

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 20-022568T

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Stock Building Supply.

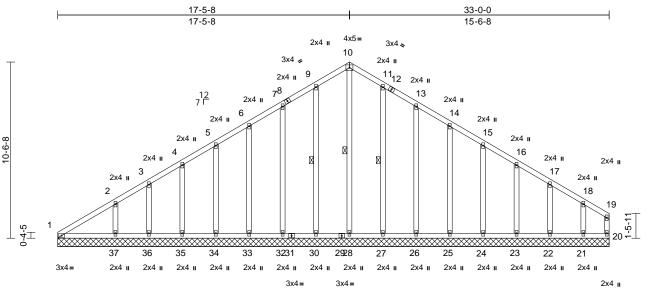
Pages or sheets covered by this seal: T19584290 thru T19584316

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

March 4,2020

ORegan, Philip


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

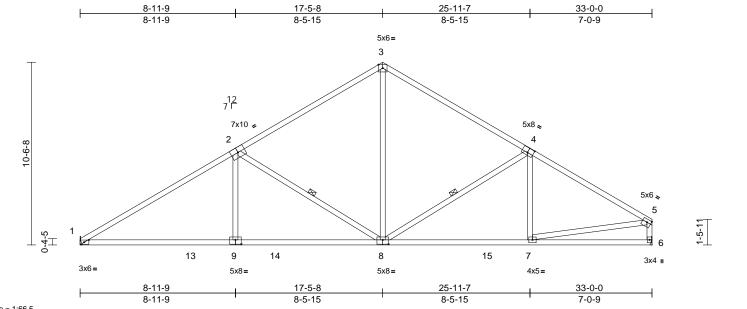
Job	Truss	Truss Type	Qty	Ply		
20-022568T	A01	Common Supported Gable	1	1	T19584290 Job Reference (optional)	

Scale = 1:68.9

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Tue Mar 03 15:36:40 ID:AChgAdvljCSn0OPIWIOe?dzesLB-?EO4QbgNzPejSrSYuT7eRXDWcVHgw7_Of0VXlizeb_O

Page: 1

22	0-0	
JJ -	0-0	


DL (mod) 20.0 Plase Gip DOL 11.0 TC 0.12 Vert(11) n/a -n/a 999 MT20 24/4/190 DL 10.0 10.0 Limber DOL 1.15 BC 0.11 Vert(11) n/a -n/a 999 Matrix-MS DDL 10.0 Code IRC2015/TPI2014 Matrix-MS 1.15 BC 0.11 Vert(11) n/a -n/a 999 Matrix-MS DP CHORD 2x4 SP No.2 Code IRC2015/TPI2014 Matrix-MS 7 * This truss has been designed for a live load of 20.0pd n/a n/a <th>Ocale = 1.00.5</th> <th></th>	Ocale = 1.00.5													
DL Ll DL DL DL DL DL DL DL DL DL DL DL DL DL	Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(lo	oc) l/defl	L/d	PLATES	GRIP
L1 0.0 Rep Stress Intr YES WB 0.15 Horiz(TL) 0.00 20 n/a Meight: 234 lb FT = 20%. DDL 10.0 Code IRC2015/TFI2014 Matrix-MS 0.00 20 n/a n/a Meight: 234 lb FT = 20%. MBER 7 This truss has been designed for a live load of 20.0pd n/a	TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.12	Vert(LL)	n/a		- n/a	999	MT20	244/190
DL 10.0 Code IRC2015/TP12014 Matrix-MS Weight: 234 lb FT = 20% MMBER PC CHORD 2/4 SP No.2 TOP CHORD 2/2 SP No.2 TOP CHORD 2/4 SP NO.2<	TCDL	10.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a		- n/a	999		
MBER PP CHORD Zx4 SP No.2 TO CHORD Zx4 SP No.3 THERS Zx4 SP No.3 TO CHORD Zx4 SP No.3 TO CHORD Zx4 SP No.3 TO CHORD Structural wood sheathing directly applied or 60-00 cputins, eacheging directly applied or 10-00 cp bracing. TO CHORD Structural wood sheathing directly applied or 60-00 cputins, eacheging directly applied or 60-00 cputins, eacheging directly applied or 10-00 cp bracing. BOT CHORD 1:33-44468, 33:34-44466, 32:33-44466, 33:32-44468, 33:34-44466, 32:33-44466, 33:32-44468, 32:34-4466, 32:32-44468, 32:34-4466, 32:32-44468, 32:34-4466, 32:32-44468, 32:34-4466, 32:32-44468, 32:34-4466, 32:32-44468, 32:44-4466, 32:32-44468, 32:44-4466, 32:32-44468, 32:44-4466, 32:32-44468, 32:44-4466, 32:32-44468, 32:44-4466, 32:32-44468, 32:44-4466, 34:32-12467, 7:38-6479, 54:22-124466, 10:38-63:30:07, 33-69:30-0, 36-63:30-0, 37-33:30-0, 38-33:0-0, 36-63:30-0, 37-33:30-0, 38-33:0-0, 36-63:30-0, 37-33:30-0, 38-33:0-0, 36-63:30-0, 37-33:0-0, 38-33:0-0, 36-63:30-0, 37-33:0-0, 38-33:0-0, 36-63:30-0, 37-33:0-0, 38-33:0-0, 36-63:30-0, 37-33:0-0, 38-33:0-0, 36-63:30-0, 37-33:0-0, 38-33:0-0, 36-63:30:02, 32-4466, 12:22-4468, 20:21-4466, 10:38-63:10:07; 3:86	BCLL	0.0*	Rep Stress Incr	YES		WB	0.15	Horiz(TL)	0.00		20 n/a	n/a		
PC HORD 2:4 §P No.2 4:5 = 177/184, 5:6 = 164/197, 6? = 175/222, 45 P No.3 on the bottom chord in all areas where a rectangle TO HORD 2:4 §P No.3 Except* 28-10, 30-9, 27-11:2x4 5 P No.2 7:8 = 21/223, 8:9 = 201/249, 9:10 = 27/240, 0:0 = 000 wide will fit between the bottom chord in all areas where a rectangle on the bottom chord in all areas where a rectangle SP No.2 7:8 = 21/223, 8:9 = 201/249, 9:10 = 27/240, 0:0 = 27/240,	BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 234 lb	FT = 20%
TC CHORD 2x4 SP No.2 75—212239.9-9—2212289.9-9—234278. 3-06-60 tall by 2-00-00 wide will fit between the bottom SP No.2 75—212239.9-9—2012289.9-9—20124978. 3-06-60 tall by 2-00-00 wide will fit between the bottom MCHOR SP No.2 75—212239.9-9—2012289.9-9—20124978. 3-06-60 tall by 2-00-00 wide will fit between the bottom MCHOR SP No.2 75—212239.9-9—201249.9-91-0=243278. 3-06-60 tall by 2-00-00 wide will fit between the bottom MCHOR SP No.2 75—212239.9-9—201249.9-91-0=243278. 3-06-60 tall by 2-00-00 wide will fit between the bottom MCHOR Structural wood sheathing directly applied or 10-0-0 oc brains, except end verticals. 10-112-43278.1-112-4197/240. 10-112-43278.1-112-4197/240. 10-112-43278.1-1224.5 10-112-14278.1-1224.5 10-112-14278.1-1224.5 10-112-14278.1-1224.5 10-101.1-124-1242.5 10-112-124278.1-1224.5 10-112.2-1242.5 10-112.2-1242.5 10-112.2-1242.5 10-112.2-1242.5 10-112.2-1242.5 10-112.2-1242.5 10-112.2-1242.5 10-112.2-1242.5 10-112.2-1242.5 10-112.2-1242.5 10-112.2-1242.5 10-112.2-1242.5 10-112.2-1242.5 10-112.2-1242.5 10-112.2-1242.5 10-112.2-1242.5 10-112.2-1242.5 10-112.2-1242.5 10-112.2-1242.5	LUMBER			тс	OP CHORD	1-2=-222/217, 2-	3=-204/18	7, 3-4=-188/18	38,	7)	* This truss	has be	een designed for	a live load of 20.0psf
EES 2x4 SP No.3 Except* 28-10.30-9.27-11:2x4 10-11=-243/278, 11-12=-175/197, 11-12	TOP CHORD	2x4 SP No.2												
THERS 2x4 SP No.3 2xcept 28-10,30-9,27-11:2x4 SP No.2 12:13-212/237, 13:14-17/57(97, 14:15-14/01/13, 16:17-77(71,17:18-44/31, 18:19-67/27, 19:20-553 8) Provide mechanical connection (by others) of truss to baring pilet capable of withstanding 61 bup/lift at joint 28, 35 bup/lift at joint 28, 30 bup/lift at joint	BOT CHORD	2x4 SP No.2				,		,	278,					between the bottom
SP No.2	VEBS	2x4 SP No.3												
 Baching Charles Charles	DTHERS	2x4 SP No.3 *Exce	ept* 28-10,30-9,27-11	l:2x4		,		,						
Name Structural wood sheathing directly applied of 6-0 oc putlins, except end verticals. 19:20=-553 19:20=-553 44/56, 35:36=-44/56, 35:35=-44/56, 35:36=-44/56, 34:35=-44/56, 35:36=-44/56, 34:35=-130/67, 33=-30=-134/59, 32:2124/56, 21:22=-44/56, 20:21=-44/56, 33:33:40:0, 34=-33:00, 24=-33:00, 22:23:3-44/56, 21:22=-44/56, 20:21=-44/56, 33:33:40:0, 34=-33:00, 32=-33:00, 36=-33:40:0, 34=-33:00, 32=-33:00, 36=-33:40:0, 34=-33:00, 32=-33:00, 36=-33:40:0, 34=-33:00, 32=-33:00, 36=-33:40:0, 34=-33:00, 32=-33:00, 36=-33:40:0, 33=-33:00, 32=-33:00, 36=-33:40:0, 32=-33:00, 32=-34:00, 31:22=-1228/10, 11; 22=-124/61, 11:22=-1228/10, 11; 22=-124/61, 11:22=-1228/10, 11; 22=-124/61, 11:22=-1228/10, 11; 22=-124/61, 11:22=-1228/10, 11; 22=-14/10, 11; 22=-14/10, 11; 22=-14/10, 11; 22=-14/10, 12:2, 22:24=44/56, 27:22=-125/61, 12:22=-24:45(1, 12:2); 22=-44:16(1, 12); 23=-164 (LC 18); 22=-164 (LC 18); 25=-164 (LC 18); 22=-164 (LC 17); 37=-222 (LC 17); 38=+176 (LC 17); 37=-222 (LC 17); 38=+176 (LC 17); 37=-222 (LC 17); 38=+174 (LC 17); 37=-222 (LC 17); 38=+176 (LC 17); 37=-22		SP No.2				,		,						
PF CHORD Structural wood sheating directly applied or 6+0-0 op purlins, except end verticals. 19:20=:553 19:20=:553 at joint 30, 43 bu pulit at joint 32, 20 bu pulit 34:35=:44/56, 30:31=-44/56, 32:33=-44/56, 34:35=:44/56, 30:31=-44/56, 32:33=-44/56, 34:35=:44/56, 30:31=-44/56, 32:33=-44/56, 34:35=:44/56, 30:31=-44/56, 32:33=-44/56, 34:35=:44/56, 30:31=-44/56, 32:33=-44/56, 34:35=:44/56, 30:31=-44/56, 32:33=-44/56, 34:35=:44/56, 32:32=-44/56, 32:33=-00, 21=33:0-0, 22:33=-00, 24=33:0-0, 22:33=-00, 24=33:0-0, 33=-33:0-0, 38=-33:0-0, 33=-33:0-0, 38=-33:0-0, 33=-33:0-0, 38=-33:0-0, 33=-33:0-0, 38=-33:0-0, 33=-33:0-0, 38=-33:0-0, 33=-33:0-0, 38=-33:0-0, 33=-33:0-0, 38=-33:0-0, 36=-33:0-0, 38=-33:0-0, 11:27=:128/55, 13:26=-124/68, 11:27=:128/55, 13:26=-124/68, 12:28=:124/63, 15:24=-128/64, 16:28=:124/65, 12:28=-128/64, 11:27=:128/55, 13:26=-124/66, 16:28=:124/65, 12:28=-128/64, 12:28=:124/65, 12:28=	BRACING						7-18=-44/3	1, 18-19=-67/2	27,					
6-0-0 oc purlins, except and verticals, bracing. BOT CHORD 137=44/86, 38-36=44/86, 32-32=44/86, 32-32=44/86, 32-32=44/86, 32-32=44/86, 32-32=44/86, 32-32=44/86, 22-32=44/86, 32-32=44/86, 22-32=44/86, 32-32=44/86, 22-32=44/86, 32-22=44/86, 32-22=42/86, 32-2	TOP CHORD	Structural wood sh	eathing directly appli	ied or										
TCHORD bracing. Rigid ceiling directly applied or 10-0-0 oc bracing. 34-35-44/56, 32-334-44/56, 32-334-44/56, 31-32-44/56, 32-34-44/56, 32-342-44/56, 32-342-44/56, 31-32-44/56, 32-34-44/56, 32-34-44/56, 32-34-44/56, 31-32-44/56, 32-44-44/56, 32-34-44/56, 32-34-44/56, 31-32-44/56, 32-44-44/56, 32-34-44/56, 32-34-44/56, 31-32-41/56, 32-34-44/56, 32-34-44/56, 32-34-44/56, 31-32-41/56, 32-34-44/56, 32-34-44/56, 31-32-41/56, 32-34-44/56, 32-34-44/56, 31-32-41/56, 32-34-44/56, 32-34-44/56, 31-32-41/56, 32-34-44/56, 32-34-44/56, 31-32-41/56, 32-34-44/56, 31-32-41/56, 32-34-44/56, 32-32-44/56, 32-4-14/56, 32-23-44/56, 32-4-14/56, 32-23-44/56, 32-4-14/56, 32-23-44/56, 32-4-14/56, 32-23-44/56, 32-4-14/56, 32-23-44/56, 32-4-14/56, 32-23-44/56, 32-4-14/56, 32-23-44/56, 32-4-14/56, 32-23-44/56, 32-4-14/56, 32-23-44/56, 32-4-14/56, 32-24-14/56, 32-4-14/56, 32-24-14/56, 32-34-44/56, 32-24-14/56, 32-4-14/56, 32-24-14/56, 32-4-14/56, 32-24-14/56, 32-4-14/56, 32-21-24/59, 15-26-124/69, 11-27-12/20/51, 13-26-124/69, 11-27-12/20/51, 13-26-124/69, 12-21-23/87 Max Grav 1=174 (LC 18), 20-82 (LC 20), 21-172 (LC 18), 22-164 (LC 19), 24-164 (LC 18), 25-164 (LC 19), 26-164 (LC 19), 24-164 (LC 19), 32-164 (LC 19), 24-164 (LC 19), 32-164 (LC 19), 22-164 (LC 19), 32-164 (LC 19), 24-164 (LC 19), 35-176 (LC 17), 33-174 (LC 17), 35-176 (LC 17), 33-174 (LC 17), 35-176 (LC 17), 33-174 (LC 17), 37-202 (0 7 11	BC	OT CHORD									
bracing. 1 Row at midpt 10-28, 9-30, 11-27 1 Row at midpt 31-32-44/56, 20-27-40, 20-20, 2	BOT CHORD			oc		,		,	,					
EBS 1 Row at midpt 10-28, 9-30, 11-27 28-29-44/56, 2/28-42/5(3), 2/28-42/5(3), 2/28-42/5(3), 1/28-48/16, 1/28, 2/28-42/6(2,1), 2/28-124/53, 1/2-22-128/57, 1/2.22		0 0	,	-		,		,	,					
 EACTIONS (size) 1=33-0-0, 21=33-0-0, 22=33-0-0, 22=33-0-0, 22=33-0-0, 22=33-0-0, 22=33-0-0, 25=33-0-0, 22=33-0-0, 25=33-0-0, 25=33-0-0, 25=33-0-0, 25=33-0-0, 25=33-0-0, 25=33-0-0, 25=33-0-0, 25=33-0-0, 25=33-0-0, 25=33-0-0, 25=33-0-0, 25=33-0-0, 25=33-0-0, 35=33-0-0, 35=33-0-0, 35=33-0-0, 35=33-0-0, 35=33-0-0, 35=33-0-0, 35=33-0-0, 35=33-0-0, 35=33-0-0, 35=33-0-0, 35=33-0-0, 35=33-0-0, 35=33-0-0, 35=33-0-0, 25=25=4/4/5, 2-25/64, 5-34=122/64, 1-25/64, 5-34=122/64, 1-25/64, 5-34=122/64, 1-25/64, 5-34=122/64, 1-25/64, 5-34=122/64, 1-25/	WEBS	0	10-28, 9-30, 11-27			,		-, -	/					
 22=33-0-0, 22=33-0-0, 22=33-0-0, 22=33-0-0, 22=33-0-0, 32=32-0, 1-27=128/55, 13-26=-124/69, 1+27=128/55, 13-26=-124/69, 1+27=128/55, 13-26=-124/69, 1+27=128/55, 13-26=-124/69, 1+27=128/55, 13-26=-124/69, 1+27=128/55, 13-26=-124/69, 1+27=128/55, 13-26=-124/69, 1+27=128/55, 13-26=-124/69, 1+27=128/55, 13-26=-128/69, 1+27=-128/67, 13-26=-128/69, 1+27=128/55, 13-26=-128/69, 1+27=-128/67, 1-27=-128/56, 1, 12-						,		,	,					
 25=33-0-0, 26=33-0-0, 27=33-0-0, 28=33-0-0, 30=33-0-0, 32=33-0-0, 33=33-0-0, 34=33-0-0, 38=33-0-0, 33=33-0-0, 34=33-0-0, 38=239 (LC 9) Max Horiz 1=252 (LC 9), 38=229 (LC 9) Max Uplift 1=61 (LC 6), 20=6 (LC 7), 21=-96 (LC 11), 22=-31 (LC 11), 23=-42 (LC 11), 22=-31 (LC 11), 23=-42 (LC 11), 28=-45 (LC 11), 27=-31 (LC 11), 28=-46 (LC 11), 27=-31 (LC 11), 38=-41 (LC 6) Max Grav 1=174 (LC 18), 22=164 (LC 18), 22=164 (LC 18), 22=164 (LC 11), 30=174 (LC 17), 38=141 (LC 17), 33=165 (LC 17), 38=141 (LC 17), 33=165 (LC 17), 38=114 (LC 17), 35=176 (LC 17), 38=174 (LC 18), 35=176 (LC 17), 38	LACTIONS					,		,	56					
 28=33-0-0, 30=33-0-0, 32=33-0-0, 33=33-0-0, 33=33-0-0, 33=33-0-0, 35=32-0, 35					EBS									
33=33-0-0, 34=33-0-0, 35=33-0-0, 36=33-0-0, 36=33-0-0, 37=33-0-0, 38=33-0-0, 36=33-0-0, 37=33-0-0, 38=33-0-0, 36=33-0-0, 37=33-0-0, 38=33-0-0, 36=33-0-0, 37=33-0-0, 38=32-0, 28=33-0-0, 38=33-0-0, 38=33-0-0, 38=33-0-0, 38=33-0-0, 38=33-0-0, 38=33-0-0, 38=33-0-0, 38=33-0-0, 38=33-0-0, 38=33-0-0, 38=33-0-0, 38=32-38=0, 38=30-0			, ,	,							R802.10.2 a	and ref	erenced standar	d ANSI/TPI 1.
36=33-0-0, 37=33-0-0, 38=33-0-0 11*25=124/36, 15-24=-123/37 Max Upitt 1, 22=-31 (LC 11), 23=-41 (LC 10), 33=-43 (LC 18), 26=-44 (LC 18), 26=-44 (LC 18), 26=-46 (LC 18), 26=-46 (LC 18), 25=-164 (LC 18), 26=-46 (LC 18), 26=-46 (LC 18), 26=-46 (LC 18), 26=-46 (LC 17), 33=-165 (LC 17), 34=-161 (LC 17), 35=-176 (LC 17), 35=-174 (LC 18), 26=-46 (LC 18), 26=-46 (LC 18), 26=-46 (LC 18), 27=-163 (LC 18), 26=-46 (LC 18), 26=-46 (LC 18), 26=-46 (LC 18), 27=-164 (LC 18), 27=-164 (LC 18), 27=-164 (LC 18), 26=-46 (LC 18), 26=-									3,	LOA	AD CASE(S) Stai	ndard	
Max Horiz 1=229 (LC 9), 38=229 (LC 9) 16-23=-124/05, 17-22=-125/61, Max Grav 16-11, 25=-39 Wind: ASCE 7-10; Vult=120mph (3-second gust) Viside esign. Max Grav 1=174 (LC 18), 22=164 (LC 18), 22=164 (LC 18), 25=164 (LC 18), 25=164 (LC 17), 32=161 (LC 17), 35=176 (LC 17), 32=161 (LC 17), 35=176 (LC 17), 34=161 (LC 17), 35=176 (LC 17), 38=174 (LC 18), 25=144 (LC 1														
 Max Uplift 1=-61 (LC 6), 20=-6 (LC 7), 21=-96 (LC 11), 22=-31 (LC 11), 23=-42 (LC 11), 26=-43 (LC 11), 25=-39 (LC 11), 26=-45 (LC 11), 27=-31 (LC 11), 26=-45 (LC 11), 27=-31 (LC 11), 26=-45 (LC 11), 27=-31 (LC 11), 28=-25 (LC 9), 30=-35 (LC 10), 32=-43 (LC 10), 35=-43 (LC 10), 38=-61 (LC 6) Max Grav 1=174 (LC 18), 22=164 (LC 1), 23=164 (LC 18), 22=164 (LC 18), 25=164 (LC 17), 32=161 (LC 17), 33=165 (LC 17), 34=161 (LC 17), 35=176 (LC 17), 34=161 (LC 17), 35=176 (LC 17), 38=174 (LC 17), 37=292 (LC 17), 38=174 (LC 17), 37=292 (LC 17), 38=174 (LC 17), 37=292 (LC 17), 38=174 (LC 18), 37=292 (LC 17), 38=174 (LC 17), 37=292 (LC 17), 38=174 (LC 18), 37=292 (LC 17), 38=174 (LC 17), 37=292 (LC 17), 38=174 (LC 18), 37=292 (LC 17), 38=174 (LC 18), 3														
 (LC 11), 22=-31 (LC 11), 23=-42 (LC 11), 24=-40 (LC 11), 25=-39 (LC 11), 28=-45 (LC 11), 27=-31 (LC 11), 28=-45 (LC 11), 27=-31 (LC 11), 28=-45 (LC 11), 27=-31 (LC 11), 28=-45 (LC 10), 33=-40 (LC 10), 32=-43 (LC 10), 33=-40 (LC 10), 38=-61 (LC 6) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0pst; h=30ft; Cat. II; Exp B; Enclosed: MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 35=176 (LC 17), 36=114 (LC 17), 35=176 (LC 17), 36=114 (LC 17),							17-22=-12	5/61,						
 NOTES 				-42		18-21=-123/87								
				-39 NC										
							ave been (considered for						
														AUTHER
													all all	CAD
													"ath	
									Э				NOT	and All
				· -								<i>a</i>	12:0	N: Y
				D).									:01	Nr.
		21=172	(LC 18), 22=164 (LC	1),								- 5		
				18),										SFAL
												= =		
		27=168	(LC 22), 28=246 (LC	11),									. 0	43325
		30=174	(LC 17), 32=161 (LC	17),								-	1 A 1	1
		33=165	(LC 17), 34=161 (LC						1.			-	1 1 1	- i -
		35=176	(LC 17), 36=114 (LC	· 17), /				d bearing.					- X SAL	OWEFH. S.
		37=292	(LC 17), 38=174 (LC	10) /									1.11	AINE GLY
	FORCES	(lb) - Maximum Co	mpression/Maximum	6)									1, P	1 O'RE I'
					chord live	load nonconcurren	it with any	other live load	s.				111.	
March 4.2020														1111111
													Mar	ch 4,2020

