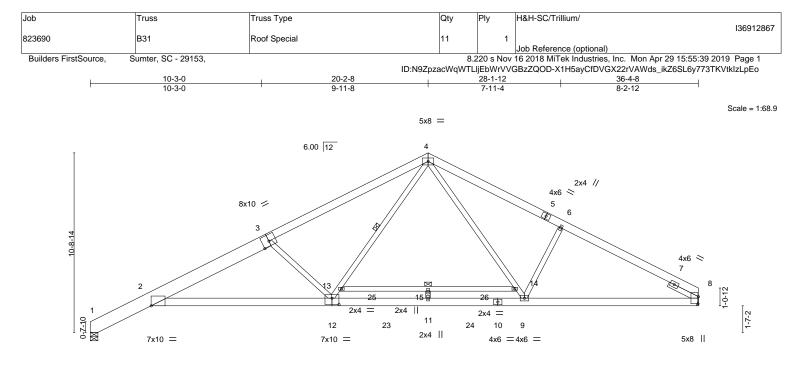
COAR GASE (S)geStandard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
					136912866
823690	B30	Half Hip	1	1	
					Job Reference (optional)
Builders FirstSource, S	umter, SC - 29153,		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:55:38 2019 Page 2

ID:N9ZpzacWqWTLljEbWrVVGBzZQOD-3qjjNcB1SC8gRuGJcp6dRUBO93?aDjtvEglJCszLpEp

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-16=-82, 4-16=-60, 4-6=-60, 7-15=-20 Concentrated Loads (Ib)

Vert: 18=-100 19=-100

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	7-12 14-5-6 7-12 10-9-9		20-2-8 5-9-2	25-11-10 5-9-2		<u> </u>	
Plate Offsets (X,Y)	[3:0-5-0,0-3-8], [8:0-5-2,0-0-5], [12:0-5-0),0-4-8]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.93 BC 0.96 WB 0.97 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.36 11 -0.76 11 0.31 8 0.44 12-18	l/defl L/d >999 360 >571 240 n/a n/a >995 240	PLATES MT20 Weight: 255 lb	GRIP 244/190 FT = 20%
BOT CHORD 1-3: 2 BOT CHORD 2x6 S 8-10: 2x4 S WEBS 2x4 S 13-14 SLIDER	P No.2 *Except* x10 SP DSS P No.1 *Except* 2x6 SP No.2 P No.3 *Except* : 2x4 SP No.2 2x4 SP No.3 1-11-12 :e) 8=1559/Mechanical, 1=1561/0-5-8		BRACING TOP CHOF BOT CHOF WEBS	RD Structu RD Rigid c	ural wood sheathir eiling directly app at midpt	ng directly applied. lied. 4-12, 13-14	
FORCES. (lb) - Max H Max U TOP CHORD 1-2= BOT CHORD 2-12 WEBS 12-1	Horz 1=244(LC 12) Jplift 8=-207(LC 13), 1=-243(LC 12) . Comp./Max. Ten All forces 250 (lb) or 715/273, 2-3=-3356/1855, 3-4=-2873/15 =-1683/3173, 11-12=-654/1808, 9-11=-6 3=-606/1360, 4-13=-628/1482, 4-14=-31 =-1033/1040	87, 4-6=-2393/1405, 6 54/1808, 8-9=-1029/21	-8=-2571/1358 98				
 Wind: ASCE 7-10; MWFRS (envelope grip DOL=1.60 200.0lb AC unit loa This truss has beer will fit between the All bearings are ass Refer to girder(s) fo Bearing at joint(s) 1 capacity of bearing Provide mechanica 8=207, 1=243. 	e loads have been considered for this de Vult=150mph (3-second gust) Vasd=119) and C-C Exterior(2) zone;C-C for memt d placed on the bottom chord, 20-2-8 froi o designed for a 10.0 psf bottom chord liv en designed for a live load of 20.0psf on to bottom chord and any other members. sumed to be User Defined crushing capa or truss to truss connections. considers parallel to grain value using A surface. I connection (by others) of truss to bearir requires that a minimum of 7/16" structur	mph; TCDL=6.0psf; BC ers and forces & MWFI e load nonconcurrent w he bottom chord in all a city of 565 psi. NSI/TPI 1 angle to grai g plate capable of withs	RS for reactions sho t two points, 5-0-0 a vith any other live loa areas where a rectar in formula. Building standing 100 lb uplif	own; Lumber Do part. ads. ngle 3-6-0 tall b designer shoul t at joint(s) exce	OL=1.60 plate y 2-0-0 wide d verify ept (jt=lb)	A STATE	SEAL 044925

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

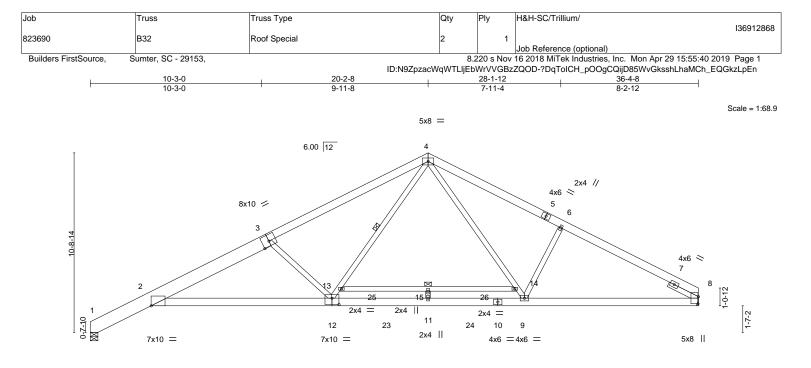
Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

May 1,2019

M. 9

Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
					136912867
823690	B31	Roof Special	11	1	
					Job Reference (optional)
Builders FirstSource, S	umter, SC - 29153,		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:55:39 2019 Page 2


ID:N9ZpzacWqWTLljEbWrVVGBzZQOD-X1H5ayCfDVGX22rVAWds_ikZ6SL6y773TKVtklzLpEo

LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-17=-82, 4-17=-60, 4-8=-60, 16-19=-20 Concentrated Loads (lb) Vert: 23=-100 24=-100

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

3-	7-12	<u>14-5-6</u> 10-9-9		20-2-8		25-11 5-9-				<u> </u>	
Plate Offsets (X,Y)	[3:0-5-0,0-3-8], [8:0-5-		-4-8]	5-5-2		5-8-	-2			10-4-14	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Inc Code IRC2015	1.15 r NO	CSI. TC 0.9 BC 0.9 WB 0.9 Matrix-AS	16 17	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.36 -0.76 0.31	(loc) 11 11 8 12-18	l/defl >999 >571 n/a >995	L/d 360 240 n/a 240	PLATES MT20 Weight: 255 lb	GRIP 244/190 FT = 20%
BOT CHORD 1-3: 2: BOT CHORD 2x6 Si 8-10: 3 8-10: 3 WEBS 2x4 Si 13-14: 13-14:	P No.2 *Except* x10 SP DSS P No.1 *Except* 2x6 SP No.2 P No.3 *Except* : 2x4 SP No.2				BRACING- TOP CHOP BOT CHOP WEBS	RD RD	Rigid c		sheathing ectly applie	directly applied. .d. 4-12, 13-14	
REACTIONS. (lb/siz Max H	2x4 SP No.3 1-11-12 e) 8=1559/Mechanic Horz 1=244(LC 12) Jplift 8=-207(LC 13), 1:	,									
TOP CHORD1-2=BOT CHORD2-12WEBS12-1	. Comp./Max. Ten All -715/273, 2-3=-3356/1 =-1683/3173, 11-12=-6 3=-606/1360, 4-13=-62 =-1033/1040	855, 3-4=-2873/158 54/1808, 9-11=-654	7, 4-6=-2393/1 /1808, 8-9=-10	405, 6-8=-25)29/2198							
 Wind: ASCE 7-10; MWFRS (envelope grip DOL=1.60 200.0lb AC unit loa This truss has beer This truss has beer will fit between the All bearings are ass Refer to girder(s) fc Bearing at joint(s) 1 capacity of bearing Provide mechanica 8=207, 1=243. 	e loads have been con Vult=150mph (3-second) and C-C Exterior(2) zo d placed on the bottom n designed for a 10.0 ps en designed for a live lo bottom chord and any o sumed to be User Defin or truss to truss connect considers parallel to g surface. I connection (by others requires that a minimur	d gust) Vasd=119mp one;C-C for member sf bottom chord live I had of 20.0psf on the other members. ted crushing capacit tions. rain value using AN:) of truss to bearing	h; TCDL=6.0p s and forces & left end, suppo oad nonconcu bottom chord y of 565 psi. SI/TPI 1 angle plate capable o	MWFRS for rted at two pr rrent with any in all areas w to grain form of withstandir	reactions sho pints, 5-0-0 ar o other live loa other a rectar ula. Building ug 100 lb uplif	own; Lur oart. ads. ngle 3-6- designe t at joint	nber D(-0 tall b er should	DL=1.60 y 2-0-0 w d verify ept (jt=lb)	ide	Rent Rent	SEAL 044925

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

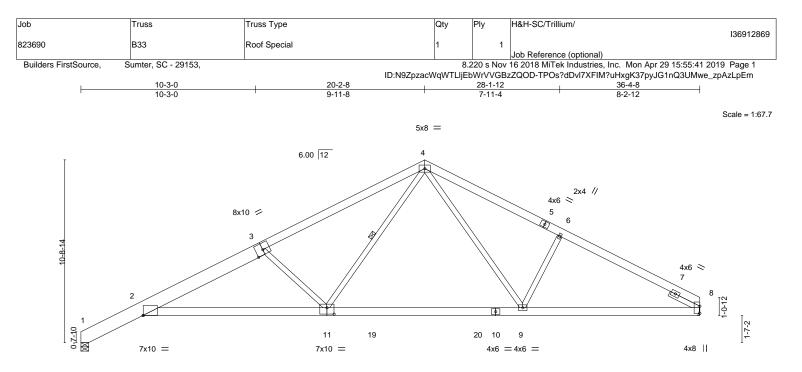
Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Μ.

May 1,2019

Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
					136912868
823690	B32	Roof Special	2	1	
					Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,		8.	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:55:40 2019 Page 2


ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-?DqToICH_pOOgCQijD85WvGksshLhaMCh_EQGkzLpEn

LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-17=-82, 4-17=-60, 4-8=-60, 16-19=-20 Concentrated Loads (lb) Vert: 23=-100 24=-100

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria**, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		7-12	14-5-6		-	25-11-10				36-4-8	
	3-7	7-12	10-9-9		1	11-6-4				10-4-14	·
Plate Offse	ets (X,Y)	[2:0-0-4,Edge], [3:0-5-0,	0-3-8], [11:0-5-	0,0-4-8]							
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.76	Vert(LL)	-0.33 9-11	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.88	Vert(CT)	-0.67 11-14	>643	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.85	Horz(CT)	0.29 8	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matrix	<-AS	Wind(LL)	0.44 11-14	>986	240	Weight: 239 lb	FT = 20%
LUMBER.				1		BRACING				1	

TOP CHORD

BOT CHORD

WEBS

Structural wood sheathing directly applied.

4-11

Rigid ceiling directly applied.

1 Row at midpt

LUMBER-

TOP CHORD	2x6 SP No.2 *Except*
	1-3: 2x10 SP DSS
BOT CHORD	2x6 SP No.2
WEBS	2x4 SP No.3
SLIDER	Right 2x4 SP No.3 1-11-12

REACTIONS. (lb/size) 8=1448/Mechanical, 1=1472/0-5-8 Max Horz 1=244(LC 12) Max Uplift 8=-317(LC 13), 1=-332(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-672/313, 2-3=-3080/2133, 3-4=-2598/1861, 4-6=-2159/1639, 6-8=-2337/1592

BOT CHORD 2-11=-1940/2924, 9-11=-754/1516, 8-9=-1230/1996

WEBS 4-11=-788/1301, 4-9=-413/687, 6-9=-396/559, 3-11=-1030/1057

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

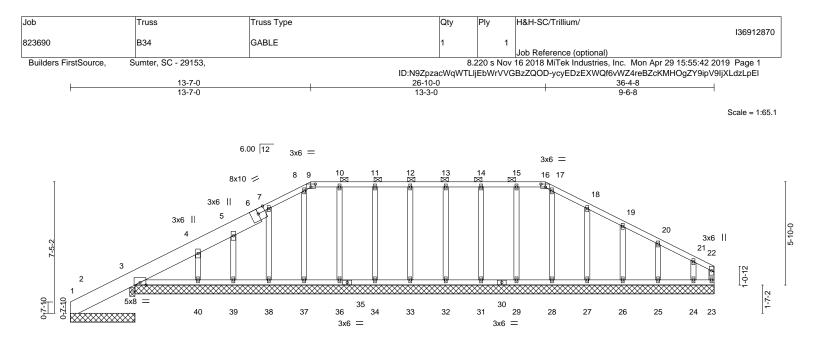
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Refer to girder(s) for truss to truss connections.

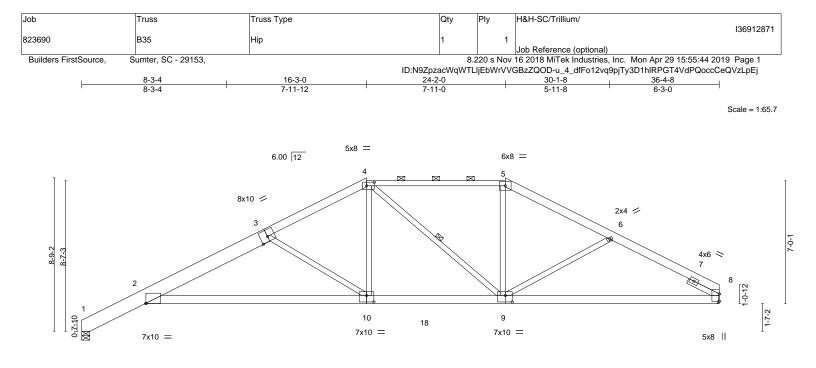
7) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=317, 1=332.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

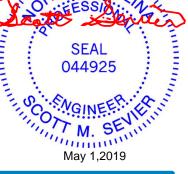
ENGINEERING BY REENCO A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

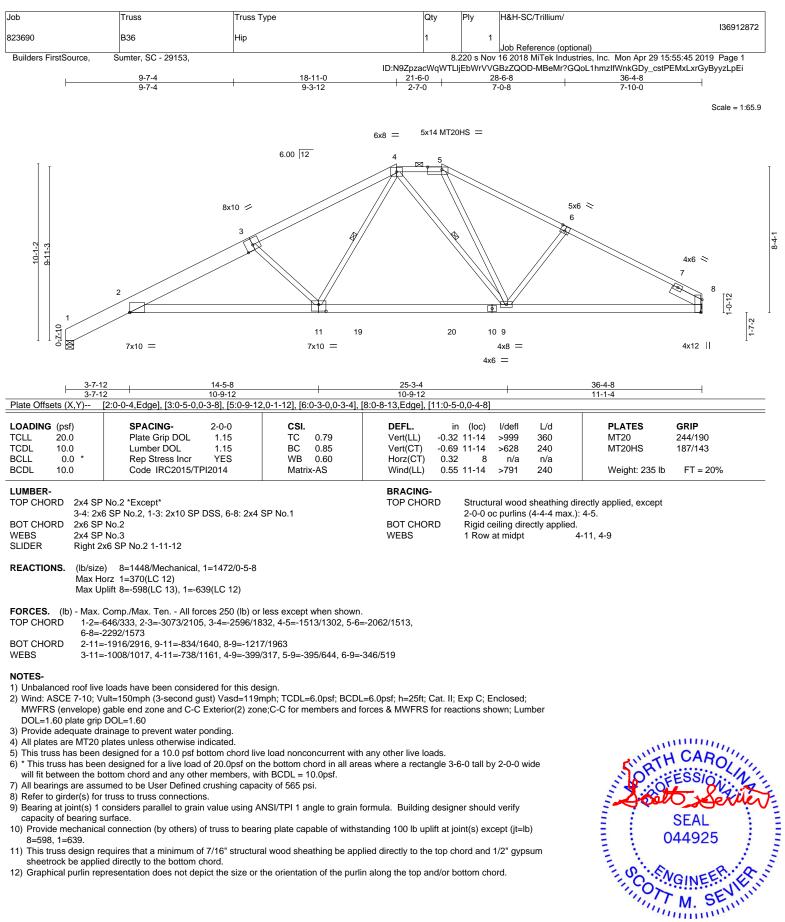


3-7-12			36-4-8 32-8-12				
Plate Offsets (X,Y)	[9:0-3-0,0-2-0], [16:0-3-0,0-2-0]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.10 BC 0.08 WB 0.07 Matrix-S	DEFL. i Vert(LL) -0.00 Vert(CT) -0.0 Horz(CT) 0.0 Wind(LL) 0.00	1 3-40 >999 1 22 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 227 lb	GRIP 244/190 FT = 20%
	No.2		BRACING- TOP CHORD BOT CHORD	except end verti	cals, and 2-0-0	ectly applied or 6-0-0 0 oc purlins (6-0-0 ma r 10-0-0 oc bracing.	
(Ib) - Max H. Max U Max G FORCES. (Ib) - Max. TOP CHORD 7-8=- 12-13	earings 32-8-12 except (jt=length) 1=3-7 orz 3=269(LC 12) plift All uplift 100 lb or less at joint(s) 3: except 3=-151(LC 12), 38=-134(LC 27=-144(LC 13), 26=-124(LC 13), 2 rav All reactions 250 lb or less at joint 40, 32, 31, 29, 28, 27, 26, 25, 24, 1 Comp./Max. Ten All forces 250 (lb) or 122/283, 8-9=-124/292, 9-10=-118/298, 3=-118/298, 13-14=-118/298, 14-15=-11 3=-123/284	3, 34, 36, 37, 32, 31, 29, 12), 39=-136(LC 12), 40 5=-121(LC 13), 24=-193(s) 22, 23, 33, 34, 36, 37, , 2 except 3=253(LC 1) less except when shown 10-11=-118/298, 11-12=	174(LC 12), (LC 13) 38, 39, -118/298,				
 2) Wind: ASCE 7-10; V MWFRS (envelope) MWFRS for reaction 3) Truss designed for w Gable End Details a: 4) Provide adequate dr 5) All plates are 2x4 M⁻ 6) Gable studs spaced 7) This truss has been 8) * This truss has been 8) * This truss has been 9) All bearings are asst 10) Bearing at joint(s) 2 capacity of bearing 11) Provide mechanica 32, 31, 29, 1, 2 exc 12) Beveled plate or sh 	designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on t ottom chord and any other members. umed to be User Defined crushing capa 22, 1 considers parallel to grain value us	mph; TCDL=6.0psf; BCDI le; end vertical left and rig ODL=1.60 For studs exposed to win g designer as per ANSI/Ti e load nonconcurrent with he bottom chord in all are city of 565 psi. ing ANSI/TPI 1 angle to g ing plate capable of withs 174, 27=144, 26=124, 25 ce with truss chord at joir	ght exposed;C-C for me nd (normal to the face), Pl 1. h any other live loads. cas where a rectangle 3 grain formula. Building o standing 100 lb uplift at j =121, 24=193. ht(s) 2.	mbers and forces & see Standard Indu -6-0 tall by 2-0-0 w designer should ve pint(s) 33, 34, 36, 3	stry	SCOT	SEAL GINEER, HERLING

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

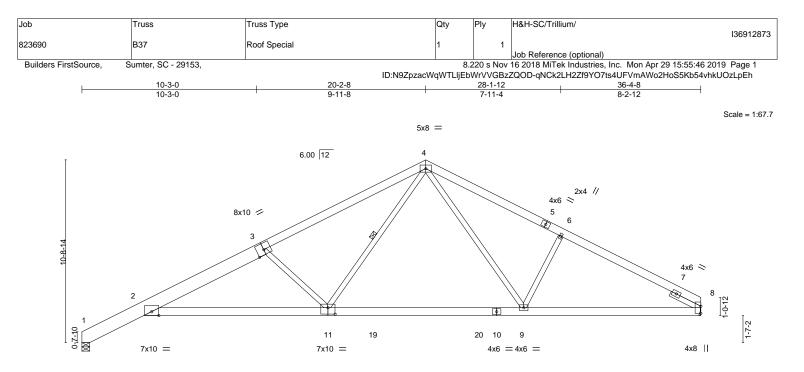

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

May 1,2019


3-7-			24-2-0	<u>36-4-</u> 12-2-		
	[2:0-0-4,Edge], [3:0-5-0,0-3-8], [4:0-5-4,)-2-8], [9:0-4-12,0-4-8], [-	12.2.	0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.90 BC 0.82 WB 0.90 Matrix-AS	DEFL. in (loc) Vert(LL) -0.33 10-17 Vert(CT) -0.75 10-17 Horz(CT) 0.30 8 Wind(LL) 0.54 10-17	l/defl L/d >999 360 >576 240 n/a n/a >805 240		GRIP 244/190 FT = 20%
4-5: 2x BOT CHORD 2x6 SF WEBS 2x4 SF			2-0-0 oc	al wood sheathing directly purlins (2-2-0 max.): 4-5. iling directly applied. t midpt 4-9	applied, except	
Max H	e) 8=1448/Mechanical, 1=1472/0-5-8 orz 1=326(LC 12) plift 8=-558(LC 13), 1=-607(LC 12)					
TOP CHORD 1-2=- 6-8=- 6-8=- BOT CHORD 2-10=-	Comp./Max. Ten All forces 250 (lb) or 646/304, 2-3=-2989/2006, 3-4=-2350/16 2318/1596 1800/2843, 9-10=-1063/2029, 8-9=-12: -975/884, 4-10=-423/813, 4-9=-403/276	06, 4-5=-1818/1386, 5-6 52/1986	=-2071/1418,			
 Wind: ASCE 7-10; MWWFRS (envelope) DOL=1.60 plate grip 3) Provide adequate di 4) This truss has been 5) * This truss has been will fit between the b 6) All bearings are ass 7) Refer to girder(s) foi 8) Bearing at joint(s) 1 capacity of bearing si 9) Provide mechanical 8=558, 1=607. This truss design r sheetrock be appli 	ainage to prevent water ponding. designed for a 10.0 psf bottom chord live n designed for a live load of 20.0psf on t ottom chord and any other members, wi umed to be User Defined crushing capace truss to truss connections. considers parallel to grain value using A	ph; TCDL=6.0psf; BCD e;C-C for members and e load nonconcurrent with the bottom chord in all are h BCDL = 10.0psf. ity of 565 psi. NSI/TPI 1 angle to grain g plate capable of withsta al wood sheathing be app	forces & MWFRS for reactions sho h any other live loads. eas where a rectangle 3-6-0 tall by formula. Building designer should anding 100 lb uplift at joint(s) exce blied directly to the top chord and 1	verify ot (jt=lb)	- •	CAROLINE SSIN SEAL 44925

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

May 1,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	3-7-12 3-7-12		14-5-6 10-9-9			<u>25-11-10</u> 11-6-4				<u>36-4-8</u> 10-4-14	
Plate Offsets (X,	<u>Y) [3:0-5-0</u>	0,0-3-8], [11:0-5-0,0	J-4-8 <u>]</u>			1					
LOADING (psf)		SPACING-	2-0-0	CSI.		DEFL.	in (loc)) l/defl	L/d	PLATES	GRIP
TCLL 20.0	I	Plate Grip DOL	1.15	TC	0.76	Vert(LL)	-0.31 9-11	>999	360	MT20	244/190
TCDL 10.0	1	Lumber DOL	1.15	BC	0.66	Vert(CT)	-0.66 11-14	>656	240		
BCLL 0.0	*	Rep Stress Incr	YES	WB	0.86	Horz(CT)	0.29 8	3 n/a	n/a		
BCDL 10.0	(Code IRC2015/TP	12014	Matri	x-AS	Wind(LL)	0.54 11-14	>808	240	Weight: 239 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

WEBS

Structural wood sheathing directly applied.

4-11

Rigid ceiling directly applied.

1 Row at midpt

LUMBER-

TOP CHORD	2x6 SP No.2 *Except*
	1-3: 2x10 SP DSS
BOT CHORD	2x6 SP No.1 *Except*
	8-10: 2x6 SP No.2
WEBS	2x4 SP No.3
SLIDER	Right 2x4 SP No.3 1-11-12

REACTIONS. (lb/size) 8=1448/Mechanical, 1=1472/0-5-8 Max Horz 1=387(LC 12) Max Uplift 8=-615(LC 13), 1=-652(LC 12)

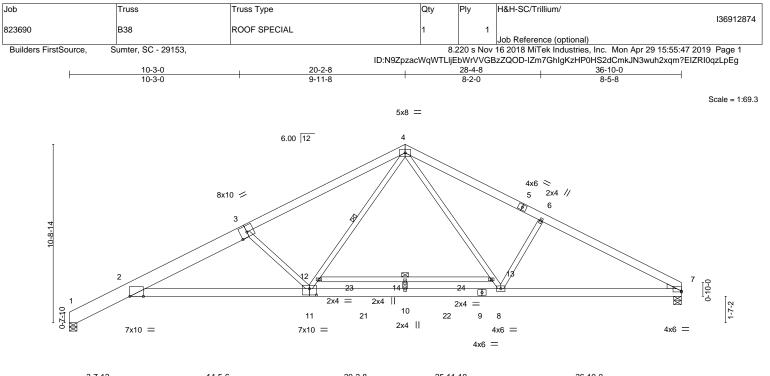
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 1-2=-655/366, 2-3=-3081/2133, 3-4=-2601/1863, 4-6=-2158/1639, 6-8=-2335/1592
- BOT CHORD 2-11=-1939/2921, 9-11=-755/1516, 8-9=-1230/1995
- WEBS 4-11=-789/1250, 4-9=-418/675, 6-9=-396/559, 3-11=-1022/1053

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.


6) Refer to girder(s) for truss to truss connections.

