

Trenco 818 Soundside Rd Edenton, NC 27932

Re: P-5824-1 Rob Grissom V2-Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Peak Truss Builders, LLC.

Pages or sheets covered by this seal: E12751955 thru E12751981

My license renewal date for the state of North Carolina is December 31, 2019.

North Carolina COA: C-0844

February 28,2019

Gilbert, Eric

IMPORTANT NOTE: Truss Engineer's responsibility is solely for design of individual trusses based upon design parameters shown on referenced truss drawings. Parameters have not been verified as appropriate for any use. Any location identification specified is for file reference only and has not been used in preparing design. Suitability of truss designs for any particular building is the responsibility of the building designer, not the Truss Engineer, per ANSI/TPI-1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	CAP1	Piggyback	1	1	Job Reference (optional)	E12751955

Run: 8.24 E Feb 11 2019 Print: 8.240 E Feb 11 2019 MiTek Industries, Inc. Thu Feb 28 08:28:00 ID:elgqJoiPHf6cNpEgFtywOLzI_OJ-6g5fnRkdmqOtSPFEEFnj9qyRmpFPQAQqhMblfAzgfqF

7-0-15

Page: 1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2009	9/TPI2007	CSI TC BC WB Matrix-P	0.17 0.09 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	LUMBER TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 2=186/7-0-15, 4=186/7-0-15, 6=242/7-0-15 Marchaeler Constants				es continuous spaced at 4-C s been desig ad nonconcurr nas been desi n chord in all by 2-00-00 wid y other memi hanical conne c capable of w uplift at joint 4. d Industry Pig	s bottom chor)-0 oc. ned for a 10.0 rent with any gigned for a liv areas where de will fit betw bers. ection (by oth vithstanding 4 ggyback Truss	d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bott ers) of truss t 3 lb uplift at j s Connection	ds.)psf om oont					
FORCES TOP CHORD BOT CHORD WEBS	Max Uplift 2=-05 (20 (lb) - Maximum Com Tension 1-2=0/12, 2-7=-99/3: 3-8=-30/53, 3-9=-21/ 4-10=-99/35, 4-5=0/ 2-6=-14/37, 4-6=-14/ 3-6=-154/46	10), 4=-43 (LC 10) pression/Maximum 4, 7-8=-46/43, 755, 9-10=-46/44, 12 37	Detail for Connection to base truss as applicable, or consult qualified building designer. LOAD CASE(S) Standard These truss designs are based upon the building code shown. This code has been specifie by the project engineer/architect, or building designer. The applicability of this code in any particular jurisdiction should be confirmed with the building official prior to truss fabrication. This determination is not the responsibility of the component/truss design This applies to all truss design drawings in this job.								ied ner.		

NOTES

 Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (all heights) and C-C Exterior (2) 0-3-7 to 3-3-7, Interior (1) 3-3-7 to 4-2-10, Exterior (2) 4-2-10 to 7-2-10, Interior (1) 7-2-10 to 8-1-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

SEAL 036322 February 28,2019

Job	Truss	Truss Type	Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	CAP2	Piggyback	18	1	Job Reference (optional)	E12751956

Peak Truss Builders LLC New Hill NC - 27562

Run: 8 24 F. Feb 11 2019 Print: 8 240 F. Feb 11 2019 MiTek Industries, Inc. Thu Feb 28 08:28:02 ID:elgqJoiPHf6cNpEgFtywOLzI_OJ-?RLAcon8q3ulw1Z?T5rfJg77IRcLM_QQc_ZVoxzgfqB

Scale =	1:36.4
---------	--------

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS (lb/size)

OTHERS

BRACING

TOP CHORD 2x4 SP No.1

2x4 SP No.1

2x4 SP No.3

bracing.

6-0-0 oc purlins.

Structural wood sheathing directly applied or

2=186/7-0-15, 4=186/7-0-15,

Rigid ceiling directly applied or 10-0-0 oc

6=242/7-0-15

Loading TCLL (roof) TCDL BCLL BCDL LUMBER

(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
20.0	Plate Grip DOL	1.15	TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190
10.0	Lumber DOL	1.15	BC	0.09	Vert(TL)	n/a	-	n/a	999		
0.0*	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
10.0	Code	IBC2009/TPI2007	Matrix-P							Weight: 30 lb	FT = 20%

7-0-15

٤Ì	Cable	ctude	cnacod	at 4 0 0	~~
ונ	Gable	: อเนนอ	spaceu	al 4-0-0	00.

This truss has been designed for a 10.0 psf bottom 7)

chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf 8)

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 43 lb uplift at joint 2 and 43 lb uplift at joint 4.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

Max Uplift 2=-43 (LC 10), 4=-43 (LC 10) FORCES (lb) - Maximum Compression/Maximum Tension 1-2=0/12, 2-7=-99/34, 7-8=-46/43, TOP CHORD 3-8=-30/53, 3-9=-21/55, 9-10=-46/44, 4-10=-99/35, 4-5=0/12 BOT CHORD 2-6=-14/37, 4-6=-14/37 WEBS 3-6=-154/46 NOTES

Max Horiz 2=-59 (LC 8)

Unbalanced roof live loads have been considered for 1) this design

- Wind: ASCE 7-05; 100mph; TCDL=6.0psf; 2) BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (all heights) and C-C Exterior (2) 0-3-7 to 3-3-7, Interior (1) 3-3-7 to 4-2-10, Exterior (2) 4-2-10 to 7-2-10, Interior (1) 7-2-10 to 8-1-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- This truss has been designed for basic load 4) combinations, which include cases with reductions for multiple concurrent live loads.

Page: 1

Job	Truss	Truss Type	Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	CAP3	Piggyback	7	1	Job Reference (optional)	E12751957

Run: 8.24 E Feb 11 2019 Print: 8.240 E Feb 11 2019 MiTek Industries, Inc. Thu Feb 28 08:28:02 ID:elgqJoiPHf6cNpEgFtywOLzI_OJ-?RLAcon8q3ulw1Z?T5rfJg79oRdQM_nQc_ZVoxzgfqB

 \vdash

3-7-5

Scale = 1:34.5 Plate Offsets (X, Y); [2:0-2-6.0-1-0], [4:0-2-6.0-1-0]

Plate Olisets (.	X, Y): [2:0-	-2-6,0-1-0],	[4:0-2-6,0-1-0]												
L oading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2009	9/TPI2007	CSI TC BC WB Matrix-P	0.04 0.02 0.01	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%	
ACLL BCDL LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC BCDL=6.0 Exp B; Enc (2) zone; c left and rig MWFRS fc grip DOL= 0 TOP CHORD	2x4 SP N 2x4 SP N 2x4 SP N Structura 4-8-11 oc Rigid ceil bracing. (lb/size) Max Horiz Max Horiz Max Grav (lb) - Max Tension 1-2=0/12, 2-6=-16/3 3-6=-62/1 ed roof live I h. CE 7-05; 10 0psf; h=0ft; I closed; MW eantilever le pht exposed or reactions 1.60	0.0 10.0 10.0 0.1 0.3 I wood she purlins. ing directly 2=111/3-7 6=108/3-7 2=-46 (LC 2=111 (LC (LC 3) imum Com 2-3=-62/3 8, 4-6=-16 5 loads have 0mph; TCE 3=45ft; L=2 VFRS (all he ft and right tand right	Rep Stress Incr Code athing directly applied applied or 10-0-0 oc 7-5, 4=111/3-7-5, 7-5 2.8) C 1), 4=111 (LC 1), 6 appression/Maximum 3, 3-4=-62/34, 4-5=0/ /38 been considered for DL=6.0psf; 24ft; eave=4ft; Cat. II; eights) and C-C Exte exposed ; end vertic embers and forces & imber DOL=1.60 plat	YES IBC2009 7) 8) dor LC =111 12 rior al e -	D/TPI2007 This truss ha chord live loa See Standard Detail for Cor consult qualit DAD CASE(S)	WB Matrix-P s been designed fo d nonconcurrent w d Industry Piggyban nnection to base tr fied building desigr Standard	0.01 or a 10.0 vith any ck Truss uss as a her.	Poriz(1L)	ds.	4	n/a	n/a	Weight: 18 lb	FT = 20%	
 Truss desi only. For s see Standa or consult This truss 	igned for wi studs expos ard Industry qualified bu has been d	nd loads in sed to wind / Gable En illding desig esigned for	the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP r basic load	s le, ∣ 1.								ITTUN.	0.	36322	Section 199
combination multiple combinationmultiple combinationGable requiredGable stude	ons, which i oncurrent liv uires contin ds spaced a	ve loads. uous botto t 2-0-0 oc.	es with reductions to										Februar	GILBE	1113

ENGINEERING BY EREPTION A MITEK Atfillate 818 Soundside Road Edenton, NC 27932

Page: 1

Job	Truss	Truss Type	Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	CAP4	Piggyback	2	1	Job Reference (optional)	E12751958

Run: 8.24 E Feb 11 2019 Print: 8.240 E Feb 11 2019 MiTek Industries, Inc. Thu Feb 28 08:28:03 ID:elgqJoiPHf6cNpEgFtywOLzI_OJ-TevYq8ombM09YB8B1oMustgI2qym5RcZreI3KNzgfqA Page: 1

818 Soundside Road Edenton, NC 27932

I	3-7-5
Г	

Scale = 1:34.5 Plate Offsets (X, Y): [2:0-2-6.0-1-0]. [4:0-2-6.0-1-0]

