

Trenco 818 Soundside Rd Edenton, NC 27932

Re: Quote_file Barnes - Beverly A

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components-Kings Mountain, NC.

Pages or sheets covered by this seal: I47762518 thru I47762575

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

September 7,2021

Sevier, Scott

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=241, 17=603, 9=437.
- 7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

ORTH Volumentum. WWWWWWWW SEAL 044925 unnun September 7,2021

TREERING BY A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
- 7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

building design. Bracing indicated is to prevent building of and/build in truss were band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, reaction and bracing of trusses and truss systems. see **ANSI/TPH Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Barnes - Beverly A	
					4	17762520
QUOTE_FILE	AG	Roof Special Girder	1	1		
					Job Reference (optional)	
84 Lumber 2381 (Kings Mountain, NC), Kings Mountain, NC - 28086, 8.520 s Aug 27 2021 MiTek Industries, Inc. Fri Sep 3 07:40:28 2021 Page 2					age 2	
		ID:10	DUQItubAL	AJMIaPaf	tmcUvoJ6G-NHcMC49pmd1Nsi_oav?nYiivarRx?oRfDia6M?vt	hPP1

NOTES-

13) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.

14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-60, 2-4=-60, 4-8=-60, 8-13=-60, 23-26=-20, 23-35=-33(F=-13), 29-35=-20

September 7,2021

REACTIONS. (size) 1=0-4-0, 23=(0-4-0 + bearing block) (req. 0-4-4), 13=0-4-0 Max Horz 1=-273(LC 10) Max Uplift 1=-541(LC 19), 23=-758(LC 12), 13=-422(LC 13) Max Grav 1=164(LC 12), 23=2691(LC 19), 13=1760(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-304/1184, 3-4=-650/216, 4-5=-478/211, 5-6=-2211/608, 6-7=-2117/615, 7-8=-1716/583, 8-9=-1705/570, 9-11=-2313/622, 11-13=-2438/599 BOT CHORD 1-23=-1029/341, 12-23=-1029/341, 19-21=-388/1414, 18-19=-506/2149, 17-18=-334/1702, 15-17=-259/1611, 13-15=-374/1923

WEBS 3-23=-2495/722, 3-21=-371/1832, 5-21=-1570/437, 5-19=-230/1274, 6-19=-722/270, 6-18=-757/278, 7-18=-190/660, 7-17=-846/417, 8-17=-469/1554, 9-17=-717/383, 9-15=-129/560, 11-15=-279/265

NOTES-

- 1) 2x4 SPF No.2 bearing block 12" long at jt. 23 attached to front face with 2 rows of 10d (0.131"x3") nails spaced 3" o.c. 8 Total fasteners. Bearing is assumed to be SPF 1650F 1.5E.
- 2) Unbalanced roof live loads have been considered for this design.

3) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 7-6-2, Exterior(2R) 7-6-2 to 10-6-2, Interior(1) 10-6-2 to 24-0-0, Exterior(2R) 24-0-0 to 27-0-0, Interior(1) 27-0-0 to 40-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 4) Provide adequate drainage to prevent water ponding.5) All plates are 3x5 MT20 unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 1=541, 23=758, 13=422.

9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Job	Truss	Truss Type	Qt	у	Ply	Barnes - Beverly A		147700504
QUOTE_FILE	BG	ATTIC	1		2			147762524
84 Lumber 2381 (Kings N	lountain, NC), Kings Mou	ntain, NC - 28086,		6	3.520 s Au	Job Reference (optional Jg 27 2021 MiTek Indus	al) stries, Inc. Fri Sep 3 (07:40:32 2021 Page 1
	-Q <u>-10-8</u> 2	-6-5 5-9-0 9-4-15	ID:10 <u>11-0-0 12-7-1 _</u>	DUQItub 16-	ALAJMIa 3-0	PgftmcUyoJ6G-G2st2R 19-5-11 22-0-(tDJqsXpLKIZpl3jiZtfn⊺ 0	[ISxjkF7LYJUmyhPOz
	0-10-8 2	-6-5 ' 3-2-11 ' 3-7-15	' 1-7-1 ' 1-7-1 '	3-7	-15	3-2-11 2-6-5	5	
			6x6 =					Scale: 3/16"=1'
			6					
	Ī	6x6	/	6x6 🔨	>			
		4x6 1/2 5		7				
		10.00 12 19	18	Ŕ	20 4x6 🖄	>		
		4x6 //	2.5x4	X	¢¢	4x6 ≫		
	4	4				Ŷ		
	0-11-	ix5 1/ \$					χ.	
		3 \$				9		
	4x6 🕢						4x6 ∾ 10	
	I 1 ²						T T	
	9-14						-9-14	
	17 · M					3×6		
	17 3:	6 16 15 ⁴ 8x8	=		1;	3 12	'' 11	
	2	6x6 = 6x6 = -6-5 <u>5-9-0</u>	16-3-0		6x	(6 = 6x6 = <u>19-5-11 </u> 22-0-(0	
Plate Offsets (X,Y) [2	2:0-2-14,0-2-0], [4:0-2-0,0-2-	-6-5 <u>3-2-11</u>], [8:0-2-0,0-2-0]	10-6-0		1	3-2-11 2-6-5	5	
LOADING (psf)	SPACING- 4-(-0 CSI .	DEFL.	in	(loc)	l/defl L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1	15 TC 0.78	Vert(LL)	-0.18	13-15	>999 240	MT20	197/144
BCLL 0.0 *	Rep Stress Incr	IO WB 0.41	Horz(CT)	0.01	13-15	n/a n/a		
BCDL 10.0	Code IBC2018/TPI201	4 Matrix-MS	Attic	-0.08	13-15	1520 360	Weight: 384 lt	> FT = 20%
LUMBER- TOP CHORD 2x6 SPF	1650F 1.5E		BRACING- TOP CHOR	D	2-0-0 oc	purlins (6-0-0 max.),	except end verticals	5
BOT CHORD 2x10 SP	No.1			п	(Switche	ed from sheeted: Space	r = 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	
			JOINTS	D	1 Brace	at Jt(s): 6, 18, 2, 10	TIO-0-0 OC DIACING.	
Max Ho	rz 17=0-3-8, 11=0-3-8 rz 17=567(LC 9)						UNIT C	ARO
Max Up Max Gra	lift 17=-280(LC 12), 11=-232 av 17=2816(LC 20), 11=269	(LC 13) 6(LC 21))	A OR SES	Sia LIN'
FORCES. (lb) - Max (Comp /Max Ten - All forces	250 (lb) or less except when show	n			e.	X and a	Spirten
TOP CHORD 2-3=-2	419/275, 3-4=-3190/357, 4-5	=-2022/496, 5-6=-109/947, 6-7=-1	09/948,					
BOT CHORD 16-17=	=-521/523, 15-16=-351/2214,	13-15=0/2016, 12-13=-148/1860	-11=-2489/271			Ē	SE	AL
WEBS 5-18=- 9-12=-	3269/691, 7-18=-3269/691, 4 1492/184, 3-15=-494/583, 9-	-15=0/1600, 8-13=0/1602, 3-16=- 13=-509/581, 2-16=-91/2038, 10-′	1499/167, 12=-146/2044				. 044	920
NOTES-							0.5	aini
1) 2-ply truss to be conn	ected together with 10d (0.13	1"x3") nails as follows:	0.0.0.00				Condition in the second	NEE: NEW Y
Bottom chords connected	cted as follows: 2x6 - 2 rows sta	s staggered at 0-9-0 oc. 2x4 - 1 fow at	0-9-0 00.				M	SEMM
Webs connected as for 2) All loads are consider	ollows: 2x4 - 1 row at 0-9-0 o ed equally applied to all plies	c. , except if noted as front (F) or ba	ck (B) face in the LC		ASE(S) s	ection. Ply to	south	HUS
ply connections have	been provided to distribute o	nly loads noted as (F) or (B), unle	ss otherwise indicat	ed.		-		
4) Wind: ASCE 7-16; Vu	It=130mph (3-second gust)	(asd=103mph; TCDL=4.2psf; BCE	DL=6.0psf; h=30ft; C	at. II; E	Exp B; Pr.	Enclosed;		
Interior(1) 14-0-0 to 2	1-10-4 zone; cantilever left a	nd right exposed ; end vertical left	and right exposed;	C-C for	members	s and forces		
& MWFRS for reaction 5) This truss has been d	ns shown; Lumber DOL=1.60 lesigned for a 10.0 psf botton) plate grip DOL=1.60) chord live load nonconcurrent wi	th any other live loa	ds.				
 6) * This truss has been will fit between the bo 	designed for a live load of 20	.0psf on the bottom chord in all an meers	reas where a rectan	gle 3-6	-0 tall by	2-0-0 wide		
7) Ceiling dead load (5.0) psf) on member(s). $4-5$, $7-8$	5-18, 7-18; Wall dead load (5.0p	osf) on member(s).4	-15, 8-	13			
8) Bottom chord live load9) Provide mechanical c	onnection (by others) of trus	to bearing plate capable of withs	tanding 100 lb uplift	at joint	t(s) excep	ot (jt=lb)		
17=280, 11=232. 10) This truss is designed	ed in accordance with the 20°	8 International Building Code sec	tion 2306.1 and refe	erenced	d standar	d ANSI/TPI		
1.	resentation does not denict t	e size or the orientation of the nu	lin along the top an	d/or bo	ttom cho	rd		
12) Attic room checked t	for L/360 deflection.	o or and orientation of the put	and along the top all				Septem	ber 7,2021
								-
WARNING - Verify desi Design valid for use only a	gn parameters and READ NOTES ON with MiTek® connectors. This design	THIS AND INCLUDED MITEK REFERENCI	E PAGE MII-7473 rev. 5/1 d is for an individual build	9/2020 B	EFORE US	Ε.	ENGINE	
a truss system. Before us building design. Bracing i	e, the building designer must verify the	e applicability of design parameters and pr	operly incorporate this de	and perm	the overall	sina		INLU

