

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 200464RT1

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carolina Structural Systems, LLC.

Pages or sheets covered by this seal: E14287001 thru E14287016

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

April 13,2020

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 200464RT1

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carolina Structural Systems, LLC.

Pages or sheets covered by this seal: E14287001 thru E14287016

My license renewal date for the state of South Carolina is June 30, 2020.

South Carolina COA: 923

April 13,2020

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job		Truss			Truss Ty	rpe			Qty	Р	Ply							F ,	
200464RT1		A01			Commo	on			10	1		Job F	Referen	ce (opt	ional)			E14287001	
Carolina Structura	al Systems, LLC,	Ether, NC	- 27247,				Run: 8.33	S Mar 23 2	020 Prin	nt: 8.330) S Mar 23 :	2020 M	liTek Ind	lustries,	Inc. Mo	on Apr 13	04:32:00	Page	: 1
				-1-2-8		7-4-12	ID:uJ3wA	t0_NhS_Mnt 14-6-0	_b?zv_H	HzTOVY	/-JAKaE5e	h90pb? 21-7-4	??nARut 4	bauER9F	24-0-0	SXxJaUY)	JRzREII		
				1-2-8		7-4-12		7-1-4				7-1-4			2-4-12	27			
	These to	russ desigi	ns are based	upon the	building co	de shown. This	code has be	en specified											
	by the p in any p	roject eng articular ju	ineer/architec irisdiction sho	t, or buildi uld be coi	ing design nfirmed wit	er. The applicab h the building o	flity of this co	ide		4x5 6	i II								
Т	truss fal	prication. T	I his determina truss design o	ation is no Irawings i	ot the respo in this job.	onsibility of the c	omponent/tru	iss designer	-										
							8 ¹	18			\mathbb{N}	19							
							3x6 🍫		/		$\left \right >$, is		_					
							2x4 w			/			\searrow	3x4	1.				
4	12						4								7	2×4			
-6-0	0-0-0-						1	/	//		/4				\bigwedge	8			
-					4x5 x				/		,				$\langle \rangle$	P	Т		
					17 /			. //					/	//		Ę	2		
			2	2	3		/					/	$\setminus //$, ,			-7-4		
			é 1					¥⁄					\underline{W}		/	₩ a			
1			6			21	22	12 23	31		2	24	10			₿ 3x4=	_		
				3x8	8 0			3x4= 3	3x4=				3x4=			- +70			
				Зх	<4 =														
				8-0-0	3	9-9-0				<u>19-3-</u>	-0			24-0-	. <u>0</u> n				
Scale = 1:71.1				0-0-8	3	9-0-0				3-0-0				4-3-					
Loading		(psf)	Spacing		2-0-0		CSI		D	DEFL		in	(loc)	l/defl	L/d	PLAT	ES	GRIP	
TCLL (roof)		20.0	Plate Grip D	OL	1.00		TC	0	.39 V	/ert(LL)) -0.2	27 1(41 1)	0-12	>999	240	MT20		244/190	
BCLL		0.0*	Rep Stress	L Incr	YES		WB	0	.64 H	Horz(C1) -0.4 T) 0.0	02	9	n/a	n/a				
BCDL		10.0	Code		IRC2015	/TPI2014	Matrix-AS									Weigh	nt: 149 lb	FT = 20%	
	2v4 SD No.1				2)	Wind: ASCE	7-10; Vult=	130mph (3	-secon	nd gust)) 25ft·								
BOT CHORD	2x4 SP No.1 2x4 SP No.1					B=45ft; L=24	ft; eave=4ft	; Cat. II; Ex	φ B; Eι	nclose	d;								
WEBS SLIDER	2x4 SP No.2 Left 2x6 SP No.2	*Except*	9-8:2x4 SP	No.1		MWFRS (dire 1-9-8, Interio	ectional) and r (1) 1-9-8 to	d C-C Exte o 14-6-0, E	rior (2) Exterior) -1-2-8 r (2) 14	3 to -6-0 to								
BRACING						17-6-0, Interi	or (1) 17-6-	0 to 23-10-	4 zone	e; cantil	lever left								
TOP CHORD	Structural wo	ood sheat erticals.	thing directly	applied,	,	exposed;C-C	for membe	ers and force	ces & N	dWFRS	S for								
BOT CHORD	Rigid ceiling	directly a	pplied.			reactions sho DOL=1.60	own; Lumbe	er DOL=1.6	0 plate	e grip							ann	uum.	
REACTIONS	(size) 2=	арт б :0-3-8, 9=	-10 =0-3-8		3)	* This truss h	as been de	signed for	a live lo	oad of	20.0psf					an'	TH	SARO !!!	6
l	Max Horiz 2=	271 (LC	10) 14) 0 50 (l	C 11)		3-06-00 tall b	y 2-00-00 v	vide will fit l	betwee	en the b	bottom					10	ROFE	SSIONA	
	Max Opline 2= Max Grav 2=	:1071 (LC	C 16), 9=-59 (L C 16), 9=976	(LC 16)	4)	chord and an Provide med	iy other mer hanical coni	mbers, with nection (bv	others	L = 10.0 s) of tru	0psf. Jss to					Ē	P	E:	
FORCES	(lb) - Maximu	ım Comp	ression/Max	imum	,	bearing plate	capable of	withstandi	ng 95 l	lb uplift	t at joint						No.	28481	1
TOP CHORD	1-2=0/40, 2-3	3=-485/0,	3-17=-1264	/129,	5)	This truss is	designed in	accordanc	e with	the 20	15							ER	H.
	4-17=-1224/1 5-18=-1143/2	170, 4-5= 229, 6-18	-1160/204, =-1044/252.			International R802.10.2 ar	Residential	Code sect ed standard	ions R d ANSI	502.11 I/TPI 1.	.1 and					En		it.	N. C.
	6-19=-674/21	16, 19-20	=-680/194,	-15/76	6)	This truss de	sign require	es that a mi	inimum	n of 7/1	6"					14	10 m	CIIBENI	С
BOT CHORD	2-21=-274/11	112, 21-2	2=-198/1112	-40/76 2,		structural wo chord and 1/2	od sheathin 2" gypsum s	ig be applie sheetrock b	ed direc	ctiy to t lied dire	tne top ectly to						min	Gilini	
	12-22=-198/1	1112, 12- 36, 11-24	23=-80/636, =-80/636			the bottom cl	hord.		-								min	un,	
	10-24=-80/63	36, 9-10=	-104/425		LO	AD CASE(S)	Standard									Tan	HCA	RO	•
WEB2	4-12=-398/20 6-10=-127/10	97, ו-12= 9, 7-10=	-83/773, 0/427, 7-9=-	1115/18	8										N.	or.	FESS	W.	1
NOTES	d reaf line i	la h '		ممالا.										4	N	1	1 /	12	2
this design	u root live load	is nave b	een conside	red for										11			SEA		111
														Ξ			0363	22	E
																	0000	:	111
														3	-		AL-	-R. X	11
															1	Pin	GIN	EF FR	
																111	A. G	ILBUTT	
																. /	unn	1111.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP/11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

April 13,2020

Job	Truss	Truss Type	Qty	Ply		
200464RT1	A02	Common Supported Gable	1	1	Job Reference (optional)	E14287002