Loading TCLL (root) (ps) (ps) Spacing (ps) 6-0-0 (ps) CSI (C DEFL (N in (theo) (not) Uddt LATES (C GRIP (S TCLL (root) 10.0 Not (Ps) Stack (Ps) Stack (Ps) <t< th=""><th></th><th>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</th><th>_ 0,0 . 0],</th><th>[</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1</th><th><u> </u></th><th></th></t<>		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_ 0,0 . 0],	[1	<u> </u>	
TCLL (rod) 20.0 Plate Grip DOL 1.15 TC 0.14 Vert(TL) n/a - n/a 99.9 MT20 244/190 BCLL 0.0 0.0 Rep Stress Inor NO WB 0.04 Horiz(TL) n/a - n/a n/a <th>Loading</th> <th></th> <th>(psf)</th> <th>Spacing</th> <th>6-0-0</th> <th></th> <th>CSI</th> <th></th> <th>DEFL</th> <th>in</th> <th>(loc)</th> <th>l/defl</th> <th>L/d</th> <th>PLATES</th> <th>GRIP</th> <th></th>	Loading		(psf)	Spacing	6-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCDL 10.0 Lumber DOL 1.15 BC 0.04 HritT(TL) n/a - n/a 999 BCDL 10.0 Code NO WB 0.04 HritT(TL) 0.00 4 n/a n/a Meight: 18 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.1 6 Gable studs spaced at 2-0-0 cc. To 10.00 4 n/a n/a N/a DT CHORD 2x4 SP No.1 7 This truss has been designed for a 10.0 pst bottom chord live load nonconcurrent with any other live loads. See Standard nutury Physybach truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer. EOAD CASE(S) Standard D7 CHORD 2-0-0 cc purins (Switched from sheeted: Spacing > 2-0-0). DAD CASE(S) Standard DAD CASE(S) Standard D7 CHORD 2-0-07, 2-3-33/3-7-5, 4-333/3-7-5, 4-333/3-7-5, 4-333/3-7-5, 4-333/3-7-5, 4-333/3-7-5, 4-333/3-7-5, 4-333/3-7-5, 4-333/3-7-5, 4-33/3/3-7-5	TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
BCLL 0.0 Rep Stress incr NO WB 0.0 Moriz(TL) 0.00 4 n/a n/a BCDL 10.0 Code IBC2000TF12007 WB mix-P 0.00 4 n/a n/a n/a D10 ChORD 2x4 SP No.1 6 Gable studs spaced at 2-0-0 cc. 7 This trues has been designed for a 10.0 pd b fottom D10 CHORD 2x-4 SP No.1 7 This trues has been designed for a 10.0 pd b fottom 8 8 See Standard Industry Pigyback Trues Connection Beat for Connection to beat monoconcurrent with any other live loads. 8 8 See Standard Industry Pigyback Trues Connection Beat for Connection to beat monoconcurrent with any other live loads. 8 See Standard Industry Pigyback Trues Connection Beat for Connection to beat monoconcurrent with any other live loads. 8 See Standard Industry Pigyback Trues Connection Beat for Connection to beat monoconcurrent with any other live loads. 8 See Standard Industry Pigyback Trues Connection Beat for Connection to beat monoconcurrent with any other live loads. 8 See Standard Industry Pigyback Trues Connection Beat for Connection to beat monoconcurrent with any other live loads. 8 See Standard Industry Pigyback Trues Connection Beat for Connection to beat monoconcurrent withany oth	TCDL		10.0	Lumber DOL	1.15		BC	0.08	Vert(TL)	n/a	-	n/a	999			
BCDL 10.0 Code IBC2009TP12027 Matrix-P Weight: 18 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.1 6) Gable studs spaced at 2-00 oc. This truss has been designed for a 10.0 ps bottom chord live load nonconcurrent with any other live loads. 6) Gable studs spaced at 2-00 oc. OT CHORD 2x4 SP No.3 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designers. Consult qualified building designers. DAD CHORD 16/0512 2-33/37-5, 4-33/37-5, 6-323/37-5, 6-323/37-5, 6-323/37-5, 6-323/37-5, 6-323/37-5, 6-323/37-5, 6-32/37-7, 5-3/4-33/3, 10, 1, 6-333 (LC 3) Consult qualified building designer. FORCES (b). Maximum Compression/Maximum Tension Max Grav 2-3/33 (LC 1), 6-333 (LC 3) Consult qualified building designer. FORCES (b). Maximum Compression/Maximum Tension See 180/421 (Model A) See 180/421 (Model A) VIDES 300 CHORD 2-6-48/110, 4-6-48/110 Wind ASCE 7-05; 100mph; TCDL-6.0pd; BCDL-6.0pd; h=dtit. 12-3/4; sew=-dt; Cat. II; Exp B: Enclosed; WWFRS (a live sposed C) - CD is fores A WWFRS for reactions shown; Lumber DDL=1.60 plate grip DDL=1.60 SEAL 036322 3) Truss designed for wind loads in the plane of the face), see Standard Industry Gable End Details as applicable, or consult qualified building designers as per MSUFP1 1. 4) This truss has been designed for basic load combinations, which Incide cases with reductions for multiple concurrent two loads shown; burchurch debaring.	BCLL		0.0	Rep Stress Incr	NO		WB	0.04	Horiz(TL)	0.00	4	n/a	n/a			
LUMBER TOP CHORD 2x4 SP No.1 DTHER 2x4 SP No.3 DTHER 2x4 SP NO.3	BCDL		10.0	Code	IBC2009/	TPI2007	Matrix-P							Weight: 18 lb	FT = 20%	
TOP CHORD DOT CHORD DOT CHORD 2/4 SP No.1 7) This truss has been designed for a 10.0 pot bottom BOT CHORD DOT HERS 2/4 SP No.3 8) See Shandard Industry Piggyback Truss Connection BRACING TOP CHORD 2-0-0 oc purtins (Switched from sheeted: Spacing > 2-0-0). (Brid celling directly applied or 10-0-0 oc bracing. LOAD CASE(S) Standard Industry Piggyback Truss connection REACTIONS (Noise) 2-33/3-7.5, 6-323/3-7.5, 6-323/3-7.5, 6-323/3-7.5, 6-323/3-7.5, 6-323/3-7.5, 6-323/3-7.5, 6-323/3-7.5, 6-323/3-7.5, 6-323/3-7.5, 6-323/3-7.5, LOAD CASE(S) Standard FORCES (Ib) · Maximum Compression/Maximum Trans- Truss Association TOP CHORD 1-2-0137, 2-3-185/93, 3-4=-185/96, 4-5-9037 4-5-9037 TOP CHORD 1-2-0137, 2-3-185/93, 3-4=-185/96, 4-5-9037 4-5-9037 Store S -0-0 -0-0 TOP CHORD 1-2-0137, 2-3-185/93, 3-4=-185/96, 4-5-9037 -0-0.90 TOP CHORD 1-2-0137, 2-3-185/93, 3-4=-185/96, 4-5-9037 -0-0.90 TOP CHORD 0-6-48/110, 4-6=-48/110, 4	LUMBER				6)	Gable studs :	spaced at 2-0-0 oc	-								
BOT CHORD 244 SP No.1 chord live load nonconcurrent with any other live loads. OTHERS 244 SP No.3 Bse Standard Industry Pigyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer. (Switched from sheetest Spacing 2-0-0). BOT CHORD Rigid ceiling directly applied or 10-0-0 c. bracing. REACTIONS (Ibrisce) 2-333/3-7.5, 4=333/3-7.5, 6=333/3-7.5, 6=333/3-7.5, 6=333/3-7.5, 6=333/3-7.5, 6=333/3-7.5, 6=333/3-7.5, 6=333/3-7.5, 6=333/3-7.5, 6=333/3-7.5, 6=333/3-7.5, 6=333/3-7.5, 6=333/3-7.5, 6=333/3-7.5, 6=333/3-7.5, 6=333/3-7.5, 6=333/3-7.5, 6=333/3-7.5, 6=33/3/3-7.5, 6=30/3/2, 7=3/3/3-7.5, 6=30/3/2, 7=3/2, 7=3/3/2, 7=3/2, 7=3/3/2, 7=3/2, 7=3/3/2, 7=3/2, 7=3/3/2, 7=3/3/2, 7=3	TOP CHORD	2x4 SP N	lo.1		7)	This truss ha	s been designed fo	or a 10.0	0 psf bottom							
OTHERS 2×4 5P No.3 weights of the set set set set set set set set set se	BOT CHORD	2x4 SP N	lo.1			chord live loa	d nonconcurrent w	vith any	other live load	ds.						
BRACINOS TOP CHORD CO-0-0 C purins Consult qualified building designer. LOAD CASE(S) Standard LOAD CASE(S) Stand	OTHERS	2x4 SP N	0.3		8)	See Standard	d Industry Piggyba	ck Trus	s Connection							
TOP CHORD 2-0-0 oc purins consult qualified building designer. Consult qualified building designer. LOAD CASE(S) Standard BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. LOAD CASE(S) Standard REACTIONS (brisize) 2-33/3-7.5, 4-333/3-7.5, 6-323/3-7.5, 7-3	BRACING					Detail for Cor	nnection to base tr	uss as a	applicable, or							
(Switched from sheeted: Spacing > 2-0.0). LOAD CASE(S) Standard BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (Ib/size) 2-333/3-7-5, 6=333/3-7-5, 6=323/3-7-5, 6=323/3-7-5, Max Horiz 2-1137 (LC 8) Max Grav 2-333 (LC 1), 4=33 (LC 1), 6=333 (LC 3) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2-0/37, 2-3=-185/93, 3-4=-185/96, 4-5=0/37, 2-3=-185/93, 3-4=-185/96, 4-5=0/37, 2-3=-185/93, 3-4=-185/96, 4-5=0/37, 2-3=-185/93, 3-4=-185/96, 4-5=0/37, 2-3=-185/93, 3-4=-185/96, 4-5=0/37, 2-3=-185/93, 3-4=-185/96, 4-5=0/37, 2-3=-185/93, 3-4=-185/96, 4-5=0/37, 2-3=-185/93, 3-4=-185/96, 4-5=0/37, 2-3=-185/93, 3-4=-185/96, 4-5=0/37, 2-3=-185/93, 3-4=-185/96, 4-5=0/37, 2-3=-185/93, 3-4=-185/96, 4-5=0/37, 2-3=-185/93, 3-4=-185/96, 4-5=0/37, 2-3=-185/93, 3-4=-185/96, 4-5=0/37, 2-3=-185/93, 3-4=-185/96, 4-5=0/37, 2-3=-185/93, 3-4=-185/96, 4-5=0/37, 2-3=-185/93, 3-4=-185/96, 4-5=0/37, 2-3=-185/93, 3-4=-185/96, 4-5=0/37, 2-3=-185/93, 3-4=-185/96, 4-5=0/37, 2-3=-185/96, 4-5=0/37, 2-3=-185/93, 3-4=-185/96, 4-5=0/37, 2-3=-185/96, 4-5=0/37, 2-3=-185/96, 4-5=0/37, 2-3=-185/96, 4-5=0/37, 2-3=-185/96, 4-5=0/37, 2-3=-185/96, 4-5=0/37, 2-3=-185/96, 4-5=0/37, 2-3=-185/96, 4-5=0/37, 2-3=-185/96, 4-5=0/37, 2-3=-185/96, 4-5=0/37, 2-3=-185/96, 4-5=0/37, 2-3=-185/96, 4-5=0/37, 2-3=-180, 2-3=0, 2-3=-180, 2-3=0, 2-3=-180, 2-3=0, 2-3=-180, 2-3=0, 2-3=-180, 2-3=0, 2-3=-180, 2-3=0, 2-3=-180, 2-3=0, 2-3=-180, 2-3=0, 2-3=-180, 2-3=0, 2-3=-180, 2-3=0, 2-3=-180, 2-3=0, 2-3=-180, 2-3=0, 2-3=-180, 2-3=-180, 2-3=0, 2-3=-180, 2	TOP CHORD	2-0-0 oc	purlins			consult qualif	ied building desigr	ner.								
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (Ib/size) 2=333/3-7-5, 4=333/3-7-5, 6=323/3-7-5 Max Horiz 2=-137 (LC 8) Max Grav 2=333 (LC 1), 4=333 (LC 1), 6=333 (LC 3) FORCES (Ib) Maximum Compression/Maximum Tension TOP CHORD 1:2=0/37, 2-3=185/93, 3-4=185/96, 4-5=0/37 BOT CHORD 2:6=-48/110, 4-6=-48/110 WEBS 3:-6=-187/42 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp 8; Enclosed; MVFRS (Ial heights) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Galler as applicable, or consult qualified building designer as per ANSUTPI 1. 4) This truss has been designed for baits cload combinations, which include cases with reductions for multiple concurrent live loads.		(Switched	d from shee	eted: Spacing > 2-0-0)). LO A	AD CASE(S)	Standard									
REACTIONS (Ib/size) 2-333/3-7-5, 4=333/3-7-5, B = 323/3-7-5, Max Horiz 2=137 (LC 8) Max Grav 2=333 (LC 1), 4=333 (LC 1), 6=333 (LC 3) FORCES (Ib)- Maximum Compression/Maximum TOP CHORD 1:2=0/37, 2-3=185/93, 3-4=-185/96, 4-5=0/37 BOT CHORD 2:6=-48/110, 4-6=-48/110 WEBS 3:6=-187/42 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=dft; L=24ft; eave=4ft; Cat. II; Exp 8; Enclosed; MWFRS (all heights) and C-C Exterior (2) zone; cantilever left and right exposed : end vertical left and right exposed. C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For stude sexposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) This truss has been designed for wind loads in the plane of the truss only. For stude sexposed to wind reductions for multiple concurrent live loads. 5) Gable requires continuous bottom chord bearing.	BOT CHORD	Rigid ceil bracing.	ing directly	applied or 10-0-0 oc	;											
Max Horiz 2=-137 (LC 8) Max Grav 2=-333 (LC 1), 4=-333 (LC 1), 6=-333 (LC 3) FORCES (b)- Maximum Compression/Maximum Tension TOP CHORD 1-2=0/37, 2-3=-185/93, 3-4=-185/96, 4-5=0/37 BOT CHORD 2-6=-48/110, 4-6=-48/110 WEBS 3-6=-187/42 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; B=-45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (all heights) and C-C Exterior (2) zone; cunilever left and right exposed; c= O vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designed rase as HANSI/TPI 1. 4) This truss has been deads. 5) Gable requires continuous bottom chord bearing.	REACTIONS	(lb/size)	2=333/3-7 6=323/3-7	7-5, 4=333/3-7-5, 7-5												
 FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/37, 2-3=-185/93, 3-4=-185/96, 4-5=0/37 BOT CHORD 2-6=-48/110, 4-6=-48/110 WEBS 3-6=-187/42 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf; h=0ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (all heights) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 4) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads. 5) Gable requires continuous bottom chord bearing. 		Max Horiz Max Grav	2=-137 (L 2=333 (L0	.C 8) C 1), 4=333 (LC 1), 6	i=333											
 TORED (i) Transmittine Compression/maximum tension TOP CHORD 1:2=0/37, 2:3=-185/93, 3:4=-185/96, 4:5=0/37 BOT CHORD 2:6=-48/110, 4:6=-48/110 WEBS 3:6=-187/42 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7:05; 100mph; TCDL=6:0psf; BCDL=6:0psf; h=0ft; eave=4tf; cat. II; Exp B; Enclosed; MWFRS (all heights) and C:C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C:C for members and forces & MWFRS for reactions shown; Lumber DOL=1:60 plate grip DOL=1:60 3) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads. 5) Gable requires continuous bottom chord bearing. 	FORCES	(lb) - May		pression/Maximum												
 TOP CHORD 1:2=0/37, 2-3=-185/93, 3-4=-185/96, 4-5=0/37 BOT CHORD 2:6=-48/110, 4-6=-48/110 WEBS 3:6=-187/42 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf; h=0t; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (all heights) and C-C Exterior (2) zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For stude sexposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 4) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads. 5) Gable requires continuous bottom chord bearing. 	TORCES	Tension		ipression/maximum												
 4-5=0/37 BOT CHORD 2-6=-48/110, 4-6=-48/110 WEBS 3-6=-187/42 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (all heights) and C-C Exterior (2) zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studie exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 4) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads. 5) Gable requires continuous bottom chord bearing. 	TOP CHORD	1-2=0/37	, 2-3=-185/	93, 3-4=-185/96,												
BOT CHORD 2-6=-48/110, 4-6=-48/110 WEBS 3-6=-187/42 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (all heights) and C-C Exterior (2) zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads. 5) Gable requires continuous bottom chord bearing.		4-5=0/37														
 WEBS 3-6=-18//42 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf; h=0ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (all heights) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss onslut qualified building designer as per ANSI/TPI 1. 4) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads. 5) Gable requires continuous bottom chord bearing. 	BOT CHORD	2-6=-48/1	110, 4-6=-4	8/110												
 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf; h=0ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (all heights) and C-C Exterior (2) zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 plate grip DOL=1.60 plate segment of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads. 5) Gable requires continuous bottom chord bearing. 	WEBS	3-6=-187	/42													
 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf; h=0ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (all heights) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads. 5) Gable requires continuous bottom chord bearing. 	NOTES													1.00	an trans	
 Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (all heights) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads. Gable requires continuous bottom chord bearing. 	 Unbalance this design 	ed roof live I n	loads have	been considered for	•										CAD	
 BCDL=6.0psf; h=0ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (all heights) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads. 5) Gable requires continuous bottom chord bearing. 	 Wind: ASC 	 CE 7-05: 10	0mph: TCE	DL=6.0psf:										"'aTH	0000	5
 Exp B; Enclosed; MWFRS (all heights) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads. 5) Gable requires continuous bottom chord bearing. 	BCDL=6.0)psf; h=0ft; l	B=45ft; L=2	24ft; eave=4ft; Cat. II	;									NO	ESSI	11
 (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads. 5) Gable requires continuous bottom chord bearing. 	Exp B; En	closed; MW	/FRS (all he	eights) and C-C Exte	rior									2 AV	N. 7	12
left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads. 5) Gable requires continuous bottom chord bearing.	(2) zone; c	cantilever le	ft and right	exposed ; end vertic	cal								C.	:0		-
MWHS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads. 5) Gable requires continuous bottom chord bearing.	left and rig	pht exposed	I;C-C for m	embers and forces &	L.								-	1.1	:	-
 grip DOL=1.00 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads. 5) Gable requires continuous bottom chord bearing. 	MWFRS to	or reactions	shown; Lu	imber DOL=1.60 plat	te								- 5		SEAL :	-
 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads. 5) Gable requires continuous bottom chord bearing. 		=1.60 												0	36322 :	6 E
 see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads. Gable requires continuous bottom chord bearing. 	3) Truss desi	igned for wi	na ioaas in	the plane of the trus	s								-	:	:	1
 or consult qualified building designed as per ANSI/TPI 1. This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads. Gable requires continuous bottom chord bearing. 	see Stand	lard Industry	Gable En	d Details as applicab	, 											-
 4) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads. 5) Gable requires continuous bottom chord bearing. 	or consult	qualified by	ilding desi	oner as ner ANSI/TP	//C, // 1								3	- A. EN	-cRi'A	
 combinations, which include cases with reductions for multiple concurrent live loads. 5) Gable requires continuous bottom chord bearing. 	 This truss 	has been d	lesianed for	r basic load										A A	SINES	N
multiple concurrent live loads. 5) Gable requires continuous bottom chord bearing.	combinatio	ons, which i	include cas	es with reductions fo	r									TIC N	OIL BE IN	
5) Gable requires continuous bottom chord bearing.	multiple co	oncurrent liv	/e loads.											1111	. GIL	
February 28,2019	5) Gable req	uires contin	uous botto	m chord bearing.										Februar	y 28,2019	

		_									-				
Job	Truss Truss Type								F	Ply	Rob Griss	om V2-R	oof		
P-5824-1		T1		Roof S	pecial			1	1	1	Job Refer	ence (opi	tional)		E12751959
Peak Truss Builde	ers, LLC, New I	Hill, NC - 27	7562,			Run: 8. ID:elaa	24 E Feb 11 JoiPHf6cNpB	1 2019 P EaFtywO	rint: 8.240 Lzl OJ-T	E Feb 11 2 evYa8ombl	2019 MiTek Ir M09YB8B1oM	dustries, li lustaCmak	nc. Thu n5HsZr	Feb 28 08:28:03 el3KNzafaA	Page: 1
	1-0-0		6 0 0 ·	11.0.0		16.0.10		2025			20.6.8	1		26.11.0	37-11-0
	1-0-0		6-0-8	4-11-8		5-8-12		5-8-12	2	-	7-1-0			7-4-8	1-0-0
11-11-8 3-0-14 11-8-0 3-0-14 8-7-2		25	3 12 2x4 \$ 3		5x8 = 4 4 16 15	29	9 - 3x4+ 5	26	14	5x5= 6 13	27	3x6 \$	8x5 * 8 12	32	28 4x5 * 9 10 11 7 11 6
	• · · · · · · · · · · · · · · · · · · ·	3x7=	8-1-12 8-1-12	3x4=	3x4= 3x6=		<u>22-5-8</u> 11-7-4		3x6=	3x8=	<u>29-6-8</u> 7-1-0		2x4 II	<u>36-11-0</u> 7-4-8	3x10 u
Scale = 1:70.6 Plate Offsets (X	(, Y): [4:0-5	-8,0-2-81	[10:0-5-8.Edae]												
		(psf)	Spacing	2-0-0		CSI		0.54	DEFL) 0	in (loc)	l/defl	L/d	PLATES	GRIP
TCDL		10.0	Lumber DOL	1.15		BC		0.98	Vert(LL	.) -0.	99 13-16	>349	240 180	IWI 20	244/190
BCLL BCDL		0.0* 10.0	Rep Stress Incr Code	NO IBC200	9/TPI2007	WB Matrix-N	٨S	0.66	Horiz(T	L) 0.	05 10	n/a	n/a	Weight: 205 lb	FT = 20%
VINDER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	0.0° Rep Stress Incr CodeNOB 0.66 Horiz(TL) 0.05 10° 10° 0.0° Rep Stress Incr (CodeNOIBC2009/TPI2007WB 0.66 Horiz(TL) 0.05 10° n/a Weight: 205 lbFT = 20%202x4 SP No.12x4 SP No.12x4 SP No.12x4 SP No.12x4 SP No.1Score - 500 from the stress of														
FORCES	(lb) - Maxin Tension	num Com	pression/Maximun	n L(DAD CASE(S	 Standar 	d								
TOP CHORD BOT CHORD	Tension D 1-2=0/15, 2-25=-555/341, 3-25=-0/388, 3-4=-83/733, 4-5=-1015/153, 5-26=-995/197, 6-26=-903/299, 6-27=-896/221, 7-27=-903/198, 7-8=-1019/175, 8-28=-1273/174, 9-28=-1446/135, 9-10=-480/0, 10-11=0/36 12 2-17=-338/581, 16-17=0/778, 15-16=0/860, 15-29=0/860, 29-30=0/860, 14-30=0/860, 13-314=0/860, 13-31=-90/1083, 12-30=0, 12-30, 12														
WEBS NOTES	13-14=0/86 12-32=-9/1 3-17=-485/ 5-16=-253/ 6-13=-124/	60, 13-31= 083, 10-3 (131, 4-17 (44, 5-13= (790, 8-13	=-9/1083, 12-31=-5 ;2=-9/1083 '=-2043/136, 4-16= :-280/176, ;=-486/180, 8-12=(∂/1083, =0/460, 0/257									THE DAY	03	SEAL 36322
 Unbalanced this design. 	d roof live lo	ads have	been considered f	or										Februar	GILBE

