

Trenco 818 Soundside Rd Edenton, NC 27932

Re: Lamco_Kristie_Engr Lamco - Kristie Plan

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: E14247679 thru E14247697

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

April 1,2020

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Lamco - Kristie Plan	
Lamco_Kristie_Engr	A	Piggyback Base	3	1	Job Reference (optional)	E14247679

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 02:49:43 ID:izE4PK3PWVrgRrjE9dB3DJzVKuI-A1y_QP?IXGdLhnSqsHbllh6MJ9Z1OCab4?Js?izVDNf

Page: 1

818 Soundside Road Edenton, NC 27932

	-0-10-8 	9-1-13 9-1-13	<u>17-</u> 8-8	10-8 11		<u>28-8-8</u> 10-10-0			<u>36-6-</u> 7-9-8	- <u>0</u> B		<u>46-7</u> 10-1	-0 -0	47-5-8 0-10-8
	1 ² 4x5=	7 ¹² 4x5 3 ²⁵ 24 8 17 2x4 <i>y</i>	4x6 = 4 10 16 3x5=	4 29 15 5x6 WB	6x8= 5 s s 6x8= 5 s 5 s 5 s 6x8= 5 s 7	2627 ➡ 14 3x5=	31	6x8= 6 1 13 4x	32 6=	4x6 x 7 12 12 4x5=	4x5 8 8 8 8 8 8 8 8 8 8 8 8 8	28 33		910 4x5=
	6-0- 6-0-	- <u>0 6-0-5 11-11-6</u> -0 0-0-5 5-11-2	<u>6</u>	<u>23</u> 11	3-3-8 I-4-2		3	4-7-10 11-4-2		36- 1-1	6-0 0-6 0-3-8	46-7 9-9	<u>-0</u> -8	—
Scale = 1:83.3 Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0 10.0	 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code 	2-0-0 1.15 1.15 YES IRC2015/T	PI2014	CSI TC BC WB Matrix-MSH	0.83 0.89 0.82	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.41 -0.65 0.02	(loc) 14-16 14-16 11	l/defl >888 >566 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 303 lb	GRIP 244/190 FT = 20%	
TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	2x6 SP No.2 *Exc 2.0E 2x4 SP No.2 *Exc 2.0E 2x4 SP No.2 *Exc 2x4 SP No.2 2x4 SP No.3 Structural wood s 6-0-0 oc purlins, e 2-0-0 oc purlins (Rigid ceiling direc bracing, 1 Row at midpt (size) 11=0-3 Max Horiz 17=215 Max Grav 11=234 (lb) - Maximum Co Tension 1-2=0/27, 2-24=-3 3-25=-1028/103, 4 4-5=-844/165, 5-2 26-27=-765/133, (6-7=-136/436, 7-8 9-28=-420/721, 9 2-17=-507/365, 10 16-29=-58/822, 14 15-30=-58/822, 14 15-30=-58/822, 14 15-30=-58/822, 14 15-32=-15/599, 11 11-12=-623/448, 5 -16=-230/131, 5 6-14=-16/634, 6-1	Sept* 5-6:2x6 SP 2400F Sept* 15-13:2x4 SP 2400F Sept* 15-13:5-6. tty applied or 4-1-1 oc S-16, 5-14, 6-12, 3-1 8-11 -8, 17=0-3-8 5 (LC 14) 13 (LC 44), 17=1732 (L0 ompression/Maximum 325/587, 3-24=-276/758 4-25=-999/110, 26=-765/133, 3=-150/212, 8-28=-366/2 6-27=-765/133, 3=-150/212, 8-28=-366/2 -10=0/27 6-17=-135/714, 5-29=-58/822, 3-31=-15/599, 2-32=-15/599, 11-33=-623/448, -14=-172/174, 12=-1225/324, 3-16=-3/2 -14=-172/174, 12=-1225/324, 3-16=-3/2 -14=-172/174, 12=-1225/324, 3-16=-3/2	2) V 0F d or 7, 4) U 5) 7 6) F 6) 7 6) 7 6) 7 6) 7 6) 7 6) 7 6) 7 6) 7 6) 7 6) 7 7) 6 6 7, 4) U 7, 5) T 7, 6 7, 6 7, 7, 6 9, 7, 6 7, 7, 7 8, 0 7, 7 6, 7 7, 7 6, 7 7, 7 7, 7 7, 7 7, 7 8, 0 7, 7 7, 7, 7 7, 7, 7 7, 7, 7 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7	his design. Vind: ASCE 7 Vasd=103mpl Zat. II; Exp B; Exterior (2) zc vertical left an orces & MWF DOL=1.60 pla TCLL: ASCE DOL=1.15 Pla snow); Pf=18. Plate DOL=1. Ct=1.10, Lu=€ Unbalanced s design. This truss has oad of 12.0 p voverhangs no Provide adeq ' This truss has oad of 12.0 p overhangs no Provide adeq ' This truss has oad of 12.0 p overhangs no Provide adeq ' This truss has on the bottom 8-06-00 tall by chord and any Dne RT16A L russ to bearir connection is orces. This truss is d nternational I R802.10.2 an Graphical pur	7-10; Vult=130mp h; TCDL=6.0ps; If Enclosed; MWFF one; cantilever left id right exposed;C FRS for reactions tte grip DOL=1.33 7-10; Pr=20.0 psf ate DOL=1.13); Pg 9 psf (flat roof snr 15); Category II; E 50-0-0 now loads have b s been designed f sf or 2.00 times fl n-concurrent with uate drainage to p as been designed chord in all areas y 2-00-00 wide wil for uplift only and SP connectors ree ng walls due to UF for uplift only and lesigned in accord Residential Code is d referenced stan lin representation	h (3-sec BCDL=6 BCDL=6 CC for n shown; l (roof liv, g=20.0 p ow: Lum Exp B; F been con or greate at roof lo other liv revent v for a liv, s where ll fit betw with BC commen PLIFT at does no dance wi sections dance wi	ond gust) .0psf; h=25ft elope) and C trexposed; tembers and .umber e load: Lumb sf (ground ber DOL=1.1 ully Exp.; sidered for th er of min roof and of 13.9 p e loads. vater ponding e load of 20.1 a rectangle een the bott DL = 10.0psi to conned jt(s) 17. This t consider la ded to conned jt(s) 11. This t consider la SI/TPI 1. t depict the s	t; -C end 1 15 his f live ssf on g. Opsf som f. bect s ateral set sateral		Within		SEA 0363	ROLINE L 222 E.E.R.	
NOTES	8-11=-2129/427	- <u>-</u>	t LOA	D CASE(S)	Standard							A. C. A. C. A.	oril 1,202	0

Job	Truss	Truss Type	Qty	Ply	Lamco - Kristie Plan	
Lamco_Kristie_Engr	AA	Piggyback Base	6	1	Job Reference (optional)	E14247680

1)

Run: 8.33 S. Mar 23 2020 Print: 8.330 S.Mar 23 2020 MiTek Industries. Inc. Wed Apr 01 02:49:45 ID:?oRPSG5oqiFgHz5ag9gDa?zVDvX-W_ItT63RLpFenYLofqBw?lpF5AIM3V2KEH1dgwzVDNa

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lamco - Kristie Plan	
Lamco_Kristie_Engr	AB	Piggyback Base	5	1	Job Reference (optional)	E14247681

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 02:49:46 ID:jXdTF6q3TRx05LFJkTGXYszVDua-W_ltT63RLpFenYLofqBw?lpFdAlg3YEKEH1dgwzVDNa

Page: 1

Scale = 1:83.3

Plate Offsets (X, Y): [3:0-3-6,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg)	(psf) 20.0 18.9/20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.73 0.80	DEFL Vert(LL) Vert(CT)	in -0.17 -0.29	(loc) 11-13 13-15	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2015	5/TPI2014	Matrix-MSH	0.40	HOIZ(CT)	0.07	9	n/a	n/a	Weight: 330 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x6 SP No.2 *Except 2.0E 2x6 SP No.2 2x4 SP No.2 Structural wood shea 3-2-15 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing, Except: 2	t* 5-6:2x6 SP 2400F athing directly applied cept -0 max.): 5-6. applied or 10-0-0 oc	1) 2) d or 3)	Unbalanced r this design. Wind: ASCE Vasd=103mp Cat. II; Exp B Exterior (2) z vertical left ar forces & MW DOL=1.60 pla TCLL: ASCE DOL=1.15 Pla snow): Pf=18	roof live loads have 7-10; Vult=130mph h; TCDL=6.0psf; B ; Enclosed; MWFR one; cantilever left ad right exposed;C- FRS for reactions s ate grip DOL=1.33 7-10; Pr=20.0 psf (ate DOL=1.15); Pg: 9 spf (flat roof sno)	been of (3-sec CDL=6 S (enve and rig C for n hown; roof liv =20.0 p w; Lum	considered fo ond gust) .0psf; h=25ff elope) and C nt exposed ; nembers and Lumber e load: Lumb isf (ground ber DOL=1. ⁻	br C end I Der 15					
WEBS REACTIONS	6-0-0 oc bracing: 2-1 1 Row at midpt (size) 9=0-3-8, 1 Max Horiz 16=-215 (I Max Grav 9=1786 (L	6. 3-16, 5-15, 6-13 6=0-3-8 LC 13) C 48), 16=2289 (LC	4) 38) 5)	Plate DOL=1 Ct=1.10, Lu= Unbalanced s design. This truss has	s been designed for	en cor	sidered for t	his f live					
FORCES	(lb) - Maximum Com Tension 1-2=0/27, 2-23=-305, 3-24=-1545/221, 4-2: 4-5=-1363/283, 5-25; 25-26=-1618/354, 6- 6-7=-2533/480, 7-27; 8-27=-2718/423, 8-29 9-28=-2916/388, 9-11	pression/Maximum /556, 3-23=-252/709 4=-1514/227, =-1618/354, 26=-1618/354, =-2677/424, 8=-2755/420, 0=0/27	, 6) 7) 8)	load of 12.0 p overhangs no Provide adeq * This truss h on the bottom 3-06-00 tall b chord and an One RT7A U: truss to bear	bsf or 2.00 times flat on-concurrent with of uate drainage to pr as been designed f n chord in all areas y 2-00-00 wide will y other members, w SP connectors reco por walls due to LIP	t roof lo other liv event v or a liv where fit betw with BC ommen	and of 13.9 p re loads. vater pondin e load of 20. a rectangle reen the bott DL = 10.0ps ded to conne	esf on g. Opsf com f. ect a			and a	OR FESS	ROUV
BOT CHORD	2-16=-481/353, 15-1 15-29=0/1362, 14-29 13-30=0/1362, 13-31 12-31=-21/1659, 12- 11-32=-21/1659, 11- 33-34=-227/2462, 9- 3-16=-2444/518, 3-1	6=-86/1010, 9=0/1362, 14-30=0/1; =-21/1659, 33=-227/2462, 34=-227/2462, 5=0/772, 5-15=-486/	362, 9) 10] 124,	This connecti lateral forces. This truss is o International R802.10.2 ar) Graphical put or the orienta	de in contraction de la contraction designed in accorda Residential Code so de referenced stand flin representation of tion of the purlin alo	and do ance wi ections ard AN loes no	th the 2015 R502.11.1 a SI/TPI 1. the depict the stop and/or	der and size		Contraction of the second seco		SEA 0363	L 22
NOTES	5-13=0/683, 6-13=-2 8-11=-697/283	66/145, 6-11=-125/1	150, LC	bottom chord DAD CASE(S)	Standard	9	•				in the	AC A G	EER. KININ