Scale = 1:65.4

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Mon Apr 13 04:32:02 ID:M9_9Y8?I9utvHtSrgMTDaazTOWs-Bxa54ShCDEK1Uc4xgkfW24cwjQMQSNSXECSmSCzREIh

Page: 1

24-0-0

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-AS	0.12 0.09 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(lo 1	c) / - - 16	/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 190 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structural except en Rigid ceili 1 Row at (size) Max Horiz Max Uplift Max Uplift Max Grav	o.1 o.2 *Except o.2 I wood shead diverticals. ing directly midpt 16=23-11- 18=23-11- 20=23-11- 20=23-11- 29=276 (L 16=-27 (LC 18=-32 (LC 22=-18 (LC 22=-16 (L 22=-16 (L 22=161 (L 22=161 (L 23=286 (L imum Comp	* 15-16:2x4 SP No.1 athing directly applied applied. 10-21, 9-22, 11-20 8, 17=23-11-8, 8, 19=23-11-8, 8, 21=23-11-8, 8, 24=23-11-8, 8, 24=23-11-8, 10, 17=-45 (LC 11 C 11), 24=-42 (LC 11 C 11), 24=-42 (LC 12, C 1), 17=-168 (LC 17 C 21), 21=239 (LC 1 C 16), 24=160 (LC 17 C 16), 24=160 (LC 17 C 16), 24=167 (LC 16 C 17) pression/Maximum	I, B I, B N N N N N N N N N N N N N	OP CHORD	2-29=-236/73, 1-2=(3-4=-220/178, 4-5=- 5-7=-175/155, 7-8=- 9-10=-277/321, 10-1 11-12=-238/274, 12- 13-14=-135/153, 14- 15-16=-88/82 28-29=-61/74, 27-28 25-26=-61/74, 27-28 22-23=-61/74, 21-22 19-20=-61/74, 18-19 16-17=-61/74 10-21=-280/179, 9-2 3-24=-135/91, 7-25= 4-27=-120/79, 3-28= 11-20=-126/67, 12-1 13-18=-131/84, 14-1 roof live loads have 7-10; Vult=130mph bh; TCDL=6.0psf; Bi ft; eave=2ft; Cat. II; ectional) and C-C C or (2) 1-9-8 to 14-6-1 ior (2) 17-6-0 to 23- exposed ; end vertii c for members and fi bwn; Lumber DOL=- hed for wind loads in ids exposed to wind 1 Industry Gable En- ialified building desig 0 2x4 MT20 unless c ully sheathed from c ist lateral movement spaced at 2-0-0 oc.	/45, 2-2 212/16 185/217 11=-27 113=-18 15=-96 15=-96 15=-96 17 22=-13 22=-126/8 -126/8	3=-267/221, 9, 5-6=-195/14 2, 8-9=-238/27 7/321, 35/212, 35/212, 35/212, 35/212, 37/09, 4, 26-27=-61/7 4, 20-21=-61/7 4, 20-21=-61/7 4, 17-18=-61/7 2/67, 0, 5-26=-131/8 31, 4/90, 3/86 considered for ond gust) .0psf; h=25ft; Enclosed; 3) -1-2-8 to er (3) 14-6-0 to one; cantilever and right & MWFRS for ate grip ane of the trus: al to the face), Is as applicable per ANSI/TPI se indicated. e or securely iagonal web).	8, 4, 8 4, 4, 4, 4, 5, 7 5, 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7) * a 3 c 3) F b 2 u 10) T 1 11) T s c t t LOA	This i providu- evaring 29, 27 uplift a 25, 37 uplift a 26, 37 uplift a 26, 37 uplift a 27, 37 uplift a 28, 32 uplift a 38, 32 uplift a 38, 32 uplift a 38, 32 uplift a 38, 32 uplift a 38, 32 uplift a 38, 32 uplift a 39, 32 uplift a 30, 30 uplift a 30, 32 uplift a 30, 30	truss h bottor 0 tall b and ar e mecc g plate lb upli t joint lb upli joint lb upli t joint lb upli lb	has been choiced as the choiced as t	en designed for rd in all areas wh 0-00 wide will fit er members. al connection (by ble of withstandi bint 16,33 to uplif 20 uplif at joint 1 int 26,28 lb uplif 21 bupfif at joint 1 int 18 and 45 lb ang condition. R hed in accordance terving that anni eathing be applied usum sheetrock b ndard	a live load of ere a rectang between the b unit of the second second second grash of the second second second grash of the second second second grash of the second	20.0psf le pottom ss to stojoint (8 16) int 39 lb int 15 and 6" he top potty to
															T. F. Same	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

April 13,2020

Job	Truss	Truss Type	Qty	Ply		
200464RT1	A03	Roof Special	3	1	Job Reference (optional)	E14287003

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Mon Apr 13 04:32:02 ID:bL_ilbhc2CkSn122icWM3IzTOXF-Bxa54ShCDEK1Uc4xgkfW24csjQDASKHXECSmSCzREIh

-1-2-8 7-4-12 14-6-0 21-7-4 26-8-12 30-4-6 35-0-0 36-2-8 7-4-12 7-1-4 7-1-4 5-1-8 3-7-10 4-7-10 1-2-8 4x5 I 6 12 8 Г 26 3x4 🖌 2x4 " 10-6-12 8-1-13 4x5 💊 5 4 7 10-9-14 1<u>2</u> 13 4x8 -4x5 🍫 25 8 2x4 🦼 9 2-4-15 2-4-15 28 10 5 0-4-2 ⊤ 11 Ř 29 30 17 3116 32 15 14 13 12 3x4= 3x4= 3x4= 3x4= 3x4= 3x4= 3x8 II 3x6= 3x4= 28<u>-9-12</u> 28-11-8 0-0-8 26-10-8 35-0-0 9-9-0 19-3-0 -11-4 9-8-8 9-6-0 7-7-8 6-0-8 0-0-8 Scale = 1:71.4 0-1-12

Plate Offsets (X, Y): [8:0-5-12,0-2-0]

	. , 1										-		
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.37	Vert(LL)	-0.30	15-17	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.68	Vert(CT)	-0.45	15-17	>775	180			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.34	Horz(CT)	0.04	12	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-AS							Weight: 191 lb	FT = 20%	
	10.0	COULE	ING2013/17/2014	Iviaux-AS								$F_1 = 20\%$	

- LUMBER TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 WEBS SLIDER Left 2x6 SP No.2 -- 1-10-11 BRACING TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. WEBS 1 Row at midpt 7-13 REACTIONS 2=0-3-8, 12=0-3-8 (size) Max Horiz 2=-215 (LC 9) Max Uplift 2=-96 (LC 11), 12=-149 (LC 11) Max Grav 2=1220 (LC 16), 12=1789 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/40, 2-3=-526/0, 3-25=-1502/116, 4-25=-1450/149, 4-5=-1396/183, 5-26=-1380/208, 6-26=-1292/231, 6-27=-1156/184, 7-27=-1260/160, 7-8=-652/81, 8-9=-819/1264, 9-28=-712/940, 10-28=-715/899, 10-11=0/18 BOT CHORD 2-29=-95/1318, 29-30=0/1318, 17-30=0/1318, 17-31=0/850, 16-31=0/850, 16-32=0/850, 15-32=0/850, 14-15=0/983, 13-14=0/983, 12-13=0/589, 10-12=-872/727 WEBS 4-17=-385/210, 6-17=-89/760, 6-15=-20/484, 7-15=-245/140, 8-13=-347/828, 8-12=-2019/398, 9-12=-401/170, 7-13=-1063/637 NOTES
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=35ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -1-2-8 to 2-3-8, Interior (1) 2-3-8 to 14-6-0, Exterior (2) 14-6-0 to 18-0-0, Interior (1) 18-0-0 to 36-2-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- All plates are 3x4 MT20 unless otherwise indicated.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 96 lb uplift at joint 2 and 149 lb uplift at joint 12.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

Page: 1

April 13,2020

ENGINEERING BY ENGINEERING BY A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

 Unbalanced roof live loads have been considered for this design.