Job		Truss		Truss T	Гуре			Qty	Ply	Rob G	Brissom V2	-Roof				
P-5824-1		T1A		Roof	Special			3	1		- f				E12751960	
Peak Truss Ruilde	ers IIC New Hi	L NC - 2	7562		-1-0.0101	Run	8 24 F Feb 11	2019 Print	t: 8 240 F Feb	Job R	eterence (optional)	1 Feb 28 09	3.28.04	Page: 1	
Teak Truss Duilde	513, EEO, NOW 11	n, no - 21	1302,			ID:el	gqJoiPHf6cNpE	gFtywOLz	I_OJ-xqSw1Up	oOMg80AKjl	NbWu7O5CC)iE5oqkej	3I2csqzgfq!	,9	Tage. T	
														35-9-4	36-11-0	
	1-0-0		6-4-8 6-4-8	11-0-0 4-7-8		16-8-12 5-8-12	5	22-5-8 5-8-12	23-5-12	29-1-8 5-7-12	<u> </u>	5	4-9-4 -7-12		5-9- 8 7-11-0 -0-0 1-0-0	
														1-0-0 0	J-1-12	
									5x8=							
τ τ									⁶ 2x4 ∎							
								/								
							2			30						
							12 9									
20	4						3x4+				3x6 *					
11-4	5										8#x10	•				
1-8																
;												$\langle \rangle \rangle$	<			
					5x8=											
			3		4	1		12				,	$\parallel\parallel\mid$	2x4 II		
44	t		3		Ħ //	/								108×5 *		
-0-5 -0-5	5	28	A Contraction of the second se					/		/ ?r=====					4x5 II 12 Gr	
		-		¥⁄		[#]			20	- - <u>5x</u> 8=	18 2x4 II		6x8=	. 16		
1		(7=		₩ 3x4=	23 3x4=	22 3x6=	3	31	21 6x8= 2x4 II					15 2x4 🛚 3x8=	≦ \ o ⊧2x4⊪	
	L		8-1-12	10-10-	4		22-5-8		23-7-8	29-1-8	з і	3	4-7-8	35-9-4 36	-11-0	
0 1 1 70 7			8-1-12	2-8-8	3 I		11-7-4		1-2-0	5-6-0			j-6-0	1-1-12	1-12	
Scale = $1:/3./$	X X)· [4·0-5-8	2 0-2-81	[17.0.2.4 0.2.0] [10	2.0-2-4 0-4	2_81											
	λ, Τ). [4.0-5-α	5,0-2-0 <u>]</u> ,	[17.0-2-4,0-2-0], [18	9.0-2-4,0-2	-0]											
Loading		(psf)	Spacing	2-0-0		CSI		D	EFL	in (loc) l/de	fl L/d	PLATE	S	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC		0.40 V	ert(LL)	-0.40 21	-23 >86	1 240	MT20		244/190	
BCLL		0.0*	Rep Stress Incr	YES		WB		0.63 H	loriz(TL)	0.13	14 n/s	a n/a				
BCDL		10.0	Code	IBC200	9/TPI2007	Matrix	-MS						Weight	:: 250 lb	FT = 20%	
LUMBER				N	OTES											
TOP CHORD	2x4 SP No.1			1) Unbalano	ced roof live	e loads have b	been con	sidered for							
BOT CHORD	2x4 SP No.1	*Excep	ot* 20-7,10-16:2x4 S	P 2	this desig	n. SCE 7-0511		l –6 ()nsf								
WEBS	2x4 SP No.3			-	BCDL=6	.0psf; h=0ft;	; B=45ft; L=37	7ft; eave:	, =5ft; Cat. II;							
BRACING					Exp B; E	nclosed; M	WFRS (all hei	ights) an	d C-C Exterio	ior r						
TOP CHORD	Structural wo	ood she	athing directly applie	ed or	(2) 22-5-	8 to 25-5-8,	Interior (1) 2-0	5-5-8 to	37-11-0 zon	e;						
BOT CHORD	Rigid ceiling	directly	applied or 2-2-0 oc		cantileve	r left and rig	pht exposed ;	end vert	tical left and							
	bracing. Exe	cept:			for reacti	ons shown:	Lumber DOL	=1.60 pl	ate arip)						
i ikow at midpt WEBS	1 Row at min	dpt	5-23, 6-21, 5-21		DOL=1.6	0										
REACTIONS	(lb/size) 2=	=232/0-3	3-8, 14=1163/0-3-8,	3) This trus	s has been	designed for	basic loa	ad Inductions for							
	24	l=1676/	0-3-8		multiple	concurrent l	ive loads.	.s wiul ie								
	wax Horiz 2= Max Uplift 2=	=248 (L(=-14 (I C	2 8) 2 5)	4) * This tru	ss has bee	n designed fo	or a live lo	bad of 20.0p	sf						
	Max Grav 2=	=260 (LC	C 14), 14=1163 (LC	1),	on the bo 3-06-00 t	all bv 2-00-	IN all areas w 00 wide will fi	vnere a r it betwee	ectangle on the botton	n						
	24 (Ib) b 4	l=1676	(LC 1)		chord an	d any other	members, wi	ith BCDL	= 10.0psf.							
FURCES	(ID) - Maximu Tension	um Com	pression/Maximum	5) Provide r	nechanical	connection (b	oy others	b unlift at ion	nt						
TOP CHORD	1-2=0/15, 2-2	28=-610)/392, 3-28=-31/443	,	2.	nate capabi	o or with Staff	ung 14 l	o upint at jul							
	3-4=-94/732	, 4-5=-9	26/142, 5-29=-972/1	^{92,} L	OAD CASE	(S) Stand	lard							um		
	7-30=-964/2	20, 0-7= 12, 8-30	- 30 4 /209,)=-982/194,										111	TH	CARO	c.
	8-9=-1097/1	76, 9-10)=-2328/292,									/	3.0	1 mg	SSID 11-	".
	10-11=-2137 12-13=0/41	/144, 1 12-14=	1-12=-951/90, -1097/154									4	1	. Pr	- Aline	Ż
BOT CHORD	2-24=-391/6	44, 23-2	24=0/708, 22-23=0/8	38,									: :4	2		
	22-31=0/838	, 21-31:	=0/838, 20-21=-76/3	4,									1	S	SEAL :	
	19-20=-543/ 17-18=0/117	U, 7-19= '9 16-1'	=-186/139, 18-19=0/ 7=0/69_10-17284/	1180, '178								Ξ	1	03	36322	
	15-16=-21/1	32, 14-1	5=0/85	,										00		
WEBS	3-24=-439/1	20, 4-24	4=-1937/138, 4-23=0	/456,									1		a i.	11
	9-19=-541/1 11-17=-75/1	50, 9-17 101, 11-	-15=-145/845, -15=-1018/16.										3.0	SSNC	INEEN ON	S.
	15-17=0/790	, 12-15	=-26/707, 9-18=0/15	4,									242	10	OIL BE IN	<u>, </u>
	5-23=-318/5	4, 6-21=	=-91/365, 19-21=0/9	69,										111A	GIL	
	0-19=-100/9	52, 5-21											F	ebruary	/ 28 2019	
														~~ uai V		

> R E 818 Soundside Road

Edenton, NC 27932

February 28,2019

Scale = 1:70 7		8-1-12 8-1-12	12-11-0 4-9-4	18-10-2 5-11-2		24-9-4 5-11-2			30-8-6 5-11-2		36-7-8 5-11-2	36111-0 0-3-8	
	(Question		0.01		D.C.C.		(1)	1/-1-41	1.7-1			
Loading TCLL (roof)	(pst) 20.0	Plate Grip DOL	2-0-0 1.15	TC	1.00	Vert(LL)	n 0.14-	(loc) 11-12	1/defi >999	L/d 240	MT20	GRIP 244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.96	Vert(TL)	-0.39	11-12	>879	180			
BCLL	0.0	Rep Stress Incr	YES	WB	0.72	Horiz(TL)	0.26	10	n/a	n/a			
BCDL	10.0	Code	IBC2009/TPI2007	Matrix-MS							Weight: 201 lb	FT = 20%	
			2) Wind: ASC	= 7-05 [.] 100mph		hef.							

LUWIDER	
TOP CHORD	2x4 SP No.1
BOT CHORD	2x4 SP No.1
WEBS	2x4 SP No.3
SLIDER	Right 2x4 SP No.3 1-6-0
BRACING	-
TOP CHORD	Structural wood sheathing directly applied
BOT CHORD	Rigid ceiling directly applied or 2-2-0 oc
	bracing.
WEBS	1 Row at midpt 5-14
REACTIONS	(lb/size) 2=123/0-3-8 10=1070/0-3-8
	15=1821/0-3-8
	Max Horiz 2=229 (I C 9)
	Max Uplift $2=-46$ (I C 6)
	Max Grav $2=178$ (LC 15) $10=1070$ (LC 1)
	15=1821 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/15, 2-23=-438/704, 3-23=-5/761,
	3-4=-84/1162, 4-5=-853/185,
	5-24=-1299/252, 6-24=-1143/283,
	6-25=-1525/190, 7-25=-1537/168,
	7-8=-1672/144, 8-26=-1924/195,
	9-26=-2132/163, 9-10=-441/0
BOT CHORD	2-15=-693/467, 14-15=-32/345,
	13-14=0/1044, 12-13=0/946, 11-12=-76/1701,
	10-11=-62/1686
WEBS	3-15=-481/126, 4-15=-2009/219, 4-14=0/441,
	6-12=0/1164, 8-12=-424/215, 8-11=0/205,
	5-14=-717/0, 5-13=-135/216, 6-13=-180/338
NOTES	

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; B=45ft; L=37ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (all heights) and C-C Exterior (2) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 22-5-8, Exterior (2) 22-5-8 to 25-5-8, Interior (1) 25-5-8 to 36-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 46 lb uplift at joint 2.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

P-5824-1 Peak Truss Builders, LLC, New	T1C										
Peak Truss Builders, LLC, New	110	Ro	oof Special		1	1	Job Refere	nce (opti	onal)		E12751962
	Hill, NC - 27562,			Run: 8.24 E Feb 11 20)19 Print: 8.	240 E Feb 11	2019 MiTek Ind	lustries, In	c. Thu F	eb 28 08:28:0	5 Page: 1
					tywollei_0	0 1 0011 qq00 <u>-</u>			, or yr in t	3	5-9-4 36-11-0
-1-0 -1-0	0 6-4-8 0 6-4-8	11-0 4-7	0-0 16-8 7-8 5-8	-12 22 -12 5-8	-5-8 -12	23-5-12 1-0-4	29-1-8 5-7-12		34- 5-7-	9-4 12	36-9-47-11-0 1-0-0 1-0-0 -0-0 0-1-12
11-11-8 1-11-8 	28 ER	3 12 2x4 3 3 3 3 3 3 3 5 3 3 5	5x8 = 4	9 - 3x4+ 3x4+ 55 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	*	6x8= 6 2x4 II 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		x6 \$ 8 4x8 \$ 4x9 9 18 2x4 #		€ 2x4 6x12=16 2x4	n (3×5 ≤ 11 ¹⁴ ×5 n 15 15 15 15 15 15 15 15 15 15
Scale = 1:73.7	8-1	1-12 1-12	10-10-4 2-8-8	22-5-8 11-7-4		23-7-8 1-2-0	<u>29-1-8</u> 5-6-0		34- 5-6	7-8 -0	3-9-4 36-11-0 1-1-1-12
Plate Offsets (X, Y): [4:0-	5-8,0-2-8], [9:0-3-	3-1,0-2-0], [17:0-3-0	,0-2-4], [19:0-2-4,0-2	2-8]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) Space 20.0 Plate 10.0 Lumb 0.0* Rep 3 10.0 Code	cing2-6e Grip DOL1.1ber DOL1.1Stress IncrNCeIBC	6-0 15 15 0 C2009/TPI2007	CSI TC 0 BC 0 WB 0 Matrix-MS	.56 Vert .94 Vert .78 Hori	' L (LL) -C (TL) -C z(TL) C	in (loc) .44 21-23 .95 21-23 .17 14	l/defl >777 >360 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 250	GRIP 244/190 0 lb FT = 20%
LUMBER TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No No.3, 22-2 WEBS 2x4 SP No BRACING TOP CHORD 2-0-0 oc p verticals (Switched BOT CHORD 2-0-0 oc p verticals (Switched BOT CHORD 7-19 WEBS 1 Row at II REACTIONS (Ib/size) Max Horiz Max Uplift Max Grav FORCES (Ib) - Maxi Tension TOP CHORD 1-2=0/18, 3-4=-120/ 5-29=-121 6-7=-1207 8-30=-122 9-10=-291 11-12=-11 12-14=-13 BOT CHORD 2-24=-472 22-31-01 15-16=-26	0.1 0.1 *Except* 20-7 0.2x4 SP DSS 0.3 urlins (3-3-2 max from sheeted: S ₁ ng directly applier Except: racing: 2-24,20-2 nidpt 5-23, 6 2=293/0-3-8, 14: 24=2091/0-3-8 2=309 (LC 8) 2=309 (LC 8) 2=309 (LC 14), 1 24=2091 (LC 1) mum Compressio 2-28=-764/475, 3 003, 4-5=-1154/1 8/239, 6-29=-107 /361, 7-30=-1200 9/242, 8-9=-1372 /364, 10-11=-26 89/112, 12-13=0, 72/193 /806, 23-24=0/88 049, 21-31=0/10, 7/0, 7-19=-233/1 475, 16-17=0/86 /165, 14-15=0/10	7,10-16:2x4 SP x.), except end Spacing > 2-0-0). ad or 10-0-0 oc 21,19-20. 6-21, 5-21 I=1455/0-3-8, 14=1455 (LC 1), ion/Maximum 3-28=-41/539, 180, 173/282, 16/265, 12/220, 1673/180, 0/52, 182, 22-23=0/1049, 0/9, 20-21=-89/47, 174, 18-19=0/1476, 5, 10-17=-356/222, 07	 WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCE BCDL=6.0ps Exp B; Enclor (2) -1-0-0 to (2) 22-5-8 to cantilever lefright exposer for reactions DOL=1.60 3) This truss ha combinations multiple cond 4) * This truss ha combinations multiple cond 4) * This truss ha combinations for the bottor 3-06-00 tall b chord and ar 5) Provide mechoe bearing plate 2. 6) Graphical puor or the orienta bottom chord LOAD CASE(S) 	3-24=-549/150, 4-24=-; 3-19=-676/163, 9-17=- 11-17=-93/1377, 11-15 15-17=0/988, 12-15=-3 5-23=-398/64, 6-21=-11 5-21=-342/222, 19-21= 5-19=-198/1157 roof live loads have be 7-05; 100mph; TCDL= 5, 100mph; TCDL= 1, h=0ft; B=45ft; L=37ft ised; MWFRS (all heig) 2-0-0, Interior (1) 2-0-02 25-5-8, Interior (1) 25- t and right exposed; e d;C-C for members and shown; Lumber DOL= is been designed for ba s, which include cases surrent live loads. has been designed for a s, which include cases surrent live loads. has been designed for ba s, which include cases surrent live loads. has been designed for ba s, which include cases surrent live loads. has been designed for ba s, which include cases surrent live loads. has been designed for ba s, which include cases surrent live loads. has been designed for ba s, which include cases surrent live loads. has been designed for ba s, which include cases surrent live loads. has been designed for ba s, which include cases surrent live loads. Standard	2395/179, 181/1057, =-1274/24 3/884, 9- 10/471, 0/1207, en consic -6.0psf; ; eave=5f hts) and C to 22-5-5 -8 to 37- nd vertica d forces & 1.60 plate asic load with redu a live loac ere a rect between t BCDL = others) o ng 17 lb u s not dep t the top a	4-23=0/55 D, 18=0/192, lered for t; Cat. II; C-C Exterior 3, Exterior 11-0 zone; I left and MWFRS a grip ctions for I of 20.0psf angle he bottom 10.0psf. f truss to plift at joint ict the size ind/or	7,		Manual Contraction of the Contra	TRUCK STR	SEAL 036322

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

ENGINEERING BY A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss					/pe			Qty	Ply	Rob Grisso	om V2-Re	oof		
P-5824-1		T1D			Roof S	pecial			1	1	Job Refere	ence (opt	ional)		E12751963
Peak Truss Builde	ers, LLC, Ne	w Hill, NC - 2	27562,				Run: 8.24 ID:elgqJo	E Feb 11 20 [.] hiPHf6cNpEgFt	19 Print: 8.2 ywOLzI_O	240 E Feb 11 J-P00IFqq06_	2019 MiTek In GtnUHa9DPM	dustries, Ir xIIUpeVyZ	nc. Thu 8sslynA	Feb 28 08:28:05 \OGzgfq8	Page: 1
	-1-0 -1-0	-0 -0	6-0-8 6-0-8		11-0-0 4-11-8		16-8-12 5-8-12		22-5-8 i-8-12		29-6-8 7-1-0			<u>36-11-0</u> 7-4-8	<u>37-11-0</u> 1-0-0
11-11-8 3-0-14 3-0-14 8-7-2	M4.0	2 25 5 2 2 2 2 2 5 2 2 2 2 5 2 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 5	3 1 3 2 3 2 3 2 17 3x6= 8-11-12	2	10-10-4 10-10-4	5x8 = 1 15 3x4=	29	¹² 9 ⊢ 3x4 + 50 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 1 1 1 1 1 1 1	5x5= 6 13 3x8=	31	\$ 3x6 *	x5 * 8 * • • • • • • • • • • • • • • • • •	32	4x5 % 9 10 11 T
Scale = 1:70.6			8-1-12		2-8-8	1		11-7-4			7-1-0		1	7-4-8	
Plate Offsets ()	X, Y): [4:0	-5-8,0-2-12	2], [10:0-5-8,Ec	lge]	-										
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip D Lumber DOI Rep Stress Code	OL _ Incr	2-6-0 1.15 1.15 NO IBC2009)/TPI2007	CSI TC BC WB Matrix-MS	0.7 0.6 0.8	DEF 76 Vert(58 Vert(32 Horiz	L LL) -0. TL) -1. z(TL) 0.	in (loc) 50 13-15 06 13-15 05 10	l/defl >695 >327 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 205 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x4 SP D 2x4 SP N Right 2x6 2-0-0 oc (Switche Rigid ceii bracing, 6-0-0 oc 1 Row at (Ib/size) Max Horiz Max Uplift Max Grav	lo.1 SS *Excep lo.3 SP No.2 - purlins (4-1 d from she ing directly Except: 2=307/0- 16=2079 2=294 (L 2=-38 (L 16=2079	2-17:2x4 SF 1-6-0 2-10 max.) eted: Spacing y applied or 10: -16. 5-15, 5-13, 8- 3-8, 10=1456/0 /0-3-8 C 8) C 5) C 14), 10=147. (LC 1)	2 No.1 > 2-0-0) -0-0 oc 13)-3-8, 3 (LC 2)	Wind: AS BCDL=6. Exp B; Er (2) -1-0-0 (2) 22-5-6 cantilever right expr for reaction DOL=1-6. This truss combinat multiple c * This trus on the bo 3-06-00 t chord and Provide n bearing p 2.	CE 7-05; 100m Opsf; h=0ft; B= nclosed; MWFF to 2-0-0, Interi 8 to 25-5-8, Inter r left and right e osed;C-C for m ons shown; Lur o s has been des ions, which inc concurrent live I ss has been des itom chord in a all by 2-00-00 v d any other me nechanical con late capable of	hph; TCDL=6 45ft; L=37ft; RS (all heigh ior (1) 2-0-0 erior (1) 25-5 exposed ; en embers and nber DOL=1 igned for ba lude cases w loads. esigned for a all areas whe wide will fit b mbers, with nection (by o s withstandin	6.0psf; eave=5ft ts) and C to 22-5-8 -8 to 37- d vertical forces & .60 plate sic load vith reduc live load re a rect: etween th BCDL = 2 others) of g 18 lb up	c; Cat. II; -C Exterior 11-0 zone; I left and MWFRS grip ctions for of 20.0psf angle he bottom 10.0psf. truss to polift at joint						
FORCES	(lb) - Max Tension	kimum Cor	npression/Max	imum	6)	Graphica or the ori	l purlin represe entation of the	ntation does	not depi the top a	ct the size nd/or					
BOT CHORD	1-2=0/18 3-4=-107 5-26=-12 6-27=-11 7-8=-127 9-28=-18 2-17=-40 15-29=0/ 13-14=0/ 12-31=-1 10-32=-1 3-16=-60	, 2-25=-68 /891, 4-5= 47/246, 6- 23/275, 7- 6/218, 8-2 09/169, 9- 0/718, 16- 1078, 29-3 1078, 13-3 1/1355, 12 1/1355 5/165, 4-1 4/56 5 4-2	6/403, 3-25=0/ -1283/189, 26=-1131/286, 27=-1131/247, 8=-1592/218, 10=-610/0, 10- 17=-400/60, 15 80=0/1078, 14 131=-11/1355, 2-32=-11/1355, 6=-2533/173, 2	461, 11=0/45 5-16=0/9 30=0/10	LO 5 983, 978, 559,	bottom cł	nord. (S) Standard	J					Continues of the second	PROF	CARO SEAL 36322
NOTES 1) Unbalance this design	6-13=-30 6-13=-15	4/990, 8-13 4/990, 8-1	333/219, 3=-608/225, 8-	12=0/32 red for	20									Februar	GINEER HALL

