

[D.0 0 0 0 4 0] [D.0 0 0 0 4 4] [V.0 E 0 0 4 0

Plate Offsets (X,Y)	[R:0-2-9,0-4-2], [R:0-0-0,0-1-1], [Y:0-5	5-0,0-4-8]		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL Ž0.Ó	Plate Grip DOL 1.15	TC 0.06	Vert(LL) -0.00 A n/r 120	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.03	Vert(CT) -0.00 A n/r 120	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.14	Horz(CT) 0.01 R n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S	, ,	Weight: 198 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3 OTHERS WFDGF

Right: 2x4 SP No.3

BRACING-

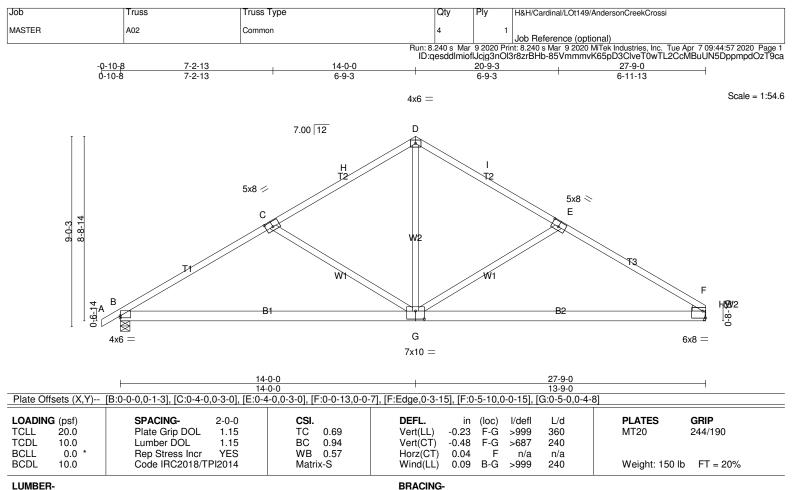
TOP CHORD **BOT CHORD** WFBS

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt J-Y

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 27-9-0.


(lb) - Max Horz B=244(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) B, Z, AA, AB, AC, AD, AE, X, W, V, U, T, R except S=-109(LC 13) Max Grav All reactions 250 lb or less at joint(s) B, Y, Z, AA, AB, AC, AD, AE, X, W, V, U, T, S, R

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 2-0-0, Exterior(2N) 2-0-0 to 14-0-0, Corner(3R) 14-0-0 to 17-0-0, Exterior(2N) 17-0-0 to 27-9-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, Z, AA, AB, AC, AD, AE, X, W, V, U, T, R except (jt=lb) S=109.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) B, R.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD

BOT CHORD

Installation guide.

Structural wood sheathing directly applied or 3-3-14 oc purlins. Rigid ceiling directly applied or 2-2-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3 WFBS

WEDGE

Right: 2x4 SP No.3

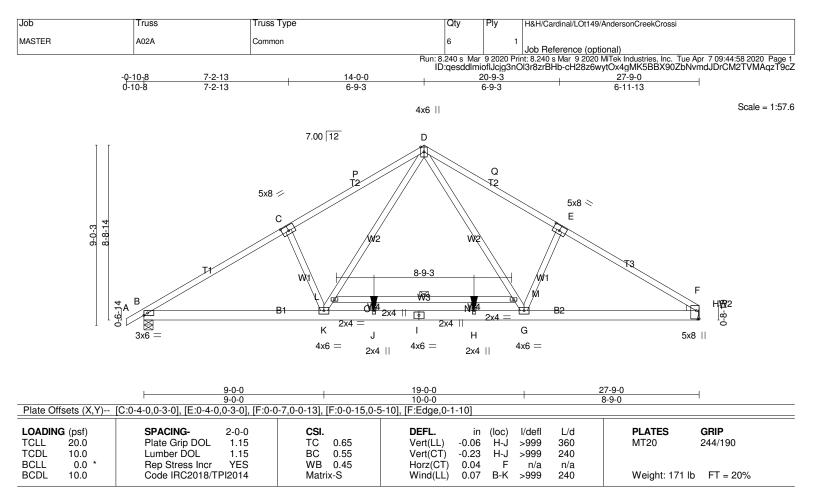
REACTIONS. (lb/size) B=1166/0-5-8 (min. 0-1-8), F=1097/Mechanical

Max Horz B=244(LC 9)

Max UpliftB=-220(LC 12), F=-190(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD B-C=-1640/327, C-H=-1241/237, D-H=-1125/256, D-I=-1124/258, E-I=-1241/228,


F-F=-1615/331 **BOT CHORD**

B-G=-326/1343, F-G=-186/1306 C-G=-459/344, D-G=-81/807, E-G=-457/352 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 14-0-0, Exterior(2R) 14-0-0 to 17-0-0, Interior(1) 17-0-0 to 27-8-4 zone; cantilever left exposed; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) B=220, F=190.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BRACING-TOP CHORD BOT CHORD

WFBS

Structural wood sheathing directly applied or 3-1-4 oc purlins.

MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 10-0-0 oc bracing.