Job	Truss	Truss Type	Qty	Ply		
200464RT1	A04	Roof Special	11	1	Job Reference (optional)	E14287004

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Mon Apr 13 04:32:03 ID:R3JqcmfA94639SMoVOWVONzTObA-f78THoiq_YSu5mf8DRBlbH8yiqXaBmlqSsCJ_ezRElg

Plate Offsets (X, Y): [2:0-6-1,Edge], [2:0-5-4,0-5-8], [9:0-5-12,0-2-0], [17:0-5-4,0-2-8], [18:0-2-4,0-2-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.68	Vert(LL)	-0.18	17-18	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.80	Vert(CT)	-0.43	17-18	>804	180	MT18HS	244/190
BCLL	0.0*	Rep Stress Incr	YES	WB	0.39	Horz(CT)	0.19	13	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-AS							Weight: 205 lb	FT = 20%

LUMBER										
TOP CHORD										
BOT CHORD										
WEDO										

BOT CHORD	2x4 SP No.1
WEBS	2x4 SP No.2
SLIDER	Left 2x6 SP No.2 1-11-5
BRACING	
TOP CHORD	Structural wood sheathing directly applied.
BOT CHORD	Rigid ceiling directly applied.
WEBS	1 Row at midpt 6-17, 7-17
REACTIONS	(size) 2=0-3-4, 13=0-3-8
	Max Horiz 2=-215 (LC 9)
	Max Uplift 2=-96 (LC 11), 13=-149 (LC 11)
	Max Grav 2=1156 (LC 1), 13=1789 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/40, 2-3=-435/0, 3-26=-2373/106,
	4-26=-2338/139, 4-5=-2231/189,
	5-27=-2207/214, 6-27=-2110/237,
	6-7=-1048/221, 7-28=-996/154,
	8-28=-1051/139, 8-9=-1142/84,
	9-10=-820/1261, 10-29=-713/942,
	11-29=-717/902, 11-12=0/18
BOT CHORD	2-18=-60/2027, 17-18=0/839, 16-17=0/889,
	15-16=0/576, 14-15=0/576, 13-14=0/583,
	11-13=-875/728
WEBS	4-18=-319/223, 6-18=-78/1646,
	6-17=-101/304, 7-17=-180/105,
	8-17=-278/70, 8-16=-185/219,
	9-16=-425/744, 9-14=0/105, 9-13=-1997/407,
	10-13=-394/169

2x4 SP No.1 *Except* 5-1:2x4 SP DSS

NOTES

 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=35ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -1-2-8 to 2-3-8, Interior (1) 2-3-8 to 14-6-0 to 18-0-0, Interior (1) 18-0-0 to 36-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 All plates are MT20 plates unless otherwise indicated.

- All plates are MT20 plates unless otherwise indicated.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 149 lb uplift at joint 13 and 96 lb uplift at joint 2.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Page: 1

A MITEK Atfiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply		
200464RT1	A05	Common	7	1	E14287005 Job Reference (optional)	;

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Mon Apr 13 04:32:03

Page: 1

Plate Offsets (X, Y):	ate Offsets (X, Y): [6:0-1-10,0-1-8], [7:0-1-10,0-2-0], [9:0-1-10,0-2-0], [10:0-1-10,0-1-8], [16:0-3-0,0-4-0], [24:0-3-0,0-4-0]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.83	Vert(LL)	-0.62	19-22	>559	240	MT18HS	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.61	Vert(CT)	-1.03	19-22	>338	180	MT20	244/190
BCLL	0.0*	Rep Stress Incr	YES	WB	0.48	Horz(CT)	0.03	2	n/a	n/a	M18SHS	244/190
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-AS							Weight: 213 lb	FT = 20%

LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x4 SP DSS 2x6 SP DSS *Except* 23-17:2x4 SP No.1 2x4 SP No.2 Left 2x6 SP No.2 - 1-7-6, Right 2x6 SP No.2 1-7-6 Structural wood sheathing directly applied. Rigid ceiling directly applied. Except: 6-0-0 cb fracing: 17-23 1 Brace at Jt(s): 26 (size) 2=0-3-8, 14= Mechanical Max Horiz 2=210 (LC 10) Max Uplift 2=-35 (LC 11) Max Grav 2=1608 (LC 16), 14=1540 (LC 17)	2) 3) 4) 5)	Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=29ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -1-2-8 to 1-9-8, Interior (1) 1-9-8 to 14-6-0, Exterior (2) 14-6-0 to 17-6-0, Interior (1) 17-6-0 to 29-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 All plates are MT20 plates unless otherwise indicated. All plates are 2x4 MT20 unless otherwise indicated. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.	WILLING.	No. 28481	THIMHIN
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Compression/Maximum Tension 1-2=0/40, 2-3=-1741/0, 3-35=-2045/57, 4-35=-1996/75, 4-5=-2258/25, 5-6=-2146/43, 6-7=-1577/143, 7-36=-75/236, 8-36=-38/277, 8-37=-38/277, 9-37=-75/236, 9-10=-1577/146, 10-11=-2145/49, 11-12=-2257/31, 12-38=-2012/95, 13-38=-2028/84, 13-14=-1468/0 2-25=-17/1862, 24-25=-6/1863, 22-24=0/1856, 15-16=-16/1729, 14-15=-16(1728, 21-23=-1270)	6) 7) 8) 9)	Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint 2. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. AD CASE(S) Standard		A. GILBERT	
WEBS NOTES 1) Unbalance this design	18-21=-127/0, 17-18=-127/0 12-16=-329/184, 4-24=-313/191, 23-24=0/905, 6-23=0/1044, 16-17=0/906, 10-17=0/1044, 8-26=0/8, 7-26=-1915/77, 9-26=-1915/77, 4-25=-591/0, 12-15=-581/0, 21-22=-231/0, 18-19=-230/0 ed roof live loads have been considered for h.			Contraction of the second	SEAL 036322	ATT THEFT

Scale = 1:71.2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

April 13,2020

Job	Truss	Truss Type	Qty	Ply		
200464RT1	A06	Common Supported Gable	1	1	E1 Job Reference (optional)	14287006