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

April 1,2020

Job	Truss	Truss Type	Qty	Ply	Lamco - Kristie Plan	
Lamco_Kristie_Engr	AD	Piggyback Base	11	1	Job Reference (optional)	E14247682

9-3-9

9-3-9

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 02:49:46

Page: 1 ID:0h7OQyXRoGFn2FhS8fI7v5zVDtg-?BJFgS4366NVPiw_CXi9YyMSSagKovxTTxmACMzVDNZ 17-10-8 28-8-8 37-3-7 46-7-0 8-7-0 10-10-0 8-7-0 9-3-9 6x8= 6x8= 5 2728 6 \boxtimes \boxtimes

Scale = 1:81.6

K, Y): [9:0-1-5,Edge]													
(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.60 0.58 0.89	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.29 0.01	(loc) 15-21 15-21 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 338	GRIP 244/190 lb FT = 20%	
2x6 SP No.2 *Except 2.0E 2x6 SP No.2 2x4 SP No.2 *Except 18-13:2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins (10-1 Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts (size) 2=0-3-8, 9 Max Horiz 2=212 (LC Max Uplift 2=-3 (LC 1 Max Grav 2=903 (LC 1 2=2468 ((1b) - Maximum Com 1-2=0/27, 2-25=-110 3-26=-898/237, 4-26 4-5=-749/293, 5-27= 6-28=0/623, 6-7=-59 8-29=-765/207, 8-30 9-30=-926/158 2-31=-106/942, 14- 13-14=-122/198, 12- 12-33=-228/163, 10- 10-35=-40/744, 35-3	** 5-6:2x6 SP 2400F ** 5-12:2x4 SP No.1, athing directly applied ept 0-0 max.): 5-6. applied or 6-0-0 oc 6-12 5-12 9= Mechanical, 12=0-3 2 14) 15), 9=-21 (LC 16) 2 53), 9=-766 (LC 30), LC 38) pression/Maximum 9/182, 3-25=-893/215 =-870/237, 0/623, 27-28=0/623, 9/268, 7-29=-737/213 =-756/190, 2=-106/942, 15=-122/198, 13=-122/198, 13=-228/163, 34=-228/163, 6=-40/744, 9-36=-40/7	Wf NC 1) or 2) 3-8 3) 4) , 5) , 6) 7) 8) 9) 744	EBS Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15 P snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. This truss ha load of 12.0 overhangs n Provide aded * This truss ha load of 12.0 overhangs n Provide aded * This truss ha load of 12.0 overhangs n Provide aded * This truss ha on the bottor 3-06-00 tall b chord and ar Refer to gird One RT7A U truss to bear This connect lateral forces	5-12=-1264/271, 5 5-12=-1255/249, 3-10=-707/283, 15 5-16=-130/1107, 3 16-18=-11/29, 17- roof live loads haw 7-10; Vult=130mp bh; TCDL=6.0psf; 3; Enclosed; MWF tone; cantilever left nd right exposed; (FRS for reactions ate grip DOL=1.3; 7-10; Pr=20.0 ps late DOL=1.15); P 3.9 psf (flat roof sr .15); Category II; .50-0-0 snow loads have left psf or 2.00 times for concurrent with quate drainage to has been designed psf or 2.00 times for concurrent with quate drainage to has been designed psf or 2.00 times for concurrent with quate drainage to has been designed psf or 2.00 wide w by 2-00-00 wide w by 2-00-00 wide w by other members er(s) for truss to tr SP connectors re ing walls due to U ion is for uplift onli-	i-17=-126 i-16=-126 i-16=-136 i-15=-705 18=-11/2 ve been co bh (3-secc BCDL=6 RS (envertion of the second C-C for n is shown; 1 3 f (roof livi- 'g=20.0 p ow: Lum Exp B; F been cor for greated lat roof lovi- ge20.0 p low: Lum A do	57/258, 57/258, 52/212, 57/258, 57/258, 57/258, 5/284, 9, 13-18=-3/1 considered fo ond gust) .0psf; h=25ft; elope) and C- nt exposed; a tembers and Lumber e load: Lumb ber DOL=1.1 ully Exp.; usidered for th er of min roof bad of 13.9 ps re loads. vater ponding e load of 20.0 a rectangle reen the botto DL = 10.0psf iections. ded to conne jt(s) 2 and 12 es not consid	C end er 5 live sf on J. Dpsf om ct 2. ler	10) This Inte R8C 11) Gra or ti bott LOAD C	s truss is rnationa j2.10.2 a phical price orient om chor CASE(S)	desigg I Resid urlin refe ation c d. Star	ned in accorda lential Code s erenced stand presentation of f the purlin ald ndard	AR AR AR AR AR AR AR AR AR AR AR AR AR A	115 1.1 and the size /or
	 (, Y): [9:0-1-5,Edge] (psf) 20.0 18.9/20.0 10.0 0.0* 10.0 2x6 SP No.2 *Excep 2.0E 2x6 SP No.2 *Excep 18-13:2x4 SP No.3 Structural wood sheat 6-0-0 oc purlins, exc 2-0-0 co purlins, exc 2-0-0 ac purlins, exc 2-0-0-0 ac p	(x, Y): [9:0-1-5,Edge] (psf) Spacing 20.0 Plate Grip DOL 18.9/20.0 Lumber DOL 10.0 Rep Stress Incr 0.0* Code 10.0 Rep Stress Incr 2x6 SP No.2 *Except* 5-6:2x6 SP 2400F 2.0E 2x4 SP No.2 *Except* 5-12:2x4 SP No.1, 18-13:2x4 SP No.3 Structural wood sheathing directly applied 6-0-0 oc purlins, except 2-0.0 co curtins (10-0-0 max.): 5-6. 2.0 (cilling directly applied or 6-0.0 co bracing. 1 Row at midpt 6-12 2 Rows at 1/3 pts 5-12 (size) 2=0-3-8, 9= Mechanical, 12=0-3 Max Horiz 2=212 (LC 14) Max Uplift 2=-12 UL 14) Max Uplift 2=0-3-8, 9= Mechanical, 12=0-3 Max Horiz 2=212 (LC 14) Max Uplift 2=-12 Max Uplift 2=-3 2=0-3-8, 9= Mechanical, 12=0-3 Max Grav 2=903 (LC 53), 9=-21 (LC 16) Max Grav 2=9076 (JC 7), 9-30-21 (LC 16) Max Grav	$\begin{array}{c c} (psf) \\ 20.0 \\ 18.9/20.0 \\ 18.9/20.0 \\ 10.0 \\ 10.0 \\ \hline \end{array} \begin{array}{c} \text{Spacing} & 2.0-0 \\ \text{Plate Grip DOL} & 1.15 \\ \text{Lumber DOL} & 1.15 \\ \text{Lumber DOL} & 1.15 \\ \text{Rep Stress Incr} & YES \\ \text{Code} & \text{IRC2015} \\ \hline \end{array} \begin{array}{c} \text{WI} \\ 2x6 \text{ SP No.2 *Except* 5-6:2x6 SP 2400F} \\ 2.0E \\ 2x4 \text{ SP No.2 *Except* 5-12:2x4 SP No.1,} \\ 18-13:2x4 \text{ SP No.3} \\ \hline \end{array} \begin{array}{c} \text{WI} \\ 10.0 \\ \hline \end{array} \begin{array}{c} \text{Structural wood sheathing directly applied or} \\ 6-0-0 \text{ cc purlins, except} \\ 2-0-0 \text{ cc purlins, except} \\ 2-0-0 \text{ cc purlins, except} \\ 2 -0-0 \text{ cc purlins, except} \\ 2 -0-0 \text{ cc purlins, except} \\ 2 -0-0 \text{ cc purlins, except} \\ 1 \text{ Row at midpt} \\ 6-12 \\ 2 \text{ Rows at 1/3 pts} \\ 5-12 \\ (size) \\ 2 -0-3-8, 9 = \text{Mechanical, } 12=0-3-8 \\ \text{Max Horiz } 2=212 (\text{ LC 14}) \\ \text{Max Uplift } 2=-3 (\text{ LC 15}), 9=-21 (\text{ LC 16}) \\ \text{Max Grav } 2=903 (\text{ LC 53}), 9=-766 (\text{ LC 30}), \\ 1-2=0/27, 2-25=-1109/182, 3-25=-893/215, \\ 3-26=-898/237, 4-26=-870/237, \\ 4-5=-749/293, 5-27=0/623, 27-28=0/623, \\ 6-28=-0623, 6-7=-599/268, 7-29=-737/213, \\ 6-29=-765/207, 8-30=-756/190, \\ 9-30=-926/158 \\ 2-31=-106/942, 31-32=-106/942, \\ 1-34=-228/163, 1-33=-228/163, \\ 10-35=-40/744, 35-36=-40/744, 9-36=-40/744 \\ \end{array}$	(, Y):[9:0-1-5,Edge] (psf) 20.0 $18.9/20.0$ $18.9/20.0$ $18.9/20.0$ 10.0 Spacing $2-0-0$ Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code $RC2015/TPI2014$ $2x6$ SP No.2 *Except* 5-6:2x6 SP 2400F $2.0E$ $2x4$ SP No.2 $2x4$ SP No.2 $2x4$ SP No.2 $2x4$ SP No.2 $2x4$ SP No.2 $2x4$ SP No.2 $2x4$ SP No.3WEBS 6 6 $2-0 oc purlins, except2-0 oc purlins, (10-0 max.): 5-6.Rigid ceiling directly applied or 6-0 ocbracing.1 Row at midpt6-122 Rows at 1/3 pts5-12(size)2=0-3-8, 9= Mechanical, 12=0-3-8Max Horiz2=212 (LC 14)Max Uplift2=-3 (LC 15), 9=-21 (LC 16)Max Grav2=903 (LC 53), 9=-766 (LC 30),12=2468 (LC 38)NOTES1Unbalancedthis design.21 TCLL: ASCEDOL=1.15 PLSnow); PE-16Notical left aforces & MWDOL=1.60 pI31CLL: ASCEDOL=1.15 PLSnow); PE-1611.532=-106/942, 31-32=-106/942, 31-32=-106/942, 31-32=-106/942, 31-32=-106/942, 31-32=-106/942, 31-32=-106/942, 31-32=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-228/163, 10-34=-28/163, 10-34=-28/163, 10-34=-28/163, 10-34=-28/163, 10-34=-28/163, 10-34=-28/163, 10-34=-28/163, 10-3$	(x, Y): [9:0-1-5,Edge](pst) 20.0 18.9/20.0 10.0Spacing Plate Grip DOL 1.15 Lumber DOL 1.15 CodeCSI TC BC WB Matrix-MSH2x6 SP No.2 *Except* 5-6:2x6 SP 2400F 2.0E 2x6 SP No.2 2x4 SP No.2 *Except* 5-12:2x4 SP No.1, 18-13:2x4 SP No.3WEBS $6-12=-1264/271, 5$ $5-16=-130/1107, 3$ $12-17=-1255/249, 8-10=-707/283, 155-16=-130/1107, 312-17=-1255/249, 8-10=-707/283, 155-16=-130/1107, 312-17=-1255/249, 8-10=-707/283, 155-16=-130/1107, 312-122, 24 SP No.3Structural wood sheathing directly applied or6-0 oc purlins, exceptWEBS6-12=-1264/271, 55-16=-130/1107, 316-18=-11/29, 17-NOTESI Unbalanced roof live loads havethis design.Wother second2-0-0 oc purlins (10-0-0 max.): 5-6.Rigid celling directly applied or 6-0-0 cobracing.WEBS6-12=-126/27, 2-25=-100/142, 12=-0-3-8, 9=-266/23, 