I-M

1 Row at midpt

Installation guide.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3 *Except* **WEBS**

W3: 2x4 SP No.2

WEDGE

Right: 2x4 SP No.3

REACTIONS. (lb/size) B=1266/0-5-8 (min. 0-1-8), F=1197/Mechanical

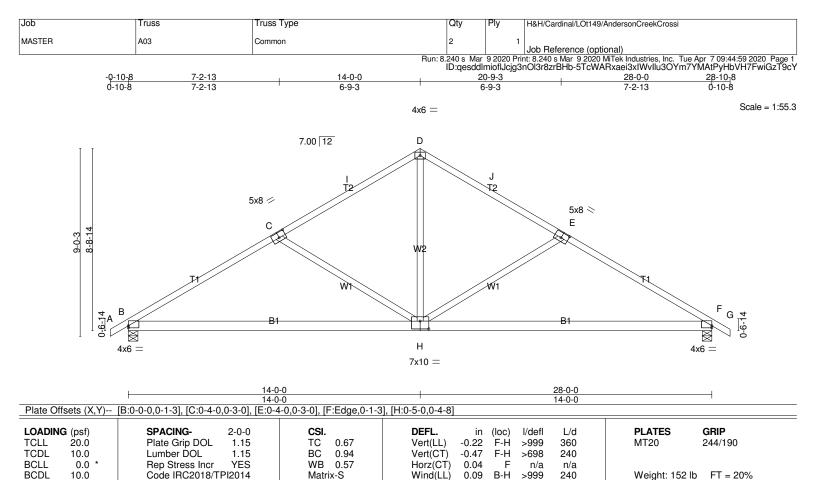
Max Horz B=244(LC 11)

Max UpliftB=-120(LC 12), F=-89(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD B-C=-1915/88, C-P=-1742/158, D-P=-1626/176, D-Q=-1622/178, E-Q=-1738/141,

F-F=-1909/88


BOT CHORD B-K=-126/1571, J-K=0/1114, I-J=0/1114, H-I=0/1114, G-H=0/1114, F-G=0/1532 **WEBS**

C-K=-387/321, K-L=-111/750, D-L=-90/810, D-M=-91/803, G-M=-111/741, E-G=-388/329

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 14-0-0, Exterior(2R) 14-0-0 to 17-0-0, Interior(1) 17-0-0 to 27-8-4 zone; cantilever left exposed; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60
- 3) 200.0lb AC unit load placed on the bottom chord, 14-0-0 from left end, supported at two points, 5-0-0 apart.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) F except (jt=lb) B=120.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 **BRACING-**

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 3-8-0 oc purlins. Rigid ceiling directly applied or 2-2-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

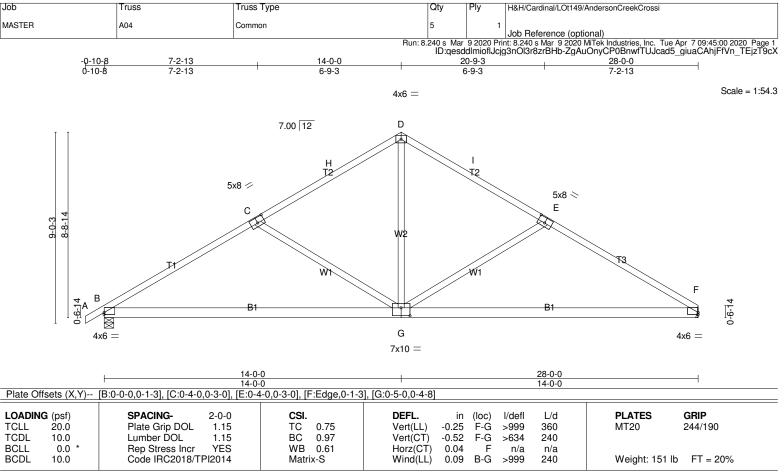
REACTIONS. (lb/size) B=1168/0-5-8 (min. 0-1-8), F=1168/0-5-8 (min. 0-1-8)

Max Horz B=247(LC 11)

Max UpliftB=-220(LC 12), F=-220(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD B-C=-1644/328, C-l=-1245/238, D-l=-1129/257, D-J=-1129/257, E-J=-1245/238,


E-F=-1644/328

BOT CHORD B-H=-321/1351, F-H=-166/1313

WEBS D-H=-78/812, E-H=-460/344, C-H=-459/343

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 14-0-0, Exterior(2R) 14-0-0 to 17-0-0, Interior(1) 17-0-0 to 28-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) B=220, F=220
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3 **WEBS**

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 2-2-0 oc purlins. Rigid ceiling directly applied or 2-2-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

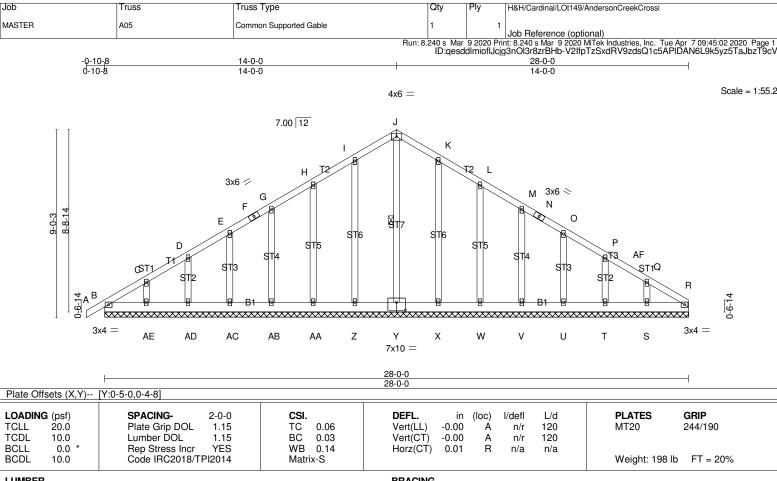
REACTIONS. (lb/size) B=1176/0-5-8 (min. 0-1-8), F=1107/Mechanical