Scale = 1:65.4

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Mon Apr 13 04:32:04

Page: 1

29-0-0

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)		20.0	Plate Grip DOL	1.00		TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/19	0	
TCDL		10.0	Lumber DOL	1.15		BC	0.06	Vert(CT)	n/a	-	n/a	999				
BCLL		0.0*	Rep Stress Incr	YES		WB	0.13	Horz(CT)	0.00	19	n/a	n/a				
BCDL		10.0	Code	IRC201	5/TPI2014	Matrix-AS							Weight: 209	lb FT = 20	ጋ%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N	0.1 0.1 0.2 0.2		тс	OP CHORD	2-34=-195/53, 1- 3-4=-136/111, 4- 6-7=-119/131, 7- 9-10=-278/299, 1 11-12=-239/251, 13-14=-119/132,	3=-173/148, , 5-6=-139/12 9, 8-9=-239/2 3/299, 36/189, 39/125,	25, 251,	 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 							
TOP CHORD	Structura	l wood shea	athing directly applie	d.		15-16=-89/72, 16	6-17=-93/5	8, 17-18=-11	3/94,	34,	19 lb up	lift at jo	oint 19, 18 lb ι	uplift at joint	28, 42 lb	
BOT CHORD WEBS	Rigid ceil 1 Row at	ing directly midpt	applied. 10-26, 9-28, 11-25	u, B(OT CHORD	18-19=-99/22 33-34=-84/97, 32 30-31=-84/97, 29 27-28=-84/97, 26	2-33=-84/9 9-30=-84/9 6-27=-84/9	7, 31-32=-84 7, 28-29=-84 7, 25-26=-84	/97, /97, /97,	uplif 31, : uplif 23, :	t at joint 27 lb up t at joint 38 lb up	29, 34 lift at jo 25, 42 lift at jo	4 lb uplift at jo bint 32, 62 lb u 2 lb uplift at jo bint 22, 23 lb u	int 30, 37 lb uplift at joint int 24, 33 lb uplift at joint	uplift at joint 33, 18 lb uplift at joint 21 and 76 lb	
KEAO NORO	Max Horiz	21=28-11- 23=28-11- 25=28-11- 28=28-11- 30=28-11- 32=28-11- 34=28-11- 34=231 (L	6, 22=28-11-8, 8, 22=28-11-8, 8, 26=28-11-8, 8, 29=28-11-8, 8, 31=28-11-8, 8, 33=28-11-8, 8, 33=28-11-8, 8, 33=28-11-8, 8, 33=28-11-8, 10, 30, 30, 30, 30, 30, 30, 30, 30, 30, 3	W	EBS	24-25=-84/97, 23 21-22=-84/97, 20 10-26=-256/180, 8-29=-135/90, 7- 4-32=-135/90, 1 15-22=-130/84, 1 17-20=-168/117	3-24=-84/9)-21=-84/9 9-28=-129 30=-126/8 33=-166/1 3-23=-120 6-21=-110	7, 22-23=-84 7, 19-20=-84 9/61, 0, 5-31=-130 11, 11-25=-1 6/79, 6/72,	/97, /97 /83, 26/61,	9) Non 10) This Inte R80 11) This struc choi the	t at joint Standa truss is rnationa 2.10.2 a truss de ctural wo rd and 1 bottom c	20. rd bea design I Resic ind refe esign r bod sh /2" gyp	ring condition ned in accord dential Code s erenced stanc requires that a leathing be ap posum sheetroo	. Review re- ance with the ections R50 dard ANSI/T a minimum o plied directly ck be applied	quired. e 2015 2.11.1 and PI 1. f 7/16" y to the top d directly to	
	Max Uplift	19=-19 (L) 21=-23 (L) 23=-33 (L) 25=-18 (L) 29=-42 (L) 31=-37 (L) 33=-62 (L)	C 10), 20=-76 (LC 1 C 11), 22=-38 (LC 1 C 11), 24=-42 (LC 1 C 11), 28=-18 (LC 1 C 11), 30=-34 (LC 1 C 11), 32=-27 (LC 1 C 11), 32=-27 (LC 7)), N(), 1)), 2)), 2)	Unbalanced this design. Wind: ASC Vasd=103n B=45ft; L=2 MWFRS (d	j balanced roof live loads have been considered for s design. nd: ASCE 7-10; Vult=130mph (3-second gust) sd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 45ft; L=29ft; eave=2ft; Cat. II; Exp B; Enclosed; VFRS (directional) and C-C Corner (3) -1-2-8 to					LOAD CASE(S) Standard					
FORCES	Max Grav (Ib) - Max Tension	19=130 (L 21=150 (L 23=162 (L 25=166 (L 28=169 (L 30=163 (L 30=161 (L 34=237 (L imum Com	C 16), 20=230 (LC 1 C 21), 22=168 (LC 1 C 17), 24=164 (LC 1 C 17), 26=233 (LC 1 C 16), 29=163 (LC 1 C 16), 31=167 (LC 1 C 1), 33=212 (LC 16 C 17) pression/Maximum	7), 7), 7), 1), 6), 6), 6), 3), 3) 4) 5)	17-6-0, Exti 17-6-0, Exti left and rigt exposed;C- reactions sl DOL=1.60 Truss desi; only. For s see Standa or consult c All plates al Truss to be braced aga Gable studs	ron (2) 1-9-6 to 14 erior (2) 17-6-0 to it exposed ; end v C for members ar hown; Lumber DO gned for wind load tuds exposed to w rd Industry Gable jualified building d re 2x4 MT20 unles fully sheathed fro inst lateral movern s spaced at 2-0-0	28-10-4 zi ertical left nd forces & pL=1.60 pla ds in the pl vind (norm End Detai esigner as so otherwis m one fac ment (i.e. d oc.	iei (3) 14-6-0 one; cantileve and right & MWFRS for ate grip ane of the tru al to the face ils as applical s per ANSI/TF se indicated. e or securely iagonal web)	uss), ble, PI 1.		W. CHILLING		SE 036 SE 036	AL 322 NEER GILBE	A A A A A A A A A A A A A A A A A A A	

April 13,2020

Job	Truss	Truss Type	Qty	Ply		
200464RT1	B01	Common	4	1	Job Reference (optional)	E14287007

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries. Inc. Mon Apr 13 04:32:04 ID:Usi7wfakbzHDHE0Drl5H0RzTPNd-7KirV8jSlsaljwEKn9i_8VhDBD0VwJLqhWxtX5zRElf