- 7) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=615, 1=652.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	3-7-12		14-5-6		20-2-8	1	25-11-	10	1		36-10-0	
	3-7-12		10-9-10		5-9-2	- 1	5-9-2	2			10-10-6	1
Plate Offsets ((X,Y) [2:0	0-9-12,Edge], [3:0-5-0	,0-3-8], [7:Edge	e,0-0-11], [1	1:0-5-0,0-4-8]							
LOADING (ps	sf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20	,	Plate Grip DOL	1.15	TC	0.94	Vert(LL)	-0.36	. ,	>999	360	MT20	244/190
TCDL 10	.0	Lumber DOL	1.15	BC	0.96	Vert(CT)	-0.75	10	>584	240		
BCLL 0	.0 *	Rep Stress Incr	NO	WB	0.91	Horz(CT)	0.31	7	n/a	n/a		
BCDL 10	.0	Code IRC2015/T	PI2014	Matri	x-AS	Wind(LL)	0.55	11-17	>802	240	Weight: 256 lb	FT = 20%
LUMBER-				1		BRACING	-					
TOP CHORD	2x6 SP No	o.2 *Except*				TOP CHO	RD	Structu	iral wood	sheathing	directly applied.	
	1-3: 2x10					BOT CHO	RD			ectly applied		
BOT CHORD	2x6 SP No	p.1 *Except*				WEBS		0	at midpt		4-11, 12-13	
	7-9: 2x6 S	P No.2									,	
WEBS	2x4 SP No	o.3 *Except*										
	12-13: 2x4	4 SP No.2										
WEDGE												
Diabt: 2v4 CD	No 2											

Right: 2x4 SP No.3

- REACTIONS. (lb/size) 1=1581/0-5-8, 7=1576/0-5-8 Max Horz 1=378(LC 12) Max Uplift 1=-567(LC 12), 7=-518(LC 13)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 1-2=-705/343, 2-3=-3413/1881, 3-4=-2929/1616, 4-6=-2517/1457, 6-7=-2752/1442
- BOT CHORD 2-11=-1690/3227, 10-11=-659/1851, 8-10=-659/1851, 7-8=-1110/2353
- WEBS 3-11=-1041/1040, 11-12=-608/1333, 4-12=-629/1476, 4-13=-356/937, 8-13=-337/798, 6-8=-440/633

NOTES-

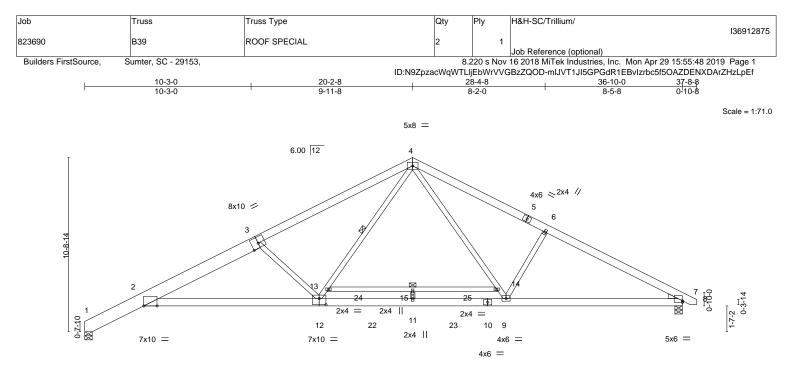
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) 200.0lb AC unit load placed on the bottom chord, 20-2-8 from left end, supported at two points, 5-0-0 apart.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=567, 7=518.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/		
					136912874		
823690	B38	ROOF SPECIAL	1	1			
					Job Reference (optional)		
Builders FirstSource,	Sumter, SC - 29153,	8.220 s Nov 16 2018 MiTek Industries, Inc. Mon Apr 29 15:55:47 2019 Page 2					
		ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-IZm7GhIgKzHP0HS2dCmkJN3wuh2xqm?EIZRI0qzLpEg					

Uniform Loads (plf) Vert: 1-16=-82, 4-16=-60, 4-7=-60, 15-18=-20 Concentrated Loads (lb) Vert: 21=-100 22=-100

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
LOADING (psf) TCLL SPACING- Plate Grip DOL 2.0 CSI. DEFL. in (loc) I/defl L/d PLATES GRIP TCLL 20.0 Plate Grip DOL 1.15 TC 0.94 Vert(LL) -0.36 11 >999 360 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 BC 0.96 Vert(CT) -0.75 11 >584 240 BCLL 0.0 * Rep Stress Incr NO WB 0.91 Matrix-AS Wind(LL) 0.55 12-18 >805 240 Weight: 258 lb FT = 20% LUMBER- Code IRC2015/TPI2014 Matrix-AS Wind(LL) 0.55 12-18 >805 240 Weight: 258 lb FT = 20% LUMBER- TOP CHORD 2x6 SP No.2 *Except* T-0: 2x6 SP No.2 Except* TOP CHORD Rigid ceiling directly applied. BOT CHORD 2x4 SP No.3 *Except* T-10: 2x6 SP No.2 WEBS 1 Row at midpt 4-12, 13-14 WEDGE WEDGE WEDGE
TCLL 20.0 Plate Grip DOL 1.15 TC 0.94 Vert(LL) -0.36 11 >999 360 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 BC 0.96 Vert(LL) -0.36 11 >999 360 MT20 244/190 BCLL 0.0 * Rep Stress Incr NO WB 0.91 Horz(CT) 0.31 7 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-AS Wind(LL) 0.55 12-18 >805 240 Weight: 258 lb FT = 20% LUMBER- TOP CHORD 2x6 SP No.2 *Except* To 2 245 SP No.3 BRACING- TOP CHORD Structural wood sheathing directly applied. BOT CHORD 2x6 SP No.1 *Except* T-10: 2x6 SP No.2 WEBS 1 Row at midpt 4-12, 13-14 WEBS 2x4 SP No.3 *Except* 13-14: 2x4 SP No.2 WEDGE WEBS 1 Row at midpt 4-12, 13-14
LUMBER- TOP CHORD 2x6 SP No.2 *Except* 1-3: 2x10 SP DSS BRACING- TOP CHORD BOT CHORD 2x6 SP No.1 *Except* 7-10: 2x6 SP No.2 BOT CHORD Structural wood sheathing directly applied. BOT CHORD WEBS 2x4 SP No.3 *Except* 13-14: 2x4 SP No.2 WEBS 1 Row at midpt 4-12, 13-14
TOP CHORD 2x6 SP No.2 *Except* TOP CHORD Structural wood sheathing directly applied. 1-3: 2x10 SP DSS BOT CHORD Rigid ceiling directly applied. BOT CHORD 2x6 SP No.1 *Except* WEBS 1 Row at midpt 7-10: 2x6 SP No.2 2x4 SP No.3 *Except* 4-12, 13-14 WEBS 2x4 SP No.3 *Except* 13-14: 2x4 SP No.2 WEDGE WEDGE WEDGE
REACTIONS. (lb/size) 1=1581/0-5-8, 7=1617/0-5-8 Max Horz 1=368(LC 12) Max Horz 1=368(LC 12) Max Uplift 1=-568(LC 12), 7=-550(LC 13) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. 1-2=-702/362, 2-3=-3412/1875, 3-4=-2927/1610, 4-6=-2514/1454, 6-7=-2749/1438 BOT CHORD 1-2=-702/362, 2-3=-3412/1875, 3-4=-2927/1610, 4-6=-2514/1454, 6-7=-2749/1438 BOT CHORD 2-12=-1660/3226, 11-12=-634/1850, 9-11=-634/1850, 7-9=-1084/2350 WEBS 3-12=-1041/1037, 12-13=-604/1333, 4-13=-625/1475, 4-14=-355/936, 9-14=-336/797, 6-9=-439/632
 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) 200.0b AC unit load placed on the bottom chord, 20-2-8 from left end, supported at two points, 5-0-0 apart. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) All bearings are assumed to be User Defined crushing capacity of 565 psi. 7) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=568, 7=550. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. LOAD CASE(S) Standard 1) Dood L Brot line (hongenet) Lumber laprance=1.15.

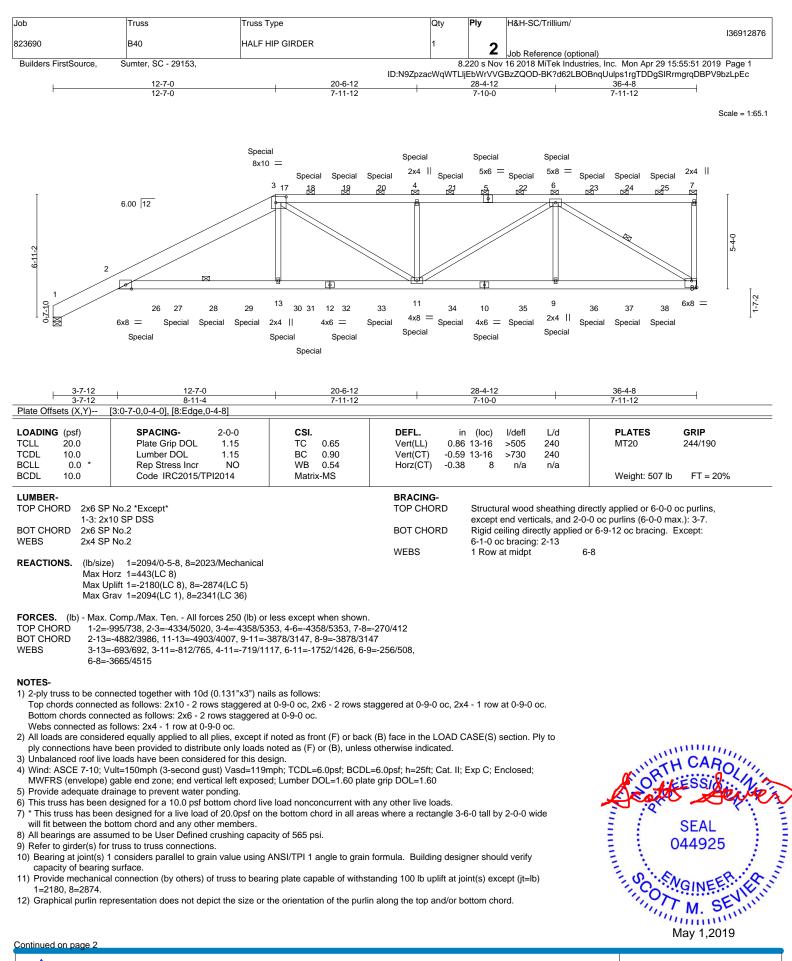
- 7) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=568, 7=550.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

(IIIIIIII) May 1,2019


S Μ.

Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/		
			_		136912875		
323690	B39	ROOF SPECIAL	2	1			
					Job Reference (optional)		
Builders FirstSource, S	umter, SC - 29153,	8.220 s Nov 16 2018 MiTek Industries, Inc. Mon Apr 29 15:55:48 2019 Page 2					
		ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-mIJVT1JI5GPGdR1EBvIzrbc5f5OAZDENXDArZHzLpEf					

Uniform Loads (plf) Vert: 1-17=-82, 4-17=-60, 4-8=-60, 16-19=-20 Concentrated Loads (lb) Vert: 22=-100 23=-100

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria**, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
					1369128
823690	B40	HALF HIP GIRDER	1	2	
				-	Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,		8	220 s Nov	/ 16 2018 MiTek Industries, Inc. Mon Apr 29 15:55:51 2019 Page 2

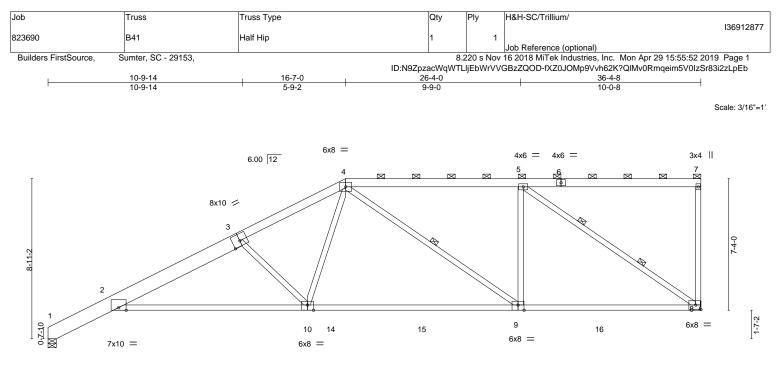
NOTES-

ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-BK?d62LBOBnqUulps1rgTDDgSIRrmgrqDBPV9bzLpEc

13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 185 lb down and 226 lb up at 13-0-12, 192 lb down and 226 lb up at 14-6-12, 192 lb down and 226 lb up at 16-6-12, 192 lb down and 226 lb up at 18-6-12, 192 lb down and 226 lb up at 22-6-12, 192 lb down and 226 lb up at 22-6-12, 192 lb down and 226 lb up at 22-6-12, 192 lb down and 226 lb up at 22-6-12, 192 lb down and 226 lb up at 22-6-12, 192 lb down and 226 lb up at 22-6-12, 192 lb down and 226 lb up at 22-6-12, 192 lb down and 226 lb up at 30-6-12, and 192 lb down and 226 lb up at 32-6-12, and 192 lb down and 226 lb up at 34-6-12 on top chord, and 238 lb down and 202 lb up at 5-0-12, 44 lb down and 52 lb up at 7-0-12, 78 lb down and 127 lb up at 9-0-12, 144 lb down and 275 lb up at 11-0-12, 67 lb down and 90 lb up at 13-0-12, 67 lb down and 90 lb up at 14-6-12, 67 lb down and 90 lb up at 16-6-12, 67 lb down and 90 lb up at 22-6-12, 67 lb down and 90 lb up at 22-6-12, 67 lb down and 90 lb up at 23-6-12, 67 lb down and 90 lb up at 23-6-12, 67 lb down and 90 lb up at 23-6-12, 67 lb down and 90 lb up at 30-6-12, and 67 lb down and 90 lb up at 33-6-12 on top chord, and 90 lb up at 33-6-12, 67 lb down and 90 lb up at 23-6-12, 67 lb down and 90 lb up at 23-6-12, 67 lb down and 90 lb up at 23-6-12, 67 lb down and 90 lb up at 23-6-12, 67 lb down and 90 lb up at 23-6-12, 67 lb down and 90 lb up at 33-6-12, and 67 lb down and 90 lb up at 33-6-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-15=-82, 3-15=-60, 3-7=-60, 8-14=-20

Concentrated Loads (lb)

Vert: 5=-46(F) 4=-46(F) 11=-18(F) 9=-18(F) 6=-46(F) 10=-18(F) 17=-46(F) 18=-46(F) 19=-46(F) 20=-46(F) 21=-46(F) 22=-46(F) 23=-46(F) 25=-46(F) 25=-

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L 3-7-12	14-5-8	1	26-4-0	36-4-8	1
3-7-12	10-9-12	I	11-10-8	10-0-8	1
Plate Offsets (X,Y) [3:0-5-0,0-3-8], [9:0-4-0,Edge], [10:0-4-0,	Edge]			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/def	il L/d PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.75	Vert(LL) -0.47 9-10 >929	9 360 MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.96	Vert(CT) -0.88 9-10 >492	2 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.97	Horz(CT) 0.32 8 n/a	a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0.57 10-13 >757	7 240 Weight: 230 lb	FT = 20%

LUMBER-		BRACING-		
TOP CHORD	2x6 SP No.2 *Except*	TOP CHORD	Structural wood sheathing directly applied, except end vert	icals, and
	1-3: 2x10 SP DSS		2-0-0 oc purlins (5-1-13 max.): 4-7.	
BOT CHORD	2x4 SP No.1	BOT CHORD	Rigid ceiling directly applied.	
WEBS	2x4 SP No.3 *Except*	WEBS	1 Row at midpt 4-9	
	4-9,5-8: 2x4 SP No.2		2 Rows at 1/3 pts 5-8	

REACTIONS. (Ib/size) 8=1442/Mechanical, 1=1459/0-5-8 Max Horz 1=582(LC 12) Max Uplift 8=-758(LC 9), 1=-577(LC 12) Max Grav 8=1445(LC 2), 1=1459(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-658/0, 2-3=-2955/1883, 3-4=-2511/1642, 4-5=-1657/1078

BOT CHORD 2-10=-2207/2793, 9-10=-1387/1885, 8-9=-1077/1645

WEBS 3-10=-907/930, 4-10=-569/974, 4-9=-354/389, 5-9=-82/615, 5-8=-1974/1304

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

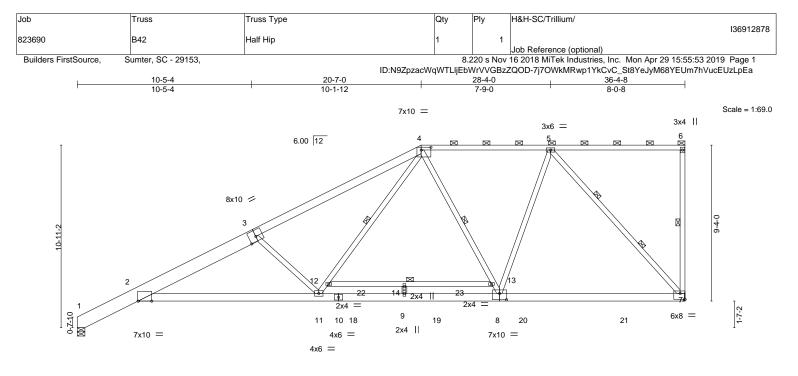
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

 Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=758, 1=577.


10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ADSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

3-7-1		19-7-0	25-3-4	36-4		4
3-7-1 Plate Offsets (X,Y)	2 10-9-12 [2:0-9-12,Edge], [3:0-5-0,0-3-8], [4:0-7-0	5-1-8 ,0-2-0], [7:Edge,0-4-4], [8:0-5	-0,0-4-8]	11-1	1-4	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.95 BC 0.88 WB 0.96 Matrix-AS	DEFL. in (loc Vert(LL) -0.31 11-17 Vert(CT) -0.69 11-17 Horz(CT) 0.30 0.30 Wind(LL) 0.58 11-17	, 7 >999 360 7 >625 240 7 n/a n/a	PLATES MT20 Weight: 270 lb	GRIP 244/190 FT = 20%
4-6: 2x BOT CHORD 2x6 SP 2-10: 2 WEBS 2x4 SP	No.2 *Except* 4 SP No.2, 1-3: 2x10 SP DSS No.2 *Except* k6 SP No.1 No.3 *Except* 1,12-13: 2x4 SP No.2		2-0-0 BOT CHORD Rigic WEBS 1 Ro			nd verticals, and
Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 1-2=- BOT CHORD 2-11= WEBS 3-11=) 7=1547/Mechanical, 1=1562/0-5-8 orz 1=726(LC 12) blift 7=-621(LC 9), 1=-499(LC 12) rav 7=1612(LC 2), 1=1562(LC 1) Comp./Max. Ten All forces 250 (lb) or 765/0, 2-3=-3363/1714, 3-4=-2872/1410 -2237/3187, 9-11=-979/1700, 8-9=-979, -1099/1181, 11-12=-752/1394, 4-12=-7- 232/959, 5-7=-1735/971	, 4-5=-1467/732 1700, 7-8=-657/1170	=-497/516,			
 Wind: ASCE 7-10; V MWFRS (envelope) reactions shown; Lui 200.0lb AC unit load Provide adequate dr This truss has been * This truss has been * I bearings are assistication of the structure of the struc	loads have been considered for this de ult=150mph (3-second gust) Vasd=119r gable end zone and C-C Exterior(2) zon nber DOL=1.60 plate grip DOL=1.60 placed on the bottom chord, 19-0-0 fror ainage to prevent water ponding. designed for a 10.0 psf bottom chord livin designed for a live load of 20.0psf on t ottom chord and any other members, wi umed to be User Defined crushing capacitruss to truss connections. considers parallel to grain value using A urface. I connection (by others) of truss to bear	nph; TCDL=6.0psf; BCDL=6.0 e; end vertical left exposed;C- n left end, supported at two po e load nonconcurrent with any he bottom chord in all areas w th BCDL = 10.0psf. bity of 565 psi.	C for members and forces bints, 5-0-0 apart. other live loads. here a rectangle 3-6-0 tall ula. Building designer sho	s & MWFRS for I by 2-0-0 wide ould verify		CAROLINI ESSICOLINI SEAL 44925

11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

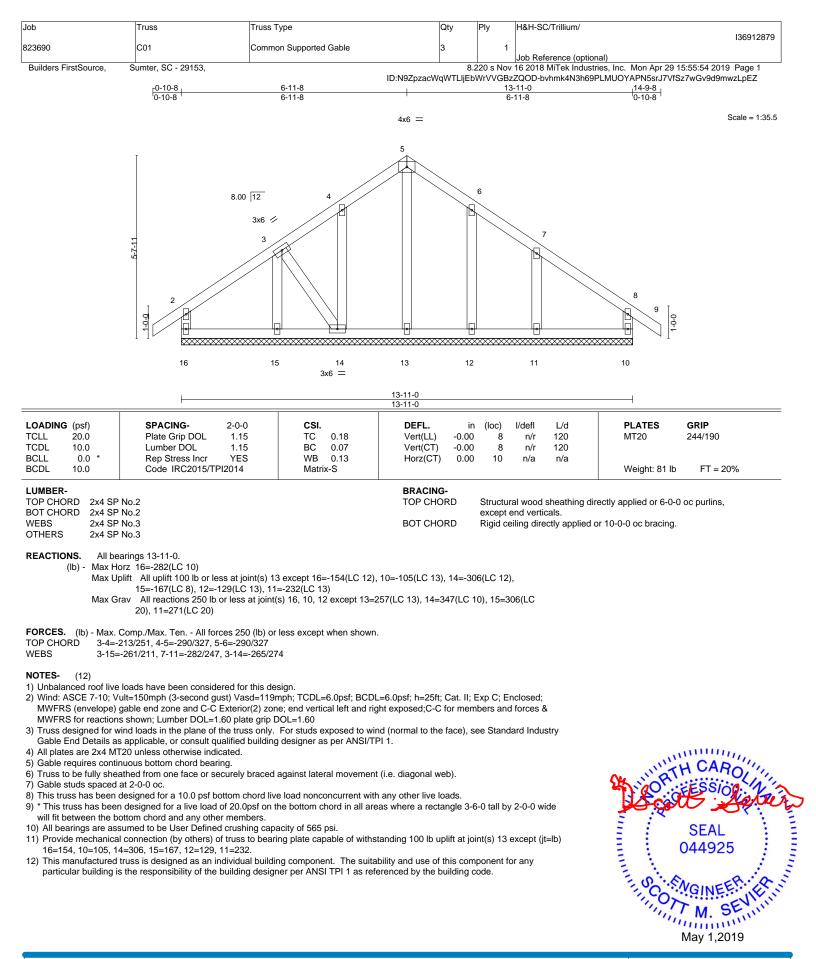
W. Schn S

May 1,2019

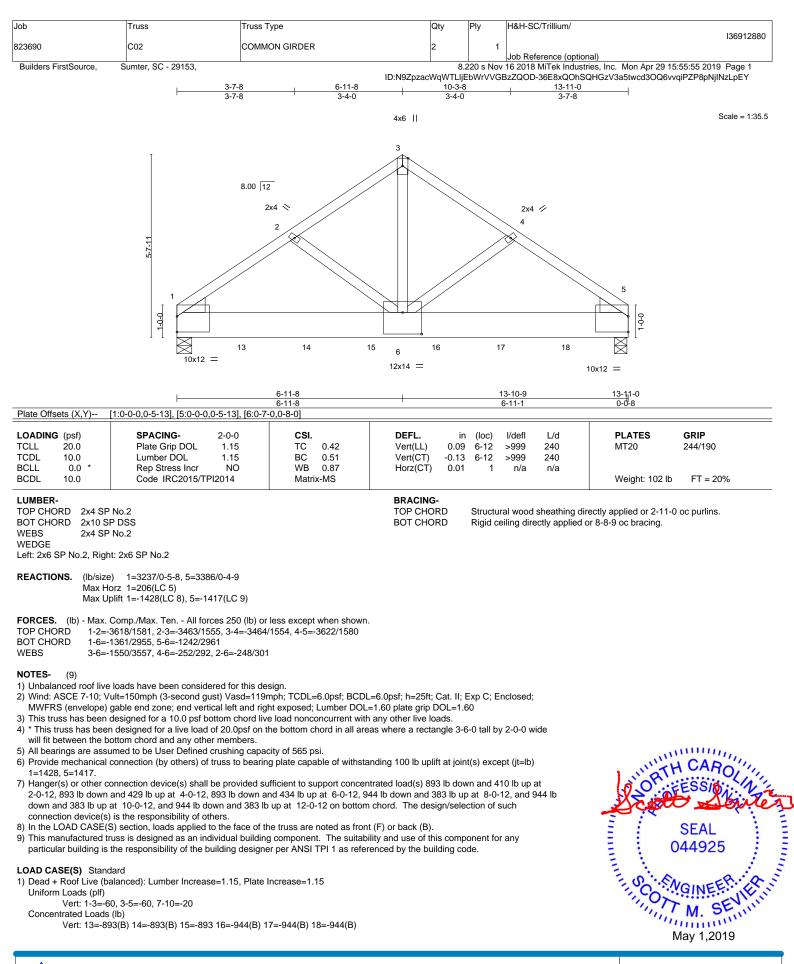
Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
					136912878
823690	B42	Half Hip	1	1	
					Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:55:53 2019 Page 2

ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-7j7OWkMRwp1YkCvC_St8YeJyM68YEUm7hVucEUzLpEa

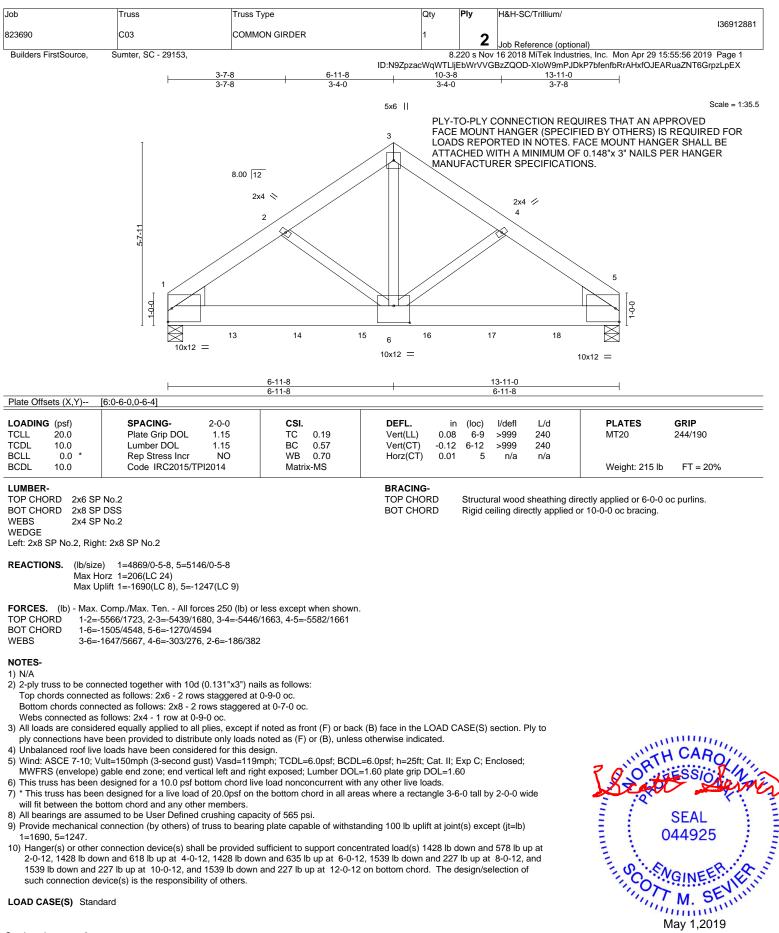
LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-16=-82, 4-16=-60, 4-6=-60, 7-15=-20 Concentrated Loads (lb)


Vert: 18=-100 19=-100

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

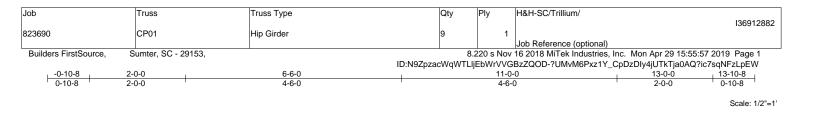
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

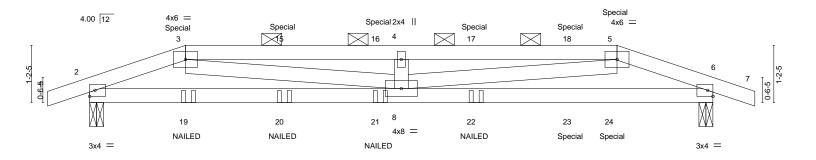
Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSVTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/		
823690	C03	COMMON GIRDER	1	-	136912881		
525650	000	COMMON CITEDER		2	Job Reference (optional)		
Builders FirstSource, S	Sumter, SC - 29153,		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:55:56 2019 Page 2		
		ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-XIoW9mPJDkP7bfenfbRrAHxfOJEARuaZNT6GrpzLpEX					

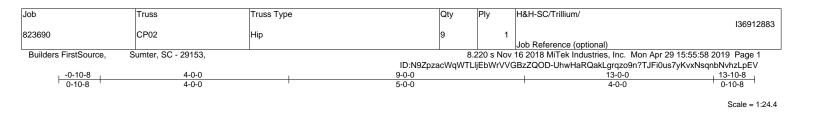
1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

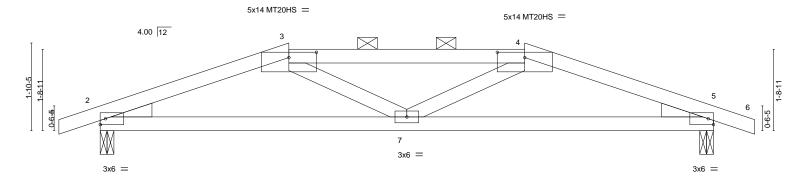

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 7-10=-20


Concentrated Loads (lb)

Vert: 13=-1428(B) 14=-1428(B) 15=-1428(B) 16=-1539(B) 17=-1539(B) 18=-1539(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