Max Horz B=244(LC 9)

Truss

Max UpliftB=-221(LC 12), F=-193(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


TOP CHORD B-C=-1660/328, C-H=-1261/239, D-H=-1145/258, D-I=-1145/260, E-I=-1263/230,

E-F=-1657/341

BOT CHORD B-G=-327/1357, F-G=-195/1353

D-G=-84/825, E-G=-490/362, C-G=-459/344 **WEBS**

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 14-0-0, Exterior(2R) 14-0-0 to 17-0-0, Interior(1) 17-0-0 to 27-11-4 zone; cantilever left exposed; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) B=221, F=193.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3 **OTHERS**

BRACING-

TOP CHORD **BOT CHORD** WFBS

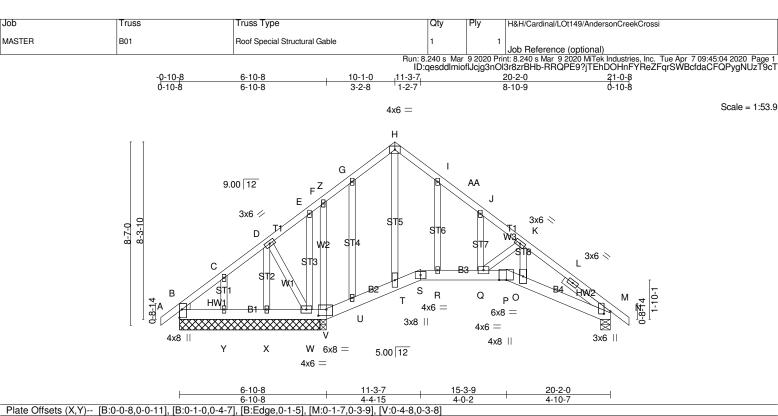
Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt J-Y

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 28-0-0.

Max Horz B=244(LC 9)


Truss

Max Uplift All uplift 100 lb or less at joint(s) B, Z, AA, AB, AC, AD, AE, X, W, V, U, T, S, R Max Grav All reactions 250 lb or less at joint(s) B, Y, Z, AA, AB, AC, AD, AE, X, W, V, U, T, S, R

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) '0-10-8 to 2-0-0, Exterior(2N) 2-0-0 to 14-0-0, Corner(3R) 14-0-0 to 17-0-0, Exterior(2N) 17-0-0 to 28-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, Z, AA, AB, AC, AD, AE, X, W, V, U, T, S, R.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl	L/d PLATES GRIP	
TCLL	20.0	Plate Grip DOL 1.15	TC 0.45	Vert(LL) -0.22 Q-R >715	360 MT20 244/190	
TCDL	10.0	Lumber DOL 1.15	BC 0.81	Vert(CT) -0.44 Q-R >355	240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.35	Horz(CT) 0.31 M n/a	n/a	
BCDL	10.0	Code IRC2018/TPI2014	Matrix-S	Wind(LL) 0.19 Q >844	240 Weight: 156 lb FT = 20%	D

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 4-3-2 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer

8-11-2 oc bracing: Q-R.

Installation guide.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 *Except*

B3: 2x6 SP No.1 **WEBS** 2x4 SP No 3 2x4 SP No.3 **OTHERS**

WEDGE

Left: 2x4 SP No.3

SLIDER Right 2x4 SP No.2 2-8-3

REACTIONS. All bearings 6-6-12 except (jt=length) M=0-5-8, V=0-3-8.

Max Horz B=234(LC 11) (lb)

Max Uplift All uplift 100 lb or less at joint(s) M except W=-1060(LC 1), Y=-127(LC 12),

V=-142(LC 13)

Max Grav All reactions 250 lb or less at joint(s) Y except B=454(LC 1), X=443(LC 1), M=724(LC 1), V=1049(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD B-C=-551/8, C-D=-497/18, D-E=-591/18, E-F=-470/39, F-Z=-594/57, G-Z=-582/65,

G-H=-604/106, H-I=-542/96, I-AA=-536/20, J-AA=-565/10, J-K=-617/0, K-L=-1415/69,

L-M=-1496/53

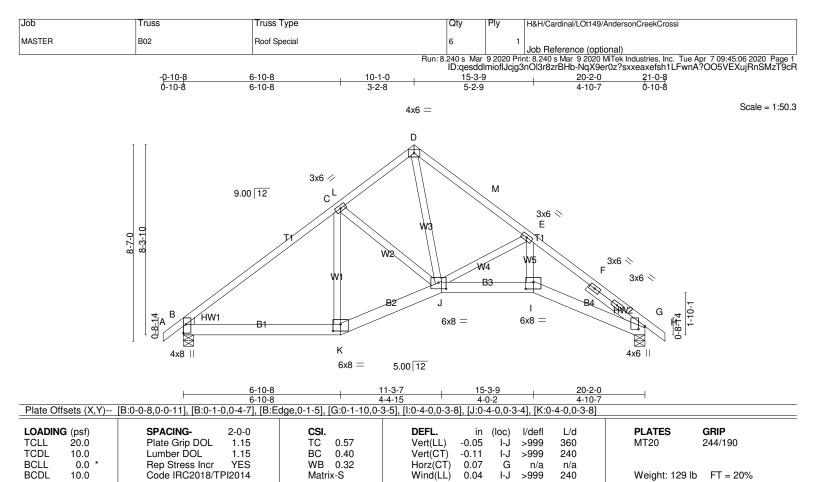
B-Y=0/394, X-Y=0/394, W-X=0/394, V-W=0/480, U-V=0/460, T-U=0/498, S-T=0/386, **BOT CHORD**