Job	Truss	Truss Type	Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	T1GE	Roof Special Supported Gable	1	1	Job Reference (optional)	E12751964
Peak Truss Builders, LLC, New Hi	II, NC - 27562,	Run: 8.24 E Feb 11 20)19 Print: 8.2	40 E Feb 11	2019 MiTek Industries, Inc. Thu Feb 28 08:28:06	Page: 1

11-11-8

Run: 8.24 E Feb 11 2019 Print: 8.240 E Feb 11 2019 MiTek Industries, Inc. Thu Feb 28 08:28:06

Scale = 1:69.7 Plate Offsets (X, Y): [16:0-2-8,0-3-0], [21:0-5-8,Edge]

				-										
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc	c) l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.16	Vert(LL)	n/a		- n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a		- n/a	999		
BCLL		0.0	Rep Stress Incr	YES		WB	0.17	Horiz(TL)	0.01	2	1 n/a	n/a		
BCDL		10.0	Code	IBC200	9/TPI2007	Matrix-S							Weight: 255 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD	2x4 SP N 2x4 SP N 2x4 SP N Right 2x6 Structura	o.1 o.1 o.3 SP No.2 I wood shea	1-6-0 athing directly applie	T d or	OP CHORD	1-2=0/13, 2-41=-16 3-4=-139/133, 4-5= 6-7=-140/136, 7-8= 9-10=-127/109, 10- 11-12=-97/217, 12- 13-14=-62/275, 14- 15-16=-58/147, 16- 9-10=-78/147, 16-	69/137, 3 -134/13 -145/14 -11=-112 -13=-78/ -15=-58/ -17=-59/	8-41=-163/14 6, 5-6=-130/1 8, 8-9=-145/1 2/146, 275, 217, 80, 17-18=-6	5, 30, 35, 0/53,	3) Ti oi se oi 4) Ti co m	russ desig nly. For st ee Standau r consult q his truss h ombination nultiple con	ned for uds ex rd Indu ualified as bee is, which curren	r wind loads in the posed to wind (m stry Gable End D d building designed n designed for ba ch include cases t live loads.	e plane of the truss ormal to the face), letails as applicable, er as per ANSI/TPI 1. asic load with reductions for
	6-0-0 oc	ourlins.				20-21-170/107 2	.0=-100/ 1-22-0/1	117,		5) A	ii piates ar	e 2x4 i	vii 20 uniess otre	shuise indicated.
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 oc	B	OT CHORD	2-40=-97/175 39-4	0=-97/1	75		0) G 7) G	able stude	snace	ninuous poliom (ad at 2-0-0 oc	noru bearing.
WEBS	bracing. 1 Row at	midpt	13-29, 12-31, 11-32 14-28, 15-27	,	or onone	38-39=-97/175, 37- 36-37=-97/175, 35- 24, 25=, 07/175, 22	-38=-97/ -36=-97/	175, 175, 175,		7) 0 8) Ti cł	his truss h hord live lo	as bee	n designed for a neoncurrent with	10.0 psf bottom any other live loads.
REACTIONS	(Ib/size) Max Horiz Max Uplift	2=219/36- 23=182/36 25=164/3 27=157/36 29=124/36 32=160/38 34=159/36 36=165/3 38=72/36- 2=237 (LC 2=-9 (LC 2=-9 (LC 6), 25 27=-9 (LC (LC 7), 32 34=-9 (LC	-11-0, 21=1/3/36-11 -5-11-0, 24=153/36-13 -5-11-0, 26=160/36-1 -5-11-0, 31=165/36-1 -5-11-0, 33=160/36-1 -5-11-0, 33=163/36-1 -5-11-0, 37=179/36-1 -11-0, 40=353/36-11 -5 9) -5, 21=-18 (LC 9), 23 -8 (LC 6), 26=-5 (LC -8 (LC 7), 33=-5 (LC 6)	/EBS OTES	32-33=-97/175, 31- 30-31=-97/175, 29- 28-29=-97/175, 25- 26-27=-97/175, 25- 24-25=-97/176, 22- 21-23=-97/176 13-29=-260/44, 12- 11-32=-120/91, 8-35 5-37=-132/77, 4-38 14-28=-127/71, 15- 16-26=-120/87, 17- 18-24=-117/77, 19-	32=-97/ 30=-97/ 28=-97/ 26=-97/ 24=-97/ 31=-122 33=-122 33=-122 33=-122 33=-122 33=-122 33=-122 33=-122 33=-122 32=-123 25=	175, 175, 176, 176, 176, 7/71, %87, 9, 6-36=-127, 3-40=-252/1 7/95, 3/93, 1/141	/43, 45,	bi 2, at up 20 up LOAC	earing plat , 20 lb uplit t joint 32, 5 plift at joint 6, 8 lb uplit plift at joint D CASE(S)	e capa ft at joi 5 lb upl 36, 9 ft at joi 21. Star	ble of withstandii nt 29, 3 lb uplift at ift at joint 33, 9 lb lb uplift at joint 27 nt 25, 37 lb uplift ndard	ng 9 lb uplift at joint t joint 31, 8 lb uplift uplift at joint 34, 5 lb 7, 5 lb uplift at joint at joint 23 and 18 lb	
FORCES	34=-9 (LC 7), 36=-5 (LC 6) Max Grav 2=219 (LC 1), 21=173 (LC 1), 23=183 (LC 16), 24=153 (LC 1), 25=164 (LC 16), 26=160 (LC 1), 29=142 (LC 6), 31=167 (LC 16), 32=160 (LC 1), 33=160 (LC 1), 34=159 (LC 15), 35=163 (LC 1), 36=165 (LC 1), 37=180 (LC 15), (lb) - Maximum Compression/Maximum Tension NUTES					I root live loads have 2 7-05; 100mph; TC sf; h=0ft; B=45ft; L= osed; MWFRS (all I 2-0-0, Exterior (2) i 0 25-5-8, Exterior (2) ff and right exposec ad;C-C for members s shown; Lumber D(DL=6.0 37ft; ea heights) 2-0-0 to) 25-5-8 d ; end v ; and for DL=1.60	considered fo osf; ve=2ft; Cat. II and C-C Cor 22-5-8, Corn. to 37-11-0 z/ ertical left an ces & MWFR plate grip	r her er one; d S			" THEFT AND A STATE OF	OS NC February	SEAL 36322 SINEER GILBERT

GINEERING

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	T2	Piggyback Base	1	1	Job Reference (optional)	E12751965

Run: 8.24 S Feb 11 2019 Print: 8.240 S Feb 11 2019 MiTek Industries, Inc. Thu Feb 28 08:28:07 ID:elgqJoiPHf6cNpEgFtywOLzI_OJ-MP83gWrHebWb1oRyGeRq0jqo6S8D16P9IGGGT8zgfq6

eb 28 08:28:07 Page: 1 GGGT8zgfq6

1	8-1-12	12-11-0	14-4-10	22-6-6	24-9-4	29-9-9	1	36-7-8	36 ₁ 11-0
T	8-1-12	4-9-4	1-5-10	8-1-13	2-2-14	5-0-5	1	6-9-15	0-3-8
Scale = 1:70.2									

Plate Offsets (X, Y): [2:0-5-8,Edge], [6:0-2-12,0-1-12], [8:0-5-12,0-1-12]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing2-Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYCodeIE	-0-0 .15 .15 ÆS BC2009	/TPI2007	CSI TC BC WB Matrix-MS	0.83 0.82 0.56	DEFL Vert(LL) Vert(TL) Horiz(TL)	in -0.15 -0.38 0.28	(loc) 13-14 13-14 12	l/defl >999 >910 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 322 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.1 *Excep 2x4 SP No.1 2x4 SP No.3 2x4 SP No.3 Left 2x6 SP No.2 1-6-0 Structural wood she except 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 2 1 Row at midpt (lb/size) 2=229/0-3 18=1681// Max Horiz 2=237 (LC Max Uplift 2=-49 (LC Max Grav 2=344 (LC 18=1681/	t* 9-12:2x4 SP DSS 1-6-0, Right 2x4 SP No.3 athing directly applied, -0 max.): 6-8. applied or 10-0-0 oc 18,17-18. 7-16, 4-18, 6-17 3-8, 12=1104/0-3-8, 0-3-8 C 8) 15) C 14), 12=1104 (LC 1), (LC 1)	1) 2) 3 3 (1) (2) 3 (3) (4) (5) (6) (6) (5)	Unbalanced i this design. Wind: ASCE BCDL=6.0psi Exp B; Encloi (2) -1-0-0 to 2 (2) 14-2-14 to Exterior (2) 2 36-11-0 zone vertical left ai forces & MW DOL=1.60 pla Truss design only. For stu see Standard or consult qu This truss ha combinations multiple conc Provide adeq All plates are	roof live loads have 7-05; 100mph; TCE 5; h=0ft; B=45ft; L=3 sed; MWFRS (all he 2-0-0, Interior (1) 2-1 0; 18-5-8, Interior (1) 2-8-2 to 26-11-1, In 1; cantilever left and nd right exposed;C- FRS for reactions s ate grip DOL=1.60 ed for wind loads in ds exposed to wind Industry Gable En- alified building desig s been designed for , which include cas urrent live loads. uate drainage to pr 2x4 MT20 unless c	been of DL=6.0 37ft; ea eights) 0-0 to 7 18-5-4 terior (right e C for n hown; the pla (norm d Detai gner as r basic es with event witherwise	considered for osf; ve=5ft; Cat. II and C-C Exte (4-2-14, Exter to 22-8-2, 1) 26-11-1 to xposed ; end nembers and Lumber ane of the trus al to the face) Is as applicat per ANSI/TP load reductions for vater ponding se indicated.	r erior rior ss), ole, PI 1. or J.						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/36, 2-3=-294// 4-48=-43/342, 4-5=- 6-49=-428/262, 6-7= 8-50=-1624/275, 9-5 9-10=-1756/228, 10- 11-51=-2230/256, 17 2-52=-225/241, 52-5 18-53=-225/195, 17- 16-17=0/470, 15-16 3-14=-143/1787, 11 6-16=0/799, 7-16=-8 8-15=-454/52, 4-18= 4-17=0/966, 8-14=-7 40, 22, 0/87	54, 3-48=-157/281, 576/215, 5-49=-471/231 5-439/260, 7-8=-978/257 50=-1653/244, 5-1=-2030/285, 1-12=-355/0 33=-225/195, 1-8=-451/111, 2-0/786, 14-15=0/1031, 2-13=-144/1770 325/54, 7-15=0/582, 5-1513/187, 6-17=-844/0 3/1115, 10-14=-423/198	7) 8) 7, 9) 10) 11) 0, LO	* This truss h on the botton 3-06-00 tall b chord and an Bearing at joi using ANSI/T designer sho Provide mect bearing plate 2. Graphical pui or the orienta bottom chord AD CASE(S)	spaced at 2-0-0 dc. as been designed f o chord in all areas y 2-00-00 wide will y other members, w nt(s) 12 considers p PI 1 angle to grain uld verify capacity c nanical connection (capable of withstar din representation c tion of the purlin alc Standard	or a liv where fit betw vith BC barallel formula of beari (by oth- nding 4 does no ong the	e load of 20.0 a rectangle reen the botto DL = 10.0psf. to grain value a. Building ng surface. ers) of truss to 9 lb uplift at jo t depict the si top and/or	opsf om e o oint ize			Winnin	UN ATH	CARO SEAL 36322	
NOTES	10-13=0/07											February	28,2019	

Job	Truss	Truss Type		Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	T2A	Piggyback Base		6	1	Job Reference (optional)	E12751966
Peak Truss Builders, LLC, New Hi	II, NC - 27562,	F	Run: 8.24 E Feb 11 2	019 Print: 8.2	40 E Feb 11	2019 MiTek Industries, Inc. Thu Feb 28 08:28:07	Page: 1

Run: 8.24 E Feb 11 2019 Print: 8.240 E Feb 11 2019 MiTek Industries, Inc. Thu Feb 28 08:28:07 ID:elgqJoiPHf6cNpEgFtywOLzI_OJ-MP83gWrHebWb1oRyGeRq0jqnGS6J13t9IGGGT8zgfq6

	6-5-8	12-11-0	18-10-2	24-9-4	29-7-13	36-7-8	36 ₁ 1/1-0
	6-5-8	6-5-8	5-11-2	5-11-2	4-10-9	6-11-11	0-3-8
cale = 1:70.2							

Plate Offsets (X, Y): [2:0-5-8,Edge], [6:0-4-0,0-2-12], [7:0-3-12,0-1-12], [14:0-3-11,0-2-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2009)/TPI2007	CSI TC BC WB Matrix-MS	0.95 0.94 0.73	DEFL Vert(LL) Vert(TL) Horiz(TL)	in -0.20 -0.50 0.37	(loc) 13-14 13-14 12	l/defl >999 >879 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 226 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 SP No.1 *Except* 2x4 SP No.1 2x4 SP No.3 Left 2x6 SP No.2 1- 2-0-0 Structural wood sheat except 2-0-0 oc purlins (4-2-1 Rigid ceiling directly a bracing, Except: 2-2-0 oc bracing: 12-1 1 Row at midpt 6 (lb/size) 2=1537/0-3 Max Horiz 2=237 (LC (lb) - Maximum Comp Tension 1-2=0/36, 2-3=-1019/7 4-26=-1813/255, 4-5= 5-27=-1533/291, 6-27 6-28=-1446/296, 7-28 7-29=-2595/367, 8-29 8-9=-2792/350, 9-10= 10-30=-2962/361, 11- 11-12=-332/0	6-7,9-12:2x4 SP DS 6-0, Right 2x4 SP No thing directly applied 13 max.): 6-7. pplied or 10-0-0 oc 13. -16, 4-16, 7-15 I-8, 12=1476/0-3-8 9) ression/Maximum 11, 3-26=-1991/223, -1660/271, =-1522/322, =-1446/296, =-2750/336, -2933/331, 30=-3066/337,	2) 5S 0.2 , 3) 4) 5) 6) 7) LO	Wind: ASCE BCDL=6.0ps Exp B; Enclo (2) -1-0-0 to 2 (2) 14-2-14 to Exterior (2) 2 36-11-0 zone vertical left ai forces & MW DOL=1.60 pl This truss ha combinations multiple conc Provide adec This truss ha chord live loa Bearing at joi using ANSI/T designer sho Graphical pu or the orienta bottom chord DAD CASE(S)	7-05; 100mph; TC f; h=0ft; B=45ft; L= sed; MWFRS (all h 2-0-0, Interior (1) 2: 0 18-5-12, Interior (2-8-2 to 26-11-1, It r; cantilever left and nd right exposed;C FRS for reactions s ate grip DOL=1.60 s been designed for d, which include cas urrent live loads. juate drainage to p s been designed for d nonconcurrent w int(s) 12 considers PI 1 angle to grain uld verify capacity rlin representation titon of the purlin al Standard	DL=6.0 37ft; ea eights) -0-0 to 1) 18-5 nterior (d right e -C for n shown; or basic ses with revent v or a 10.0 ith any parallel formula of beari does no ong the	osf; ve=5ft; Cat. I and C-C Exte 4-2-14, Exte 12 to 22-8-2 1) 26-11-1 to xposed ; end embers and _umber load reductions for vater ponding opsf bottom other live loa to grain valu b. Building ng surface. t depict the s top and/or	l; erior rior or J. ds. e			6	UNIT OFFE	CAROLIN
BOT CHORD	2-17=-121/1509, 16-1 15-16=0/1305, 14-15= 13-14=-115/2452, 12-	7=-121/1509, =0/1744, 13=-226/2434									1111	200	
WEBS	6-16=-113/109, 7-14= 4-16=-396/165, 4-17= 7-15=-561/44, 8-14=-3 10-13=-53/124	-108/1752, 0/223, 6-15=0/554, 317/165, 8-13=-24/1	51,								ITTUN	03	6322
NOTES 1) Unbalance this design	ed roof live loads have b).	een considered for											GILBERT