Component 818 Soundside Road Edenton, NC 27932

Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems. see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TRENCO AMITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affi

818 Soundside Road Edenton, NC 27932

2.5X4 —

2.5

			6-0-7		
1			6-0-7		I
Plate Offsets (X,Y)	[3:0-2-8,0-1-13], [4:0-2-8,0-1-13]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.06 BC 0.15 WB 0.00	DEFL. in Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) 0.00	n (loc) l/defl L/d) 5 n/r 120) 6 n/r 90) 5 n/a n/a	PLATES GRIP MT20 197/144
BCDL 10.0	Code IBC2018/TPI2014	Matrix-R			Weight: 13 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF	2F No.2 2F No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir 2-0-0 oc purlins (6-0-0 max.): Rigid ceiling directly applied o	rectly applied or 6-0-0 oc purlins, except 3-4. or 10-0-0 oc bracing.

REACTIONS. (size) 2=4-6-9, 5=4-6-9

Max Horz 2=-30(LC 10) Max Uplift 2=-58(LC 12), 5=-58(LC 13)

Max Grav 2=210(LC 1), 5=210(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Barnes - Beverly A	
						147762528
QUOTE_FILE	CG	Roof Special Girder	1	2		
				_	Job Reference (optional)	
84 Lumber 2381 (Kings Mou	ntain, NC), Kings Mounta	in, NC - 28086,		8.520 s Au	g 27 2021 MiTek Industries, Inc. Fri Sep 3 07:40:36 2021	Page 2
		ID:10	UQItubALA	JMIaPgftm	cUyoJ6G-8p5OupGqu51EqybK2b8ftP2Py4CTtVkq2zWXd	YyhPOv

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-6=-60, 6-9=-60, 16-17=-20

Vert: 1-6=-60, 6-9=-60, 16-17=-20 Concentrated Loads (lb) Vert: 22=-1525(F)

	9-0-11	17-9-14	1	24-9-3	32-0-0	
	9-0-11	8-9-3		6-11-5	7-2-13	
Plate Offsets (X,Y)	[1:0-3-15,Edge], [5:0-4-4,0-2-4], [6:0-4-	4,0-2-4], [10:0-3-15,Edge],	[15:0-2-12,0-2-8]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.76 BC 0.84 WB 0.86 Matrix-MS	DEFL. Vert(LL) -0.1 Vert(CT) -0.2 Horz(CT) 0.0	in (loc) l/defl 12 15-18 >999 2 24 15-18 >999 1 07 10 n/a	L/d PLATES 240 MT20 80 n/a Weight: 155 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S 13-15 WEBS 2x4 S SLIDER Left 2	PF No.2 PF No.2 *Except* : 2x6 SPF 1650F 1.5E PF Stud x4 SPF Stud 1-6-0, Right 2x4 SPF Stud	1-6-0	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sh 2-0-0 oc purlins (5- Rigid ceiling directl 8-5-3 oc bracing: 1 1 Row at midpt	eathing directly applied or 2-2-0 0-1 max.): 5-6. y applied or 10-0-0 oc bracing, -15. 5-13, 8-13	oc purlins, except Except:

REACTIONS. (size) 1=0-4-0, 10=0-4-0 Max Horz 1=-244(LC 8) Max Uplift 1=-367(LC 12), 10=-389(LC 13) Max Grav 1=1589(LC 19), 10=1608(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-2190/533, 3-5=-2138/666, 5-6=-1306/476, 6-8=-1644/468, 8-10=-2166/524

BOT CHORD 1-15=-462/1900, 13-15=-165/1280, 12-13=-285/1687, 10-12=-285/1687

WEBS 3-15=-504/422, 5-15=-337/969, 6-13=-143/640, 8-13=-700/380, 8-12=0/255

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 14-2-2, Exterior(2E) 14-2-2 to 17-9-14, Exterior(2R) 17-9-14 to 22-0-13, Interior(1) 22-0-13 to 32-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are 3x5 MT20 unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=367, 10=389.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

6) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

7) Girder carries tie-in span(s): 3-0-0 from 2-0-0 to 8-0-0

8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 5-13=-20, 13-14=-33(F=-13), 8-14=-20

TRENGINEERING BY AMITEK Affiliate 818 Soundside Road

Edenton, NC 27932

Contraction of the S unnun September 7,2021

> 818 Soundside Road Edenton, NC 27932

September 7,2021

Scale: 1/4"=1'