R-S=0/469, Q-R=0/469, P-Q=0/1058, O-P=0/854, M-O=0/1160

H-T=-54/492, D-X=-334/0, K-O=-100/852, F-V=-253/49, K-Q=-810/264 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-0, Interior(1) 2-1-0 to 10-1-0, Exterior(2R) 10-1-0 to 13-1-0, Interior(1) 13-1-0 to 21-0-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Bearing at joint(s) M considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) M except (jt=lb) W=1060, Y=127, V=142.


Continued on page 2

Job		Truss	Truss Type	Qty	Ply	H&H/Cardinal/LOt149/AndersonCreekCrossi
MAS	STER	B01	Roof Special Structural Gable	1	1	Job Reference (optional)

Run: 8.240 s Mar 9 2020 Print: 8.240 s Mar 9 2020 MTek Industries, Inc. Tue Apr 7 09:45:04 2020 Page 2 ID:qesddlmioflJcjg3nOl3r8zrBHb-RRQPE9?jTEhDOHnFYReZFqrSWBcfdaCFQPygNUzT9cT

NOTES-

- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 11) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 3-7-5 oc purlins.

MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 10-0-0 oc bracing.

Installation guide.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3

WEDGE

Left: 2x4 SP No.3

SLIDER Right 2x4 SP No.2 3-1-0

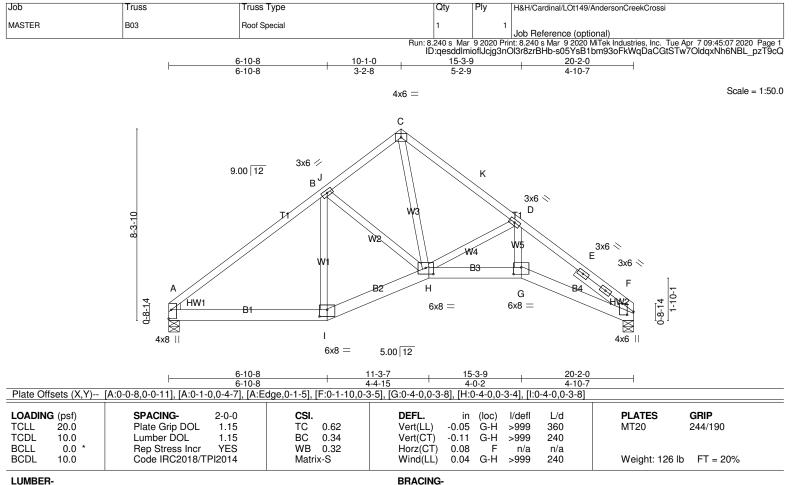
REACTIONS. (lb/size) B=857/0-5-8 (min. 0-1-8), G=853/0-5-8 (min. 0-1-8)

Max Horz B=234(LC 11)

Max UpliftB=-153(LC 12), G=-152(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD B-C=-1001/186, C-L=-801/183, D-L=-788/205, D-M=-909/222, E-M=-998/201, E-F=-1691/227,


F-G=-1781/203 BOT CHORD B-K=-126/735,

B-K=-126/735, J-K=-141/804, I-J=-97/1256, G-I=-115/1396

WEBS D-J=-178/768, E-J=-623/247, E-l=0/552

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 10-1-0, Exterior(2R) 10-1-0 to 13-1-0, Interior(1) 13-1-0 to 21-0-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Bearing at joint(s) G considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) B=153, G=152.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 3-4-5 oc purlins.

MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 10-0-0 oc bracing.

Installation guide.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3 WFBS

WEDGE

Left: 2x4 SP No.3

SLIDER Right 2x4 SP No.2 3-1-0

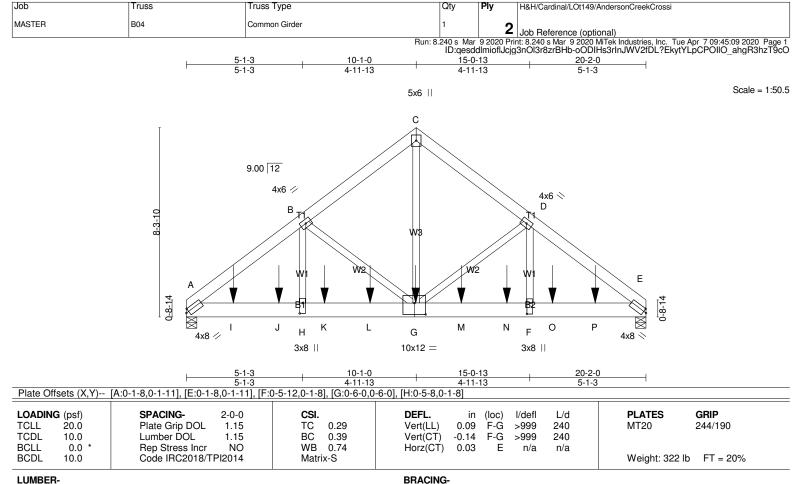
REACTIONS. (lb/size) A=790/0-5-8 (min. 0-1-8), F=790/0-5-8 (min. 0-1-8)