February 28,2019

Job	Truss	Truss Type C		Ply	Rob Grissom V2-Roof				
P-5824-1	T2B	Piggyback Base	5	1	Job Reference (optional)	E12751967			

Run: 8.24 E Feb 11 2019 Print: 8.240 E Feb 11 2019 MiTek Industries, Inc. Thu Feb 28 08:28:08 ID:elgqJoiPHf6cNpEgFtywOLzI_OJ-qbiRtrsvPveSey09qMy3ZxN01rWdmeil_w0q?bzgfq5

L L L L L L L L L L L L L L L L L L L	7-3-3	14-4-10	22-6-6	29-7-13	36-11-0
Г	7-3-3	7-1-7	8-1-13	7-1-7	7-3-3
Scale = 1:69.9					

Plate Offsets (X, Y): [1:0-5-8,Edge], [5:0-3-0,0-2-2], [6:0-4-0,0-1-6], [10:0-5-8,Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2009)/TPI2007	CSI TC BC WB Matrix-MS	0.70 0.68 0.24	DEFL Vert(LL) Vert(TL) Horiz(TL)	in -0.19 -0.39 0.12	(loc) 13-16 13-16 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 226 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 SP No.1 *Except 2x4 SP No.1 2x4 SP No.3 Left 2x6 SP No.2 - 1 - 1-6-0 Structural wood shea 2-11-10 oc purlins, e 2-0-0 oc purlins, (4-10 Rigid ceiling directly bracing, 1 Row at midpt (lb/size) 1=1476/0- Max Horiz 1=-244 (L0 Max Uplift 1=-82 (LC Max Grav 1=1527 (L) (lb) - Maximum Com 1-2=-1082/0, 2-26=-2 3-26=-1899/276, 3-2 4-27=-1578/295, 4-5 5-28=-1238/322, 28- 6-29=-1238/322, 28- 6-29=-1238/322, 28- 37-30=-1614/284, 7-8	* 5-6:2x4 SP DSS -6-0, Right 2x6 SP Ne athing directly applied xcept 0-14 max.): 5-6. applied or 10-0-0 oc 3-16, 8-13, 6-16 3-8, 10=1537/0-3-8 C 8) 10), 10=-113 (LC 10) C 2), 10=1590 (LC 2) pression/Maximum 2069/248, 7=-1646/283, =-1564/329, 29=-1238/322, 0=-1563/326, =-1666/280, 1 2089/242	1) 2) or 3) 4) 5) 6) 7) 8) 9)	Unbalanced i this design. Wind: ASCE BCDL=6.0ps Exp B; Enclo (2) 0-0 to 3 (2) 14-2-14 to Exterior (2) 2 37-11-0 zone vertical left at forces & MW DOL=1.60 pl. This truss ha combinations multiple conc Provide adeo All plates are The Fabricati This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide mech bearing plates	roof live loads have 7-05; 100mph; TC f; h=25ft; B=45ft; L sed; MWFRS (all h -8-5, Interior (1) 3- 0 19-5-8, Interior (1) 2-8-2 to 27-10-13, c; cantilever left and nd right exposed;C FRS for reactions a te grip DOL=1.60 s been designed fo , which include cas urrent live loads. Uate drainage to p MT20 plates unles on Tolerance at jo s been designed n chord in all areas y 2-00-00 wide wil y other members, nanical connection	be been of DL=6.0 =37ft; energination beights) 8-5 to 1) 19-5-8 Interior dright ei- -C for n shown; or basic ses with revent v so other int 6 = 1 or a 10.0 ith any for a liv with BC (by oth unding 8	considered for sof; ave=5f; Cat. and C-C Exti $4-2\cdot14$, Exter 3 to 22-8-2, (1) 27-10-13 xposed ; end Lumber load reductions for vater ponding wise indicate 2% 0 psf bottom other live loa e load of 20.6 a rectangle reen the bottom DL = 10.0psf DL = 10.0psf DL = 10.0psf DL = 10.0psf truss t 2 lb uplift at j	or II; erior rior d to d d g. ed. or g. ed. opsf om f. to joint				UNIT OF THE	CARO	1. Julian
BOT CHORD	9-10=-635/0, 10-11= 1-32=-154/1571, 17- 17-33=-80/1571, 16- 15-16=0/1254, 15-34 13-14=0/1254, 13-35 12-35=-92/1581, 12- 0 20 20 450	0/36 32=-80/1571, 33=-80/1571, ⊨0/1254, 14-34=0/12 j=-92/1581, 36=-92/1581,	10) ^{54,} LO) Graphical pu or the orienta bottom chord PAD CASE(S)	rlin representation tion of the purlin a Standard	does no long the	ot depict the s top and/or	size			"THILLING	03	SEAL 36322	
WEBS	3-17=0/271, 3-16=-4 6-13=-15/581, 8-13= 6-16=-142/145	52/171, 5-16=-20/542 -443/170, 8-12=0/264	<u>2,</u> I,									EN EN	INEER	A LINE
NOTES												A	. GILD	000 - E

February 28,2019

Page: 1

ENGINEERING BY REACTOR A MITEK Attiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	T2C	Piggyback Base	4	1	Job Reference (optional)	E12751968

22-8-2 8-5-5

14-2-14

14-0-15

Peak Truss Builders, LLC, New Hill, NC - 27562,

6-5-8 6-5-8

Run: 8.24 E Feb 11 2019 Print: 8.240 E Feb 11 2019 MiTek Industries, Inc. Thu Feb 28 08:28:08 ID:elgqJoiPHf6cNpEgFtywOLzI_OJ-qbiRtrsvPveSey09qMy3ZxNyzrWnmW3I_w0q?bzgfq5

32-2-1 4-8-15

	6-5-8	12-11-0	18-10-2	24-9-4	30-10-2	36-7-8 36 ₁ 11-0
0 1 1 1 1 1 1	6-5-8	6-5-8	5-11-2	5-11-2	6-0-14	5-9-6 0-3-8
Scale = 1:69.1						

Plate Offsets (X, Y): [1:0-5-8,Edge], [5:0-4-0,0-2-12], [6:0-3-12,0-1-12], [13:0-3-11,0-2-8]

Loading TCLL (roof) TCDL BCLL BCDI	(psf) Sp 20.0 Pla 10.0 Lui 0.0 Re 10.0 Co	bacing ate Grip DOL Imber DOL ep Stress Incr	2-0-0 1.15 1.15 YES IBC2009	/TPI2007	CSI TC BC WB Matrix-MS	0.96 0.67 0.73	DEFL Vert(LL) Vert(TL) Horiz(TL)	in -0.20 -0.52 0.35	(loc) 12-13 12-13 11	l/defl >999 >850 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 226 lb	GRIP 244/190	
LUMBER TOP CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 SP DSS *Except* 4- 2x4 SP No.1 *Except* 13 2x4 SP No.3 Left 2x6 SP No.2 2-0-0 2-0-0 Structural wood sheathin except 2-0-0 oc purlins (4-2-15 r Rigid ceiling directly appl bracing. 1 Row at midpt 5-15 (lb/size) 1=1477/0-3-8, Max Horiz 1=228 (LC 9) (lb) - Maximum Compres Tension 1-2=-906/37, 2-25=-1990 3-25=-1826/263, 3-4=-16 4-26=-1536/296, 5-26=-1 5-27=-1447/297, 6-27=-1	5,6-7:2x4 SP No.1 3-11:2x4 SP DSS 0, Right 2x4 SP No ng directly applied, max.): 5-6. vlied or 10-0-0 oc 5, 3-15, 6-14 , 11=1477/0-3-8 ssion/Maximum 0/237, 663/292, 1525/326, 1447/297,	2) .2 3) 4) 5) 6) 7)	Wind: ASCE BCDL=6.0psi Exp B; Enclo (2) 0-0-0 to 3 (2) 14-2-14 to Exterior (2) 2 36-11-0 zone vertical left ar forces & MW DOL=1.60 pli This truss ha combinations multiple conc Provide adeq This truss ha chord live loa Bearing at joi using ANSI/T designer sho Graphical puu or the orienta bottom chord	7-05; 100mph; TCE f; h=0ft; B=45ft; L=3 sed; MWFRS (all he -0-0, Interior (1) 3-0 o 18-5-12, Interior (1 2-8-2 to 26-11-1, In ; cantilever left and nd right exposed;C- FRS for reactions si ate grip DOL=1.60 s been designed for , which include case urrent live loads. uate drainage to pro- s been designed for d nonconcurrent win rt(s) 11 considers p PI 1 angle to grain f I 1 angle to grain f uld verify capacity of tion of the purlin alco.	DL=6.0 7ft; ea eights) -0 to 1 1) 18-5 terior (right e C for n hown; r basic ces with event V, r a 10.0 formula formula formula formula formula formula	psf; ve=5ft; Cat. II and C-C Exter 4-2-14, Exter -12 to 22-8-2, 1) 26-11-1 to xposed ; end embers and Lumber load reductions for vater ponding psf bottom other live load to grain valut a. Building ng surface. t depict the s top and/or	; erior for pr J. ds. e ize						
BOT CHORD WEBS	6-7=-2603/367, 7-28=-27 8-28=-2757/336, 8-9=-29 9-29=-2958/345, 10-29=- 10-11=-340/8 1-16=-124/1519, 15-16=- 14-15=0/1306, 13-14=0/ 12-13=-124/2456, 11-12- 5-15=-113/110, 3-15=-40 5-14=0/554, 6-14=-564/4 8-13=-307/174, 9-12=-49	739/336, 925/336, 3064/331, 123/1519, (1747, =-212/2430 05/168, 3-16=0/231 42, 6-13=-108/1762 9/121, 8-12=-62/13	LO 1, 2, 2	AD CASE(S)	Standard						Winnin	UNUP ATH	CAROL SEAL 6322	

1) Unbalanced roof live loads have been considered for this design.

C A. A. Chin February 28,2019

Page: 1

36-11-0 4-8-15

Job	Truss	Truss Type	Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	T2GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	E12751969

Run: 8.24 E Feb 11 2019 Print: 8.240 E Feb 11 2019 MiTek Industries, Inc. Thu Feb 28 08:28:09 ID:elgqJoiPHf6cNpEgFtywOLzI_OJ-InGp4BtXACmJG6bLO3TI58vKgF?PV7?SDalNX1zgfq4

Scale = 1:69.1

36-11-0

Plate Offsets	(X, Y): [9:0-4-8,0-2	2-4], [15:0-4-8,0-2-4], [18	8:0-3-0,Edge], [24:0-	-5-8,Edg	e], [45:0-4-8,0-1-8]							
Loading TCLL (roof) TCDL BCLL BCDL	(ps 20 10 0 10	f) Spacing 0 Plate Grip DOL 0 Lumber DOL 0* Rep Stress Incr 0 Code	2-0-0 1.15 1.15 YES IBC2009/TPI2007	7 N	SI C 0.13 C 0.07 VB 0.11 Matrix-S	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 24	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 313	GRIP 244/190 b FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 2x4 SP No.3 Right 2x6 SP No Structural wood 6-0-0 oc purlins,	.2 1-7-13 sheathing directly applie except end verticals, a	ed or nd	Max	Grav 24=181 (LC 1), 27=155 (LC 1), 29=160 (LC 16), 31=160 (LC 16), 34=165 (LC 15), 36=165 (LC 15), 41=159 (LC 1), 43=152 (LC 1), 45=134 (LC 9)	26=181 (LC 1 28=161 (LC 1 30=161 (LC 1 32=145 (LC 35=160 (LC 38=143 (LC 40=161 (LC 40=162 (LC 1 44=191 (LC 1	6), (6), 1), 16), 1), 15), (5), (5),	WEBS		12-35 10-38 5-41= 2-44= 14-32 17-30 20-28 22-26	=-120/60, 11-3 =-137/0, 8-39= -120/86, 4-42= -142/127, 13-3 =-131/2, 16-31 =-121/98, 19-2 =-121/91, 21-2 =-130/131	6=-125/55, -119/64, 6-40=-121/98, -121/91, 3-43=-114/78, 4=-125/55, =-120/64, 9=-120/86, 7=-118/81,
BOT CHORD	2-0-0 oc purlins Rigid ceiling dire	(6-0-0 max.): 9-15. ectly applied or 10-0-0 o	c FORCES	(lb) Ter	- Maximum Compressi	on/Maximum		this 2) Win	design.	E 7-05	100mph: TCC	ll =6 Onsf:
WEBS REACTIONS	(lb/size) 24=11 27=11 29=10 31=11 34=10 36=11 39=11 41=11 43=11 43=11 43=11 43=11 43=11 45=11 Max Horiz 45=-2 Max Uplift 24=-4 27=-3 31=-2 35=-1 39=-2 41=-3 43=-2 45=-8	12-35, 11-36, 10-38 8-39, 6-40, 13-34, 1 16-31, 17-30 31/36-11-0, 26=179/36- 55/36-11-0, 28=161/36-1 59/36-11-0, 30=161/36-1 52/36-11-0, 35=160/36-1 52/36-11-0, 35=140/36-1 52/36-11-0, 35=140/36-1 59/36-11-0, 42=162/36-1 59/36-11-0, 42=162/36-1 52/36-11-0, 44=189/36-1 11/36-11-0 55 (LC 8) 8 (LC 9), 26=-68 (LC 10 5 (LC 10), 36=-48 (LC 10 3 (LC 10), 36=-9 (LC 10 3 (LC 10), 36=-9 (LC 10 3 (LC 10), 36=-9 (LC 10 2 (LC 10), 40=-49 (LC 10 9 (LC 10), 42=-44 (LC 10 7 (LC 10), 44=-89 (LC 10 1 (LC 8)	TOP CHOR 4-32, (1-0, 11-0, 11-0, 11-0, 11-0, 11-0, 11-0, 11-0, 11-0, 10, 0), 0), 0), 0), 0), 0), 0), 0), 0), 0	RD 1-4 3-4 6-7 9-1 11- 13- 15- 17- 19- 21- 23- RD 44- 40- 38- 36- 38- 36- 34- 32- 30- 28- 26-	5=-101/70, 1-2=-153/14 =-103/85, 4-5=-86/129, =-67/259, 7-8=-37/267, 12=-25/282, 10-11=-25/2 14=-25/282, 12-13=-25, 14=-25/282, 14-15=-25, 16=-67/320, 16-17=-67, 18=-62/196, 18-19=-74, 20=-92/129, 20-21=-11 22=-125/109, 22-23=-11 24=-167/148, 24-25=0/ 45=-124/136, 43-44=-1: 41=-124/136, 43-44=-1: 41=-124/136, 34-44=-1: 33=-124/136, 37-38=-1: 33=-124/136, 37-38=-1: 33=-124/136, 37-38=-1: 33=-124/136, 37-38=-1: 33=-124/136, 23-30=-1: 29=-124/136, 24-26=-1:	6, 2-3=-119/ 5-6=-68/195, 8-9=-67/320, 82, 282, 282, 282, 282, 282, 282, 284, 267, 188, 0/91, 56/156, 15 24/136, 24/14, 24/14	102,	BCI Exp (3) (Cor 22- to 3 vert forc DOI	DL=6.0p B; Enc 0-1-12 t ner (3) 3-2, Cor 7-11-0 : ical left es & M ¹ L=1.60	sf; h=2 losed; l i 0 3 10 14-2-12 ner (3) zone; c and rig WFRS plate g	25ft; B=45ft; L= MWFRS (all he 1, Exterior (2)) 4 to 17-11-3, E: 22-8-2 to 26-5 cantilever left an ht exposed;C-i for reactions sl rip DOL=1.60	37ft; eave=2ft; Cat. II; hights) and C-C Corner 3-10-1 to 14-2-14, kterior (2) 17-11-3 to -8, Exterior (2) 26-5-8 hd right exposed ; end C for members and hown; Lumber A CAR SEAL 36322 KGINEEER A. GILBER

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. See **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

February 28,2019

Page: 1

Job	Truss	Truss Type	Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	T2GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	E12751969
Peak Truss Builders, LLC, New H	ill, NC - 27562,	Run: 8.24 E Feb 11 2	019 Print: 8.2	240 E Feb 11	2019 MiTek Industries, Inc. Thu Feb 28 08:28:09	Page: 2

ID:elgqJoiPHf6cNpEgFtywOLzI_OJ-InGp4BtXACmJG6bLO3TI58vKgF?PV7?SDaINX1zgfq4

Peak Truss Builders, LLC, New Hill, NC - 27562.