Page: 1

Sca	e =	1.45	56

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-AS	0.31 0.24 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.08 0.03	(loc) 7-10 7-10 1	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Left 2x6 SP No.2 1 No.2 1-8-15 Structural wood shea Rigid ceiling directly (size) 1=0-3-8, 5 Max Horiz 1=-102 (LI Max Uplift 1=-31 (LC Max Gray, 1=537 (LC	I-8-15, Right 2x6 SP athing directly applied applied. 5=0-3-8 C 9) - 11, 5=-72 (LC 11) - 11, 5=-72 (LC 11)	4) 5) 6) J.	Provide mech bearing plate 1 and 72 lb u This truss is of International R802.10.2 ar This truss des structural woo chord and 1/2 the bottom ch OAD CASE(S)	hanical connection capable of withst plift at joint 5. designed in accor Residential Code Id referenced stat sign requires that of sheathing be a 2" gypsum sheetm ord. Standard	n (by othe anding 3 dance wi sections ndard AN a minimu applied di ock be ap	ers) of truss to 1 lb uplift at jo th the 2015 R502.11.1 ar SI/TPI 1. Jum of 7/16" rectly to the to oplied directly	o nd op to					CAROL	
FORCES	(lb) - Maximum Com Tension 1-2=-200/0, 2-16=-5 ⁻ 3-17=-486/121, 3-18 18-19=-491/95, 4-19 5-6=0/40	pression/Maximum 11/96, 16-17=-491/98 =-488/117, =-576/84, 4-5=-157/2	3, 21,									No.	28481 EFA	Munnun
BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103	1-7=-95/409, 5-7=0/4 3-7=0/191 ed roof live loads have n. CE 7-10; Vult=130mph mph; TCDL=6.0psf; BC									and the	OR SES	GILBEIN		
B=45ft; L= MWFRS (3-0-0, Inte 9-9-0, Inte and right e exposed;C reactions : DOL=1.60 3) * This trus on the bot 3-06-00 ta chord and	=24tt; eave=4tt; Cat. II; directional) and C-C E; erior (1) 3-0-0 to 6-9-0, erior (1) 9-9-0 to 14-8-8 exposed ; end vertical I C-C for members and fc shown; Lumber DOL=1) es has been designed fc tom chord in all areas v all by 2-00-00 wide will any other members.	Exp B; Enclosed; kterior (2) 0-0-0 to Exterior (2) 6-9-0 to zone; cantilever left eft and right prces & MWFRS for 1.60 plate grip or a live load of 20.0p where a rectangle fit between the bottor	osf n							Walthink		SEA 0363	L 22 EER.R.K	A manual and

* This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

G١ 100000 April 13,2020

Job	Truss	Truss Type	Qty	Ply		
200464RT1	B02	Common Supported Gable	1	1	E Job Reference (optional)	14287008

1)

2)

3)

4)

5)

6)

7)

8)

9)

11)

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Mon Apr 13 07:56:02 ID:XwXWMM894vlKyiGlkBRrZrzTPOB-YOteUsMBftzN9eKf8ZvR6fM5CSW1M5fzX5vreXzRCej

Page: 1

G mm April 13,2020

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	
200464RT1	B03	Common Girder	1	2	E14287009 Job Reference (optional)

Scale = 1:46.9

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Mon Apr 13 04:32:05 ID:awFCXouvZye5UjJJeLaSLwzTPPp-bWFDiUk4W9icL4pWLsDDgiEMVdKEffTzw9hQ3XzREle

Page: 1

Plate Offsets (X, Y):	[1:Edge,0-3-1], [1:0-4-13,0-8-0], [7:Edge,0-3-12], [7:0-0-0,0-0-0], [7:0-5-8,0-6-15], [8:0-6-0,0-6-0], [9	:0

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC20 ²	15/TPI2014	CSI TC BC WB Matrix-MS	0.40 0.34 0.50	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.12 0.02	(loc) 8-9 8-9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 193 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES	2x4 SP No.1 2x8 SP DSS 2x4 SP No.2 Left 2x6 SP No.2 1 1-6-0 Structural wood shea 4-10-5 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, 7 Max Horiz 1=-87 (LC Max Grav 1=6249 (L (lb) - Maximum Com Tension 1-2=-5374/0, 2-3=-6 4-5=-5902/0, 5-6=-53 1-18=0/5290, 18-19= 9-20=0/3637, 20-21= 8-22=0/4867, 22-23= 3-9=-87/197, 4-9=0/4 5-8=-83/210	I-6-0, Right 2x8 SP M athing directly applie applied or 10-0-0 oc 7=0-3-8 : 22) C 2), 7=5069 (LC 2) pression/Maximum 494/0, 3-4=-6404/0, 995/0, 6-7=-3813/0 =0/5290, 9-19=0/529 =0/3637, 8-21=0/363 =0/4867, 7-23=0/486 4081, 4-8=0/3077,	4 No.2 5 d or 6 7 7 8 0, 7 8 0, 7 7 7 7	 Wind: ASCE Vasd=103mp B=45ft; L=24! MWFRS (dire end vertical le plate grip DO * This truss h on the bottom 3-06-00 tall b chord and an This truss is of International R802.10.2 ar Use Simpson Truss) or equ 1-1-4 from th back face of I Fill all nail ho OAD CASE(S) Dead + Roo Plate Increas Uniform Loas Vert: 1-4= Concentrate Vert: 12= 	7-10; Vult=130mph h; TCDL=6.0psf; B t; eave=4ft; Cat. II; ectional); cantilever aft and right expose L=1.60 as been designed 1 n chord in all areas y 2-00-00 wide will y 2-00-00 wide will strang-Tie THA22 e left end to 11-7-4 bottom chord. les where hanger is Standard f Live (balanced): I se=1.00 uds (Ib/ft) e-60, 4-7=-60, 10-1 d Loads (Ib) 1-1262 (B), 18=-126	(3-sec CDL=6 Exp B; left and d; Lum or a livi where fit betw ance wis ections lard AN (10-10 -0-0 oc to conn s in con umber 4=-20 1 (B), 1	ond gust) .0psf; h=25ft; Enclosed; d right expose ber DOL=1.6(e load of 20.0) a rectangle even the botto th the 2015 R502.1.1.1 ar SI/TPI 1. d Girder, 4-1(max. starting hect truss(es) tact with lumb Increase=1.1 9=-1261 (B),	d;) psf m nd at to ver. 5,				No.	CARO SSIONAL 28481 GILBERT
 2-ply truss (0.131"x3 Top chorc oc. Bottom ch staggered Web conr All loads a except if n CASE(S) provided 1 unless oth Unbalanc this desig 	s to be connected toget ") nails as follows: Is connected as follows: Is connected as follows: In the section of the section of the section Is considered equally noted as form (F) or back section. Ply to ply conno o distribute only loads nerwise indicated. ed roof live loads have n.	ther with 10d 2x4 - 1 row at 0-9-1 2x8 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO lections have been noted as (F) or (B), been considered for	0 AD	20=-1261 23=-1261	(B), 21=-1261 (B), (B)	22=-12	261 (B),			Wannun		SEA 0363	EER.KI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply		
200464RT1	C01	Common	3	1	Job Reference (optional)	E14287010

TCDI

BCLL

BCDL

WEBS

WEBS

1)

2)

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Mon Apr 13 04:32:06 ID:afjmz_gFZkVVx6W19HmT9KzTPQ4-bWFDiUk4W9icL4pWLsDDgiEOpdJKflhzw9hQ3XzREle

Page: 1

Job	Truss	Truss Type	Qty	Ply		
200464RT1	C02	Common Structural Gable	1	1	Job Reference (optional)	14287011

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Mon Apr 13 04:32:06 ID:priKjRNZS2M2RG5EBXqbe3zTPQT-4ipbwqkiHTqSyEOjvakSDwmbo1jvO9R78pRzbzzREld