Max Horz A=-227(LC 8)

Max UpliftA=-124(LC 12), F=-124(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD A-B=-1005/188, B-J=-810/191, C-J=-797/213, C-K=-917/227, D-K=-1006/206, D-E=-1715/255,


F-F=-1805/229

BOT CHORD A-I=-136/742, H-I=-154/811, G-H=-109/1271, F-G=-128/1417

WEBS C-H=-192/783, D-H=-634/258, D-G=0/570

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-2-12 to 3-2-12, Interior(1) 3-2-12 to 10-1-0, Exterior(2R) 10-1-0 to 13-1-0, Interior(1) 13-1-0 to 19-11-14 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Bearing at joint(s) F considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) A=124,
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 5-4-1 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

REACTIONS.

TOP CHORD 2x6 SP No.2 BOT CHORD 2x8 SP DSS 2x4 SP No.2 **WEBS**

(lb/size) A=5806/0-5-8 (min. 0-2-15), E=5966/0-5-8 (min. 0-3-0)

Max Horz A=-219(LC 4)

Max UpliftA=-2179(LC 8), E=-1983(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. A-B=-7758/2891, B-C=-5421/2003, C-D=-5339/1974, D-E=-8011/2686 TOP CHORD

A-I=-2294/5960, I-J=-2294/5960, H-J=-2294/5960, H-K=-2294/5960, K-L=-2294/5960, **BOT CHORD**

G-L=-2294/5960, G-M=-2016/6157, M-N=-2016/6157, F-N=-2016/6157, F-O=-2016/6157,

O-P=-2016/6157 F-P=-2016/6157

WFBS C-G=-2223/6025, D-G=-2462/905, D-F=-921/3089, B-G=-2158/1089, B-H=-1158/2719

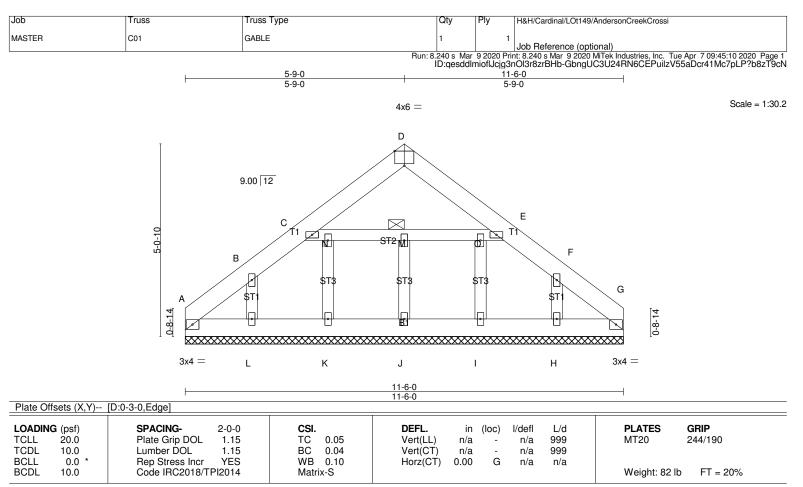
NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-7-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit


- between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) A=2179,
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1077 lb down and 472 lb up at 2-0-12, 1077 lb down and 502 lb up at 4-0-12, 1077 lb down and 502 lb up at 6-0-12, 1077 lb down and 502 lb up at 8-0-12, 1177 lb down and 401 lb up at 10-0-12, 1177 lb down and 401 lb up at 12-0-12, 1177 lb down and 401 lb up at 14-0-12, and 1177 lb down and 401 lb up at 16-0-12, and 1177 lb down and 401 lb up at 17-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

Job	Truss	Truss Type	Qty	Ply	H&H/Cardinal/LOt149/AndersonCreekCrossi
MASTER	B04	Common Girder	1	2	Job Reference (optional)

Run: 8.240 s Mar 9 2020 Print: 8.240 s Mar 9 2020 MTek Industries, Inc. Tue Apr 7 09:45:09 2020 Page 2 ID:qesddImioflJcjg3nOl3r8zrBHb-oODIHs3rInJWV2fDL?EkytYLpCPOlIO_ahgR3hzT9cO

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 Uniform Loads (plf)
 Vert: A-C=-60, C-E=-60, A-E=-20
 Concentrated Loads (lb)
 Vert: G=-1177(B) I=-1077(B) K=-1077(B) L=-1077(B) M=-1177(B) N=-1177(B) O=-1177(B) P=-1177(B)

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 **OTHERS** 2x4 SP No.3 **BRACING-**

TOP CHORD **BOT CHORD JOINTS**

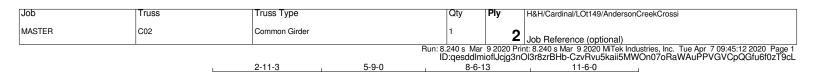
Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Brace at Jt(s): M

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 11-6-0.