5-0	-4 9-10-11	14-9-3	19-7-10	24-4-6	28-4-0
Plate Offsets (X,Y)	[7:0-4-4,0-2-4], [8:0-8-0,0-0-2]	4-10-0	+ 10-0	4-0-12	5-11-10
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IBC2018/TPI2014	CSI. TC 0.61 BC 0.50 WB 0.97 Matrix-MS	DEFL. in (loc Vert(LL) 0.22 1 Vert(CT) -0.35 1 Horz(CT) 0.05	c) l/defl L/d 12 >999 240 12 >960 180 8 n/a n/a	PLATES GRIP MT20 197/144 Weight: 168 lb FT = 20%
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x8 SI WEBS 2x4 SI 1-15,3	PF No.2 P No.1 PF Stud *Except* -15,3-12,6-12,6-10: 2x4 SPF No.2		BRACING- TOP CHORD Stru exci BOT CHORD Rigi	ictural wood sheathing dir ept end verticals, and 2-0- d ceiling directly applied c	rectly applied or 3-9-3 oc purlins, -0 oc purlins (2-8-4 max.): 1-7. or 8-0-6 oc bracing.
REACTIONS. (Siz Max H Max L Max C	e) 16=0-3-8, 8=0-4-0 łorz 16=-118(LC 10) Jplift 16=-556(LC 8), 8=-500(LC 8) Jrav 16=1546(LC 1), 8=1616(LC 1)				OF ESSION NO
FORCES. (lb) - Max TOP CHORD 1-16 6-7= BOT CHORD 14-1 8-10 WEBS 1-15	Comp./Max. Ten All forces 250 (lb) or =-1433/551, 1-2=-2235/819, 2-3=-2235/8 -1827/656, 7-8=-2332/772 5=-1257/3601, 12-14=-1257/3601, 11-12 =-572/1880 =-907/2554, 2-15=-305/216, 3-15=-1586	¹ less except when shown. 319, 3-4=-3881/1385, 4-6= 2=-1137/3401, 10-11=-113 /575, 3-14=-32/344, 3-12=	-3881/1385, 7/3401, -112/325,	Contraction of Contra	SEAL 044925
 4-12 NOTES- 1) Wind: ASCE 7-16; MWFRS (envelope) , Interior(1) 27-4-6 t & MWFRS for react 2) Provide adequate d 3) This truss has been will fit between the l 5) Provide mechanica 16=556, 8=500. 6) This truss is design 7) Girder carries tie-in 	=-280/197, 6-12=-223/557, 6-11=-21/33 /ult=130mph (3-second gust) Vasd=103 gable end zone and C-C Exterior(2E) 0 o 29-2-8 zone; cantilever left and right ei ions shown; Lumber DOL=1.60 plate gri rainage to prevent water ponding. designed for a 10.0 psf bottom chord liv in designed for a live load of 20.0psf on bottom chord and any other members. connection (by others) of truss to bearir ed in accordance with the 2018 Internatii span(s): 4-0-0 from 2-0-0 to 27-0-0	4, 6-10=-1828/694, 7-10=-2 mph; TCDL=4.2psf; BCDL: -1-12 to 3-1-12, Interior(1) cposed ; end vertical left ar p DOL=1.60 e load nonconcurrent with the bottom chord in all area og plate capable of withstar onal Building Code section	299/1046 =6.0psf; h=30ft; Cat. II; Exp E 3-1-12 to 24-4-6, Exterior(2R nd right exposed;C-C for men any other live loads. as where a rectangle 3-6-0 ta nding 100 lb uplift at joint(s) e 2306.1 and referenced stand	3; Pr. Enclosed;) 24-4-6 to 27-4-6 nbers and forces II by 2-0-0 wide except (jt=lb) dard ANSI/TPI 1.	MGINEER HANN

- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-7=-60, 7-9=-60, 16-22=-20, 22-23=-54(F=-34), 17-23=-20

September 7,2021

818 Soundside Road Edenton, NC 27932

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=350, 11=350.
- 7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

TRENGINEERING BY A MI Tek Affiliate 818 Soundside Road

Edenton, NC 27932

Job	Truss	вя Туре	Qty	Ply	Barnes - Beverly A	
QUOTE_FILE	F ATT	īC	3	1		147762536
84 Lumber 2381 (Kings M	lountain, NC), Kings Mountain, N	IC - 28086.		8.520 s A	Job Reference (optional) ug 27 2021 MiTek Industrie	es, Inc. Fri Sep 3 07:40:45 2021 Page 1
	-Q <u>-10-8 2-6-5</u> Q-10-8 2-6-5	ID:10U(5-9-0 9-4-15 11-0-0 12 3-2-11 3-7-15 1-7-1 1	QltubALAJM 2-7-1 1 -7-1 3	llaPgftmcL 6-3-0 -7-15	lyoJ6G-NY8onuNTmsAyPk <u>19-5-11</u> <u>3-2-11</u> <u>2-0-0</u> <u>2-6-5</u>	ເກ34_omkJwuriBwUa197sCVSWyhPOm ⊣
		6x6	=			Scale = 1:65.3
		<u>_</u>				
	10	$\begin{array}{c} 6x6 \not\rightarrow \\ 6x6 \not\rightarrow \\ 4x6 \not\rightarrow \\ 17 \\ 4x6 \not\rightarrow \\ 2.5x4 \\ 4 \end{array}$	6x6 7 	18 ^{4x6}	4x6 \\ 8	
	4x6 ≠ 2.5x4 3 2.5x4 1 1 1 1 1 1				4x6 \vee 9 2.5	ix4 10 Φ Φ
	1 1 X 15	14 13			12	11 · · · · · · · · · · · · · · · · · ·
	6x6 =	6x6 = 8x8 =		e	6x6 = 6x0	6 =
	2-6-5 2-6-5	5-9-0 16-3-0 3-2-11 10-6-0)		+ <u>19-5-11</u> + <u>22-0-0</u> 3-2-11 + <u>2-6-5</u>	4
Plate Offsets (X,Y) [4	4:0-1-12,0-2-0], [8:0-1-12,0-2-0]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2018/TPI2014	CSI. DEFL TC 0.75 Vert(L BC 0.59 Vert(C WB 0.47 Horz(t Matrix-MS Attic	. ii L) -0.19 CT) -0.32 CT) 0.01 -0.09	n (loc) 9 12-14 2 12-14 1 11 9 12-14	I/defi L/d >999 240 >827 180 n/a n/a 1381 360	PLATES GRIP MT20 197/144 Weight: 188 lb FT = 20%
LUMBER- TOP CHORD 2x6 SPF BOT CHORD 2x10 SP WEBS 2x4 SPF	7 1650F 1.5E P No.1 ⁵ Stud	BRAC TOP (BOT (ING- CHORD	Structu except Rigid ce	ral wood sheathing direct end verticals. eiling directly applied or 1	ly applied or 6-0-0 oc purlins, 0-0-0 oc bracing.
REACTIONS. (size) Max Ho Max Up Max Gra) 15=0-3-8, 11=0-3-8 rz 15=283(LC 9) lift 15=-140(LC 12), 11=-116(LC 13 av 15=1408(LC 20), 11=1348(LC 2) 1)				
FORCES. (Ib) - Max. C	Comp./Max. Ten All forces 250 (lb)	or less except when shown.				
8-9=-1 BOT CHORD 14-15= WEBS 5-16=- 9-11=-	567/173 567/173 -147/1114, 12-14=0/1003, 11-12=- 1640/350, 7-16=-1640/350, 4-14=0, 1607/120	78/1005 758, 8-12=0/760, 3-15=-1606/103,				
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; Vu MWFRS (envelope) g Interior(1) 14-0-0 to 2 & MWFRS for reactio 3) This truss has been d 4) * This truss has been d 4) * This truss has been d 4) * This truss has been d 5) Ceiling dead load (5.0 6) Bottom chord live loae 7) Provide mechanical c 15=140, 11=116. 8) This truss is designed 9) Attic room checked for 	loads have been considered for this lit=130mph (3-second gust) Vasd=1 jable end zone and C-C Exterior(2E 1-10-4 zone; cantilever left and righ ns shown; Lumber DOL=1.60 plate lesigned for a 10.0 psf bottom chord designed for a live load of 20.0psf of ttom chord and any other members 0 psf) on member(s). 4-5, 7-8, 5-16, d (40.0 psf) and additional bottom cl connection (by others) of truss to be d in accordance with the 2018 Intern or L/360 deflection.	design. 03mph; TCDL=4.2psf; BCDL=6.0psf; h=3) -0-10-8 to 2-4-0, Interior(1) 2-4-0 to 11-6 t exposed ; end vertical left and right expo grip DOL=1.60 live load nonconcurrent with any other liv on the bottom chord in all areas where a r 7-16; Wall dead load (5.0psf) on membe nord dead load (5.0 psf) applied only to r aring plate capable of withstanding 100 lb ational Building Code section 2306.1 and	30ft; Cat. II;)-0, Exterio)sed;C-C fo ve loads. ectangle 3- r(s).4-14, 8 oom. 12-14 uplift at joi referenced	Exp B; P r(2R) 11-(or membe 6-0 tall by 8-12 nt(s) exce d standard	r. Enclosed; D-0 to 14-0-0, rs and forces y 2-0-0 wide ept (jt=lb) d ANSI/TPI 1.	SEAL 044925