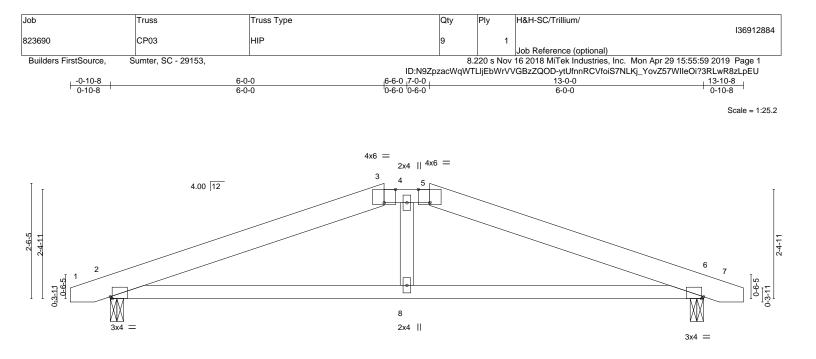
	6-6-0 6-6-0		13-0-0 6-6-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.55 BC 0.53 WB 0.36 Matrix-MS	DEFL. in (loc) l/defl L/d Vert(LL) 0.23 8 >687 240 Vert(CT) -0.18 8 >883 240 Horz(CT) -0.02 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 56 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	No.2		BRACING- TOP CHORD Structural wood sheathing 2-0-0 oc purlins (3-9-8 max BOT CHORD Rigid ceiling directly applied	
Max Ho	e) 2=580/0-3-8, 6=581/0-3-8 prz 2=-31(LC 5) plift 2=-592(LC 4), 6=-593(LC 5)			
TOP CHORD 2-3=- BOT CHORD 2-8=-5	Comp./Max. Ten All forces 250 (lb) or 1082/1056, 3-4=-1946/1949, 4-5=-1946, 967/1000, 6-8=-956/1001 970/985, 4-8=-285/270, 5-8=-968/983			
 Wind: ASCE 7-10; V MWFRS (envelope) DOL=1.60 Provide adequate dr: 4) This truss has been * This truss has been * This truss has been * This truss has been Provide mechanical 2=592, 6=593. * Graphical purlin repr * "NAILED" indicates 3 Hanger(s) or other cr 2-0-0, 25 lb down an and 47 lb up at 10-0 and 37 lb up at 10-1 10) In the LOAD CASE * This manufactured particular building is 	gable end zone; end vertical left and rig ainage to prevent water ponding. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on t ottom chord and any other members. connection (by others) of truss to bearin esentation does not depict the size or th 3-10d (0.148"x3") or 3-12d (0.148"x3.25 onnection device(s) shall be provided su d 47 lb up at 4-0-12, 25 lb down and 47 l-12, and 25 lb down and 47 lb up at 11 1-4 on bottom chord. The design/selec (S) section, loads applied to the face of truss is designed as an individual buildi s the responsibility of the building design dard	mph; TCDL=6.0psf; BCDL= ht exposed; porch left and e load nonconcurrent with he bottom chord in all area g plate capable of withstar e orientation of the purlin a ") toe-nails per NDS guidlin ifficient to support concent fificient to support concent of up at 6-0-12, 25 lb do -0-0 on top chord, and 8 lb tion of such connection de the truss are noted as fror ng component. The suitat her per ANSI TPI 1 as refe	as where a rectangle 3-6-0 tall by 2-0-0 wide ading 100 lb uplift at joint(s) except (jt=lb) along the top and/or bottom chord. res. rated load(s) 25 lb down and 47 lb up at vn and 47 lb up at 8-0-12, and 25 lb down down and 37 lb up at 10-0-12, and 8 lb down vice(s) is the responsibility of others. t (F) or back (B). ility and use of this component for any	SEAL 044925
1) Dead + Roof Live (ba Uniform Loads (plf) Vert: 1-3=-6 Concentrated Loads	alanced): Lumber Increase=1.15, Plate 0, 3-5=-60, 5-7=-60, 9-12=-20			May 1,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	6-6-0 6-6-0			<u>13-0-0</u> 6-6-0	
Plate Offsets (X,Y)	[3:0-7-0,0-1-6], [4:0-7-0,0-1-6]				
LOADING (psf) ICLL 20.0 ICDL 10.0 SCLL 0.0 SCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.58 BC 0.40 WB 0.10 Matrix-AS	DEFL. ir Vert(LL) 0.14 Vert(CT) -0.08 Horz(CT) -0.02	7-13 >999 240 7-10 >999 240	PLATES GRIP MT20 244/190 MT20HS 187/143 Weight: 53 lb FT = 20%
Max He	No.2 No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing 2-0-0 oc purlins (5-1-2 ma: Rigid ceiling directly applie	x.): 3-4.
TOP CHORD 2-3=- BOT CHORD 2-7=-	Comp./Max. Ten All forces 250 (lb) o 1051/1835, 3-4=-1055/2198, 4-5=-105 1662/967, 5-7=-1667/967 476/246, 4-7=-476/246				
 Wind: ASCE 7-10; V MWFRS (envelope) for members and for Provide adequate dr All plates are MT20 p This truss has been 	e loads have been considered for this de ult=150mph (3-second gust) Vasd=119 gable end zone and C-C Exterior(2) zo ces & MWFRS for reactions shown; Lu ainage to prevent water ponding. plates unless otherwise indicated. designed for a 10.0 psf bottom chord lin e designed for a line load of 20 opt on	mph; TCDL=6.0psf; BCDL= ne; end vertical left and righ mber DOL=1.60 plate grip l re load nonconcurrent with	ht exposed; porch left a DOL=1.60 any other live loads.	nd right exposed;C-C	

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=567, 5=567.


8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

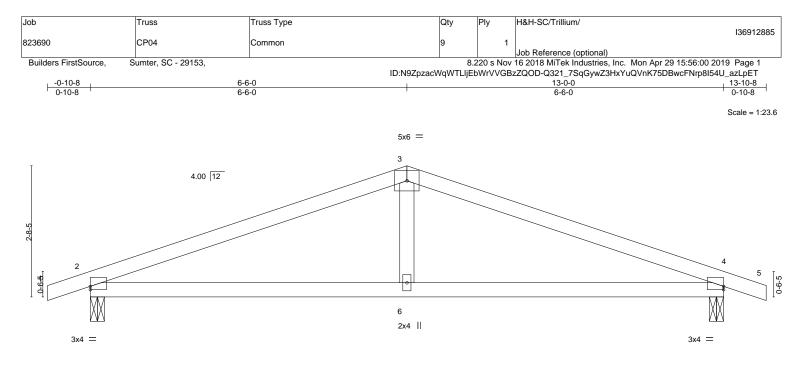
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

F	<u>6-6-0</u> 6-6-0			<u>13-0-0</u> 6-6-0	
Plate Offsets (X,Y)	[2:0-0-8,Edge], [3:0-3-0,Edge], [5:0-3-0	Edge], [6:0-0-8,Edge]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.48 BC 0.41 WB 0.09 Matrix-AS	DEFL. i Vert(LL) 0.1 Vert(CT) -0.0 Horz(CT) -0.0	6 8-14 >999 240	PLATES GRIP MT20 244/190 Weight: 58 lb FT = 20%
BOT CHORD 2x4 SI WEBS 2x4 SI REACTIONS. (Ib/siz Max H	P No.2 *Except* x4 SP No.2 P No.2 P No.3 te) 2=557/0-3-8, 6=557/0-3-8 Horz 2=-65(LC 13)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d 2-0-0 oc purlins (6-0-0 max. Rigid ceiling directly applied): 3-5.
FORCES. (lb) - Max TOP CHORD 2-3= BOT CHORD 2-8=	Jplift 2=-526(LC 8), 6=-526(LC 9) . Comp./Max. Ten All forces 250 (lb) ol -930/1716, 3-4=-853/1712, 4-5=-853/17 -1533/853, 6-8=-1533/853 -503/249		n.		
 2) Wind: ASCE 7-10; MWFRS (envelope for members and for 3) Provide adequate of 4) This truss has been 	re loads have been considered for this de Vult=150mph (3-second gust) Vasd=119) gable end zone and C-C Exterior(2) zor prces & MWFRS for reactions shown; Lui drainage to prevent water ponding. In designed for a 10.0 psf bottom chord live en designed for a live load of 20.0psf on	mph; TCDL=6.0psf; BCD ne; end vertical left and riu nber DOL=1.60 plate grip e load nonconcurrent wit	ght exposed; porch left a b DOL=1.60 h any other live loads.	and right exposed;C-C	

will fit between the bottom chord and any other members.
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=526, 6=526.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

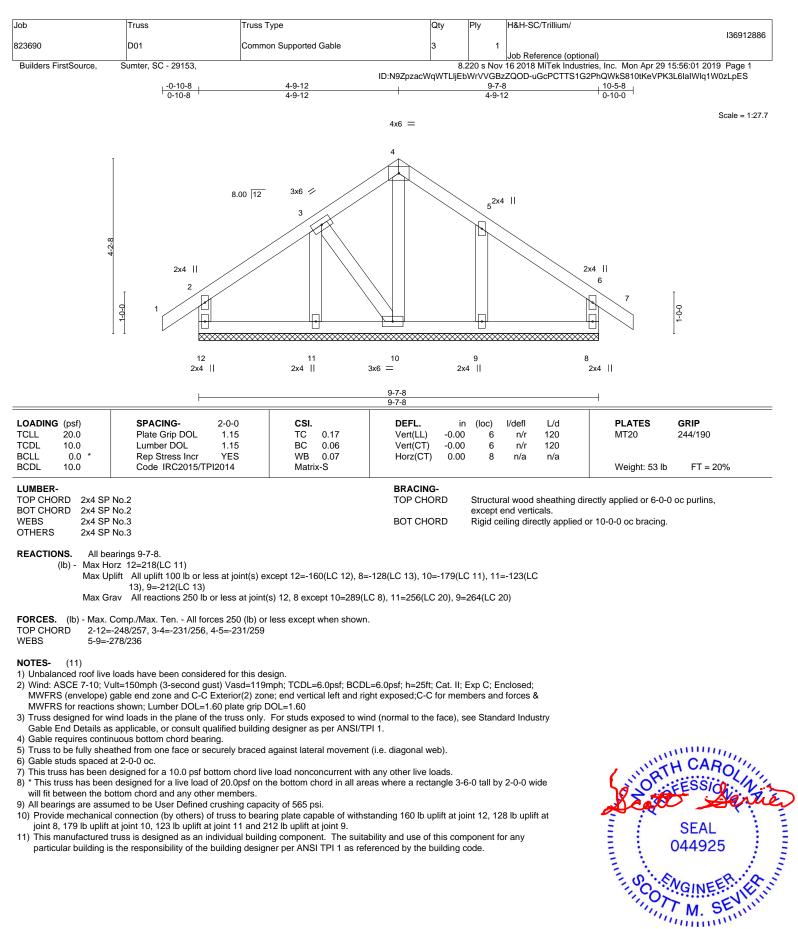
 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.


9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

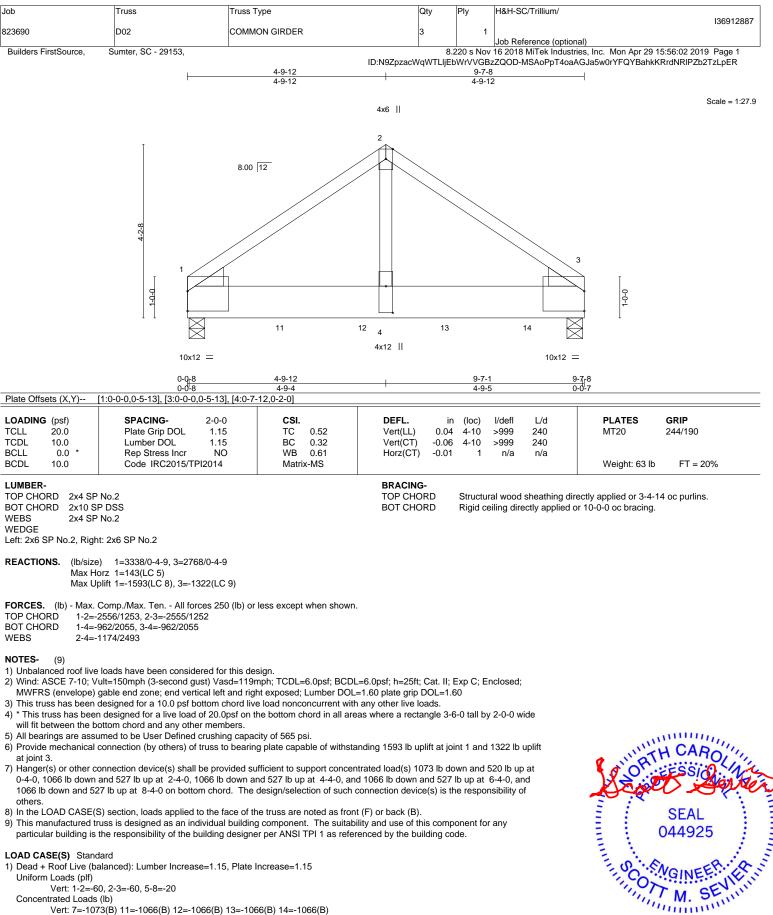
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y)	<u>6-6-0</u> <u>6-6-0</u> [2:0-0-0,0-0-13], [4:0-0-0,0-0-13]			<u>13-0-0</u> 6-6-0			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.59 BC 0.50 WB 0.10 Matrix-AS	DEFL. ir Vert(LL) 0.13 Vert(CT) -0.08 Horz(CT) -0.01	6-12 >999 240 6-9 >999 240	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORDBRACING- TOP CHORDBOT CHORD2x4 SP No.2TOP CHORDStructural wood sheathing directly applied.BOT CHORD2x4 SP No.2BOT CHORDRigid ceiling directly applied.WEBS2x4 SP No.3Structural wood sheathing directly applied.Rigid ceiling directly applied.							
REACTIONS. (lb/size) 2=573/0-3-8, 4=573/0-3-8 Max Horz 2=74(LC 12) Max Uplift 2=-541(LC 8), 4=-541(LC 9)							
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-900/1641, 3-4=-900/1641 BOT CHORD 2-6=-1435/797, 4-6=-1435/797 WEBS 3-6=-554/271							
 NOTES- (7) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will live load of an envector the moments. 							


will fit between the bottom chord and any other members.
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=541, 4=541.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

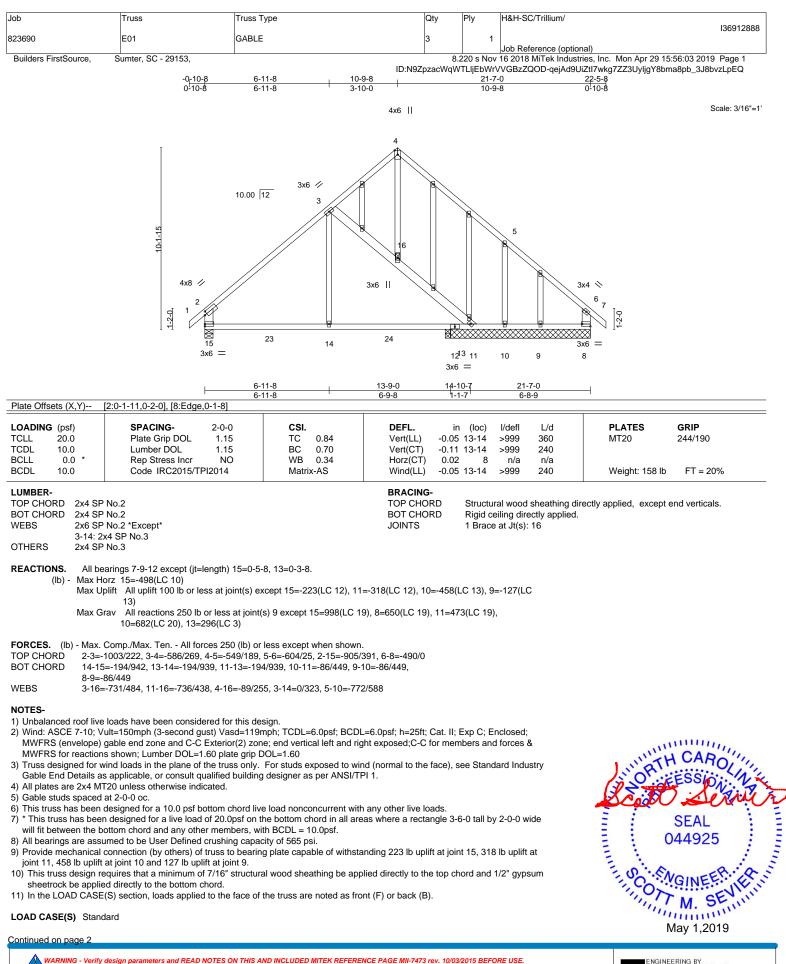
7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

May 1,2019

ENGINEERING BY ERENCO A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



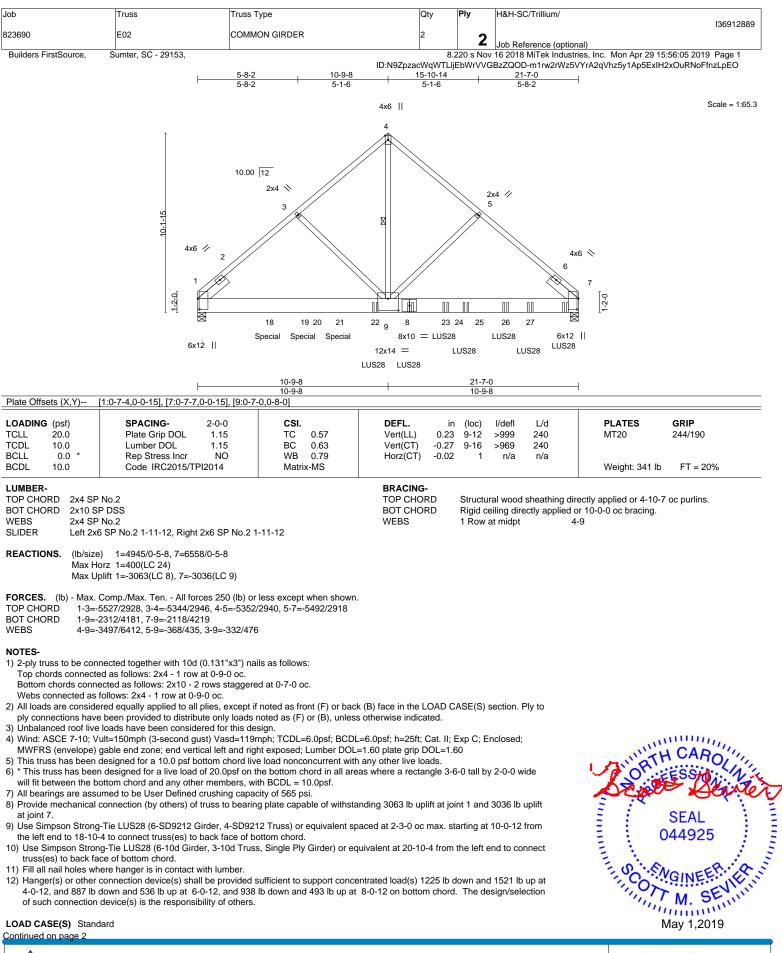
May 1,2019

818 Soundside Road Edenton, NC 27932

Vert: 7=-1073(B) 11=-1066(B) 12=-1066(B) 13=-1066(B) 14=-1066(B)

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOI ES ON THIS AND INCLUDED MILER REFERENCE FACE MILETATES. INVALUE DELIGIE ODE Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property dranage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTP11 Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only with MITeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
					136912888
823690	E01	GABLE	3	1	
					Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,	8.220 s Nov 16 2018 MiTek Industries, Inc. Mon Apr 29 15:56:03 2019 Page 2			
		ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-qejAd9UiZtl7wkg7ZZ3UyljgY8bma8pb_3J8bvzLpEQ			

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

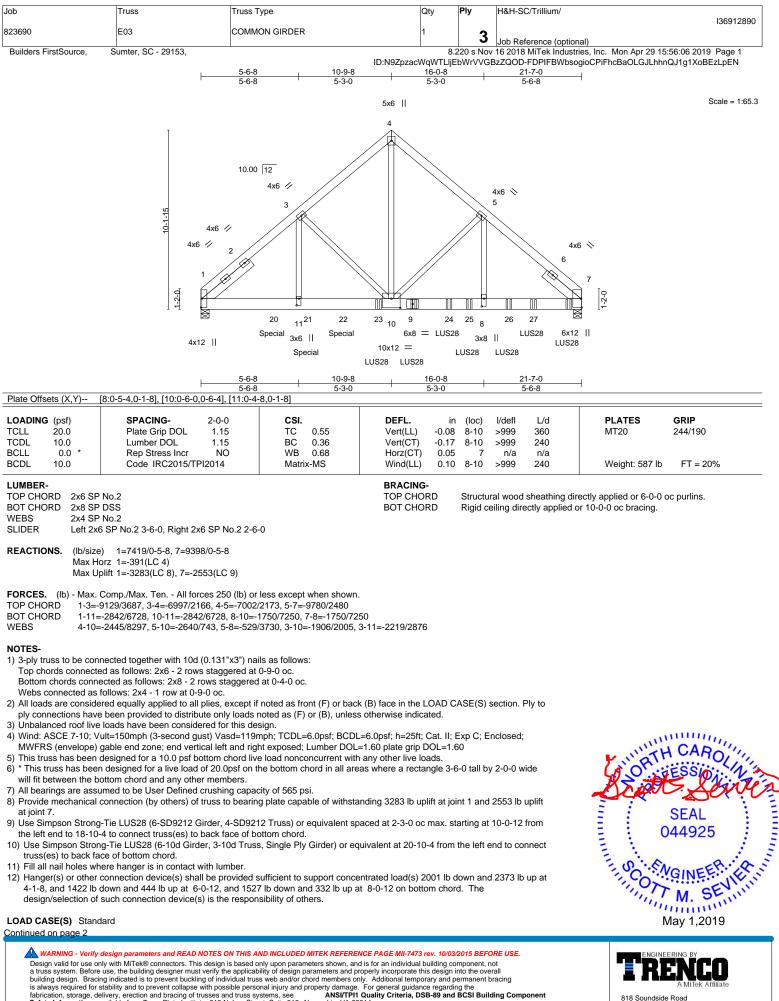
Vert: 1-2=-60, 2-3=-60, 3-4=-75(F=-15), 4-6=-75(F=-15), 6-7=-75(F=-15), 12-15=-20, 8-12=-35(F=-15), 3-11=-45(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

[lob	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
						136912889
	323690	E02	COMMON GIRDER	2	2	
					_	Job Reference (optional)
	Builders FirstSource, S	Sumter, SC - 29153,		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:56:05 2019 Page 2
			ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-m1rw2rWz5VYrA2qVhz5y1Ap5ExIH2xOuRNoFfnzLpEO			

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-4=-60, 4-7=-60, 10-14=-20

Concentrated Loads (lb)

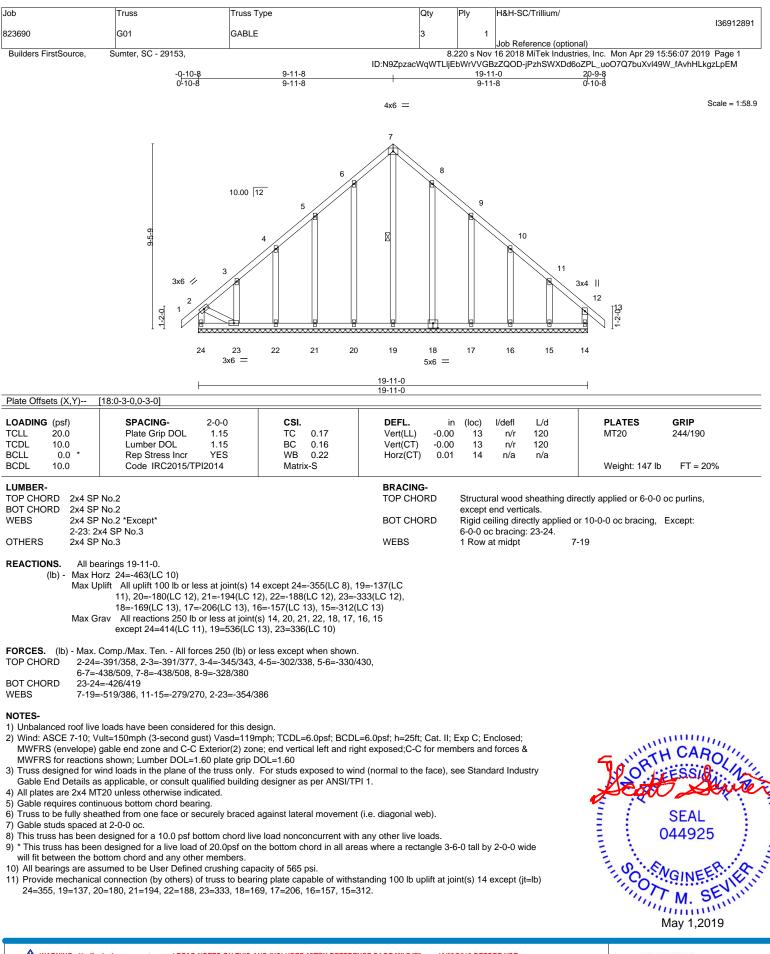
Vert: 8=-944(B) 16=-1069(B) 18=-1225(B) 19=-887(B) 21=-938(B) 22=-938(B) 23=-944(B) 25=-944(B) 26=-944(B) 27=-944(B) 27=-944(B) 26=-944(B) 27=-944(B) 26=-944(B) 26=-946(B) 26=-94(B) 26=-94(B) 26=-94(B) 26=-94(B) 26=-946(B) 26=-946(

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

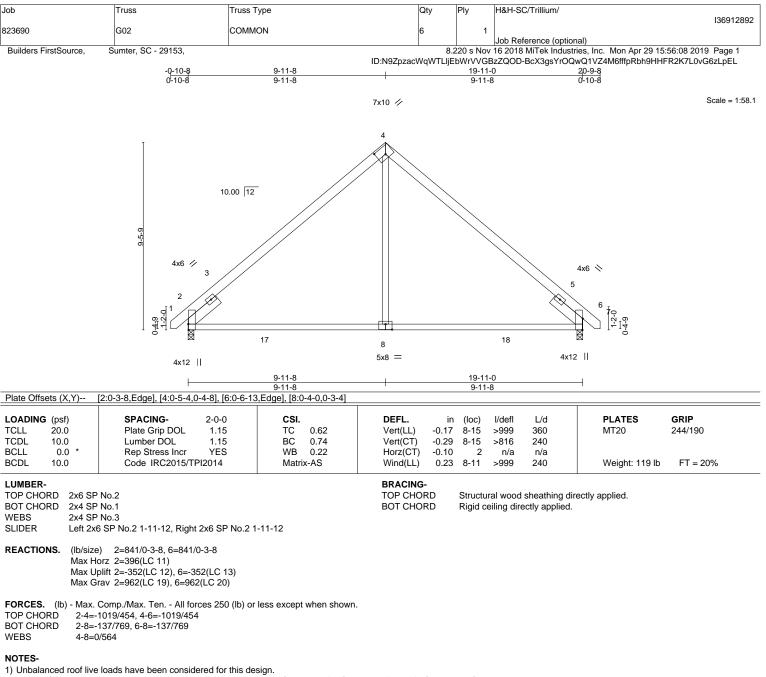
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

[Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
						136912890
	323690	E03	COMMON GIRDER	1	3	
					J	Job Reference (optional)
	Builders FirstSource, S	umter, SC - 29153,		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:56:06 2019 Page 2
			ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-FDPIFBWbsogioCPiFhcBaOLGJLhhnQJ1g1XoBEzLpEN			

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-4=-60, 4-7=-60, 12-16=-20

Concentrated Loads (lb)


Vert: 9=-1539(B) 18=-1071(B) 20=-1996(B) 21=-1422(B) 22=-1527(B) 23=-1527(B) 24=-1539(B) 25=-1539(B) 26=-1539(B) 27=-1428(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

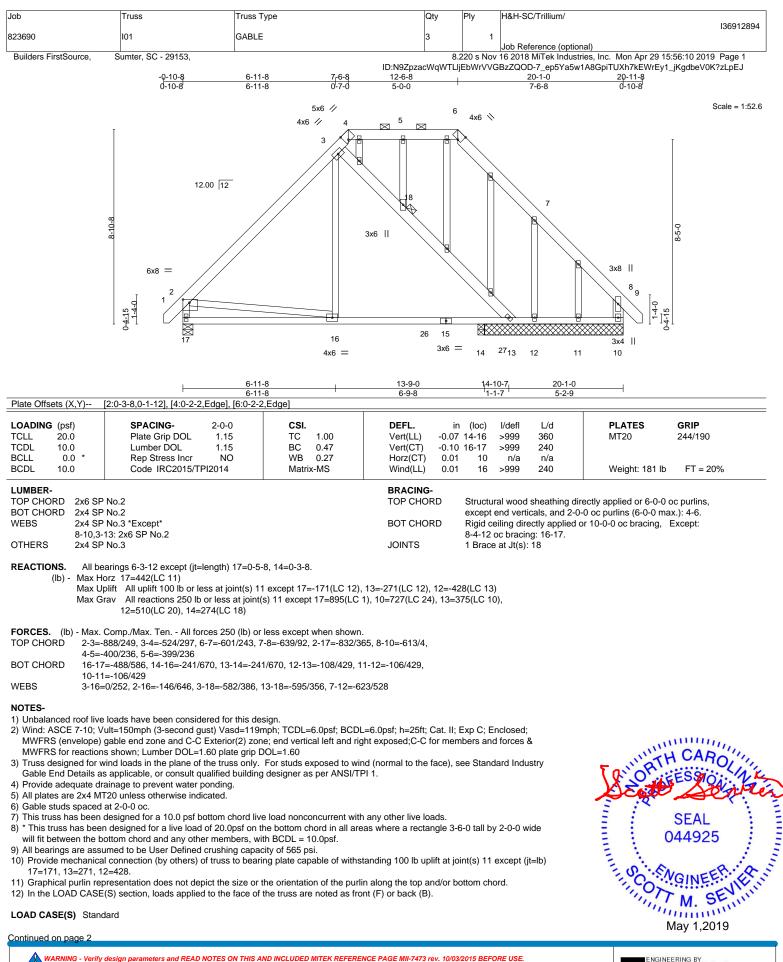
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=352, 6=352.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.