(lb) - Max Horz A=-129(LC 10)


Max Uplift All uplift 100 lb or less at joint(s) A, G, K, I except L=-112(LC 12), H=-102(LC 13)

Max Grav All reactions 250 lb or less at joint(s) A, G, J, K, L, I, H

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD A-B=-286/131, B-C=-273/227, E-F=-273/224, F-G=-267/125

- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) 0-0-0 to 3-0-0, Exterior(2N) 3-0-0 to 5-9-0, Corner(3R) 5-9-0 to 8-6-0, Exterior(2N) 8-6-0 to 11-6-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Vertical gable studs spaced at 2-0-0 oc and horizontal gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, G, K, I except (jt=lb) L=112, H=102.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

2-9-13

2-9-13

Scale = 1:31.1 5x6 =

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

2-11-3

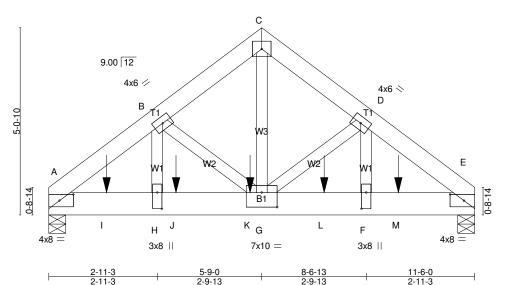


Plate Offsets (X,Y)-- [A:0-4-8,0-2-0], [E:0-4-8,0-2-0], [F:0-5-4,0-1-8], [G:0-5-0,0-4-12], [H:0-5-4,0-1-8]

2-11-3

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.14	Vert(LL) 0.03 G >999 240	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.18	Vert(CT) -0.04 G >999 240	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.38	Horz(CT) 0.01 E n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S		Weight: 183 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x6 SP No.2 BOT CHORD 2x8 SP DSS 2x4 SP No.2 **WEBS**

(lb/size) A=3301/0-5-8 (min. 0-1-11), E=3017/0-5-8 (min. 0-1-8)

Max Horz A=-127(LC 4)

Max UpliftA=-1386(LC 8), E=-1255(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

A-B=-3978/1669, B-C=-2830/1241, C-D=-2830/1241, D-E=-3876/1620 A-I=-1279/2959, H-I=-1279/2959, H-J=-1279/2959, J-K=-1279/2959, G-K=-1279/2959, G-L=-1180/2879, F-L=-1180/2879, **BOT CHORD**

F-M=-1180/2879. E-M=-1180/2879

WEBS C-G=-1362/3072, D-G=-815/428, D-F=-541/1269, B-G=-919/473, B-H=-604/1399

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

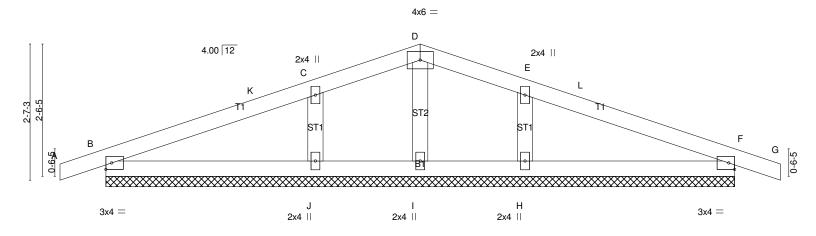
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) A=1386, E=1255.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1087 lb down and 509 lb up at 1-6-12, 1087 lb down and 509 lb up at 3-5-4, 1087 lb down and 509 lb up at 5-5-4, and 1087 lb down and 509 lb up at 7-5-4, and 1087 lb down and 509 lb up at 9-5-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: A-C=-60, C-E=-60, A-E=-20


Job	Truss	Truss Type	Qty	Ply	H&H/Cardinal/LOt149/AndersonCreekCrossi
MASTER	C02	Common Girder	1	2	Job Reference (optional)

Run: 8.240 s Mar 9 2020 Print: 8.240 s Mar 9 2020 MTek Industries, Inc. Tue Apr 7 09:45:12 2020 Page 2 ID:qesddlmioflJcjg3nOl3r8zrBHb-CzvRvu5kaii5MWOn07oRaWAuPPVGVCpQGfu6f0zT9cL

LOAD CASE(S) Standard
Concentrated Loads (lb)
Vert: I=-1087(B) J=-1087(B) K=-1087(B) L=-1087(B) M=-1087(B)

Job	Truss	Truss Type	Qty	Ply	H&H/Cardinal/LOt149/AndersonCreekCrossi	
MASTER	CP01	Common Supported Gable	1	1		
					Job Reference (optional)	
		Run	8.240 s Mar	9 2020 Pri	nt: 8.240 s Mar 9 2020 MiTek Industries, Inc. Tue Apr 7 09:45	:13 2020 Page 1
			ID:qes	ddlmioflJc	jg3nOl3r8zrBHb-gASp6E6ML?qxzfz_aqJg7ji3ZpsXEjL	JZVJefCTzT9cK
, -0-10-8 ₁		6-0-0			12-0-0	12-10-8
0-10-8		6-0-0	6-0-0 0-10-8		0-10-8	