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ENGINEERING BY A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

September 7,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Scale = 1:56.1

L		6-8-2	12-0-0	16-0-0	20-0-0	25-3-14	32-0-0	
		6-8-2	5-3-14	4-0-0	4-0-0	5-3-14	6-8-2	
Plate Offsets ()	X,Y)	[2:0-3-15,Edge], [4:0-4-4,	,0-2-4], [8:0-4-4	,0-2-4], [10:0-3-15,Edge]				
LOADING (psi TCLL 20.0 TCDL 10.0 BCLL 0.1 BCDL 10.0	f) 0 0 * 0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC 0.83 BC 0.79 WB 0.38 Matrix-MS	DEFL. ir Vert(LL) -0.18 Vert(CT) -0.28 Horz(CT) 0.09	n (loc) l/defl L/d 3 12-13 >999 240 3 13-14 >999 180 9 10 n/a n/a	PLATES C MT20 1 Weight: 134 lb	FT = 20%
BCDL 10.0 Code BC2016/17/12/014 Main x-M/S LUMBER- TOP CHORD 2x4 SPF No.2 Except 13.14: 2x8 SP No.1 BRACING- TOP CHORD WEBS 2x4 SPF Stud 500 CHORD Structural wood sheathing directly applied or 2-11-6 oc purlins, except UDBER- 13.14: 2x8 SP No.1 BOT CHORD Structural wood sheathing directly applied or 7-2-6 oc bracing. WEBS 2x4 SPF Stud BOT CHORD Rigid ceiling directly applied or 7-2-6 oc bracing. WEBS 1 Row at midth 5-15 6-12							purlins,	
REACTIONS.	(size Max H	e) 2=0-4-0, 10=0-4-0 orz 2=125(LC 11)						

Max Uplift 2=-344(LC 9), 10=-344(LC 8) Max Grav 2=1464(LC 19), 10=1464(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-4=-2008/535, 4-5=-1565/490, 5-6=-2316/681, 6-8=-1565/490, 8-10=-2008/536
- BOT CHORD 2-15=-450/1653, 14-15=-640/2347, 13-14=-637/2356, 12-13=-638/2346, 10-12=-335/1590
- WEBS 4-15=-186/875, 5-15=-1080/434, 6-12=-1080/434, 8-12=-186/875, 5-14=0/358,
- VEBS 4-15=-186/875, 5-15=-1080/434, 6-12=-1080/434, 8-12=-186/875, 5-14=0/358, 6-13=0/358

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 6-8-2, Exterior(2R) 6-8-2 to 10-11-1, Interior(1) 10-11-1 to 25-3-14, Exterior(2R) 25-3-14 to 29-6-13, Interior(1) 29-6-13 to 32-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=344, 10=344.
- 7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

ORT Vannannun WWWWWWW SEAL 044925 S unnun 1 September 7,2021

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-2-12, Exterior(2E) 4-2-12 to 5-9-4, Exterior(2R) 5-9-4 to 10-0-0, Interior(1) 10-0-0 to 10-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=134, 7=134.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

SEAL 044925 September 7,2021

ENGINEERING BY **TREENCO** A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Barnes - Beverly A
					147762541
QUOTE_FILE	HA	Half Hip Girder	1	2	
					Job Reference (optional)
84 Lumber 2381 (Kings Mou	ntain, NC), Kings Mounta	in, NC - 28086,		8.520 s Au	g 27 2021 MiTek Industries, Inc. Fri Sep 3 07:40:50 2021 Page 1

