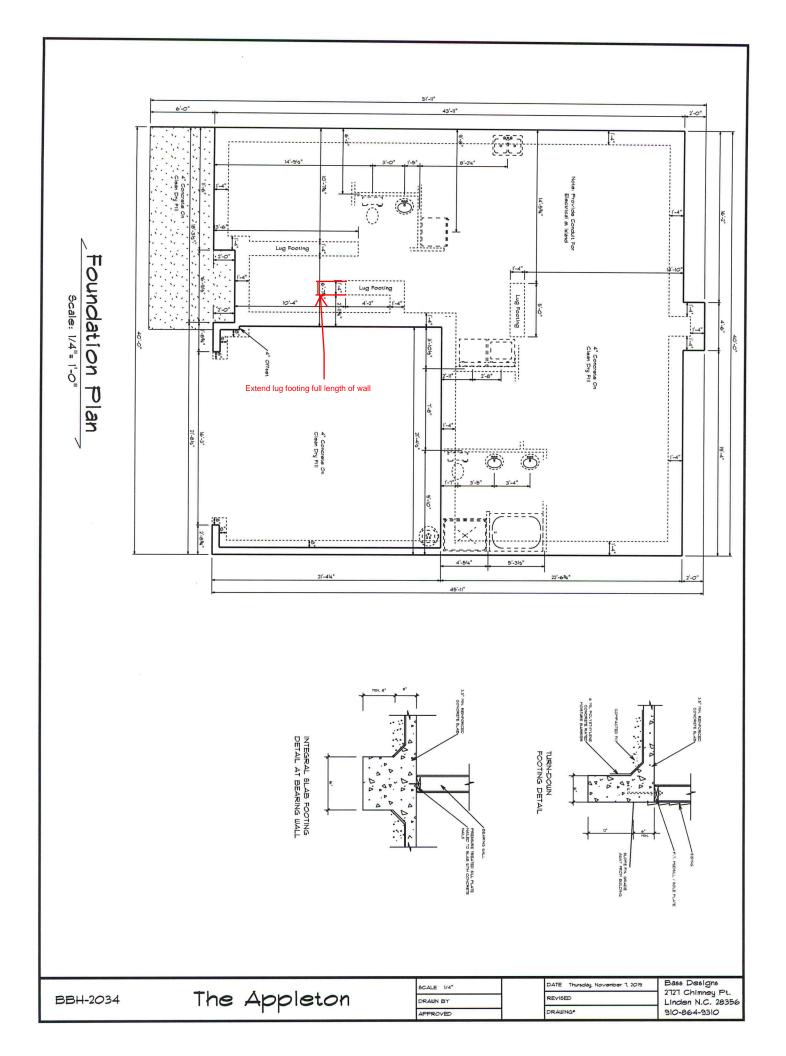
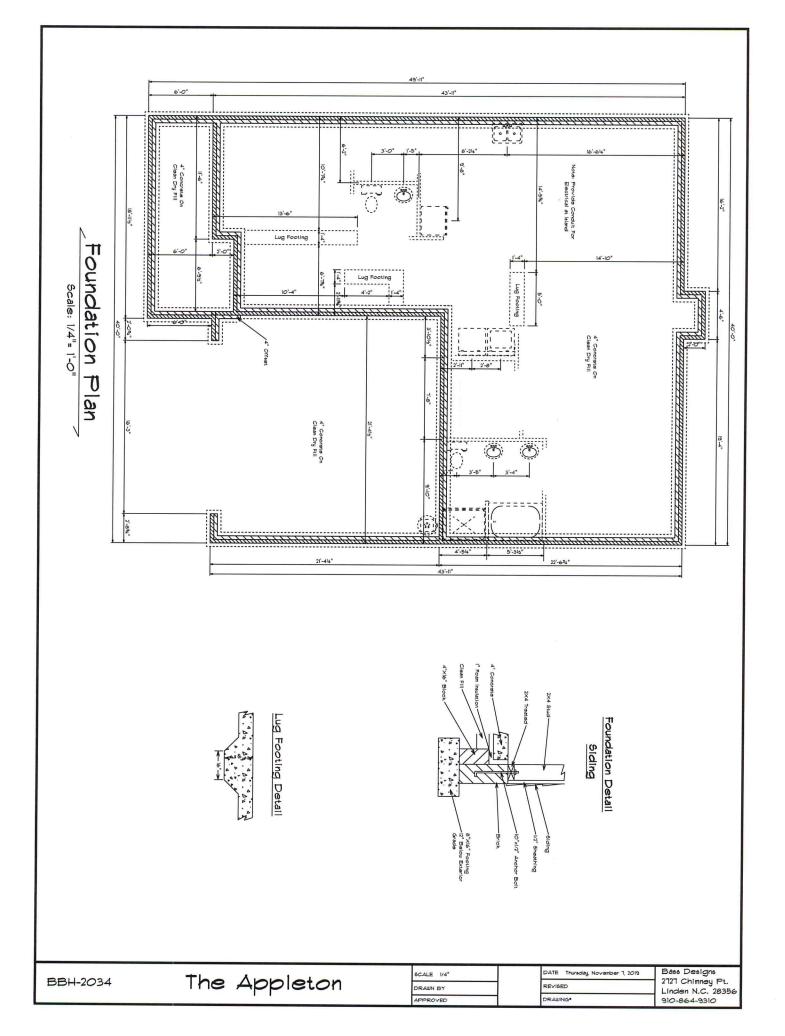


PRODUCT CODE	SIZE	HINGE DIRECTION COUNT R.O. WIDTH	COUNT	HTCIM O.S
TIND SOOD 8-1	9	70	-	<u>-</u>
2-4 DOOR UNIT	2'-4"	r	-	2'-6"
TIND SOOD 9-2	2'-6"	r	-	2'-8"
TINN SOOD 9-2	2'-6"	70	2	2-8
3-0 doublehung unit	3.0	70	2	3'-2"
2-0X2-0 Tuin Window	4'-0" × 3'-0"	N A	-	4.6
2-88×5-0 Single Window 2'-8" x 5'-0"	2'-8" × 5'-0"	z	-	2'-8"
2-8×5-0 Twin Window	5'-4" × 5'-0"	N A	2	4.

Second Floor Openings

BBH-2034


The Appleton


SCALE 1/4"

DRAWN BY

APPROVED

DATE Thursday, November 1, 2019 REVISED Base Designs 2727 Chimney Pt. Linden N.C. 28356 910-864-9310

49' 11"

A= Indicates Left End of Truss
(Reference Engineered Truss Drawing)
Do NOT Erect Truss Backwards

BUILDER 13600 15300 Ben Stout Real Estate CITY / CO. Harnett County / Harnett JOB NAME Lot 39 Blackberry Manor ADDRESS 39 Kotata Ave PLAN Appleton / BBH-2034 MODEL Roof SEAL DATE N/A DATE REV. 03/13/20 QUOTE # Quote# DRAWN BY David Landry JOB# J0320-1189 SALES REP. Marshall Naylor

10200	8500	6800	5100	3400	1700	END REACTION (UP TO)	3	50		Signati	Tables, retainer reaction	150008	attache require size an	deemed require
0	cn	4	ω	2	-	REQ D STUDS FOR (2) PLY HEADER	W -	AD C		ì	A regi	A TRO	d Table	to co
15300	12750	10200	7650	5100	2550	END REACTION (UP TO)	DF JACK STUDS 8	CHART FOR	David	David	stered design sign the supp exceed 15000	ter than 3000 stored design sign the supp	to determine the determine the of wood a	mply with the The contract
6	cn	4	w	2	-	(3) PLY HEADER	BLES RSOZ S/I DS REQUIRED (B/GIRDÉR	R JACK	الم	77	100	protein	9 9 9	or equ
	17000	13600	10200	6800	3400	END REACTION (UP TO)	(1) 4 (b) (c)	CK STUBS	indry	andry	sional shall b sum for all	ot greater tha atomal shall the sem for any	prescriptive i isimum found guired to sup	grive Code
	UI	4	w	2	-	AEQ'D STUDS FOR		S				* 5	Po di	- 4
	CI	4	w	2	-	IN N V I C I DEN						1	1	1 758

Reilly Road Industrial Park Fayetteville, N.C. 28309 Phone: (910) 864-8787 Fax: (910) 864-4444

ROOF & FLOOR TRUSSES & BEAMS

COMTECH

	,			

eaction Summary of Order

ROOF & FLOOR TRUSSES & BEAMS

ly Road Industrial Park P.O. Box 40408 etteville, N.C. 28309 (910) 864-TRUS y Office: (919) 816-0105

REQ. QUOTE DATE	11	ORDER #	J0320-1189
ORDER DATE	03/13/20	QUOTE #	
DELIVERY DATE	11	CUSTOMER ACCT#	0000007060
DATE OF INVOICE	11	CUSTOMER PO #	
ORDERED BY	Ben Stout	INVOICE #	
COUNTY	Harnett	TERMS	
SUPERINTENDANT	Ben Stout	SALES REP	Marshall Naylor
JOBSITE PHONE #	(910) 476-4502	SALES AREA	David Landry

Benjamin Stout Real Estate PO Box 53798 Fayetteville, NC 28305 JOB NAME:Lot 39 Blackberry Manor

MODEL:Roof TAG: Appleton / BBH-2034

LOT # 39 SUBDIV: Blackberry Manor JOB CATEGORY: Residential - Roof

DELIVERY INSTRUCTIONS:

Ben Stout Real Estate 39 Kotata Ave Harnett County, NC

(910) 476-4502

SPECIAL INSTRUCTIONS:

Lot 8 Barrington Place

PLAN SEAL DATE: N/

DATE

JILDING DEPARTMENT	OVERHA	ANG INFO	HEEL HEIGHT	00-06-08	REQ.	LAYOUTS		REQ. E	NGINEERING		QUOTE	DTL	03/13/20
of Order	END CUT	RETURN									LAYOUT	DTL	03/13/20
		_	GABLE STUDS	16 IN. OC		JOBSITE	1		JOBSITE	1	CUTTING	DTL	03/13/20

?OOF T	RUS	SES		DADING FORMATION	TCLL-TCDL-BCDL STRESS INCR. 20.0,10.0,0.0,10.0 1.15 ROOF TRUSS SPACING:24.0 IN. O.C. (TYP.)									
PROFILE	QTY		СН	TYPE	BASE		/BER		RHANG	REACTIO	NS.			
-	PLY	TOP	BOT	ID .	O/A	TOP	ВОТ	LEFT	RIGHT					
	10	8.00	0.00	ATTIC A1	43-10-00 43-10-00	2 X 6	2 X 10	00-11-00	00-11-00	Joint 2 2229.8 lbs. -20.5 lbs.	Joint 12 2093.6 lbs. 10.1 lbs.	Joint 16 678.5 lbs. -355.8 lbs.	Joint 18 1036.8 lbs. 108.9 lbs.	
	1	8.00	0.00	GABLE A1GE	43-10-00 43-10-00	2 X 6	2 X 10	00-11-00	00-11-00	Joint 2 2227.5 lbs. -313.1 lbs.	Joint 28 2094.4 lbs. -251.5 lbs.	Joint 38 669.6 lbs. -469.6 lbs.	Joint 40 1051.9 lbs. 72.0 lbs.	
<u> </u>	2	8.00	0.00	MONOPITCH A2	15-03-12 15-03-12	2 X 6	2 X 6	00-11-00	00-03-08	Joint 2 667.8 lbs. 39.0 lbs.	Joint 7 639.4 lbs. -178.2 lbs.			
	7	8.00	0.00	MONOPITCH A3	15-03-12 15-03-12	2 X 6	2 X 6	00-11-00		Joint 2 651.3 lbs. 44.0 lbs.	Joint 8 654.3 lbs. -184.9 lbs.			
	1	8.00	0.00	HALF HIP A3GE	15-03-12 15-03-12	2 X 6	2 X 6	00-11-00		Joint 2 360.1 lbs. -87.8 lbs.	Joint 13 33.2 lbs. -21.7 lbs.	Joint 14 67.2 lbs. -9.8 lbs.	Joint 15 252.8 lbs. -69.7 lbs.	Joint 16 277.2 lbs. -92.2 lbs.
	5	8.00	0.00	COMMON B1	18-07-00 18-07-00	2 X 6	2 X 6	00-11-00	00-11-00	Joint 2 785.6 lbs. -50.3 lbs.	Joint 4 785.6 lbs. -50.3 lbs.			
	1	8.00	0.00	GABLE B1SG	18-07-00 18-07-00	2 X 6	2 X 6	00-11-00	00-11-00	Joint 2 188.1 lbs. -8.3 lbs.	Joint 10 564.3 lbs. -115.6 lbs.	Joint 14 256.6 lbs. 74.9 lbs.	Joint 15 225.0 lbs. -180.9 lbs.	Joint 16 220.6 lbs. -105.2 lbs.
	4	8.00	0.00	COMMON B2	18-07-00 18-07-00	2 X 6	2 X 6		00-11-00	Joint 1 730.3 lbs. -37.5 lbs.	Joint 3 787.0 lbs. -50.4 lbs.			
	1	-8.00	0.00	ROOF B3	18-03-08 18-03-08	2 X 6	2 X 6		00-11-00	Joint 4 766.9 lbs. -28.2 lbs.	Joint 8 738.9 lbs. -87.0 lbs.			
	1	-8.00	0.00	ROOF B4	18-03-08 18-03-08	2 X 6	2 X 6		00-11-00	Joint 5 766.9 lbs. -26.0 lbs.	Joint 9 738.9 lbs. -86.3 lbs.			
	1	-8.00	0.00	ROOF B5	18-03-08 18-03-08	2 X 6	2 X 6		00-11-00	Joint 5 766.9 lbs. -46.0 lbs.	Joint 10 738.9 lbs. -85.7 lbs.			

eaction Summary of Orger

ROOF & FLOOR TRUSSES & BEAMS :omTech

ly Road Industrial Park P.O. Box 40408 etteville, N.C. 28309 (910) 864-TRUS y Office: (919) 816-0105

REQ. QUOTE DATE	/ /	ORDER#	J0320-1189
ORDER DATE	03/13/20	QUOTE #	
DELIVERY DATE	11	CUSTOMER ACCT #	000007060
DATE OF INVOICE	11	CUSTOMER PO#	
ORDERED BY	Ben Stout	INVOICE #	_
COUNTY	Harnett	TERMS	
SUPERINTENDANT	Ben Stout	SALES REP	Marshall Naylor
JOBSITE PHONE #	(910) 476-4502	SALES AREA	David Landry

LOT # 39

Benjamin Stout Real Estate PO Box 53798

Fayetteville, NC 28305 (910) 476-4502

JOB NAME: Lot 39 Blackberry Manor

TAG: Appleton / BBH-2034

SUBDIV: Blackberry Manor

JOB CATEGORY: Residential - Roof

MODEL:Roof

DELIVERY INSTRUCTIONS:

Ben Stout Real Estate 39 Kotata Ave

SPECIAL INSTRUCTIONS:

Harnett County, NC

Lot 8 Barrington Place

PLAN SEAL DATE:

N/A

DATE JILDING DEPARTMENT OVERHANG INFO HEEL HEIGHT 00-06-08 **REQ. LAYOUTS REQ. ENGINEERING** QUOTE 03/13/20 END CUT RETURN of Order LAYOUT DTL 03/13/20 GABLE STUDS 16 IN. OC JOBSITE JOBSITE 1 CUTTING DTL 03/13/20

300F T	RUS	SES		DADING FORMATION	TCLL-TCDL-B6			1.15	ROOF TRUSS SPACING: 24.0 IN. O.C. (TYP.)						
PROFILE	QTY	PIT	CH	TYPE	BASE	LUN	IBER	OVER	HANG	REACTIONS					
	PLY	TOP	BOT	ID	O/A	TOP	вот	LEFT	RIGHT	REACTIO	MS				
	. 1	-8.00	0.00	ROOF B6	18-03-08 18-03-08	2 X 6	2 X 6		00-11-00	Joint 5 766.7 lbs. -56.0 lbs.	Joint 10 738.9 lbs. -85.5 lbs.		ě		
	1	8.00	0.00	COMMON C1GE	11-05-00 11-05-00	2 X 6	2 X 6	00-11-00	00-11-00	Joint 2 130.1 lbs. -26.2 lbs.	Joint 8 130.0 lbs. -1.1 lbs.	Joint 10 170.9 lbs. -98.6 lbs.	Joint 11 182.5 lbs. -83.0 lbs.	Joint 12 126.0 lbs. 28.0 lbs.	
	6	5.00	0.00	MONOPITCH M1	06-00-00 06-00-00	2 X 6	2 X 6	00-11-00		Joint 2 276.9 lbs. -72.4 lbs.	Joint 4 222.5 lbs. -74.0 lbs.				
	1	5.00	0.00	MONOPITCH M1GE	06-00-00 06-00-00	2 X 6	2 X 6	00-11-00		Joint 2 111.9 lbs. -3.3 lbs.	Joint 6 15.4 lbs. -11.3 lbs.	Joint 7 54.5 lbs. -21.1 lbs.	Joint 8 162.2 lbs. -62.5 lbs.	Joint 9 170.9 lbs. -71.7 lbs.	
	3	5.00	0.00	MONOPITCH M2	08-00-00 08-00-00	2 X 6	2 X 6	00-11-00		Joint 2 354.2 lbs. -88.8 lbs.	Joint 6 312.7 lbs. -99.0 lbs.				
	1	5.00	0.00	MONOPITCH M2GE	08-00-00 08-00-00	2 X 6	2 X 6	00-11-00		Joint 2 107.1 lbs. 10.3 lbs.	Joint 10 293.4 lbs. -118.1 lbs.	Joint 11 81.5 lbs. -28.5 lbs.	Joint 12 187.3 lbs. -80.3 lbs.		
	10	8.00	0.00	PIGGYBACK PB	09-11-12 09-11-12	2 X 4	2 X 4			Joint 2 228.5 lbs. -31.6 lbs.	Joint 4 228.5 lbs. -40.1 lbs.	Joint 6 401.0 lbs. 6.9 lbs.			
	1	8.00	0.00	GABLE PBGE	09-11-12 09-11-12	2 X 4	2 X 4			Joint 2 138.0 lbs. -22.9 lbs.	Joint 6 138.0 lbs. -23.7 lbs.	Joint 8 276.6 lbs. -136.7 lbs.	Joint 9 103.9 lbs. 20.4 lbs.	Joint 10 277.5 lbs. -137.5 lbs.	

TEMS

QTY	ITEM TYPE	SIZE	LENGTH FT-IN-16	PART NUMBER	NOTES	
11	Hangers, USP	HUS 26			SIMPSON (HUS26)	

RE: J0320-1189

Lot 39 Blackberry Manor

Trenco

818 Soundside Rd Edenton, NC 27932

Site Information:

Customer:

Project Name: J0320-1189

Lot/Block:

Model:

Address:

Subdivision:

City:

State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014

Design Program: MiTek 20/20 8.1

Wind Code: ASCE 7-10 Roof Load: 40.0 psf

Wind Speed: 130 mph Floor Load: N/A psf

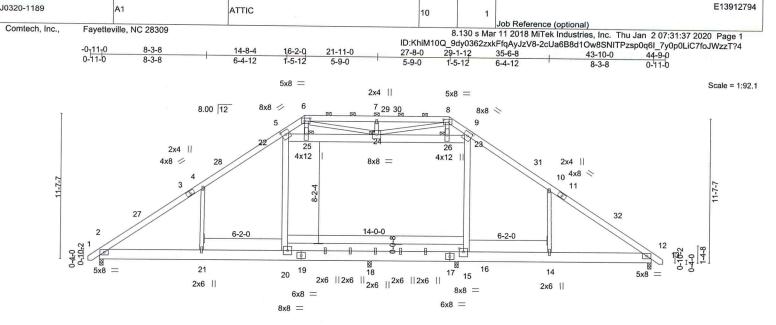
This package includes 19 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	E13912794	a1	1/2/2020
2	E13912795	a1ge	1/2/2020
3	E13912796	a2	1/2/2020
4	E13912797	a3	1/2/2020
5	E13912798	a3ge	1/2/2020
6	E13912799	b1	1/2/2020
7	E13912800	b1sg	1/2/2020
8	E13912801	b2	1/2/2020
9	E13912802	b3	1/2/2020
10	E13912803	b4	1/2/2020
11	E13912804	b5	1/2/2020
12	E13912805	b6	1/2/2020
13	E13912806	c1ge	1/2/2020
14	E13912807	m1	1/2/2020
15	E13912808	m1ge	1/2/2020
16	E13912809	m2	1/2/2020
17	E13912810	m2ge	1/2/2020
18	E13912811	pb	1/2/2020
19	E13912812	pbge	1/2/2020

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.


Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

January 02, 2020

Qty

Ply

Lot 39 Blackberry Manor

	8-2-12 14-8-4 8-2-12 6-5-8		28-6-4 7-0-12	29 ₇ 1-12 0-7-8	35-7-4 6-5-8		43-10-0 8-2-12	
Plate Offsets (X,Y)	[5:0-4-0,0-3-12], [6:0-5-4,0-2-12], [8:0-5	-4,0-2-12], [9:0-4-0,0-3-12]				2-0,0-3-0]	0-2-12	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.37 BC 0.84 WB 0.65 Matrix-S	, ,	in (loc) -0.31 20-21 -0.56 20-21 0.05 12 0.25 21	l/defl >818 >454 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 462 lb	GRIP 244/190 FT = 20%

LUMBER- BRACING-

TOP CHORD 2x6 SP No.1

BOT CHORD 2x10 SP No.1 *Except*

15-20: 2x8 SP No.1

WEBS 2x4 SP No.3 *Except*

5-20,9-15: 2x6 SP No.1, 22-23: 2x8 SP No.1

TOP CHORD

RD Structural wood sheathing directly applied or 4-2-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 6-8. Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

8-1-14 oc bracing: 2-21

8-6-8 oc bracing: 20-21.
JOINTS 1 Brace at Jt(s): 24, 25, 26

REACTIONS. All bearings 0-3-8.

(lb) - Max Horz 2=272(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 2 except 16=-356(LC 8)

Max Grav All reactions 250 lb or less at joint(s) except 2=2229(LC 20), 12=2093(LC 20), 18=1038(LC 18),

16=678(LC 25)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2880/257, 4-5=-2819/467, 5-6=-1834/368, 6-7=-1283/215, 7-8=-1283/215,

8-9=-1520/356, 9-10=-2854/494, 10-12=-3028/293

BOT CHORD 2-21=-69/2413, 20-21=-72/2417, 18-20=-85/2463, 16-18=-85/2463, 15-16=-85/2463, 14-15=-72/2307, 12-14=-68/2305

14-15=-72/2397, 12-14=-68/2395

WEBS 20-22=-91/889, 5-22=0/419, 15-23=-157/926, 9-23=-221/482, 22-25=-858/241,

24-25=-794/234, 24-26=-1174/247, 23-26=-1227/252, 6-24=-956/181, 7-24=-324/196,

8-24=-567/355, 6-25=-170/952, 8-26=-150/809, 4-21=-414/295, 10-14=-388/291

NOTES

Job

Truss

Truss Type

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 3-7-12, Interior(1) 3-7-12 to 16-2-0, Exterior(2) 16-2-0 to 33-10-11, Interior(1) 33-10-11 to 44-7-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Ceiling dead load (10.0 psf) on member(s). 22-25, 24-25, 24-26, 23-26; Wall dead load (5.0psf) on member(s). 20-22, 15-23
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 18-20, 16-18, 15-16

 8) Provide mechanical connection (by others) of truss to begring plate capable of withstanding 100 lb uplift at joint(s) 2 except (it=ll
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 16=356.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Attic room checked for L/360 deflection.

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Qty Ply Lot 39 Blackberry Manor E13912795 J0320-1189 A1GE GABLE Job Reference (optional)

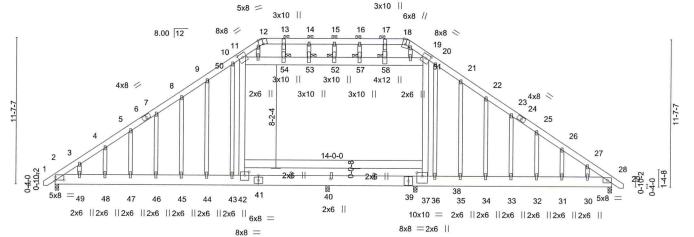
Comtech, Inc.,

Fayetteville, NC 28309

8.130 s Mar 11 2018 MiTek Industries, Inc. Thu Jan 2 07:31:39 2020 Page 1 ID:KhiM10Q_9dy0362zxkFfqAyJzV8-_?cKXsAtY?AsihSsXOvH5FCcywgpHx4?gR8vOPzzT?2

43-10-0

Structural wood sheathing directly applied or 4-4-13 oc purlins,


2-0-0 oc purlins (5-10-8 max.): 12-18.

1 Brace at Jt(s): 52, 53, 54, 57, 58

Rigid ceiling directly applied or 10-0-0 oc bracing.

-0₇11₇0 0-11-0 21-11-0 27-8-0 43-10-0 1,6-2-0 14-8-4 1-5-12 5-9-0 0-11-0 14-8-4

Scale = 1:91.5

Plate Offsets (X,Y)	14-8-4 [2:0-8-5,0-0-6], [2:0-3-2,0-0-0], [11:0-4-0,0-3- ,5-11-0], [41:0-3-0,5-8-0], [41:0-0-0,5-11-0], [4	6-9-4 12], [12:0-4-0,Edge],	7-0-12 [18:0-4-13,Edge], [19:0-4-0,0-3	14-8-4 -12], [37:0-5-0,0-3-8], [[41:0-0-0,5-11-0], [41:0-	-0-0
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.47 BC 0.75 WB 0.64 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.31 45-46 -0.56 45-46 0.05 28 0.35 46		PLATES MT20 Weight: 539 lb	GRIP 244/190 FT = 20%

28-6-4

BRACING-

TOP CHORD

BOT CHORD

JOINTS

29-1-12

except

21-5-8

LUMBER-

TOP CHORD 2x6 SP No.1

BOT CHORD 2x10 SP No.1 *Except* 37-42: 2x8 SP No.1

WEBS 2x6 SP No.1 *Except*

50-51: 2x8 SP No.1

OTHERS 2x4 SP No.3

REACTIONS. All bearings 0-3-8. (lb) -

Max Horz 2=339(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) except 2=-313(LC 12), 28=-251(LC 12),

38=-470(LC 8)

Max Grav All reactions 250 lb or less at joint(s) except 2=2227(LC 20), 28=2094(LC

20), 40=1052(LC 18), 38=670(LC 21)

14-8-4

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

2-3=-2951/295, 3-4=-2795/346, 4-5=-2771/409, 5-7=-2763/474, 7-8=-2746/538,

8-9=-2729/603, 9-10=-2751/674, 10-11=-2678/679, 11-12=-1479/421, 12-13=-1364/388,

13-14=-1364/388, 14-15=-1364/388, 15-16=-1364/388, 16-17=-1364/388, 17-18=-1364/388, 18-19=-1483/427, 19-20=-2738/671, 20-21=-2825/672, 21-22=-2823/603, 22-23=-2851/537, 23-25=-2882/473, 25-26=-2903/409,

26-27=-2947/346, 27-28=-3124/315

BOT CHORD 2-49=-212/2425, 48-49=-212/2425, 47-48=-212/2425, 46-47=-212/2425, 45-46=-212/2425,

44-45=-212/2425, 43-44=-212/2425, 42-43=-212/2425, 40-42=-231/2490, 38-40=-231/2490, 37-38=-231/2490, 36-37=-212/2425, 35-36=-212/2425, 34-35=-212/2425, 33-34=-212/2425, 32-33=-212/2425, 31-32=-212/2425,

30-31=-212/2425, 28-30=-212/2425

42-50=-240/964, 11-50=-88/835, 37-51=-380/1058, 19-51=-243/908, 50-54=-1210/348, **WEBS**

53-54=-1210/348, 52-53=-1210/348, 52-57=-1210/348, 57-58=-1210/348,

51-58=-1210/348, 14-53=-332/136, 13-54=-123/546, 16-57=-359/142, 17-58=-137/620

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- Gable studs spaced at 2-0-0 oc

January 2,2020

Committee of page 2 design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

BINITIES OF Page 20 sign parameters and READ NOTES ON THIS AND INCLUDED MITCH REPRENCE FACE MIN-14/3 Fev. INVALUES BEFORE USE.

Design valid for use only with MITCH 80 connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 218 N, Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Div	L - 1 00 BL - 11	
			Qty	Ply	Lot 39 Blackberry Manor	
J0320-1189	A1GE	GABLE	1		1	E13912795
Comtech, Inc., Fa	vetteville, NC 28309			0.420 - 1	Job Reference (optional)	

s Mar 11 2018 MiTek Industries, Inc. Thu Jan 2 07:31:39 2020 Page 2 $ID: KhiM10Q_9 dy0362zxkFfqAyJzV8-_?cKXsAtY?AsihSsXOvH5FCcywgpHx4?gR8vOPzzT?2\\$

- NOTES-
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Ceiling dead load (10.0 psf) on member(s). 50-54, 53-54, 52-53, 52-57, 57-58, 51-58; Wall dead load (5.0psf) on member(s).42-50, 37-51
- 10) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 40-42, 38-40, 37-38
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 313 lb uplift at joint 2, 251 lb uplift at joint 28 and 470 lb uplift at joint 38.