Page: 1

April 13,2020

818 Soundside Road Edenton, NC 27932

Scale = 1:60 Plate Offsets (X, Y): [9:0-1-12,0-2-0]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.00		TC	0.18	Vert(LL)	0.02	27	>999	240	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.18	Vert(CT)	-0.04	27-34	>999	180			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.26	Horz(CT)	0.01	2	n/a	n/a			
BCDL		10.0	Code	IRC20	15/TPI2014	Matrix-AS							Weight: 183 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Left 2x6 S 1-9-3 Structura Rigid ceil	o.1 o.2 o.2 SP No.2 1 I wood shea ing directly	-9-3, Right 2x6 SP N athing directly applie applied.	E No.2 V d.	SOT CHORD	2-27=-51/425, 26- 24-25=-41/125, 23 22-23=-41/125, 21 20-21=-42/120, 19 16-18=-17/71 9-30=-160/3, 20-3 12-31=-102/53, 25 9-28=-124/478, 6- 25-29=-352/119, 9 24-28=-60/51, 7-2 4-27=-71/56, 10-3	27=-6/42 3-24=-41/ 1-22=-42/ 0=-171/3 0=-171/3 0=-171/3 29=-327/ 0-22=-263 9=-34/37 0145/6	5, 25-26=-6/4 125, 120, 71, 18-19=-1 , 20-31=-172 3/444, 87, 8/0, 8-28=-94 , 5-26=-0/125 9, 21-30-13	125, 7/71, /89, /64,	 7) Pr be 2, up joi 8) Tr Ini R8 9) Tr sti 	ovide mea aring plat 42 lb upli ht 16. is truss is ernationa is truss d uctural we	chanica e capa ft at join t 21, 57 design l Resign l Resign and ref esign 1 ood sh	al connection (by ble of withstandi nt 20, 45 buellin 7 buellin accordant antial code sect renced standard equires that a me eathing be applie	others) of truss to ng 96 lb uplift at joint at bint 16, 24 lb 18 and 45 lb uplift at SSID ions R50211.1 and ANSI/TPI 5 iningung of 7216" ad directly to The top	
JOINTS	1 Brace a	at Jt(s): 28,				11-31=-77/39, 13-	19=-47/1	3, 14-18=-18	5/88	th	e bottom of	/2 gyp chord.	Sum sneetrock t		
REACTIONS	(size) Max Horiz Max Uplift Max Grav	2=0-3-8, 1 19=11-3-8 22=0-3-8, 2=160 (LC 2=-96 (LC 18=-57 (LC 21=-24 (LC 18=227 (L 20=331 (L 22=376 (L	6=11-3-8, 18=11-3-4 , 20=11-3-8, 21=11- 36=11-3-8 : 10) 11), 16=-45 (LC 11) C 11), 20=42 (LC 1 ⁻¹ C 11), 36=-45 (LC 1 ⁻¹ C 11), 36=-45 (LC 21) C 17), 19=85 (LC 21) C 17), 19=85 (LC 21) C 1), 36=230 (LC 21)	3, 1 3-8, 1 1), 1), 1), 1), 1), 1), 1), 1),	 JUnbalanced this design. Wind: ASCE Vasd=103m B=45ft; L=24 MWFRS (dir 1-9-8, Interic to 13-10-3, I left and right exposed;C-C reactions sh 	roof live loads hav 7-10; Vult=130mp ph; TCDL=6.0psf; Hft; eave=4ft; Cat. ectional) and C-C or (1) 1-9-8 to 10-1 nterior (1) 13-10-3 exposed ; end ve for members and own; Lumber DOL	ve been c bh (3-sec BCDL=6 II; Exp B; Exterior 0-3, Exte to 23-2-8 rtical left d forces 8 =1.60 pla	considered fo ond gust) .0psf; h=25ft; Enclosed; (2) -1-2-8 to prior (2) 10-1(3 zone; cantil and right & MWFRS for ate grip	r)-3 ever	LOAD	CASE(S)) Star		GILBERU	
FORCES	(lb) - Max Tension	timum Com	pression/Maximum	3	DOL=1.60) Truss desig	ned for wind loads	s in the pl	ane of the tru	ISS			111	ORTHOR	NOL IN	
	4-40=-460/93, 4-55=-491/139, 5-6=-401/144, 6-7=-452/165, 7-41=-451/190, 8-41=-439/196, 8-9=-477/246, 9-10=-210/194, 10-42=-154/155, 11-42=-165/147, 11-12=-140/119, 12-13=-135/105, 13-14=-139/93, 14-43=-64/33, 15-43=-64/24, 15-16=-86/7, 16-17=0/40			44, 5 6 7,	 only. For stu see Standar or consult qu All plates are Gable studs This truss I on the botton 3-06-00 tall I chord and an 	uds exposed to win d Industry Gable E jualified building de e 2x4 MT20 unless spaced at 2-0-0 o nas been designed n chord in all area by 2-00-00 wide w ny other members	nd (norma End Detai signer as s otherwis c. d for a live s where s ill fit betw	al to the face; Is as applicat per ANSI/TF se indicated. e load of 20.0 a rectangle reen the botto), ble, PI 1. Dpsf om					E.E.P.F.KIN	•

Job	Truss	Truss Type	Qty	Ply	
200464RT1	C03	Common	7	1	E14287012 Job Reference (optional)

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Mon Apr 13 04:32:06 ID:WDGFhD4W6gKSZaGdnUOzg?zTPQr-4ipbwqkiHTqSyEOjvakSDwmZZ1fbOCx78pRzbzzREld Page: 1

Scale = 1:60		000										000		
Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.15 YES		CSI TC BC WB	0.32 0.39 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.19 0.03	(loc) 9-11 9-11 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code	IRC20	5/TPI2014	Matrix-AS							Weight: 121 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Left 2x6 SP No.2 1 1-9-3 Structural wood shea Rigid ceiling directly (size) 2=0-3-8, 8 Max Horiz 2=158 (LC Max Uplift 2=-92 (LC	1-9-3, Right 2x6 SP I athing directly applie applied. 3=0-3-8 C 10) : 11), 8=-52 (LC 11)	3 No.2 4 ed. 5 6	 * This truss h on the botton 3-06-00 tall b chord and an Provide meci bearing plate 8 and 92 lb u This truss is International R802.10.2 ar This truss de structural wo chord and 1/2 	as been designed n chord in all area by 2-00-00 wide w by other members hanical connection capable of withst plift at joint 2. designed in accor Residential Code nd referenced star sign requires that od sheathing be az " avosum sheetrr	d for a liv is where ill fit betw, with BC n (by oth- tanding 5 dance wi sections ndard AN a minim applied di ock be at	e load of 20.0 a rectangle veen the botto DL = 10.0psf ers) of truss t i2 lb uplift at j ith the 2015 r R502.11.1 a ISI/TPI 1. um of 7/16" irrectly to the t	Dpsf om : oo oint ind					CARO SSION	
FORCES	Max Grav 2=954 (LC	C 1), 8=878 (LC 1)		the bottom cl	nord.		,						THE REAL	-
TORCES	Tension		L	OAD CASE(S)	Standard							NS		<u> </u>
TOP CHORD	1-2=0/40, 2-3=-327/0 4-20=-1099/152, 4-2 5-21=-946/215, 5-22 6-22=-1021/192, 6-2 7-23=-1126/142, 7-8	0, 3-20=-1121/123, 1=-1015/195, 2=-946/225, 3=-1018/161, 3=-259/0										EDI .	28481 VEER	
BOT CHORD	2-11=-84/935, 11-24	=0/652, 10-24=0/652	2,									Min A.	GILD	
WEBS	5-9=-65/467, 6-9=-2 4-11=-272/155	72/156, 5-11=-62/45	8,									, minini	11111	
NOTES												"TH UA	ROUL	
 Unbalance this design Wind: ASC Vasd=103 B=45ft; L= MWFRS ((1-9-8, Inte 14-0-0, Int and right e exposed;C reactions s DOL=1.60 	ed roof live loads have n. CE 7-10; Vult=130mph mph; TCDL=6.0psf; BG =24ft; eave=4ft; Cat. II; directional) and C-C Es prior (1) 1-9-8 to 11-0-0 terior (1) 14-0-0 to 22-C exposed ; end vertical I C-C for members and for shown; Lumber DOL=1)	been considered for (3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; terior (2) -1-2-8 to , Exterior (2) 11-0-0 -0 zone; cantilever I eft and right prces & MWFRS for I.60 plate grip	to eft									SEA 0363	L 22 ILBER 13,2020	