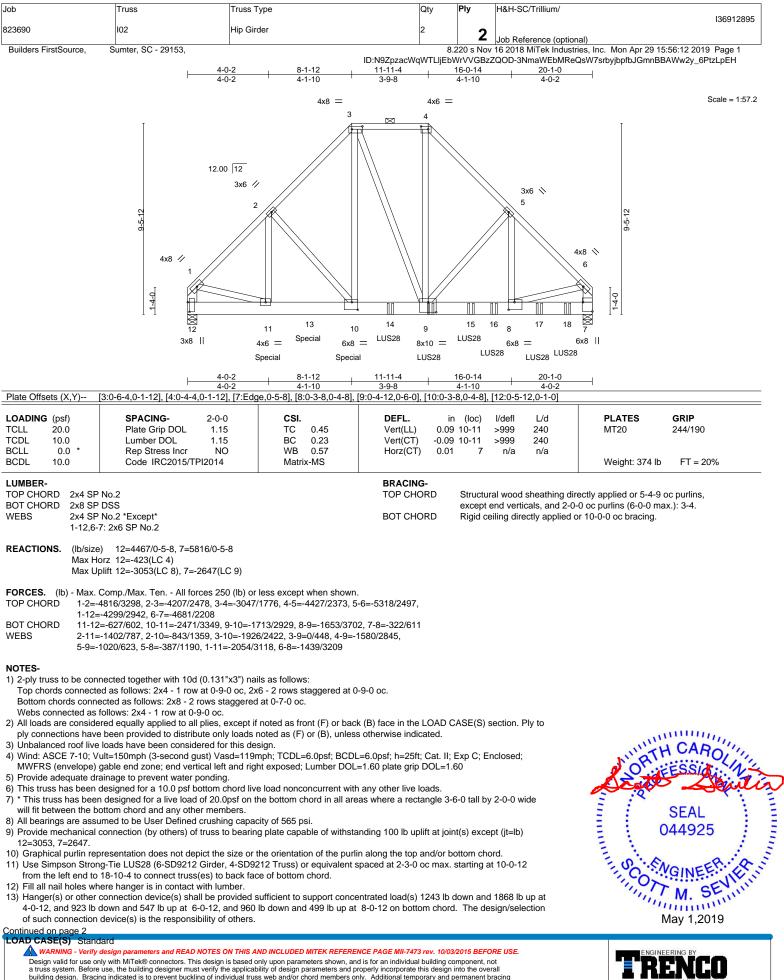
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. ENGINEERING BY REPACTOR A MITER Affiliate 818 Soundside Road Edenton, NC 27932

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/		
823690	101	GABLE	3	1	136912894		
020090		GADLE	5		Job Reference (optional)		
Builders FirstSource, S	umter, SC - 29153,	8.220 s Nov 16 2018 MiTek Industries, Inc. Mon Apr 29 15:56:10 2019 Page 2					
		ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-7_ep5Ya5w1A8GpiTUXh7kEWrEy1_jKgdbeV0K?zLpEJ					


LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 3-4=-75(F=-15), 6-8=-75(F=-15), 8-9=-75(F=-15), 17-27=-20, 10-27=-35(F=-15), 3-13=-45(F), 4-6=-75(F=-15), 3-13=-45(F), 4-75(F=-15), 3-13=-45(F), 4-75(F=-15), 3-13=-45(F), 4-75(F=-15), 3-13=-45(F), 4-75(F=-15), 3-13=-45(F), 4-75(F=-15), 3-15(F=-15), 3-15(F=-15)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

basing value to day only wind index controlling designer must verify the applicability of design parameters and property incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11** Quality Criteria, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

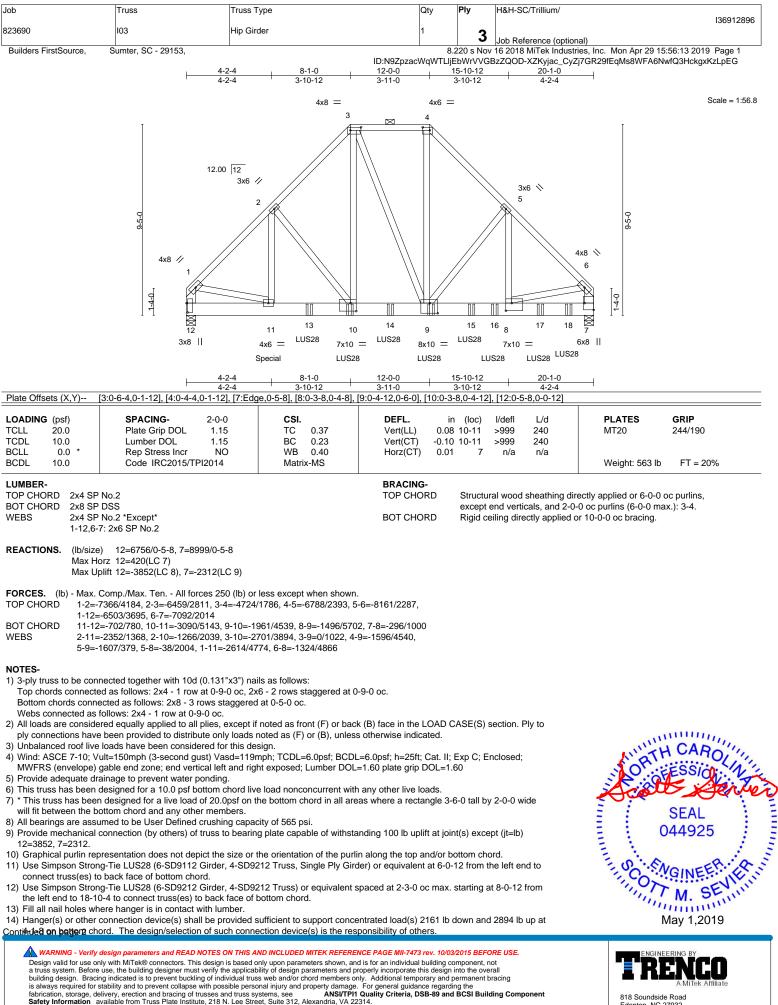
818 Soundside Road Edenton, NC 27932

H&H-SC/Trillium/
136912895
2
Job Reference (optional)
Nov 16 2018 MiTek Industries, Inc. Mon Apr 29 15:56:12 2019 Page 2

ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-3NmaWEbMReQsW7srbyjbpfbJGmnBBAWw2y_6PtzLpEH

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 4-6=-60, 7-12=-20

Concentrated Loads (lb)

Vert: 9=-944(B) 11=-1225(B) 10=-938(B) 13=-887(B) 14=-944(B) 15=-944(B) 16=-944(B) 17=-944(B) 18=-944(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

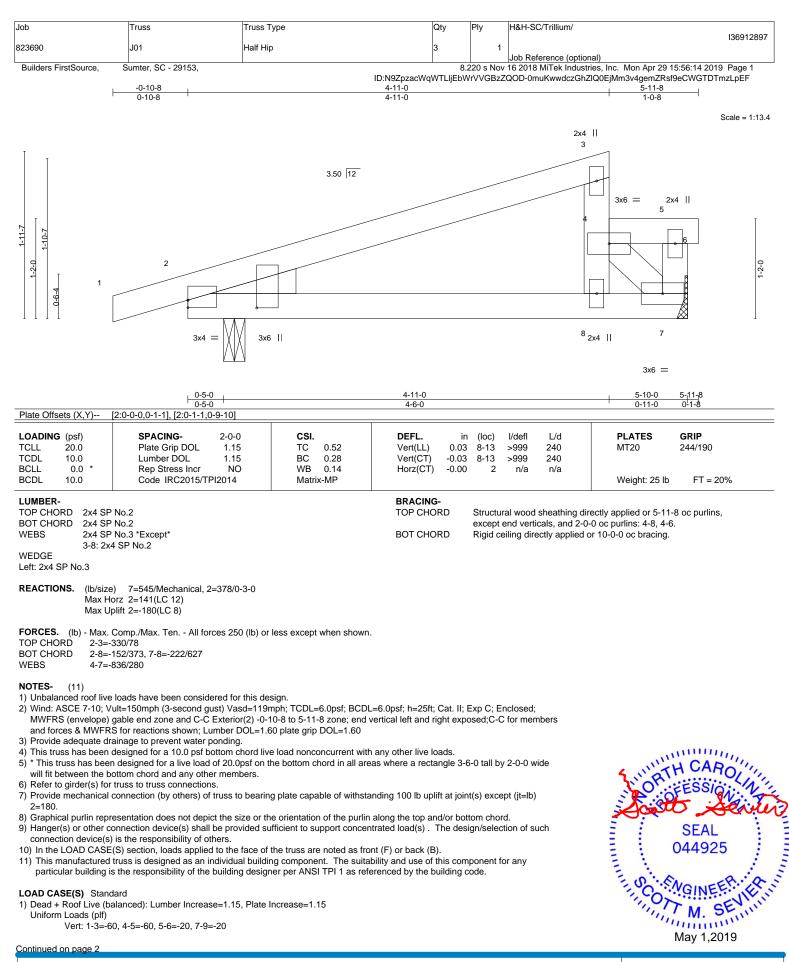
Edenton, NC 27932

Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
				136912896
103	Hip Girder	1	2	
			3	Job Reference (optional)
umter, SC - 29153,		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:56:13 2019 Page 2
		103 Hip Girder	I03 Hip Girder 1	103 Hip Girder 1 3

ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-XZKyjac_CyZj7GR29fEqMs8WFA6NwfQ3HckgxKzLpEG

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 4-6=-60, 7-12=-20

Concentrated Loads (lb)

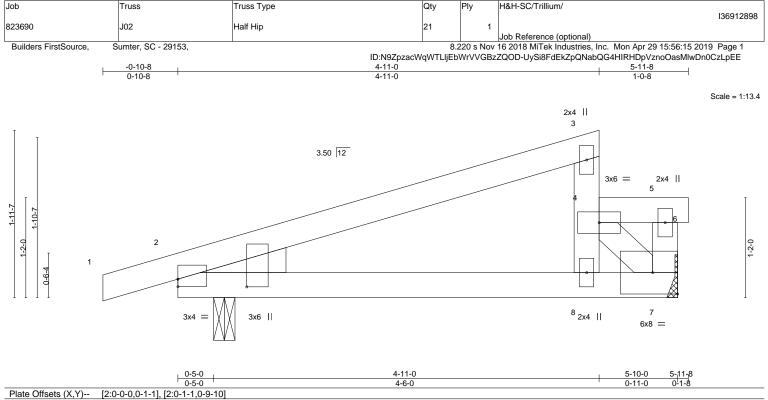
Vert: 9=-1539(B) 11=-2003(B) 10=-1527(B) 13=-1422(B) 14=-1539(B) 15=-1539(B) 16=-1539(B) 17=-1539(B) 18=-1539(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TRENCIO AMITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


	dof	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
						136912897
	823690	J01	Half Hip	3	1	
						Job Reference (optional)
Builders FirstSource, Sumter, SC - 29153, 8.220 s Nov 16 2018 MiTek Industries, Inc.					16 2018 MiTek Industries, Inc. Mon Apr 29 15:56:14 2019 Page 2	

ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-0muKwwdczGhZlQ0EjMm3v4gemZRsf9eCWGTDTmzLpEF

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 4=-410(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2015/TPI2014	CSI. TC 0.52 BC 0.30 WB 0.27 Matrix-MP	Vert(CT) -((loc) l/defl 3-13 >999 3-13 >999 2 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 *Except* 3-8: 2x4 SP No.2 WEDGE Left: 2x4 SP No.3 REACTIONS. (lb/size) 7=545/Mechanical, 2=378/0-3-0 Max Horz 2=170(LC 12)				BRACING- FT = 20% TOP CHORD Structural wood sheathing directly applied or 5-11-8 oc purlins, except end verticals, and 2-0-0 oc purlins: 4-8, 4-6. BOT CHORD Rigid ceiling directly applied or 6-10-9 oc bracing.				
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-8=-	plift 7=-111(LC 8), 2=-290(LC 8) Comp./Max. Ten All forces 250 (lb) or -330/324, 4-8=-400/102 -375/302, 7-8=-667/534 -738/922							

NOTES- (10)

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 5-11-8 zone; cantilever left exposed ; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=111, 2=290.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.

10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

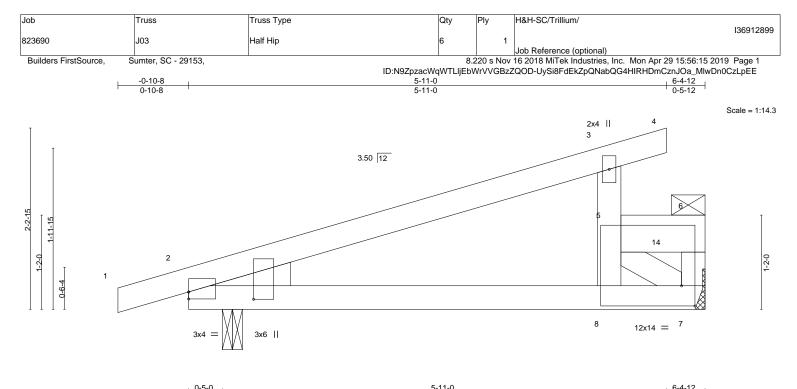
1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 4-5=-60, 5-6=-20, 7-9=-20

Vent. 1-5=-00, 4-5=-00, 5-6=-20, 7-5=-20

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
					136912898
823690	J02	Half Hip	21	1	
					Job Reference (optional)
Builders FirstSource, Sumter, SC - 29153,			8.2	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:56:15 2019 Page 2


ID:N9ZpzacWqWTLljEbWrVVGBzZQOD-UySi8FdEkZpQNabQG4HIRHDpVznoOasMlwDn0CzLpEE

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 4=-410

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0-5-0		<u>5-11-0</u> 5-6-0		<u>6-4-12</u> 0-5-12				
Plate Offsets (X,Y)	[2:0-1-1,0-9-10], [2:0-0-0,0-1-1], [6:0-1-1	2,0-0-0], [8:0-2-0,0-3-0], [8:0-			0-0-12				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.73 BC 0.27 WB 0.27 Matrix-MP	Vert(CT) -0.05 Horz(CT) -0.01	8-13 >999 360 8-13 >999 240	PLATES GRIP MT20 244/190 Weight: 28 lb FT = 20%				
5-6: 2x BOT CHORD 2x4 SP WEBS 2x4 SP	2 No.2 *Except* 6 SP No.2 9 No.2 2 No.3 *Except* 4 SP No.2		BRACING- TOP CHORD BOT CHORD		directly applied or 6-0-0 oc purlins, 2-0-0 oc purlins: 3-8, 5-6. Except: ed or 7-1-1 oc bracing.				
Max H Max U	e) 7=1444/Mechanical, 2=403/0-3-0 orz 2=181(LC 12) plift 7=-553(LC 12), 2=-241(LC 8) irav 7=1639(LC 19), 2=403(LC 1)								
TOP CHORD 2-3=- BOT CHORD 2-8=-	Comp./Max. Ten All forces 250 (lb) or 365/269, 3-5=-64/265, 6-7=-1168/654 350/442, 7-8=-686/882 1083/896	less except when shown.							
 2) Wind: ASCE 7-10; V MWFRS (envelope) and forces & MWFR 3) Provide adequate dr 4) This truss has been 5) * This truss has been will fit between the b 6) Bearings are assum 7) Refer to girder(s) for 8) Provide mechanical 7=553, 2=241. 9) Graphical purlin repr 10) Hanger(s) or other connection device(11) This manufactured 	 WEBS 5-7=-1083/896 NOTES- (11) Ubalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 6-3-0 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. Bearings are assumed to be: , Joint 7 User Defined crushing capacity of 565 psi. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 								
LOAD CASE(S) Stand	dard				May 1,2019				
Continued on page 2					way 1,2013				

Continued on page 2

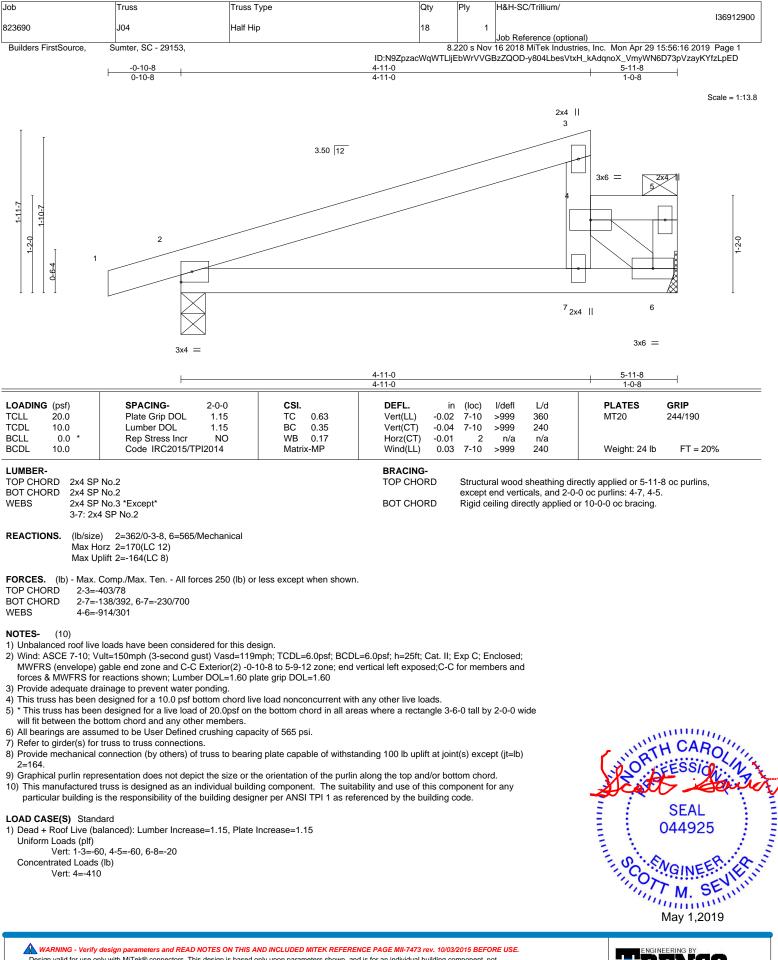
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TREERING BI AMITEK Affiliate 818 Soundside Road Edenton, NC 27932

136912899
Page 2

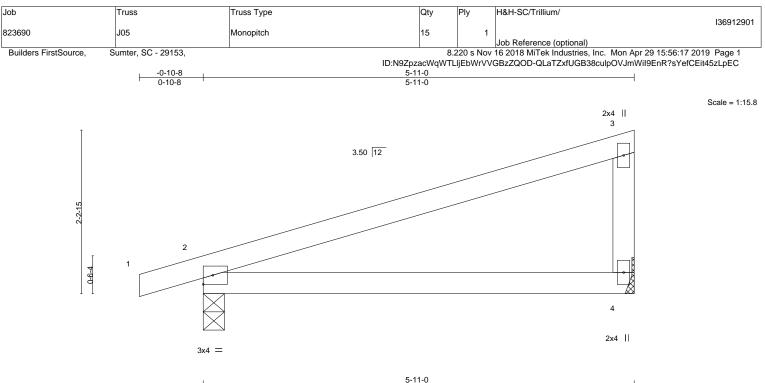
ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-UySi8FdEkZpQNabQG4HIRHDmCznJOa_MlwDn0CzLpEE

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 5-14=-20, 6-14=-60, 7-9=-20 Concentrated Loads (Ib)

Vert: 14=-1280


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

5-11-0									
LOADING (psf) TCLL 20.0	SPACING-	2-0-0	CSI. TC 0.50	DEFL. Vert(LL)	in (loc -0.04 4-	,	L/d 360	PLATES MT20	GRIP 244/190
TCDL 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC 0.50 BC 0.45	Vert(CT)	-0.04 4- -0.10 4-		360 240	MIT20	244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IRC2015/TP	YES 12014	WB 0.00 Matrix-AS	Horz(CT) Wind(LL)	-0.01 0.08 4-	2 n/a 7 >848	n/a 240	Weight: 22 lb	FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (Ib/size) 4=227/Mechanical, 2=287/0-3-8 Max Horz 2=140(LC 8) Max Uplift 4=-150(LC 12), 2=-185(LC 8)

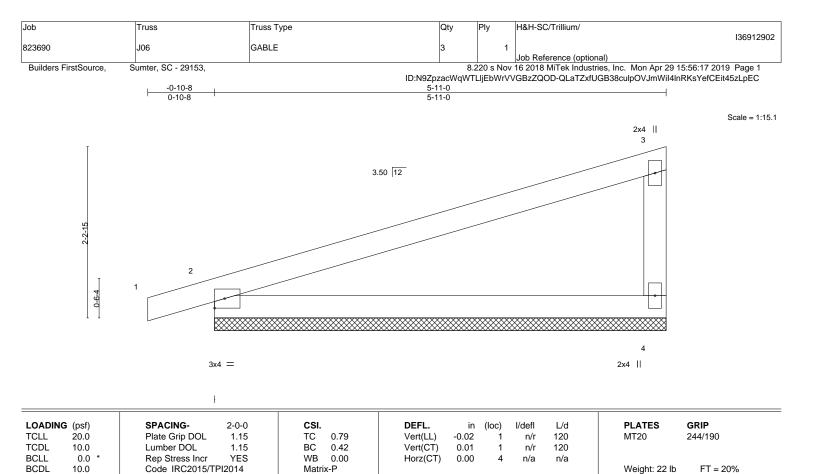
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (8)

- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=150, 2=185.


7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L			-		
L-1	U	۷IJ		^ -	

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD

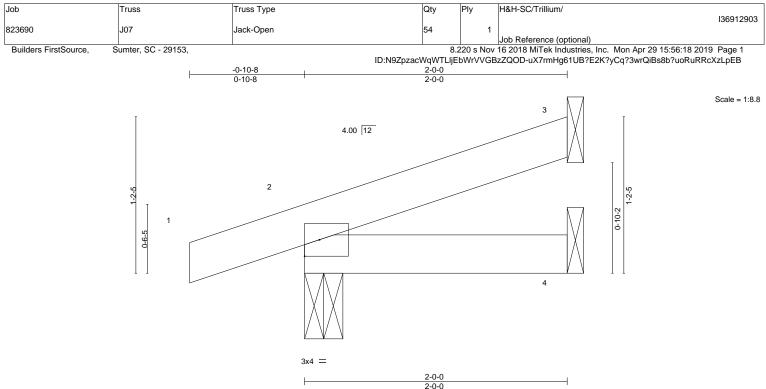
 TOP CHORD
 Structural wood sheathing directly applied or 5-11-0 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

- REACTIONS. (lb/size) 4=227/5-11-0, 2=287/5-11-0 Max Horz 2=143(LC 9) Max Uplift 4=-139(LC 12), 2=-197(LC 8)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown. TOP CHORD 3-4=-189/302

NOTES- (9)

- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.


4) Gable studs spaced at 2-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=139, 2=197.
- 9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		2-0-0	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.07	Vert(LL) 0.00 7 >999 240 MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.07	Vert(CT) -0.00 7 >999 240
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 3 n/a n/a
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP	Weight: 8 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 2-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

```
LUMBER-
```

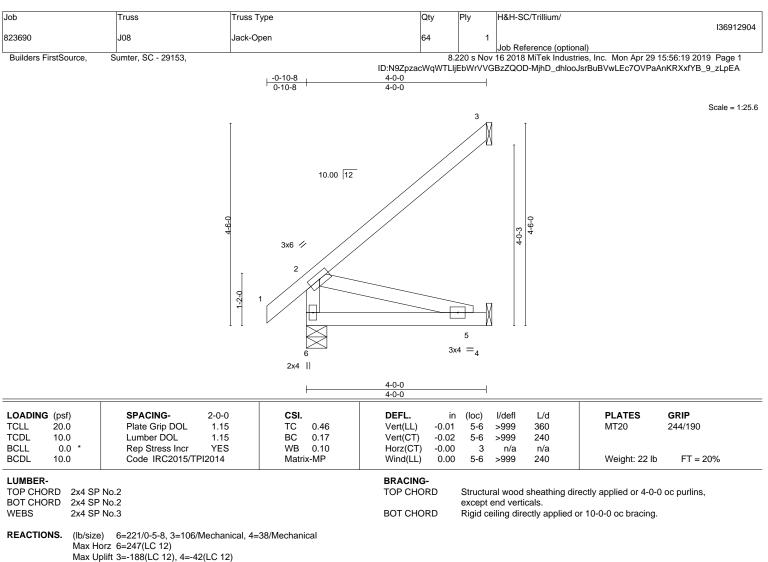
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (Ib/size) 3=47/Mechanical, 2=144/0-3-8, 4=21/Mechanical Max Horz 2=73(LC 8) Max Uplift 3=-53(LC 8), 2=-150(LC 8), 4=-24(LC 9) Max Grav 3=47(LC 1), 2=144(LC 1), 4=35(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (6)

- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4 except (jt=lb) 2=150.
- 6) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Max Grav 6=221(LC 1), 3=146(LC 19), 4=76(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

BOT CHORD 5-6=-333/263

WEBS 2-5=-272/344

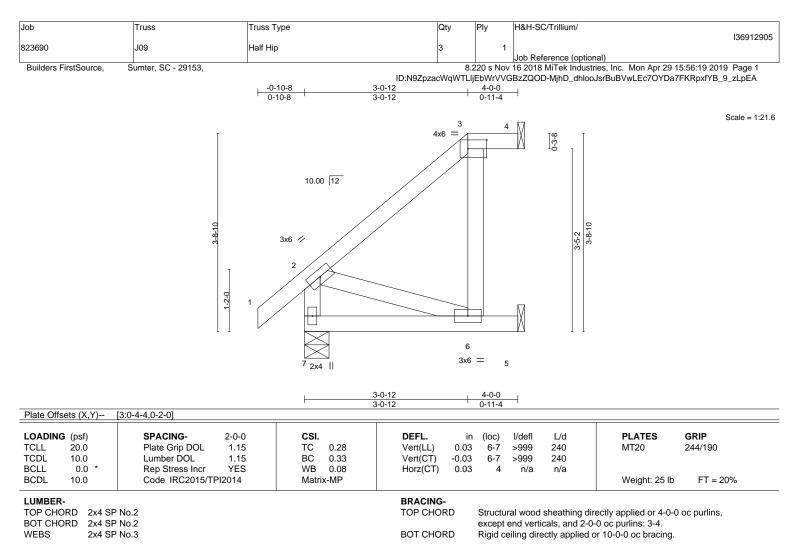
NOTES-

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) All bearings are assumed to be User Defined crushing capacity of 565 psi.