 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Attic room checked for L/360 deflection.

Job Truss Type Qty Ply Lot 39 Blackberry Manor Truss E13912796 J0320-1189 A2 MONOPITCH Job Reference (optional) Comtech, Inc., Fayetteville, NC 28309 8.130 s Mar 11 2018 MiTek Industries, Inc. Thu Jan 2 07:31:40 2020 Page 1 ID:KhiM10Q_9dy0362zxkFfqAyJzV8-SBAikCAWJJIiJr1246QWeTkq2K8v0SF8u4uSwrzzT?1 -0-11-0 0-11-0 15₋7₋4 0-3-8 8-0-0 7-3-12 Scale = 1:62.6 3x4 || 5 8.00 12 11 4x6 / 3x6 / 3 9 8 7 2x4 || 4x4 = 8-0-0 15-3-12 7-3-12 Plate Offsets (X,Y)-- [2:0-0-0,0-0-4] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defl L/d **PLATES** GRIP TCLL 20.0 Plate Grip DOL 1.15 TC 0.26 Vert(LL) -0.03 8-9 >999 360 244/190 MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.25 Vert(CT) -0.07 8-9 >999 240 **BCLL** 0.0 Rep Stress Incr WB YES 0.32 Horz(CT) 0.01 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-S Wind(LL) 0.02 8-9 >999 240 Weight: 118 lb FT = 20% LUMBER-BRACING-TOP CHORD 2x6 SP No.1 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, **BOT CHORD** 2x6 SP No.1 except end verticals. **WEBS** 2x4 SP No.3 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS

1 Row at midpt

5-8, 3-8

(lb/size) 2=668/0-3-8, 7=592/0-3-8

Max Horz 2=347(LC 12) Max Uplift 7=-178(LC 12)

Max Grav 2=668(LC 1), 7=639(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-748/0

BOT CHORD 2-9=-225/618, 8-9=-225/618 **WEBS** 3-9=0/397, 3-8=-787/285

NOTES-

REACTIONS.

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 3-7-12, Interior(1) 3-7-12 to 15-3-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 178 lb uplift at joint 7.
- 5) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTe& connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Qty Ply Lot 39 Blackberry Manor E13912797 J0320-1189 A3 MONOPITCH Job Reference (optional) Comtech, Inc. Fayetteville, NC 28309 8.130 s Mar 11 2018 MiTek Industries, Inc. Thu Jan 2 07:31:41 2020 Page 1 ID:KhiM10Q_9dy0362zxkFfqAyJzV8-wOk5yYB84dQZx_cEepxlBgH?lkUulvnl7kd?SHzzT?0 15-3-12 -0-11-0 0-11-0 8-0-0 3x4 || Scale = 1:62.6 5 6 8.00 12 4x6 / 11 3x6 / 3 9 87 4x6 =

> 8-0-0 15-3-12 8-0-0 7-3-12

2x4 ||

BRACING-

TOP CHORD

BOT CHORD

WEBS

LOADING (psf) TCLL 20.0	Plate Grip DOL 1.	0-0 CSI .	0.26	DEFL. Vert(LL)	in -0.02	(loc) 2-9	l/defl >999	L/d 360
TCDL 10.0 BCLL 0.0 *		.15 BC	0.20	Vert(CT)	-0.05	2-9	>999	240
		ES WB	0.30	Horz(CT)	0.01	8	n/a	n/a
BCDL 10.0	Code IRC2015/TPI201	14 Matr	1x-S	Wind(LL)	0.02	2-9	>999	240

PLATES GRIP MT20 244/190

Structural wood sheathing directly applied or 6-0-0 oc purlins,

5-8, 3-8

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

1 Row at midpt

FT = 20%Weight: 117 lb

LUMBER-

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1 **WEBS** 2x4 SP No.3

REACTIONS. (lb/size) 8=605/Mechanical, 2=651/0-3-8

Max Horz 2=347(LC 12) Max Uplift 8=-185(LC 12)

Max Grav 8=654(LC 19), 2=651(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-708/0 TOP CHORD

BOT CHORD 2-9=-210/581, 8-9=-210/581 **WEBS** 3-9=0/360, 3-8=-742/268

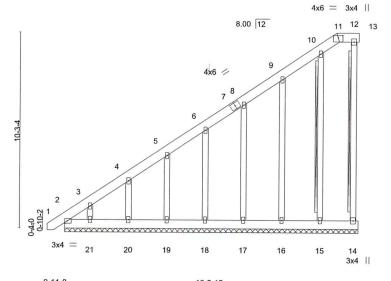
NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 3-7-12, Interior(1) 3-7-12 to 15-3-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 185 lb uplift at joint 8.
- 6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MI-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP/1 Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



Job Truss Truss Type Lot 39 Blackberry Manor Qty Ply E13912798 J0320-1189 A3GE HALF HIP SUPPORTED Job Reference (optional)

Fayetteville, NC 28309 Comtech Inc.

8.130 s Mar 11 2018 MiTek Industries, Inc. Thu Jan 2 07:31:42 2020 Page 1 ID:KhiM10Q_9dy0362zxkFfqAyJzV8-PaIT9uCmrwYQZ8BQCWS_juqEo8szUO3RMONZ_kzzT??

Scale = 1:60.6

16-2-12 15-3-12 Plate Offsets (X,Y)-- [11:0-3-0,0-1-5]

LOADING TCLL TCDL BCLL BCDL	G (psf) 20.0 10.0 0.0 *	Plate Grip DOL 1. Lumber DOL 1.	0-0 CSI 15 TC 15 BC ES WB	0.05 0.02 0.17	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 -0.01	(loc) 1 1 13	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code IRC2015/1PI201	4 Mat	rix-S						Weight: 145 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1 2x4 SP No.3 **WEBS** OTHERS 2x4 SP No.3 BRACING-TOP CHORD

BOT CHORD WEBS

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 11-13. Rigid ceiling directly applied or 10-0-0 oc bracing. T-Brace: 2x4 SPF No.2 - 12-14, 10-15

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

REACTIONS. All bearings 15-3-12.

Max Horz 2=466(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 13, 14, 2, 15, 16, 17, 18, 19, 20

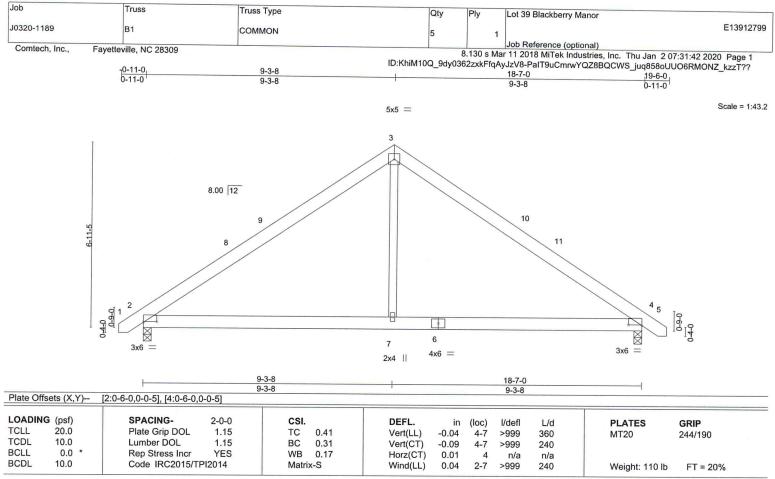
except 21=-181(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 13, 14, 17, 18, 19, 20, 21 except 2=360(LC 12), 15=252(LC 19), 16=277(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-583/474, 3-4=-457/369, 4-5=-377/304, 5-6=-303/246

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Bearing at joint(s) 13 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 14, 2, 15, 16, 17, 18, 19, 20 except (jt=lb) 21=181.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.


🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information

ANSITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.3 **BRACING-**

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(lb/size) 4=786/0-3-8, 2=786/0-3-8

Max Horz 2=-161(LC 10)

Max Uplift 4=-50(LC 13), 2=-50(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-890/199, 3-4=-890/199

BOT CHORD 2-7=0/605, 4-7=0/605

WEBS 3-7=0/448

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 3-7-12, Interior(1) 3-7-12 to 9-3-8, Exterior(2) 9-3-8 to 13-8-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

besign value to use only with mease commencers. This design is based only upon parameters shown, and is to distinct used inhumbrated orbitaling Component, and a store as a minumbrated orbitaling Component, and is to distinct the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Lot 39 Blackberry Manor Qtv Ply E13912800 J0320-1189 B1SG GABLE 1 Job Reference (optional) 8.130 s Mar 11 2018 MiTek Industries, Inc. Thu Jan 2 07:31:43 2020 Page 1 ID:KhiM10Q_9dy0362zxkFfqAyJzV8-tmrrNEDOcEgHBImdmEzDG5MOTXBjDsabb266XAzzT?_ Fayetteville, NC 28309 Comtech, Inc., -0-11-0 9-3-8 12-8-11 18-7-0 19-6-0 0-11-0 9-3-8 5-10-5 Scale = 1:45.2 5x5 = 3x10 < 8.00 12 5 21 2×6 19 2x6 || 20 0-4-0 N ⋘ \bigotimes 13 12 3x4 = 2x6 / 3x4 =4x6 =

			7-5-8			5-3-3				18-7-0 5-10-5		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0	Plate Lumb	ING- Grip DOL er DOL tress Incr	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.12 0.11 0.09	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.01		l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code	IRC2015/TPI2	2014	Matri	x-S	Wind(LL)	0.01	10-12	>999	240	Weight: 148 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

JOINTS

LUMBER-

WEBS

OTHERS

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1

2x6 SP No.1 *Except* 9-12: 2x4 SP No.3 2x4 SP No.3

REACTIONS. All bearings 7-5-8 except (jt=length) 10=0-3-8, 14=0-3-8.

Max Horz 2=-201(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 17 except 10=-116(LC 13), 15=-181(LC 13), 16=-105(LC 12),

18=-107(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 2, 15, 16, 17, 18 except 10=564(LC 1), 14=257(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

BOT CHORD 14-15=0/435, 12-14=0/435, 10-12=0/435

WEBS 15-20=-526/235, 19-20=-462/216, 19-21=-475/221, 9-21=-489/229

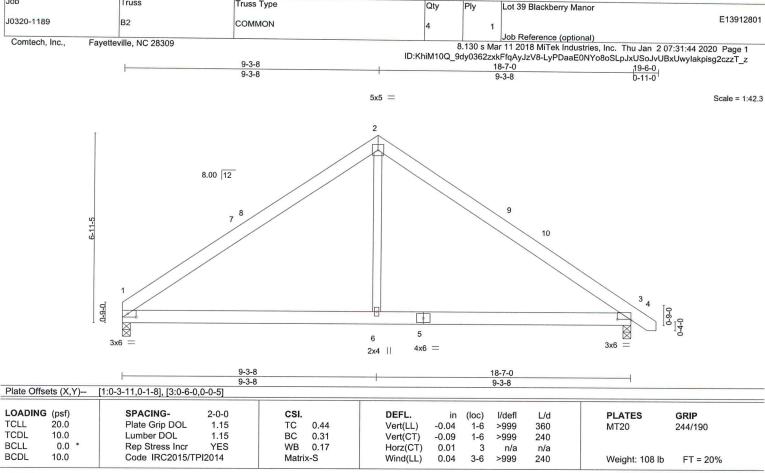
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 17 except (jt=lb) 10=116, 15=181, 16=105, 18=107.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Brace at Jt(s): 19


🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information

VA 22314.

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

Job

Truss

Truss Type

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1

2x4 SP No.3 WEBS

REACTIONS. (lb/size) 1=730/0-3-8, 3=787/0-3-8

Max Horz 1=-159(LC 8)

Max Uplift 1=-38(LC 12), 3=-50(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

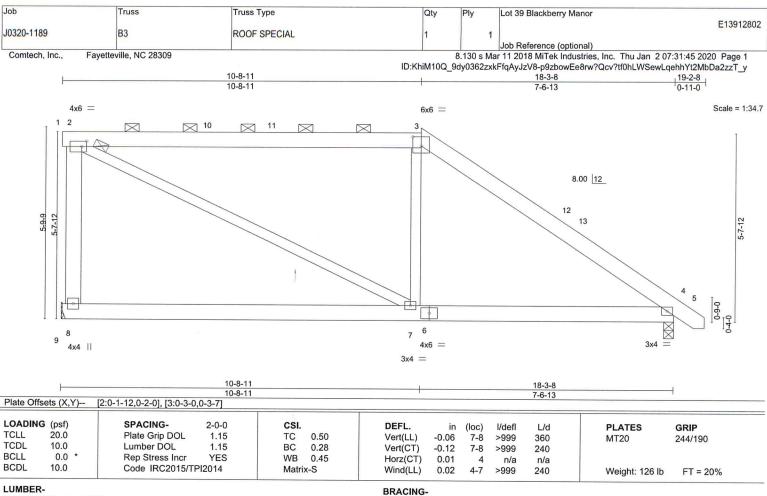
TOP CHORD 1-2=-889/199, 2-3=-892/199

BOT CHORD 1-6=0/607, 3-6=0/607

WEBS 2-6=0/450

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 9-3-8, Exterior(2) 9-3-8 to 13-8-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.


Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MITE-ker and READ with SAND interest and properly with MITE-ker and READ with Sand READ with MITE-ker and fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TOP CHORD

BOT CHORD

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1 **WEBS**

2x6 SP No.1 *Except*

2-7: 2x4 SP No.2, 3-7: 2x4 SP No.3

REACTIONS. (lb/size) 8=739/Mechanical, 4=767/0-3-8

Max Horz 8=-176(LC 13)

Max Uplift 8=-87(LC 8), 4=-28(LC 13) Max Grav 8=739(LC 1), 4=767(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-8=-630/280, 2-3=-665/208, 3-4=-929/153

BOT CHORD 4-7=0/665 **WEBS** 2-7=-199/627

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-0 to 4-4-13, Interior(1) 4-4-13 to 10-8-11, Exterior(2) 10-8-11 to 15-1-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 4.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

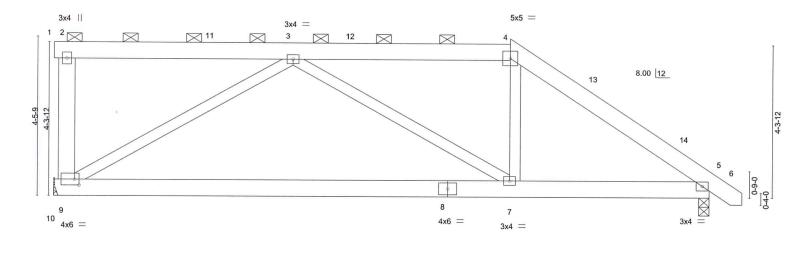
Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 1-3.

Rigid ceiling directly applied or 10-0-0 oc bracing.