Job	Truss	Truss Type	Qty	Ply	
20-022568T	A02	Common	4	1	T19584291 Job Reference (optional)

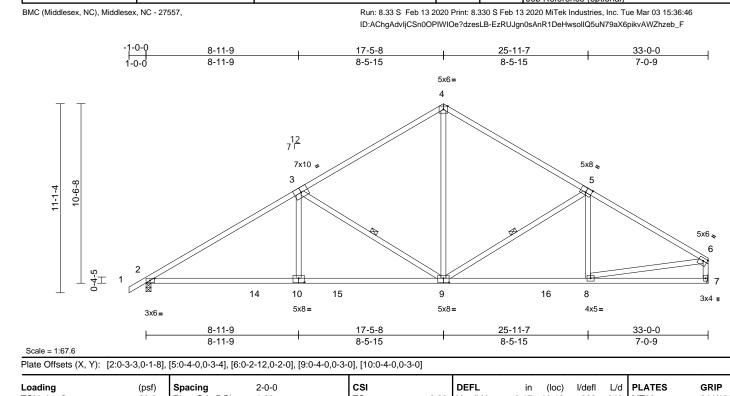
Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Tue Mar 03 15:36:45 ID:AChgAdvljCSn0OPIWIOe?dzesLB-laJku_ImKZXknwUuoRIHD?0YtJSf3CIQGbhPVozeb_H

Page: 1

Scale = 1:66.5

Plate Offsets (X, Y): [1:0-3-3,0-1-8], [4:0-4-0,0-3-4], [5:0-2-12,0-2-0], [8:0-4-0,0-3-0], [9:0-4	4-0,0-3-0]
---	------------

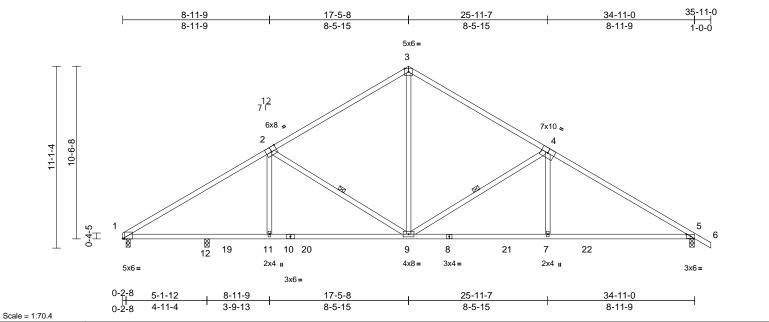
		i					-						
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		тс	0.82	Vert(LL)	0.17	9-12	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.98	Vert(CT)	-0.40	9-12	>993	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.56	Horz(CT)	0.07	6	n/a	n/a		
BCDL	10.0	Code	IRC2015	/TPI2014	Matrix-MS							Weight: 176 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	SP SS *Except* 4-5: 2x4 SP No.2 2x4 SP No.3 *Excep No.2 Structural wood she 2-1-15 oc purlins, e Rigid ceiling directly bracing, Except: 2-2-0 oc bracing: 1-5 1 Row at midpt (size) 1= Mecha	2x4 SP No.2 t* 8-3,8-4,8-2:2x4 Sl athing directly applie xcept end verticals. applied or 10-0-0 or 3. 4-8, 2-8 nical, 6= Mechanica	3) 4 5) 6d or 6) 7)	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Refer to girde Provide medi bearing plate bearing plate 1 and 59 lb u This truss is International	s been designed for d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wil y other members, er(s) for truss to tru- nanical connection capable of withsta plift at joint 6. designed in accord Residential Code stan	vith any for a liv s where I fit betw with BC uss conr (by othe anding 7 dance wissections	other live load e load of 20.0 a rectangle veen the botto DL = 10.0psf. iections. ers) of truss to 3 lb uplift at jo th the 2015 R502.11.1 ar	ipsf om D Dint					
FORCES	Max Horiz 1=229 (LC Max Uplift 1=-73 (LC Max Grav 1=1338 (L (b) - Maximum Com	C 17), 6=-59 (LC 11) C 17), 6=1314 (LC	1)										
TOP CHORD	Tension 1-2=-2159/226, 2-3= 3-4=-1388/236, 4-5= 5-6=-1253/150	,											
BOT CHORD	1-13=-152/1927, 9-1 9-14=-153/1923, 8-1 8-15=-66/1446, 7-15	4=-153/1923,	'118									UN ORTH	CABOLINI
WEBS	3-8=-72/852, 4-8=-5 2-8=-939/216, 2-9=0		,									×	NAL A
NOTES											Ξ		
this desig 2) Wind: AS Vasd=95r II; Exp B; and C-C F exposed ; members	ed roof live loads have n. CE 7-10; Vult=120mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil ; end vertical left and rig and forces & MWFRS JOL=1.60 plate grip DO	(3-second gust) DL=6.0psf; h=30ft; (velope) exterior zon ever left and right ght exposed;C-C for for reactions shown	Cat. e								THE REAL PROPERTY OF THE PROPE	PHILIP	ANNEER CAL


manna March 4,2020

Job	Truss	Truss Type	Qty	Ply	
20-022568T	A02A	Common	2	1	T19584292 Job Reference (optional)