5) Refer to girder(s) for truss to truss connections.

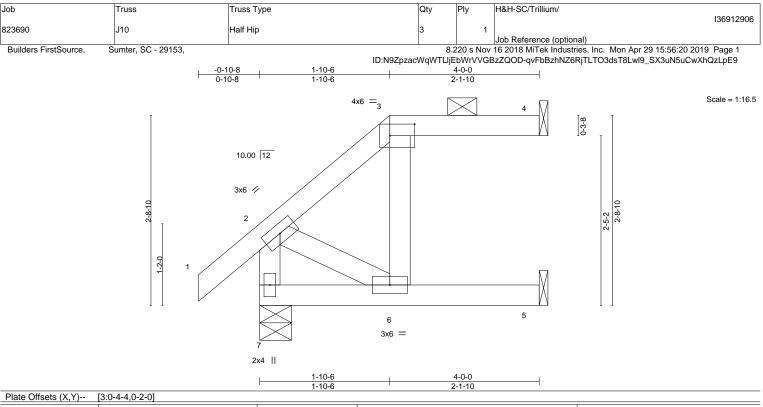
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 3=188.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

SEAL 044925 MgINEER May 1,2019

REACTIONS. (lb/size) 4=26/Mechanical, 7=221/0-5-8, 5=117/Mechanical Max Horz 7=200(LC 12) Max Uplift 4=-25(LC 8), 7=-35(LC 12), 5=-148(LC 12) Max Grav 4=26(LC 1), 7=221(LC 1), 5=143(LC 19)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- BOT CHORD 6-7=-280/222
- WEBS 2-6=-225/285


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 7 except (jt=lb) 5=148.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.14 BC 0.39 WB 0.06 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) 0.05 6 >878 240 Vert(CT) -0.04 6 >999 240 Horz(CT) -0.07 4 n/a n/a	PLATES GRIP MT20 244/190 Weight: 22 lb FT = 20%
LUMBER-			BRACING-	

LUMBER-	
TOP CHORD	2x4 SP No.2
DOT OUODD	0.4 OD N- 0

BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

NOTES-

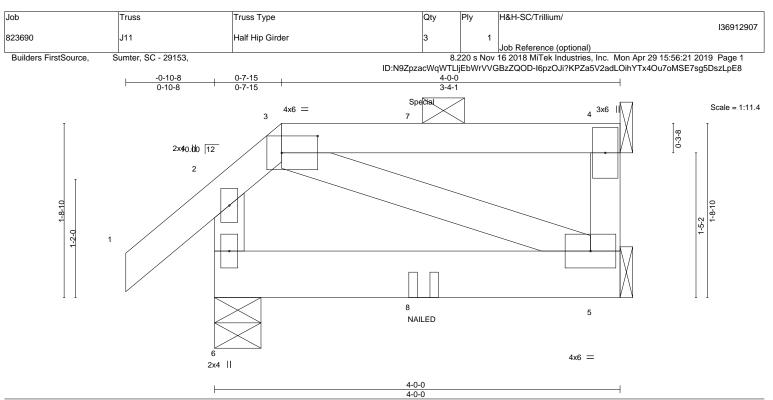
2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 7, 5.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (lb/size) 4=62/Mechanical, 7=221/0-5-8, 5=81/Mechanical Max Horz 7=130(LC 12) Max Uplift 4=-60(LC 8), 7=-74(LC 12), 5=-56(LC 12) Max Grav 4=62(LC 1), 7=221(LC 1), 5=90(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

¹⁾ Unbalanced roof live loads have been considered for this design.

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in ((loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.13	Vert(LL)	-0.00	5-6	>999	360	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.05	Vert(CT)	-0.00	5-6	>999	240		
BCLL 0.0 *	Rep Stress Incr NO	WB 0.01	Horz(CT)	0.00	4	n/a	n/a		
3CDL 10.0	Code IRC2015/TPI2014	Matrix-MP	Wind(LL)	-0.00	5-6	>999	240	Weight: 25 lb	FT = 20%

LU	JME	BER-
----	-----	------

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.2

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 6=217/0-5-8, 5=39/Mechanical, 4=101/Mechanical Max Horz 6=114(LC 5) Max Uplift 6=-110(LC 8), 5=-12(LC 5), 4=-97(LC 4) Max Grav 6=217(LC 1), 5=75(LC 3), 4=101(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

- MWFRS (envelope) gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4 except (jt=lb) 6=110.

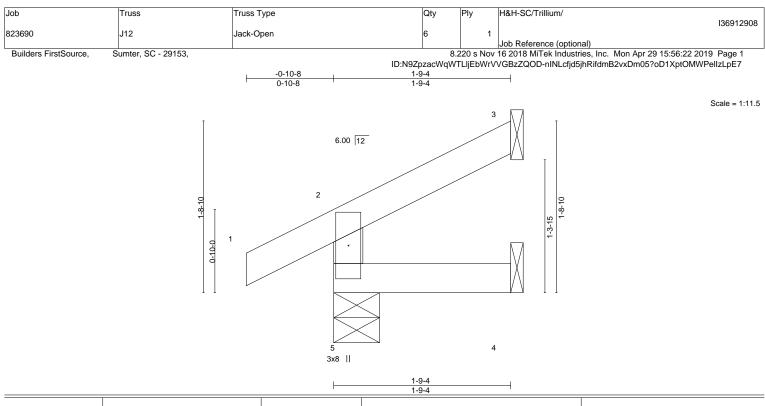
9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

- 10) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.
- 11) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 21 lb down and 43 lb up at 2-0-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.

13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-6=-20 Concentrated Loads (lb)

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REFERENCE FACE INTERCISES. To according to the operation of a second sec fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.18	DEFL. ir Vert(LL) -0.00	(/	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.07	Vert(CT) -0.00	5	>999	240	IMT20	244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.00 Matrix-MR	Horz(CT) -0.00 Wind(LL) 0.00		n/a >999	n/a 240	Weight: 8 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 1-9-4 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing

except end verticals.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

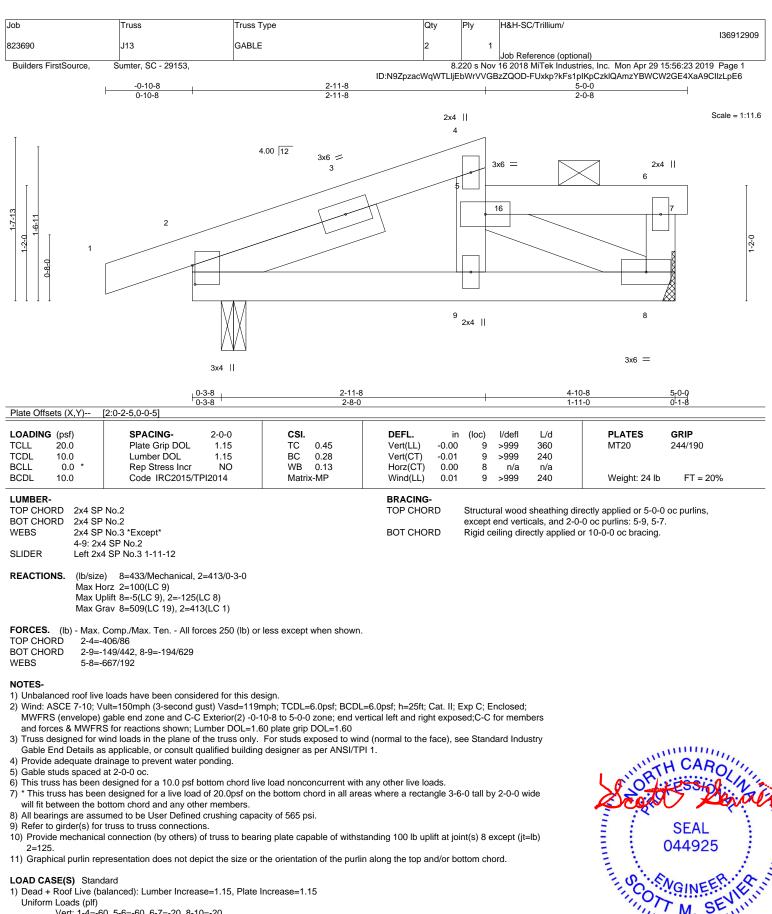
WEBS 2x4 SP No.3

REACTIONS. 5=145/0-5-8, 3=33/Mechanical, 4=12/Mechanical (lb/size) Max Horz 5=73(LC 9) Max Uplift 5=-62(LC 12), 3=-55(LC 12), 4=-4(LC 12) Max Grav 5=145(LC 1), 3=33(LC 1), 4=29(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-14's rev. Towards BEFORE OSE. Design valid for use only with MiTeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Vert: 1-4=-60, 5-6=-60, 6-7=-20, 8-10=-20

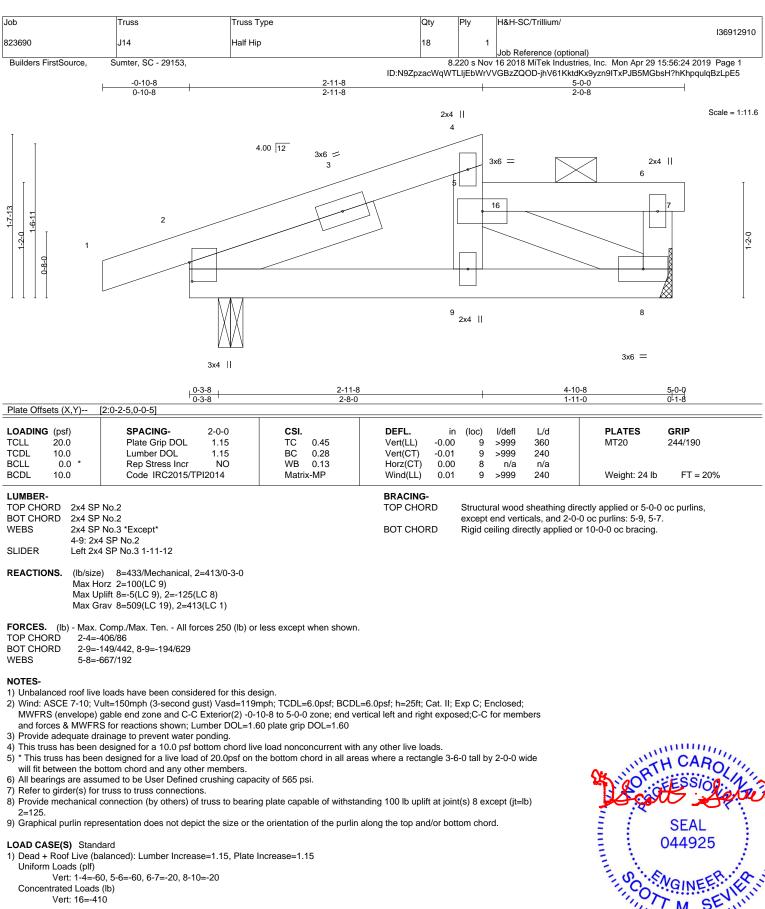
Continued on page 2

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Μ.

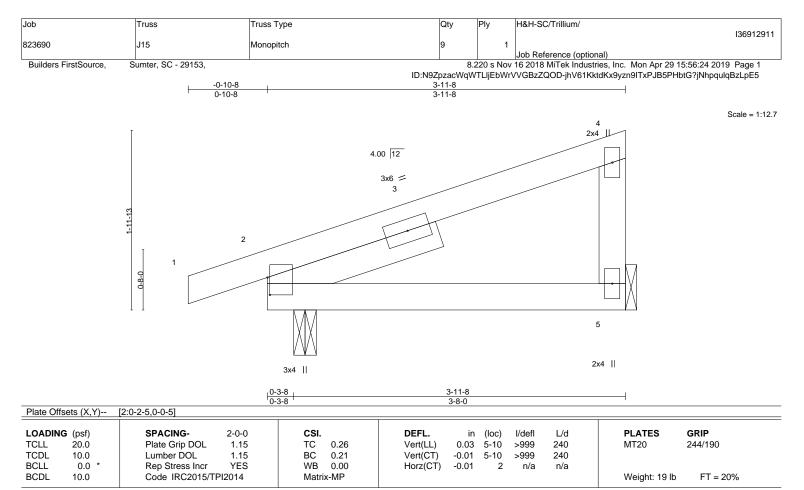
///////// May 1,2019


Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
					136912909
323690	J13	GABLE	2	1	
					Job Reference (optional)
Builders FirstSource, S	umter, SC - 29153,		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:56:23 2019 Page 2

ID:N9ZpzacWqWTLljEbWrVVGBzZQOD-FUxkp?kFs1pIKpCzklQAmzYBWCW2GE4XaA9CllzLpE6

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 16=-410

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



Vert: 16=-410

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010, 00526. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 SLIDER
 Left 2x4 SP No.3 1-11-12

BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 3-11-8 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 5=121/Mechanical, 2=237/0-3-0 Max Horz 2=115(LC 8) Max Uplift 5=-141(LC 8), 2=-228(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

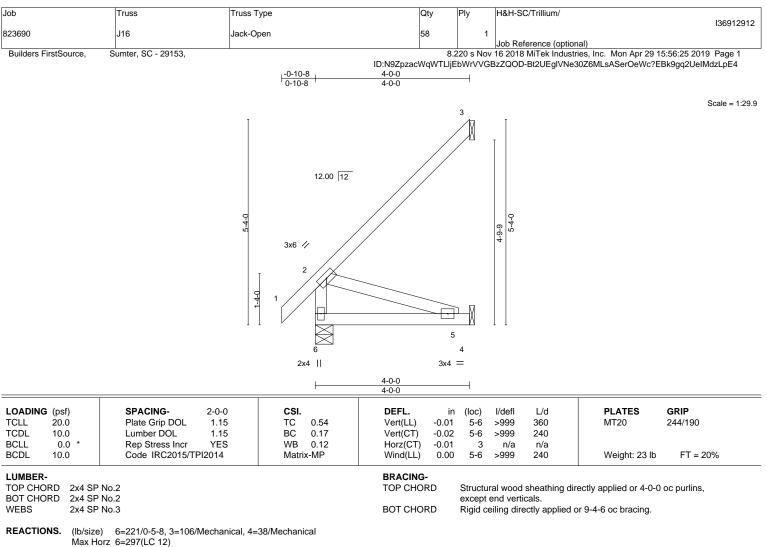
 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

4) All bearings are assumed to be User Defined crushing capacity of 565 psi.


5) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=141, 2=228.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Max Horz 6=297(LC 12) Max Uplift 3=-226(LC 12), 4=-70(LC 12)

Max Grav 6=221(LC 1), 3=156(LC 19), 4=79(LC 10)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

BOT CHORD 5-6=-399/315

WEBS 2-5=-331/418

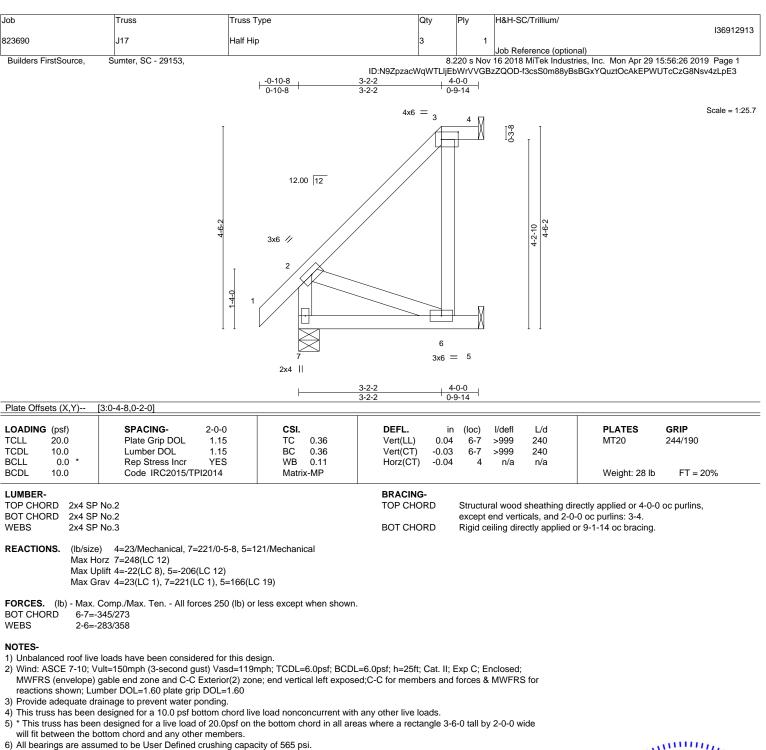
NOTES-

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

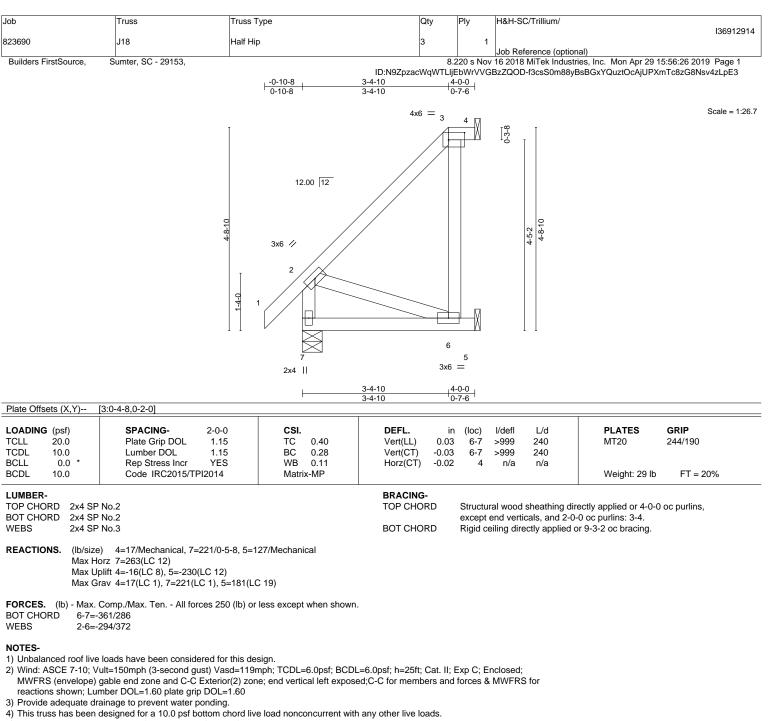

5) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 3=226.

SEAL 044925 May 1,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

7) Refer to girder(s) for truss to truss connections.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5=206

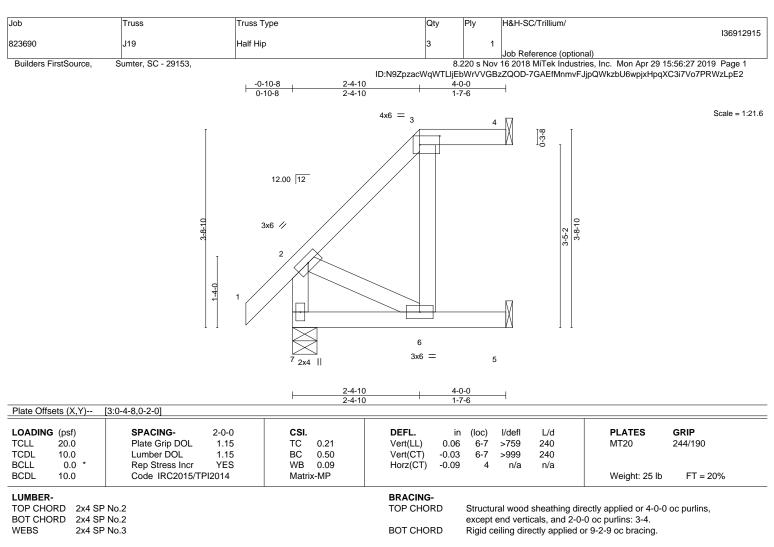
9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOI ES ON THIS AND INCLUDED MILER REFERENCE FACE INFORMATION TO BE ONE OPEN
Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
ANSUPPI Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.


 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5=230.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

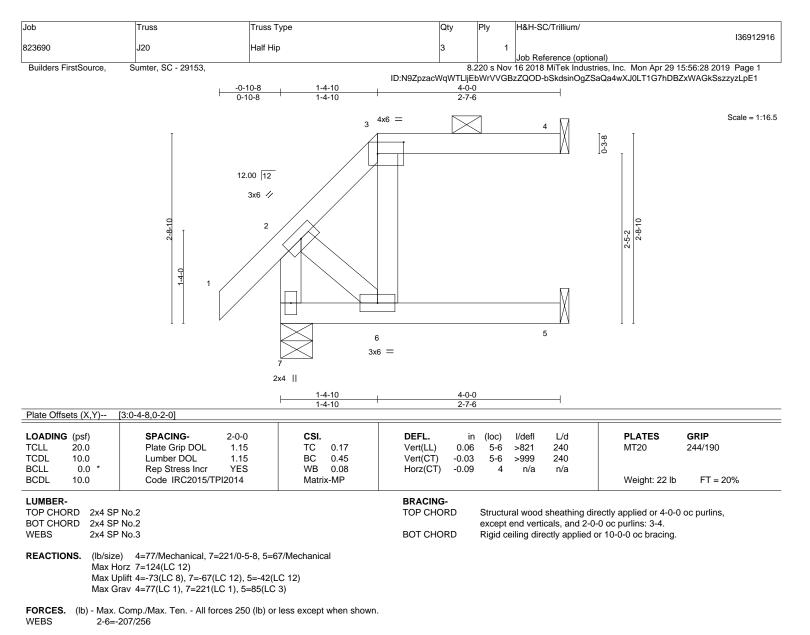
818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (lb/size) 4=47/Mechanical, 7=221/0-5-8, 5=97/Mechanical Max Horz 7=193(LC 12) Max Uplift 4=-45(LC 8), 7=-30(LC 12), 5=-123(LC 12) Max Grav 4=47(LC 1), 7=221(LC 1), 5=115(LC 19)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- BOT CHORD 6-7=-284/226

WEBS 2-6=-242/305


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 7 except (jt=lb) 5=123.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

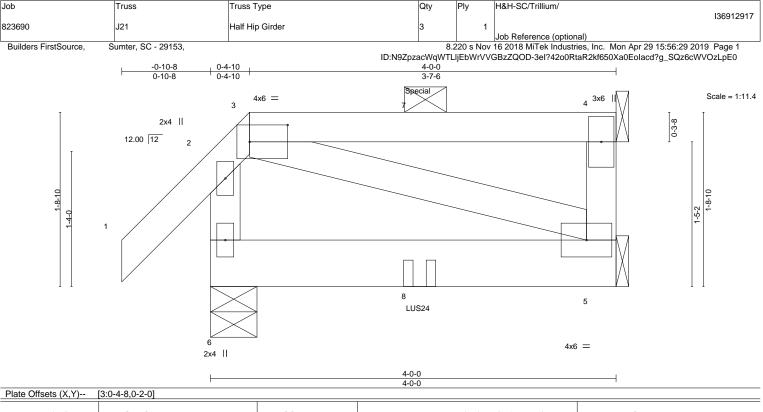
2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5)

will fit between the bottom chord and any other members. 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.


7) Refer to girder(s) for truss to truss connections.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 7, 5.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.16	Vert(LL) -0	0.00 5-6	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.05	Vert(CT) -0	0.00 5-6	>999	240		
BCLL 0.0 *	Rep Stress Incr NO	WB 0.01	Horz(CT) (0.00 4	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP	Wind(LL) -0	0.00 5-6	>999	240	Weight: 26 lb	FT = 20%
LUMBER- BRACING-								

LUMBER-		BRACING-	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 4-0-0 oc purlins,
BOT CHORD	2x6 SP No.2		except end verticals, and 2-0-0 oc purlins: 3-4.
WEBS	2x4 SP No.3 *Except*	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
	4-5: 2x4 SP No.2		

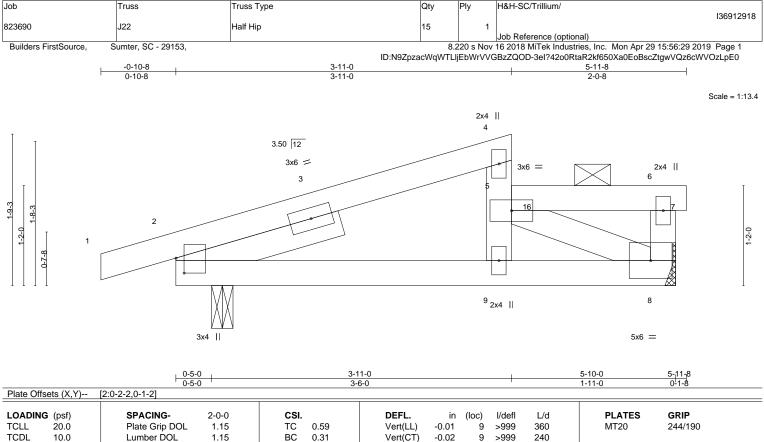
REACTIONS. (lb/size) 5=33/Mechanical, 6=208/0-5-8, 4=106/Mechanical Max Horz 6=77(LC 5) Max Uplift 6=-95(LC 8), 4=-102(LC 4) Max Grav 5=73(LC 3), 6=208(LC 1), 4=106(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 4=102.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.
- 11) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent at 2-0-12 from the left end to connect truss(es) to back face of bottom chord.
- 12) Fill all nail holes where hanger is in contact with lumber.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 21 lb down and 43 lb up at
- 2-0-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard


 Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-20, 3-4=-60, 5-6=-20 Concentrated Loads (lb)

Vert: 8=1(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BCLL 0.0 Rep Stress Incr NO WВ 0.26 Horz(CT) -0.01 8 n/a n/a Code IRC2015/TPI2014 BCDL 10.0 Matrix-MP Wind(LL) 9-14 240 Weight: 27 lb FT = 20% 0.03 >999 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 5-11-8 oc purlins, BOT CHORD 2x4 SP No.2 except end verticals, and 2-0-0 oc purlins: 5-9, 5-7. WEBS 2x4 SP No.3 *Except* BOT CHORD Rigid ceiling directly applied or 6-6-12 oc bracing. 4-9: 2x4 SP No.2 SLIDER Left 2x4 SP No.3 1-11-12 REACTIONS. 8=503/Mechanical, 2=420/0-3-0 (lb/size) Max Horz 2=135(LC 12) Max Uplift 8=-96(LC 8), 2=-275(LC 8) Max Grav 8=575(LC 2), 2=420(LC 1) FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-4=-447/468