Scale = 1:22.0

			12-0-0 12-0-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.17 BC 0.12 WB 0.09 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) 0.00 G n/r 120 Vert(CT) 0.01 G n/r 120 Horz(CT) 0.00 F n/a n/a	PLATES GRIP MT20 244/190 Weight: 46 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING-

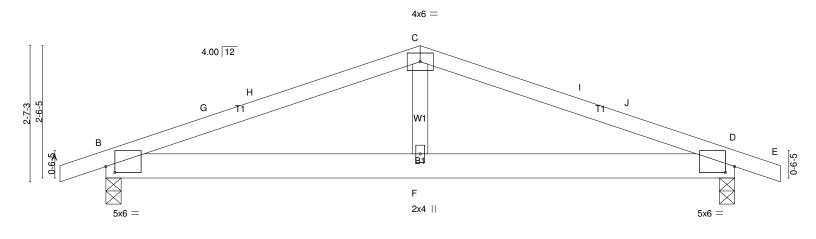
TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 12-0-0.

(lb) - Max Horz B=-44(LC 13)

Max Uplift All uplift 100 lb or less at joint(s) B, F except J=-105(LC 12), H=-103(LC 13) Max Grav All reactions 250 lb or less at joint(s) B, F, I except J=326(LC 1), H=326(LC 1)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

C-J=-231/315, E-H=-231/314 **WEBS**

- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 6-0-0, Corner(3R) 6-0-0 to 9-0-0, Exterior(2N) 9-0-0 to 12-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, F except (jt=lb) J=105, H=103.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	H&H/Cardinal/LOt149/AndersonCreekCrossi	
MASTER	CP02	Common	4	1		
					Job Reference (optional)	
		Run	8.240 s Mar	9 2020 Pri	nt: 8.240 s Mar 9 2020 MiTek Industries, Inc. Tue Apr 7 09:45	:15 2020 Page 1
			ID:qes	ddlmioflJc	jg3nOl3r8zrBHb-dYaZXw7ctd4fDz7MhFL8C8oLVdUjic	lisyd7mGLzT9cl
, -0-10-8 ₁		6-0-0			12-0-0	12-10-8
0-10-8		6-0-0			6-0-0	0-10-8

Scale = 1:22.0

	6-0-0		6-0-0	<u> </u>
Plate Offsets (X,Y)	[B:0-2-1,0-1-6], [D:0-2-1,0-1-6]			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.40	Vert(LL) 0.04 B-F >999 240	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.26	Vert(CT) -0.04 B-F >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.11	Horz(CT) 0.01 D n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S		Weight: 52 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3 **WEBS**

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 5-11-5 oc purlins. Rigid ceiling directly applied or 9-2-14 oc bracing.

12-0-0

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) B=530/0-3-8 (min. 0-1-8), D=530/0-3-8 (min. 0-1-8)

Max Horz B=44(LC 16)

Max UpliftB=-270(LC 8), D=-270(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

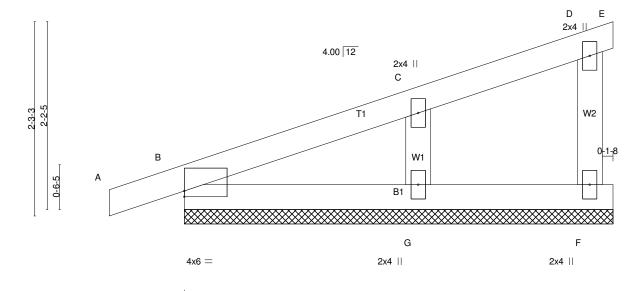
TOP CHORD B-G=-824/701, G-H=-765/704, C-H=-761/717, C-I=-761/716, I-J=-765/704, D-J=-824/700

6-0-0

BOT CHORD B-F=-589/714, D-F=-589/714

WEBS C-F=-203/290

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 6-0-0, Exterior(2R) 6-0-0 to 9-0-0, Interior(1) 9-0-0 to 12-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) B=270, D=270.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

MASTER M01 GABLE 1 1 1	Job	Truss	Truss Type	Qty	Ply	H&H/Cardinal/LOt149/AndersonCreekCrossi
Job Reference (optional)	MASTER	M01	GABLE	1	1	Job Reference (optional)

Run: 8.240 s Mar 9.2020 Print: 8.240 s Mar 9.2020 MiTek Industries, Inc. Tue Apr 7.09:45:16.2020 Page 1 ID:qesddImioflJcjg3nOl3r8zrBHb-5l8xlG8EewCWq7iZFzsNIMKbm1u7R470BGsJonzT9cH

0-10-8 0-10-8 5-0-0

Scale = 1:13.4

Plate Offsets	(X.Y)	[B:0-0-0.0-0-13]

That one of the first of the fi						
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP		
TCLL 20.0	Plate Grip DOL 1.15	TC 0.11	Vert(LL) -0.00 A n/r 120	MT20 244/190		
TCDL 10.0	Lumber DOL 1.15	BC 0.06	Vert(CT) 0.00 A n/r 120			
BCLL 0.0 *	Rep Stress Incr YES	WB 0.10	Horz(CT) -0.00 E n/a n/a			
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P		Weight: 20 lb FT = 20%		

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING-

TOP CHORD

Structural wood sheathing directly applied or 5-0-0 oc purlins, except

end verticals.