Page: 1

1-5-11


Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) //defl L/d PLAT TCLL (roof) 20.0 Plate Grip DOL 1.00 TC 0.82 Vert(LL) 0.17 10-13 >999 240 MT20	
	0 244/190
TCDL 10.0 Lumber DOL 1.15 BC 0.95 Vert(CT) -0.38 10-13 >999 180	
BCLL 0.0* Rep Stress Incr YES WB 0.56 Horz(CT) 0.07 7 n/a n/a	
BCDL 10.0 Code IRC2015/TPI2014 Matrix-MS Weig	ght: 178 lb FT = 20%
LUMBER 3) This truss has been designed for a 10.0 psf bottom	
TOP CHORD 2x4 SP 1650F 1.5E or 2x4 SP No.1 or 2x4 chord live load nonconcurrent with any other live loads.	
SP SS *Except* 5-6:2x4 SP No.2 4) * This truss has been designed for a live load of 20.0psf	
BOT CHORD 2x4 SP No.2 on the bottom chord in all areas where a rectangle	
WEBS 2x4 SP No.3 *Except* 9-4,9-5,9-3:2x4 SP 3-06-00 tall by 2-00-00 wide will fit between the bottom	
No.2 chord and any other members, with BCDL = 10.0psf.	
BRACING 5) Refer to girder(s) for truss to truss connections.	
TOP CHORD Structural wood sheathing directly applied or 2.2.0 co purities accord and vorticals	
2-2-0 oc punins, except end venicals.	
BOT CHORD Rigid centring directly applied of 10-0-0 oc	
blaching, Except.	
PR02 10 2 and referenced standard ANSI/TEL1	
WEBS 1 Row at midpt 5-9, 3-9 Council and referenced standard ANS//TETT. Defactions (airc) 2.0.3.8.7 Montparing	
REACTIONS (size) $z=0.5-6$, $r=$ mechanical	
Max Horiz 2=237 (LC 9) Max Uplift 2=-89 (LC 10), 7=-59 (LC 11)	
Max Grav $2=-39$ (LC 10), $7=-39$ (LC 11) Max Grav $2=1394$ (LC 17), $7=1313$ (LC 1)	
FORCES (Ib) - Maximum Compression/Maximum	
Tension	
TOP CHORD 1-2=0/30, 2-3=-2154/221, 3-4=-1392/236,	
4-51387/235.5-61757/196.	
6-7=-1252/150	ANNIH DE C
BOT CHORD 2-14=-150/1922, 10-14=-150/1922,	WHILL CAD
10-15=-151/1917, 9-15=-151/1917,	TH TH
9-16=-65/1445, 8-16=-65/1445, 7-8=-28/118	O EFSSI
WEBS 4-9=-70/850, 5-9=-526/186, 5-8=-79/148,	······································
3-9=-934/214, 3-10=0/376, 6-8=-60/1347	.or
NOTES	0541
1) Unbalanced roof live loads have been considered for	SEAL 043325
this design.	043325
2) Wind: ASCE 7-10; Vult=120mph (3-second gust)	
Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone	N
and C-C Exterior (2) zone; cantilever left and right	· ENGLERIZS
exposed ; end vertical left and right exposed;C-C for	MUNGINE GRO
members and forces & MWRS for reactions shown;	INP , OPEN
Lumber DOL=1.60 plate grip DOL=1.33	J. O. WWW
	March 4,2020

onent B18 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	
20-022568T	A03	Common	2	1	T19584293 Job Reference (optional)

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Tue Mar 03 15:36:46 ID:7boRbIwZFpiVFiZhdjQ642zesL9-EzRUJgn0sAnR1DeHwsolIQ5rq79gX8uikvAWZhzeb_F

Page: 1

Plate Offsets (X, Y): [1:0-1-3,Edge], [2:0-4-0,Edge], [5:0-3-3,0-1-8]

		1	-										
Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.15		CSI TC BC	0.99 0.95	Vert(CT)	in 0.16 -0.39	(loc) 7-18 7-18	l/defl >999 >922	240 180	PLATES MT20	GRIP 244/190
BCLL	0.0*	Rep Stress Incr	YES		WB	0.42	Horz(CT)	0.09	5	n/a	n/a		
BCDL	10.0	Code	IRC2018	5/TPI2014	Matrix-MS							Weight: 173 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	1.5E or 2x4 SP No.1 2x4 SP No.2 *Excep 1.5E or 2x4 SP No.1 2x4 SP No.2 *Excep Structural wood shea Rigid ceiling directly bracing, Except: 2-2-0 oc bracing: 5-7 1 Row at midpt	Vasd=95mpH II; Exp B; En and C-C Extt exposed ; en members an Lumber DOL This truss ha chord live los * This truss ha chord live los * This truss ha chord and ar Provide mec bearing plate 1, 92 lb uplift This truss is International	7-10; Vult=120mp n; TCDL=6.0psf; B(closed; MWFRS (e erior (2) zone; cant d vertical left and r d forces & MWFRS =1.60 plate grip D0 is been designed f ad nonconcurrent v as been designed f ad nonconcurrent v as been designed f ad nonconcurrent v as been designed in all areas by 2-00-00 wide will y other members, hanical connection e capable of withsts at joint 5 and 18 lt designed in accord Residential Code s	CDL=6.6 envelope illever lease on the expected of the expected of the expected of the expected of the expected of the expected of the expected of the expected of the expected of the expected of the expected of the expected of the expected of the expected of the expected of the expected of the expected of the expected	Dpsf; $h=30$ ft; exterior zor ff and right loosed; C-C foil loosed; C-C foil lo	ne r n; Opsf om f. to joint							
FORCES	(lb) - Maximum Com Tension	,	LC	AD CASE(S)		uaru An	131/1711.						
TOP CHORD													111111
BOT CHORD	1-12=-125/1859, 12- 11-19=-125/1859, 1(10-20=-126/1857, 9- 8-9=-71/1874, 8-21= 7-21=-71/1874, 7-22 5-22=-72/1869	D-11=-126/1857, 20=-126/1857, 71/1874,										ORTH	CARO
WEBS	2-11=0/263, 2-9=-74 4-9=-942/215, 4-7=0										11111		EAL : :
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for									THILD WAY	PKILIP	13325

NOTES

the man 043325 P J. O' "HILLINN March 4,2020

Job	Truss	Truss Type	Qty	Ply	
20-022568T	A04	Common	3	1	T19584294 Job Reference (optional)

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Tue Mar 03 15:36:47 ID:obxMiTjgXMm6e0pOcf0qkIzej2E-i9_sX0ofdUvIeNDTUZJ_ree3QXUHGaasyZw367zeb_E

Page: 1

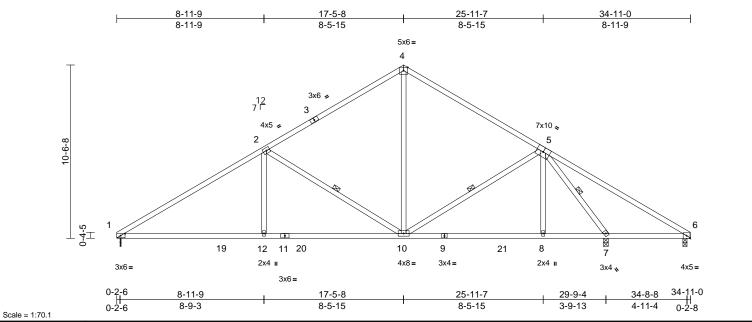
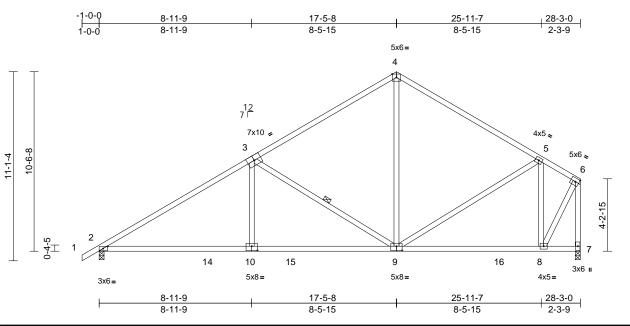


Plate Offsets (X, Y): [1:0-3-3,0-1-8]

		I			i								
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.80	Vert(LL)	0.16	12-18	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.92	Vert(CT)	-0.38	12-18	>951	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.46	Horz(CT)	0.06	7	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 180 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD	2x4 SP 1650F 1.5E SP SS *Except* 3-4: 2x4 SP No.2 2x4 SP No.3 *Except No.2 Structural wood she 2-2-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-0-12, 7=0-38 Max Horiz 1=215 (LC Max Uplift 1=-71 (LC 7=-33 (LC Max Grav 1=1200 (I 7=1536 (I (Ib) - Maximum Corr Tension 1-2=-1871/207, 2-3= 3-4=-976/217, 4-5=-	or 2x4 SP No.1 or 2) 2x4 SP No.2 t* 10-2,10-4,10-5:2x athing directly applie applied or 2-2-0 oc 2-10, 5-10, 5-7 (req. 0-1-8), 6=0-3-(C 9) :10), 6=-45 (LC 11), :11) pression/Maximum :-1122/171, 1122/216, 5-6=-26/4 19=-149/1700, 1-20=-149/1700, 10=-19/767, :-19/767, 7-8=-20/76	2) 4 SP d or 3) 4)), 5) 6) 2), 7) 226 6, 13,	Wind: ASCE Vasd=95mpH II; Exp B; En and C-C Exte exposed ; en members an Lumber DOL This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar WARNING: I than input be Provide mec bearing plate 6, 33 lb uplift This truss is International	7-10; Vult=120mp 7; TCDL=6.0psf; B closed; MWFRS (e erior (2) zone; can Id vertical left and d forces & MWFR =1.60 plate grip D is been designed f ad nonconcurrent b has been designed n chord in all area by 2-00-00 wide win yo other members, Required bearing s earing size. hanical connectior e capable of withst at joint 7 and 71 I designed in accor- Residential Code nd referenced star	CDL=6.0 envelope tilever le right exp S for readout OL=1.33 for a 10.0 with any I for a liv s where II fit betw with BC size at jo n (by oth anding 4 b uplift a dance w sections	Dpsf; h=30ft; (e) exterior zon ft and right ossed;C-C for ctions shown b) psf bottom other live load e load of 20.0 a rectangle veen the bottc DL = 10.0psf int(s) 1 greate ers) of truss tr 5 lb uplift at jo t joint 1. th the 2015 R502.11.1 a	ne ; ds. ppsf om er o pint					
,	ed roof live loads have	been considered for									111	. 02	-5525
this design	n.											D'.EN	RINS
												A YI	SINEE GR
												1, P	O'RENI
												1111	. O'Attin
													LITTLE STATES

March 4,2020


NGI J. O' minumini

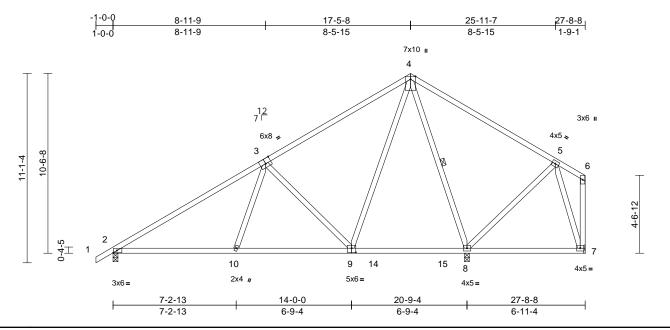
Job	Truss	Truss Type	Qty	Ply	
20-022568T	A05	Roof Special	3	1	T19584295 Job Reference (optional)

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries. Inc. Tue Mar 03 15:36:48 ID:bnMpoexB07rMts8tBRxLcFzesL8-ALYFkMoHOo19GXof1HqDNrABYwr_?1z?BDfdeZzeb_D

Page: 1

Plate Offsets (X, Y): [2:0-3-3,0-1-8], [9:0-4-0,0-3-0], [10:0-4-0,0-3-0]

Scale = 1:67.6


Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in (l	c) l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.91	Vert(LL)	0.16 10	13 >999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.89	Vert(CT) -	0.37 10	13 >923	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.45	Horz(CT)	0.05	7 n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2	014 Matrix-MS						Weight: 163 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	SP SS *Except* 4-6: 2x4 SP No.2 2x4 SP No.3 *Excep No.2 Structural wood she except end verticals Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 7-8 1 Row at midpt	2x4 SP No.2 t* 9-4,9-5,9-3:2x4 SF athing directly applie applied or 10-0-0 oc 3. 3-9 7=0-3-8 C 9) 2 10), 7=-34 (LC 11)	4 chor 4) * Thi on tr 3-06 chor 5) Prov d, 2 and 6) This Inter R802 LOAD C	truss has been designe I live load nonconcurren s truss has been design e bottom chord in all ar 00 tall by 2-00-00 wide d and any other membe de mechanical connect g plate capable of with d 34 lb uplift at joint 7. truss is designed in acc national Residential Coo c.10.2 and referenced s ASE(S) Standard	nt with any ned for a liv eas where will fit betw ers, with BC tion (by oth nstanding 8 cordance wi de sections	other live loads. e load of 20.0ps a rectangle veen the bottom DL = 10.0psf. ers) of truss to 6 lb uplift at join ith the 2015 R502.11.1 and	f				
FORCES	(lb) - Maximum Com Tension	pression/Maximum	,								
TOP CHORD											
BOT CHORD		-14=-152/1612, -15=-153/1607,								NULL ORTH	CABO
WEBS	4-9=-31/521, 5-9=-4 3-9=-937/214, 3-10=	2/358, 5-8=-812/172								J'SON:	STON N'
NOTES									-	- All	N: 1
,	ed roof live loads have	been considered for							-		
Vasd=95n II; Exp B; and C-C E exposed ; members	n. CE 7-10; Vult=120mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (ern Exterior (2) zone; cantil ; end vertical left and riq and forces & MWFRS 0QL=1.60 plate grip DO	DL=6.0psf; h=30ft; C avelope) exterior zone ever left and right ght exposed;C-C for for reactions shown;							THURSE STREET	OZ PARTENO	SEAL 43325 SINEER.GA