2-9=-502/412, 8-9=-805/672

BOT CHORD WEBS 5-8=-739/885

NOTES-

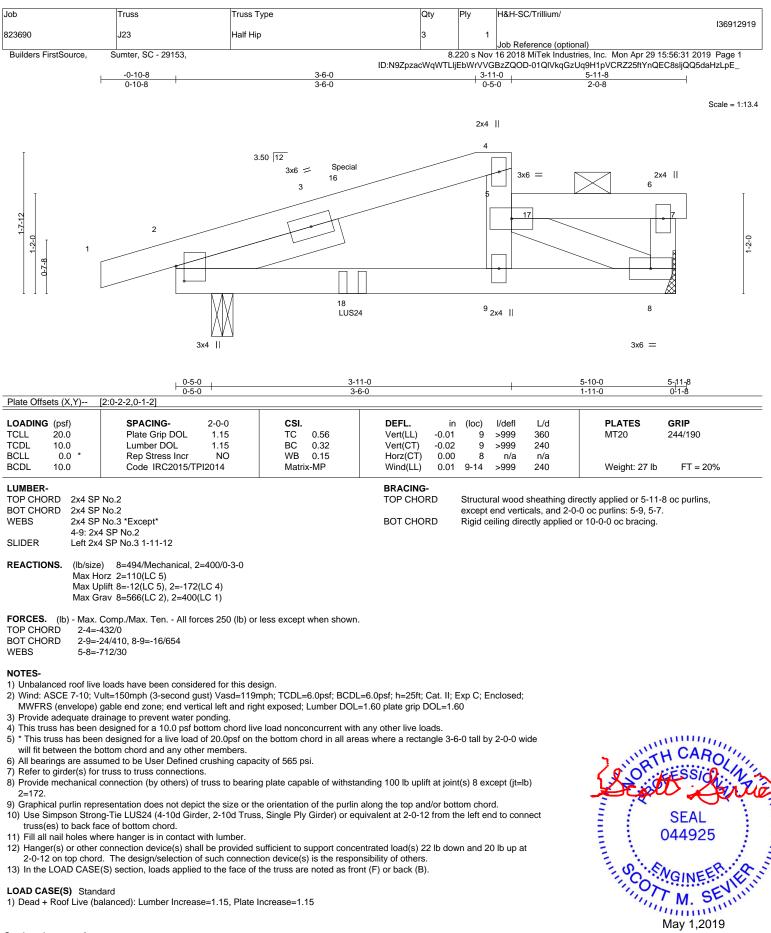
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 5-11-8 zone; cantilever left exposed ; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

Refer to girder(s) for truss to truss connections.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (jt=lb) 2=275.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 462 lb down and 105 lb up at 4-2-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-60, 5-6=-60, 6-7=-20, 8-10=-20 Concentrated Loads (lb)

Vert: 16=-410

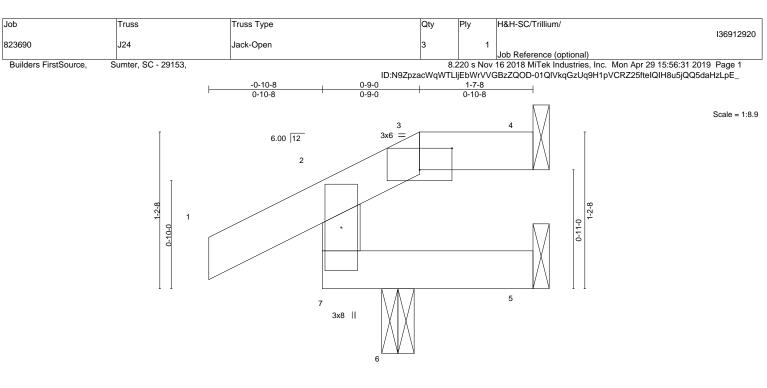
🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
					136912919
823690	J23	Half Hip	3	1	
					Job Reference (optional)
Builders FirstSource, S	umter, SC - 29153,		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:56:31 2019 Page 2


ID:N9ZpzacWqWTLljEbWrVVGBzZQOD-01QIVkqGzUq9H1pVCRZ25ftYnQEC8sljQQ5daHzLpE_

LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-4=-60, 5-6=-60, 6-7=-20, 8-10=-20 Concentrated Loads (lb) Vert: 17=-410 18=28(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0-5-8	0-9-0	1-7-8	1
0-5-8	0-3-8	0-10-8	

Plate Off	sets (X,Y)	[3:0-3-0,0-2-0]				1						
	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.14	Vert(LL)	0.00	6	>999	360	MT20	244/190
CDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	0.00	6	>999	240		
SCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	4	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matri	x-MR	Wind(LL)	-0.00	6	>999	240	Weight: 7 lb	FT = 20%

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-7-8 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 1-7-6 zone; cantilever left exposed ; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

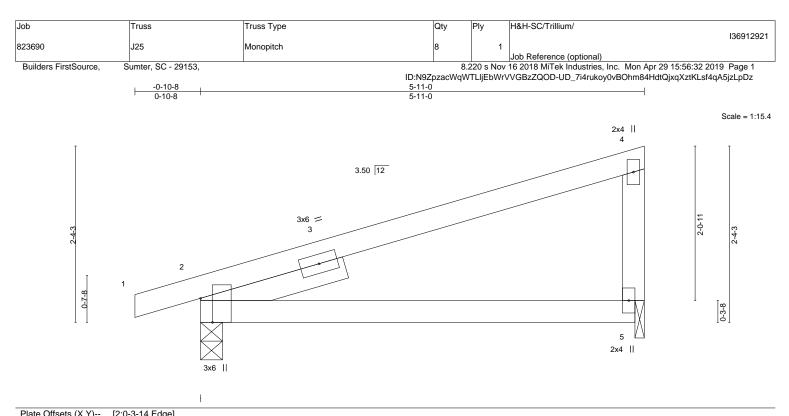
3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5 except (jt=lb) 6=107.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (lb/size) 4=19/Mechanical, 5=-41/Mechanical, 6=201/0-3-0 Max Horz 6=52(LC 9) Max Uplift 4=-36(LC 9), 5=-41(LC 1), 6=-107(LC 12) Max Grav 4=29(LC 24), 5=31(LC 12), 6=201(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

	(psf) 20.0 10.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.47 0.48 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.10 -0.10 -0.02	(loc) 5-8 5-8	l/defl >685 >664	L/d 240 240 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code IRC2015/TF			x-AS		-0.02	2	n/a	n/a	Weight: 25 lb	FT = 20%

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 SLIDER
 Left 2x4 SP No.3 1-11-12

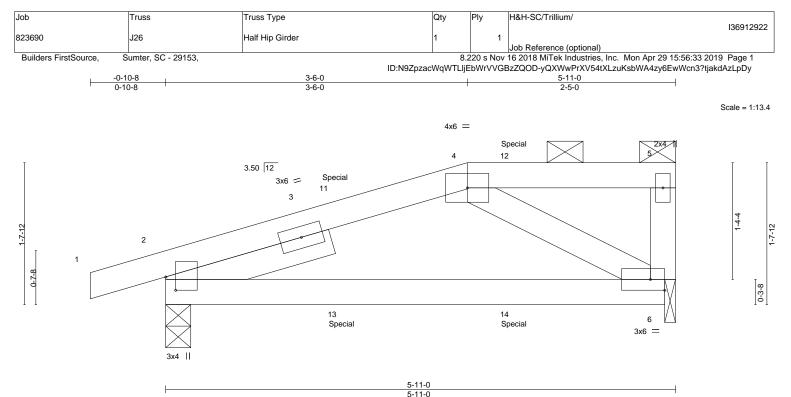
BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (lb/size) 2=287/0-3-8, 5=227/0-1-8 Max Horz 2=150(LC 11) Max Uplift 2=-195(LC 8), 5=-140(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-317/95


NOTES-

- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=195, 5=140.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

late Offsets (X,Y) [2:0-1-14,0-1-6]							
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES (GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.25	Vert(LL) -0	0.03 6-9	>999	360	MT20 2	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.27	Vert(CT) -0	0.05 6-9	>999	240		
CLL 0.0 *	Rep Stress Incr NO	WB 0.03	Horz(CT) (0.01 2	n/a	n/a		
CDL 10.0	Code IRC2015/TPI2014	Matrix-MP	Wind(LL) (0.02 6-9	>999	240	Weight: 27 lb	FT = 20%

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 Left 2x4 SP No.2 1-11-12 SLIDER

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-11-0 oc purlins, except end verticals, and 2-0-0 oc purlins: 4-5. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=288/0-3-8, 6=226/0-1-8 Max Horz 2=95(LC 19)

Max Uplift 2=-199(LC 4), 6=-146(LC 4)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

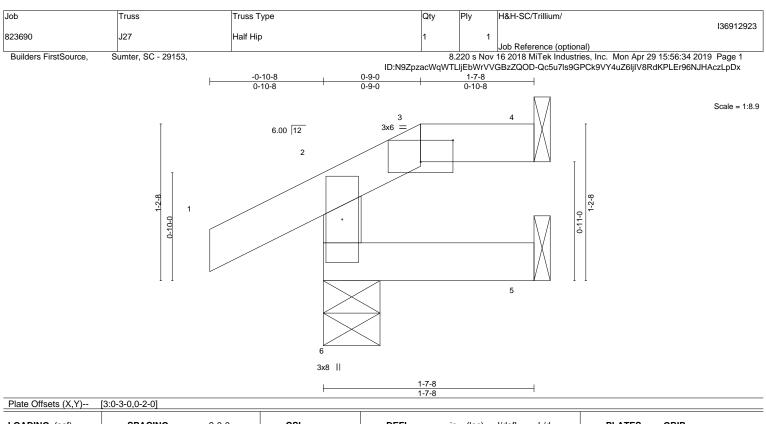
TOP CHORD 2-4=-425/141

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding. 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=199.6=146.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 17 lb down and 24 lb up at 2-0-12, and 20 lb down and 36 lb up at 4-0-12 on top chord, and 2 lb down and 0 lb up at 2-0-12, and 5 lb down and 12 lb up at 4-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-60, 4-5=-60, 6-7=-20


Concentrated Loads (lb)

Vert: 13=-1(F) 14=2(F)

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILER KETEKERICE FAGE MILETATION, INVERTIGATION AND INVERTI AND INVERTIGATION AND INVERTIGATION AND INVERTICAL AND IN fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

	LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.15 BC 0.03 WB 0.00 Matrix-MR	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) -0.00 Wind(LL) 0.00	(loc) l/de 6 >99 6 >99 4 n 6 >99	99 360 99 240 n/a n/a	PLATES GRIP MT20 244/190 Weight: 7 lb FT = 20%
--	--	--	--	---	--	-----------------------------	--

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-7-8 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 4=27/Mechanical, 6=141/0-5-4, 5=10/Mechanical Max Horz 6=53(LC 11) Max Uplift 4=-37(LC 9), 6=-77(LC 12) Max Grav 4=33(LC 24), 6=141(LC 1), 5=26(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

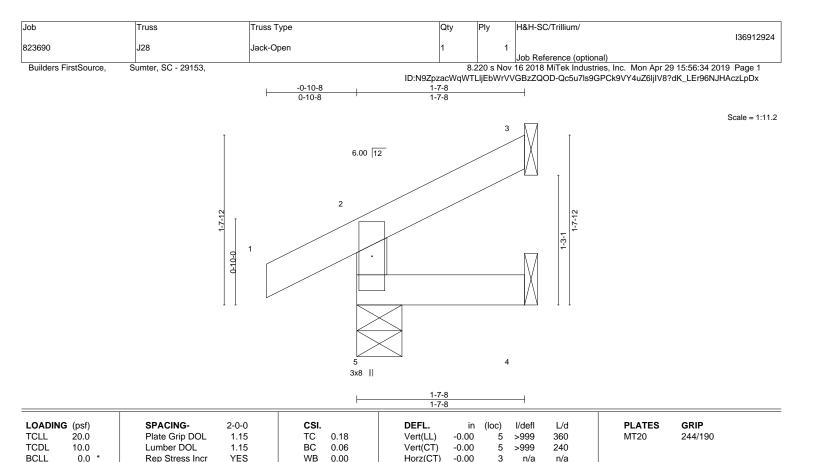
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 1-7-6 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.


7) Refer to girder(s) for truss to truss connections.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 6.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

0.00

5 >999

except end verticals.

240

Rigid ceiling directly applied or 10-0-0 oc bracing

Structural wood sheathing directly applied or 1-7-8 oc purlins,

Weight: 7 lb

FT = 20%

LUMBER-
TOP CHORD
BOT CHORD

BCDL

2x4 SP No.2 RD 2x4 SP No.3 WEBS

2x4 SP No.2

10.0

REACTIONS. (lb/size) 5=141/0-5-4, 3=27/Mechanical, 4=10/Mechanical Max Horz 5=70(LC 9) Max Uplift 5=-61(LC 12), 3=-50(LC 12), 4=-4(LC 12) Max Grav 5=141(LC 1), 3=27(LC 1), 4=26(LC 3)

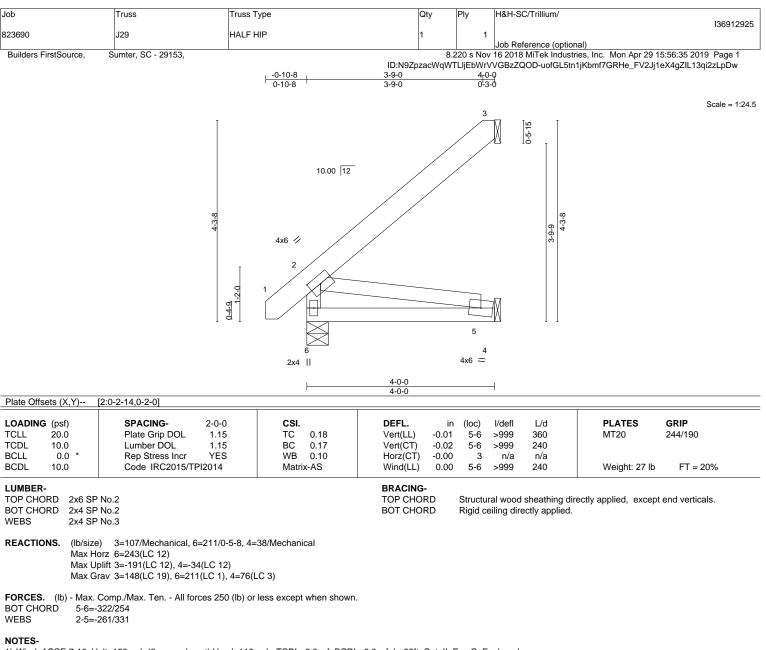
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2015/TPI2014

NOTES-

1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MR


2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

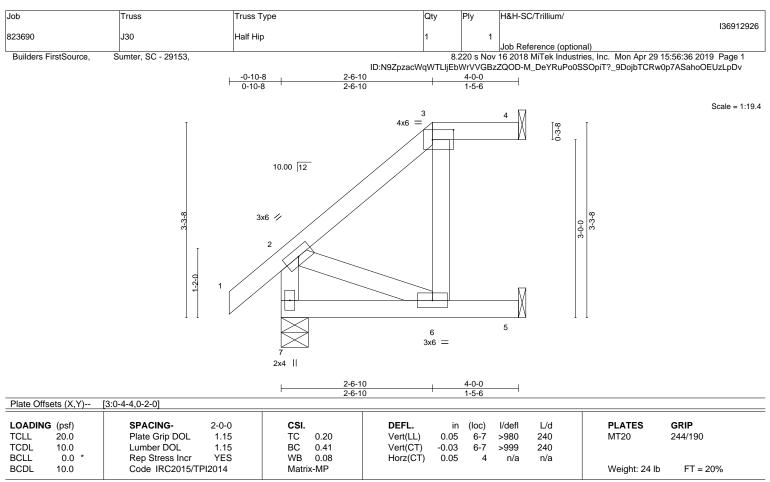
 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

Refer to girder(s) for truss to truss connections.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 3=191.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 4=42/Mechanical, 7=221/0-5-8, 5=102/Mechanical Max Horz 7=170(LC 12) Max Uplift 4=-40(LC 8), 7=-55(LC 12), 5=-105(LC 12) Max Grav 4=42(LC 1), 7=221(LC 1), 5=113(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-6=-202/255

NOTES-

1) Unbalanced roof live loads have been considered for this design.

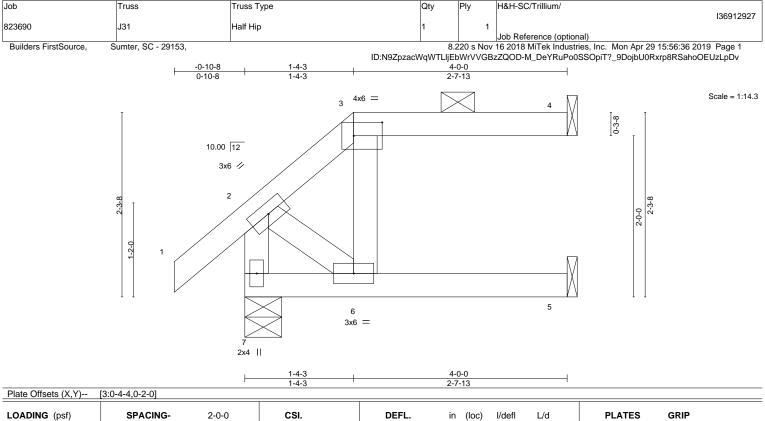
2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.


 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 7 except (jt=lb) 5=105.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.14 BC 0.36 WB 0.06 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) 0.05 5-6 >999 240 Vert(CT) -0.03 5-6 >999 240 Horz(CT) -0.06 4 n/a n/a	PLATES GRIP MT20 244/190 Weight: 20 lb FT = 20%
LUMBER-			BRACING-	

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

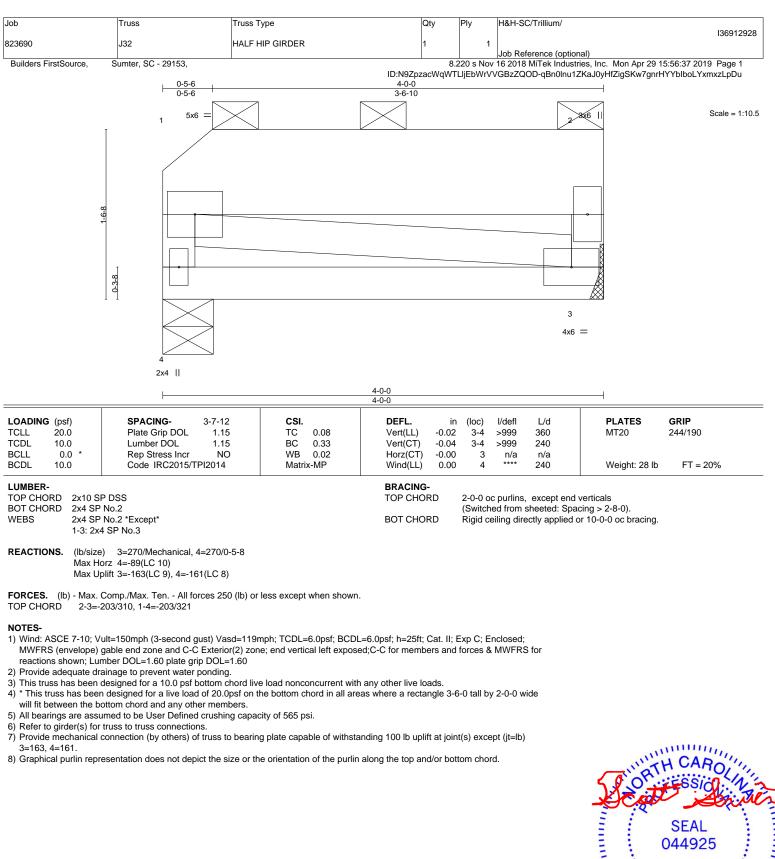
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

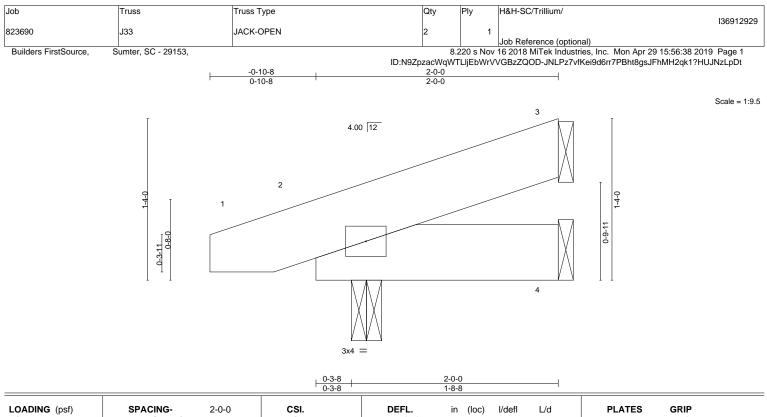
3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

Refer to girder(s) for truss to truss connections.


- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 7, 5.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


REACTIONS. (Ib/size) 4=78/Mechanical, 7=221/0-5-8, 5=66/Mechanical Max Horz 7=101(LC 9) Max Uplift 4=-74(LC 8), 7=-82(LC 12), 5=-28(LC 9) Max Grav 4=78(LC 1), 7=221(LC 1), 5=85(LC 3)

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILER KETEKERICE FAGE MILETATION, INVERTIGATION AND INVERTI AND INVERTIGATION AND INVERTIGATION AND INVERTICAL AND IN fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.03	Vert(LL) 0.00	7	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.03	Vert(CT) -0.00	7	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00	2	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP					Weight: 12 lb	FT = 20%
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.03 WB 0.00	Vert(CT) -0.00	7 7 2	>999	240		

BRACING-TOP CHORD

BOT CHORD

```
LUMBER-
```

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2

REACTIONS. (Ib/size) 3=46/Mechanical, 4=28/Mechanical, 2=122/0-3-0 Max Horz 2=65(LC 8) Max Uplift 3=-52(LC 8), 4=-32(LC 8), 2=-122(LC 8) Max Grav 3=46(LC 1), 4=34(LC 3), 2=122(LC 1)

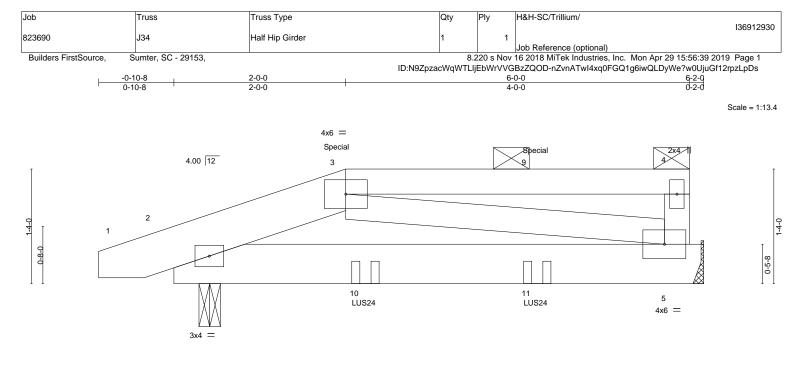
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- exposed; C-C for memoers and forces & MVVFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.
 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4 except (jt=lb) 2=122.



Structural wood sheathing directly applied or 2-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

<mark>0-3-8</mark>			6-0-0 5-8-8						6-2-0 0-2-0		
LOADING (psf)	SPACING- 2-0- Plate Grip DOL 1.1		0.32	DEFL. Vert(LL)	in 0.02	(loc) 5-8	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190	
TCDL 10.0	Lumber DOL 1.1	-	0.32	Vert(CT)	-0.02	5-8 5-8	>999 >999	240 240	IVIT20	244/190	
3CLL 0.0 * 3CDL 10.0	Rep Stress Incr No Code IRC2015/TPI2014		0.09 ix-MP	Horz(CT)	-0.00	5	n/a	n/a	Weight: 34 lb	FT = 20%	

WEBS

 TOP CHORD
 2x6 SP No.2 *Except*

 3-4: 2x4 SP No.2

 BOT CHORD
 2x6 SP No.2

2x4 SP No.2

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 5=242/Mechanical, 2=280/0-3-0 Max Horz 2=72(LC 23) Max Uplift 5=-245(LC 4), 2=-286(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-315/298

BOT CHORD 2-5=-309/294

WEBS 3-5=-303/319

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left exposed ; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=245, 2=286.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 2-2-12 from the left end to 4-2-12 to connect truss(es) to front face of bottom chord.
- 11) Fill all nail holes where hanger is in contact with lumber.
- 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 25 lb down and 45 lb up at 2-0-0, and 25 lb down and 45 lb up at 4-2-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

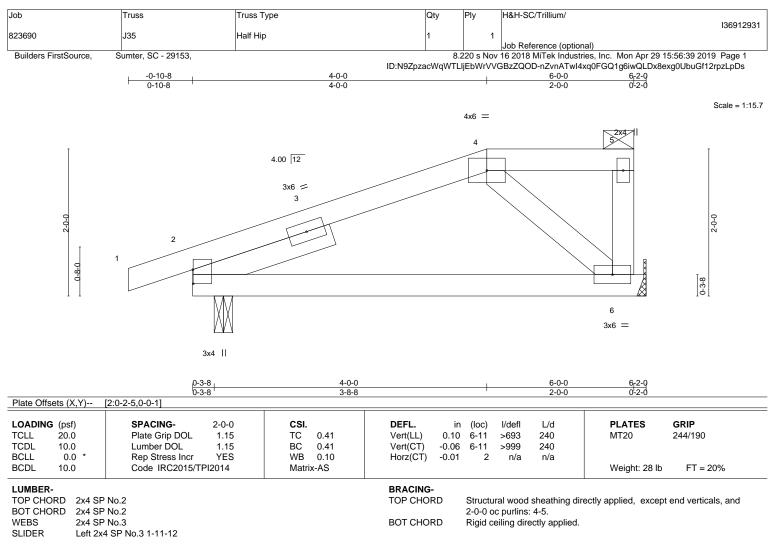
1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 5-6=-20

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSVTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

dof	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
					136912930
823690	J34	Half Hip Girder	1	1	
					Job Reference (optional)
Builders FirstSource, S	umter, SC - 29153,		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:56:39 2019 Page 2


ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-nZvnATwI4xq0FGQ1g6iwQLDyWe?w0UjuGf12rpzLpDs

LOAD CASE(S) Standard

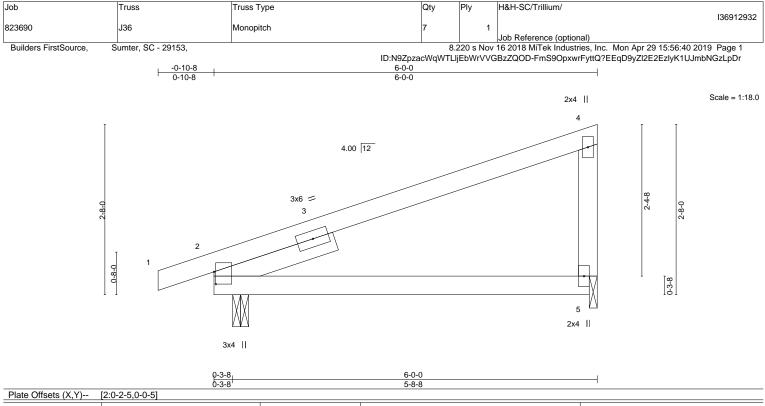
Concentrated Loads (lb) Vert: 10=-8(F) 11=-8(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- REACTIONS. (lb/size) 6=208/Mechanical, 2=313/0-3-0 Max Horz 2=120(LC 8) Max Uplift 6=-220(LC 8), 2=-310(LC 8)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-213/481

WEBS 4-6=-158/319

NOTES-


1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=220, 2=310.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) 0.17 5-10 >409 240 MT20 244/190 Vert(CT) -0.08 5-10 >911 240 MT20 244/190
TCLL 20.0	Plate Grip DOL 1.15	TC 0.64	
TCDL 10.0	Lumber DOL 1.15	BC 0.60	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.04 2 n/a n/a
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Weight: 26 lb FT = 20%

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 SLIDER
 Left 2x4 SP No.3 1-11-12

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (lb/size) 2=313/0-3-0, 5=208/0-1-8 Max Horz 2=162(LC 8) Max Uplift 2=-294(LC 8), 5=-236(LC 8)

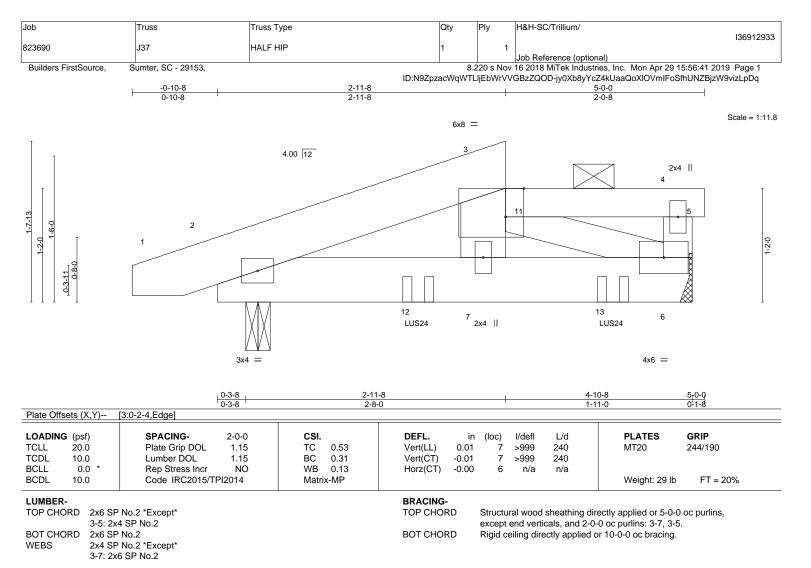
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-155/265, 4-5=-150/280

NOTES-

- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


All bearings are assumed to be User Defined crushing capacity of 565 psi.