January 2,2020

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information

Job Truss Truss Type Qty Ply Lot 39 Blackberry Manor E13912803 J0320-1189 B4 ROOF SPECIAL Job Reference (optional) Comtech, Inc., Fayetteville, NC 28309 8.130 s Mar 11 2018 MiTek Industries, Inc. Thu Jan 2 07:31:46 2020 Page 1
ID:KhiM10Q_9dy0362zxkFfqAyJzV8-HLX_?GFGv92s2mUCRMXwuk_shl8AQ2F1H0Lm6VzzT_x 12-8-11 18-3-8 19-2-8 6-0-13

Scale = 1:32.3

Plate Off	sets (X,Y)	[9:0-1-8,0-2-0]								
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.31	Vert(LL)	-0.13	7-9	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.39	Vert(CT)	-0.26	7-9	>836	240		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.80	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL)	0.01	5-7	>999	240	Weight: 125 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

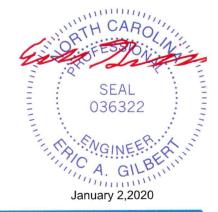
TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1

WEBS 2x4 SP No.3 *Except*

2-9: 2x6 SP No.1

REACTIONS. (lb/size) 9=739/Mechanical, 5=767/0-3-8

Max Horz 9=-133(LC 13) Max Uplift 9=-86(LC 8), 5=-26(LC 8) Max Grav 9=739(LC 1), 5=767(LC 24)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3-4=-758/200, 4-5=-1038/167 TOP CHORD **BOT CHORD** 7-9=-87/754, 5-7=-20/765 **WEBS** 3-9=-782/328, 4-7=0/364

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-0 to 4-4-13, Interior(1) 4-4-13 to 12-8-11, Exterior(2) 12-8-11 to 17-1-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

12-8-11

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 5.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

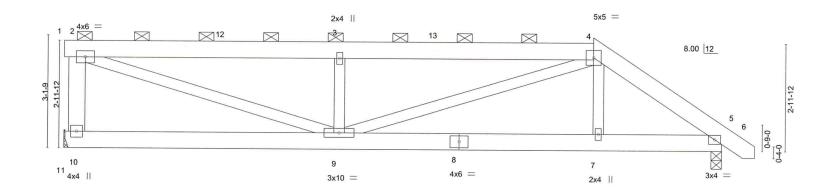
18-3-8

5-6-13

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 1-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.


Design valid for use only with MiTek@ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP/1 Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Qty Ply Lot 39 Blackberry Manor E13912804 10320-1189 **B5 ROOF SPECIAL** 1 Job Reference (optional) Fayetteville, NC 28309 Comtech, Inc., 8.130 s Mar 11 2018 MiTek Industries, Inc. Thu Jan 2 07:31:47 2020 Page 1 ID:KhiM10Q_9dy0362zxkFfqAyJzV8-IX5MCbGvgTAjfv3O?429QxX2F9Yq9a1AVg4KfxzzT w 14-8-11 18-3-8 19-2-8 7-0-13 3-6-13 0-11-0

Scale = 1:32.3

<u> </u>	7-7-13 7-7-13		14-8-11 7-0-13	18-3-8 3-6-13		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.19 BC 0.17 WB 0.51 Matrix-S	Vert(LL) -0.04 9 >9 Vert(CT) -0.08 7-9 >9 Horz(CT) 0.01 5	'defl L/d 999 360 999 240 n/a n/a 999 240	PLATES MT20 Weight: 123 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1 **WEBS** 2x4 SP No.3 *Except*

2-10: 2x6 SP No.1

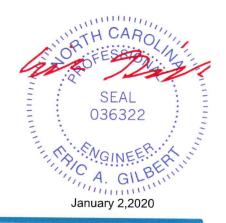
REACTIONS. (lb/size) 10=739/Mechanical, 5=767/0-3-8

Max Horz 10=-89(LC 13)

Max Uplift 10=-86(LC 8), 5=-46(LC 8) Max Grav 10=739(LC 1), 5=767(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-10=-641/231, 2-3=-1308/325, 3-4=-1310/327, 4-5=-1089/243


BOT CHORD 7-9=-117/824, 5-7=-114/832

WEBS 2-9=-310/1232, 3-9=-462/237, 4-9=-99/554, 4-7=0/250

NOTES-

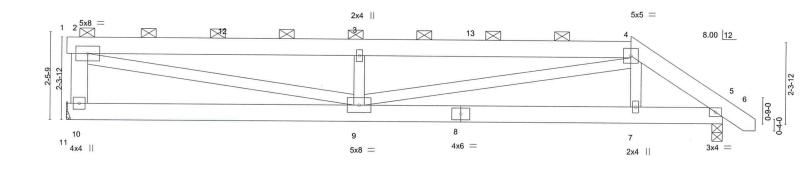
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-0 to 4-4-13, Interior(1) 4-4-13 to 14-8-11, Exterior(2) 14-8-11 to 19-0-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 5.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 1-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.


Design valid for use only with MITEN decorated and read Notes on this Abu Included MITEN REPERENCE PAGE MIN-14/3 FeV. 10/03/2013 BEPORE USE.

Design valid for use only with MITENG connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Qty Ply Lot 39 Blackberry Manor E13912805 J0320-1189 **B6** ROOF SPECIAL Job Reference (optional) Comtech, Inc., Fayetteville, NC 28309 8.130 s Mar 11 2018 MiTek Industries, Inc. Thu Jan 2 07:31:48 2020 Page 1 ID:KhiM10Q_9dy0362zxkFfqAyJzV8-DkfkQxHXRmlaH3eaYnZOz94CnYtNu?TKkKqtBNzzT_v 15-8-11 18-3-8 2-6-13 0-11-0

Scale = 1:32.3

 	8-1-13 8-1-13		15-8-11 7-6-13	18-3-8 2-6-13
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.27 BC 0.21 WB 0.63 Matrix-S	DEFL. in (loc) I/defl L/d Vert(LL) -0.07 9 >999 360 Vert(CT) -0.14 7-9 >999 240 Horz(CT) 0.01 5 n/a n/a n/a Wind(LL) 0.06 9 >999 240	PLATES GRIP MT20 244/190 Weight: 120 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

2x4 SP No.3 *Except* WEBS

2-10: 2x6 SP No.1

(lb/size) 10=739/Mechanical, 5=767/0-3-8

Max Horz 10=-67(LC 13)

Max Uplift 10=-86(LC 8), 5=-56(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-10=-620/227, 2-3=-1757/417, 3-4=-1757/417, 4-5=-1200/255

BOT CHORD 9-10=-28/286, 7-9=-154/931, 5-7=-149/945

WEBS 2-9=-364/1512, 3-9=-454/242, 4-9=-180/850, 4-7=0/293

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-0 to 4-4-13, Interior(1) 4-4-13 to 15-8-11, Exterior(2) 15-8-11 to 19-0-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 5.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins (5-6-1 max.): 1-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

January 2,2020

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MITE-ker and READ with ES ON THE AND INCLUDE MITER REPERCE FACE MITE AT 18-18-18 (MOVED BEFORE SEC.)

Design valid for use only with MITE-ker connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP/1 Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

E13912806 J0320-1189 C1GE COMMON SUPPORTED GAB Job Reference (optional) Comtech, Inc., Fayetteville, NC 28309 8.130 s Mar 11 2018 MiTek Industries, Inc. Thu Jan 2 07:31:49 2020 Page 1 $ID: KhiM10Q_9 dy0362zxkFfqAyJzV8-hwD6dHH9C4QRvDDn6V4dVMcQUyFldbyTz_ZRjqzzT_u$ -0-11-0 0-11-0 5-8-8 5-8-8 11-5-0 12-4-0 5-8-8 0-11-0 Scale = 1:28.3 5x5 = 5 8.00 12 6 0-4-0 9 14 13 12 11 10 3x4 = 3x4 = LOADING (psf) SPACING-2-0-0 CSL DEFL **PLATES** (loc) I/defl **GRIP TCLL** 20.0 Plate Grip DOL 1.15 TC 0.02 Vert(LL) -0.00 n/r 120 MT20 244/190 **TCDL** 10.0 Lumber DOI BC 1 15 0.01 Vert(CT) 0.00 n/r 120 **BCLL** 0.0 Rep Stress Incr YES WB 0.04 Horz(CT) 0.00 8 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-S Weight: 80 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Ply

Lot 39 Blackberry Manor

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Qty

LUMBER-

REACTIONS.

Job

Truss

Truss Type

TOP CHORD 2x6 SP No.1 2x6 SP No.1

BOT CHORD OTHERS 2x4 SP No.3

> All bearings 11-5-0. (lb) -Max Horz 2=-129(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 13, 11, 10 except 14=-101(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 2, 8, 12, 13, 14, 11, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 13, 11, 10 except (jt=lb) 14=101.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 8.

Design valid for use only with MiTcRe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road

Job	Truss		Truss Type		Qty	Ply	L	ot 39 Blackberry Ma	nor	
10320-1189	M1		MONOPITCH		•			•		E13912807
O CONTROL OF THE STATE OF THE S			MONOTHON		6		1	ob Reference (option	nal)	
Comtech, Inc., Fa	yetteville, NC 28	309	п —		3	3.130 s N	Mar 1	1 2018 MiTek Indus	tries Inc. Thu Ian 2	07:31:49 2020 Page 1
		-0-11-0		ID:KhiM10 6-0-0	Q_9dy03	362zxkFf	fqAy.	JzV8-hwD6dHH9C4	QRvDDn6V4dVMcOc	qyEzdbVTz_ZRjqzzT_u
		0-11-0	_	6-0-0						
									3	Scale = 1:17.9
Ī								3x4		Ī
			5.00	12			/			
					6					
									4	
g						/			2-6-14	5
3-0-6				/					0	9-0-8
			5							m
	T	2								
	9	1							1	T.
	0-3-8, 0-7-0							Į.	<u> </u>	0-2-8
1	£4								/\	[°]
		\Leftrightarrow	3x4 =						4	
		\times							3x4	
		3x4 =	=							
		H		6-0-0						
Plate Offsets (X,Y)	[2:0-0-6,Edge]	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		6-0-0						
OADING (psf)	SPACIN		CSI.	DEFL.		(loc)	I/d		PLATES	GRIP
FCLL 20.0 FCDL 10.0	Plate Gri Lumber I		TC 0.19 BC 0.12	Vert(LL) Vert(CT)	-0.01 -0.03	2-4 2-4	>9: >9:		MT20	244/190
BCLL 0.0 *	Rep Stre		WB 0.00	Horz(CT)	0.00	2-4		99 240 n/a n/a		
3CDL 10.0		C2015/TPI2014	Matrix-P	Wind(LL)	0.03	2-4	>9		Weight: 36 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

WEBS

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

2x6 SP No.1

(lb/size) 2=277/0-3-0, 4=222/0-1-8 Max Horz 2=86(LC 12)

Max Uplift 2=-72(LC 8), 4=-74(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-1 to 3-8-12, Interior(1) 3-8-12 to 5-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

ansignation

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

Job Truss Truss Type Qty Ply Lot 39 Blackberry Manor E13912808 J0320-1189 M1GE MONOPITCH SUPPORTED Job Reference (optional) Fayetteville, NC 28309 Comtech, Inc., 8.130 s Mar 11 2018 MiTek Industries, Inc. Thu Jan 2 07:31:50 2020 Page 1 ID:KhiM10Q_9dy0362zxkFfqAyJzV8-A6nUrdInzOYIWNozgCbs2a9bFMb_M21dCeJ_GGzzT_t -0-11-0 6-11-0 0-11-0 6-0-0 Scale = 1:19.2 3x4 || 5 6 2x4 || 5.00 12 2x4 || 0-3-8, 3x4 = 2x4 || 2x4 || 3x4 || 6-11-0 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defl L/d **PLATES GRIP** (loc) TCLL 20.0 Plate Grip DOL 1.15 TC 0.02 Vert(LL) -0.00 120 244/190 n/r MT20 TCDI 10.0 Lumber DOL 1.15 BC 0.01 Vert(CT) 0.00 n/r 120 **BCLL** 0.0 Rep Stress Incr YES WB 0.05 Horz(CT) -0.00 6 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-P Weight: 38 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1 **WEBS** 2x4 SP No.3

OTHERS 2x4 SP No 3

REACTIONS. All bearings 6-0-0. (lb) -

Max Horz 2=129(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 6, 7, 2, 8, 9 Max Grav All reactions 250 lb or less at joint(s) 6, 7, 2, 8, 9

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 7, 2, 8, 9.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information

VA 22314.

Job Truss Truss Type Qty Ply Lot 39 Blackberry Manor E13912809 J0320-1189 M2 MONOPITCH 3 Job Reference (optional) Comtech, Inc., Fayetteville, NC 28309 8.130 s Mar 11 2018 MiTek Industries, Inc. Thu Jan 2 07:31:51 2020 Page 1 $ID: KhiM10Q_9dy0362zxkFfqAyJzV8-eJKs2zJPkhg98XN9Ev65bnihZmui5V_mQl2XoizzT_s$ -0-11-0 0-11-0 8-0-0 8-0-0

5.00 12

3x4 ||

6

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

Scale: 1/2"=1"

3x4 = 3x4 || 8-0-0 8-0-0

BRACING-

TOP CHORD

BOT CHORD

Plate Offsets (X,Y)	[2:0-0-6,Edge]		0-0-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.37 BC 0.24 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.05 2-6 >999 360 MT20 244/190 Vert(CT) -0.09 2-6 >999 240 Horz(CT) 0.00 n/a n/a Wind(LL) 0.10 2-6 >923 240 Weight: 46 lb FT = 20%	

LUMBER-

REACTIONS.

WEBS

TOP CHORD 2x6 SP No.1 2x6 SP No.1 **BOT CHORD**

2x4 SP No.3

(lb/size) 6=313/Mechanical, 2=354/0-3-0

Max Horz 2=116(LC 12)

0-3-8

Max Uplift 6=-99(LC 8), 2=-89(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-1 to 3-8-12, Interior(1) 3-8-12 to 8-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3x4 =

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.
- 6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

႔ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSITPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Lot 39 Blackberry Manor Qtv Ply E13912810 J0320-1189 M2GE MONOPITCH SUPPORTED 1 1 Job Reference (optional) Comtech, Inc., Fayetteville, NC 28309 8.130 s Mar 11 2018 MiTek Industries, Inc. Thu Jan 2 07:31:52 2020 Page 1 $ID: KhiM10Q_9 dy 0362 zxkFfqAyJzV8-6VuFGJK1V?p?mhyLndeK7?ExHAHuqySvfyo5K8zzT_ranger for the property of the$ -0-11-0 0-11-0 8-11-0 8-0-0 Scale: 1/2"=1" 3x4 || 2x4 || 5 5.00 12 2x4 || 2x4 || 0-3-8 9 8 12 3x4 || 3x4 = 2x4 П 2x4 || 2x4 || -0-11-0 8-11-0 0-11-0 LOADING (psf) SPACING-2-0-0 CSI. DEFL. (loc) I/defl L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.15 TC 0.05 Vert(LL) 0.00 6-7 n/r 120 MT20 244/190 TCDI 10 0 Lumber DOL 1.15 BC 0.05 Vert(CT) -0.00 6-7 n/r 120

LUMBER-

BCLL

BCDL

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1

WEBS 2x4 SP No.3 2x4 SP No.3 OTHERS

0.0

10.0

BRACING-

BOT CHORD

Horz(CT)

-0.00

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

10

except end verticals.