818 Soundside Road Edenton, NC 27932

J. O Thin J. Chin March 4,2020

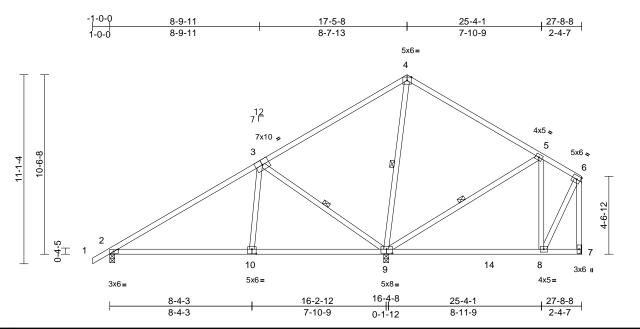
Job	Truss	Truss Type	Qty	Ply	
20-022568T	A06	Roof Special	5	1	T19584296 Job Reference (optional)

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Tue Mar 03 15:36:49 ID:3_wB0_ypnQzDU0j4l8Sa9TzesL7-fY6dxipv9590uhNsb_LSw3jM2KDokQD9QtPAA0zeb_C Page: 1

Scale = 1:67.6

Plate Offsets (X, Y): [2:0-2-9,Edge], [3:0-4-0,Edge], [9:0-3-0,0-3-0]

		1	-									1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.92	Vert(LL)	-0.11	8-9	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.73	Vert(CT)	-0.21	10-13	>999	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.71	Horz(CT)	0.02	7	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS		, ,					Weight: 165 lb	FT = 20%
									-				
LUMBER			3)		is been designed fo								
TOP CHORD	2x4 SP 1650F 1.5E	or 2x4 SP No.1 or 2x	4		ad nonconcurrent w								
	SP SS *Except* 4-6:	2x4 SP No.2	4)		nas been designed			0psf					
BOT CHORD	2x4 SP No.2				n chord in all areas								
WEBS	2x4 SP No.3 *Excep	t* 9-4,8-4:2x4 SP No	.2		by 2-00-00 wide wil								
BRACING					ny other members,			f.					
TOP CHORD	Structural wood shea	athing directly applied	d, 5)		er(s) for truss to tru								
	except end verticals.		6)		hanical connection								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc			e capable of withsta			joint					
	bracing, Except:				at joint 8 and 104								
	6-0-0 oc bracing: 7-8	3.	7)		designed in accord Residential Code			and					
WEBS	1 Row at midpt	4-8			nd referenced stan			anu					
REACTIONS	(size) 2=0-3-8, 7	7= Mechanical, 8=0-3	-8			ualu Ar	ISI/TETT.						
	Max Horiz 2=271 (LC	C 9)	LC	DAD CASE(S)	Standard								
	Max Uplift 2=-65 (LC	; 10), 7=-104 (LC 21)	,										
	8=-84 (LC	; 10)											
	Max Grav 2=814 (LC												
	8=1439 (L	.C 17)											
FORCES	(lb) - Maximum Com	pression/Maximum											
	Tension												
TOP CHORD													
	4-5=-19/365, 5-6=-1	00/157, 6-7=-142/21	5										ATTING.
BOT CHORD												111-14	CARO
	9-14=-83/159, 14-15	i=-83/159, 8-15=-83/	159,									11271	A Children and Chi
	7-8=-80/91											NOV:	No. All
WEBS	3-10=0/332, 3-9=-67												No. 7 -
	4-8=-1060/117, 5-8=	-392/173, 5-7=-314/ [,]	86								2	:01	K
NOTES											-	ORTH ORTH	
,	ed roof live loads have	been considered for									=	: 8	SEAL : E
this desig													13325 🕴 🗄
	CE 7-10; Vult=120mph										-	The SA	+3323
	nph; TCDL=6.0psf; BC										-		1 S S
	Enclosed; MWFRS (en		9								5	· D A.	A:23
	Exterior (2) zone; cantil											1 y NO	SINEF
	; end vertical left and rig and forces & MWFRS											1.410	EON
	OL=1.60 plate grip DO											111.	1. 0'h"
Lumber D		L-1.33										1111	



Job	Truss	Truss Type	Qty	Ply	
20-022568T	A07	Roof Special	5	1	T19584297 Job Reference (optional)

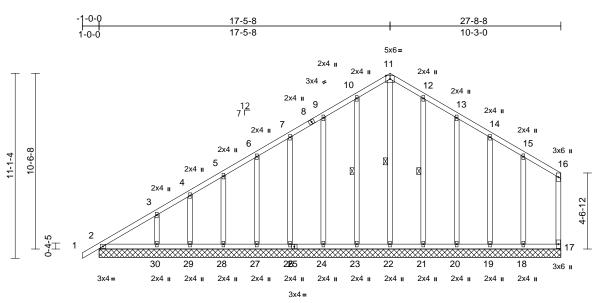
Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Tue Mar 03 15:36:49 ID:3_wB0_ypnQzDU0j4l8Sa9TzesL7-fY6dxipv9590uhNsb_LSw3j07KEkkXU9QtPAA0zeb_C

Page: 1

Plate Offsets (X, Y): [2:0-3-3,0-1-8], [9:0-4-0,0-3-0], [10:0-3-0,0-3-4]

Scale = 1:67.6

				-									
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.79	Vert(LL)	-0.12	8-9	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.67	Vert(CT)	-0.28	10-13	>698	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.31	Horz(CT)	0.01	7	n/a	n/a		
BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-MS							Weight: 163 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP 1650F 1.5E SP SS *Except* 4-6: 2x4 SP No.2 2x4 SP No.3 *Except No.2 Structural wood she 6-0-0 oc purlins, exx Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 7-1 1 Row at midpt	or 2x4 SP No.1 or 2x 2x4 SP No.2 t* 9-3,9-4,5-9:2x4 SF athing directly applie cept end verticals. applied or 10-0-0 oc 3. 3-9, 4-9, 5-9 7= Mechanical, 9=0-5 C 9) (2 0), 7=-25 (LC 11), C 10) C 21), 7=352 (LC 24)	3) 4 4) 5 d or 6) 5 3-8 LO	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Refer to gird Provide mec bearing plate 2, 103 lb upli This truss is International	s been designed f ad nonconcurrent has been designed in chord in all area by 2-00-00 wide wi by other members, er(s) for truss to tri hanical connectior e capable of withst ft at joint 9 and 25 designed in accorr Residential Code nd referenced star	with any for a liv s where ill fit betw with BC uss conr n (by oth anding 4 b lb uplift dance w sections	other live loads e load of 20.0p a rectangle veen the botton DL = 10.0psf. nections. ers) of truss to 3 lb uplift at joi at joint 7. thethe 2015 c R502.11.1 and	n int					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/30, 2-3=-637/ 4-5=-66/241, 5-6=-2											ORTH RTH	CAD
BOT CHORD	2-10=-107/513, 9-10 9-14=-49/189, 8-14=											I''ORTH	2 Anile
WEBS	3-10=0/349, 3-9=-76 5-9=-388/120, 5-8=-		2								-	i ~ fl	NN: A
NOTES											Ξ	1× 1	
this design 2) Wind: ASC Vasd=95m II; Exp B; I and C-C E exposed ; members a	ed roof live loads have n. CE 7-10; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC	(3-second gust) DL=6.0psf; h=30ft; C ivelope) exterior zon ever left and right ght exposed;C-C for for reactions shown;	cat. e								THURSDAY.	OZ NAJENC	SEAL 43325 SINEER. CALINA


Job	Truss	Truss Type	Qty	Ply		
20-022568T	A08	Common Supported Gable	1	1	T19584298 Job Reference (optional)	

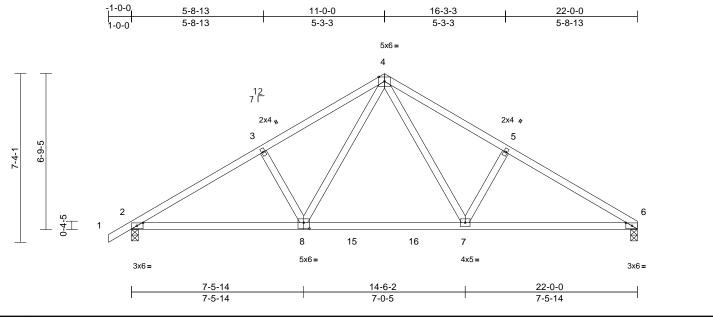
Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Tue Mar 03 15:36:50 ID:XAUZDKzRYk546AIGJszpigzesL6-7kg?92qXwPHtVry29ishTGGjakjAT0BIfX8jiSzeb_B

Page: 1

March 4,2020

818 Soundside Road Edenton, NC 27932

27-8-8


20.0 10.0	Plate Grip DOL Lumber DOL	2-0-0 1.00 1.15		CSI TC BC	0.17	Vert(CT)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
			5/TPI2014	Matrix-MS	0.15	Horz(CT)	0.00	17	n/a	n/a	Weight: 210 lb	FT = 20%
SP No.2 Structural wood s 6-0-0 oc purlins, Rigid ceiling dire- bracing. 1 Row at midpt (size) 2=27-5 19=27 22=27 26=27 22=27 26=27 22=27 26=27 22=27 Max Horiz 2=271 Max Uplift 2=-60 18=-44 20=-44 22=-56 24=-42	heathing directly applie except end verticals. tly applied or 10-0-0 oc 11-22, 10-23, 12-21 -8, 17=27-8-8, 18=27-8 8-8, 20=27-8-8, 21=27- 8-8, 23=27-8-8, 24=27- 8-8, 23=27-8-8, 24=27- 8-8, 30=27-8-8, 24=27- 8-8, 30=27-8-8, 24=27- (LC 9), 31=271 (LC 9) LC 6), 17=-20 (LC 10), (LC 11), 9=-39 (LC 1 (LC 1), 21=-35 (LC 10), (LC 11), 19=-39 (LC 10), (LC 11), 26=-40 (LC 11) (LC 10), 26=-40 (LC 11) (LC 10), 30=-68 (LC 11) (LC 10), 30=-68 (LC 12) (LC 18), 17=93 (LC 18) (LC 18), 17=93 (LC 18) (LC 17), 23=175 (LC 12) (LC 17), 23=175 (LC 12) (LC 17), 28=174 (LC 12) (LC 17), 28=174 (LC 12) (LC 17), 30=275 (LC 12) (LC 17), 30=275 (LC 12)	2:2x4 d or : W -8, 8-8, 8-8, 8-8, 1) 1), 2) 1), 2) 1), 2) 1), 3) 10, 0), 0), 0), 0), 10, 11, 2) 11, 2) 11, 2) 11, 2) 11, 2) 11, 2) 11, 11, 2) 11, 11, 2) 11, 11, 2) 11, 11, 2) 11, 11, 11, 11, 11, 11, 11, 11	DT CHORD EBS Unbalancee this design. Wind: ASC Vasd=95m II; Exp B; E and C-C E: exposed ; e members a Lumber DC Truss desi only. For s see Standa or consult o Gable requ Gable stud This truss f	4-5=-216/194, 5- 7-8=-179/177, 8- 10-11=-229/261, 12-13=-197/224, 14-15=-126/138, 2-30=-53/60, 29- 27-28=-53/60, 20 24-25=-53/60, 20 24-22=-53/60, 20 18-19=-53/60, 20 18-19=-53/60, 20 18-19=-53/60, 20 11-22=-209/125, 9-24=-121/67, 7- 5-28=-129/66, 4- 12-21=-128/59, 1 14-19=-122/60, 1 d roof live loads have the transmitted of the transm	6=-204/18 6=-204/18 11-12=-21 11-12=-22 11-12=-22 11-12=-22 11-12=-23	9, 6-7=-191/18 3, 9-10=-197/2 29/261, 3/1180, 1/98, 16-17=-8, , 28-29=-53/60 0, 25-26=-53/6 0, 25-26=-53/6 0, 19-20=-53/6 0, 19-20=-5	37, 224, 9/70 50, 50, 50, 54, 30, 1. ss le, 1.	bear 2, 2(uplif 26, 4 uplif 21, 4 uplif 21, 4 uplif 9) Beve surfa 10) This Inter R80	ring plat D lb uplif t at joint 40 lb uplif t at joint 41 lb uplit t at joint eled pla ace with truss is rnationa 2.10.2 a ASE(S)	e capa it at join 23, 43 lift at join 29, 68 lift at join 18 an truss design I Resign I Resign I Resign Star	ble of withstand nt 17, 50 lb uplift 3 lb uplift at joint joint 27, 43 lb upl 3 lb uplift at joint joint 20, 39 lb upl d 60 lb uplift at j him required to j chord at joint(s) ned in accordan Jential Code sec erenced standar ndard	ing 60 lb uplift at joint at joint 22, 36 lb 24, 40 lb uplift at joint iff at joint 28, 30 lb 30, 35 lb uplift at joint iff at joint 19, 48 lb oint 2. orovide full bearing 2, 31. ce with the 2015 tions R502.11.1 and d ANSI/TPI 1.
()	20.0 10.0 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood s 6-0-0 oc purlins, Rigid ceiling director bracing. 1 Row at midpt size) 2=27- 26=27- 29=27- Max Horiz 2=271 Max Uplift 2=60 18=-48 20=-44 22=-50 24=-43 27=-40 29=-30 31=-60 Max Grav 2=229 18=188 20=166 22=188 24=161 27=161 29=121 31=225	20.0 Piate Grip DOL 10.0 Lumber DOL 0.0* Rep Stress Incr 10.0 Code 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 *Except* 22-11,23-10,21-12 SP No.2 Structural wood sheathing directly applie 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 11-22, 10-23, 12-21 size) 2=27-8-8, 17=27-8-8, 18=27-2 19=27-8-8, 20=27-8-8, 24=27 26=27-8-8, 23=27-8-8, 24=27 29=27-8-8, 30=27-8-8, 31=27 26=27-8-8, 30=27-8-8, 31=27 29=27-8-8, 30=27-8-8, 31=27 26=27-8-8, 30=27-8-8, 31=27 29=27-8-8, 30=27-8-8, 31=27 29=27-8-8, 30=27-8-8, 31=27 Ax Uplift 2=-60 (LC 6), 17=-20 (LC 10), 18=-48 (LC 11), 19=-39 (LC 11) 20=-44 (LC 11), 21=-35 (LC 10) 24=-43 (LC 11), 24=-43 (LC 11) 20=-44 (LC 10), 28=-43 (LC 11) 29=-30 (LC 10), 30=-68 (LC 12) 21=-60 (LC 6) 11=-29-30 (LC 18) Max Grav 2=229 (LC 18), 17=93 (LC 18) 18=189 (LC 18), 19=157 (LC 2) 20=166 (LC 18), 21=168 (LC 2) 22=189 (LC 17), 23=175 (LC 2) 24=161 (LC 17	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20.0 Plate Grip DOL 1.00 TC 0.17 Vert(LL) n/a - n/a 999 10.0 Lumber DOL 1.15 BC 0.08 Vert(CT) n/a - n/a 999 10.0 Code IRC2015/TPI2014 Matrix-MS Vert(CT) n/a - n/a 999 2x4 SP No.2 Code IRC2015/TPI2014 Matrix-MS No 17 n/a n/a 999 2x4 SP No.2 TOP CHORD 1-2e/30, 2-3=-254/226, 3-4=-231/193, 4-56=-204/189, 6-7=-191/187, 2-29/261, 11-12=-23/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 12-24=-53/60, 12-24=-53/60, 12-24=-53/60, 12-24=-53/60, 12-24=-53/60, 12-24=-53/60, 12-24=-53/60, 12-24=-53/60, 12-24=-53/60, 12-24=-53/60, 12-24=-53/60, 12-24=-53/60, 22-22-23-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60, 22-23=-53/60,	20.0 Plate Grp DOL 1.00 TC 0.17 Vert(L1) n/a n/a 999 MT20 10.0 Rep Stress Incr YES WB 0.15 BC 0.00 Vert(C1) n/a n/a 999 Mt20 2x4 SP No.2 TOP CHORD 1-2e/030, 2-3=-254/226, 3-4=-231/193, 4-5=-216/194, 5-6=-204/189, 6-7=-191/187, 7-8=-197/224, 13-14=-161/183, 9-10=-197/224, 13-14=-161/180, 10=-197/24, 13-14=-161/180, 10=-197/24, 10=-197/24, 13-14=-161/180, 10=-197/24, 10=-197/24, 10=-197/24, 10=-197/24, 10=-197/24, 10=-197/24, 10=-197/24, 10=-197/24, 10=-197/24, 10=-177/24, 10=-177/24, 10=-177/24, 10=-177/24, 10=-177/24, 10=-177/24, 10=-177/24, 10=-177/24, 10=-177/24, 10=-177/24, 10=-177