9=-264 (LC 38), 9=-766 (LC 30), 12=2468 (LC 38)10-16-18=-11/29, 12-102-1.53); Category II;Cat. I: 5XP BS been designed1-2=0/27, 2-25=-1109/182, 3-25=-893/215, 3-26=-489/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-870/237, 4-26=-89$	Spacing 2-0-0 CSI (20.0) Plate Grip DOL 1.15 TC 0.60 $18.9/20.0$ Lumber DOL 1.15 BC 0.58 0.0° 0.0° Cole IRC2015/TPI2014 Matrix-MSH $2x6$ SP No.2 *Except* 5-6:2x6 SP 2400F WEBS 6-12=-1264/271, 5-17=-126 $2x6$ SP No.2 *Except* 5-6:2x6 SP 2400F WEBS 6-12=-1264/271, 5-17=-126 $2x6$ SP No.2 *Except* 5-6:2x6 SP 2400F WEBS 6-12=-1264/271, 5-17=-126 $2x6$ SP No.2 *Except* 5-12:2x4 SP No.1, NoTES NoTES $1132x4$ SP No.3 WEBS 6-12=-1264/271, 5-17=-126 $2x6$ SP No.2 WEBS 6-12=-1264/271, 5-17=-126 $2x6$ SP No.2 WEBS 6-12=-1264/271, 5-16=-130 $2x6$ SP No.3 WEBS 6-12=-1264/271, 5-16=-130 $3x1$ cord secupt Solo=-00 cordination of the cord secupt 9.10=-707/283, 15=10=-110 $12 = 0x3 + 38 = Mechanical, 12=-0-3-8 Max Horiz 2=-212 (LC 14) NOTES Max Horiz 2=-212 (LC 14) Max Grav 2=-907(237, 4-28=-70/237, 4-28=-70/237, 4-28=-70/237, 4-28=-70/237, 4-28=-70/237, 4-28=-70/237, 4-28=-70/237, 4-28=-70/237, 4-28=-70/237, 4-28=-70/237, 4-28=-70/237, 4-28=-70/243, 1-22/198, 1-22/198, 1-23-122/198, 1-23-122/198, 1-23-122/1$	K, Y): [9:0-1-5,Edge] Spacing 2-0-0 CSI DEFL (psi) Plate Grip DOL 1.15 TC 0.60 18.9/20.0 Import Politics 1.15 TC 0.60 0.0° Code IRC2015/TPI2014 Matrix-MSH Vert(CT) 2x6 SP No.2 "Except" 5-6:2x6 SP 2400F WEBS $6-12=-1264/271, 5-17=-1267/258, 12-27-25269, 9, 6-10=-152/1212, 12-7-25269, 9, 6-10=-152/1212, 12-7-25269, 9, 6-10=-152/1212, 12-7-25269, 9, 6-10=-152/1212, 12-7-25269, 9, 6-10=-152/1212, 12-7-25269, 9, 6-10=-152/1212, 12-7-25269, 12-707/283, 15-16=-136/1102, 5-16=-130/1107, 3-15=-736/284, 16-18=-11/29, 17-18=-11/29, 13-18=-3/1 2x6 SP No.2 Except" 5-12:2x4 SP No.1, 18-13:2x4 SP No.3 WEBS 6-12=-1264/271, 5-17=-1267/258, 12-7m-1256/249, 6-10=-152/1212, 12-7m-1256/249, 6-10=-152/1212, 12-7m-1256/249, 6-10=-152/1212, 12-7m-1256/249, 6-10=-152/1212, 12-7m-1256/249, 6-10=-152/1212, 12-7m-1256/249, 12-7m-1269/126, 1$	K, Y): [9:0-1-5,Edge] Spacing 2-0-0 CSI DEFL in 20.0 Plate Grip DOL 1.15 TC 0.60 Vert(LL) -0.14 18.9/20.0 Lumber DOL 1.15 BC 0.58 WB 0.58 Vert(LL) -0.14 20.0 0.0° Code IRC2015/TPI2014 Matrix-MSH DEFL in 2x6 SP No.2 Code IRC2015/TPI2014 Matrix-MSH DEFL 0.01 2x6 SP No.2 *Except* 5-6:2x6 SP 2400F $2.17z-1255/249, 6-10z-152/1212, 8-11/29, 15-16z-130/1107, 3-15z-705/284, 15-16z-130/1107, 3-15z-705/284, 16-18z-11/29, 17-18z-11/29, 13-18z-3/10 Structural wood sheathing directly applied or 6-0-0 oc bracing. WEBS 6-12z-1264/271, 5-17z-1257/258, 12-272, 15-16z-130/107, 3-15z-705/284, 16-18z-11/29, 15-16z-130/107, 3-15z-705/284, 16-18z-11/29, 15-16z-130/107, 3-15z-705/284, 16-18z-11/29, 15-18z-130/107, 3-15z-705/284, 16-18z-11/29, 15-18z-130/107, 3-15z-705/284, 16-18z-11/29, 17-18z-11/29, 13-18z-3/10 Structural wood sheathing directly applied or 6-0-0 oc bracing. Wick: ASCE 7-10; Vult=130mph (3-second gust) Variat: ASCE 7-10; Vult=130mph (3-second gust) Variat: It; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed; c-C or members and rot creck & MWFRS for reactions shown; Lumber DOL=-1.15 Plate DOL=-1.15; Categord) 10, 12z-468 (LC 38) TOLL: ASCE 7-10; V$	Y.Y: [9:0-1-5.Edge] Spacing 2-0-0 CSI DEFL in (loc) 18.9/20.0 Lumber DOL 1.15 BC 0.68 Wert(L) -0.14 15-21 10.0 0.0° Code IRC2015/TPI2014 Matrix-MSH DEFL in (loc) 2x6 SP No.2 Except* 5-6:2x6 SP 2400F Code IRC2015/TPI2014 Matrix-MSH Intra-152/121, Intra-152/122, Intra-152/121, Intra-152/122, Intra-152/122, </td <td>(y): (ps) Spacing 2-0-0 CSI TC 0.60 20.0 Plate Grip DOL 1.15 BC 0.68 Wr(LL) -0.14 15.27 >999 10.0 Rep Stress Incr YES WB 0.89 Wr(CT) 0.01 12.2 >999 2x6 SP No.2 *Except* 5-6:2x6 SP 2400F 2.17-1255/249, 6-10-152/1212, 5-12:2x4 SP No.2 10.1 This truss is international 8-10=-707/283, 15-16=-130/1107, 3-15=-705/284, 10-3152/212, 5-15=-330/1102, 3-55-16=-130/1107, 3-15=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-</td> <td>(y): (y): <th< td=""><td>Y): IP:01-15.Edge] 200 Plate Grip DOL 1.15 TC 0.60 Vert(L) -0.14 15.21 -999 40 MT20 10.0 Rep Stress Incr YES WB 0.05 Vert(CT) -0.29 15.21 -999 40 MT20 2x6 SP No.2 Except 5-6:2x6 SP 2400F RC2015/TPI2014 WEBS 6-121264/271, 5-171267/258, 12-17-1252/2121, 8-13-271212, 12-18-30/1102, 3-15-18-30/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102,</td><td>Y: [9:04-5.Edge] (nsf) Spacing 20-0 CSI 0.60 VerifLU 0.14 15:21 >999 240 18.920.0 Lumber DOL 1.15 EC 0.60 VerifLU 0.14 15:21 >999 160 0.0° Code IRG2015/TP12014 WB 0.89 VerifLU 0.01 12 n/a n/a 2x6 SP No.2 Except* 5-62x6 SP 2400F SP 6-12=-1264/271, 5-17=-1267/258. 10) This trues is designed in accordance with the 2X 2x6 SP No.2 Except* 5-12.2x4 SP No.1, 16-18=-11/29, 17-8=-152/121, 5-16=-130/107, 3-15=-706/224, 10) This trues is designed in accordance with the 2X 2x6 SP No.2 Except* 5-12.2x4 SP No.1, 16-18=-11/29, 17-8=-11/29, 13-18=-3/10 10) This trues is designed in accordance with the 2X 18-13/2x4 SP No.3 STUCLural wood sheathing diredty applied or 6-0 co Enclosed. MWRKS for reactions shown; Lumber 10.04 CA 10.04 CA CA 10.04 CA 20-00 co 12 10 10.04 10.04 10.04</td></th<></td>	(y): (ps) Spacing 2-0-0 CSI TC 0.60 20.0 Plate Grip DOL 1.15 BC 0.68 Wr(LL) -0.14 15.27 >999 10.0 Rep Stress Incr YES WB 0.89 Wr(CT) 0.01 12.2 >999 2x6 SP No.2 *Except* 5-6:2x6 SP 2400F 2.17-1255/249, 6-10-152/1212, 5-12:2x4 SP No.2 10.1 This truss is international 8-10=-707/283, 15-16=-130/1107, 3-15=-705/284, 10-3152/212, 5-15=-330/1102, 3-55-16=-130/1107, 3-15=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-705/284, 10-315=-	(y): (y): <th< td=""><td>Y): IP:01-15.Edge] 200 Plate Grip DOL 1.15 TC 0.60 Vert(L) -0.14 15.21 -999 40 MT20 10.0 Rep Stress Incr YES WB 0.05 Vert(CT) -0.29 15.21 -999 40 MT20 2x6 SP No.2 Except 5-6:2x6 SP 2400F RC2015/TPI2014 WEBS 6-121264/271, 5-171267/258, 12-17-1252/2121, 8-13-271212, 12-18-30/1102, 3-15-18-30/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102,</td><td>Y: [9:04-5.Edge] (nsf) Spacing 20-0 CSI 0.60 VerifLU 0.14 15:21 >999 240 18.920.0 Lumber DOL 1.15 EC 0.60 VerifLU 0.14 15:21 >999 160 0.0° Code IRG2015/TP12014 WB 0.89 VerifLU 0.01 12 n/a n/a 2x6 SP No.2 Except* 5-62x6 SP 2400F SP 6-12=-1264/271, 5-17=-1267/258. 10) This trues is designed in accordance with the 2X 2x6 SP No.2 Except* 5-12.2x4 SP No.1, 16-18=-11/29, 17-8=-152/121, 5-16=-130/107, 3-15=-706/224, 10) This trues is designed in accordance with the 2X 2x6 SP No.2 Except* 5-12.2x4 SP No.1, 16-18=-11/29, 17-8=-11/29, 13-18=-3/10 10) This trues is designed in accordance with the 2X 18-13/2x4 SP No.3 STUCLural wood sheathing diredty applied or 6-0 co Enclosed. MWRKS for reactions shown; Lumber 10.04 CA 10.04 CA CA 10.04 CA 20-00 co 12 10 10.04 10.04 10.04</td></th<>	Y): IP:01-15.Edge] 200 Plate Grip DOL 1.15 TC 0.60 Vert(L) -0.14 15.21 -999 40 MT20 10.0 Rep Stress Incr YES WB 0.05 Vert(CT) -0.29 15.21 -999 40 MT20 2x6 SP No.2 Except 5-6:2x6 SP 2400F RC2015/TPI2014 WEBS 6-121264/271, 5-171267/258, 12-17-1252/2121, 8-13-271212, 12-18-30/1102, 3-15-18-30/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-15-18-130/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102, 3-12-18/1102,	Y: [9:04-5.Edge] (nsf) Spacing 20-0 CSI 0.60 VerifLU 0.14 15:21 >999 240 18.920.0 Lumber DOL 1.15 EC 0.60 VerifLU 0.14 15:21 >999 160 0.0° Code IRG2015/TP12014 WB 0.89 VerifLU 0.01 12 n/a n/a 2x6 SP No.2 Except* 5-62x6 SP 2400F SP 6-12=-1264/271, 5-17=-1267/258. 10) This trues is designed in accordance with the 2X 2x6 SP No.2 Except* 5-12.2x4 SP No.1, 16-18=-11/29, 17-8=-152/121, 5-16=-130/107, 3-15=-706/224, 10) This trues is designed in accordance with the 2X 2x6 SP No.2 Except* 5-12.2x4 SP No.1, 16-18=-11/29, 17-8=-11/29, 13-18=-3/10 10) This trues is designed in accordance with the 2X 18-13/2x4 SP No.3 STUCLural wood sheathing diredty applied or 6-0 co Enclosed. MWRKS for reactions shown; Lumber 10.04 CA 10.04 CA CA 10.04 CA 20-00 co 12 10 10.04 10.04 10.04