Scale = 1:71.5

September 7,2021

NGINEERING

818 Soundside Road Edenton, NC 27932

<u>2-8-6</u> <u>5-9-12</u> <u>7-5-0</u> <u>2-8-6</u> <u>3-1-6</u> <u>1-7-4</u>

Plate Offsets (X,Y) [2:0-4-4,0-2-0], [5:0-3-0,0-3-12], [6:0-3	0,0-3-12], [7:0-4-0,0-5-4]	
LOADING (psf) SPACING- 2-0-0 TCLL 20.0 Plate Grip DOL 1.15 TCDL 10.0 Lumber DOL 1.15 BCLL 0.0 * Rep Stress Incr NO BCDL 10.0 Code IBC2018/TPI2014	CSI. DEFL. in TC 0.74 Vert(LL) 0.03 BC 0.21 Vert(CT) -0.03 WB 0.71 Horz(CT) 0.00 Matrix-MP	Plates GRIP 6-7 >999 240 6-7 >999 180 5 n/a n/a Weight: 216 lb
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x8 SP No.1 WEBS 2x4 SPF Stud *Except* 4-5: 2x4 SPF 1650F 1.5E	BRACING- TOP CHORD S e BOT CHORD R WEBS 1	Structural wood sheathing directly applied or 6-0-0 oc purlins, xcept end verticals, and 2-0-0 oc purlins (6-0-0 max.): 2-4. Row at midpt 4-5, 1-8
REACTIONS. (size) 5=Mechanical, 8=Mechanical Max Horz 8=378(LC 9) Max Uplift 5=-1089(LC 9), 8=-861(LC 8) Max Grav 5=1900(LC 19), 8=1715(LC 20)		
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) of TOP CHORD TOP CHORD 1-2=-538/337, 2-3=-362/326, 3-4=-241/257, BOT CHORD TOP CHORD 7-8=-485/430, 6-7=-447/524, 5-6=-209/272 WEBS 2-7=-813/915, 1-7=-756/1278, 3-6=-981/142	r less except when shown. 1-8=-1604/990 5, 2-6=-810/779, 3-5=-1532/1147	
 NOTES- 2-ply truss to be connected together with 10d (0.131"x3") n Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggere Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except ply connections have been provided to distribute only loads Unbalanced roof live loads have been considered for this of Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=10: MWFRS (envelope) gable end zone and C-C Exterior(2E) i zone; cantilever left and right exposed ; end vertical left and shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord li 7) * This truss has been designed for a live load of 20.0psf on will fit between the bottom chord and any other members. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bear 5=1089, 8=861. This truss is designed in accordance with the 2018 Intern 1. 	ails as follows: d at 0-9-0 oc. f noted as front (F) or back (B) face in the LOAD CAS noted as (F) or (B), unless otherwise indicated. asign. mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Ext -1-12 to 2-8-6, Exterior(2R) 2-8-6 to 6-11-5, Interior(1 right exposed;C-C for members and forces & MWFR // e load nonconcurrent with any other live loads. the bottom chord in all areas where a rectangle 3-6-0 ng plate capable of withstanding 100 lb uplift at joint(s ational Building Code section 2306.1 and referenced s	SE(S) section. Ply to p B; Pr. Enclosed;) 6-11-5 to 7-3-4 IS for reactions 0 tall by 2-0-0 wide s) except (jt=lb) standard ANSI/TPI
12) Graphical purlin representation does not depict the size o	the orientation of the purlin along the top and/or botto	om chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Barnes - Beverly A	
						I47762541
QUOTE_FILE	HA	Half Hip Girder	1	2		
				_	Job Reference (optional)	
84 Lumber 2381 (Kings Mou	ntain, NC), Kings Mounta	in, NC - 28086,		8.520 s Au	g 27 2021 MiTek Industries, Inc. Fri Sep 3 07:40:50 2021	Page 2
		ID:10	JQItubALA	JMIaPgftm	cUyoJ6G-kWyhqbQcbOoFV5g0tXOxRMdllj_A9nUuG8vG7	kyhPOh

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-4=-60, 8-11=-20, 11-12=-478(F=-458), 5-12=-20

September 7,2021

1 1010 0110010 (74) 1)					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.23 BC 0.14 WB 0.00 Matrix-MR	DEFL. ir Vert(LL) -0.00 Vert(CT) -0.01 Horz(CT) -0.02	n (loc) l/defl L/d 5-6 >999 240 5-6 >999 180 4 n/a n/a	PLATES GRIP MT20 197/144 Weight: 13 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	PF No.2 PF No.2 PF Stud		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals, and 2-0 Rigid ceiling directly applied	rectly applied or 3-2-0 oc purlins,)-0 oc purlins: 3-4. or 10-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 5=Mechanical, 6=0-4-0 Max Horz 6=121(LC 9)

Max Uplift 4=-75(LC 9), 6=-46(LC 12)

Max Grav 4=96(LC 19), 5=59(LC 3), 6=187(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 2-9-6, Exterior(2E) 2-9-6 to 3-0-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 6.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x6 SPF 1650F 1.5E

 WEBS
 2x4 SPF Stud

 WEDGE
 2x4 SPF Stud

Left: 2x4 SPF Stud

REACTIONS. (size) 4=Mechanical, 2=0-4-0, 5=Mechanical Max Horz 2=79(LC 11) Max Uplift 4=-26(LC 8), 2=-60(LC 12), 5=-40(LC 9) Max Grav 4=38(LC 1), 2=185(LC 1), 5=96(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2, 5.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) Girder carries tie-in span(s): 3-0-0 from 1-0-0 to 2-6-0
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.
- 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-3=-60, 3-4=-60, 7-10=-20, 10-11=-38(F=-17), 5-11=-20

3-2-0 1-7-3

4x4 =

1-6-13 1-6-13

3x6 ||

1 0 10	
1-6-13	3-2-0
1-6-13	1-7-3

Plate Offsets (X,Y)	[2:0-4-4,0-2-0]					
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. i	n (loc) l/defl L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.07	Vert(LL) -0.0	0 5 >999 240	MT20	197/144
TCDL 10.0	Lumber DOL 1.15	BC 0.02	Vert(CT) -0.0	0 5 >999 180		
BCLL 0.0 *	Rep Stress Incr NO	WB 0.04	Horz(CT) -0.0	0 1 n/a n/a		
BCDL 10.0	Code IBC2018/TPI2014	Matrix-MP			Weight: 16 lb	FT = 20%
LUMBER-			BRACING-			
TOP CHORD 2x4 SF	PF No.2		TOP CHORD	Structural wood sheathing dir	ectly applied or 3-2-0	oc purlins,
BOT CHORD 2x6 SF	PF 1650F 1.5E			except end verticals, and 2-0-0 oc purlins: 2-3.		
WEBS 2x4 SF	PF Stud		BOT CHORD	Rigid ceiling directly applied of	or 10-0-0 oc bracing.	

WEDGE Left: 2x4 SPF Stud

REACTIONS. (size) 4=Mechanical, 1=Mechanical Max Horz 1=66(LC 11)

Max Uplift 4=-68(LC 9), 1=-39(LC 12) Max Grav 4=136(LC 1), 1=135(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 1.
- 7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 8) Girder carries tie-in span(s): 3-0-0 from 1-0-0 to 2-6-0
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
 - Vert: 1-2=-60, 2-3=-60, 6-9=-20, 9-10=-38(F=-17), 4-10=-20

Scale = 1:13.5

BRACING-

TOP CHORD

BOT CHORD

NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right

- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.

5=Mechanical, 7=0-4-0

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

Max Uplift 5=-49(LC 9), 7=-43(LC 12) Max Grav 5=64(LC 19), 7=148(LC 1)

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.

2x4 SPF No.2

2x4 SPF No 2

2x4 SPF Stud

(size) 5=Mechanie Max Horz 7=78(LC 9)

LUMBER-

WFBS

TOP CHORD

BOT CHORD

REACTIONS.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 7.
- 7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 2-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 2=0-4-0, 5=Mechanical Max Horz 2=66(LC 11) Max Uplift 4=-38(LC 9), 2=-62(LC 12), 5=-25(LC 9) Max Grav 4=55(LC 1), 2=192(LC 1), 5=78(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2, 5.
- 7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 8) Girder carries tie-in span(s): 3-0-0 from 0-9-0 to 2-6-0
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 6-7=-20, 6-10=-38(F=-17), 5-10=-20