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	
20-022568T	B01	Roof Special	1	1	T19584299 Job Reference (optional)

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries. Inc. Tue Mar 03 15:36:52 ID:XAUZDKzRYk546AIGJszpigzesL6-37olaksnR0Xbl85RG6v9YhL?HYl8xugb6rdqnLzeb_9

Page: 1

Plate Offsets (X, Y): [2:0-3-3,0-1-8], [6:0-3-3,0-1-8], [8:0-3-0,0-3-0]

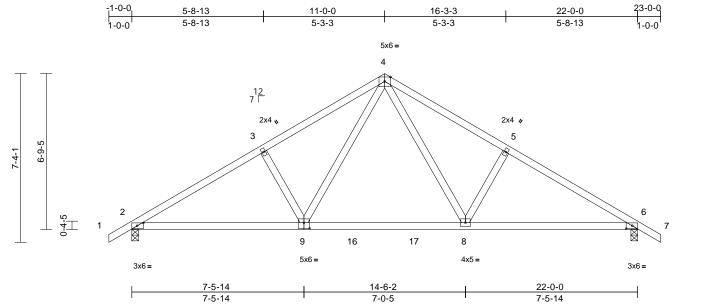
Scale = 1:50.1

			_		-								
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		тс	0.41	Vert(LL)	-0.10	7-8	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.56	Vert(CT)	-0.17	7-11	>999	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.21	Horz(CT)	0.03	6	n/a	n/a		
BCDL	10.0	Code	IRC2015	/TPI2014	Matrix-MS							Weight: 104 lb	FT = 20%
LUMBER			5)	Provide mec	hanical connection	n (by oth	ers) of truss	to					
TOP CHORD	2x4 SP No.2				e capable of withst	tanding 4	5 lb uplift at	joint					
BOT CHORD	2x4 SP No.2				iplift at joint 2.								
WEBS	2x4 SP No.3		6)		designed in accor								
BRACING					Residential Code			and					
TOP CHORD	 Structural wood sheat 4-6-10 oc purlins. 	athing directly applie		AD CASE(S)	nd referenced star Standard	ndard AN	ISI/TPI 1.						
BOT CHORD	 Rigid ceiling directly bracing. 	applied or 10-0-0 or	0										
REACTIONS	()												
	Max Horiz 2=143 (LC												
	Max Uplift 2=-62 (LC	,, , , ,											
	Max Grav 2=941 (LC	,. ,											
FORCES	(Ib) - Maximum Com	pression/Maximum											
TOP CHORD	Tension 1-2=0/30, 2-3=-1371	14EC 2 4 4000/400	n										
TOP CHORD	4-5=-1243/196, 5-6=		Ζ,										
BOT CHORD			1										
bor onorid	7-16=0/769, 6-7=-71		,										
WEBS	4-7=-72/571, 5-7=-3		3,										
	3-8=-330/162	,	,										
NOTES												ORTH RORTH	IIIIIII.
	ced roof live loads have	been considered for	r									11114	CARO
this desig	jn.											" ATT	Mall'
	CE 7-10; Vult=120mph											NO SEF	AN IN
	mph; TCDL=6.0psf; BC											2.00	V3.7:
	Enclosed; MWFRS (en		ie									:2	K: -
	Exterior (2) zone; cantil	0									-		SEAL : :
	; end vertical left and rig and forces & MWFRS										=	: .	• •
	DOL=1.60 plate grip DO		,								1	: 04	3325 : =
	s has been designed for										THE DESCRIPTION OF THE PROPERTY OF THE PROPERT		1 3
	e load nonconcurrent wi		ds.								-	A	1.163
	ss has been designed f											· · · · · · · · · · · ·	WEER SS
	ottom chord in all areas		1									1.11	TINE Gro
	all by 2-00-00 wide will		om									"ILIP	O'RE.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

818 Soundside Road Edenton, NC 27932

J. O' "inninini


March 4,2020

1/1p

Job	Truss	Truss Type	Qty	Ply	
20-022568T	B02	Common	6	1	T19584300 Job Reference (optional)

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries. Inc. Tue Mar 03 15:36:52 ID:XAUZDKzRYk546AIGJszpigzesL6-37olaksnR0Xbl85RG6v9YhL?QYICxujb6rdqnLzeb_9

Page: 1

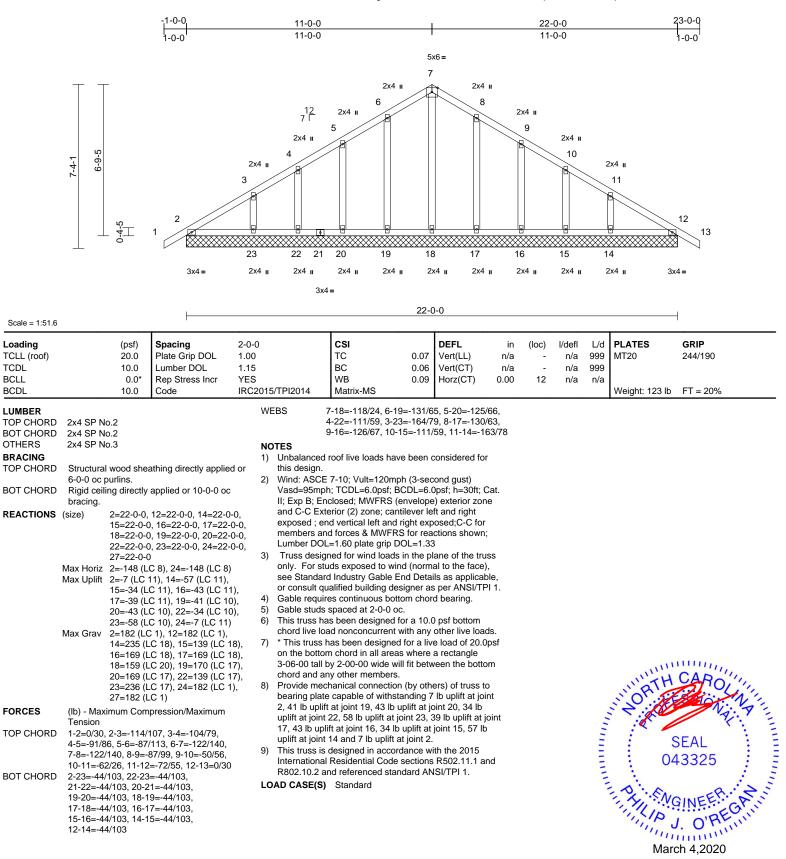
Scale = 1:50.1

Plate Offsets (X, Y): [2:0-3-3,0-1-8], [6:0-3-3,0-1-8], [9:0-3-0,0-3-0]

	(, .). [=	[0.0 0 0,0 . 0],[0.0	;]									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.40	Vert(LL)	-0.10	8-9	>999	240		244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.55	Vert(CT)	-0.17	8-15	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.21	Horz(CT)	0.03	6	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI20	14 Matrix-MS							Weight: 106 lb	FT = 20%
				de mechanical connecti ng plate capable of with								
TOP CHORD BOT CHORD				62 lb uplift at joint 6.	istanuning u	iz ib upilit at j	onn					
WEBS	2x4 SP No.3			russ is designed in acc	ordance w	ith the 2015						
BRACING	274 01 110.0			ational Residential Coc			and					
TOP CHORD	Structural wood she	athing directly appli	ed or R802	.10.2 and referenced st	andard AN	ISI/TPI 1.						
	4-7-5 oc purlins.	atiling directly applied		ASE(S) Standard								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o		- (-)								
DE LOTIONO	bracing.											
REACTIONS	· · · ·											
	Max Horiz 2=-148 (L Max Uplift 2=-62 (LC											
	Max Grav 2=940 (LC	,, , , ,										
FORCES	(lb) - Maximum Com	,, ()										
	Tension											
TOP CHORD	1-2=0/30, 2-3=-1368 4-5=-1236/190, 5-6=	,	,									
BOT CHORD	2-9=-90/1201, 9-16= 8-17=0/773, 6-8=-37		3,									
WEBS	4-8=-69/564, 5-8=-3		1									
WEBO	3-9=-329/162	00/102, 4 0= 00/00-	τ,								ORTH RTH	
NOTES												1111111
,	ed roof live loads have	been considered fo	r								"TH	CARO
this design		(0									NOR	Siller In'l
	CE 7-10; Vult=120mph		Cat								S.S. int	PON: V
	nph; TCDL=6.0psf; BC Enclosed; MWFRS (en									-	:2	1.
	Exterior (2) zone; cantil									-	:210	
	end vertical left and right											SEAL :
	and forces & MWFRS											•
Lumber D	OL=1.60 plate grip DO	L=1.33								1	: 04	43325 :
	has been designed for									-		
	load nonconcurrent wi									the state of the s	· D A.	ais
,	ss has been designed f		Opsf								S. S.N.	SINEE
	ttom chord in all areas										11.410	SEO.N
	all by 2-00-00 wide will I any other members, w										111.	J. O'RE
choru and	any other members, v										1111	mann
											Mar	ch 4 2020

March 4,2020

Job	Truss	Truss Type	Qty	Ply	
20-022568T	B03	Common Supported Gable	1	1	T19584301 Job Reference (optional)

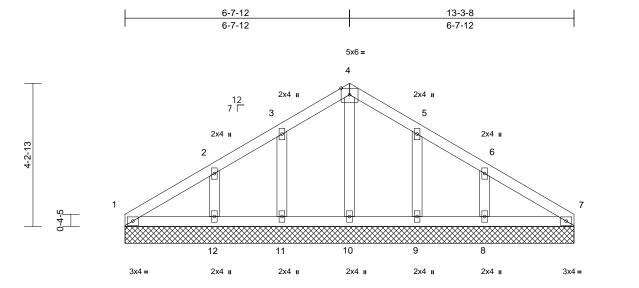

TCDI

BCLL

BCDL

Run: 8.33 S. Feb 13 2020 Print: 8.330 S. Feb 13 2020 MiTek Industries. Inc. Tue Mar 03 15:36:54 ID:?M2xRg_3J2DxkJsSsZU2EuzesL5-?VwW?Pt2zenJ_SFpOXxdd6QQ2L5QPq1uZ96xsDzeb_7

Page: 1


Job	Truss	Truss Type	Qty	Ply	
20-022568T	C01	Common Supported Gable	1	1	T19584302 Job Reference (optional)