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

April 1,2020

Job	Truss	Truss Type	Qty	Ply	Lamco - Kristie Plan	
Lamco_Kristie_Engr	AE	Piggyback Base Supported Gable	2	1	Job Reference (optional)	E14247683

4x8 u

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 02:49:47

3x6=

46-7-0

3x6=

Scale = 1:83.3

Plate Offsets ((X, Y): [2:0-3-8,E	lge], [13:0-3-0,0-1-	12], [19:0-3-0,0-	1-12], [30:0-3	-8,Edge]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(p 20 18.9/20 10 0 10	sf) Spacing .0 Plate Grip D .0 Lumber DOL .0 Rep Stress I .0* Code	1-11-4 OL 1.15 - 1.15 ncr YES IRC201	5/TPI2014	CSI TC BC WB Matrix-M	0.44 0.54 0.20 ISH	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.09 -0.18 0.02	(loc) 55 55 2	l/defl >995 >491 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 375 lb	GRIP 244/190 FT = 20%	6
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	10.0 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins, (6-0-0 max.): 13-19. Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 16-44, 15-45, 14-46, 12-47, 11-49, 17-43, 18-42, 20-41, 21-39 (size) 2=0-5-8, 30=40-3-8, 32=40-3-8, 33=40-3-8, 34=40-3-8, 35=40-3-8,				(lb) - Maxir Tension 1-2=0/32, : 4-5=-197/7 7-63=-128, 9-64=-192, 10-1128	2=363 (LC 2), 32=124 (LC 30 34=164 (LC 30 36=218 (LC 38 38=213 (LC 38 41=137 (LC 38 43=213 (LC 37 45=213 (LC 37 45=213 (LC 37 50=198 (LC 38 52=29 (LC 15), 60=205 (LC 29 num Compress 2-3=-242/63, 3- 3, 5-6=-179/84 /95, 7-8=-245/9 /126, 9-10=-25	0=205 (LC 2 , 33=172 (LC , 35=187 (LC , 37=213 (LC , 37=213 (LC , 37=226 (LC , 42=190 (LC , 44=207 (LC , 46=190 (LC , 46=230 (LC 53=696 (LC 53=	(9), (2) 30), (2) 38), (2) 38), (2) 38), (2) 38), (2) 37), (2) 37), (2) 37), (2) 37), (2) 37), (2) 38), (2) 38), (2) 38), (2) 38), (2) 38), (2) 38), (2) 38), (2) 37), (2) 38), (2) 37), (2) 37), (2) 38), (2) 37), (2) 37), (2) 38), (2) 37), (2) 37), (2) 38), (2) 37), (2) 38), (2) 37), (2) 38), (2) 37), (2) 38), (2) 37), (2) 38), (2) 37), (2) 38), (2) 38), (2) 38), (2) 37), (2) 38), (2) 38),	BOT CH	IORD	2-56= 54-55: 50-51: 48-49: 46-47: 44-45: 42-43: 40-41: 38-39: 36-37: 34-35: 32-33:	88/170, 55-56=- =-38/165, 53-54= =-38/165, 51-52= =-38/165, 49-50= =-38/165, 47-48= =-38/165, 43-44= =-38/165, 43-44= =-38/165, 43-44= =-38/165, 35-36= =-38/165, 35-36= =-38/165, 30-32=	38/165, -38/165, -38/165, -38/165, -38/165, -38/165, -38/165, -38/165, -38/165, -38/165, -38/165, -38/165, -38/165, -38/165,	
	33=4 36=4 39=4 43=4 46=4 53=4 Max Horiz 2=-2 Max Uplift 30=- 33=- 37=- 39=- 44=- 49=- 51=- 53=-	D-3-8, 34=40-3-8, 3 D-3-8, 37=40-3-8, 3 D-3-8, 41=40-3-8, 4 D-3-8, 44=40-3-8, 4 D-3-8, 44=40-3-8, 4 D-3-8, 47=40-3-8, 4 D-3-8, 51=40-3-8, 5 D-3-8, 60=40-3-8 10 (LC 13) 17 (LC 12), 32=-46 7 (LC 16), 34=-20 19 (LC 16), 34=-20 20 (LC 16), 38=-18 11 (LC 16), 43=-8 (15 (LC 12), 45=-9 (L3) 14 (LC 15), 50=-16 12 (LC 15), 52=-15 15 (LC 15), 60=-17 10 (LC 15), 60=-17	85=40-3-8, 88=40-3-8, 12=40-3-8, 15=40-3-8, 15=40-3-8, 15=40-3-8, 15=40-3-8, 15=40-3-8, 15=240-3-8, 15=240-3-8, 15=240-3-8, 15=240-3-8, 15=240-3-8, 15=240-3-8, 15=240-3-8, 15=240-3-8, 15=240-3-8, 15=40-3-8		12-13=-29 14-15=-30 16-65=-30 17-66=-30 17-66=-30 20-21=-34 22-23=-25 24-67=-21 25-68=-14 26-27=-16 28-29=-20	8/253, 13-14=- 3/264, 15-65=- 3/264, 16-66=- 3/264, 17-18=- 1/280, 21-22=- 1/280, 21-22=- 1/178, 23-67=- 2/118, 24-25=- 1/47, 26-68=-11 9/48, 27-28=-11 1/50, 29-30=-11	1/200, 103/264, 103/264, 103/264, 103/264, 103/264, 198/253, 190/225, 100/130, 80/82, 18/40, 16/36, 12/51, 30-31=	=0/32		No. 111111		SEA 0363	L 22 EEER	

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-1473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

April 1,2020

³⁰31

4x8 u

Job	Truss	Truss Type	Qty	Ply	Lamco - Kristie Plan	
Lamco_Kristie_Engr	AE	Piggyback Base Supported Gable	2	1	Job Reference (optional)	E14247683

 $\begin{array}{c} 16\text{-}44\text{=-}168/50, 15\text{-}45\text{=-}174/66, \\ 14\text{-}46\text{=-}151/23, 12\text{-}47\text{=-}101/36, \\ 11\text{-}49\text{=-}188/86, 10\text{-}50\text{=-}170/64, \\ 9\text{-}51\text{=-}198/77, 8\text{-}52\text{=-}71/28, 7\text{-}53\text{=-}361/136, \\ 6\text{-}54\text{=-}57/49, 4\text{-}55\text{=-}48/48, 3\text{-}56\text{=-}43/39, \\ 17\text{-}43\text{=-}174/66, 18\text{-}42\text{=-}151/22, \\ 20\text{-}41\text{=-}99/36, 21\text{-}39\text{=-}187/86, \\ 22\text{-}38\text{=-}174/66, 23\text{-}37\text{=-}175/68, \\ 24\text{-}36\text{=-}179/68, 25\text{-}35\text{=-}148/68, \\ 26\text{-}34\text{=-}125/68, 28\text{-}33\text{=-}131/69, \\ 29\text{-}32\text{=-}108/66 \end{array}$

NOTES

WEBS

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10. Lu=50-0-0
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 30, 44, 45, 46, 47, 49, 50, 51, 52, 53, 43, 42, 41, 39, 38, 37, 36, 35, 34, 33, and 32. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Page: 2

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 02:49:47 ID:8TxkjCuFkU1Wfs_DuyrA6QzVDtC-TNtduo4htQVM0sVAmFDO5Augh_1BXW5dhbWklozVDNY

Job	Truss	Truss Type	Qty	Ply	Lamco - Kristie Plan	
Lamco_Kristie_Engr	BE	Common Supported Gable	1	1	Job Reference (optional)	E14247684

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 02:49:48 ID:dkcpCokXUhjkQTmURyaLPzzVDs7-xZR0585JekdDe03NKykddNRuuOTVG_xmwFFHHEzVDNX

Page: 1

<u> </u>	
Scale =	: 1:60.7

Plate Offsets (X, Y): [8:0-2-8,Edge], [24:0-3-0,0-3-0]