Job	Truss	Truss Type	Qty	Ply		
200464RT1	D02	Common Supported Gable	1	1	Job Reference (optional)	E14287013

4-9-14

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Mon Apr 13 04:32:07 ID:HUDro8ztDvCk_B4ul5ksp5zTPR_-YvN_7AIL2nyJaOzvSHFhl7JnsR4c7g7GNTAX7QzREIc

12-2-8 -1-2-8 5-6-0 11-0-0 1-2-8 5-6-0 5-6-0 4x5 = 5 12 8 Г 1 4 6 ø 0 4-6-12 3 7 0 Jø 2 8 **p-10-12** 0 9 6 0 0 16 10 15 14 13 12 11 0-0-8 11-0-0

0-0-8

10-11-8

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-AS	0.09 0.02 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 60 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea except end verticals. Rigid ceiling directly (size) 10=10-11- 12=10-11- 14=10-11- Max Horiz 16=-111 (I Max Uplift 10=-51 (LC 12=-35 (LC 15=-32 (LC 15=-32 (LC 14=178 (L 14=178 (L 16=151 (L (lb) - Maximum Com Tension 2-16=-135/97, 1-2=0	athing directly applied applied. 0, 11=10-11-0, 0, 13=10-11-0, 0, 15=10-11-0, 0 C 11), 11=-28 (LC 7) C 11), 14=-35 (LC 11 C 3), 16=-51 (LC 11 C 21), 11=129 (LC 1 C 21), 13=174 (LC 1 C 20), 15=136 (LC 1 C 20) pression/Maximum /45, 2-3=-58/66.	2) i, 3) (, 5) 7), 6), 6), 8)	Wind: ASCE Vasd=103mp B=45ft; L=24 MWFRS (dire a 6-0, Exterio and right exp exposed; C-C reactions sho DOL=1.60 Truss design only. For stu see Standard or consult qu. All plates are Truss to be ft braced again Gable studs s * This truss h on the bottom 3-06-00 tall b chord and an Provide mect bearing plate	7-10; Vult=130mp h; TCDL=6.0psf; ft; eave=2ft; Cat. I cctional) and C-C or (2) 1-6-0 to 5-C or (2) 8-6-0 to 12-2 osed ; end vertica for members and wn; Lumber DOL: ted for wind loads ds exposed to wir I Industry Gable E alified building de: 2x4 MT20 unless Jly sheathed from st lateral moveme spaced at 2-0-0 or as been designed the chord in all area y 2-00-00 wide wi y other members. nanical connection capable of withst t at ioint 10, 35 lb	bh (3-sec BCDL=6 II; Exp B; Corner (; 0, Corner 2-8 zone; I left and I forces 8 =1.60 pla in the pl d (norma ind Detai signer as a otherwis o one fac ent (i.e. d for a livy s where a ill fit betw h (by othe anding 5 unniff at	ond gust) .0psf; h=25ft; Enclosed; 3) -1-2-8 to r (3) 5-6-0 to cantilever lef right MWFRS for the grip ane of the true al to the face) Is as applicab per ANSI/TP se indicated. a rectangle een the botto arectangle een the botto are) of truss to 1 bu plift at jc ioint 14 32 b	t ss ole, I 1. psf m opint				No. A.	CAROL SSION CHIEF
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig	2-16=-135/97, 1-2=0, 3-4=-54/72, 4-5=-106 6-7=-52/61, 7-8=-39/ 8-10=-135/94 15-16=-59/76, 14-15: 12-13=-59/76, 11-12: 5-13=-135/4, 4-14=-1 6-12=-138/92, 7-11= ed roof live loads have n.	 (45, 2-3=-58/66, 5/122, 5-6=-106/121, 52, 8-9=0/45, =-59/76, 13-14=-59/7 =-59/76, 10-11=-59/7 138/92, 3-15=-126/7 -130/78 been considered for 	9) 6, 10 6, 11 11	16, 51 lb uplif uplift at joint 1 joint 11. Non Standard) This truss is of International R802.10.2 ar) This truss de: structural woo chord and 1/2 the bottom ch DAD CASE(S)	t at joint 10, 35 lb 15, 35 lb uplift at ju d bearing conditio designed in accorr Residential Code d referenced star sign requires that d sheathing be a 2" gypsum sheetro nord. Standard	uplift at , oint 12 a dance wi sections ndard AN a minimu pplied di pock be ap	ioint 14, 32 lb nd 28 lb uplift th the 2015 R502.11.1 ar SI/TPI 1. um of 7/16" rectly to the to pplied directly	at nd op to		Within	The second se	SEA 0363	EER. KIN

April 13,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply		
200464RT1	V01	Valley	2	1	Job Reference (optional)	014

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Mon Apr 13 04:32:07 ID:ZI4e7wfxacoZF2WigwIXDPzTPRP-YvN_7AIL2nyJaOzvSHFhI7JosR437gnGNTAX7QzREIc

3-6-1

1-6-7

1-11-10

3-11-4

818 Soundside Road Edenton, NC 27932 Page: 1

3-11-4

3x4 =

Scale = 1:22.5

Plate Offsets (X, Y): [2:0-2-0,Edge]