ENGINEERING BY REENCO A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

4-2-2	2 10-0-3	16-0-0	21-11-13		27-9	9-14 32-0-0			
4-2-2	2 5-10-1	5-11-13	5-11-13		5-1	0-1 4-2-2			
Plate Offsets (X,Y)	[2:0-8-0,0-0-2], [3:0-4-4,0-2-4], [8:0-4-4,	0-2-4], [9:0-8-0,0-0-2], [1:	3:0-4-0,0-6-0]						
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.71	DEFL. in Vert(LL) 0.30 Vert(CT) -0.50	(loc) 13	l/defl L/d >999 240 >776 180	PLATES GRIP MT20 197/144			
BCLL 0.0 * BCDL 10.0	Rep Stress Incr NO Code IBC2018/TPI2014	WB 0.94 Matrix-MS	Horz(CT) 0.06	9	n/a n/a	Weight: 183 lb FT = 20%			
LUMBER- TOP CHORD 2x4 SI 3-6,6- BOT CHORD 2x8 SI WEBS 2x4 SI	PF No.2 *Except* 3: 2x4 SPF 1650F 1.5E P No.1 PF Stud		BRACING- TOP CHORD BOT CHORD	BRACING- TOP CHORD Structural wood sheathing directly applied or 3-5-1 oc p 2-0-0 oc purlins (3-0-0 max.): 3-8. BOT CHORD Rigid ceiling directly applied or 6-11-15 oc bracing.					
REACTIONS. (size) 2=0-4-0, 9=0-4-0 Max Horz 2=84(LC 11) Max Uplift 2=-554(LC 9), 9=-554(LC 8) Max Grav 2=1799(LC 1), 9=1799(LC 1)									
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2729/894, 3-4=-4119/1444, 4-5=-4119/1444, 5-7=-4119/1443, 7-8=-4119/1443, 8.0 -2709/045									
BOT CHORD 2-15 11-1	=-745/2208, 14-15=-746/2197, 13-14=-1 2=-673/2197, 9-11=-673/2208	658/4855, 12-13=-1658/4	855,						
WEBS 3-15 5-12	=-19/259, 3-14=-805/2196, 4-14=-376/26 =-843/317, 7-12=-376/265, 8-12=-806/21	65, 5-14=-843/318, 5-13= 196, 8-11=-20/260	-23/384,						
 NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-16; ' MWFRS (envelope Interior(1) 8-5-1 to 2 vertical left and righ 3) Provide adequate of 4) This truss has beer 5) * This truss has beer will fit between the 1 6) Provide mechanica 2=554, 9=554. 7) This truss is design 8) Girder carries tie-in 9) Graphical purlin rep 10) In the LOAD CASE 	e loads have been considered for this de /ult=130mph (3-second gust) Vasd=103/ gable end zone and C-C Exterior(2E) -0 27-9-14, Exterior(2R) 27-9-14 to 32-0-0, I t exposed;C-C for members and forces & rainage to prevent water ponding. designed for a 10.0 psf bottom chord liv in designed for a live load of 20.0psf on to bottom chord and any other members. I connection (by others) of truss to bearin ed in accordance with the 2018 Internation span(s): 4-0-0 from 2-0-0 to 30-0-0 resentation does not depict the size or the E(S) section, loads applied to the face of idard	sign. mph; TCDL=4.2psf; BCDI 0-10-8 to 2-1-8, Interior(1) nterior(1) 32-0-0 to 32-10 & MWFRS for reactions sl e load nonconcurrent with he bottom chord in all are g plate capable of withsta onal Building Code sectio ne orientation of the purlin the truss are noted as fro	2=6.0psf; h=30ft; Cat. II; f 2-1-8 to 4-2-2, Exterior(2 -8 zone; cantilever left ar nown; Lumber DOL=1.60 n any other live loads. as where a rectangle 3-6 anding 100 lb uplift at join n 2306.1 and referenced along the top and/or bott nt (F) or back (B).	Exp B; P R) 4-2-2 d right e plate gr i-0 tall by t(s) exce standard com choi	r. Enclosed; 2 to 8-5-1, exposed ; end ip DOL=1.60 y 2-0-0 wide ept (jt=lb) d ANSI/TPI 1. rd.	SEAL 044925			
1) Dead + Roof Live (value valanced): Lumber Increase=1.15. Plate	Increase=1 15				TIN SENIN			

- 2=554, 9=554.
- 7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 8) Girder carries tie-in span(s): 4-0-0 from 2-0-0 to 30-0-0
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-8=-60, 8-10=-60, 16-26=-20, 26-27=-53(F=-33), 19-27=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 7,2021

W. SEMI

L		9-9-15		9-4-6	1		28-4-0	
1		9-9-15	g	9-6-7	1		8-11-10	1
Plate Of	fsets (X,Y)	[5:0-4-4,0-2-4], [8:0-3-15,Edge]						
LOADIN TCLL TCDL BCLL BCDL	IG (psf) 20.0 10.0 0.0 * 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.56 BC 0.83 WB 0.67 Matrix-MS	DEFL. in Vert(LL) -0.31 Vert(CT) -0.53 Horz(CT) 0.06	(loc) l/defl 12-13 >999 12-13 >642 8 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 125 lb	GRIP 197/144 FT = 20%
LUMBE TOP CH BOT CH WEBS SLIDER REACT	R- HORD 2x4 SF HORD 2x4 SF 11-13: 2x4 SF Right 2 HONS. (siz Max H Max 0	PF No.2 PF No.2 *Except* 2x4 SPF 1650F 1.5E PF Stud 2x4 SPF Stud 1-6-0 e) 13=0-3-8, 8=0-4-0 lorz 13=-250(LC 10) Jplift 13=-422(LC 8), 8=-317(LC 13) joray 13=1269(LC 2), 8=-338(LC 20)	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood except end vert Rigid ceiling dir 1 Row at midpt	l sheathing dir icals, and 2-0- ectly applied c 2 [.]	rectly applied or 4-1-9 c -0 oc purlins (4-9-10 m or 9-5-9 oc bracing. -13, 4-10	oc purlins, ax.): 1-5.	
FORCE TOP CH BOT CH WEBS	S. (Ib) - Max. IORD 2-4= IORD 12-13 2-13 6-10	Comp./Max. Ten All forces 250 (lb) c -1391/423, 4-5=-1279/433, 5-6=-1613/4 3=-324/1089, 10-12=-378/1471, 8-10=- =-1384/508, 2-12=-71/702, 4-12=-273/2 =-283/246	or less except when shown. 159, 6-8=-1758/495 298/1419 116, 4-10=-276/239, 5-10=-66/60	01,				

NOTES-

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 19-4-6, Exterior(2R) 19-4-6 to 22-4-6 , Interior(1) 22-4-6 to 29-2-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 13=422, 8=317.

6) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 3-4=-60, 7-13=-20, 13-14=-53(F=-33), 10-14=-20

TREERING BY A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ENGINEERING BY REENCO A MITCH Attillate

September 7,2021

818 Soundside Road Edenton, NC 27932

	2-2-8								
	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP				
CLL	20.0	Plate Grip DOL 1.15	TC 0.12	Vert(LL) -0.00 5 >999 240	MT20 197/144				
CDL	10.0	Lumber DOL 1.15	BC 0.06	Vert(CT) -0.00 4-5 >999 180					
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 3 n/a n/a					
3CDL	10.0	Code IBC2018/TPI2014	Matrix-MR		Weight: 7 lb FT = 20%				

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x4 SPF Stud WFBS

BRACING-TOP CHORD

2-2-8

Structural wood sheathing directly applied or 2-2-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-4-0, 3=Mechanical, 4=Mechanical

Max Horz 5=88(LC 12) Max Uplift 5=-23(LC 12), 3=-60(LC 12), 4=-2(LC 12)

Max Grav 5=157(LC 1), 3=66(LC 19), 4=37(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.
- 6) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Scale = 1:13.7

						2-2-2						
LOADING (psf) SP	ACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0) Pla	ite Grip DOL	1.15	TC	0.12	Vert(LL)	-0.00	5	>999	240	MT20	197/144
TCDL 10.0) Lui	mber DOL	1.15	BC	0.06	Vert(CT)	-0.00	4-5	>999	180		
BCLL 0.0)* Re	p Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL 10.0) Co	de IBC2018/TP	2014	Matrix	k-MR						Weight: 7 lb	FT = 20%

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF Stud

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 2-2-2 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-4-0, 3=Mechanical, 4=Mechanical

Max Horz 5=87(LC 12) Max Uplift 5=-23(LC 12), 3=-59(LC 12), 4=-2(LC 12)

Max Grav 5=156(LC 1), 3=65(LC 19), 4=36(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.
- 6) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

	G (psf)	SPACING- Plate Grin DOI	2-0-0	CSI.	0.12	DEFL.	in -0.00	(loc)	l/defl ⊳999	L/d 240	PLATES	GRIP 197/144
TCDL	10.0	Lumber DOL Rep Stress Incr	1.15 YES	BC	0.04	Vert(CT)	-0.00	53	>999 n/a	180 n/a	WILZO	13//144
BCDL	10.0	Code IBC2018/TP	12014	Matri	x-MR	1012(01)	0.00	0	170	n/a	Weight: 6 lb	FT = 20%

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF Stud

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 1-8-6 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-4-0, 3=Mechanical, 4=Mechanical

Max Horz 5=73(LC 12) Max Uplift 5=-23(LC 12), 3=-46(LC 12), 4=-3(LC 12)

Max Grav 5=143(LC 1), 3=47(LC 19), 4=27(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.
- 6) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.11 BC 0.09 WB 0.06 Matrix-MP	DEFL. ir Vert(LL) -0.00 Vert(CT) -0.01 Horz(CT) -0.00	n (loc) l/defl L/d 0 6-7 >999 240 6-7 >999 180 0 4 n/a n/a	PLATES GRIP MT20 197/144 Weight: 15 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	PF No.2 PF No.2 PF Stud		BRACING- TOP CHORD	Structural wood sheathi except end verticals.	ing directly applied or 3-2-0 oc purlins,

REACTIONS. (size) 4=Mechanical, 5=Mechanical, 7=0-4-0 Max Horz 7=150(LC 12) Max Uplift 4=-54(LC 12), 5=-64(LC 12)

Max Grav 4=61(LC 19), 5=92(LC 19), 7=190(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-7=-140/255

NOTES-

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-1-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.

6) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

3-2-0 1-7-0

<u>1-7-0</u> 1-7-0

3x5 =

<u>3-2-0</u> <u>3-2-0</u>

Plate Offsets (X,Y)	[1:Edge,0-1-12]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.05 BC 0.09 WB 0.07 Matrix-MP	DEFL. in Vert(LL) -0.00 Vert(CT) -0.01 Horz(CT) -0.00	n (loc) l/defl L/d) 5-6 >999 240 l 5-6 >999 180) 3 n/a n/a	PLATES GRIP MT20 197/144 Weight: 13 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	PF No.2 PF No.2 PF Stud		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	ectly applied or 3-2-0 oc purlins, or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 6=Mechanical Max Horz 6=122(LC 12) Max Uplift 3=-52(LC 12), 4=-69(LC 12)

Max Grav 3=58(LC 19), 4=105(LC 19), 6=118(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 6) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Scale = 1:20.4

BRACING-

TOP CHORD

BOT CHORD

WEBS
NOTES

LUMBER-

WFBS

TOP CHORD

BOT CHORD

REACTIONS.

BOT CHORD

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 2-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

(size) 5=0-4-0, 3=Mechanical, 4=Mechanical

Max Grav 5=185(LC 1), 3=103(LC 19), 4=57(LC 3) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Max Uplift 3=-98(LC 12), 4=-14(LC 12)

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

2x4 SPF No.2

2x4 SPF No.2

2x4 SPF Stud

4-5=-270/126

2-4=-129/276

Max Horz 5=144(LC 12)

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.

6) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 3-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3 except (jt=lb) 2=105.
- 6) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

	L					20-0-0						
						20-0-0						
Plate Off	sets (X,Y)	[2:0-0-0,0-1-0], [2:0-1-8,0)-5-3], [12:0-1	-8,0-5-3], [12:	0-0-0,0-1-0]	, [21:0-2-0,0-1-4]						
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	-0.00	<u>12</u>	n/r	120	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	-0.00	12	n/r	90		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	12	n/a	n/a		
BCDL	10.0	Code IBC2018/TF	PI2014	Matrix	<-S						Weight: 81 lb	FT = 20%
LUMBER TOP CH	R- ORD 2x4 S	PF No.2				BRACING-	RD	Structu	ral wood	sheathing di	irectly applied or 6-0-0	oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SPE No 2

BOT CHORD 2x4 SPF No 2 2x4 SPF Stud OTHERS WEDGE

Left: 2x4 SPF Stud , Right: 2x4 SPF Stud

- (lb) Max Horz 2=91(LC 12)
 - Max Uplift All uplift 100 lb or less at joint(s) 2, 19, 20, 22, 17, 16, 15, 14, 12 except 23=-103(LC 12) Max Grav All reactions 250 lb or less at joint(s) 2, 18, 19, 20, 22, 23, 17, 16, 15, 14, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 2-0-0, Exterior(2N) 2-0-0 to 10-0-0, Corner(3R) 10-0-0 to 13-0-0, Exterior(2N) 13-0-0 to 20-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 19, 20, 22, 17, 16, 15, 14, 12 except (jt=lb) 23=103.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 12.
- 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

OR Contraction of the second second SEAL 044925 unnun 1 September 7,2021

818 Soundside Road

Edenton, NC 27932

REACTIONS. All bearings 20-0-0.

ł		

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.25 BC 0.11 WB 0.11 Matrix-R	DEFL. ir Vert(LL) 0.00 Vert(CT) -0.00 Horz(CT) 0.00	(loc) 1 2 5	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES GRIP MT20 197/144 Weight: 14 lb FT = 20%
LUMBER-			BRACING-				

TOP CHORD

BOT CHORD

LU	MBER-
----	-------

TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x4 SPF Stud
OTHERS	2x4 SPF Stud

REACTIONS. (size) 7=3-0-0, 5=3-0-0, 6=3-0-0

Max Horz 7=121(LC 11)

Max Uplift 7=-43(LC 8), 5=-32(LC 9), 6=-157(LC 12) Max Grav 7=140(LC 20), 5=80(LC 19), 6=181(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-348/201

WEBS 3-6=-212/367

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 2-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5 except (jt=lb) 6=157.