							-						
Loading	(psf)	Spacing	1-11-4		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.15	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.16	Horz(CT)	0.01	16	n/a	n/a		
BCLL	0.0*	Code	IRC2015	5/TPI2014	Matrix-MR								
BCDL	10.0											Weight: 140 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2		BC	OT CHORD	26-27=-182/250, 25- 24-25=-182/250, 23- 22-23186/252, 21-	26=-18 24=-18 2218	32/250, 36/252, 36/252		10) * T on 3-0	his truss the botto	has be m choi	en designed for a d in all areas who 2-00 wide will fit h	a live load of 20.0psf ere a rectangle
	2X4 SP N0.2			2	22-23=100/232, 21-22=100/232, 3-00-00 tall by 2-00-00 wide will lit between the bold								
	284 3F NU.3	> +*		-	18-19=-186/252 17-	18=-18	36/252		11) On	e RT7A l	JSP cc	nnectors recom	nended to connect
UTHERS	224 3F NU.3 EXCE	0.2v4 SP No 2		16-17=-186/252	10- 10	, 10/202		tru	ss to bea	rina wa	alls due to UPLIF	T at it(s) 27 16 22	
	22-1,21-3,23-0,20-	0.244 01 100.2	EBS 7	7-22=-148/17. 9-21=	-139/1	7.6-23=-169/	/116.	21	23. 24. 2	25. 26.	20, 19, 18, and 1	7. This connection is	
TOP CHORD	Structural wood she	eathing directly applied accept end verticals.	dor	5	0, 3-26=-193/ 45/84,	for uplift only and does not consider lateral forces. 12) This truss is designed in accordance with the 2015							
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	NC	DTES	12-18=-154/91, 13-1	7=-196	5/174		Int R8	ons R502.11.1 and I ANSI/TPI 1.			
REACTIONS	(size) 16=20-1 18=20-1 20=20-1 22=20-1 24=20-1 Max Horiz 27=-197 Max Uplift 16=-90 (1 18=-29 (1 20=-56 (1 24=-32 (1 26=-209 Max Grav 16=305 (1 18=181 (1 20=158 (22=265 (1))) 22=265 (24=180 (1)))	$\begin{array}{l} \text{-0, 17=20-11-0,} \\ \text{-0, 19=20-11-0,} \\ \text{-0, 21=20-11-0,} \\ \text{-0, 23=20-11-0,} \\ \text{-0, 25=20-11-0,} \\ \text{-0, 27=20-11-0,} \\ $	(1) (2) (4), (3) (3) (4) (4) (5), (4) (6), (7) (6), (7) (6), (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)	Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 pl Truss design only. For stu see Standarc or consult qu TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 This truss ba	7-10; Vult=130mph bh; TCDL=6.0psf; BC 3; Enclosed; MWFRS one; cantilever left a nd right exposed;C-1 FRS for reactions sh ate grip DOL=1.33 ned for wind loads in ids exposed to wind d Industry Gable Enc ialified building desig 7-10; PT=20.0 psf (late DOL=1.15); Pg= 8.9 psf (flat roof snov .15); Category II; Ex	(3-sec CDL=6 S (enve ind right C for m hown; 1 the pl (normation d Detail gner as coof live 20.0 p v: Lum p B; F	considered for ond gust) .0psf; h=25ft; elope) and C-Int exposed ; e nembers and Lumber ane of the tru- al to the face) Is as applicate a per ANSI/TP e load: Lumbe osf (ground ber DOL=1.1! ully Exp.; or of min roof	C end ss Jole, Jol	LOAD		Star	OPTIESS SEA	ROUNT
FORCES TOP CHORD	(lb) - Maximum Cor Tension 2-27=-257/190, 1-2 3-4=-215/159, 4-5= 6-7=-108/45, 7-8=- 9-10=-95/45, 10-11 12-13=-218/163, 13 14-15=0/49, 14-16=	npression/Maximum =0/49, 2-3=-332/245, -138/93, 5-6=-120/52, 104/73, 8-9=-104/73, =-110/39, 11-12=-140, -14=-334/256, -258/199	5) (97, ⁸⁾ 9)	Inis truss ha load of 12.0 j overhangs no All plates are Gable require Truss to be fi braced again Gable studs	ps been designed for psf or 2.00 times flat on-concurrent with o e 2x4 MT20 unless o es continuous bottor ully sheathed from o ist lateral movement spaced at 2-0-0 oc.	roof lo ther liv therwis n chore ne fac (i.e. d	er of fillf foot pad of 13.9 ps ve loads. se indicated. d bearing. e or securely iagonal web).	ive if on		11142.2			EER. K III

April 1,2020

Job	Truss	Truss Type C		Ply	Lamco - Kristie Plan		
Lamco_Kristie_Engr	BG	Common Girder	1	2	Job Reference (optional)	E14247685	

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 02:49:49 ID:S9VW1g?z4ldTh?0vHHUkrqzVDrm-Pm?OIU6xP1I3GAeZugFsAbz1MoeD?LJw9v?rphzVDNW Page: 1

Scale = 1:67.6

Plate Offsets (X, Y): [1:0-0-1,Edge], [5:0-0-1,Edge], [7:0-5-0,0-4-4]								
Loading (psf) Spacing 1-11-4 CSI TCLL (roof) 20.0 Plate Grip DOL 1.15 TC Snow (Pf/Pg) 13.9/20.0 Lumber DOL 1.15 BC TCDL 10.0 Rep Stress Incr NO WB BCLL 0.0* Code IRC2015/TPI2014 Matrix-MSH	0.37 0.89 0.53	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.16 0.04	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 275 lb	GRIP 244/190 P FT = 20%
 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.2 *Except* 4-6,2-9:2x4 SP No.3 WEDGE Left: 2x4 SP No.3 Right: 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=0-3-8, 5=0-3-8 Max Horiz 1=-167 (LC 30) Max Uplift 1==97 (LC 9), 5=-120 (LC 10) Max Grav 1=4276 (LC 2), 5=4823 (LC 2) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1:2=-5248/166, 2-3=-3757/192, 3-4=-3759/192, 4-5=-5328/169 BOT CHORD 1:2=-5248/166, 2-3=-737/192, 3-4=-3759/192, 4-5=-5328/169 BOT CHORD 1:2=-5248/166, 2-3=-7374006, 20-21=-73/4006, 6-21=-73/4006, 6-22=-73/4006, 6-24=-73/4006, 23-24=-73/4006, 6-24=-73/4006, 23-24=-73/4006, 6-24=-73/4006, 6-22=-73/4006, 6-24=-73/4006, 6-22=-73/4006, 6-24=-73/4006, 6-22=-73/4006, 6-24=-73/4006, 23-24=-73/4006, 6-24=-73/4006, 6-22=-73/4006, 6-24=-73/4006, 6-22=-73/4006, 6-24=-73/4006, 6-22=-73/4006, 6-24=-73/4006, 6-22=-73/4006, 6-24=-73/4006, 6-22=-73/4006, 6-24=-73/4006, 6-22=-73/4006, 6-24=-73/4006, 6-22=-73/4006, 6-24=-73/4006, 6-22=-73/4006, 6-24=-73/4006, 6-22=-73/4006, 6-24=-73/4006, 7-19=-131/3940, 4-7=-1677/158, 4-6=-42/1856, 2-7=-1585/154, 2-9=-37/1748 NOTES 	ther wi s: 2x4 - ows: 2: - 1 row applier ck (B) 1 hection noted been of (3-secc CDL=6 S (env cal left te grip (roof liv =20.0 p w: Lum xp B; F for a liv where fit betw pommen LIFT at and do	th 10d 1 row at 0-9-0 x6 - 2 rows at 0-9-0 oc. d to all plies, face in the LOA s have been as (F) or (B), considered for cond gust) .0psf; h=25ft; elope); cantileve and right DOL=1.33 e load cf 20.0ps a rectangle veen the bottom ded to connect jt(s) 1 and 5. es not consider	E D 1 L 1 1 sf 1	 3) Thii Integration R8(8) R8(8) R2-0-0 choat choat	s truss is irrationa 22.10.2 a USP TH 10d x 1- ⁻ -0 oc ma 2-8 to co rd. all nail h CASE(S) add + Sn crease=1 iform Lc Vert: 1-3 oncentra	desigg In Resicci HD26 (I/2 nai Nnect 1 oles w) Star ow (bz 33=-52, ted Loa	ned in accordan leential Code sec erenced standar With 18-16d na Is into Truss) or truss(es) to bac here hanger is i ndard alanced): Lumbe o/ft) 3-5=-52, 10-13= ads (lb) OF FES SEA 0363	ce with the 2015 titions R502.11.1 and 'd ANSI/TPI 1. Ils into Girder & equivalent spaced at in the left end to k face of bottom in contact with lumber. ar Increase=1.15, Plate 19 AL 322

April 1,2020

Job	Truss	Truss Type	Qty	Ply	Lamco - Kristie Plan	
Lamco_Kristie_Engr	BG	Common Girder	1	2	Job Reference (optional)	E14247685
Carter Components (Sanford), Sal	Run: 8.33 S Mar 23	Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 02:49:49				

ID:S9VW1g?z4ldTh?0vHHUkrqzVDrm-Pm?OIU6xP1l3GAeZugFsAbz1MoeD?LJw9v?rphzVDNW

Carter Components (Sanford), Sanford, NC - 27332,

Vert: 7=-651 (B), 16=-651 (B), 17=-651 (B), 18=-651 (B), 19=-651 (B), 20=-651 (B), 21=-651 (B), 22=-651 (B), 23=-651 (B), 24=-653 (B)

Job	Truss	Truss Type C		Ply	Lamco - Kristie Plan	
Lamco_Kristie_Engr	РВ	Piggyback	25	1	Job Reference (optional)	E14247686

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 02:49:49 ID:EnghB_2nlBjpqh82bvgqh6zVKuJ-Pm?OIU6xP1I3GAeZugFsAbz3Eon2?T_w9v?rphzVDNW

9-2-1

Scale = 1:32.6 Plate Offsets (X, Y): [2:0-1-5.0-1-0], [4:0-1-5.0-1-0]

4 >			
(loc) - - 11	l/defl n/a n/a n/a	fl L/d a 999 a 999 a 999 a n/a	PLATES GRIP MT20 244/190 Weight: 36 lb FT = 20%
	4		SEAL 036322
	11	(0) - n/a - n/a 11 n/a	(let,) socia 999 - n/a 999 11 n/a n/a

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

GI 100000 April 1,2020

Job	Truss	Truss Type	Qty	Ply	Lamco - Kristie Plan	
Lamco_Kristie_Engr	PBE	Piggyback	2	1	Job Reference (optional)	E14247687

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 02:49:50

ID:GhiDtrrlgFX5AFgSf6mEyazVDtG-tyZmWq7ZALtwuKDIRNm5ioWFIBBRkwP3NZkOL7zVDNV

9-2-1

Scolo -	1.2/2
Scale -	1.04.0

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES RC2015/TPI2014	CSI TC BC WB Matrix-MSH	0.07 0.06 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=9-2-1, 6 9=9-2-1, 1 15=9-2-1 Max Horiz 2=-57 (LC Max Uplift 8=-29 (LC Max Grav 2=129 (LC (LC 30), 9 29), 11=12	athing directly applied o applied or 10-0-0 oc =9-2-1, 8=9-2-1, 0=9-2-1, 11=9-2-1, 13), 11=-57 (LC 13) 16), 10=-29 (LC 15) 2), 6=129 (LC 2), 8=2 =97 (LC 2), 10=229 (LC 29 (LC 2), 15=129 (LC	 3) Truss design only. For stu see Standard or consult qu 4) TCLL: ASCE DOL=1.15 PI snow); Pf=13 Plate DOL=1 Ct=1.10 5) Unbalanced design. 6) This truss ha load of 12.0 j overhangs no 7) Gable require 8) Gable studs C 9) * This truss ha 	ned for wind loads in ds exposed to wind d Industry Gable Enc alified building desig 7-10; Pr=20.0 psf (r ate DOL=1.15); Pg= 8.9 psf (flat roof snow .15); Category II; Ex snow loads have been s been designed for osf or 2.00 times flat on-concurrent with o es continuous botton spaced at 2-0-0 oc. ias been designed for o chord in all areas v	the pla (norma d Detai goner as roof live =20.0 p w: Lum (p B; Fr en con greate t roof lo other live m chore or a live where a	ane of the trus al to the face), ls as applicab per ANSI/TPI a load: Lumbe sf (ground ber DOL=1.15 ully Exp.; sidered for thi er of min roof I ad of 13.9 psi e loads. d bearing. e load of 20.0p a rectanole	ss le, l 1. r s s ive i on					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	3-06-00 tall b chord and an	by 2-00-00 wide will f	fit betw	een the bottor	m					
TOP CHORD	1-2=0/19, 2-3=-57/4 4-18=-64/70, 4-19=-0 5-6=-41/26, 6-7=0/19	I, 3-18=-78/58, 64/70, 5-19=-78/58,	10) One RT7A U truss to bear and 8. This c	 10) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 6, 9, 10, and 8. This connection is for uplift only and does not 							un.	
BOT CHORD	2-10=-20/44, 9-10=-2 6-8=-20/44	20/44, 8-9=-20/44,	consider late 11) This truss is	ral forces. designed in accorda	ance wi	th the 2015					"TH CA	ROUL
WEBS NOTES 1) Unbaland this desig	4-9=-76/0, 3-10=-163 eed roof live loads have In.	International R802.10.2 ar 12) See Standar Detail for Co consult quali	Residential Code se nd referenced standa d Industry Piggyback nnection to base trus fied building designe	ections ard AN k Truss ss as a er.	R502.11.1 an SI/TPI 1. Connection pplicable, or	d		4	ALL A	OF LESS	hite	
2) Wind. AS Vasd=10: Cat. II; E> Exterior (: vertical le forces & I DOL=1.6	3mph; TCDL=6.0psf; BG (xp B; Enclosed; MWFR3 (2) zone; cantilever left a fit and right exposed;C- MWFRS for reactions sl 0 plate grip DOL=1.33	(C)=6.0psf; h=25ft; CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed ; end C for members and hown; Lumber	LOAD CASE(S)	Standard								EER.KINN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