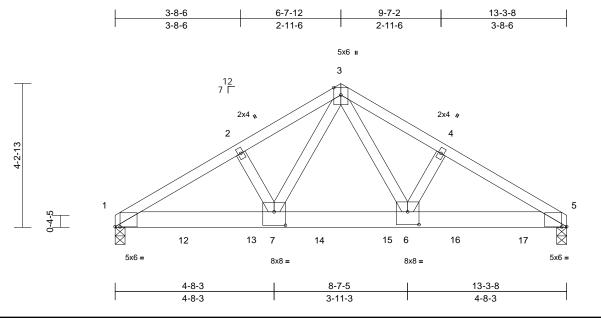
Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Tue Mar 03 15:36:55 ID:?M2xRg_3J2DxkJsSsZU2EuzesL5-ThTuClugkxvAccq0xFSsAKzbwlQY8IH1opsUOfzeb_6

Page: 1

March 4,2020

818 Soundside Road Edenton, NC 27932

13-3-8


Scale = 1:34.1

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.00		TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.07	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	7	n/a	n/a		
BCDL		10.0	Code	IRC2	015/TPI2014	Matrix-MS	-						Weight: 60 lb	FT = 20%
LUMBER					3) Truss desig	ned for wind loads	s in the p	ane of the trus	s					
TOP CHORD						uds exposed to wi								
BOT CHORD						d Industry Gable I								
OTHERS	2x4 SP No.	.3				alified building de es continuous bot			11.					
BRACING					/	spaced at 2-0-0 c		u bearing.						
TOP CHORD	6-0-0 oc pu		athing directly applie	u 01		is been designed) psf bottom						
BOT CHORD			applied or 10-0-0 oc			ad nonconcurrent			s.					
DOT CHORD	bracing.	guiecay				nas been designe			osf					
REACTIONS	0	1=13-3-8,	7=13-3-8, 8=13-3-8	,		n chord in all area			m					
	Ì Í	9=13-3-8,	10=13-3-8, 11=13-3	-8,		by 2-00-00 wide w by other members		veen me bottor						
			8, 13=13-3-8, 17=13-	3-8		hanical connectio		ers) of truss to	,					
		· ·	6), 13=-82 (LC 6)			e capable of withs								
			11), 8=-57 (LC 11), 9 1=-38 (LC 10), 12=-			t at joint 11, 57 lb								
			3=-2 (LC 11)	57	at joint 9, 57	lb uplift at joint 8	and 2 lb i	uplift at joint 1.						
			18), 7=98 (LC 1), 8=	226	 This truss is 	designed in accor	donoow	ith the 2015						
			=151 (LC 18), 10=13			Residential Code			h					
	`	. ,,	=151 (LC 17), 12=22			nd referenced sta			iu ii					
			3=99 (LC 18), 17=98	B (LC	LOAD CASE(S)	Standard								
		1)			()									
FORCES	(lb) - Maxin Tension	num Com	pression/Maximum										DHILL A	
TOP CHORD			54, 3-4=-84/79,											CADIN
DOTOUCSE			/36, 6-7=-51/33										"TH	UAROLI
BOT CHORD			-24/54, 10-11=-24/5 4/54, 7-8=-24/54	4,									NON D	In Init
WEBS		,	4/54, 7-8=-24/54 23/65, 2-12=-153/74									6		Ni. Y'
WED3	4-10=-90/0 5-9=-122/6			,								2		V 74: 1
NOTES	5 0 .LL/0	.,										-	10	SEAL 43325 GINEER
	ed roof live lo	ads have	been considered for									Ξ		SEAL
this desig												=	: 04	43325
			(3-second gust)									=		1
			DL=6.0psf; h=30ft; C									-		- 1 - 1 - 1
			velope) exterior zon	е									- X . EN	CINEER. S
			ever left and right ht exposed;C-C for										1.11	AINE GLY
			for reactions shown;										ITP.	1 O'REIN
	OL=1.60 plate												1111	J. O'RE
		51											Mor	rah 4.2020

Job	Truss	Truss Type	Qty	Ply	
20-022568T	C02	Common Girder	1	2	T19584303 Job Reference (optional)

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Tue Mar 03 15:36:56 ID:?M2xRg_3J2DxkJsSsZU2EuzesL5-xu1GP5vIVF11EmPCVyz5iXVfp9f1tZuB1Tb2w6zeb_5

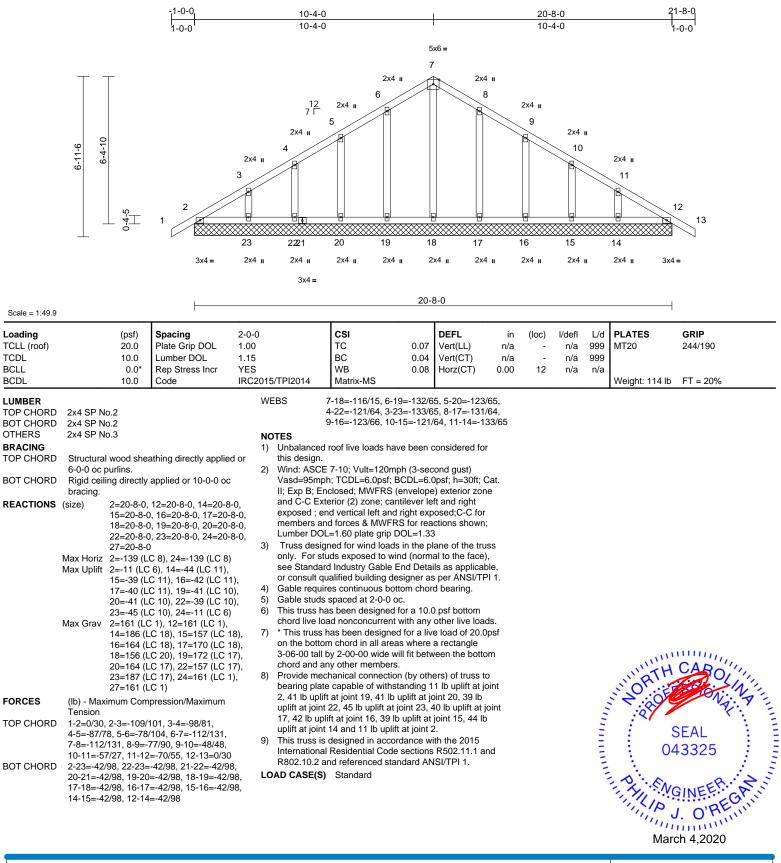
Page: 1

Scale = 1:33.9

unless otherwise indicated.

Plate Offsets (X, Y): [1:0-1-12,0-0-1], [5:0-1-12,0-0-1], [6:0-4-0,0-4-8], [7:0-4-0,0-4-12]

						-							
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.57	· · /	-0.07	6-11	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.56	Vert(CT)	-0.14	6-11	>999	180		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.77	Horz(CT)	0.03	5	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 144 lb	FT = 20%
LUMBER TOP CHORI BOT CHORI WEBS BRACING TOP CHORI BOT CHORI REACTIONS	 D 2x6 SP 2400F 2.0E of SP M 31 2x4 SP No.3 D Structural wood sheat 4-1-5 oc purlins. D Rigid ceiling directly bracing. 	athing directly applie applied or 10-0-0 oc 5=0-3-8 23) C 8), 5=-254 (LC 9)	d or 5) : 6) 7)	this design. Wind: ASCE Vasd=95mpJ II; Exp B; En cantilever lef right expose This truss ha chord live loa * This truss h chord live loa * This truss b on the bottor 3-06-00 tall b chord and ar Provide mec	roof live loads ha 7-10; Vult=120n 1; TCDL=6.0psf; closed; MWFRS t and right exposed; t umber DOL= is been designed ad nonconcurren has been designed n chord in all are by 2-00-00 wide e hanical connecti- ie capable of with-	nph (3-sec BCDL=6.((envelope sed; end v 1.60 plate d for a 10.(t with any ed for a liv eas where will fit betw s. on (by othe	ond gust))psf; h=30ft;) exterior zo ertical left ar grip DOL=1) psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss	Cat. ne; nd .33 ads. 0psf com to					
FORCES	(lb) - Maximum Com	pression/Maximum		joint 1 and 2	54 lb uplift at join	nt 5.							
TOP CHORI	3-4=-6737/405, 4-5=	-6810/382	8) 9)	International R802.10.2 a	designed in acco Residential Cod nd referenced sta other connection	e sections andard AN	R502.11.1 a ISI/TPI 1.	and					
WEBS	7-13=-336/5808, 7-1 14-15=-191/4078, 6- 6-16=-285/5892, 16- 5-17=-285/5892 3-7=-225/3584, 3-6= 2-7=-223/95	4=-191/4078, 15=-191/4078, 17=-285/5892,	-,	provided suf lb down and up at 4-0-12 1294 lb down and 79 lb up	icient to support 79 lb up at 2-0- , 1294 lb down a n and 79 lb up at at 10-0-12, and n bottom chord.	concentra 12, 1294 ll and 79 lb u : 8-0-12, a 1293 lb d	ited load(s) o down and p at 6-0-12 nd 1293 lb c own and 79	79 lb Jown lb up				NUMBER OF	CAPOL
NOTES				such connec	tion device(s) is	the respor	sibility of ot	hers.			0		N: Y'
 2-ply tru (0.131"x Top cho oc. Bottom o stagger Web cor All loads except if CASE(S 	ss to be connected toget (3") nails as follows: rds connected as follows: chords connected as follows chords connected as follows: 2x4 - s are considered equally i noted as front (F) or bac) section. Ply to ply conn d to distribute only loads	:: 2x4 - 1 row at 0-9- ows: 2x6 - 3 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO tections have been	1) 0	Plate Increa Uniform Lo Vert: 1-3 Concentrat Vert: 12=	of Live (balanced ase=1.00	-5=-20 1294 (B), 1	4=-1294 (B)				"THILLING"	OZ SHILIN	SEAL 43325 SINEER CAL

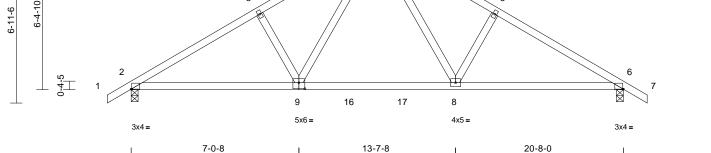

munni March 4,2020

Job	Truss	Truss Type	Qty	Ply	
20-022568T	C03	Common Supported Gable	1	1	T19584304 Job Reference (optional)

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Tue Mar 03 15:36:58 ID:TZcKe0_h4LLoLTReQH0Hn5zesL4-uG91qnwY1sIIT3ZadN0Znyb67yThLeDTUn49?_zeb_3

Page: 1

Job		Truss	Truss Type	Qty	Ply		
20-022568	Т	C04	Common	4	1	Job Reference (optional)	T19584305


Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Tue Mar 03 15:36:58 ID:TZcKe0_h4LLoLTReQH0Hn5zesL4-uG91qnwY1sIIT3ZadN0Znyb2jyMZLcQTUn49?_zeb_3

21-8-0 1-0-0

7-0-8

Page: 1

5-4-13 10-4-0 15-3-3 20-8-0 5-4-13 4-11-3 4-11-3 5-4-13 5x6 = 4 12 2x4 🎣 2x4 🗸 3 5

6-6-15

Scale = 1:48.4

Plate Offsets (X, Y): [2:0-0-5,Edge], [6:0-0-5,Edge], [9:0-3-0,0-3-0]

7-0-8

-1-0-0 1-0-0

	(/(, 1): [2:0 0 0,Edg0],	[0.0 0 0,Eugo], [0.0	0 0 0,0 0 0]		-							
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.35	Vert(LL)	-0.07	8 -9	>999		MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.49	Vert(CT)	-0.13	9-12	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.20	Horz(CT)	0.03	6	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 100 lb	FT = 20%
LUMBER			5) Provide	mechanical connecti	ion (by oth	ers) of truss t	0					
TOP CHORD	2x4 SP No.2			plate capable of with	standing 5	9 lb uplift at j	oint					
BOT CHORD				9 lb uplift at joint 6.								
WEBS	2x4 SP No.3			ss is designed in acc								
BRACING				ional Residential Cod			ind					
TOP CHORD		athing directly appli	ed of	0.2 and referenced st	andard AN	SI/TPI 1.						
	4-10-3 oc purlins.			E(S) Standard								
BOT CHORD		applied or 10-0-0 o	C									
DEADTIONO	bracing.											
REACTIONS	()											
	Max Horiz 2=-139 (L	,										
	Max Uplift 2=-59 (LC Max Grav 2=887 (LC											
FORCES	(lb) - Maximum Com	,, , ,										
FURGES	Tension	pression/maximum										
TOP CHORD		/143 3-4=-1157/17	7									
	4-5=-1157/177, 5-6=											
BOT CHORD	2-9=-83/1117, 9-16=	0/721, 16-17=0/721	1,									
	8-17=0/721, 6-8=-32	/1069										
WEBS	4-8=-65/522, 5-8=-3	08/152, 4-9=-64/522	2,									
	3-9=-308/152										UNIT ORTH	
NOTES											, un	
,	ced roof live loads have	been considered fo	or								N'TH	CARO
this desig		(2)									NR	Chin Soll
	SCE 7-10; Vult=120mph mph; TCDL=6.0psf; BC		Cat								Sa il	Ni. Vi.
	; Enclosed; MWFRS (en									-	· · ·	7: 1
	Exterior (2) zone; cantil									-	:1	N 1
	; end vertical left and rig		r							=		SEAL :
	and forces & MWFRS									- E	•	
	DOL=1.60 plate grip DO									1	•	13325 :
3) This truss	s has been designed for	a 10.0 psf bottom								11	- N.	SEAL 13325
chord live	e load nonconcurrent wi	th any other live loa	ids.							-	A	

chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

818 Soundside Road Edenton, NC 27932

J. O Thuman V

March 4,2020

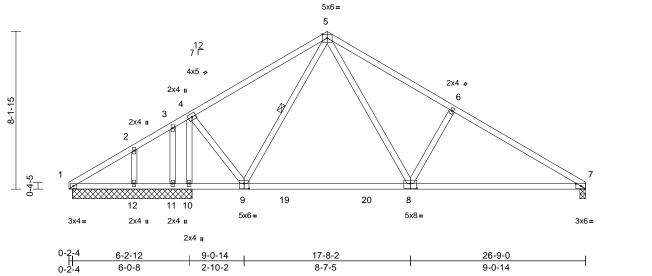
KIP

Job	Truss	Truss Type	Qty	Ply	
20-022568T	C05	Common	1	1	T19584306 Job Reference (optional)