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- 4) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.
- Provide adequate drainage to prevent water ponding. 5)
- All plates are 2x4 MT20 unless otherwise indicated. 6)
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 81 lb uplift at joint 45, 48 lb uplift at joint 24, 13 lb uplift at joint 35, 9 lb uplift at joint 36, 22 lb uplift at joint 39, 49 lb uplift at joint 40, 39 lb uplift at joint 41, 44 lb uplift at joint 42, 27 lb uplift at joint 43, 89 lb uplift at joint 44, 9 lb uplift at joint 34, 22 lb uplift at joint 31, 48 lb uplift at joint 30, 39 lb uplift at joint 29, 42 lb uplift at joint 28, 35 lb uplift at joint 27 and 68 lb uplift at joint 26.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	ТЗ	Attic	7	1	Job Reference (optional)	E12751970

Run: 8.23 S Nov 4 2018 Print: 8.240 S Jan 22 2019 MiTek Industries, Inc. Thu Feb 28 16:59:17

Peak Truss Builders, LLC, New Hill, NC - 27562,

	6-4-4	17-2-12	23-7-0	
	6-4-4	10-10-8	6-4-4	
Scale = 1:66.5				
Plate Offsets (X, Y): [2:0-3-6,0-2-8], [5:0-2-2,Edge],	[6:0-2-2,Edge], [9:0-3-6,0-2-	8], [11:0-7-0,0-1-8], [13:0-7-0,0-1-8]		

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.84	Vert(LL)	-0.19	11-13	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.82	Vert(TL)	-0.40	11-13	>716	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.47	Horiz(TL)	0.01	2	n/a	n/a		
BCDL	10.0	Code	IBC2009	/TPI2007	Matrix-MS		Attic	-0.10	11-13	>999	360	Weight: 203 lb	FT = 20%
			2)	Wind: ASCE	7-05: 100mph: TCI	-6 O	oef.	-					
	2x6 SP No 1 *Except*	* 5-6·2x6 SP No 2	<i></i>)	BCDL=6.0ps	: h=0ft: B=45ft: L=2	24ft: ea	ve=4ft: Cat. I	l:					
BOT CHORD	2x10 SP No 2	0 0.220 01 10.2		Exp B; Enclo	sed; MWFRS (all h	eights)	and C-C Exte	erior					
WEBS	2x4 SP No.3			(2) -0-10-14 t	o 2-1-2, Interior (1)	2-1-2 t	o 9-5-2, Exte	rior					
WEDGE	Left: 2x4 SP No.3			(2) 9-5-2 to 1	3-8-1, Interior (1) 1	3-8-1 to	14-1-14,						
	Right: 2x4 SP No.3			Exterior (2) 1	4-1-14 to 18-4-12,	Interior	(1) 18-4-12 t	0					
BRACING	Ū.			24-5-14 zone	; cantilever left and	l right e	xposed ; end						
TOP CHORD	Structural wood shea	thing directly applie	d or	vertical left a	nd right exposed;C-	-C for m	embers and						
	4-4-9 oc purlins, exce	ept		forces & MW	-RS for reactions s	shown;	_umber						
	2-0-0 oc purlins (10-0	-0 max.): 5-6.	2)	DOL=1.60 pla	ate grip DOL=1.60		laad						
BOT CHORD	Rigid ceiling directly a	applied or 10-0-0 oc	3)	rnis truss na	which include cos	or Dasic	roductions fr	or					
	bracing.			multiple conc	, which include cas		reductions it	JI					
WEBS	2 Rows at 1/3 pts 4	1-7	4)	Provide adea	uate drainage to pr	rovent v	vater ponding						
REACTIONS	(lb/size) 2=1228/0-3	3-8, 9=1228/0-3-8	5)	* This truss h	as been designed f	for a liv	aload of 20 (j.)nsf					
	Max Horiz 2=222 (LC	8)	0)	on the bottom	chord in all areas	where	a rectangle						
	Max Grav 2=1502 (LC	C 2), 9=1502 (LC 2)		3-06-00 tall b	y 2-00-00 wide will	fit betw	een the botto	om					
FORCES	(lb) - Maximum Comp	pression/Maximum		chord and an	y other members, v	with BC	DL = 10.0psf						
	Tension		6)	Ceiling dead	load (5.0 psf) on m	ember(s). 3-4, 7-8, 4	1-7;					
TOP CHORD	1-2=0/38, 2-3=-1832/	0, 3-4=-1031/108,		Wall dead loa	id (5.0psf) on mem	ber(s).3	8-13, 8-11						
	4-5=0/454, 5-6=0/722	2, 6-7=0/454,	7)	Bottom chord	live load (40.0 psf) and a	ditional botto	om					
	7-8=-1031/108, 8-9=-	1832/0, 9-10=0/38		chord dead lo	ad (10.0 psf) appli	ed only	to room. 11-	13					
	2-13=-23/1129, 11-13	3=0/1131, 9-11=0/11	29 8)	Graphical pu	lin representation of	does no	t depict the s	size				, un	
VVEDO	2-17-24/0 12 12-17	750/301 11-15- 67	5/0	bottom chord	uon oi me puriin ai	ong the	top and/or					"TH	CARO
	2-14=-044/0, 10-10=-	14/0 18-19=-750/30	3/0, 4 οι	Attic room ch	ockod for L /260 do	floction						N'R'	
	17-18=-675/0 9-19=0)/586	·, 9)			nection						FE	
		,	LO	AD CASE(S)	Siandard								The You

NOTES

 Unbalanced roof live loads have been considered for this design.

Page: 1

Job	Truss	Truss Type	Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	ТЗВ	Attic	2	3	Job Reference (optional)	E12751971

	6-4-4	17-2-12	23-7-0	
	6-4-4	10-10-8	6-4-4	
Scale = 1:66.5	-		-	
Plate Offsets (X, Y): [2:0-3-13,0-3-0], [6:0-3-8,0-3-0]	, [7:0-3-8,0-3-0], [11:0-3-13,	,0-3-0]		

Loading	(psf) Sp	bacing	5-4-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0 Pla	ate Grip DOL	1.15		тс	0.94	Vert(LL)	-0.17	13-15	>999	240	MT20	244/190	
TCDL	10.0 Lur	mber DOL	1.15		BC	0.82	Vert(TL)	-0.35	13-15	>801	180			
BCLL	0.0 Re	ep Stress Incr	NO		WB	0.42	Horiz(TL)	0.02	11	n/a	n/a			
BCDL	10.0 Co	ode	IBC2009	/TPI2007	Matrix-MS		Attic	-0.09	13-15	>999	360	Weight: 670 lb	FT = 20%	
LUMBER			1)	3-plv truss to	be connected toge	ther wi	h 10d							
TOP CHORD	2x6 SP No.2		- /	(0.131"x3") n	ails as follows:									
BOT CHORD	2x10 SP No.2			Top chords c	onnected as follow	s: 2x6 -	2 rows							
WEBS	2x4 SP No.3			staggered at	0-9-0 oc.									
WEDGE	Left: 2x4 SP No.3			Bottom chord	is connected as fol	lows: 2	(10 - 2 rows							
	Right: 2x4 SP No.3			staggered at	0-9-0 oc.									
BRACING	0			Web connect	ed as follows: 2x4	- 1 row	at 0-9-0 oc.							
TOP CHORD	2-0-0 oc purlins (6-0-0 m	nax.)	2)	All loads are	considered equally	applied	to all plies,							
	(Switched from sheeted:	Spacing > 2-0-0)		except if note	ed as front (F) or ba	ack (B) f	ace in the LO	AD						
BOT CHORD	Rigid ceiling directly appl	lied or 10-0-0 oc		CASE(S) sec	tion. Ply to ply con	nection	s have been							
	bracing.			provided to d	istribute only loads	noted a	as (F) or (B),							
JOINTS	1 Brace at Jt(s): 6,			unless otherv	vise indicated.									
	7, 16		3)	Unbalanced i	roof live loads have	e been d	considered for							
REACTIONS	(lb/size) 2=3274/0-3-8.	. 11=3274/0-3-8		this design.	7 05. 400		(
	Max Horiz 2=591 (LC 9)	,	4)	Wind: ASCE	7-05; 100mpn; 10	DL=6.0	DST;							
	Max Grav 2=3806 (LC 2)), 11=3806 (LC 2)		EVD B: Enclo	1, 11=011, D=4311, L= sod: MW/ERS (all b	2411, ea	and C-C Exte	, rior						
FORCES	(lb) - Maximum Compres	ssion/Maximum		(2) -0-10-14 t	$\sim 2.1.2$ Interior (1)	2_1_2 t	0 9-5-2 Exter	rior						
	Tension			(2) 9-5-2 to 1	3-8-1 Interior (1) 1	3-8-1 to	14-1-14							
TOP CHORD	1-2=0/102, 2-3=-4805/0.	3-4=-4616/0.		Exterior (2) 1	4-1-14 to 18-4-12	Interior	(1) 18-4-12 to	,						
	4-5=-2610/268, 5-6=-248	8/845, 6-7=0/1322	2	24-5-14 zone	: cantilever left and	d riaht e	xposed : end							
	7-8=-248/845, 8-9=-2610	0/268, 9-10=-4616	5/0,	vertical left an	nd right exposed;C	-C for n	embers and							
	10-11=-4805/0, 11-12=0/	/102		forces & MW	FRS for reactions	shown;	Lumber						111111	
BOT CHORD	2-15=-39/3280, 13-15=0/	/2818, 11-13=0/32	280	DOL=1.60 pla	ate grip DOL=1.60								CAD	
WEBS	4-15=0/2655, 9-13=0/265	55, 5-16=-4012/19	9, 5)	This truss ha	s been designed fo	r basic	load					"ATH	CARO	11.
	8-16=-4012/19, 3-15=-75	55/320,		combinations	, which include cas	ses with	reductions for	or				10 n	890.1	1.4
	10-13=-755/320, 6-16=-7	74/299,		multiple conc	urrent live loads.							2001		NI
	7-16=-74/299, 2-17=-283	33/0,	6)	Provide adeq	uate drainage to p	revent v	vater ponding				9		100	-01
	18-19=-220/179, 17-18=-	-1710/0,	7)	This truss ha	s been designed fo	or a 10.0) psf bottom				2			
	2-19=0/1706, 11-20=-283	33/0,		chord live loa	d nonconcurrent w	ith any	other live load	ds.			=	: 5	SEAL	- E
	21-22=-220/193, 20-21=-	-1710/0,	8)	Ceiling dead	load (5.0 psf) on m	ember(s). 4-5, 8-9, 5	-16,				: .	6222	: =
	11-22=0/1706			8-16; Wall de	ead load (5.0psf) o	n memt	per(s).4-15, 9-	13			1	: 03	00322	: z
NOTES														8 - Z
			9)	Bottom chord	l live load (40.0 psf) and a	dditional botto	m				A	.0.	1 3
				cnord dead lo	bad (10.0 pst) appli	ed only	to room. 13-1	15				2 A .SAL	-Er.	AS

10) Attic room checked for L/360 deflection. LOAD CASE(S) Standard

A. GILD February 28,2019

A. GIL

P

C

Page: 1

Job	Truss	Truss Type	Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	Т4	Common	5	1	Job Reference (optional)	E12751972

Run: 8.24 E Feb 11 2019 Print: 8.240 E Feb 11 2019 MiTek Industries, Inc. Thu Feb 28 08:28:11

Page: 1

ID:elgqJoiPHf6cNpEgFtywOLzI_OJ-EANZVtuniq01VPlkVUWmBZ?Z83a3zwakguEUcwzgfq2 $\begin{array}{c} 15-0-0 \\ 15-7-5 \\ 0.7-5 \\ 0-7-5 \end{array}$ 1-0-0 29-11-8 7-7-8 30-11-8 1-0-0 7-7-12 7-7-12 14-4-1 22-4-0 6-8-11 2x4∥ 4x5¢ 4x5≈ & 7 8 . 8 ÷‡° 3x4 -⁹ **г**3х5∢ 11-10-14 11-3-8 0-9-8 9-14 15 3x4= 17 2x4 II 10 3x8= 8 3x10 # 31 14 2x4 II 32 7-7-12 29-11-8 7-7-8 12-2-4 4-6-8 22-4-0 10-1-12 Plate Offsets (X, Y): [2:0-5-2,Edge], [12:0-5-8,Edge]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.51	Vert(LL)	-0.14	14-16	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.57	Vert(TL)	-0.42	14-16	>504	180			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.55	Horiz(TL)	0.03	2	n/a	n/a			
BCDL	10.0	Code	IBC20)9/TPI2007	Matrix-MS							Weight: 174 lb	FT = 20%	
UMBER			2) Wind: ASCE	7-05: 100mph: TC	DL=6.0	osf:							
FOP CHORD	2x4 SP No.1			BCDL=6.0ps	f; h=0ft; B=45ft; L=	=30ft; ea	ve=4ft; Cat.	II;						
BOT CHORD	2x4 SP No.1			Exp B; Enclo	sed; MWFRS (all	heights)	and C-C Ext	erior						
NEBS	2x4 SP No.3			(2) -1-0-0 to	2-0-0, Interior (1) 2	2-0-0 to 1	4-5-4, Exter	ior						
SLIDER	Left 2x4 SP No.3 1 1-6-0	-6-0, Right 2x6 SP	No.2	(2) 14-5-4 to zone; cantile	18-6-12, Interior (ver left and right e	1) 18-6-1 xposed ;	2 to 30-11-8 end vertical	left						
BRACING				and right exp	osed;C-C for men	nbers an	d forces &							
FOP CHORD	Structural wood shea	athing directly applie	ed or	MWERS for	reactions shown; L	Lumber L	00L=1.60 pla	ate						
	6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0-	ept -0 max): 6-8	3) This truss ha	is been designed f	or basic	load							
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	с	combination:	s, which include ca	ises with	reductions f	or						
	bracing.		/) Provide ade	unent live loads.	orevent v	vater nondin	a						
NEBS	1 Row at midpt	7-16, 10-16	5) * This truss h	has been designed	for a liv	a load of 20	y. Onsf						
REACTIONS	(lb/size) 2=670/0-3	-8, 12=857/0-3-8,		on the bottor	n chord in all areas	s where	a rectangle	opo.						
	Max Horiz 2-2/6 (1)	○-0 ○ 7)		3-06-00 tall t	oy 2-00-00 wide wi	ll fit betw	een the bott	om						
	Max Grav 2=695 (LC	C 14) 12=857 (I C 1)	chord and ar	ny other members,	with BC	DL = 10.0ps	f.						
	16=1057 (LC 2)	/, b	or the orienta	ation of the purlin a	alona the	top and/or	size						
ORCES	(lb) - Maximum Com	pression/Maximum		bottom chore	1.	J								
			L	OAD CASE(S)	Standard									
IOP CHORD	1-2=0/36, 2-3=-304/3	3, 3-26=-681/185, -375/265												
	5-27=-238/287 6-27	=-227/309										, unit	0001111	
	8-28=-241/268, 9-28	=-242/247,										"TH	CARO	11,
	9-10=-378/225, 10-2	9=-788/215,										A'OH	200-11	1.4
	11-29=-968/175, 11-	12=-226/0, 12-13=0	0/36,									12/10/		an
	6-7=-182/307, 7-8=-1	193/263									2		100	11
BOT CHORD	2-30=-199/467, 17-3	0=-108/467, 1627/700									-			1 =
	15-31=-27/700 14-3	1=-27/700									- 5		SEAL	-1 E
	14-32=-27/700, 12-3	2=-27/700									1	: 03	36322	: 2
NEBS	4-17=0/217, 4-16=-4	88/187, 7-16=-205/	54,								=			1 3
	10-16=-665/157, 10-	14=0/444									-	1. A.	a :	S - 2
NOTES	al an af line in a da i											- Co SNO	SINEE	2.5
 Unbalance this docion 	ed root live loads have	been considered for	r									1210	DE	11
uns design												In A	. GILD	N
												1111	mmm	

ľ

Scale = 1:71.8

February 28,2019

Job	Truss	Truss Type	Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	T4GE	Common Supported Gable	1	1	Job Reference (optional)	E12751973

Run: 8.24 E Feb 11 2019 Print: 8.240 E Feb 11 2019 MiTek Industries, Inc. Thu Feb 28 08:28:11 ID:elgqJoiPHf6cNpEgFtywOLzI_OJ-EANZVtuniq01VPlkVUWmBZ?fQ3hpz0ykguEUcwzgfq2

Page: 1

29-11-8

Scale = 1:69.5

Plate Offsets (X, Y): [21:0-2-5,0-2-4], [22:Edge,0-6-8], [40:0-4-4,0-1-8]