GI 100000 April 1,2020

Job	Truss	Truss Type	Qty	Ply	Lamco - Kristie Plan	
Lamco_Kristie_Engr	V	Valley	1	1	Job Reference (optional)	E14247688

Scale = 1:54.5

TCLL (roof)

TCDL

BCLL

BCDL

Snow (Pf/Pg)

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 02:49:50 ID:YVZ0DcWp1y7wR66GaxnuMuzVDth-tyZmWq7ZALtwuKDIRNm5ioWBpB8tkuP3NZkOL7zVDNV Page: 1

GRIP

244/190

FT = 20%

LUMBER								
TOP CHORD	2x4 SP N	0.2						
BOT CHORD	2x4 SP N	0.2						
OTHERS	2x4 SP N	o.3 *Except* 9-3:2x4 SP No.2						
BRACING								
TOP CHORD	Structura 6-0-0 oc p	l wood sheathing directly applied or ourlins.						
BOT CHORD	Rigid ceil bracing.	Rigid ceiling directly applied or 10-0-0 oc bracing.						
REACTIONS	(size)	1=18-10-2, 6=18-10-2, 7=18-10-2, 8=18-10-2, 9=18-10-2, 11=18-10-2						
	Max Horiz	1=-149 (LC 9)						
	Max Uplift	6=-67 (LC 12), 7=-58 (LC 14),						
		8=-82 (LC 14), 11=-103 (LC 13)						
	Max Grav	1=209 (LC 25), 6=92 (LC 14),						
		7=288 (LC 25), 8=460 (LC 25),						
		9=365 (LC 27), 11=558 (LC 24)						
FORCES	(lb) - Max Tension	imum Compression/Maximum						
TOP CHORD	1-2=-190/ 4-5=-137/	/134, 2-3=-185/156, 3-4=-177/153, /71, 5-6=-171/143						
BOT CHORD	1-11=-76/	/117, 10-11=-76/117, 9-10=-76/117,						
	8-9=-76/1	17, 7-8=-76/117, 6-7=-76/117						
WEBS	3-9=-162/	/0, 2-11=-399/230, 4-8=-338/200,						
	5-7=-267/	/164						
NOTES								
1) Unbalance	ed roof live l	oads have been considered for						

this design.
Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber

DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1, 6, 9, 11, 8, and 7. This connection is for uplift only and does not consider lateral forces.

 This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lamco - Kristie Plan	
Lamco_Kristie_Engr	VA	Valley	1	1	Job Reference (optional)	E14247689

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 02:49:50 ID:1bpNOez4nqFuqYHKc8x1DBzVDrp-tyZmWq7ZALtwuKDIRNm5ioWDKB9ekvz3NZkOL7zVDNV

Page: 1

16-1-9

Scale = 1:48.7

Plate Offsets (X, Y): [8:0-3-0,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-SH	0.22 0.17 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 71 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Except Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=16-1-9, 7=16-1-9, Max Horiz 1=-127 (L0 Max Uplift 6=-86 (LC Max Grav 1=166 (LC 6=448 (LC 8=439 (LC 8=439 (LC) (lb) - Maximum Comp Tension 1-2=-164/99, 2-3=-15 4-5=-130/73 1-8=-48/90, 8-9=-58/ 7-10=-58/96, 6-10=-5 3-7=-174/0, 2-8=-331	** 7-3:2x4 SP No.2 athing directly applie applied or 10-0-0 oc 5=16-1-9, 6=16-1-9 8=16-1-9 C 11) 14), 8=-83 (LC 13) 25), 5=152 (LC 2), 25), 7=365 (LC 24) 24) pression/Maximum 56/127, 3-4=-157/12 96, 7-9=-58/96, 1/194, 4-6=-337/198 been considered for	3) d or ; , 5) 6) 7) , 8) 8, 9) LC	Truss design only. For stu see Standarc or consult qu TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1.15 Ct=1.10 Gable require Gable studs : * This truss h on the botton 3-06-00 tall b chord and an One RT7A U truss to beain and 6. This c consider late This truss is a International R802.10.2 ar	hed for wind loads i ds exposed to wind lindustry Gable Er alified building des 7-10; Pr=20.0 psf ate DOL=1.15); Pg .9 psf (flat roof snc .15); Category II; E es continuous botto spaced at 4-0-0 oc ias been designed n chord in all areas y 2-00-00 wide will y other members, SP connectors rec ng walls due to UF onnection is for up ral forces. designed in accord Residential Code s and referenced stand Standard	in the pl d (norman nd Detai igner as (roof liv/ g=20.0 p w: Lum Exp B; F om chore for a liv/ for a liv/ for a liv/ with BC ommen PLIFT at lift only lance wis sections dard AN	ane of the tru al to the face; Is as applicat per ANSI/TF a load: Lumb sf (ground ber DOL=1.1 ully Exp.; d bearing. e load of 20.0 a rectangle een the bottc DL = 10.0psf ded to conne jt(s) 1, 5, 7, 8 and does not th the 2015 R502.11.1 a SI/TPI 1.	uss), ble, PI 1. er 5 5 Dpsf ct 8,				Weight: /1 lb	RO(11,11,11,11,11,11,11,11,11,11,11,11,11,	
 Wind: ASC Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & M DOL=1.60 	CE 7-10; Vult=130mph mph; TCDL=6.0psf; BC p B; Enclosed; MWFRS 2) zone; cantilever left a t and right exposed;C-(MWFRS for reactions sf 0 plate grip DOL=1.33	(3-second gust) DL=6.0psf; h=25ft; S (envelope) and C-f ind right exposed ; e C for members and hown; Lumber	C and							11111111111	A A A A A A A A A A A A A A A A A A A		EER. HLBER MILBE	WWWWWWWWWW

Job	Truss	Truss Type	Qty	Ply	Lamco - Kristie Plan	
Lamco_Kristie_Engr	VB	Valley	1	1	Job Reference (optional)	E14247690

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 02:49:51 ID:1bpNOez4nqFuqYHKc8x1DBzVDrp-tyZmWq7ZALtwuKDIRNm5ioWDmBAxkvQ3NZkOL7zVDNV Page: 1

			F			13-3	3-15					4	
Scale = 1:43.6													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁻	5/TPI2014	CSI TC BC WB Matrix-SH	0.20 0.09 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 57 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=13-3-15 7=13-3-15 Max Horiz 1=104 (LC Max Uplift 1=-16 (LC (LC 13) Max Grav 1=109 (LC 8=347 (LC 8=347 (LC	athing directly applie applied or 10-0-0 or 5, 5=13-3-15, 6=13- 5, 8=13-3-15 5 10) 9), 6=-74 (LC 14), 1 5 25), 5=98 (LC 24), 5 25), 7=260 (LC 2), 5 24)	4 ed or 5 6 c 7 3-15, 8 8=-75 , 9	 TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 Gable requir Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar One RT7A U truss to bear and 6. This c consider late This truss is International B802 10 2 ar 	7-10; Pr=20.0 (late DOL=1.15); 3.9 psf (flat roof .15); Category I es continuous b spaced at 4-0-0 nas been design n chord in all ar by 2-00-00 wide yo other membe SP connectors ing walls due to connection is for ral forces. designed in acc Residential Coo	psf (roof livi; ; Pg=20.0 p snow: Lum II; Exp B; F oottom chord) oc. hed for a livic eas where e will fit betw rs. recomment UPLIFT at uplift only : cordance wi de sections	e load: Lumb isf (ground ber DOL=1.1 ully Exp.; d bearing. e load of 20.0 a rectangle reen the botto ded to conne jt(s) 1, 5, 7, 8 and does not th the 2015 R502.1.1.1 a SUTP1	er 5 Dpsf om ct 3, nd					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	L	OAD CASE(S)	Standard		0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
TOP CHORD	1-2=-116/87, 2-3=-15 4-5=-96/56	53/105, 3-4=-146/10	05,										
BOT CHORD	1-8=-34/72, 7-8=-34/ 5-6=-33/72	72, 6-7=-33/72,										, minin	11111
WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & M DOL=1.60 3) Truss des only. For see Stand or consult	3-7=-176/0, 2-8=-299 ed roof live loads have n. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; BC p B; Enclosed; MWFRS 2) zone; cantilever left a ft and right exposed;C-1 MWFRS for reactions sf 0 plate grip DOL=1.33 signed for wind loads in studs exposed to wind lard Industry Gable Enc qualified building desic	9/184, 4-6=-296/181 been considered fo (3-second gust) DDL=6.0psf; h=25ft; S (envelope) and C- ind right exposed; c C for members and hown; Lumber the plane of the tru (normal to the face d Details as applical mer as per ANS/I/T	1 ; -C end Jss), ble, PI 1.							A CONTRACT		SEA 0363	EER. KIN

April 1,2020

Job	Truss	Truss Type	Qty	Ply	Lamco - Kristie Plan	
Lamco_Kristie_Engr	VC	Valley	1	1	Job Reference (optional)	E14247691

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 02:49:51 ID:1bpNOez4nqFuqYHKc8x1DBzVDrp-L878j97Cxf?nVToy?5IKF03MObUZTMtDcDUxuZzVDNU