- 5) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=294, 5=236.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (lb/size) 6=733/Mechanical, 2=510/0-3-0 Max Horz 2=60(LC 4) Max Uplift 6=-404(LC 4), 2=-360(LC 4) Max Grav 6=772(LC 2), 2=510(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-953/512, 3-7=-302/103

BOT CHORD 2-7=-516/930, 6-7=-516/930

WEBS 3-6=-1000/555

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left exposed ; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=404, 2=360.
- 9) Load case(s) 1, 2, 3, 4, 5, 8, 9, 10, 11, 14, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 4-0-12 to connect truss(es) to back face of bottom chord.
- 12) Fill all nail holes where hanger is in contact with lumber.
- 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

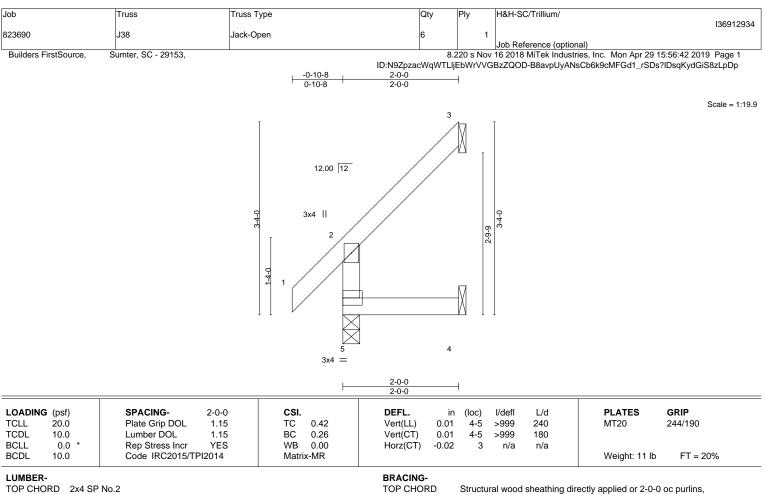
Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

[···			12			
Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/	136912933
823690	J37	HALF HIP	1	1	lab Reference (entional)	
Builders FirstSource,	Sumter, SC - 29153,				Job Reference (optional) 16 2018 MiTek Industries, Inc. Mon A	
			ID:N9ZpzacWqWTL	.ljEbWrVV(GBzZQOD-jy0Xb8yYcZ4kUaaQoXlO	/mIFoSfhUNZBjzW9vizLpDq
LOAD CASE(S) Standa						
 Dead + Roof Live (bal Uniform Loads (plf) 	anced): Lumber Increase=1.1	5, Plate Increase=1.15				
Vert: 1-3=-60	, 3-4=-60, 4-5=-20, 6-8=-20					
Concentrated Loads (Vert: 11=-410) 12=-222(B) 13=-191(B)					
 Dead + 0.75 Roof Live Uniform Loads (plf) 	e (balanced) + 0.75 Attic Floor	: Lumber Increase=1.15, Plate Increase	=1.15			
Vert: 1-3=-50	, 3-4=-110, 4-5=-80, 6-8=-20					
Concentrated Loads (lb)) 12=-190(B) 13=-166(B)					
3) Dead + Uninhabitable		er Increase=1.25, Plate Increase=1.25				
Uniform Loads (plf) Vert: 1-3=-20	, 3-4=-20, 4-5=-20, 6-8=-40					
Concentrated Loads (lb)					
) 12=-140(B) 13=-126(B) Vind (Pos. Internal) Left: Luml	per Increase=1.60, Plate Increase=1.60				
Uniform Loads (plf)	2-3=57, 3-4=57, 4-5=17, 6-8=	-21				
Horz: 1-2=-92		-21				
Concentrated Loads (Vert: 11=-93	lb) 12=225(B) 13=206(B)					
5) Dead + 0.6 MWFRS V		nber Increase=1.60, Plate Increase=1.60)			
Uniform Loads (plf) Vert: 1-2=25.	2-3=35, 3-4=57, 4-5=47, 6-8=	12				
Horz: 1-2=-37	7, 2-3=-47					
Concentrated Loads (Vert: 11=-159	ю) 9 12=258(В) 13=234(В)					
8) Dead + 0.6 MWFRS V Uniform Loads (plf)	Vind (Pos. Internal) 1st Paralle	el: Lumber Increase=1.60, Plate Increase	e=1.60			
Vert: 1-2=47,	2-3=57, 3-4=27, 4-5=17, 6-8=	-12				
Horz: 1-2=-59 Concentrated Loads (
Vert: 11=-159	9 12=258(B) 13=234(B)		4.00			
9) Dead + 0.6 MWFRS V Uniform Loads (plf)	Wind (Pos. Internal) 2nd Paral	lel: Lumber Increase=1.60, Plate Increas	se=1.60			
	2-3=27, 3-4=27, 4-5=47, 6-8=	-12				
Concentrated Loads (,					
	9 12=258(B) 13=234(B) Wind (Pos_Internal) 3rd Para	Ilel: Lumber Increase=1.60, Plate Increa	se=1 60			
Uniform Loads (plf)			00-1.00			
Vert: 1-2=4 Horz: 1-2=-	7, 2-3=57, 3-4=27, 4-5=17, 6-8 59, 2-3=-69	3=-12				
Concentrated Loads	(lb)					
	59 12=258(B) 13=234(B) Wind (Pos. Internal) 4th Para	Ilel: Lumber Increase=1.60, Plate Increa	se=1.60			
Uniform Loads (plf)						
Horz: 1-2=-2	7, 2-3=27, 3-4=27, 4-5=47, 6-8 29, 2-3=-39	D=-12				
Concentrated Loads	(lb) 19 12=258(B) 13=234(B)					
14) Dead: Lumber Increa	ase=0.90, Plate Increase=0.90) Plt. metal=0.90				
Uniform Loads (plf) Vert: 1-3=-2	20, 3-4=-100, 4-5=-100, 6-8=-2	20				
Concentrated Loads						
	30 12=-96(B) 13=-89(B) e (unbalanced): Lumber Increa	ase=1.15, Plate Increase=1.15				
Uniform Loads (plf)	60, 3-4=-60, 4-5=-20, 6-8=-20					
Concentrated Loads	(lb)					
	10 12=-222(B) 13=-191(B) /e (unbalanced): Lumber Incre	ase=1.15, Plate Increase=1.15				
Uniform Loads (plf)	· · ·					
Vert: 1-3=-2 Concentrated Loads	20, 3-4=-60, 4-5=-20, 6-8=-20 (lb)					
	10 12=-222(B) 13=-191(B)	tia Flaam Lumber Increase 1.15 Diete I				
Uniform Loads (plf)	DI LIVE (UNDAIANCED) + 0.75 AL	tic Floor: Lumber Increase=1.15, Plate I	icrease=1.15			
Vert: 1-3=-5 Concentrated Loads	i0, 3-4=-110, 4-5=-80, 6-8=-20)				
Vert: 11=-39	90 12=-190(B) 13=-166(B)					
22) 4th Dead + 0.75 Roo Uniform Loads (plf)	of Live (unbalanced) + 0.75 At	tic Floor: Lumber Increase=1.15, Plate Ir	ncrease=1.15			
Vert: 1-3=-2	20, 3-4=-110, 4-5=-80, 6-8=-20)				
Concentrated Loads Vert: 11=-39	(lb) 90 12=-190(B) 13=-166(B)					
	· · · · · · · ·					

Continued on page 3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
823690	J37	HALF HIP	1	1	136912933
					Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,		8	.220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:56:41 2019 Page 3

8.220 s Nov 16 2018 MiTek Industries, Inc. Mon Apr 29 15:56:41 2019 Page 3 ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-jy0Xb8yYcZ4kUaaQoXIOVmIFoSfhUNZBjzW9vizLpDq

LOAD CASE(S) Standard 23) Reversal: Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=80, 2-3=57, 3-4=57, 4-5=17, 6-8=21 Horz: 1-2=-92. 2-3=-69 Concentrated Loads (lb) Vert: 11=-93 12=-100(B) 13=-90(B) 24) Reversal: Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=25, 2-3=35, 3-4=57, 4-5=47, 6-8=-12 Horz: 1-2=-37, 2-3=-47 Concentrated Loads (lb) Vert: 11=-159 12=-67(B) 13=-62(B) 27) Reversal: Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=47, 2-3=57, 3-4=27, 4-5=17, 6-8=-12 Horz: 1-2=-59, 2-3=-69 Concentrated Loads (lb) Vert: 11=-159 12=-67(B) 13=-62(B) 28) Reversal: Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=17, 2-3=27, 3-4=27, 4-5=47, 6-8=-12 Horz: 1-2=-29, 2-3=-39 Concentrated Loads (lb) Vert: 11=-219 12=-67(B) 13=-62(B) 29) Reversal: Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=47, 2-3=57, 3-4=27, 4-5=17, 6-8=-12 Horz: 1-2=-59, 2-3=-69 Concentrated Loads (lb) Vert: 11=-159 12=-67(B) 13=-62(B) 30) Reversal: Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=17, 2-3=27, 3-4=27, 4-5=47, 6-8=-12 Horz: 1-2=-29, 2-3=-39 Concentrated Loads (lb) Vert: 11=-219 12=-67(B) 13=-62(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

WEBS 2x4 SP No.3

REACTIONS. (lb/size) 5=152/0-3-8, 3=40/Mechanical, 4=16/Mechanical Max Horz 5=162(LC 12) Max Uplift 3=-135(LC 12), 4=-47(LC 12) Max Grav 5=152(LC 1), 3=79(LC 19), 4=49(LC 10)

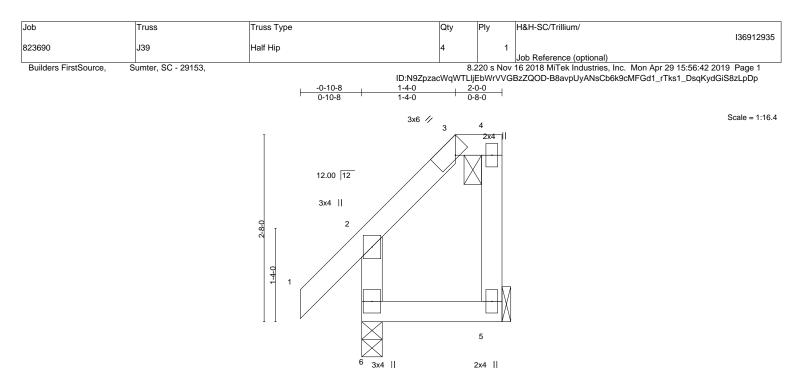
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

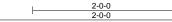
NOTES-

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.


5) Refer to girder(s) for truss to truss connections.


 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 3=135.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

OADING (psf) CLL 20.0 CDL 10.0 SCLL 0.0 SCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.32 BC 0.18 WB 0.00 Matrix-MR	Vert(CT) -0	in (loc) .00 6 .00 5-6 .00 5	>999 >999	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP	No.2		BRACING- TOP CHORD	Struc	ural wood	sheathing di	rectly applied or 2-0-0) oc purlins,

BOT CHORD

except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

Plate Offsets (X V)-- [3:0-2-8 Edge]

REACTIONS. (lb/size) 5=50/Mechanical, 6=148/0-3-8

Max Horz 6=188(LC 9) Max Uplift 5=-143(LC 9), 6=-60(LC 8)

Max Grav 5=95(LC 10), 6=174(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

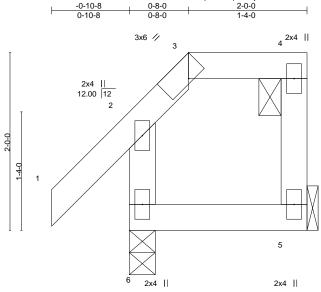
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 5=143.

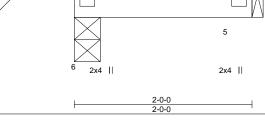
9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/
823690	J40	Half Hip	4	1	136912936
					Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,		8	.220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 15:56:43 2019 Page 1

Sumter, SC - 29153, Builders FirstSource,



Scale = 1:13.0

ID:N9ZpzacWqWTLIjEbWrVVGBzZQOD-fL8I0qzo8AKSktkpvynsaBNgnGOHyJ4UBH?F_azLpDo

except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

DADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) I/defl L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.24	Vert(LL) -0.00	6 >999 240	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.11	Vert(CT) -0.00	6 >999 180	
CLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00	5 n/a n/a	
CDL 10.0	Code IRC2015/TPI2014	Matrix-MR			Weight: 12 lb FT = 20%

BOT CHORD

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (lb/size) 5=50/Mechanical, 6=148/0-3-8

Max Horz 6=143(LC 9) Max Uplift 5=-99(LC 9), 6=-72(LC 12)

Max Grav 5=59(LC 24), 6=148(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

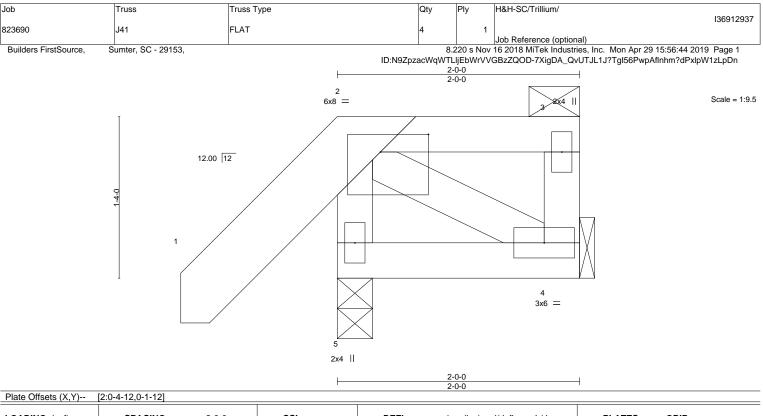
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 1-10-4 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.
4) This truss has been designed for a 10.0 ps bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.


Refer to girder(s) for truss to truss connections.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 6.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-14's rev. Towasons beroke osc. Design valid for use only with MiTeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.33 BC 0.03 WB 0.02 Matrix-MP	DEFL. in Vert(LL) 0.00 Vert(CT) -0.00 Horz(CT) -0.00	(loc) 5 5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER-			BRACING-	_				

LUMBER-		BRACING-	
TOP CHORD	2x4 SP No.2 *Except*	TOP CHORD	Structural wood sheathing directly applied or 2-0-0 oc purlins,
	1-2: 2x6 SP No.2		except end verticals, and 2-0-0 oc purlins: 2-3.
BOT CHORD	2x4 SP No.2	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
WEBS	2x4 SP No.3		

REACTIONS. (lb/size) 5=178/0-3-8, 4=38/Mechanical Max Horz 5=122(LC 9) Max Uplift 5=-102(LC 9), 4=-43(LC 9) Max Grav 5=178(LC 1), 4=42(LC 21)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-5=-162/257

NOTES-

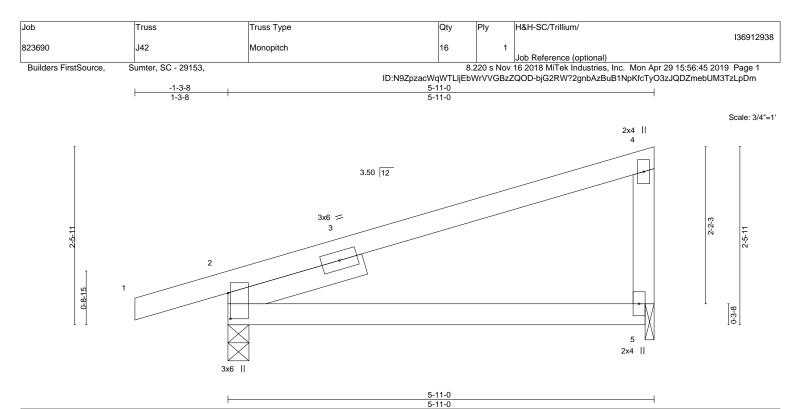
 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -1-2-1 to 1-10-4 zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5=102.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y)	[2:0-4-5,0-0-6]		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.49	Vert(LL) 0.09 5-8 >780 240 MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.46	Vert(CT) -0.09 5-8 >729 240
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.03 2 n/a n/a
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Weight: 26 lb FT = 20%
LUMBER-			BRACING-

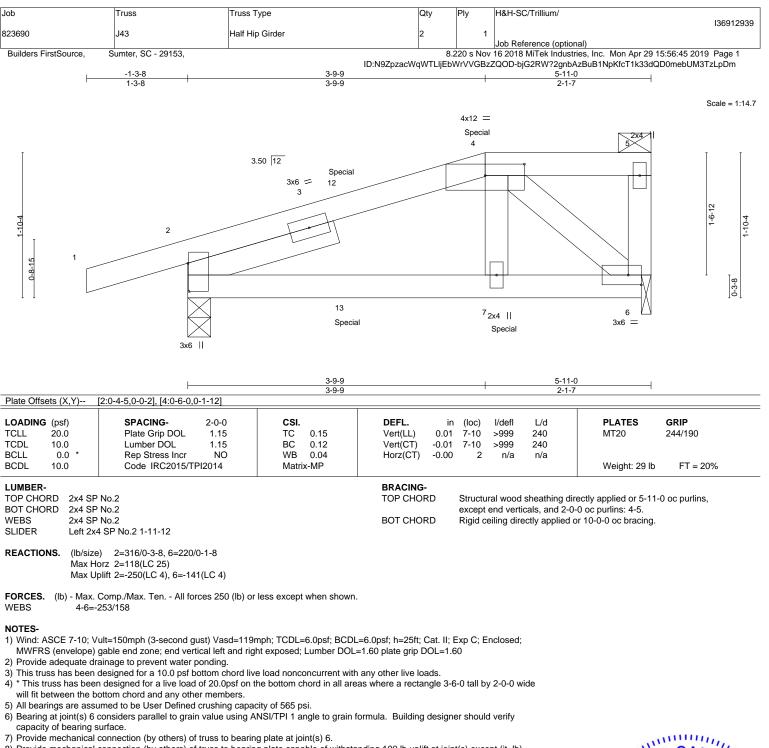
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 Left 2x4 SP No.3 1-11-12 SLIDER

TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

- REACTIONS. (lb/size) 2=317/0-3-8, 5=222/0-1-8 Max Horz 2=152(LC 8) Max Uplift 2=-219(LC 8), 5=-151(LC 12)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-279/43

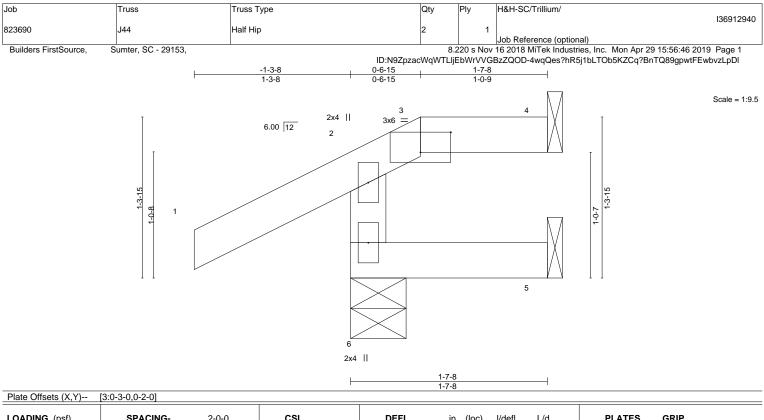

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=219. 5=151.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=250, 6=141.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 78 lb down and 60 lb up at 2-0-12, and 92 lb down and 25 lb up at 3-9-9 on top chord, and 3 lb down and 10 lb up at 2-0-12, and 8 lb down and 15 lb up at 4-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-60, 4-5=-60, 6-8=-20 Concentrated Loads (lb)

oncentrated Loads (lb) Vert: 7=5(F) 13=-1(F)

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	TC 0.25 BC 0.04 WB 0.00 Matrix-MR	Vert(LL) 0.00 Vert(CT) -0.00 Horz(CT) -0.00 Wind(LL) 0.00	6 × 4	>999 360 >999 240 n/a n/a >999 240	MT20 244/190 Weight: 8 lb FT = 20%
--	---	--	--	----------	---	---------------------------------------

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-7-8 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 4=12/Mechanical, 6=187/0-5-8, 5=5/Mechanical Max Horz 6=68(LC 11) Max Uplift 4=-35(LC 9), 6=-108(LC 12), 5=-2(LC 9) Max Grav 4=30(LC 24), 6=187(LC 1), 5=24(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-6=-162/279

NOTES-

1) Unbalanced roof live loads have been considered for this design.

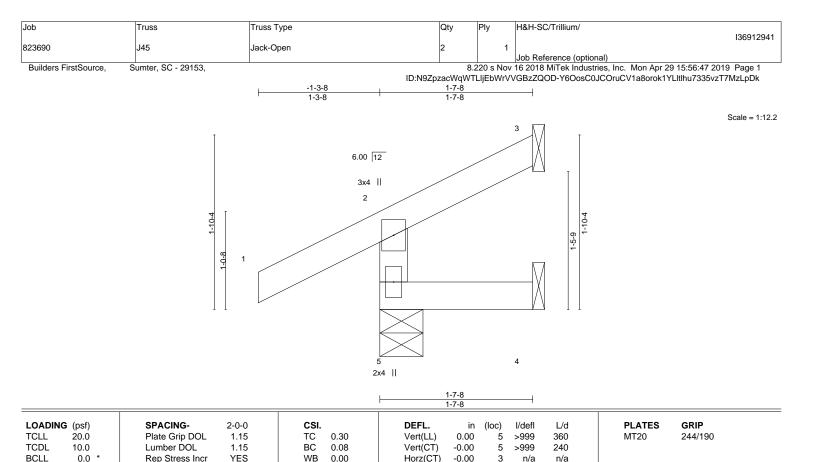
2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -1-3-8 to 1-7-6 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.


 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5 except (jt=lb) 6=108.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 2234.

Horz(CT)

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

3

4-5

0.00

n/a

>999

except end verticals.

n/a

240

Rigid ceiling directly applied or 10-0-0 oc bracing

Structural wood sheathing directly applied or 1-7-8 oc purlins,

Weight: 8 lb

FT = 20%

NOTES-

BCDL

LUMBER-

WEBS

TOP CHORD

BOT CHORD

REACTIONS.

10.0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

Max Horz 5=84(LC 9)

(lb/size)

1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MR

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

YES

5=187/0-5-8, 3=12/Mechanical, 4=4/Mechanical

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.

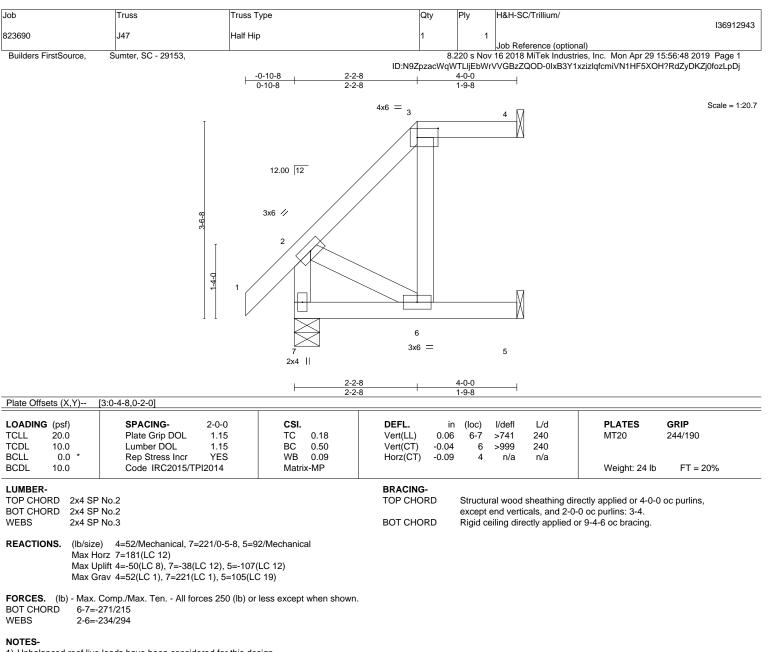
Rep Stress Incr

Code IRC2015/TPI2014

Max Uplift 5=-86(LC 12), 3=-42(LC 12), 4=-8(LC 9) Max Grav 5=187(LC 1), 3=16(LC 19), 4=24(LC 3) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR CEPTERNCE PAGE MIT-1473 TeV. 100/32010 SECORE 052. Design valid for use only with MITER (be connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


Job	Truss	Truss Type	Qty	Ply	H&H-SC/Trillium/]
823690	J46	Half Hip	1	, 1			136912942
Builders FirstSource,	Sumter, SC - 29153,				Job Reference (option 16 2018 MiTek Industri		5:56:48 2010 Page 1
Duligers FirstSource,	Sumer, SC - 29153,	<u> -0-10-8</u> 0-10-8			VVGBzZQOD-0lxB3Y		
			$4x6 = \frac{1}{3}$				Scale = 1:25.8
		12.00 [12]					
			6	×4 5			
		4x6 =	2)	X4 U			
		 	3-2-8 3-2-8	4-0-0			
Plate Offsets (X,Y)	[3:0-4-8,0-2-0]		3-2-0	0-9-0			
LOADING(psf)TCLL20.0TCDL10.0BCLL0.0*BCDL	SPACING- 2-0- Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr YE Code IRC2015/TPI2014	5 TC 0.59 5 BC 0.43 S WB 0.10	DEFL.inVert(LL)0.07Vert(CT)0.06Horz(CT)-0.13	6-7 :	l/defl L/d >666 240 >756 180 n/a n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	No.2			except er	I wood sheathing dirond verticals, and 2-0- ling directly applied o	0 oc purlins: 3-4.) oc purlins,
Max Ho Max Up	 b) 4=27/Mechanical, 7=221/0 b) 7=251(LC 12) c) 7=251(LC 12) c) 8, 5=-255(LC 12) c) 4=40(LC 21), 7=221(LC 1))					
()	Comp./Max. Ten All forces 2 280/326	50 (lb) or less except when shown					
 Wind: ASCE 7-10; Vu MWFRS (envelope) of reactions shown; Lur Provide adequate dra This truss has been drawn This truss has been will fit between the busility All bearings are assu Refer to girder(s) for 	gable end zone and C-C Exteri mber DOL=1.60 plate grip DOL ainage to prevent water pondin designed for a 10.0 psf bottom in designed for a live load of 20. ottom chord and any other mer imed to be User Defined crush truss to truss connections.	asd=119mph; TCDL=6.0psf; BCDl or(2) zone; end vertical left expos =1.60 g. chord live load nonconcurrent with 0psf on the bottom chord in all are nbers. ng capacity of 565 psi.	ed;C-C for members and f n any other live loads. eas where a rectangle 3-6	forces & N -0 tall by 2	VWFRS for 2-0-0 wide		MILLIUM .
5=255.		to bearing plate capable of withsta size or the orientation of the purlin	· · ·	. ,		Saucht	H CAROLIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

NGINEERING E

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 7 except (jt=lb) 5=107.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