							-					_			
Loading	(p	sf)	Spacing	2-0-0		CSI	D	EFL	in	(1	oc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20	0.0	Plate Grip DOL	1.15		TC 0.17	V	ert(LL)	n/a		-	n/a	999	MT20	244/190
TCDL	10	0.0	Lumber DOL	1.15		BC 0.07	V	ert(TL)	n/a		-	n/a	999		
BCLL	C	0.0	Rep Stress Incr	YES		WB 0.14	H	loriz(TL)	0.01		22	n/a	n/a		
BCDL	10	0.0	Code	IBC2009/TPI2007		Matrix-S								Weight: 239 lb	FT = 20%
LUMBER TOP CHORD 2x BOT CHORD 2x WEBS 2x OTHERS 2x SLIDER Rig BRACING TOP CHORD St 6-1 2-1	4 SP No.1 4 SP No.1 4 SP No.3 4 SP No.3 ght 2x6 SP N ructural wood 0-0 oc purlins 0-0 oc purlins	o.2 d shea s, exc s (6-0-	1-1-6 thing directly applied ept end verticals, an 0 max.): 11-13.	or FORCES	Ma (I	x Grav 22=139 (LC 6), 25=162 (LC 16) 27=160 (LC 1), 31=141 (LC 1), 34=161 (LC 1), 36=161 (LC 1), 38=170 (LC 1), 40=187 (LC 7) b) - Maximum Compressi	24= , 26 28= 30= 33= 35= 37= 39=	=123 (LC 9), ==159 (LC 1), =160 (LC 16), =160 (LC 16), =161 (LC 15), =160 (LC 15), =158 (LC 15), =169 (LC 8), Maximum	, , ,	1) 2)	Unba this BCD Exp (3) - (3) 1 zone and MWI	alanced design. d: ASCE DL=6.0p B; Enclo B; Enclo 4-5-4 to c; cantile right ex FRS for	Froof li Froof li Froosed; I Froosed; I Froosed; I Froosed Froosed Froosed Froosed	ve loads have be 100mph; TCDL= hft; B=45ft; L=30f WWFRS (all heig Exterior (2) 2-0- 12, Exterior (2) 1 11, exterior (2) 1 ft and right expos ;C-C for member ons shown; Lumb	een considered for =6.0psf; t; eave=2ft; Cat. II; hts) and C-C Corner 0 to 14-5-4, Corner 8-6-12 to 30-11-8 sed ; end vertical left s and forces & per DOL=1.60 plate
BOT CHORD Ri	gid ceiling dir	ectly a	applied or 10-0-0 oc		T	ension	<u>.</u>	- 202/102		3)	grip Trus	DOL=1. s desig	.60 ned foi	r wind loads in th	e plane of the truss
WEBS 1 I	acing. Row at midpt		12-31, 10-33, 9-34, 14-30, 15-29	TOP CHORD	3	-40=-130/110, 1-2=0/41, 2 -4=-142/150, 4-5=-127/12 -7=-97/93, 7-8=-81/146, 8	2-3= 26, 5 8-9=	=-203/193, 5-6=-112/102 =-72/159,	2,	0)	only see	. For st Standar	uds ex rd Indu	posed to wind (n stry Gable End I	ormal to the face), Details as applicable, er as per ANSI/TPL1
REACTIONS (Ib/s Max Max	size) 22=1 25=1 27=1 31=1 36=1 38=1 40=1 40=1 40=1 40=1 22=-1 (LC 6 6), 3 36=-1 39=-	27/29 62/29 60/29 61/29 41/29 61/29 61/29 61/29 57/29 57/29 99 (LC 6 (LC 6)), 28= 4=-10 6 (LC 109 (L	-11-8, 24=101/29-11 -11-8, 26=159/29-11 -11-8, 28=160/29-11 -11-8, 33=156/29-11 -11-8, 33=156/29-11 -11-8, 37=158/29-11 -11-8, 37=158/29-11 -11-8, 39=65/29-11- -11-8 C 8) C 9), 24=-63 (LC 6), 27= -5 (LC 6), 29=-10 (L (LC 7), 35=-5 (LC 7) 7), 37=-8 (LC 7), C 7), 40=-159 (LC 8)	-8, -8, -8, -8, -8, -8, -8, -8, -8, -8,	1 1 2 2 2 3 3 3 3 3 3 2 2 2 2 2 1 9 5 1 1 1 2	3-14=-56/269, 14-15=-58 5-16=-57/159, 16-17=-53 8-19=-81/70, 19-20=-96/ 0-21=-130/120, 21-22=-2 2-23=0/15, 11-12=-32/24 9-40=-117/178, 38-39=-1 7-38=-117/178, 38-39=-1 7-38=-117/178, 38-39=-1 1-32=-117/178, 30-31=-1 9-30=-117/178, 28-29=-1 7-28=-117/178, 28-29=-1 7-28=-117/178, 24-25=-1 2-34=-121/102, 7-35=-120 -37=-118/88, 4-38=-127/2 4-30=-120/42, 15-29=-12 9-26=-120/86, 18-27=-12 9-26=-120/88, 20-25=-12 1-24=-100/144	(23; (23; (23)/ (39)/ (2, 1 17/ 17/ 17/ 17/ 17/ 17/ 17/ 17	3, , 17-18=-66/8 174, 12-13=-32/24 178, 178, 178, 178, 178, 178, 178, 178,	35, 2 39,),	4) 5) 6) 7) 8)	This com mult Prov All p Gab Gab	truss h bination iple con ride ade lates ar le requi le studs	as bee is, whickurren incurren quate e 2x4 res con space	n designed for b ch include cases it live loads. drainage to prev MT20 unless oth httinuous bottom ad at 2-0-0 oc.	asic load with reductions for ent water ponding. erwise indicated. chord bearing. CARO SSICHARO SEAL B6322

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property idenage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

February 28,2019

Job	Truss	Truss Type	Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	T4GE	Common Supported Gable	1	1	Job Reference (optional)	E12751973

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 159 lb uplift at joint 40, 10 lb uplift at joint 34, 5 lb uplift at joint 35, 6 lb uplift at joint 36, 8 lb uplift at joint 37, 109 lb uplift at joint 39, 10 lb uplift at joint 29, 5 lb uplift at joint 28, 6 lb uplift at joint 27, 6 lb uplift at joint 26, 6 lb uplift at joint 25, 63 lb uplift at joint 24 and 99 lb uplift at joint 22.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.24 E Feb 11 2019 Print: 8.240 E Feb 11 2019 MiTek Industries, Inc. Thu Feb 28 08:28:11 ID:elgqJoiPHf6cNpEgFtywOLzI_OJ-EANZVtuniq01VPlkVUWmBZ?fQ3hpz0ykguEUcwzgfq2 Page: 2

Job	Truss	Truss Type	Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	T15A	Piggyback Base	1	2	Job Reference (optional)	E12751974

Run: 8.23 S Nov 4 2018 Print: 8.240 S Jan 22 2019 MiTek Industries, Inc. Thu Feb 28 16:59:55 ID:elgqJoiPHf6cNpEgFtywOLzI_OJ-JF6x8SqBP1pQyeHPh6yVwlZMbr8qUIHDEkrivwzgZCY

Page: 1

Scale = 1:68.5	1-1-1
Plate Offsets (X, Y):	[4:0-3-0,0-2-0], [5:0-5-12,0-1-12]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	3-0-0 1.15 1.15 NO IBC2009)/TPI2007	CSI TC BC WB Matrix-MS	0.86 0.46 0.24	DEFL Vert(LL) Vert(TL) Horiz(TL)	in -0.08 -0.17 0.06	(loc) 10-13 10-13 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 496 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.1 2x6 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 2-0-0 oc purlins (6-0- (Switched from shee Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 1=2215/0- Max Horiz 1=342 (LC Max Grav 1=2266 (L (lb) - Maximum Comp Tension 1-2=-3119/398, 2-4= 4-5=-1855/471, 5-7= 7-8=-3146/398 1-14=-167/2371, 13- 10-13=0/1880, 9-10= 5-13=-214/217, 8-15= 5-13=-214/217, 8-15= 16-17=-402/471, 15- 8-17=-48/1318, 1-18	-0 max.) ted: Spacing > 2-0-0 applied or 10-0-0 oc 5-13 3-8, 8=2215/0-3-8 3 (C 2), 8=2284 (LC 2) pression/Maximum -2474/475, -2505/475, 14=-167/2371, -158/2393, 83/251, 4-13=-19/81 -680/250, 7-9=0/359 =-1355/0, 16=-1494/124, =-1339/0,	2) 3) 4)). 5) 6) 7) 4, 8) LQ	All loads are except if note CASE(S) sec provided to d unless otherw Unbalanced I this design. Wind: ASCE BCDL=6.0ps Exp B; Enclo (2) 0-0 to 3 (2) 14-2-14 to Exterior (2) 2 36-11-0 zone vertical left ar forces & MW DOL=1.60 pla This truss ho on the bottom 3-06-00 tall b chord and an Graphical puu or the orienta bottom chord	considered equally d as front (F) or ba tion. Ply to ply com istribute only loads vise indicated. oof live loads have 7-05; 100mph; TC f; h=0ft; B=45ft; L= sed; MWFRS (all 0-0, Interior (1) 3- o 18-5-12, Interior (2 2-8-2 to 26-11-1, li cantilever left and dright exposed; C FRS for reactions s ate grip DOL=1.60 s been designed for which include cas urrent live loads. uate drainage to p as been designed to chord in all areas y 2-00-00 wide will y other members, lin representation tion of the purlin a Standard	/ applied ack (B) f inections is noted a be been of DL=6.0 (37ft; ea neights) 0-0 to 1. (1) 18-5- nterior (d right e -C for m shown; I or basic ses with revent v for a livy is where I fit betw with BC does no long the	to all plies, ace in the LC s have been is (F) or (B), onsidered fo osf; re=5ft; Cat. I and C-C Extd 4-2-14, Exter 12 to 22-8-2 1) 26-11-1 to xposed ; end embers and umber load reductions for vater ponding b load of 20.0 a rectangle een the bottt DL = 10.0psf t depict the s top and/or	DAD r l; erior ior g. Dpsf cm j. ize			4	ORTH VORTH	CAROL	
NOTES 1) 2-ply truss (0.131"x3" Top chord: oc. Bottom chords staggered Web conno	to be connected toget) nails as follows: s connected as follows ords connected as follows at 0-9-0 oc. ected as follows: 2x4 -	her with 10d :: 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows 1 row at 0-9-0 oc.)								CHARACTER STREET		SEAL 36322 SINEER.	A Community

818 Soundside Road Edenton, NC 27932

February 28,2019

Job	Truss	Truss Type	Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	T57A	Piggyback Base	1	2	Job Reference (optional)	E12751975

Run: 8.23 S Nov 4 2018 Print: 8.240 S Jan 22 2019 MiTek Industries, Inc. Thu Feb 28 17:00:08 ID:elgqJoiPHf6cNpEgFtywOLzI_OJ-RIOssv_LL0Sa0enuyKhYyVba05UU15c7DFUusgzgZCL

	1	6-7-4		12-11-0	18-5-8	24-9-4	1	30-8-6	1	36-7-8	36-11-0
	1	6-7-4	1	6-3-12	5-6-8	6-3-12	1	5-11-2	1	5-11-2	0-3-8
Scale = 1:69.1											

Plate Offsets (X, Y): [4:0-4-0,0-2-12], [5:0-4-0,0-2-0], [10:0-4-7,0-2-4]

Loading TCLL (roof) TCDL BCLL BCLL	(psf) 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	3-0-0 1.15 1.15 NO IBC2009	9/TPI2007	CSI TC BC WB Matrix-MS	0.95 0.87 0.56	DEFL Vert(LL) Vert(TL) Horiz(TL)	in -0.13 -0.33 0.21	(loc) 11-12 11-12 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 504 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x6 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right 2x4 SP No.3 2-0-0 oc purlins (5-4- (Switched from shee Rigid ceiling directly bracing. (Ib/size) 1=2215/0- Max Horiz 1=342.(C	1-6-0 -1 max.) ted: Spacing > 2-0-0 applied or 10-0-0 oc 3-8, 10=2215/0-3-8	2) 3) 4)	All loads are except if note CASE(S) sec provided to d unless otherw Unbalanced this design. Wind: ASCE BCDL=6.0ps Exp B; Enclo (2) 0-0-0 to 3 (2) 14-2-14 to Exterior (2) 2	considered equall d as front (F) or b tion. Ply to ply cor istribute only load vise indicated. roof live loads hav 7-05; 100mph; TC f; h=0ft; B=45ft; L= sed; MWFRS (all -0-0, Interior (1) 3- 0 18-5-12, Interior 2-8-2 to 26-11-1, I	y applied ack (B) f nnection s noted a e been o CDL=6.0 =37ft; ea heights) -0-0 to 1 (1) 18-5 Interior (to all plies, ace in the LC s have been as (F) or (B), considered for osf; ve=5ft; Cat. 1 and C-C Ext 4-2-14, Exter 12 to 22-8-2 1) 26-11-1 to	DAD or ll; erior rior						
FORCES	(lb) - Maximum Com Tension 1-2=-3033/396, 2-4= 4-5=-2163/446, 5-7= 7 8= 4401/572, 810	-2516/491, -2516/491, -4188/549, -4725/520	5)	36-11-0 zone vertical left ar forces & MW DOL=1.60 pla This truss ha	; cantilever left an nd right exposed;C FRS for reactions ate grip DOL=1.60 s been designed f	id right e C-C for n shown;) or basic	xposed ; end tembers and Lumber load	1						
BOT CHORD	1-15=-181/2299, 14- 13-14=0/1973, 12-13 11-12=-185/3733, 10	=-4725/529 15=-181/2299, 3=0/2651, 0-11=-327/3795	6) 7)	combinations multiple conc Provide adeq	, which include ca urrent live loads. uate drainage to p	orevent v	vater ponding	or g.						
WEBS	4-14=-163/162, 4-13 5-12=-156/2684, 2-1 7-12=-437/257, 7-11 8-11=-189/186, 1-16 17-18=-229/262, 16- 1-18=-66/1267, 10-1 21-22=0/186, 20-22= 10-22=-99/1849, 19- 9-22=-2508/335	=0/832, 5-13=-874/6 4=-620/249, 2-15=0/ =-83/222, =-1331/0, 17=-1445/133, 9=-1919/119, =-22/1002, 22=-1513/172,	;0, /320, 8) 9) LC	chord live loa Bearing at joi using ANSI/T designer sho Graphical pur or the orienta bottom chord DAD CASE(S)	d nonconcurrent v nt(s) 10 considers PI 1 angle to grain uld verify capacity rlin representation tion of the purlin a Standard	with any parallel formula of beari does no along the	other live loa to grain value a. Building ng surface. to depict the s top and/or	ids. ie size			Winn	NORTH NORTH	CAR SEAL	
NOTES											Ξ	03	6322	=
 2-ply truss (0.131"x3" Top chords oc. Bottom chi- staggered Web conni- 	to be connected toget ') nails as follows: s connected as follows ords connected as follows at 0-9-0 oc. ected as follows: 2x4 -	her with 10d :: 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows 1 row at 0-9-0 oc.	0								LUN.	CRIC A	GILBER	and a start of the

February 28,2019

Page: 1

Job	Truss	Truss Type	Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	V1	Valley	1	1	Job Reference (optional)	E12751976

Run: 8.24 E Feb 11 2019 Print: 8.240 E Feb 11 2019 MiTek Industries, Inc. Thu Feb 28 08:28:13 ID:elgqJoiPHf6cNpEgFtywOLzI_OJ-AZVKwZw1ERGkljv6dvYEG_4?SsMMRut18Cjbhozgfq0

Page: 1

29-9-13

Scale = 1:66.8 Plate Offsets (X, Y): [15:0-2-8,0-3-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2009/	/TPI2007	CSI TC BC WB Matrix-S	0.14 0.13 0.31	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 156 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 1=93/29-9 12=291/29 14=332/29 18=291/29 18=291/29 18=291/29 18=291/29 14=332/29 18=291/29 14=332/29 18=291/29 14=332/29 14=332/29 14=332/29 14=332/29 14=332/29 14=332/29 14=332/29 14=15 (LC 12=291 (L 14=423 (L 16=423 (L 18=291 (L) 18=291 (L)	athing directly applied applied or 10-0-0 oc 6-15 1-13, 11=93/29-9-13, 3-9-13, 13=324/29-9-1 3-9-13, 15=240/29-9-1 3-9-13, 17=324/29-9-1 3-9-13 C 7) 7), 11=-31 (LC 8), C 5), 13=-11 (LC 5), C 5), 13=-11 (LC 6), C 6), 18=-11 (LC 6), C 6), 18=-11 (LC 2), C 15), 13=344 (LC 2), C 17), 15=329 (LC 2), C 16), 17=344 (LC 2), C 14)	WE NO or 1) 2) 3, 3, 3, 3, 4) 5) 6)	BS 6 37 7 1 TES Unbalanced r this design. Wind: ASCE BCDL=6.0ps Exp B; Enclos (2) 0-5-4 to 3 (2) 14-11-4 to zone; cantilex and right exp MWFRS for r grip DOL=1.6 This truss has combinations multiple conc All plates are Gable require * This truss h on the bottom 3-06-00 tall b chord and an	-15=-160/20, 5-16= -17=-242/141, 2-18 -14=-258/157, 9-13 0-12=-217/141 oof live loads have 7-05; 100mph; TCE ; h=0ft; B=45ft; L=3 sed; MWFRS (all h -5-4, Interior (1) 3-5 -17-11-4, Interior (2) soled; C-C for member eactions shown; Lu 0 s been designed for which include cas urrent live loads. 2x4 MT20 unless c s continuous botto as been designed f o chord in all areas y 2-00-00 wide will y other members, v	18=-21//141, 13=-242/141, 13=-242/141, e been considered for CDL=6.0psf; =30ft; eave=4ft; Cat. II; heights) and C-C Exterior -5-4 to 14-11-4, Exterior (1) 17-11-4 to 29-5-4 xposed ; end vertical left hers and forces & .umber DOL=1.60 plate or basic load uses with reductions for otherwise indicated. om chord bearing. I of a live load of 20.0psf s where a rectangle II fit between the bottom with BCDL = 10.0psf. n (by others) of truss to						www.unit	CARO
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=-176/186, 2-19= 3-19=-141/145, 3-4= 5-20=-127/177, 6-20 7-21=-127/177, 7-8= 9-22=-69/73, 10-22= 1-18=-89/145, 17-18 16-17=-89/145, 15-1 14-15=-89/145, 13-1 12-13=-89/145, 11-1	pression/Maximum -157/119, -126/70, 4-5=-101/96, =-66/203, 6-21=-48/20 -32/88, 8-9=-119/63, -118/47, 10-11=-163/ ⁻ =-89/145, 6=-89/145, 4=-89/145, 2=-89/145	7) 03, LO 114	Provide mech bearing plate 1, 18 lb uplift at joint 18, 17 11 lb uplift at AD CASE(S)	lanical connection (capable of withstar at joint 16, 11 lb up lb uplift at joint 14, joint 12 and 31 lb u Standard	by othe nding 7 lift at jo 11 lb u plift at	ers) of truss to 5 lb uplift at jo int 17, 11 di uplift at joint 1 ioint 11.	o int iplift 3,			Contraction of the second		EAL 6322 NNEER. K

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

February 28,2019

Job	Truss	Truss Type	Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	V2	Valley	1	1	Job Reference (optional)	E12751977

Scale = 1:61.2

Loading

TCLL (roof)

Run: 8.24 E Feb 11 2019 Print: 8.240 E Feb 11 2019 MiTek Industries, Inc. Thu Feb 28 08:28:14 ID:elgqJoiPHf6cNpEgFtywOLzI_OJ-el3i8vxg?IPbNtTIAc3ToCdATGihAMvBNsT8DEzgfq?