SINEERING

818 Soundside Road Edenton, NC 27932

10-6-6

Scale	= 1	1:38.5

Leading	(f)	Cassing	2.0.0		<u>661</u>		DEEL	1.4	(10.0)	l/d of	1./*		CDID
TCLL (roof)	(pst) 20.0	Plate Grip DOI	2-0-0			0 33	Vert(LL)	in n/a	(10C)	i/aeti	L/d qqq	MT20	244/190
Snow (Pf/Pa)	13 9/20 0		1.15		BC	0.33	Vert(TL)	n/a	-	n/a	999	101120	244/150
	10.0/20.0	Ren Stress Incr	YES		WB	0.20	Horiz(TL)	0.00	3	n/a	n/a	1	
BCLI	0.0*	Code	IRC201	5/TPI2014	Matrix-SH	0.00	110112(112)	0.00	Ũ	n/a	n, a		
BCDL	10.0											Weight: 40 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=10-6-6 Max Horiz 1=81 (LC Max Uplift 3=-2 (LC Max Grav 1=216 (L (LC 2)	eathing directly applie v applied or 10-0-0 oc , 3=10-6-6, 4=10-6-6 10) 14) C 2), 3=218 (LC 2), 4	5) 6) 7) ed or 8) c 9) 4=407 LC	Gable require Gable studs s * This truss h on the botton 3-06-00 tall b chord and an One RT7A U truss to beari This connecti lateral forces This truss is of International R802.10.2 ar	es continuous botto spaced at 4-0-0 oc. as been designed f a chord in all areas y 2-00-00 wide will y other members. SP connectors recc ng walls due to UP on is for uplift only designed in accorda Residential Code s d referenced stand Standard	m chor for a live where fit betw DMMENT LIFT at and do ance wi ections lard AN	d bearing. e load of 20.0 a rectangle reen the botto ded to conne jt(s) 1, 3, and es not consic th the 2015 R502.11.1 a SI/TPI 1.	Dpsf om ct d 4. ler nd					
FORCES	(lb) - Maximum Con	npression/Maximum											
	Tension	75/72											
BOT CHORD	1-4=-10/68 3-4=-10)/70											
WEBS	2-4=-234/48	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
NOTES													
1) Unbalanc	ed roof live loads have	been considered for	r										
, this desig	n.											minin	UIL.
2) Wind: AS	CE 7-10; Vult=130mph	n (3-second gust)										WHY CA	Pall
Vasd=103	Bmph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft;	_								1	alri	
Cat. II; Ex	(p B; Enclosed; MWFR	S (envelope) and C-	C								i.	O'. FESS	100 Vin
Exterior (A	2) Zone; cantilever left	C for mombars and	ena								55	in the second	TAN
forces & I	WFRS for reactions s	shown. I umber								-		21 /	
DOL=1.60	0 plate grip DOL=1.33	Landon										SEA	1 1 2
3) Truss de	signed for wind loads i	n the plane of the tru	SS							=	:	JLA	- : -
only. For	studs exposed to wind	d (normal to the face)	,							Ξ		0363	22 <u>:</u> E
see Stand	dard Industry Gable Er	d Details as applicat	ole,							-	0	N	1 - Z
or consult	t qualified building desi	igner as per ANSI/TP	41. or								-	·	airs
4) TCLL: AS	5 Plate DOI =1 15): Pa	-20.0 psf (around	er								25	NGIN	EETAN
snow): Pf	=13.9 psf (flat roof sno	w: Lumber DOL=1.1	5								11	10	BEN
Plate DOI	L=1.15); Category II; E	xp B; Fully Exp.;	-									11, A. G	ILUIN
Ct=1.10												in the second se	11111
												Ap	ril 1,2020

Job	Truss	Truss Type	Qty	Ply	Lamco - Kristie Plan	
Lamco_Kristie_Engr	VD	Valley	1	1	Job Reference (optional)	E14247692

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 02:49:51 ID:n9VjqRooxqhls16wd2D3TSzVDuc-L878j97Cxf?nVToy?5IKF03NLbUGTM7DcDUxuZzVDNU Page: 1

9-7-15

Scale = 1:35.4

Load	ding	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLI	L (roof)	20.0	Plate Grip DOL	1.15		TC	0.27	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snov	w (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.21	Vert(TL)	n/a	-	n/a	999		
TCD	L	10.0	Rep Stress Incr	YES		WB	0.07	Horiz(TL)	0.00	3	n/a	n/a		
BCLI	L	0.0*	Code	IRC2015	/TPI2014	Matrix-SH								
BCD	L	10.0											Weight: 37 lb	FT = 20%
LUM TOP BOT OTH BRA TOP BOT REA	BER CHORD CHORD ERS CING CHORD CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=9-7-15, Manulactic 4, 724,0	athing directly applie applied or 10-0-0 oc 3=9-7-15, 4=9-7-15	5) 6) 7) d or 8) : 9)	Gable require Gable studs s * This truss h on the botton 3-06-00 tall b chord and an One RT7A U truss to beari This connecti lateral forces This truss is o	es continuous botto spaced at 4-0-0 oc. as been designed to ochord in all areas y 2-00-00 wide will y other members. SP connectors recon mg walls due to UP on is for uplift only designed in accorda	for a liv where fit betw ommen LIFT at and do ance w	d bearing. e load of 20.0 a rectangle veen the botto ded to conner jt(s) 1, 3, and es not consid ith the 2015	ipsf om t t 4. er					
		Max Horiz 1=-73 (LC Max Uplift 3=-2 (LC 1 Max Grav 1=197 (LC (LC 2)	11) 14) 22), 3=199 (LC 2), 4	⁼³⁷¹ LO	International R802.10.2 ar AD CASE(S)	Residential Code s d referenced stand Standard	ections dard AN	R502.11.1 a ISI/TPI 1.	nd					
FOR	CES	(lb) - Maximum Com Tension	pression/Maximum											
TOP	CHORD	1-2=-160/66, 2-3=-15	59/67											
BOT	CHORD	1-4=-9/62, 3-4=-9/64												
WEB	3S	2-4=-213/45												
NOT	ES													
1) l	Jnbalance	ed roof live loads have	been considered for											
t	his desigr	n.											minin	UIII.
2) \	Nind: ASC	CE 7-10; Vult=130mph	(3-second gust)										WH CA	ROUL
1	Vasd=103	Smph; TCDL=6.0psf; BC	CDL=6.0psf; h=25ft;	<u>^</u>								1	R	
	Sal. II; EX	p B; Enclosed; MWFR3	5 (envelope) and C-C	und .								2.2	On the second	Dinin
۰ ۱	(ertical lef	ft and right exposed C-	C for members and	inu							4		KP /1	Very!
f	orces & N	/WFRS for reactions sh	nown; Lumber								4		. C.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[DOL=1.60) plate grip DOL=1.33									-		SEA	1 : =
3)	Truss des	signed for wind loads in	the plane of the true	SS							Ξ			
C	only. For	studs exposed to wind	(normal to the face)	,							1		0363	22 : :
S	see Stand	lard Industry Gable End	d Details as applicab	le,							-	8		1 5
4) 7		qualified building desig	ner as per ANSI/TP	11. vr								-	·	airs
4) I		5 Plate DOI -1 15) Po-	-20.0 psf (ground	*1								2.5	S NGIN	EFILAN
L	snow): Pf=	=13.9 psf (flat roof snov	v: Lumber DOL=1 1	5								11	10	BEN
F	Plate DOL	=1.15); Category II; Ex	p B; Fully Exp.;	-									MA. G	ILDIN
(Ct=1.10	,, ,, ,, ,											(IIIIII	mm

April 1,2020

Job	Truss	Truss Type	Qty	Ply	Lamco - Kristie Plan	
Lamco_Kristie_Engr	VE	Valley	1	1	Job Reference (optional)	E14247693

6-2-4

6-2-4

Carter Components (Sanford), Sanford, NC - 27332.

Scale = 1:40.6 Loading

5-2-2 4-10-

0-0-4

Spacing

(psf)

DOL=1.60 plate grip DOL=1.33

Run: 8.33 S. Mar 23 2020 Print: 8.330 S.Mar 23 2020 MiTek Industries. Inc. Wed Apr 01 02:49:51 ID:FL351npQi8p9TBh6Bmll?fzVDub-L878j97Cxf?nVToy?5IKF03RmbX5TNWDcDUxuZzVDNU

12-0-6

5-10-2

GRIP

4x5 = 4 3 5 6 2 12 10 Г 12 11 10 9 8 3x5 3x5 💊 12-4-8 2-0-0 CSI DEFL l/defl L/d PLATES in (loc) 1.15 тс 0.05 Vert(LL) n/a n/a 999 MT20 BC 0.03 Vert(TL) n/a n/a 999 WB 0.04 Horiz(TL) 0.00 7 n/a n/a Matrix-SH Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

Plate Grip DOL TCLL (roof) 20.0 244/190 Snow (Pf/Pg) 13 9/20 0 Lumber DOL 1 15 TCDL 10.0 Rep Stress Incr YES BCLL 0.0* Code IRC2015/TPI2014 BCDL 10.0 Weight: 60 lb FT = 20%LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 or consult qualified building designer as per ANSI/TPI 1. 2x4 SP No.3 OTHERS 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber BRACING DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground TOP CHORD Structural wood sheathing directly applied or snow): Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 6-0-0 oc purlins. Plate DOL=1.15); Category II; Exp B; Fully Exp.; BOT CHORD Rigid ceiling directly applied or 10-0-0 oc Ct=1.10 bracing. All plates are 2x4 MT20 unless otherwise indicated. 5) **REACTIONS** (size) 1=12-4-8, 7=12-4-8, 8=12-4-8, Gable requires continuous bottom chord bearing 6) 9=12-4-8, 10=12-4-8, 11=12-4-8, Gable studs spaced at 2-0-0 oc. 7) 12=12-4-8 * This truss has been designed for a live load of 20.0psf 8) Max Horiz 1=-96 (LC 9) on the bottom chord in all areas where a rectangle Max Uplift 1=-10 (LC 9), 8=-39 (LC 14), 9=-36 3-06-00 tall by 2-00-00 wide will fit between the bottom (LC 14), 11=-38 (LC 13), 12=-38 chord and any other members. (LC 13) One RT7A USP connectors recommended to connect 9) 1=94 (LC 25), 7=82 (LC 24), 8=195 Max Grav truss to bearing walls due to UPLIFT at jt(s) 1, 7, 10, 11, (LC 25), 9=187 (LC 25), 10=133 12, 9, and 8. This connection is for uplift only and does (LC 27), 11=191 (LC 24), 12=191 not consider lateral forces. (LC 24) 10) This truss is designed in accordance with the 2015 FORCES (lb) - Maximum Compression/Maximum International Residential Code sections R502.11.1 and Tension R802.10.2 and referenced standard ANSI/TPI 1. TOP CHORD 1-2=-98/78, 2-3=-93/55, 3-4=-112/104, LOAD CASE(S) Standard 4-5=-112/105, 5-6=-73/26, 6-7=-80/61 BOT CHORD 1-12=-55/82, 11-12=-55/82, 10-11=-55/82, 9-10=-55/82, 8-9=-55/82, 7-8=-55/82 WEBS 4-10=-92/13, 3-11=-165/101, 2-12=-158/97, 5-9=-161/99, 6-8=-161/99 WITTER WALL NOTES SEAL Unbalanced roof live loads have been considered for 1) 036322 this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber G mm

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being real of the set only water the building designer must verify the subject of building designer much the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

April 1,2020

Job	Truss	Truss Type	Qty	Ply	Lamco - Kristie Plan	
Lamco_Kristie_Engr	VF	Valley	1	1	Job Reference (optional)	E14247694