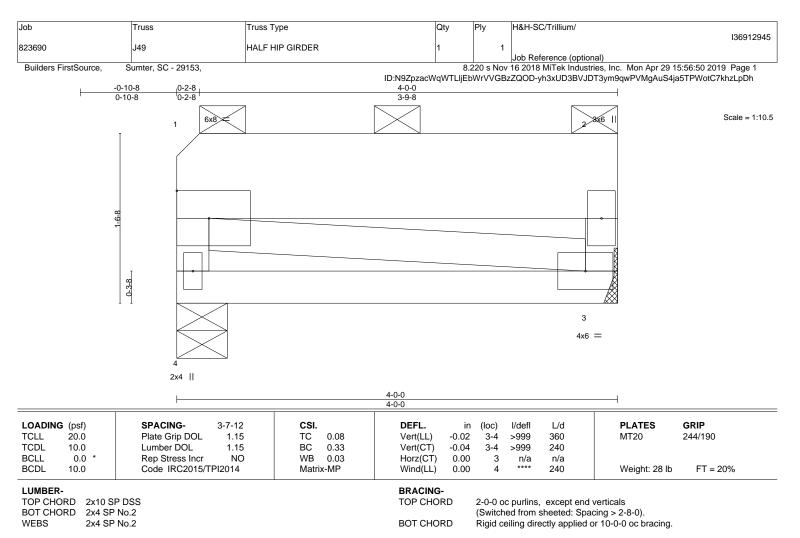
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to dirder(s) for trues to trues connections


7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 7, 5.
9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

SEAL 044925 MGINEER May 1,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- REACTIONS. (Ib/size) 3=270/Mechanical, 4=270/0-5-8 Max Horz 4=120(LC 9) Max Uplift 3=-170(LC 9), 4=-170(LC 8)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-203/310, 1-4=-203/338

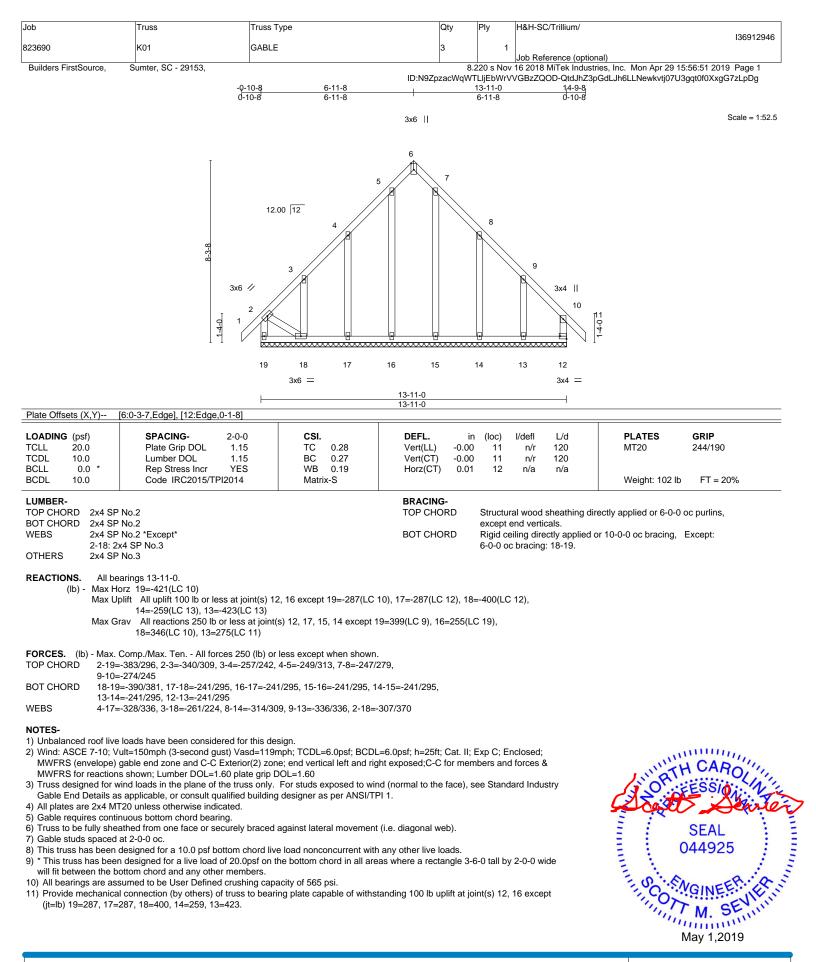
NOTES-

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

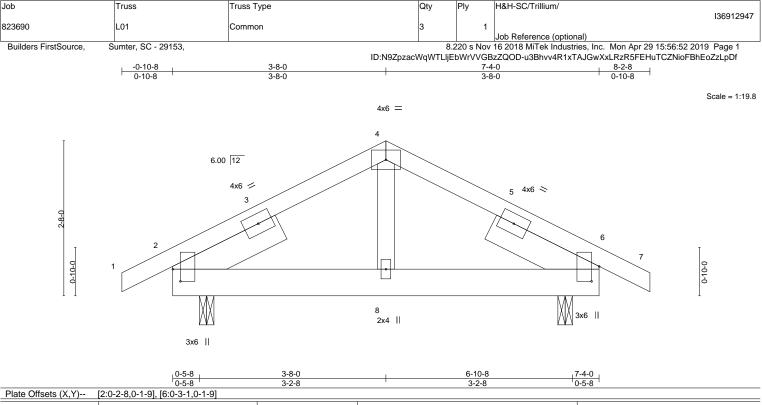
2) Provide adequate drainage to prevent water ponding.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Refer to girder(s) for truss to truss connections.


 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=170, 4=170.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.13 BC 0.06 WB 0.04	DEFL. in Vert(LL) 0.00 Vert(CT) -0.00 Horz(CT) 0.00	(loc) 8 8 6	>999 >999	L/d 240 240 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS					Weight: 45 lb	FT = 20%

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x6 SP No.2

 WEBS
 2x4 SP No.3

 SLIDER
 Left 2x6 SP No.2 1-11-14, Right 2x6 SP No.2 1-11-14

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied. Rigid ceiling directly applied.

REACTIONS. (lb/size) 2=346/0-3-0, 6=346/0-3-0 Max Horz 2=-68(LC 17)

Max Uplift 2=-180(LC 9), 6=-180(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-179/483, 4-6=-179/483

BOT CHORD 2-8=-264/160, 6-8=-264/160

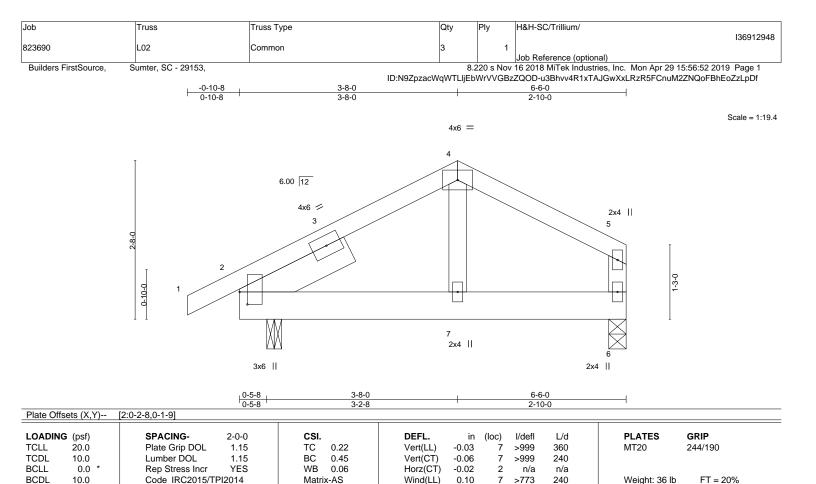
NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


All bearings are assumed to be User Defined crushing capacity of 565 psi.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=180, 6=180.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		•
 UI	ᇄᆔ	

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 SLIDER Left 2x6 SP No.2 1-11-12

BRACING-TOP CHORD BOT CHORD

0.10

7 >773

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (lb/size) 2=334/0-3-0, 6=226/0-3-8 Max Horz 2=100(LC 12)

Max Uplift 2=-169(LC 12), 6=-122(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

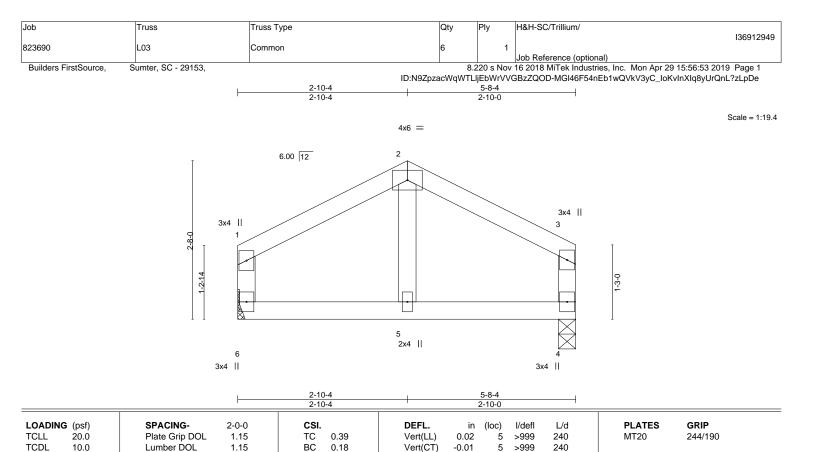
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=169. 6=122.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR CEPTERNCE PAGE MIT-1473 TeV. 100/32010 SECORE 052. Design valid for use only with MITER (be connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Horz(CT)

BRACING-TOP CHORD

BOT CHORD

-0.00

4

n/a

Rigid ceiling directly applied.

n/a

Weight: 24 lb

Structural wood sheathing directly applied, except end verticals.

FT = 20%

E	\sim	D	^	

BCLL

BCDL

LUMBER-

WEBS REACTIONS.

TOP CHORD

BOT CHORD

0.0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

Max Horz 6=-78(LC 10)

(lb/size)

10.0

S. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1-2=-170/355, 2-3=-169/359, 1-6=-158/306, 3-4=-158/312

6=216/Mechanical, 4=216/0-3-8

Rep Stress Incr

Code IRC2015/TPI2014

NOTES-

1) Unbalanced roof live loads have been considered for this design.

Max Uplift 6=-106(LC 8), 4=-112(LC 8)

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WB

Matrix-AS

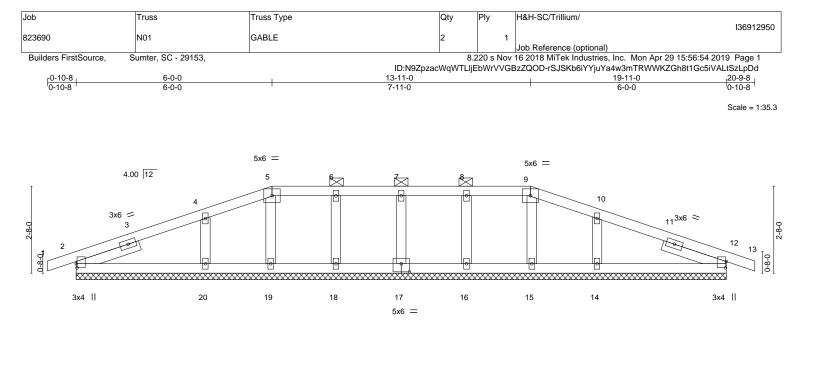
0.03

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

YES

- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=106. 4=112.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L			19-11-0				
Plate Offsets (X,Y) [2:0-1-8,0-0-5], [12:0-2-5,0-0-5], [17:0-3-	-0,0-3-0]	19-11-0				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.16 BC 0.11 WB 0.08 Matrix-S	DEFL. in Vert(LL) 0.00 Vert(CT) 0.01 Horz(CT) 0.00	13 n/r 13 n/r	L/d 120 120 n/a	PLATES MT20 Weight: 89 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP OTHERS 2x4 SP SLIDER Left 2x4	No.2	-6	BRACING- TOP CHORD BOT CHORD	2-0-0 oc purlins	(6-0-0 max.):	ectly applied or 6-0-0 5-9. r 10-0-0 oc bracing.) oc purlins, except
(lb) - Max Ho Max Up Max Gr FORCES. (lb) - Max. C	arings 19-11-0. prz 2=-69(LC 13) plift All uplift 100 lb or less at joint(s) 17 14=-201(LC 13), 12=-176(LC 9) av All reactions 250 lb or less at joint(24) Comp./Max. Ten All forces 250 (lb) or -214/259, 10-14=-214/258	s) 2, 17, 18, 19, 16, 15, 1	2 except 20=297(LC 23)				
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; VU MWFRS (envelope) of MWFRS for reactions 3) Truss designed for wi Gable End Details as 4) Provide adequate dra 5) All plates are 2x4 MT 6) Gable requires contin 7) Gable studs spaced a 8) This truss has been of 9) * This truss has been of 10) All bearings are ass 11) Provide mechanical 15 except (jt=lb) 2= ⁻¹	loads have been considered for this de ult=150mph (3-second gust) Vasd=119r jable end zone and C-C Exterior(2) zon s shown; Lumber DOL=1.60 plate grip D ind loads in the plane of the truss only. applicable, or consult qualified building inage to prevent water ponding. 20 unless otherwise indicated. uous bottom chord bearing.	mph; TCDL=6.0psf; BCDL e; end vertical left and rig DOL=1.60 For studs exposed to wir g designer as per ANSI/TF e load nonconcurrent with he bottom chord in all are acity of 565 psi. ng plate capable of withs	the exposed;C-C for men and (normal to the face), s PI 1. In any other live loads. was where a rectangle 3-f tanding 100 lb uplift at jo	bers and forces ee Standard Indu 5-0 tall by 2-0-0 w int(s) 17, 18, 19,	& ıstry ıide	THE RECEIPTION	H CAROL ESSION SEAL 044925

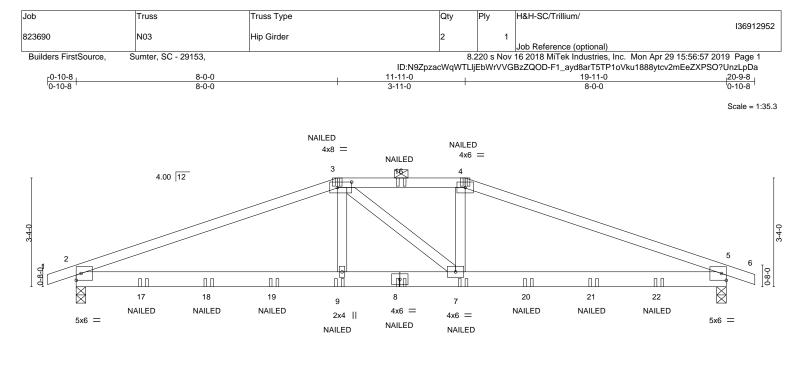
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A Millek A 818 Soundside Road Edenton, NC 27932

Plate Offsets (X,Y)	<u>9-11-8</u> 9-11-8 [2:0-0-0,0-0-10], [4:Edge,0-0-10], [6:0-4	-0,0-3-0]	19-11-0 9-11-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.53 BC 0.87 WB 0.15 Matrix-AS	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.13 6-12 >999 360 MT20 244/190 Vert(CT) -0.29 6-12 >837 240 MT20 244/190 Horz(CT) 0.03 4 n/a n/a Mind(LL) 0.14 6-9 >999 240 Weight: 88 lb FT = 209	%
,	No.2		BRACING- TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied.	
FORCES. (lb) - Max. TOP CHORD 2-3=-	plift 2=-440(LC 8), 4=-440(LC 9) Comp./Max. Ten All forces 250 (lb) or 1417/921, 3-4=-1417/921 718/1265, 4-6=-718/1265)/402	less except when shown.		
2) Wind: ASCE 7-10; V MWFRS (envelope) MWFRS for reaction		mph; TCDL=6.0psf; BCDL e; end vertical left and rig DOL=1.60	6.0psf; h=25ft; Cat. II; Exp C; Enclosed; exposed;C-C for members and forces & ny other live loads.	

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=440, 4=440.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

OADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	тс	0.98	Vert(LL)	0.19	7-15	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.55	Vert(CT)	-0.13	7-15	>999	240		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.06	Horz(CT)	-0.03	5	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matrix	x-MS						Weight: 94 lb	FT = 20%

BOT CHORD

Rigid ceiling directly applied or 5-3-2 oc bracing.

REACTIONS. (lb/size) 2=935/0-3-8, 5=935/0-3-8 Max Horz 2=89(LC 8) Max Uplift 2=-1013(LC 4), 5=-1013(LC 5)

2x4 SP No.2

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1644/1896, 3-4=-1489/1871, 4-5=-1643/1894

BOT CHORD 2-9=-1727/1481, 7-9=-1739/1491, 5-7=-1650/1480

WEBS 4-7=-252/245

NOTES-

WEBS

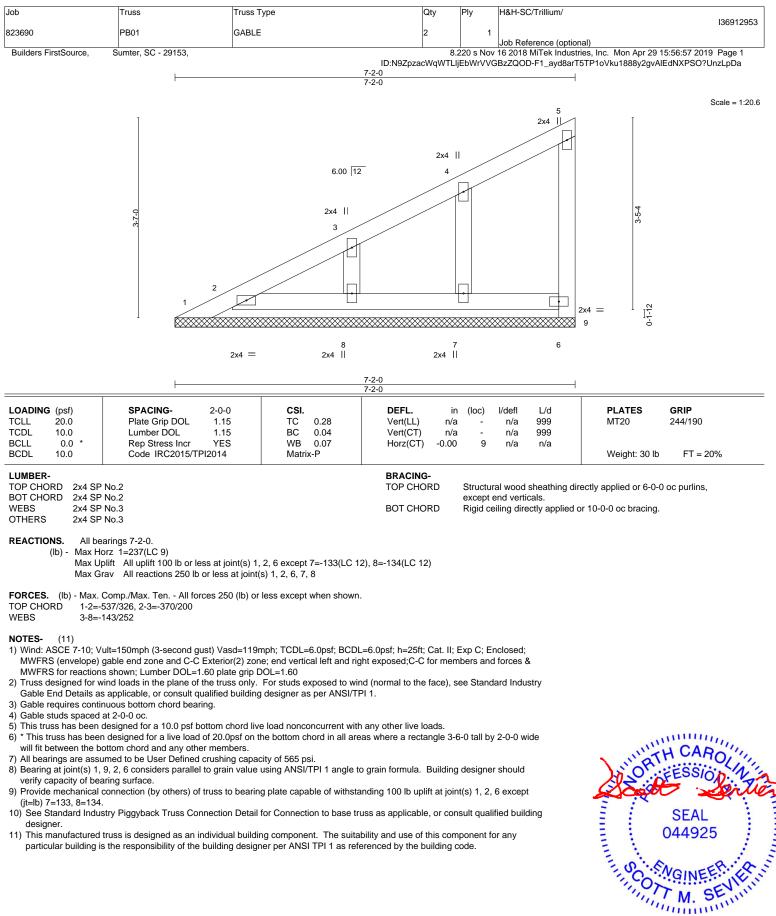
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=1013, 5=1013.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

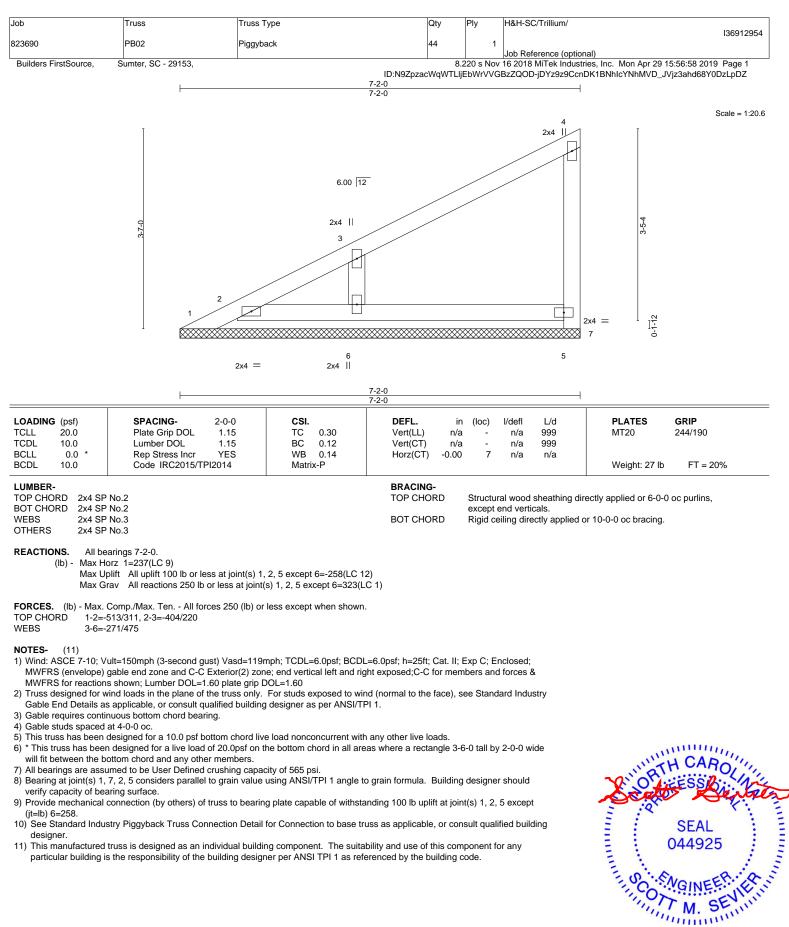
1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 4-6=-60, 10-13=-20

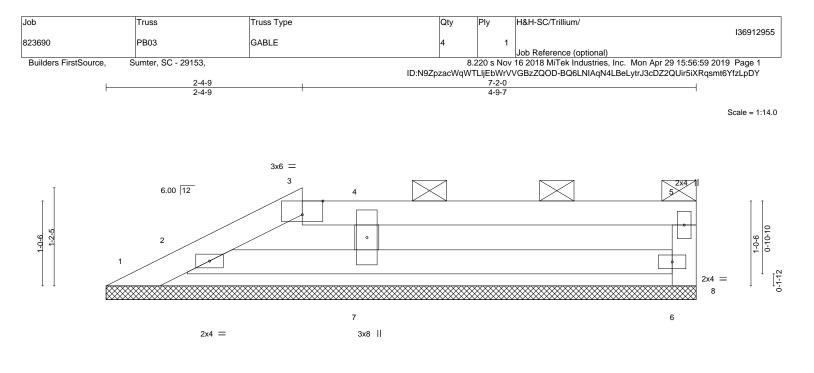

Concentrated Loads (lb)

Vert: 8=1(B) 9=1(B) 7=1(B) 17=-18(B) 18=-39(B) 19=-30(B) 20=-30(B) 21=-39(B) 22=-18(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



May 1,2019


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

May 1,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. i	ר (loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.19	Vert(LL) n/a	a -	n/a	999	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.11	Vert(CT) n/a	a -	n/a	999		
CLL 0.0 *	Rep Stress Incr YES	WB 0.10	Horz(CT) 0.00) 8	n/a	n/a		
CDL 10.0	Code IRC2015/TPI2014	Matrix-S					Weight: 21 lb	FT = 20%

BOT CHORD2x4 SP No.2except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-5.WEBS2x4 SP No.3BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.OTHERS2x4 SP No.3BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.

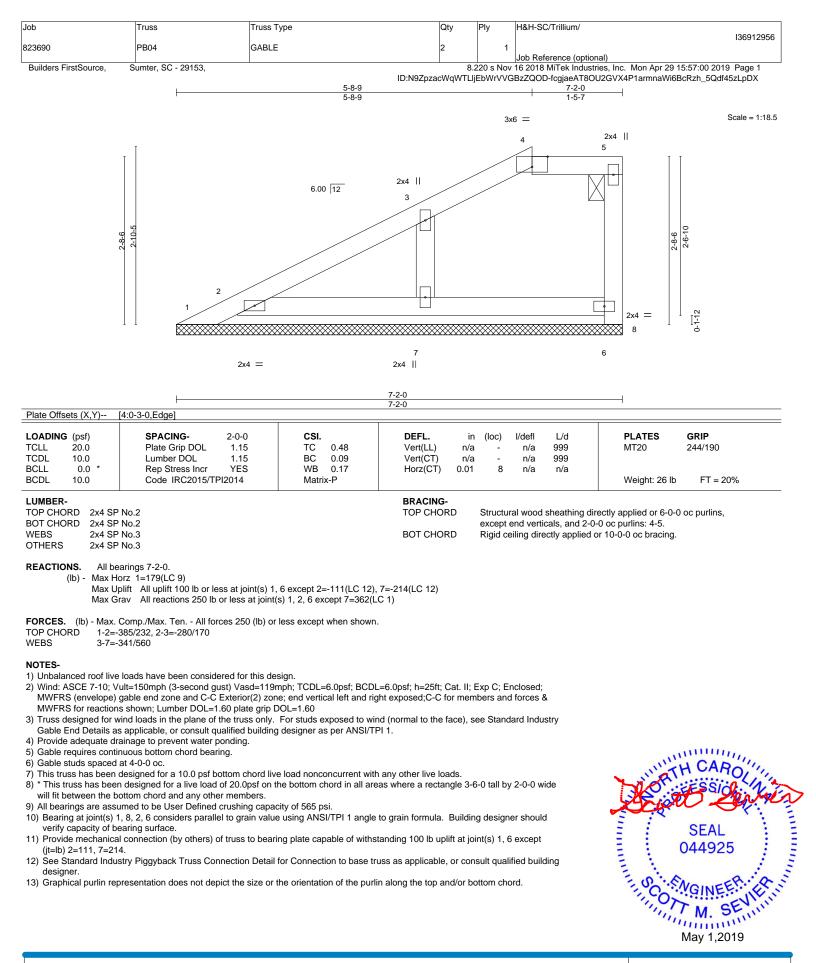
REACTIONS. All bearings 7-2-0. (lb) - Max Horz 1=61(LC

) - Max Horz 1=61(LC 9) Max Uplift All uplift 100 lb or less at joint(s) 1, 8, 2 except 7=-160(LC 9) Max Grav All reactions 250 lb or less at joint(s) 1, 8, 2 except 7=286(LC 1)

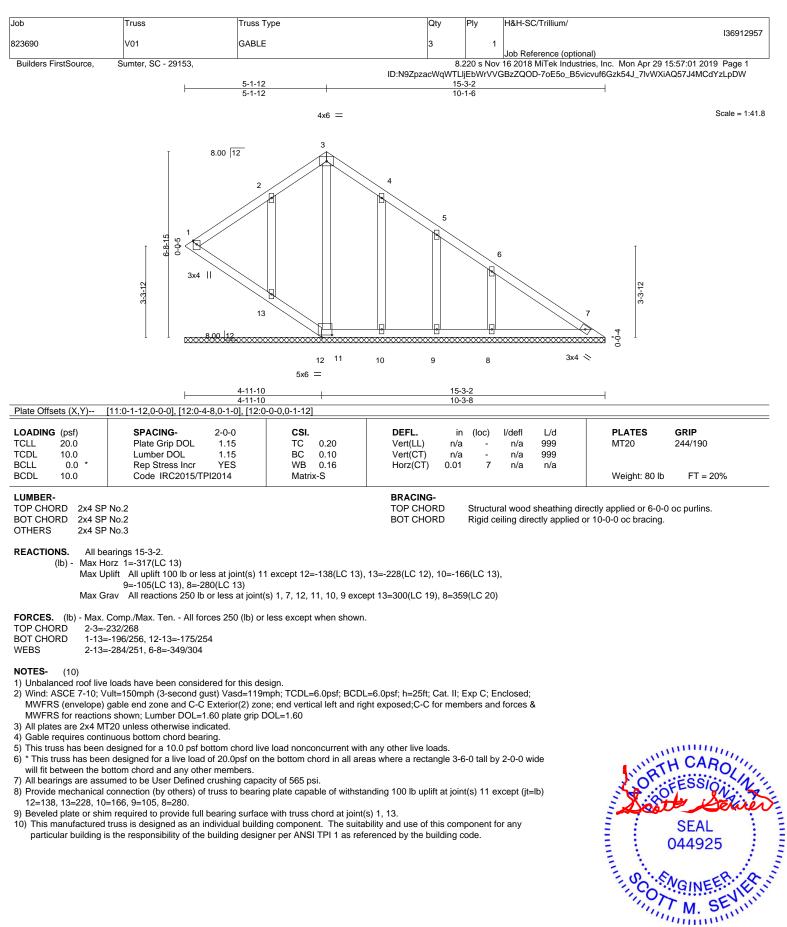
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 4-7=-210/345

NOTES-


1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 10) Bearing at joint(s) 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8, 2 except (jt=lb) 7=160.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affiliat 818 Soundside Road

Edenton, NC 27932

May 1,2019

nponent B18 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