13-4-8

7-1-12

BMC (Middlesex, NC), Middlesex, NC - 27557,


Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries. Inc. Tue Mar 03 15:36:59 ID:TZcKe0_h4LLoLTReQH0Hn5zesL4-MTjP27xAoAQb5D8nA5XoKA78kMdK41odjRqiXRzeb_2

19-9-15

6-5-7

Page: 1

26-9-0 6-11-1 2x4 🎣 6

Scale = 1:59.7

Plate Offsets (X, Y): [7:0-3-3,0-1-8], [8:0-4-0,0-3-0], [9:0-3-0,0-3-4]

6-2-12

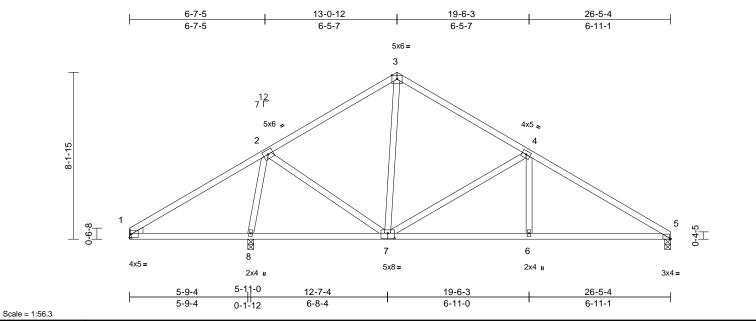
6-2-12

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.65 0.78 0.38	Vert(CT)	in -0.20 -0.30 0.01	(loc) 8-9 8-18 7	l/defl >999 >813 n/a		PLATES MT20 Weight: 137 lb	GRIP 244/190 FT = 20%
	2x4 SP No.3 Structural wood she 4-6-12 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 1=6-2-4, 11=6-2-4 Max Horiz 1=-164 (I Max Uplift 1=-29 (Ld 10=-222 12=-81 (I Max Grav 1=96 (LC 10=1277	(LC 10), 11=-275 (LC LC 10), 13=-29 (LC 24	d or 3) 4) 5) 6) 21),) 0), 7)	Vasd=95mpl II; Exp B; En and C-C Ext exposed ; er members an Lumber DOL Truss desig only. For stu see Standar or consult qu Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate	7-10; Vult=120mp h; TCDL=6.0psf; Br closed; MWFRS (e erior (2) zone; cant d vertical left and r d forces & MWFRS =1.60 plate grip D ned for wind loads uds exposed to win d Industry Gable Er jalified building des spaced at 2-0-0 oc as been designed fead nonconcurrent v has been designed m chord in all areas by 2-00-00 wide will ny other members, hanical connectione e capable of withsta t at joint 7, 222 lb u	CDL=6.6 nvelope ilever le right exp S for read OL=1.33 in the pl d (norm nd Deta signer as c tor a 10.0 vith any for a liv s where I fit betw with BC (by oth anding 2	Dpsf; h=30ft;) exterior zor ft and right osed;C-C for ctions shown ane of the tru al to the face Is as applica per ANSI/TI 0 psf bottom other live load e load of 20.0 a rectangle even the bottt DL = 10.0psf 9 lb uplift at j	ne r, ;), ble, PI 1. Dpsf om f. to ion					
FORCES	Tension	npression/Maximum		joint 1.	11, 81 lb uplift at jo			't at					
TOP CHORD BOT CHORD	4-5=-460/122, 5-6= 1-12=-193/104, 11- 10-11=-193/104, 9-	13/181, 3-4=-63/333, -1017/183, 6-7=-1152/ 12=-193/104, 10=-193/104, 9-19=0/4 -0/476, 7-8=-41/939	470	International	designed in accord Residential Code nd referenced stan Standard	sections	R502.11.1 a	and				NUMBER OF THE	CARO
WEBS	,	408/201, 5-9=-382/47,									11	R	<

NOTES 1) Unbalanced roof live loads have been considered for this design.

2-12=-190/99

4-9=0/693, 4-10=-1325/214, 3-11=-162/274,


THILL WANTER SEAL 043325 P J. O'P "minimus March 4,2020

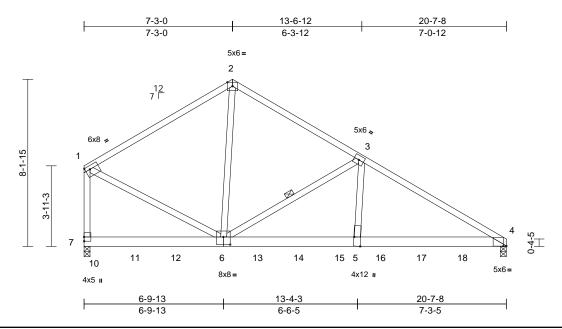
Job	Truss	Truss Type	Qty	Ply	
20-022568T	C06	Roof Special	3	1	T19584307 Job Reference (optional)

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Tue Mar 03 15:37:00 ID:AChgAdvIjCSn0OPIWIOe?dzesLB-qfHnFTyoZUYSiNjzko21tNgKNm?kpNumy5ZF3tzeb_1

Page: 1

Plate Offsets (X, Y): [5:0-0-9,Edge], [7:0-4-0,0-3-0]

	(, .). [[
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.60	Vert(LL)		6-14	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.58	Vert(CT)	-0.14	6-14	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.77	Horz(CT)	0.02	5	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 131 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood shee 4-6-1 oc purlins. Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 1-8 	athing directly applie applied or 10-0-0 or 3. nical, 5=0-3-8, 8=0- C 6) : 10), 5=-62 (LC 11) : 10) : 221), 5=820 (LC 1),	 4) * This tr on the b 3-06-00 chord at 5) Refer to 6) Provide bearing 1, 62 lb c 7) This true Internat R802.10 -3-8 	uss has been design ottom chord in all are tall by 2-00-00 wide d any other member girder(s) for truss to mechanical connecti plate capable of with uplift at joint 5 and 13 ss is designed in acco onal Residential Cod 0.2 and referenced st E(S) Standard	eas where will fit betw rs. truss conr ion (by oth standing 4 3 lb uplift a ordance wi le sections	a rectangle veen the botto nections. ers) of truss t 3 lb uplift at j t joint 8. ith the 2015 R502.11.1 a	om to joint					
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD	Tension 1-2=-223/160, 2-3=-(4-5=-1255/157	687/165, 3-4=-671/1	163,									
BOT CHORD		108/292, 6-7=-56/10)15,								DE TRANSPORT	CAD
WEBS	2-8=-911/122, 2-7=0 4-7=-637/165, 4-6=0	, ,									UN RTH	
NOTES										<i>i</i>		Vi. 7 -
1) Unbalanc	ced roof live loads have	been considered fo	r							2		X: 3
this desig										-	10	
	SCE 7-10; Vult=120mph		a <i>i</i>							-	- ÷ - \$	SEAL :
	mph; TCDL=6.0psf; BC ; Enclosed; MWFRS (en									=	: 04	SEAL 43325 GINEER CALL
	Exterior (2) zone; cantile									=	· · ·	· · ·
	; end vertical left and ric									-		
	and forces & MWFRS									- 1	- SAL	THER. SS
	DOL=1.60 plate grip DO										111	AINER GRO
	s has been designed for e load nonconcurrent wit		ds.									J. O'RE
											Mar	ch 4 2020



March 4,2020

Job	Truss	Truss Type	Qty	Ply	
20-022568T	C07	Roof Special Girder	1	1	T19584308 Job Reference (optional)

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Tue Mar 03 15:37:00 ID:xlAirM?JrfTfzd0r_XWJJzesL3-qfHnFTyoZUYSiNjzko21tNgEEm_EpPWmy5ZF3tzeb_1

Page: 1

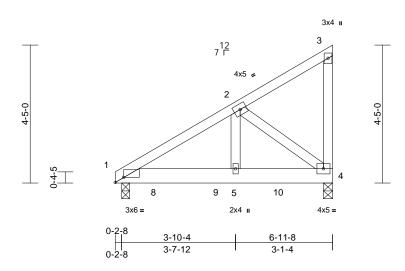
Scale = 1:56.3

Plate Offsets (X, Y): [1:0-2-12,0-2-0], [4:0-1-12,0-0-1], [6:0-4-0,0-4-8]

												1	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		тс	0.99	Vert(LL)	-0.16	5-9	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.67	Vert(CT)	-0.28	5-9	>894	180		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.67	Horz(CT)	0.03	4	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 128 lb	FT = 20%
LUMBER			4)	* This trues b	as been designed	for a liv	a load of 20 (Opef					
TOP CHORD	2x4 SP 1650E 1 5E	or 2x4 SP No.1 or 2x	'		n chord in all areas			000					
	SP SS *Except* 2-4:		-		y 2-00-00 wide will			om					
BOT CHORD					y other members.								
	2.0E or 2x6 SP DSS		5)	Provide mec	hanical connection	(by oth	ers) of truss t	to					
WEBS	2x4 SP No.3				capable of withsta		33 lb uplift at	t					
BRACING					62 lb uplift at joint 7								
TOP CHORD	Structural wood she	athing directly applied	d. 6)		designed in accord								
	except end verticals				Residential Code s			and					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc			nd referenced stand								
	bracing.		7)		other connection d icient to support co			26					
WEBS	1 Row at midpt	3-6			110 lb up at 0-6-12								
REACTIONS	(size) 4=0-3-8, 7	7=0-3-8			12, 136 lb down an								
	Max Horiz 7=-204 (L	.C 4)			and 110 lb up at 6								
	Max Uplift 4=-233 (L	<i>,, , , , , , , , , ,</i>			8-6-12, 332 lb dow								
	Max Grav 4=2127 (L	_C 1), 7=1838 (LC 1)			lb down and 45 lb			lb					
FORCES	(lb) - Maximum Com	pression/Maximum		down and 45	Ib up at 14-6-12, a	and 332	lb down and	d 45					
	Tension				5-12, and 332 lb do								
TOP CHORD					ottom chord. The o			uch					
	3-4=-3177/380, 1-7=				evice(s) is the resp								
BOT CHORD			8)		CASE(S) section, I			face					
	11-12=-140/197, 6-1	,			re noted as front (F	-) or ba	ck (B).						
	6-13=-246/2781, 13- 14-15=-246/2781, 5-			DAD CASE(S)								"TH	CAPO
	5-16=-242/2697, 16-		1)		of Live (balanced): I	Lumber	Increase=1.	15,				N'R'	· ····································
	17-18=-242/2697, 4-	,		Plate Increa								N O OF	- Ministra
WEBS	2-6=-151/1047, 3-6=			Uniform Loa		00						- ight	1 A. Y -
	3-5=-79/1436, 1-6=-				=-60, 2-4=-60, 4-7=	=-20					-	:0/	
NOTES					ed Loads (lb)		400 (D) 40	100				NUN ORTH	SEAL : E
	ed roof live loads have	been considered for			136 (B), 10=-136 (E 136 (B), 14=-330 (E						Ξ		
this desig					330 (B), 18=-330 (E		550 (D), 10-	-330			- 8	. 04	43325 : =
0	CE 7-10; Vult=120mph	(3-second gust)		(2), 17-	(L), 10- 000 (L	_,					Ξ		SEAL 43325 GINEER
	mph; TCDL=6.0psf; BC		at.									A	0123
II; Exp B;	Enclosed; MWFRS (en	velope) exterior zone	э;									- X .SNI	SINFER DI
	r left and right exposed											1.11.	THE COL
	osed; Lumber DOL=1.6		3									ITP.	I. O'REIN
This truss	s has been designed for	r a 10.0 psf bottom										1111	

- Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.33 3)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

J. O'F J. O'KY

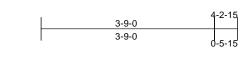

March 4,2020

Job	Truss	Truss Type	Qty	Ply	
20-022568T	M01	Roof Special Girder	1	1	T19584309 Job Reference (optional)

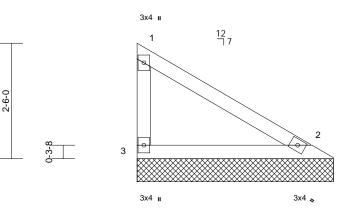
Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Tue Mar 03 15:37:03 ID:hBm8EGNAaFhIITWzKiVkSuzej1N-EEywuU_hsPw1ZqRYPwbkU?ly4z4r0tkCe3owgCzeb_

Scale = 1:36.9

Plate Offsets (X, Y): [1:0-3-4,Edge]


	,Edgej										
TCLL (roof) TCDL BCLL	(psf)Spacing20.0Plate Grip DOL10.0Lumber DOL0.0*Rep Stress Incr10.0Code	2-0-0 1.00 1.15 NO IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.42	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.01	(loc) 5-7 5-7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 20%
6-0-0 oc purl BOT CHORD Rigid ceiling bracing. REACTIONS (size) 1= Max Horiz 1= Max Uplift 1= Max Grav 1= FORCES (lb) - Maximu Tension TOP CHORD 1-2=-777/116 BOT CHORD 1-2=-777/116 BOT CHORD 1-8=-120/645 5-10=-120/645 5-10=-120/645 5-10=-120/645 SOTES 1) Wind: ASCE 7-10; Vult=1 Vasd=95mph; TCDL=6.0 II; Exp B; Enclosed; MWF cantilever left and right e right exposed; Lumber D0 2) This truss has been desig chord live load nonconcu 3) * This truss has been desig chord live load nonconcu 3) * This truss has been desig on the bottom chord in all 3-06-00 tall by 2-00-00 w chord and any other mer 4) Provide mechanical conn bearing plate capable of fu- joint 4 and 97 Ib uplift at j 5) This truss is designed in 7	-97 (LC 8), 4=-130 (LC 8) 665 (LC 1), 4=635 (LC 1) m Compression/Maximum 6, 2-3=-92/47, 3-4=-76/31 5, 8-9=-120/645, 5-9=-120/6 15, 4-10=-120/645 0, 2-5=-82/618 20mph (3-second gust) psf; BCDL=6.0psf; h=30ft; C rRS (envelope) exterior zon yoosed ; end vertical left and DL=1.60 plate grip DOL=1.3 gned for a 10.0 psf bottom rrent with any other live load signed for a live load of 2001 a reas where a rectangle ide will fit between the botto hbers. ection (by others) of truss to withstanding 130 lb uplift at oint 1. accordance with the 2015 Code sections R502.11.1 at	 provided s provided s b down ar b down ar lb down ar lb down ar on bottom ed or 7) In the LOA of the truss to AD CASE(1) Plate Incident and the trust of the tr	or other connection ufficient to support of d 63 lb up at 1-3-4 3-4, and 251 lb dow chord. The design/ of device(s) is the res D CASE(S) section are noted as front 5) Standard oof Live (balanced) ease=1.00 .oads (lb/ft) -3=-60, 1-4=-20 ated Loads (lb) =-251 (F), 9=-251 (f	concentra , and 251 /n and 63 selection sponsibilit , loads ap (F) or bac : Lumber	ted load(s) 24 Ib down and Ib up at 5-3- of such y of others. pplied to the fi kk (B). Increase=1.1	63 -4 ace				DTHILL D	CAS SEAL 43325 GINEER GATTA