Page: 1

TCDL BCU	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES		BC WB	0.12 0.19	Vert(TL) Horiz(TL)	n/a 0.00	- 7	n/a n/a	999 n/a			
BCDL	10.0	Code	IBC2009)/TPI2007	Matrix-S	0.110		0.00			a	Weight: 126 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Structural wood sf 6-0-0 oc purlins. Rigid ceiling direct bracing. 1 Row at midpt (Ib/size) 1=174/2 8=390/2 10=249, 12=390 Max Horiz 1=199 (Max Uplift 1=-14 ((LC 5), 6) Max Grav 1=174 ((LC 1), 2), 11=4 (Ib) - Maximum Co Tension	eathing directly applied ly applied or 10-0-0 oc 4-10 5-9-13, 7=174/25-9-13, 5-9-13, 9=312/25-9-13, 25-9-13, 11=312/25-9- 25-9-13 _C 8) _C 7), 8=-13 (LC 5), 9=- 11=-17 (LC 6), 12=-13 (_C 1), 7=174 (LC 1), 8= 9=405 (LC 17), 10=337 05 (LC 16), 12=390 (LC mpression/Maximum	2) lor 3) 13, 4) 5) 6) 17 LC 3390 7) (LC C 1) LO	Wind: ASCE BCDL=6.0psf Exp B; Enclos (2) 0-5-4 to 3- (2) 12-11-4 to zone; cantilev and right expp MWFRS for n grip DOL=1.6 This truss has combinations multiple conc: All plates are Gable require * This truss has on the bottom 3-06-00 tall bj chord and an Provide mech bearing plate 1, 17 lb uplift at joint 9 and AD CASE(S)	7-05; 100mph; T ; h=0ft; B=45ft; I sed; MWFRS (al -5-4, Interior (1) 15-11-4, Interior rer left and right ssed;C-C for me eactions shown; 0 s been designed which include of urrent live loads. 2x4 MT20 unles s continuous bo as been designed chord in all are y 2-00-00 wide w y other members anical connection capable of withs at joint 11, 13 lb 13 lb uplift at join Standard	CDL=6.0 =26ft; ear I heights) 3-5-4 to 1; or (1) 15-11 exposed ; mbers an Lumber E for basic cases with as otherwisi thorm basic cases with so otherwisi thorm basic cases with as where a vill fit betw s, with BC on (by other standing 1 uplift at jon the standing 1 u	osf; ve=4ft; Cat. II; and C-C Exte 2-11-4, Exteria 1-4 to 25-5-4 end vertical lu d forces & DOL=1.60 plat load reductions fo se indicated. d bearing. e load of 20.0 a rectangle reen the botto DL = 10.0psf. a rectangle resp) of truss to 4 lb uplift at jo uint 12, 17 lb u	rior or eft e r osf m int plift						
TOP CHORD	1-13=-153/133, 2- 3-14=-126/148, 4- 5-15=-126/148, 5- 7-16=-118/71 1-12=-76/122 12-	3=-125/152, 2-3=-125/ 4=-59/174, 4-15=-49/1 }=-125/65, 6-16=-89/89 7=-76/122	90, 74, ,								G	NU RTH	Service	No I
	11-17=-76/122, 12 11-17=-76/122, 10 9-10=-76/122, 9-12 7-8=-76/122	-11=-76/122, 3=-76/122, 8-18=-76/12	2,								THE PARTY	03	SEAL 36322	
VVEB2	4-10=-164/11, 3-1 2-12=-282/173, 5-)=-247/152,)=-247/152, 6-8=-282/1	73								11			1 3
NOTES 1) Unbalance this design	ed roof live loads hav n.	e been considered for										A RIC A	GILBER	A HILL

mmmm February 28,2019

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	V3	Valley	1	1	Job Reference (optional)	E12751978

Scale = 1:55.5

Run: 8.24 E Feb 11 2019 Print: 8.240 E Feb 11 2019 MiTek Industries, Inc. Thu Feb 28 08:28:14 ID:elgqJoiPHf6cNpEgFtywOLzI_OJ-el3i8vxg?IPbNtTIAc3ToCdA4GhSAN?BNsT8DEzgfq?

Page: 1

February 28,2019

818 Soundside Road Edenton, NC 27932

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.15	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.14	Vert(TL)	n/a	-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.19	Horiz(TL)	0.00	7	n/a	n/a			
BCDL		10.0	Code	IBC200	9/TPI2007	Matrix-S							Weight: 102 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N	lo.1		2)	Wind: ASCE BCDL=6.0ps Exp B: Enclo	7-05; 100mph; TCI f; h=0ft; B=45ft; L=2 sed: MWFRS (all h	DL=6.0 24ft; ea eights)	osf; ve=4ft; Cat. II and C-C Exte	I; erior						
OTHERS	2x4 SP N	0.3			(2) 0-5-4 to 3	-5-4, Interior (1) 3-5	5-4 to 1	0-11-4, Exter	ior						
BRACING					(2) 10-11-4 to	o 13-11-4, Interior (1) 13-1	1-4 to 21-5-4							
TOP CHORD	Structura 6-0-0 oc	l wood shea purlins.	athing directly applie	d or	zone; cantile and right exp	ver left and right ex osed;C-C for memb	posed pers an	end vertical d forces &	left						
BOT CHORD	Rigid ceil bracing.	ing directly	applied or 10-0-0 oc	3)	grip DOL=1.6	eactions shown; Lt 30 s been designed fo	inder L	load	lle						
REACTIONS	(Ib/size) Max Horiz Max Uplift Max Grav	1=94/21-9 8=285/21- 10=237/2' 12=285/2' 1=167 (LC 1=-41 (LC (LC 5), 9= 6), 12=-9 (1=94 (LC (LC 1), 9= 2), 11=36'	I-13, 7=94/21-9-13, 9-13, 9=342/21-9-13 I-9-13, 11=342/21-9 I-9-13 S 8) 7), 7=-10 (LC 8), 8= -18 (LC 5), 11=-18 ((LC 6) 1), 7=94 (LC 1), 8=2 361 (LC 17), 10=346 1 (LC 16), 12=285 (L	3, -13, 4) 5) 9 6) LC 85 7) 6 (LC 5 (LC C 1)	combinations multiple conc All plates are Gable require * This truss h on the botton 3-06-00 tall b chord and an Provide mect bearing plate	s, which include cas surrent live loads. 2x4 MT20 unless of as continuous botto as been designed in chord in all areas y 2-00-00 wide will y other members, whanical connection capable of withstal connection	otherwi m chor for a liv where fit betw with BC (by oth nding 4	reductions for se indicated. d bearing. e load of 20.0 a rectangle reen the botto DL = 10.0psf ers) of truss t 1 lb uplift at ju	or Opsf om c oint						
FORCES	(lb) - Max Tension	kimum Com	pression/Maximum	, L	joint 12, 18 lb	uplift at joint 9 and	19 lb u	olift at joint 8.	iiit at					NULLES -	
TOP CHORD	1-2=-131, 3-14=-12 5-15=-12 6-7=-106,	/131, 2-13= 7/122, 4-14 7/122, 5-16 /79	-115/67, 3-13=-86/9 =-52/148, 4-15=-48/ =-33/46, 6-16=-115/	3, 148, 14,	5AD GAGE(G)	Glanuaru							THORTH	CARO	
BOT CHORD	1-12=-62 10-11=-6 7-8=-62/1	/100, 11-12 2/100, 9-10 I00	=-62/100, =-62/100, 8-9=-62/1	00,								1111	224	SEAL	1
WEBS	4-10=-15 5-9=-266	7/4, 3-11=-2 /163, 6-8=-2	266/163, 2-12=-211/ 211/140	140,								HI	03	36322	Ē
NOTES 1) Unbalance this design	ed roof live n.	loads have	been considered for									LUN.	SPIC A	MEER.	A STATE

Job	Truss	Truss Type	Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	V4	Valley	1	1	Job Reference (optional)	E12751979

Run: 8.24 E Feb 11 2019 Print: 8.240 E Feb 11 2019 MiTek Industries, Inc. Thu Feb 28 08:28:15 ID:nAiOGQXm6no6zwXqmx?IE8zq8tz-7xd4LFxIm2XS_12VkKaiLP9K_g2tvrPKbWChlhzgfq_

2x4 🛚

3x4 🛸

Page: 1

5x5 =

	17-10-5	4
Scale = 1:49.9		
Plate Offsets (X, Y): [4:0-0-0,Edge], [7:0-2-8,0-3-0]		

2x4 🛛

3x4 🖌

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
BCU		10.0	Rep Stress Incr	1.15 VES		BC W/B	0.13	Ven(TL)	n/a	5	n/a n/a	999 n/a			
BCDL		10.0	Code	IBC20	09/TPI2007	Matrix-S	0.11	110112(112)	0.00		174	Π/a	Weight: 77 lb	FT = 20%	
LUMBER				3) This truss ha	s been designed	I for basic	load							
TOP CHORD	2x4 SP N	0.1			combinations	s, which include o	cases with	reductions f	or						
BOT CHORD	2x4 SP N	0.1) Coble require	current live loads	ttom chor	hooring							
PRACINC	284 SP IN	0.5		4) * This truss h	as been designe	ed for a live	e load of 20 (Opsf						
TOP CHORD	Structural	wood she	athing directly applie	ed or	on the botton	n chord in all are	as where a	a rectangle							
	6-0-0 oc p	ourlins.	annig anoony appin		3-06-00 tall b	y 2-00-00 wide v	will fit betw	een the bott	om						
BOT CHORD	Rigid ceili	ing directly	applied or 10-0-0 o	c c	chord and an	y other member	s, with BC	DL = 10.0psi	f.						
	bracing.			b	 Provide meci bearing plate 	nanical connection	on (by othe standing 1	ers) of truss t 9 lb unlift at i	oint						
REACTIONS	(lb/size)	1=169/17	-10-5, 5=169/17-10-	5,	8 and 19 lb u	plift at joint 6.	standing n	o io upiir ar j	onne						
		6=409/17- 8=400/17.	·10-5, /=208/1/-10- .10-5	^{.5,} L	OAD CASE(S)	Standard									
	Max Horiz	1=-136 (L	C 7)												
	Max Uplift	6=-19 (LC	5), 8=-19 (LC 6)												
	Max Grav	1=169 (LC	C 1), 5=169 (LC 1), 6	6=413											
		(LC 15), 7	=320 (LC 2), 8=413	s (LC											
FORCES	(lb) - Max	imum Com	pression/Maximum												
	Tension														
TOP CHORD	1-9=-106/	/82, 2-9=-7	7/101, 2-10=-128/95	5,											
	3-10=-44/	121, 3-11=	-43/121, 4-11=-128	/95,											
	4-12=-34/	07, 5-12=-	94/39 0/91 7 12- 50/91												
BOT CHORD	7-14=-50/0	/81. 6-14=-	50/81. 5-6=-50/81										"TH	CARO	11,
WEBS	3-7=-144/	0, 2-8=-30	4/183, 4-6=-304/183	3								/	N'OF M		Nº.
NOTES												6	de s		all
1) Unbalance	ed roof live I	oads have	been considered fo	r								-	.0	The	1.1-
this desig	n.												110	SEAL	1 3
 Wind: ASI BCDI –6 (UE 7-05; 100 Dost: h=0ft: F	0mpn; TCL 3-45ft: 1-2	/L=6.0pst; /4ft: eave-4ft: Cat I	ŀ								=		SEAL	: =
Exp B; En	closed; MW	FRS (all he	eights) and C-C Exte	erior								Ξ	0.	36322	- E
(2) 0-5-4 t	o 3-5-4, Inte	erior (1) 3-5	-4 to 8-11-8, Exterio	or (2)								-			1 3
8-11-8 to	11-11-8, Inte	erior (1) 11	-11-8 to 17-5-12 zor	ne;								-	·	-A.	12 3
right expo	sed C-C for	members :	; end venical left an	u S									1 Conve	GINE	a s
for reactio	ins shown; L	umber DO	L=1.60 plate grip										ILC A	CILBE	(II)
DOL=1.60)												1111	. GILIN	· ·
													Eobruor	v 29 2010	
													repidar	y ∠o,∠u19	

ENGINEERING BY AMITEK Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	V5	Valley	1	1	Job Reference (optional)	E12751980

6-11-3

Peak Truss Builders, LLC, New Hill, NC - 27562,

Run: 8.24 E Feb 11 2019 Print: 8.240 E Feb 11 2019 MiTek Industries, Inc. Thu Feb 28 08:28:15 ID:nAiOGQXm6no6zwXqmx?IE8zq8tz-7xd4LFxIm2XS_12VkKaiLP9L6g2UvryKbWChIhzgfq_

13-5-12

13-10-5

3x4 💋	2x4 u	2x4 II	2x4 II	3x4

13-10-5

Loading TCLL (roof) TCDL BCLL BCDI		(psf) 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC20	009/TPI2007	CSI TC BC WB Matrix-S	0.13 0.09 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 57 lb	GRIP 244/190	
LUMBER TOP CHOF BOT CHOF OTHERS BRACING TOP CHOF BOT CHOF REACTION	 2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p RD Rigid ceilin bracing. IS (lb/size) 	2.1 2.1 2.3 wood sheat ourlins. ng directly 1=92/13-1 6-306/13-1	athing directly appli applied or 10-0-0 o 0-5, 5=92/13-10-5, 10-5, 7=247/13-10-5,	ed or	 This truss ha combinations multiple conc Gable required This truss ha chord live loa Provide mecl bearing plate 1, 18 lb uplift LOAD CASE(S) 	s been designed for , which include ca- surrent live loads. es continuous bottt s been designed fr id nonconcurrent v nanical connection capable of withsta at joint 8 and 18 lt Standard	or basic ses with om chor or a 10.0 vith any (by oth anding 1 o uplift a	load reductions fo d bearing. 0 psf bottom other live load ers) of truss to 3 lb uplift at jo t joint 6.	or ds. D Dint				woight: of to		
505050	Max Horiz Max Uplift Max Grav	8=306/13- 1=-104 (L0 1=-13 (LC (LC 7) 1=92 (LC (LC 16), 7 15)	10-5 C 8) 8), 6=-18 (LC 6), 8 1), 5=92 (LC 1), 6=: =247 (LC 1), 8=313	3=-18 313 3 (LC											
TOP CHOP	(Ib) - Maxi Tension 20 1-2=-86/8 3-10=-51/ 4-12=-127	0, 2-9=-127 96, 3-11=-{ 7/70, 4-5=-6	pression/Maximum 7/70, 9-10=-110/70, 51/96, 11-12=-110/7 59/47	, 70,											
BOT CHOP	RD 1-8=-34/5 5-6=-34/5	6, 7-8=-34/ 6	56, 6-7=-34/56,										UNITH TH	CARO	1
WEBS NOTES 1) Unbala this de: 2) Wind: / BCDL= Exp B; (2) 0-5- 6-11-8 cantilev right ex- for read DOL=1	3-7=-164/ nced roof live k sign. SCE 7-05; 100 6.0psf; h=0ft; E Enclosed; MWI 4 to 3-5-4, Inter to 9-11-8, Inter ver left and righ posed;C-C for tions shown; L .60	0, 2-8=-24(bads have 0mph; TCD 3=45ft; L=2 FRS (all he rior (1) 3-5 ior (1) 9-11 t exposed members a umber DOI	D/156, 4-6=-240/156 been considered fo L=6.0psf; 4ft; eave=4ft; Cat. I ights) and C-C Extr 4 to 6-11-8, Exterio -8 to 13-5-12 zone; c end vertical left an and forces & MWFR L=1.60 plate grip	6 or erior or (2) ; dd RS								Wannun		SEAL 36322 SINEER GILBER	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

February 28,2019

Page: 1

Job	Truss	Truss Type	Qty	Ply	Rob Grissom V2-Roof	
P-5824-1	V6	Valley	1	1	Job Reference (optional)	E12751981

Run: 8.24 E Feb 11 2019 Print: 8.240 E Feb 11 2019 MiTek Industries, Inc. Thu Feb 28 08:28:16 ID:nAiOGQXm6no6zwXqmx?IE8zq8tz-7xd4LFxIm2XS_12VkKaiLP9Kpg1VvsFKbWChlhzgfq_

Scale =	1:38.6
---------	--------

		1									1	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.15	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IBC2009/TPI2007	Matrix-S							Weight: 36 lb	FT = 20%

9-10-5

1

LUMBER

TOP CHORD	2x4 SP N	o.1
BOT CHORD	2x4 SP N	o.1
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural 6-0-0 oc p	wood sheathing directly applied or purlins.
BOT CHORD	Rigid ceili bracing.	ng directly applied or 10-0-0 oc
REACTIONS	(lb/size)	1=188/9-10-5, 3=188/9-10-5,
		4=346/9-10-5
	Max Horiz	1=72 (LC 9)
FORCES	(lb) - Max	imum Compression/Maximum

FORCES	(lb) - Maximum Compression/Maximu
	Tension
TOP CHORD	1-5=-141/42, 5-6=-66/46, 2-6=-35/64,
	2-7=-33/64, 7-8=-66/46, 3-8=-141/42
BOT CHORD	1-4=-17/53, 3-4=-17/53
WEBS	2-4=-212/66

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (all heights) and C-C Exterior (2) 0-5-4 to 3-5-4, Interior (1) 3-5-4 to 4-11-8, Exterior (2) 4-11-8 to 7-11-8, Interior (1) 7-11-8 to 9-5-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.
- Gable requires continuous bottom chord bearing.
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.

LOAD CASE(S) Standard

Page: 1