Rigid ceiling directly applied or 6-0-0 oc bracing, Except:

Weight: 52 lb

FT = 20%

10-0-0 oc bracing: 8-9.

n/a

n/a

REACTIONS. All bearings 6-3-8.

Max Horz 2=167(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 11, 12 except 10=-118(LC 12) Max Grav All reactions 250 lb or less at joint(s) 2, 11, 12 except 10=294(LC 1)

YES

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Rep Stress Incr

Code IRC2015/TPI2014

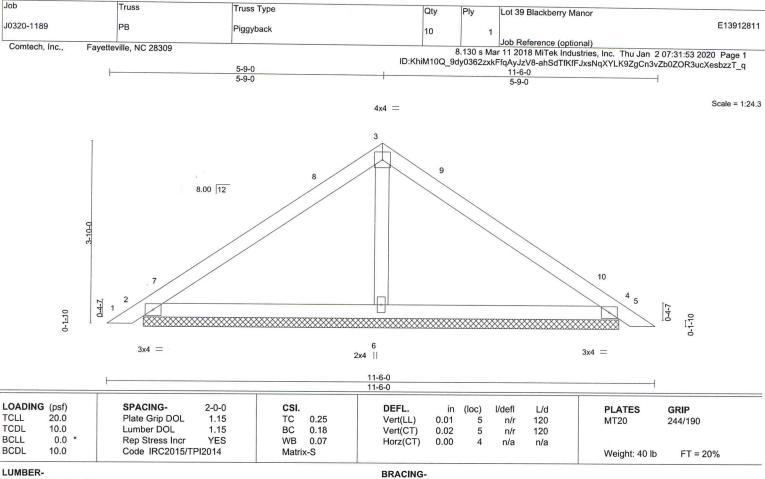
NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WB

Matrix-S

0.05


- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 12 except (jt=lb) 10=118.
- 7) Non Standard bearing condition. Review required.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

January 2,2020

818 Soundside Road

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 **BOT CHORD**

2x4 SP No.3 **OTHERS**

REACTIONS. 2=230/9-11-12, 4=230/9-11-12, 6=397/9-11-12 (lb/size)

Max Horz 2=-88(LC 10)

Max Uplift 2=-32(LC 12), 4=-40(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-2 to 4-7-15, Interior(1) 4-7-15 to 5-9-0, Exterior(2) 5-9-0 to 10-1-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design Valid for use only with Min Reve Connectors. Inits design is based only upon parameters shown, and is for an individual durining Component, and a story as the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

J0320-1189 **PBGE** GABLE Job Reference (optional) Comtech, Inc., Fayetteville, NC 28309 8.130 s Mar 11 2018 MiTek Industries, Inc. Thu Jan 2 07:31:53 2020 Page 1 ID:KhiM10Q_9dy0362zxkFfqAyJzV8-ahSdTfKfFJxsNqXYLK9ZgCn5iZd5ZPk3ucXesbzzT_q 5-9-0 5-9-0 5-9-0 Scale = 1:24.3 4x4 = 4 2x4 || 8.00 12 5 2x4 || 3 6 7 0-1-10 10 3x4 = 3x4 = 2x4 || 2x4 || 2x4 || 11-6-0 11-6-0 LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defl L/d **PLATES GRIP** TCLL 20.0 Plate Grip DOL 1.15 TC 0.07 Vert(LL) 0.00 n/r 120 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 BC 0.05 Vert(CT) 0.00 n/r 120 **BCLL** 0.0 Rep Stress Incr YES WB 0.05 Horz(CT) 0.00 6 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-S Weight: 45 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Qty

Lot 39 Blackberry Manor

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

E13912812

LUMBER-

Job

Truss

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1

OTHERS 2x4 SP No.3

REACTIONS. All bearings 9-11-12. (lb) -

Max Horz 2=-110(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 2, 6 except 10=-137(LC 12), 8=-137(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9 except 10=277(LC 19), 8=276(LC 20)

Truss Type

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ff; Cat. II; Exp C; enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=137, 8=137,
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

🧥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MITEN® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and proveyt damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information

**Available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

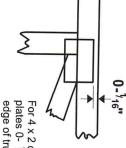

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.

Dimensions are in ft-in-sixteenths. Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

8

6

5

This symbol indicates the required direction of slots in connector plates.

*Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

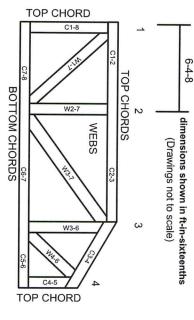
The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur. Min size shown is for crushing only


Industry Standards:

ANSI/TPI1: National Design Specification for Metal Plate Connected Wood Truss Construction. DSB-89: Design Standard for Bracing.

BCSI: Building Component Safety Information

Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 10/03/2015

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.

4

- Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

00

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- indicated are minimum plating requirements.

11. Plate type, size, orientation and location dimensions

- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.

iding shalls in an	108 #	10320-1190	SALES REP.	Marshall Naylor	
interest of the party of the pull pull pull pull pull pull pull pul	ф этопр	# stouQ	V8 NWARD	Vabrid Landry	
d as indivated into of the but of the but the	SEAL DATE	A\U	.VAR BTAD	03/13/50	15300 6
riacess a designe e incorpo cification sign she placemen naible for naible fo	NAJ9	Appleton / BBH-2034	WODEL	Floor	15300
usees are ents to be ents to be the spe widnal de on the ris respo on brack werall str werall str werall str werall str imms is to imms is to i	3MAM 80T	Lot 39 Blackberry Manor	SS3900A	39 Kotata Ave	0 1 0 0
THIS IS These to compon design i See ind designs designs for the c support and cok designs consult foruss de	BUILDER	Ben Stout Real Estate	CITY / CO.	Harnett County / Harnett	10200 11900 13600 15300
Indicates Left End of Truss ence Engineered Truss Drowing) NOT Erect Truss Bockwards					

Header Truss 10d/3" 10d/3"

Nail Information

..0 .9

ROOF & FLOOR TRUSSES & BEAMS Reilly Road Industrial Park Fayetteville, N.C., 28309 Phone: (910) 864-8787 Fax: (910) 864-4444 LOAD CHART FOR JACK STUDS
(BASE ON TAKES ROLL B(1)) & (b))
MAWRE OF JACK STUD REQUIRED & EA END OF
HEADSINGSDEEN David Landry COMTECH David Landry

			All Walls Shown Are Considered Load Bearing Denerson Notes 1, An exerce wall be well denerson as by the service wall denerson to be a few of the service	Products Products Products Pleid
			L .65 Eb	0 .9
	55. 2		54. e	
40.0"	15.0" 11.6.112" 9.10"	FS FS FS FS FS FS FS FS		11'6" ET1 N N N N N N N N N N N N N N N N N N N

.11.87

......

.. 4 1/4..

ORDER DATE 03/13/20 **QUOTE**# **DELIVERY DATE** 11 **CUSTOMER ACCT#** 0000007060 **ROOF & FLOOR** DATE OF INVOICE 11 **CUSTOMER PO#** comTech TRUSSES & BEAMS Ben Stout **ORDERED BY INVOICE** # ly Road Industrial Park P.O. Box 40408 COUNTY Harnett **TERMS** etteville, N.C. 28309 (910) 864-TRUS SUPERINTENDANT Ben Stout y Office: (919) 816-0105 SALES REP Marshall Naylor **JOBSITE PHONE #** (910) 476-4502 David Landry **SALES AREA** JOB NAME: Lot 39 Blackberry Manor **Benjamin Stout Real Estate LOT #** 39 SUBDIV: Blackberry Manor PO Box 53798 **MODEL:**Floor TAG: Appleton / BBH-2034 JOB CATEGORY: Residential - Floor **DELIVERY INSTRUCTIONS:** Fayetteville, NC 28305 (910) 476-4502 **Ben Stout Real Estate** SPECIAL INSTRUCTIONS: 39 Kotata Ave Lot 8 Barrington Place Harnett County, NC PLAN SEAL DATE: N/A DATE BY JILDING DEPARTMENT OVERHANG INFO HEEL HEIGHT 00-06-08 **REQ. LAYOUTS REQ. ENGINEERING** QUOTE 11 or Order END CUT RETURN LAYOUT mn 03/13/20 **GABLE STUDS** 16 IN. OC JOBSITE JOBSITE CUTTING 11 **LOADING** TCLL-TCDL-BCLL-BCDL STRESS INCR. **FLOOR TRUSSES** FLOOR TRUSS SPACING: 24.0 IN. O.C. (TYP.) INFORMATION 40.0.10.0.0.0.5.0 1.00 **FLOOR** QTY **DEPTH** BASE O/A **END TYPE** INT BEARING REACTIONS **PROFILE** PLY ID SPAN SPAN LEFT RIGHT SIZE LOCATION 01-04-00 Joint 11 Joint 12 Joint 13 Joint 14 Joint 15 11-05-00 11-05-00 ET1 49.4 lbs 204.7 lbs. 228.4 lbs. 179.0 lbs 219.3 lbs. 01-04-00 Joint 7 Joint 10 F1 11-05-00 11-05-00 607.9 lbs. 607.9 lbs. 294.3 lbs. 353.4 lbs. 01-04-00 Joint 1 Joint 7 F2 11-05-00 11-05-00 599.3 lbs. 593.0 lbs. 364.2 lbs. 281.8 lbs. 01-04-00 Joint 9 Joint 14 3 F3 15-01-00 15-01-00 809.6 lbs. 809.6 lbs. 405.7 lbs. 405.7 lbs. 01-04-00 Joint 10 Joint 17 F3A 15-01-00 15-01-00 1171.5 lbs. 1903.4 lbs. 767.6 lbs. 1600.7 lbs. 01-04-00 Joint 10 Joint 16 2 18-07-00 18-07-00 F4 1002.1 lbs. 1002.1 lbs. 512.4 lbs. 515.2 lbs. 01-04-00 Joint 11 Joint 21 SSOSS F5 18-07-00 18-07-00 996.3 lbs. 988.9 lbs. 510.2 lbs. 499.3 lbs. 01-01-00 Joint 8 Joint 14 08-05-00 08-05-00 1555.6 lbs. 1351.1 lbs **TEMS** YTC **ITEM TYPE** SIZE LENGTH **PART NUMBER NOTES** FT-IN-16

REQ. QUOTE DATE

ORDER#

J0320-1190

eaction Summary of Order

Sacron Summary of Oruci

ROOF & FLOOR

ComTech TRUSSES & BEAMS ly Road Industrial Park P.O. Box 40408 etteville, N.C. 28309 (910) 864-TRUS y Office: (919) 816-0105

REQ. QUOTE DATE	11	ORDER#	J0320-1190
ORDER DATE	03/13/20	QUOTE #	
DELIVERY DATE	11	CUSTOMER ACCT #	000007060
DATE OF INVOICE	11	CUSTOMER PO#	
ORDERED BY	Ben Stout	INVOICE #	
COUNTY	Harnett	TERMS	
SUPERINTENDANT	Ben Stout	SALES REP	Marshall Naylor
JOBSITE PHONE #	(910) 476-4502	SALES AREA	David Landry

Benjamin Stout Real Estate PO Box 53798 Fayetteville, NC 28305

JOB NAME: Lot 39 Blackberry Manor MODEL:Floor

LOT # 39

SUBDIV: Blackberry Manor

(910) 476-4502

TAG: Appleton / BBH-2034 **DELIVERY INSTRUCTIONS:**

JOB CATEGORY: Residential - Floor

Ben Stout Real Estate

SPECIAL INSTRUCTIONS: Lot 8 Barrington Place

PLAN SEAL DATE:

N/A

39 Kotata Ave Harnett County, NC

												BY	DATE
JILDING DEPARTMENT	OVERHA	ANG INFO	HEEL HEIGHT	00-06-08	REQ.	LAYOUTS		REQ. E	NGINEERING		QUOTE		11
or Order	END CUT	RETURN									LAYOUT	mn	03/13/20
			GABLE STUDS	16 IN. OC		JOBSITE	1		JOBSITE	1	CUTTING		11
										-			

TEMS

QTY	ITEM TYPE	SIZE	LENGTH FT-IN-16	PART NUMBER	NOTES
2	LVL Beams (Sized)	LVL, 1-3/4" x 16" (S)	16-00-00		BM1
3	LVL Beams (Sized)	LVL, 1-3/4" x 18" (S)	22-00-00		GDH
1	Hangers, USP	MSH422			SIMPSON (THA422)

isDesign™

Client:

Ben Stout Real Estate

Project: Address:

Date: 3/13/2020

Designer: David Landry Page 1 of 8

Job Name: Lot 39 Blackberry Manor J0320-1190 Project #:

1.750" X 16.000" Kerto-S LVL

2-Ply - PASSED

Level: Level

wember into	rmation			Reaction	is UNPAT	TERNED Ib	(Uplift)		
Type:	Girder	Application:	Floor	Brg	Live	Dead	Snow	Wind	Const
Plies:	2	Design Method:	ASD	1	309	2562	1422	0	0
Moisture Condition	on: Dry	Building Code:	IBC/IRC 2015	2	309	2562	1422	0	0
Deflection LL:	480	Load Sharing:	No	-		1002		v	Ü
Deflection TL:	360	Deck:	Not Checked						
Importance:	Normal								
Temperature:	Temp <= 100°F				_				
				Bearings					
				Bearing	Length	Cap. Read	t D/L lb	Total Ld. Case	Ld. Comb.
				1 - SPF	3.500"	77% 256	2 / 1422	3984 L	D+S
				2 - SDE	3 500"	77% 256	2/1/22	2004 1	D. C

Analysis Results

Mombay Information

l	Analysis	Actual	Location	Allowed	Capacity	Comb.	Case
l	Moment	14537 ft-lb	7'8 3/4"	39750 ft-lb	0.366 (37%)	D+S	L
	Unbraced	14537 ft-lb	7'8 3/4"	14550 ft-lb	0.999 (100%)	D+S	L
ı	Shear	3621 lb	1'6 5/8"	13739 lb	0.264 (26%)	D+S	L
	LL Defl inch	0.099 (L/1823)	7'8 13/16"	0.376 (L/480)	0.260 (26%)	S	L
L	TL Defl inch	0.277 (L/651)	7'8 13/16"	0.501 (L/360)	0.550 (55%)	D+S	L

Design Notes

- 1 Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not to exceed 6".
- 2 Refer to last page of calculations for fasteners required for specified loads.
- 3 Girders are designed to be supported on the bottom edge only.
- 4 Top loads must be supported equally by all plies.
- 5 Top must be laterally braced at a maximum of 8'1 7/8" o.c.
- 6 Lateral slenderness ratio based on single ply width.