9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 3-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

IOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF Stud

BOT CHORD

except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-4-0, 3=Mechanical, 4=Mechanical

Max Horz 5=110(LC 12) Max Uplift 3=-64(LC 12), 4=-21(LC 12)

Max Grav 5=158(LC 1), 3=66(LC 19), 4=41(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 6) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WFBS 2x4 SPF Stud

BRACING-TOP CHORD

Structural wood sheathing directly applied or 2-0-0 oc purlins, except end verticals. BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-4-0, 4=Mechanical, 3=Mechanical

Max Horz 5=104(LC 12)

Max Uplift 4=-23(LC 12), 3=-57(LC 12)

Max Grav 5=152(LC 1), 4=38(LC 10), 3=59(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 3.
- 6) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LOADING	(psf) 20.0	SPACING- 2-0-0 Plate Grip DOI 1.15	CSI .	DEFL. in (loc) I/defl L/d PLATES GRIP
TCDL	10.0	Lumber DOL 1.15	BC 0.02	Vert(CT) -0.00 5 >999 180
BCLL BCDL	0.0 * 10.0	Rep Stress Incr YES Code IBC2018/TPI2014	WB 0.06 Matrix-MP	Horz(CT) -0.00 3 n/a n/a Weight: 9 lb FT = 20%

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF Stud

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-10-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-4-0, 3=Mechanical, 4=Mechanical

Max Horz 5=97(LC 12)

Max Uplift 3=-49(LC 12), 4=-25(LC 12)

Max Grav 5=147(LC 1), 3=50(LC 19), 4=36(LC 10)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 6) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

L	7-5-3	14-8-11		21-10-6	28-4-0
Plate Offsets (X,Y)		7-3-7		7-1-11 '	6-5-10 '
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.72 BC 0.60 WB 0.90 Matrix-MS	DEFL. ir Vert(LL) 0.11 Vert(CT) -0.21 Horz(CT) 0.05	n (loc) l/defl L/d 9-10 >999 240 9-10 >999 180 5 7 n/a n/a	PLATES GRIP MT20 197/144 Weight: 118 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF SLIDER Right 2	PF No.2 PF No.2 PF Stud x4 SPF Stud 1-6-0		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing except end verticals, and 2 Rigid ceiling directly applie 1 Row at midpt	directly applied or 3-11-15 oc purlins, 2-0-0 oc purlins (3-10-9 max.): 1-5. d or 7-9-4 oc bracing. 4-12, 4-9
REACTIONS. (siz Max H Max U Max G	e) 13=0-3-8, 7=0-4-0 lorz 13=-187(LC 10) plift 13=-421(LC 8), 7=-315(LC 8) rav 13=1127(LC 1), 7=1181(LC 1)				
FORCES. (lb) - Max. TOP CHORD 1-13: BOT CHORD 10-12	Comp./Max. Ten All forces 250 (lb) or =-1060/455, 1-2=-1377/523, 2-4=-1377/ 2=-568/1762 9-10=-568/1762 7-9=-297	less except when shown. 523, 4-5=-1216/450, 5-7=- 7/1230	1578/482		

WEBS 1-12=-590/1604, 2-12=-468/327, 4-12=-459/177, 4-10=0/292, 4-9=-651/341, 5-9=-84/520

NOTES-

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 21-10-6, Exterior(2R) 21-10-6 to 24-10-6, Interior(1) 24-10-6 to 29-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 13=421, 7=315.

6) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

L	2-8-10		7-3-6	1	10-0-0
	2-8-10		4-6-12		2-8-10
Plate Offsets (X,Y)	[2:0-4-4,0-2-4], [3:0-4-4,0-2-4]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.29 BC 0.10 WB 0.06	DEFL. in (loc) l/de Vert(LL) -0.01 5-6 >99 Vert(CT) -0.02 5-6 >99	fl L/d 9 240 9 180 a p/a	PLATES GRIP MT20 197/144
BCDL 10.0	Code IBC2018/TPI2014	Matrix-MS		a ind	Weight: 40 lb FT = 20%
LUMBER-			BRACING-		

TOP CHORD2x4 SPF No.2TOP CHORDStructural wood sheathing directly applied or 6-0-0 oc purlins, exceptBOT CHORD2x6 SPF 1650F 1.5E2-0-0 oc purlins (6-0-0 max.): 2-3.WEBS2x4 SPF StudBOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=0-4-0, 4=0-4-0 Max Horz 1=-46(LC 8) Max Uplift 1=-117(LC 12), 4=-117(LC 13) Max Grav 1=440(LC 1), 4=440(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-594/254, 2-3=-450/252, 3-4=-591/249

BOT CHORD 1-6=-158/459, 5-6=-160/452, 4-5=-151/456

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0 to 2-8-10, Exterior(2R) 2-8-10 to 6-11-9, Interior(1) 6-11-9 to 7-3-6, Exterior(2E) 7-3-6 to 10-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=117, 4=117.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 8) Girder carries tie-in span(s): 3-0-0 from 2-0-0 to 8-0-0

- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-2=-60, 2-3=-60, 3-4=-60, 7-15=-20, 15-16=-33(F=-13), 10-16=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-0-0, Exterior(2R) 4-0-0 to 7-0-0, Interior(1) 7-0-0 to 8-10-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=109, 6=109.

6) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

BCDL	10.0	Code IBC2016/1712014	Maurx-R			weight. 55 lb	FI = 20%
LUMBER	-			BRACING-			
TOP CHO	DRD 2x4 SF	PF No.2		TOP CHORD	Structural wood sheathing di	rectly applied or 6-0-0 o	c purlins,
BOT CHO	DRD 2x4 SF	PF No.2			except end verticals.		
WEBS	2x4 SF	PF Stud		BOT CHORD	Rigid ceiling directly applied	or 6-0-0 oc bracing.	
OTHERS	2x4 SF	PF Stud				Ū.	

REACTIONS. All bearings 8-0-0.

(lb) - Max Horz 12=-123(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 12, 8 except 11=-154(LC 12), 9=-152(LC 13) Max Grav All reactions 250 lb or less at joint(s) 12, 8, 10, 11, 9

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 2-0-0, Exterior(2N) 2-0-0 to 4-0-0, Corner(3R) 4-0-0 to 7-0-0, Exterior(2N) 7-0-0 to 8-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 8 except (jt=lb) 11=154, 9=152.
- 10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

ENGINEERING BY EREENCO A MITAK Affiliate 818 Soundside Road

Edenton, NC 27932

¹⁾ Unbalanced roof live loads have been considered for this design.

818 Soundside Road Edenton, NC 27932

TEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. neters shown, and is for an individual building component, not parameters and properly incorporate this design into the overall hord members only. Additional temporary and permanent bracing

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

September 7,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TEPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek A 818 Soundside Road

Edenton, NC 27932

an manufatter unnun 1 September 7,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH (Duality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek

September 7,2021

818 Soundside Road Edenton, NC 27932

TRENGINEERING BY AllTek Affiliate 818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Barnes - Beverly A	
						147762575
QUOTE_FILE	ТВ	Piggyback Base Girder	1	່ງ		
				_	Job Reference (optional)	
84 Lumber 2381 (Kings Mou	ntain, NC), Kings Mounta	in, NC - 28086,		8.520 s Au	g 27 2021 MiTek Industries, Inc. Fri Sep 3 07:41:17 2021	Page 2
		ID:101	UQItubALA	JMIaPgftm	ncUyoJ6G-Ri4uVqlYEhCQFFEDyiNG13EO7cDw_1jtUryCa	fyhPOG

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 5-10=-60, 17-18=-20

Vert: 1-3=-60, 3-5=-60, 5-10=-60, 17-18=-20 Concentrated Loads (lb) Vert: 15=-1525(F)