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 02:49:52 ID:1bpNOez4nqFuqYHKc8x1DBzVDrp-L878j97Cxf?nVToy?5IKF03NZbW9TNWDcDUxuZzVDNU

zVDNU

7-8-12

Scale = 1:32.2

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	J/TPI2014	CSI TC BC WB Matrix-P	0.26 0.09 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=7-8-12, Max Horiz 1=-57 (LC Max Uplift 1=-5 (LC 1 Max Grav 1=173 (LC (LC 2) (lb) - Maximum Com Tension 1-2-114/50, 2, 2-11	athing directly applied applied or 10-0-0 oc 3=7-8-12, 4=7-8-12 9) 14), 3=-10 (LC 14) 2 2), 3=174 (LC 2), 4 pression/Maximum 10/51	5) 6) 7) d or 8) 9) =253 LO	Gable require Gable studs s * This truss h on the bottom 3-06-00 tall b chord and an One RT7A U truss to beari This connecti lateral forces. This truss is o International R802.10.2 ar AD CASE(S)	es continuous botto spaced at 4-0-0 oc. as been designed f o chord in all areas y 2-00-00 wide will y other members. SP connectors recon ng walls due to UPI on is for uplift only designed in accorda Residential Code si d referenced stand Standard	m chor where fit betw DMMEN LIFT at and do ance wi ections ard AN	d bearing. e load of 20.0 a rectangle een the botto ded to connect jt(s) 1, 3, and es not consid th the 2015 R502.11.1 ar SI/TPI 1.	ipsf om t 4. er nd				-	
BOT CHORD WEBS	1-2=-114/50, 2-3=-1 1-4=-9/48, 3-4=-8/49 2-4=-166/41	10/51											
 Unbalance this design Unbalance this design Wind: ASC Vasd=103r Cat. II; Exp Exterior (2) vertical left forces & M DOL=1.60 Truss des only. For s see Standa or consult (TCLL: ASC DOL=1.15 snow); Pf= Plate DOL: Ct=1.10 	d roof live loads have DE 7-10; Vult=130mph mph; TCDL=6.0psf; BC o B; Enclosed; MWFRS) zone; cantilever left a t and right exposed;C-1 IWFRS for reactions sł plate grip DOL=1.33 igned for wind loads in studs exposed to wind ard Industry Gable Enc qualified building desig CE 7-10; Pr=20.0 psf (r Plate DOL=1.15); Pg= 13.9 psf (flat roof snov =1.15); Category II; Ex	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed; ei C for members and nown; Lumber a the plane of the trus (normal to the face), d Details as applicabl gner as per ANSI/TPI roof live load: Lumbe -20.0 psf (ground v: Lumber DOL=1.15 sp B; Fully Exp.;	nd ss le, 1. r							My IIIIIII		SEA 0363	EER. ILBERTITIUT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lamco - Kristie Plan	
Lamco_Kristie_Engr	VG	Valley	1	1	Job Reference (optional)	E14247695

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 02:49:52 ID:F3VnScXd0yL_BfvaDM1hcNzVDaJ-pKgWxV8qiy8e7dN8ZopZoDbZJ?nLCpOMrtDVQ0zVDNT

3

818 Soundside Road Edenton, NC 27932

6-10-6 3-5-3 6-6-4 3-5-3 3-1-1 0-4-2

Scale = 1:27.5

Plate Offsets (X, Y): [2:0-2-8,Edge]

	, , ,). [<u>o</u> <u>_</u> o, <u>_</u> ugo]											
	(nsf)	Spacing	2-0-0	CSI		DEEL	in	(loc)	l/defl	I /d		GRIP
TCLL (roof)	20.0	Plate Grin DOI	1 15	TC	0 19	Vert(LL)	n/a	(100)	n/a	999	MT20	244/190
Snow (Pf/Pa)	13 9/20 0	Lumber DOI	1.15	BC	0.35	Vert(TL)	n/a	-	n/a	999	11120	210,100
	10.0/20.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLI	0.0*	Code	IRC2015/TPI2014	Matrix-P	0.00		0.00	0	1.70			
BCDL	10.0			Mathx 1							Weight: 22 lb	FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD ST CHORD ST CHORD I) Unbalance this design Vasd=103 Cat. II; Ext Exterior (2 vertical lef forces & M DOL=1.60 3) Truss des only. For see Stand or consult 4) TCLL: ASI DOL=1.15 snow); Pf- Plate DOL Ct=1.10 5) Gable req 6) Gable stud	10.0 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=6-10-6 Max Horiz 1=50 (LC Max Grav 1=263 (L (lb) - Maximum Con Tension 1-2=-209/74, 2-3=-2 1-3=-2/122 ed roof live loads have CE 7-10; Vult=130mpf mph; TCDL=6.0psf; B p B; Enclosed; MWFR b) zone; cantilever left t and right exposed; C WFRS for reactions s plate grip DOL=1.33 signed for wind loads i studs exposed to wind ard Industry Gable Er Plate DOL=1.15); Pg =13.9 psf (flat roof sno L=1.15); Category II; E uires continuous botto ds spaced at 4-0-0 oc.	eathing directly applie applied or 10-0-0 or , 3=6-10-6 12) C 2), 3=263 (LC 2) pression/Maximum 209/74 been considered for (G-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and shown; Lumber In the plane of the true (normal to the face) d Details as applicat gner as per ANSI/TF (roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.1: xp B; Fully Exp.; m chord bearing.	7) * This truss on the bott 3-06-00 tal chord and a 8) One RT7A truss to bea This conne lateral force 9) This truss in Internation: R802.10.2 LOAD CASE(S C end ss , ble, 11. er 5	thas been design om chord in all an I by 2-00-00 wide any other membe USP connectors aring walls due to ction is for uplift (es. s designed in acc al Residential Co and referenced s c) Standard	ned for a live reas where e will fit betw ers. recommend o UPLIFT at only and do cordance wi de sections standard AN	e load of 20.0 a rectangle reen the botto ded to conner it(s) 1 and 3. es not consid th the 2015 R502.11.1 a SI/TPI 1.	Ipsf om ct er nd		Charles and a second seco		Weight: 22 lb	FT = 20%

Job	Truss	Truss Type	Qty	Ply	Lamco - Kristie Plan		
Lamco_Kristie_Engr	VH	Valley	1	1	Job Reference (optional)	E14247696	

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 02:49:52 ID:1bpNOez4nqFuqYHKc8x1DBzVDrp-pKgWxV8qiy8e7dN8ZopZoDbb??qLCpOMrtDVQ0zVDNT

4-11-2

3

2x4 💊

2-5-9 4-7-0 2-5-9 2-1-7 3x5 = 2 12 10 ┌ 1-9-3 2-0-14 1 0-0-4 2x4 🧳 4-11-2

Scale = 1:25.3

Plate Offsets (X_Y): [2:0-2-8 Edge]

Plate Offsets ((X, Y): [2:0-2-8,Edge]										-		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-P	0.08 0.16 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalanco this desig 2) Wind: ASI Vasd=103 Cat. II; Ex Exterior (2 vertical lei forces & M DOL=1.60 3) Truss dee only. For see Stanc or consult 4) TCLL: AS DOL=1.16 Snow); Pfr Plate DOL Ct=1.10 5) Gable req 6) Gable stu	2x4 SP No.2 2x4 SP No.2 Structural wood shea 4-11-12 oc purlins. Rigid ceiling directly bracing. (size) 1=4-11-2, Max Horiz 1=-34 (LC Max Grav 1=180 (LC (lb) - Maximum Com Tension 1-2=-143/52, 2-3=-14 1-3=-1/84 ed roof live loads have in. CE 7-10; Vult=130mph Bmph; TCDL=6.0psf; BC p; B; Enclosed; MWFRS 2) zone; cantilever left a ft and right exposed; C- 4WFRS for reactions st 0 plate grip DOL=1.33 signed for wind loads in studs exposed to wind lard Industry Gable Enc qualified building desig CE 7-10; Pr=20.0 psf (ff 5 Plate DOL=1.15); Pg= =13.9 psf (flat roof snow L=1.15); Category II; Ex pures continuous bottor ds spaced at 4-0-0 oc.	athing directly applie applied or 10-0-0 oc 3=4-11-2 11) ; 2), 3=180 (LC 2) pression/Maximum 43/52 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-(ind right exposed ; e C for members and nown; Lumber c for members and nown; Lumber inthe plane of the true (normal to the face) J Details as applicab gner as per ANSI/TP coof live load: Lumber 20.0 psf (ground w: Lumber DOL=1.15 p. B; Fully Exp.; in chord bearing.	7) * This tru on the bo 3-06-00 i chord an 8) One RT7 truss to b 9) This trus Internatic R802.10 LOAD CASE	ss has been desigr ttom chord in all ar all by 2-00-00 wide d any other membe A USP connectors earing walls due to tection is for uplift of ces. is is designed in acc nal Residential Co 2 and referenced s (S) Standard	need for a livv reas where a will fit betw ers. recommen- b UPLIFT at conly and do cordance wi de sections standard AN	e load of 20.0 a rectangle reen the botto ded to connec jt(s) 1 and 3. es not consid th the 2015 R502.11.1 an SI/TPI 1.	psf m er nd				SEA 0363	AL B22 EFFR. H.	7

Job	Truss	Truss Type	Qty	ty Ply Lamco - Kristie Plan			
Lamco_Kristie_Engr	VI	Valley	1	1	Job Reference (optional)	E14247697	

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 02:49:52 ID:_22r5ap_IK3zDIenirBS3yzVDqj-pKgWxV8qiy8e7dN8ZopZoDbcX?rHCpOMrtDVQ0zVDNT

3

2x4 💊

4-0-12

Page: 1

1-4-14

1-8-9

Plate Offsets (X, Y): [2:0-2-8,Edge

Plate Offsets (X, Y): [2:0-2-8,Edge]											
Loading (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 13.9/20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC 0.0 BC 0.1 WB 0.0 Matrix-P 0.0	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING TOP CHORD Structural wood she 4-1-6 oc purlins. BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 1=4-0-12, Max Horiz 1=-27 (LC Max Grav 1=142 (LC FORCES (b) - Maximum Corr Tension TOP CHORD 1-2=-113/42, 2-3=-1 BOT CHORD 1-3=-1/66 NOTES 1) Unbalanced roof live loads have this design. 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; Br Cat. II; Exp B; Enclosed; MWFR Exterior (2) zone; cantilever left a vertical left and right exposed; C- forces & MWFRS for reactions s DOL=1.60 plate grip DOL=1.33 3) Truss designed for wind loads ir only. For studs exposed to wind see Standard Industry Gable En or consult qualified building desi 4) TCLL: ASCE 7-10; Pr=20.0 psf (DOL=1.15 Plate DOL=1.15); Pg snow); Pf=13.9 psf (flat roof sno Plate DOL=1.15); Category II; E: Ct=1.10 5) Gable requires continuous bottor 6) Gable studs spaced at 4-0-0 oc.	athing directly applied applied or 10-0-0 oc 3=4-0-12 : 11) 2 2), 3=142 (LC 2) pression/Maximum 13/42 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed ; er C for members and hown; Lumber n the plane of the trus (normal to the face), d Details as applicabl gner as per ANSI/TPI roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 cp B; Fully Exp.; m chord bearing.	 7) * This truss I on the bottor 3-06-00 tall I chord and ar truss to bear This connect lateral forces 9) This truss is International R802.10.2 a LOAD CASE(S) 	has been designed for a l m chord in all areas wher by 2-00-00 wide will fit be ny other members. JSP connectors recomme ing walls due to UPLIFT tion is for uplift only and d s. designed in accordance I Residential Code section In referenced standard A Standard	ive load of 20.0 e a rectangle tween the bottou nded to connec at jt(s) 1 and 3. loes not conside with the 2015 is R502.11.1 an INSI/TPI 1.	osf m t er id				SEA 0363	EER AL 22 FER AL BER AL AL AL AL BER AL AL AL AL AL AL AL AL BER AL AL A	Nonunities.