- 1	The second secon										
	ID	Load Type	Location	Trib Width	Side	Dead 0.9	Live 1	Snow 1.15	Wind 1.6	Const. 1.25	Comments
	1	Tie-In	0-0-0 to 15-5-8	(Span)2-0-0	Тор	15 PSF	40 PSF	0 PSF	0 PSF	0 PSF	Floor Load
	2	Tie-In	0-0-0 to 15-5-8	(Span)2-0-0	Тор	20 PSF	0 PSF	20 PSF	0 PSF	0 PSF	Roof Load
١	3	Uniform			Тор	120 PLF	0 PLF	0 PLF	0 PLF	0 PLF	Wall
١	4	Uniform			Far Face	164 PLF	0 PLF	164 PLF	0 PLF		A3, A4
١		Self Weight				12 PI F	151.5.1		012	0121	70, 74

Notes

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

Lumber

Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosi

chemicals

Handling & Installation

- andling & Installation
 LVL beams must not be cut or drilled
 Refer to manufacturer's product information
 regarding installation requirements, multi-ply
 fastening details, beam strength values, and code
 approvals
 Damaged Beams must not be used
 Design assumes top edge is laterally restrained
 Provide lateral support at bearing points to avoid
 lateral displacement and rotation

- For flat roofs provide proper drainage to prevent ponding

This design is valid until 12/11/2021

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633

Manufacturer Info

Client:

Project: Address: Ben Stout Real Estate

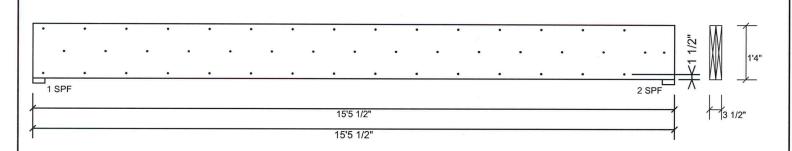
Date:

3/13/2020

Page 2 of 8

Designer: David Landry

Job Name: Lot 39 Blackberry Manor


Project #: J0320-1190

Kerto-S LVL

1.750" X 16.000"

2-Ply - PASSED

Level: Level

Multi-Ply Analysis

Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c.. Maximum end distance not to exceed 6"

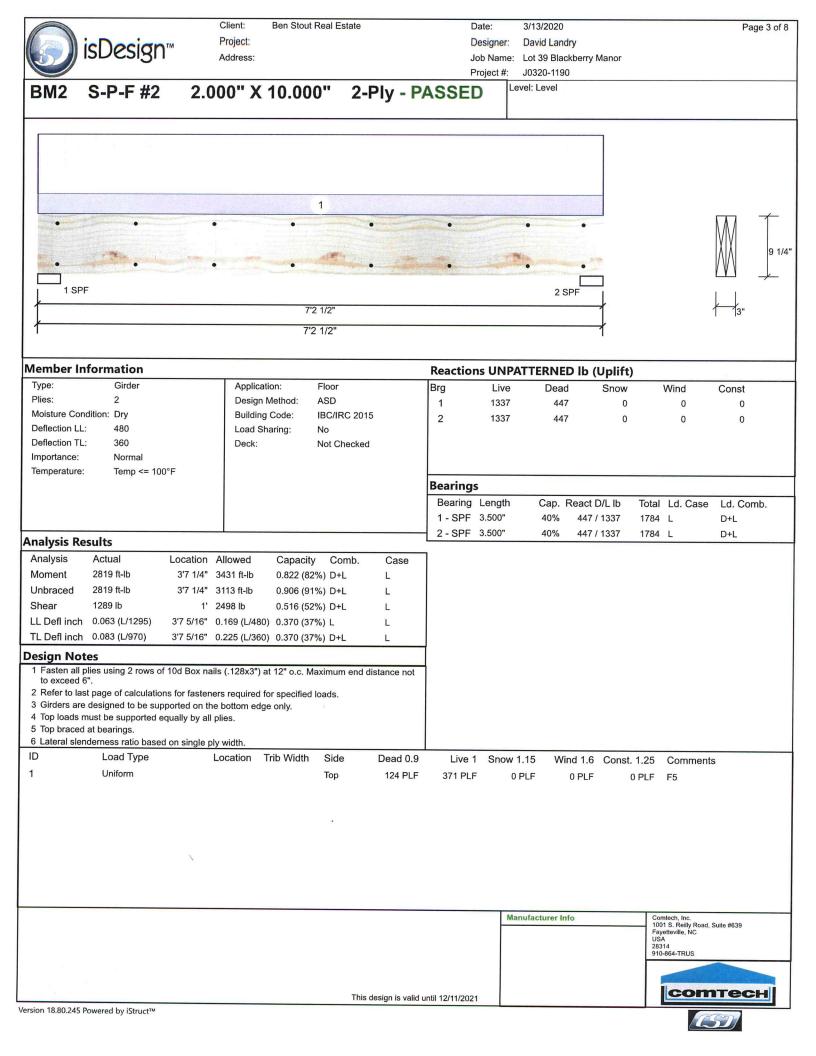
Capacity	66.8 %	
Load	164.0 PLF	
Yield Limit per Foot	245.6 PLF	
Yield Limit per Fastener	81.9 lb.	
Yield Mode	IV	
Edge Distance	1 1/2"	
Min. End Distance	3"	
Load Combination	D+S	
Duration Factor	1.15	

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

- LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements, multi-ply
- Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals
 Damaged Beams must not be used
 Design assumes top edge is laterally restrained
 Provide lateral support at bearing points to avoid lateral displacement and rotation
- For flat roofs provide proper drainage to prevent ponding


This design is valid until 12/11/2021

Manufacturer Info

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633

BM₂

S-P-F #2

Client:

Ben Stout Real Estate

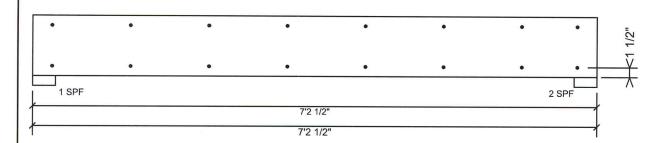
Project: Address:

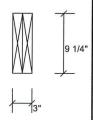
Date:

Job Name:

3/13/2020

Lot 39 Blackberry Manor

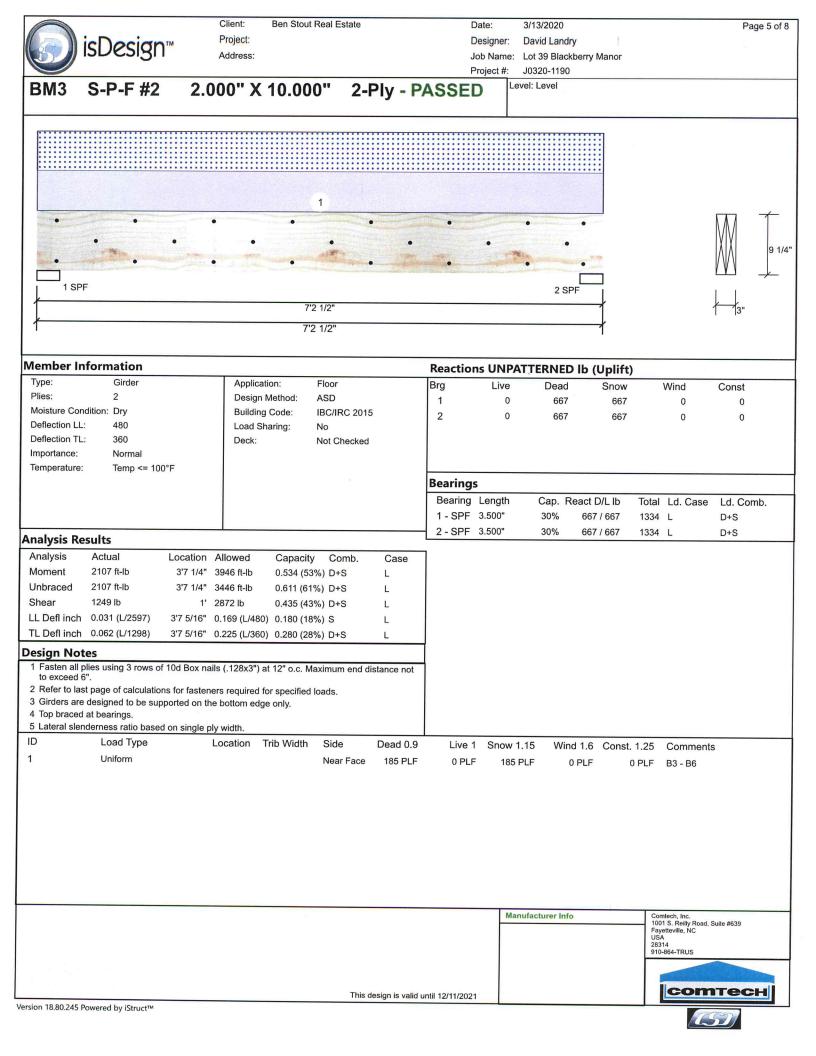

Designer: David Landry


Project #: J0320-1190

2.000" X 10.000" 2-Ply - PASSED

This design is valid until 12/11/2021

Level: Level



Page 4 of 8

Multi-Ply Analysis

Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12" o.c.. Maximum end distance not to exceed 6"

	40.4	
Capacity	3.	0.0 %
Load		0.0 PLF
Yield Limit per Foot		157.4 PLF
Yield Limit per Fastener		78.7 lb.
Yield Mode		IV
Edge Distance		1 1/2"
Min. End Distance		3"
Load Combination		
Duration Factor		1.00

Client:

Project:

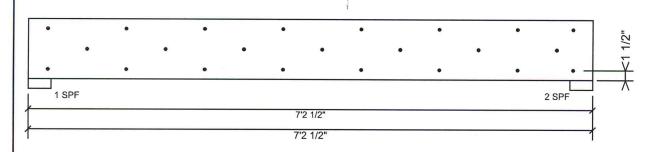
Address:

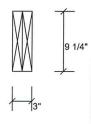
Ben Stout Real Estate

3/13/2020

Designer: David Landry

Job Name: Lot 39 Blackberry Manor


Project #: J0320-1190


S-P-F #2

2.000" X 10.000"

2-Ply - PASSED

Level: Level

Page 6 of 8

Multi-Ply Analysis

Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c.. Maximum end distance not to exceed 6"

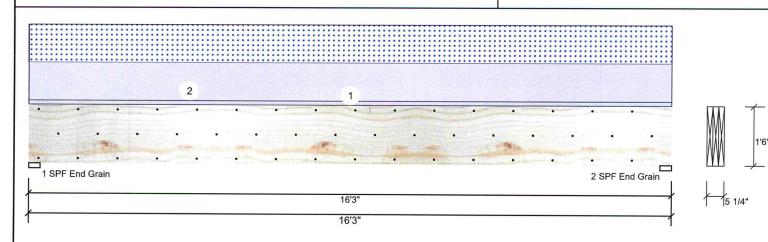
Capacity	78.4 %	
Load	185.0 PLF	
Yield Limit per Foot	236.1 PLF	
Yield Limit per Fastener	78.7 lb.	
Yield Mode	IV	
Edge Distance	1 1/2"	
Min. End Distance	3"	
Load Combination	D+S	
Duration Factor	1.15	

isDesign™

Client:

Address:

Ben Stout Real Estate Project:


Date: 3/13/2020

David Landry

Designer: Job Name: Lot 39 Blackberry Manor Page 7 of 8

Project #: J0320-1190

Kerto-S LVL 1.750" X 18.000" 3-Ply - PASSED Level: Level

iviember in	ember Information							Reactions UNPATTERNED Ib (Uplift)								
Type:	Girder		Applica	tion:	Floor		Brg	Live	Dead	Snow	Wi	ind	Const			
Plies:	3		Design	Method:	ASD		1	0	5192	4534		0	0			
Moisture Con	dition: Dry		Building	Code:	IBC/IRC 201	5	2	0	5192	4534		0	0			
Deflection LL	: 480		Load Sh	naring:	Yes		-		0.02	1001		J	· ·			
Deflection TL	: 360		Deck:		Not Checked	1										
Importance:	Normal															
Temperature:	Temp <= 1	00°F														
							Bearing	s								
						*	Bearing	Length	Cap. R	React D/L lb	Total L	d. Case	Ld. Comb.			
							1 - SPF	3.500"	61%	5192 / 4534	9726 L		D+S			
							End									
Analysis Re	sults						Grain									
Analysis	Actual	Location	Allowed	Capacity	Comb.	Case	2 - SPF	3.500"	61%	5192 / 4534	9726 L		D+S			
Moment	37412 ft-lb	8'1 1/2"	77108 ft-lb	0.485 (499	%) D+S	L	End Grain									
Unbraced	37412 ft-lb	8'1 1/2"	37476 ft-lb	0.998 (100%)	D+S	L										

Design Notes

Manakan Infansatian

1 Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not to exceed 6".

1'8 5/8" 23184 lb

8'1 9/16" 0.395 (L/480) 0.440 (44%) S

8'1 9/16" 0.527 (L/360) 0.710 (71%) D+S

- 2 Refer to last page of calculations for fasteners required for specified loads.
- 3 Girders are designed to be supported on the bottom edge only.
- 4 Top loads must be supported equally by all plies.

7668 lb

LL Defl inch 0.175 (L/1084)

TL Defl inch 0.376 (L/505)

- 5 Top must be laterally braced at a maximum of 5'3" o.c.
- 6 Lateral slenderness ratio based on single ply width.