818 Soundside Road Edenton, NC 27932


March 4,2020

Job	Truss	Truss Type	Qty	Ply		
20-022568T	V01	Valley	1	1	T19584310 Job Reference (optional)	

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Tue Mar 03 15:37:04 ID:2VCA72TdOv1XYIOGcc6q6szej?z-iQWI5q?Jdi2uB_0kze6z1Dr5tNUIINzMtjXTBezeazz

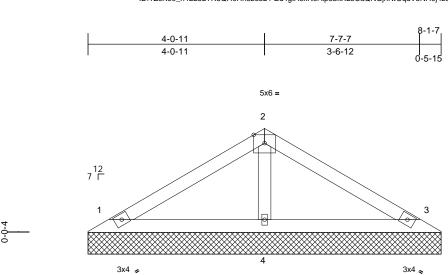
4-2-15

Scale	- 1	1.24 0	

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.24	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.15	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-P							Weight: 16 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 4-3-6 oc purlins, exc Rigid ceiling directly bracing. (size) 2=4-2-15, Max Horiz 3=-67 (LC Max Uplift 2=-6 (LC Max Grav 2=144 (LC	cept end verticals. applied or 10-0-0 oc 3=4-2-15 6) 11), 3=-26 (LC 11)	LC	bearing pla 3 and 6 lb u This truss is Internationa	chanical conne le capable of wi plift at joint 2 s designed in ac and referenced) Standard	thstanding 2 ccordance wi ode sections	6 lb uplift at j th the 2015 R502.11.1 a	joint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-3=-115/48, 1-2=-66	6/54											
BOT CHORD	2-3=-33/53												
NOTES													

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Page: 1


Job	Truss	Truss Type	Qty	Ply	
20-022568T	V02	Valley	1	1	T19584311 Job Reference (optional)

2-0-15

2-4-11

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Tue Mar 03 15:37:05 ID:TZcKe0_h4LLoLTReQH0Hn5zesL4-Bd4gIA0xN0Alp8bxXLeCaQNGjnrwUqdV5NH0j4zeazy

Page: 1

1.5x3 u

8-1-7

Scale = 1:26.5				I									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-P	0.24 0.13 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she: 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=8-1-7, 3 Max Horiz 1=44 (LC Max Uplift 1=-23 (LC Max Grav 1=149 (LC (LC 1)	applied or 10-0-0 or 3=8-1-7, 4=8-1-7 9) 2 10), 3=-29 (LC 11)	9) LC	on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1 and 29 lb u This truss is International	has been design in chord in all ar by 2-00-00 wide by other membe capable of witi uplift at joint 3. designed in acc Residential Co ind referenced s Standard	reas where will fit betw ers. tion (by oth hstanding 2 cordance wi de sections	a rectangle veen the bott ers) of truss t 3 lb uplift at j th the 2015 R502.11.1 a	om to joint					
FORCES TOP CHORD BOT CHORD	(Ib) - Maximum Com Tension 1-2=-78/40, 2-3=-73, 1-4=-7/33, 3-4=-7/33	/34											
WEBS NOTES	2-4=-183/55												
	ed roof live loads have	been considered for	r										
0	CE 7-10; Vult=120mph	(3-second gust)											ALL DITE

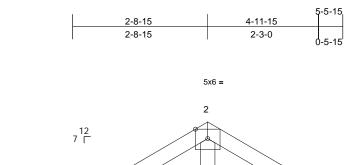
Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

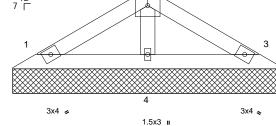
Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. 4)

Gable studs spaced at 4-0-0 oc. 5)

This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads. The American Ame American Amer SEAL 043325 P J. O'F "HILLINN March 4,2020




Job	Truss	Truss Type	Qty	Ply	
20-022568T	V021	Valley	1	1	T19584312 Job Reference (optional)

1-3-12

1-7-8

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries. Inc. Tue Mar 03 15:37:07 ID:2VCA72TdOv1XYIOGcc6q6szej?z-7?CQjs1BvdQT2SIJemggfrTeZbXaykNoZhm7ozzeazw

5-5-15

4.00.4

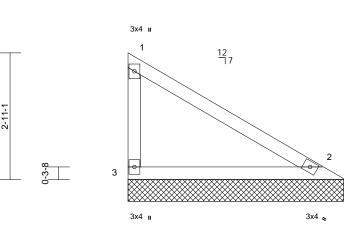
Scale = 1:23.4					•								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-P	0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x OTHERS 2x BRACING TOP CHORD St 5- BOT CHORD Ri br: REACTIONS (siz May May	6-12 oc purlins. gid ceiling directly acing. e) 1=5-5-15, < Horiz 1=-28 (LC < Uplift 1=-14 (LC	athing directly applie applied or 10-0-0 oc 3=5-5-15, 4=5-5-15 3 8) 3 10), 3=-18 (LC 11) 1), 3=94 (LC 1), 4=1	9) LC	on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1 and 18 lb u This truss is International	has been desig n chord in all a yy 2-00-00 wid yy other memb hanical connere e capable of wi uplift at joint 3. designed in 3. designed in 4. Residential Cr nd referenced Standard	areas where a le will fit betw pers. ction (by othe ithstanding 1 ccordance wi ode sections	a rectangle reen the bott ers) of truss t 4 lb uplift at j th the 2015 R502.11.1 a	om to joint					
Te TOP CHORD 1-: BOT CHORD 1 WEBS 2 NOTES	, 2=-49/25, 2-3=-46, 4=-5/21, 3-4=-5/21 4=-115/37												

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)

Gable studs spaced at 4-0-0 oc. 5)

This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads. ANN THE PROPERTY OF THE PROPER P J. O'P "Inninnin March 4,2020


Page: 1

Job	Truss	Truss Type	Qty	Ply		
20-022568T	V022	Valley	1	1	Job Reference (optional)	19584313

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Tue Mar 03 15:37:07 ID:2VCA72TdOv1XYIOGcc6q6szej?z-7?CQjs1BvdQT2SIJemggfrTaFbUqykjoZhm7ozzeazw

4-11-11	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	тс	0.36	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.23	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-P							Weight: 19 lb	FT = 20%

LL	J٧	/IE	ΒE	R

Scale = 1:26.6

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.3
BRACING		
TOP CHORD		wood sheathing directly applied or purlins, except end verticals.
BOT CHORD		ng directly applied or 10-0-0 oc
REACTIONS	(size)	2=4-11-11, 3=4-11-11
	Max Horiz	3=-81 (LC 6)
	Max Uplift	2=-7 (LC 11), 3=-32 (LC 11)
	Max Grav	2=173 (LC 1), 3=181 (LC 18)

FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-3=-138/58, 1-2=-79/65

BOT CHORD 2-3=-40/64

NOTES

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.

chord and any other members.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 3 and 7 lb uplift at joint 2.

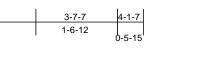
8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and

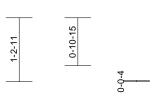
R802.10.2 and referenced standard ANSI/TPI 1.

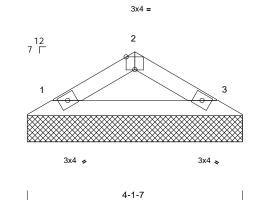
LOAD CASE(S) Standard

Page: 1

Job	Truss	Truss Type	Qty	Ply		
20-022568T	V023	Valley	1	1	T1 Job Reference (optional)	9584314

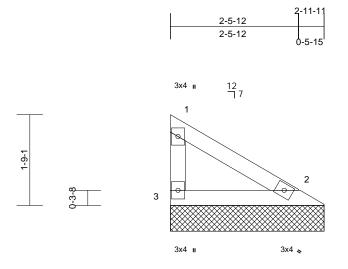

2-0-11


2-0-11


BMC (Middlesex, NC), Middlesex, NC - 27557,

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Tue Mar 03 15:37:08 ID:TZcKe0_h4LLoLTReQH0Hn5zesL4-bCmoxC2qgxYKgcKVCTBvB3?q2_sohBzynKVgKPzeazv

Page: 1


Scale = 1:22 Plate Offsets (X, Y): [2:0-2-0.Edge]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015	/TPI2014	Matrix-P							Weight: 12 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.2 Structural wood shea 4-2-4 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 or		bearing plate and 6 lb uplif This truss is International	designed in acc Residential Coo nd referenced st	nstanding 6 cordance wi de sections	lb uplift at jo th the 2015 R502.11.1 a	int 1					
n N	(size) 1=4-1-7, 3 Max Horiz 1=-19 (LC Max Uplift 1=-6 (LC Max Grav 1=124 (LC	56) 10), 3=-6 (LC 11)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
	1-2=-111/41, 2-3=-1 ⁻ 1-3=-16/80	11/41											
NOTES	1-3=-10/80												
	d roof live loads have	been considered fo	r										
this design.													
0	E 7-10; Vult=120mph	(3-second gust)											
	oh; TCDL=6.0psf; BC											DTH OR OF	
	nclosed; MWFRS (en		ne									, unit	0.0.1111
	tterior (2) zone; cantile and vertical left and rig											"TH	CAROUN
	nd forces & MWFRS											NON	In'
	L=1.60 plate grip DO		',								d.	N	SEAL 43325 GINEER GR
	gned for wind loads in		JSS								1	:05	Nº.
only. For s	tuds exposed to wind	(normal to the face),								-	1.	
	rd Industry Gable End										-		SEAL :
	ualified building desig		기 1.								- 8	0	43325
	ires continuous bottor s spaced at 4-0-0 oc.	n chord bearing.									=	: .	:
,	as been designed for	a 10.0 nsf bottom									-		
	bad nonconcurrent wit		ds									- D. EN	ER. S
	has been designed for											1.11	GINEY GY
	om chord in all areas											1, P	1 O'RE
3-06-00 tall	by 2-00-00 wide will		om									1111	J. O'RE
	any other members.											Mor	ch 4,2020
chord and a													

Job	Truss	Truss Type	Qty	Ply	
20-022568T	V024	Valley	1	1	T19584315 Job Reference (optional)

Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries, Inc. Tue Mar 03 15:37:09 ID:2VCA72TdOv1XYIOGcc6q6szej?z-3OKB8Y3SRFgBHmvimBi8kGY_xODwQdC50_FEsrzeazu

2-11-11

Scale =	1:22.3
---------	--------

30ale = 1.22.3				-								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	тс	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-P							Weight: 10 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-0-2 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals.	bearing plat 3 and 4 lb u 8) This truss is Internationa R802.10.2 a LOAD CASE(S)	chanical connection e capable of withs plift at joint 2. designed in accord I Residential Codurd I referenced state Standard	standing 1 ordance wi le sections	7 lb uplift at jo th the 2015 R502.11.1 a	oint					
	(size) 2=2-11-11 Max Horiz 3=-44 (LC Max Uplift 2=-4 (LC Max Grav 2=93 (LC (lb) - Maximum Com	11), 3=-17 (LC 11) 1), 3=98 (LC 18)										
	Tension											
TOP CHORD	1-3=-74/31, 1-2=-42	/35										
BOT CHORD	2-3=-21/34											
Vasd=95m II; Exp B; I and C-C E exposed ; members Lumber D 2) Truss des only. For	CE 7-10; Vult=120mph pph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO signed for wind loads ir studs exposed to wind ard Industry Gable En-	DL=6.0psf; h=30ff; (velope) exterior zor ever left and right ght exposed;C-C for for reactions shown L=1.33 the plane of the tru (normal to the face)	ne ; ISS),								UNIT OR TH	CAROL

- or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6)
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

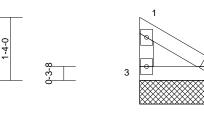
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

SEAL 043325

Page: 1

Job	Truss	Truss Type	Qty	Ply	
20-022568T	V025	Valley	1	1	T19584316 Job Reference (optional)


Run: 8.33 S Feb 13 2020 Print: 8.330 S Feb 13 2020 MiTek Industries. Inc. Tue Mar 03 15:37:11 ID:2VCA72TdOv1XYIOGcc6q6szej?z-?mRxZD4izswuX324tckcphdLGCvvuXiOUIkLxkzeazs

2

2-15 1-9-0 1-9-0

3x4 ш

2-2-15

Scale - 1.24.3

Scale = 1:24.3												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-P	0.04 0.03 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 2-3-6 oc purlins, exc Rigid ceiling directly bracing. (size) 2=2-2-15,	applied or 10-0-0 or 3=2-2-15	bearing pl 3 and 3 lb 8) This truss Internation R802.10.2 LOAD CASE(echanical connect ate capable of witt uplift at joint 2. is designed in act al Residential Cc and referenced s S) Standard	hstanding 1 cordance w	2 lb uplift at ith the 2015 R502.11.1 a	joint					
	Max Horiz 3=-30 (LC Max Uplift 2=-3 (LC Max Grav 2=64 (LC (lb) - Maximum Com	11), 3=-12 (LC 11) 1), 3=67 (LC 18)										

Tension TOP CHORD 1-3=-51/21, 1-2=-29/24 BOT CHORD 2-3=-15/24

NOTES

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Page: 1