Plate Offsets	(X, Y): [2:0-2-0,Edge]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-P	0.03 0.06 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=103 B=45ft; L= MWFRS (cantilever right expo for reactic DOL=1.6(3) Truss des only. For see Stanc or consult 4) Gable req 5) Gable stu 6) * This trus on the bol 3-06-00 ta chord and	2x4 SP No.1 2x4 SP No.1 Structural wood shea 4-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=3-11-4, Max Horiz 1=-20 (LC Max Uplift 1=-7 (LC Max Grav 1=121 (LC (lb) - Maximum Com Tension 1-2=-102/46, 2-3=-11 1-3=-13/68 ed roof live loads have n. CE 7-10; Vult=130mph Bmph; TCDL=6.0psf; Bf -24ft; eave=4ft; Cat. II; (directional) and C-C E: left and right exposed issed; C-C for members a ons shown; Lumber DO) signed for wind loads in studs exposed to wind lard Industry Gable Eno ; qualified building desig juries continuous bottor ds spaced at 2-0-0 oc. ss has been designed fit tom chord in all areas i all by 2-00-00 wide will a any other members.	athing directly applie applied or 10-0-0 oc 3=3-11-4 : 9) 11), 3=-7 (LC 11) C 1), 3=121 (LC 1) pression/Maximum 02/46 been considered for (3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; xterior (2) zone; ; end vertical left and and forces & MWFR 'L=1.60 plate grip in the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TP m chord bearing. or a live load of 20.0 where a rectangle fit between the botto	7) 8) do or ; LC S S S S S S S S S S S S S S S S S S S	Provide mech bearing plate and 7 lb uplift This truss is of International R802.10.2 ar DAD CASE(S)	nanical connectior capable of withsta t at joint 3. designed in accord Residential Code id referenced stan Standard	n (by oth anding 7 dance wi sections idard AN	ers) of truss to ' lb uplift at join ith the 2015 R502.11.1 an ISI/TPI 1.	and				SEA 0363	CARO SSIONA 28481 GILBERTITI GILBERTITI RO L 222 EEER HBERTITI 113,2020

Job	Truss	Truss Type	Qty	Ply		
200464RT1	V02	Valley	2	1	E1 Job Reference (optional)	14287015

2-8-0

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Mon Apr 13 04:32:07 ID:DKHI4Cbom4AG8HdktN9MWMzTPRU-YvN_7AIL2nyJaOzvSHFhi7JmbR?d7gnGNTAX7QzREIc

Scale = 1:26.6

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading (psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL	1.00	тс	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.34	Vert(TL)	n/a	-	n/a	999		
BCLL 0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL 10.0	Code	IRC2015/TPI2014	Matrix-P							Weight: 24 lb	FT = 20%
BCDL 10.0 LUMBER TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 BRACING TOP CHORD Structural wood sheat 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly bracing. BOT CHORD Structural wood sheat 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 1=7-11-4, Max Horiz 1=-47 (LC Max Grav 1=281 (LC FORCES (Ib) - Maximum Com Tension TOP CHORD 1-2=-237/100, 2-3=: BOT CHORD 1-2=-237/100, 2-3=: BOT CHORD 1-2=-23/100, 2-3=: BOT CHORD 1-3=-28/158 NOTES 1) Unbalanced roof live loads have this design. 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BG B=45ft; L=24ft; eave=2ft; Cat. II; MWFRS (directional) and C-C C 3-5-12, Exterior (2) 3-5-12 to 4-0 7-0-0, Exterior (2) 7-0-0 to 7-6-4 right exposed ; end vertical left a for members and forces & MWFI Lumber DOL=1.60 plate grip DO 3) Truss designed for wind loads ir only. For studs exposed to wind see Standard Industry Gable Env or consult qualified building desig(4) Gable requires continuous bottor 5) Gable studs spaced at 4-0-0 oc.	Code athing directly applied applied or 10-0-0 oc 3=7-11-4 : 9) : 11), 3=-17 (LC 11) C 1), 3=281 (LC 1) pression/Maximum 237/100 been considered for (3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; orner (3) 0-5-12 to -0, Corner (3) 4-0-0 to zone; cantilever left a nd right exposed;C-C RS for reactions show L=1.60 n the plane of the trus: (normal to the face), d Details as applicable gner as per ANSI/TPI n chord bearing.	IRC2015/TPI2014 6) * This truss h on the bottor 3-06-00 tall h chord and ar 1 or 7) Provide mec bearing plate 1 and 17 lb u 8) This truss is International R802.10.2 ar LOAD CASE(S) 0 nd m; s e, 1.	Matrix-P as been designed f in chord in all areas y 2-00-00 wide will y other members. nanical connection capable of withstan plift at joint 3. designed in accorda Residential Code s do referenced stand Standard	for a live where a fit betw (by othe nding 1 ance wi ections lard AN	e load of 20.0p a rectangle even the bottor ers) of truss to 7 lb uplift at jo th the 2015 R502.11.1 ar S/TPI 1.	psf m int nd		Contraction of the second s		Weight: 24 lb	EER. H.

Job	Truss	Truss Type	Qty	Ply		
200464RT1	V03	Valley	1	1	Job Reference (optional)	E14287016

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Mon Apr 13 04:32:07 ID:hFJijkOmXA9XDpPgx0tcs_zTPRk-YvN_7AIL2nyJaOzvSHFhI7JjBR2N7fiGNTAX7QzREIc

Page: 1

11-11-4 5-11-10 11-6-1 5-11-10 5-6-7 4x5 = 2 4-0-0 12 8 Г 3 4 3x4 🖌 3x4 💊 2x4 🛛 11-11-4 Scale = 1:34.4 Loading Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.00 тс 0.33 Vert(LL) n/a n/a 999 MT20 244/190 BC TCDI 10.0 Lumber DOL 1 15 0.17 999 Vert(TL) n/a n/a BCLL 0.0* Rep Stress Incr YES WB 0.07 Horiz(TL) 0.00 3 n/a n/a IRC2015/TPI2014 BCDL 10.0 Code Matrix-S Weight: 43 lb FT = 20% LUMBER 6) * This truss has been designed for a live load of 20.0psf TOP CHORD 2x4 SP No.1 on the bottom chord in all areas where a rectangle 2x4 SP No.1 3-06-00 tall by 2-00-00 wide will fit between the bottom BOT CHORD chord and any other members. 2x4 SP No.2 OTHERS No No Provide mechanical connection (by others) of truss to BRACING bearing plate capable of withstanding 29 lb uplift at joint TOP CHORD Structural wood sheathing directly applied or 1 and 29 lb uplift at joint 3. 6-0-0 oc purlins. This truss is designed in accordance with the 2015 BOT CHORD 8) Rigid ceiling directly applied or 10-0-0 oc International Residential Code sections R502.11.1 and bracing. S. SROFESSION R802.10.2 and referenced standard ANSI/TPI 1. REACTIONS 1=11-11-4, 3=11-11-4, 4=11-11-4 (size) LOAD CASE(S) Standard Max Horiz 1=73 (LC 10) Max Uplift 1=-29 (LC 11), 3=-29 (LC 11) Max Grav 1=219 (LC 1), 3=219 (LC 1), 4=445 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-152/70, 2-3=-152/70 BOT CHORD 1-4=-6/66, 3-4=-6/66 WEBS 2-4=-282/97 NOTES GI Unbalanced roof live loads have been considered for (IIIIIII) this desian. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner (3) 0-5-12 to \cap 3-5-12, Exterior (2) 3-5-12 to 6-0-0, Corner (3) 6-0-0 to 9-0-0, Exterior (2) 9-0-0 to 11-6-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for SEAL reactions shown; Lumber DOL=1.60 plate grip 036322 DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing. 5)
- Gable studs spaced at 6-0-0 oc.

1)

2)

818 Soundside Road Edenton, NC 27932

G mmm April 13,2020 THURSDAY &