ID	Load Type	Location	Trib Width	Side	Dead 0.9	Live 1	Snow 1.15	Wind 1.6	Const. 1.25	Comments
1	Uniform			Тор	60 PLF	0 PLF	0 PLF	0 PLF	0 PLF	Wall
2	Uniform			Тор	558 PLF	0 PLF	558 PLF	0 PLF	0 PLF	A1
	Self Weight				21 PLF					

0.331 (33%) D+S

Notes

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown, It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

Lumber

Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

chemicals

Handling & Installation

andling & Installation
LVL beams must not be cut or drilled
Refer to manufacturer's product information
regarding installation requirements, multi-ply
fastening details, beam strength values, and code
approvals
Damaged Beams must not be used
Design assumes top edge is laterally restrained
Provide lateral support at bearing points to avoid
lateral displacement and rotation

For flat roofs provide proper drainage to prevent ponding

This design is valid until 12/11/2021

Manufacturer Info Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633

Client:

Ben Stout Real Estate

Project:

Address:

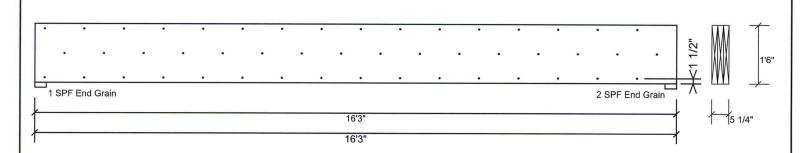
Date:

3/13/2020

Designer: **David Landry**

Job Name: Lot 39 Blackberry Manor

Page 8 of 8


Project #: J0320-1190

Kerto-S LVL **GDH**

1.750" X 18.000"

3-Ply - PASSED

Level: Level

Multi-Ply Analysis

Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c.. Nail from both sides. Maximum end distance not to exceed

0		
Capacity	0.0 %	
Load	0.0 PLF	
Yield Limit per Foot	245.6 PLF	
Yield Limit per Fastener	81.9 lb.	
Yield Mode	IV	
Edge Distance	1 1/2"	
Min. End Distance	3"	
Load Combination		
Duration Factor	1.00	

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

Lumber

Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

andling & Installation
LVL beams must not be cut or drilled
Refer to manufacturer's product information
regarding installation requirements, multi-ply
fastening details, beam strength values, and code
approvals
Damaged Beams must not be used
Design assumes top edge is laterally restrained
Provide lateral support at bearing points to avoid
lateral displacement and rotation

For flat roofs provide proper drainage to prevent ponding

Manufacturer Info

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633

RE: J0320-1190

Lot 39 Blackberry Manor

Trenco

818 Soundside Rd Edenton, NC 27932

Site Information:

Customer:

Project Name: J0320-1190

Lot/Block:

Model:

Address:

Subdivision:

City:

State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014

Design Program: MiTek 20/20 8.1

Wind Code: N/A

Wind Speed: N/A mph

Roof Load: N/A psf

Floor Load: 55.0 psf

This package includes 8 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	E13772240	et1	11/18/2019
2	E13772241	f1	11/18/2019
3	E13772242	f2	11/18/2019
4	E13772243	f3	11/18/2019
5	E13772244	f3a	11/18/2019
6	E13772245	f4	11/18/2019
7	E13772246	f5	11/18/2019
8	E13772247	fg1	11/18/2019

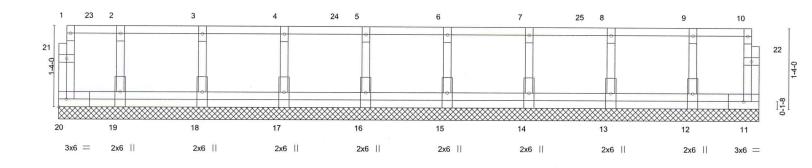
The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2020

North Carolina COA: C-0844


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Lot 39 Blackberry Manor	
J0320-1190	ET1	Floor Supported Gable	1	1		E13772240
Comtech, Inc.,	Fayetteville, NC 28309		8.		Job Reference (optional) 11 2018 MiTek Industries, Inc. Mon Nov 18	08:20:29 2019 Page 1

 $ID: KhiM10Q_9 dy0362 zxkFfqAyJzV8-nTKELBfjjdv6Nvqk5?LVPVbuE_lLpGnv9JGMtlyl?jGnv9JGmtlyl?jGnv9JGnv9JGmtlyl?jGnv9JGmtlyl?jGnv9JGmtlyl?jGnv9JGmtlyl?jGnv9JGmtlyl?jGnv9JGmtlyl?jGnv9JGmtlyl?jGnv9JGmtlyl?jGnv9JGmtlyl?jGnv9JGmtlyl?j$

0-1-8 Scale = 1:18.9

	11-5-0 11-5-0										
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.09 BC 0.01 WB 0.05 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 67 lb	GRIP 244/190 FT = 20%F, 11%E		

LUMBER-BRACING-

TOP CHORD 2x4 SP No.1(flat) **BOT CHORD** 2x4 SP No.1(flat) **WEBS** 2x4 SP No.3(flat) **OTHERS** 2x4 SP No.3(flat) TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 11-5-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 20, 11, 19, 18, 17, 16, 15, 14, 13, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

0-1-8

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 11-20=-10, 1-10=-100

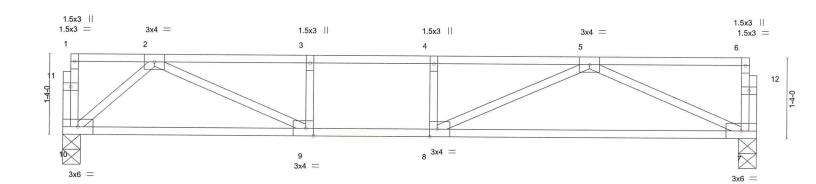
Concentrated Loads (lb)

Vert: 3=-92 6=-92 9=-96 23=-98 24=-92 25=-92

November 18,2019

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information


available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job Truss Truss Type Qty Ply Lot 39 Blackberry Manor E13772241 J0320-1190 F1 Floor 1 Job Reference (optional) Fayetteville, NC 28309 Comtech, Inc., 8.130 s Mar 11 2018 MiTek Industries, Inc. Mon Nov 18 08:20:31 2019 Page 1 ID:KhiM10Q_9dy0362zxkFfqAyJzV8-jsS_lthzFE9pcD_7DQNzUwg6toK?H4mCcdlSxAyl?jE 0-1-8

1-11-0

Plate Offsets (X,Y)	[8:0-1-8,Edge], [9:0-1-8,Edge]		11-5-0 11-5-0						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.53 BC 0.51 WB 0.40 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.25 0.02	(loc) 7-8 7-8 7	l/defl >833 >540 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 57 lb	GRIP 244/190 FT = 20%F, 11%E

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1(flat) **BOT CHORD** 2x4 SP No.1(flat) **WEBS**

2x4 SP No.3(flat)

REACTIONS. (lb/size) 10=608/0-3-8, 7=608/0-3-8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

2-6-0

2-3=-1398/0, 3-4=-1398/0, 4-5=-1398/0 **BOT CHORD** 9-10=0/634, 8-9=0/1398, 7-8=0/1056

WEBS 2-10=-841/0, 2-9=0/844, 3-9=-301/0, 5-7=-1157/0, 5-8=0/495

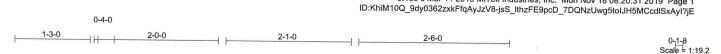
NOTES-

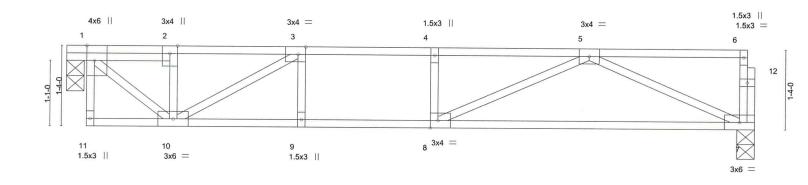
- 1) Unbalanced floor live loads have been considered for this design.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.


November 18,2019


0-1-8 Scale = 1:19.1

Edenton, NC 27932

Job		Truss	Truss Type	Qty	Ply	Lot 39 Blackberry Manor	
J0320-1190	•	F2	Floor	4	1	L. L	E13772242
Comtech, Inc.,	Fayette	eville, NC 28309		8	130 s Mar	Job Reference (optional)	

0-4 0-4						11-5-0						
Plate Offse		[1:0-3-0,Edge], [3:0-1-8,E	11-1-0									
LOADING TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 YES	CSI. TC BC WB	0.60 0.61 0.36	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.27 0.03	(loc) 7-8 7-8 7	l/defl >777 >489 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code IRC2015/TF	PI2014	Matri	x-S	S0.0					Weight: 59 lb	FT = 20%F, 11%E

1	IRA	BE	D
_) IAI		М-

TOP CHORD 2x4 SP No.1(flat) **BOT CHORD** 2x4 SP No.1(flat) **WEBS** 2x4 SP No.3(flat)

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

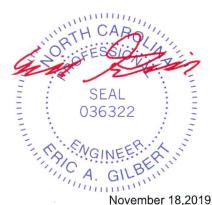
except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 7=593/0-3-8, 1=599/0-3-8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

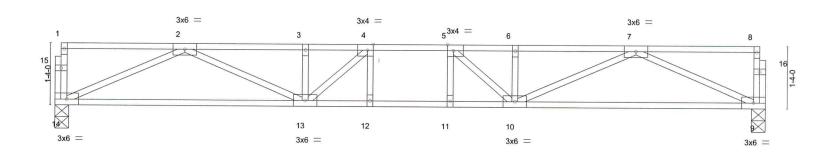

TOP CHORD 1-2=-591/0, 2-3=-588/0, 3-4=-1313/0, 4-5=-1313/0

BOT CHORD 9-10=0/1313, 8-9=0/1313, 7-8=0/1022

WEBS 1-10=0/765, 3-10=-858/0, 5-7=-1119/0, 5-8=0/443

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.
- 5) CAUTION, Do not erect truss backwards.



Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	300		Truss	Truss Type		Qty	Ply	Lot 39 Blackberry Manor	
	J0320-1190		F3	Floor		3	1		E13772243
Į				1000				Job Reference (optional)	
	Comtech, Inc.,	Fayette	ville, NC 28309			8.1	30 s Mar 1	11 2018 MiTek Industries, Inc. Mon Nov 18 08	3:20:32 2019 Page 1
					ID:KhiM1	0Q_9dy0:	362zxkFfq	AyJzV8-B20NzDib0YHgEMZJm7vC17DL3Cel	K0WCLrHU0Tdyl?jD
	0-1-8								
	Η ———	2-6-0		1-3-0	1-7-0	1-3-	0		0-1 ₇ 8 Scale = 1:24.7

				15-1-0 15-1-0					
Plate Offsets (X,Y)	[4:0-1-8,Edge], [5:0-1-8,Edg	ge]							
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 YES	BC 0. WB 0.	0.56 Vert(CT) 0.45 Horz(CT)	in (loc) -0.13 11-12 -0.18 11-12 0.04 9	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2015/TPI2	014	Matrix-S	5				Weight: 78 lb	FT = 20%F, 11%E

		_	_	
LU				

TOP CHORD 2x4 SP No.1(flat) **BOT CHORD** 2x4 SP No.1(flat) **WEBS**

2x4 SP No.3(flat)

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 14=810/0-3-8, 9=810/0-3-8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2316/0, 3-4=-2316/0, 4-5=-2475/0, 5-6=-2316/0, 6-7=-2316/0 **BOT CHORD** 13-14=0/1496, 12-13=0/2475, 11-12=0/2475, 10-11=0/2475, 9-10=0/1496 2-14=-1641/0, 2-13=0/907, 7-9=-1641/0, 7-10=0/907, 5-10=-457/90, 4-13=-457/90 **WEBS**

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 1.5x3 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

November 18,2019

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

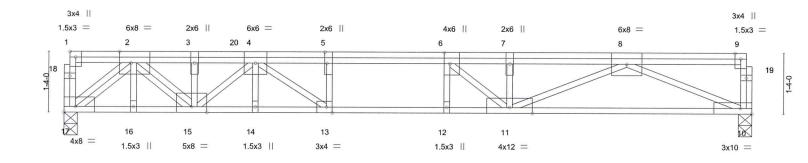
Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job Truss Truss Type Qty Ply Lot 39 Blackberry Manor E13772244 J0320-1190 F3A Floor Job Reference (optional) Comtech, Inc. Fayetteville, NC 28309


8.130 s Mar 11 2018 MiTek Industries, Inc. Mon Nov 18 08:20:33 2019 Page 1 ID:KhiM10Q_9dy0362zxkFfqAyJzV8-fEZIAZiDnsPXsW8VKrQRaLmNAbvjlsQU3xEZ03yI?jC

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

0-1-8 H - 1-2-8 2-6-0 2-6-0 0-1-8 Scale = 1:25.4

					15-1-0						I
					15-1-0						
sets (X,Y)	[1:Edge,0-1-8], [2:0-3-0,E	Edge], [5:0-3-0),Edge], [6:0-3	3-0,Edge], [13:0-1-8,Edge], [17	:Edge,0	-1-8]				
G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
40.0	Plate Grip DOL	1.00	TC	0.87	Vert(LL)	-0.21	13	>844	480	MT20	244/190
10.0	Lumber DOL	1.00	ВС	0.87	Vert(CT)	-0.29	13-14	>605	360		
0.0	Rep Stress Incr	NO	WB	0.84	Horz(CT)	0.06	10	n/a	n/a		
5.0	Code IRC2015/TI	PI2014	Matri	k-S						Weight: 105 lb	FT = 20%F, 11%E
	G (psf) 40.0 10.0 0.0	G (psf) SPACING- 40.0 Plate Grip DOL 10.0 Lumber DOL 0.0 Rep Stress Incr	G (psf) SPACING- 2-0-0 40.0 Plate Grip DOL 1.00 10.0 Lumber DOL 1.00 0.0 Rep Stress Incr NO	G (psf) SPACING- 2-0-0 CSI. 40.0 Plate Grip DOL 1.00 TC 10.0 Lumber DOL 1.00 BC 0.0 Rep Stress Incr NO WB	G (psf) SPACING- 2-0-0 CSI. 40.0 Plate Grip DOL 1.00 TC 0.87 10.0 Lumber DOL 1.00 BC 0.87 0.0 Rep Stress Incr NO WB 0.84	15-1-0 15-1-0 15-1-0	15-1-0 15-1-0	sets (X,Y)— [1:Edge,0-1-8], [2:0-3-0,Edge], [5:0-3-0,Edge], [6:0-3-0,Edge], [13:0-1-8,Edge], [17:Edge,0-1-8] (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) 40.0 Plate Grip DOL 1.00 TC 0.87 Vert(LL) -0.21 13 10.0 Lumber DOL 1.00 BC 0.87 Vert(CT) -0.29 13-14 0.0 Rep Stress Incr NO WB 0.84 Horz(CT) 0.06 10	15-1-0 15-1-0	15-1-0 15-1-0 15-1-0 15-1-0 15-1	15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1(flat)

BOT CHORD 2x4 SP 2400F 2.0E(flat)

WEBS 2x4 SP No.3(flat)

REACTIONS. (lb/size) 17=1903/0-3-8, 10=1171/0-3-8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-4189/0, 3-4=-4216/0, 4-5=-5032/0, 5-6=-5032/0, 6-7=-3997/0, 7-8=-3997/0 TOP CHORD

16-17=0/2203, 15-16=0/2203, 14-15=0/5615, 13-14=0/5615, 12-13=0/5032, 11-12=0/5032, 10-11=0/2388 **BOT CHORD**

WEBS 8-10=-2599/0, 8-11=0/1763, 7-11=0/410, 6-11=-1669/0, 2-17=-2844/0, 2-15=0/2663, 3-15=-598/0, 4-15=-1817/0,

4-13=-1109/0, 5-13=0/504

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1536 lb down at 3-9-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 10-17=-10, 1-9=-100

Concentrated Loads (lb) Vert: 20=-1456(F)

November 18,2019

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP/1 Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a furse system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Brecing indicated is to prevent buckling of individual represent choir members only. Additional temporary and permanent bracking of individual engages and truss eystems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component is always required for stability and to prevent collepse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracking of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component and available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-1473 rev. 10/03/2015 BEFORE USE.

036322

Strongbacks to be attached to walls at their outer ends or restrained by other means.
) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

3) Plates checked for a plus or minus 1 degree rotation about its center.

2) All plates are MT20 plates unless otherwise indicated.

1) Unbalanced floor live loads have been considered for this design.

NOTES-**MEBS**

2-16=-2094/0, 2-15=0/1376, 3-15=-304/24, 8-10=-2093/0, 8-11=0/1380, 7-11=-309/20, 5-11=-984/0, 4-15=-989/20

15-16=0/1907, 13-15=0/3780, 12-13=0/3780, 11-12=0/3780, 10-11=0/1907 вот сновр

2-3=-3152/0, 3-4=-3152/0, 4-5=-3780/0, 5-7=-3155/0, 7-8=-3155/0

тор сноя (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

FORCES.

(lb/size) 16=1002/0-3-8, 10=1002/0-3-8 REACTIONS.

2x4 SP No.3(flat) **MEB2** 2x4 SP 2400F 2.0E(flat) ВОТ СНОЯ

2x4 SP 2400F 2.0E(flat)

	BRACING-									LOB CHORD ON OR STORES			
GRIP 244/190 244/190 FT = 20%F, 11%E	PLATES MT20 M188HS Weight: 93 lb	e/u 09£ 08† P/T	Ndefl 196 196 196 196 197 198	(50l) ni S1-11 8S.0- S1-11 8E.0- 01 80.0	DEFL. Vert(CL) Vert(CT) Horz(CT)	14.0 73.0	CSI TC BC WB Math	2-0-0 1.00 7.00 7.00	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Rode IRC2015/TR	(feq) 5 0.04 0.01 0.0 0.0 0.3	LOADING BCLL BCLL BCLL		
									[9gb∃,8-1-0:4	(Y,X) stes	Plate Off		
Ĭ					0-7-8L								

вот сноя

TOP CHORD

18-7-0

11. Ex3.1 = 9xE = 01xE 3x4 || 3x8 M18SHS FP = = 01x ϵ 3x6 11 15 91 81 = Exg.f = 01xE 1.5x3.1 = 44.9x5 = 9x5= 4x8 || Ex3.1 3×10 = Ex3.1 11 Ex3.1 || Ex3.1

> HH2-6-0

Truss Type

8-2-2

ID:KhiM10Q_9dy0362zxkFfqAyJzV8-7R77OvjrY9XOTgiiuYxg6Ylf1?KIUMWelbz7YVyJr3JB 8.130 s Mar 11 2018 MiTek Industries, Inc. Mon Nov 18 08:20:34 2019 Page 1

Lot 39 Blackberry Manor

Scale = 1:31.4

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

Job Reference (optional) 7 Floor E13772245

Oty

Łځ 10320-1190 Lruss dol

Fayetteville, NC 28309

8-1-0

Comtech, Inc.,

Fayetteville, NC 28309 Comtech, Inc., 8.130 s Mar 11 2018 MiTek Industries, Inc. Mon Nov 18 08:20:35 2019 Page 1 Job Reference (optional) Floor EP 10320-1190 Truss dol Luss Type Lot 39 Blackberry Manor Qty

ID:KhiM10Q_9dy0362zxkFfqAyJzV8-bdhVbFkUJTfF5qHuSGSvfmrqoPgHDpSnXFjg4yyl?jA E13772246

Scale = 1:31.6 84-0 8-2-3 2-6-0

61 10 6 8 9 3 2 = 8xg 3×10 = 3x4 || II Exa. f = Ex3.1 = 01xE II EXG. I = 44.9xE= $\pm x \epsilon$ 11 Ex3.1 3x4 =

II Exa.r

bL

3x10 = 3x8 M18SHS FP

91

GL

[1:0-3-8,Edge], [5:0-1-8,Edge], [6:0-1-8,Edge] 0-7-81 0-7-81

11.5x3.1

13

- ВВАСІИС-TOWRER-FT = 20%F, 11%E Weight: 96 lb Code IRC2015/TPI2014 **S-xntsM** 0.8 Horz(CT) 89.0 Rep Stress Incr e/u e/u LL 50.0 MR **VES** 0.0 **Уе**н(СТ) 244/190 SHS81M 390 799< 31-41 EE.O-99.0 BC 1.00 Lumber DOL 0.01 061/447 MT20 480 748< 91-41 82.0-Ver(LL) 14.0 TC 1.00 Plate Grip DOL 0.04 GRIP **PLATES** l/defl (ool) ui DELL. CSI 2-0-0 SPACING-LOADING (psf)

Rigid ceiling directly applied or 10-0-0 oc bracing. вот снокр except end verticals. Structural wood sheathing directly applied or 6-0-0 oc purlins, тор сновр

> = orxe 7.1

CITBERY 036322

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a furse system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall bracing of trusses and furus systems, see

**ANSIMPRI Quality of the prevent colleges with possible personal injury and properly damage. For general guidance regarding the is always required for stability and to prevent colleges with possible personal injury and properly damage. For general guidance regarding the salveys required to result and practing of trusses and furus systems, see

**ANSIMPRI QUALITY OF THE STATE OF MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MILTAT3 rev. 10/03/2015 BEFORE USE.

6) CAUTION, Do not erect truss backwards.

capacity of bearing surface.

NOLES-

MEBS

вот снокр

ТОР СНОЯ

REACTIONS.

вот снокр

TOP CHORD

Plate Offsets (X,Y)--

11. Ex3. f

81

FORCES.

OTHERS

MEBS

BCDF

BCLL

TCDL

TCLL

Strongbacks to be attached to walls at their outer ends or restrained by other means.

3-16=0/1320, 4-16=-324/12, 5-16=-926/0, 1-21=-1007/0

3) Plates checked for a plus or minus 1 degree rotation about its center.

8-E-0/68e=12,8-E-0/3ee=11 (asia/dl)

2) All plates are MT20 plates unless otherwise indicated. 1) Unbalanced floor live loads have been considered for this design.

8-9=-3127/0

4x4 SP No.2(flat)

2x4 SP No.3(flat)

8x4

11

2x4 SP 2400F 2.0E(flat)

2x4 SP 2400F 2.0E(flat)

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

1-17=0/1423, 9-11=-2080/0, 9-12=0/1363, 8-12=-301/18, 6-12=-960/0, 3-17=-1148/0,

16-17=0/1997, 14-16=0/3744, 12-14=0/3744, 12-13=0/3744, 70-12=0/1896

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-1154/0, 2-3=-1152/0, 3-4=-3191/0, 4-5=-3191/0, 5-6=-3744/0, 6-8=-3127/0,

4) Bearing at joint(s) 21 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify

818 Soundside Road Edenton, NC 27932

November 18,2019

= 9XE

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a furse system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building of prevent buckling of individual reprovement of the chord members only. Additional temporary and permanent bracing building of prevent collapse with possible personal injury and properly damage. For general guidance regarding the is baways required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the is baways required for stability and to prevent collapse with possible personal injury and properly damage. ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component is always required for stability and to prevent collapse with possible personal injury and precing individual properly damage. ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component and precing individual properly damage.

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-1473 rev. 10/03/2015 BEFORE USE.

03632

OIH

Scale = 1:15.5

E13772247

0-E-L

ID:KhiM10Q_9dy0362zxkFfqAyJzV8-bdhVbFkUJTfF5qHuSGSvfmrj2PeKDqxnXFjg4yyl?jA 8.130 s Mar 11 2018 MiTek Industries, Inc. Mon Nov 18 08:20:35 2019 Page 1

713--71 99-499 5-499 16-499 17--517 Concentrated Loads (lb)

Vert: 8-14=-10, 1-7=-100

Uniform Loads (plf)

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

LOAD CASE(S) Standard

4) CAUTION, Do not erect truss backwards.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

2) Refer to girder(s) for truss to truss connections.

1) Plates checked for a plus or minus 1 degree rotation about its center.

NOIES-

вот сноя

MEBS

2-14=-2245/0, 2-12=0/1146, 3-12=-368/0, 4-12=-504/0, 4-10=-402/0, 5-10=-465/0, 6-10=0/1223, 6-8=-22553/0

13-14=0/1856, 12-13=0/1856, 11-12=0/3195, 10-11=0/3195, 9-10=0/1874, 8-9=0/1874

7-8=-294/0, 2-3=-2786/0, 3-4=-2786/0, 4-5=-2868/0, 5-6=-2868/0 TOP CHORD

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. FORCES.

(lb/size) 14=1351/0-3-8, 8=1556/Mechanical REACTIONS.

> 2x4 SP No.3(flat) MERR 2x4 SP No.1(flat) вот снокр

2x4 SP No.1(flat) TOP CHORD

BOT CHORD BRACING-

тор снокр

Rigid ceiling directly applied or 10-0-0 oc bracing. except end verticals. Structural wood sheathing directly applied or 6-0-0 oc purlins,

LUMBER-FT = 20%F, 11%E dl 64 : JhgiaW **A-xintsM** Code IRC2015/TPI2014 0.8 BCDF e/u n/a 8 60.03 Horz(CT) 86.0 MB Rep Stress Incr ON 0.0 360 666< 11 60.0-Ver(CT) 79.0 BC 00. r Lumber DOL 0.01 244/190 MISO 480 666< 90.0-Λ64(ΓΓ) 48.0 CL 1.00 Plate Grip DOL 0.04 GRIP PLATES P/7 l/defl (loc) ui 'ISO

BCLL TCDL TCLL DEFL. 0-0-7 SPACING-LOADING (psf) [8-1-0,8-1-0:21] Plate Offsets (X,Y)--0-9-8

= 01xE = 01xE II Exd. f = 8x4 || Ex3.1 = 9×t || Ex3.1 01 LL 15 13 1-1-0 91 11 $= 8x^{4}$ g 3 $= 9xe^{t}$ = 9xp2 II EXG. I II Exc.1 || Exd.f

> + +1-2-8

Fayetteville, NC 28309

FG1

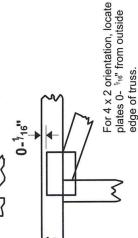
Truss Type

Truss

Comtech, Inc.,

dol

10320-1190


Job Reference (optional) Floor Girder Lot 39 Blackberry Manor Oty

Symbols

PLATE LOCATION AND ORIENTATION

Dimensions are in ft-in-sixteenths. Apply plates to both sides of truss Center plate on joint unless x, y and fully embed teeth offsets are indicated.

required direction of slots in This symbol indicates the connector plates. * Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

4 × 4

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

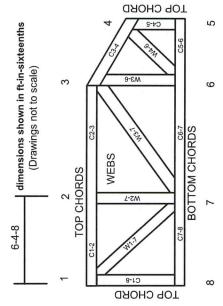
LATERAL BRACING LOCATION

by text in the bracing section of the Indicated by symbol shown and/or output. Use T or I bracing if indicated.

BEARING

number where bearings occur. Min size shown is for crushing only. (supports) occur. Icons vary but reaction section indicates joint

Industry Standards:


Plate Connected Wood Truss Construction. ANSI/TPI1: National Design Specification for Metal DSB-89:

BCSI:

ndicates location where bearings

Design Standard for Bracing. Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

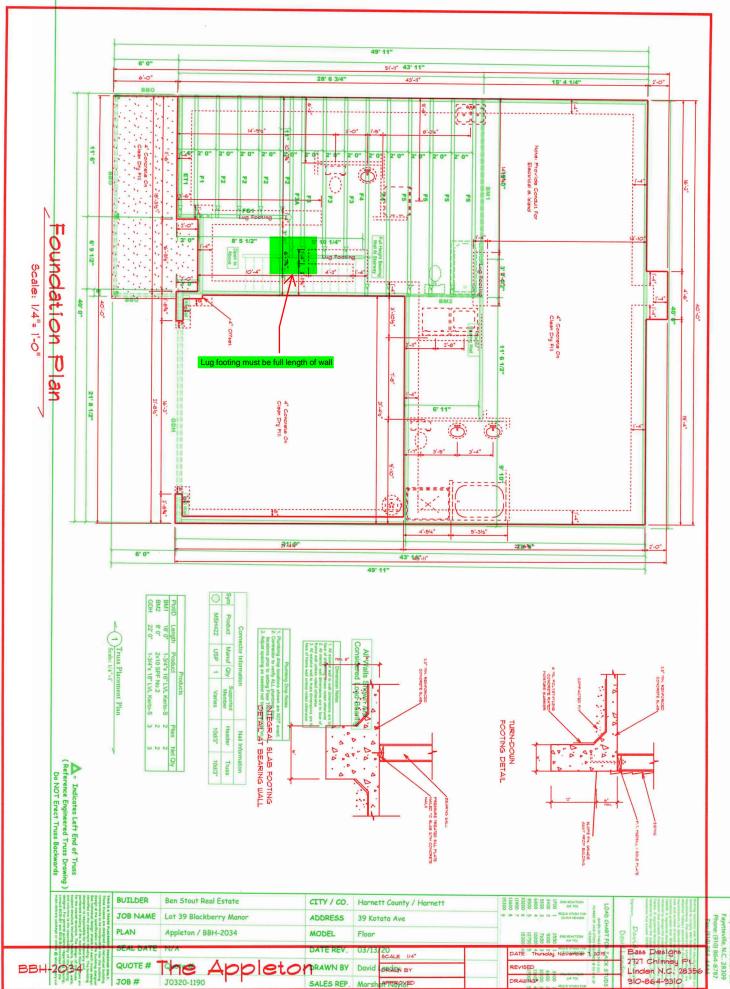
CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

rrusses are designed for wind loads in the plane of the truss unless otherwise shown. Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others. © 2012 MiTek® All Rights Reserved



MiTek Engineering Reference Sheet: MII-7473 rev. 10/03/2015

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses. e,
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties. 4
- Cut members to bear tightly against each other. 5
- joint and embed fully. Knots and wane at joint Place plates on each face of truss at each locations are regulated by ANSI/TPI 1. 6
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1. 7
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication. œ
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber. 6
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- 19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.

SALES REP.

JOB#

J0320-1190

Reilly Road Industrial Park Fayetteville, N.C. 28309 Phone: (910) 864-8787 ROOF & FLOOR TRUSSES & BEAMS