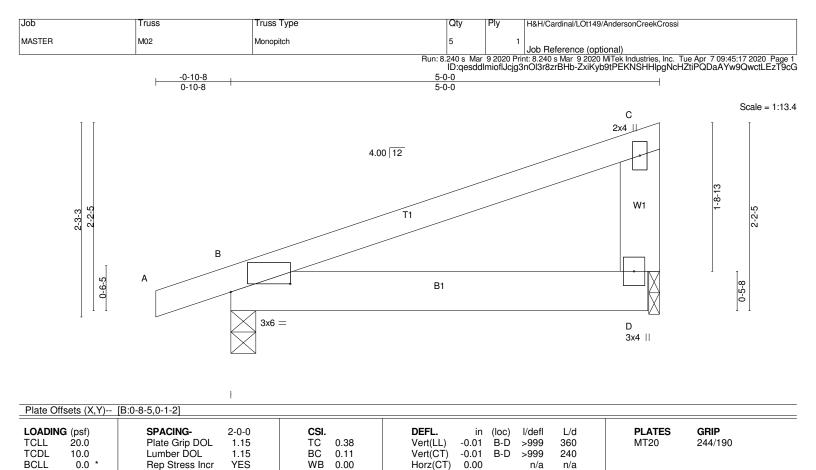
BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 5-0-0.

(lb) - Max Horz B=92(LC 9)


Max Uplift All uplift 100 lb or less at joint(s) E, F, B, G Max Grav All reactions 250 lb or less at joint(s) E, F, B, G

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS C-G=-166/335

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 5-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) E, F, B, G.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x6 SP No.2

10.0

Wind(LL)

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 5-0-0 oc purlins, except

Weight: 24 lb

FT = 20%

end verticals.

>999

B-D

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

0.01

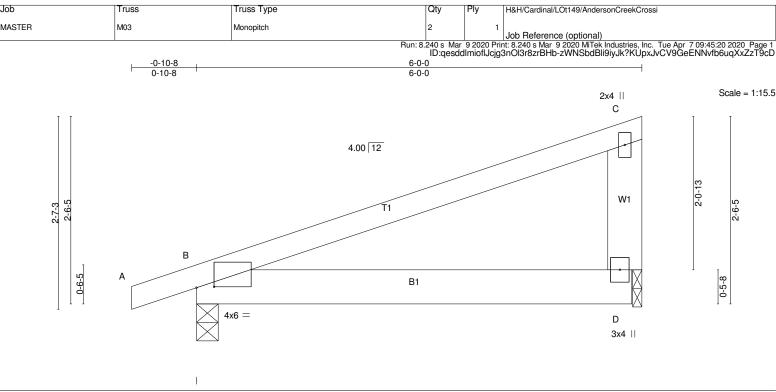
MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) B=253/0-3-8 (min. 0-1-8), D=178/0-1-8 (min. 0-1-8)

Code IRC2018/TPI2014

Max Horz B=86(LC 8)

Max UpliftB=-135(LC 8), D=-105(LC 8)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES

1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-9-4 zone; cantilever left exposed; end vertical left exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-P

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) D considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) D.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) B=135, D=105.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Plate Offsets (X,Y) [B:0-2-13,0-0-2]							
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP			
TCLL 20.0	Plate Grip DOL 1.15	TC 0.59	Vert(LL) -0.02 B-D >999 360	MT20 244/190			
TCDL 10.0	Lumber DOL 1.15	BC 0.17	Vert(CT) -0.03 B-D >999 240				
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 n/a n/a				
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P	Wind(LL) 0.02 B-D >999 240	Weight: 29 lb FT = 20%			

Job

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 2x6 SP No.2 **WEBS**

BRACING-

TOP CHORD

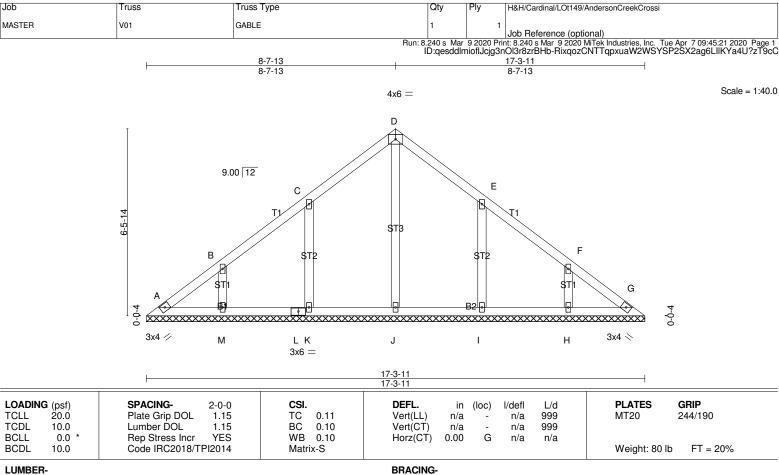
Structural wood sheathing directly applied or 6-0-0 oc purlins, except

end verticals

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.


REACTIONS. (lb/size) B=292/0-3-8 (min. 0-1-8), D=219/0-1-8 (min. 0-1-8)

Max Horz B=101(LC 8)

Max UpliftB=-153(LC 8), D=-129(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-9-4 zone; cantilever left exposed; end vertical left exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) D considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) D.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) B=153, D=129.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 17-3-11.

(lb) - Max Horz A=-175(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) A, G except K=-149(LC 12), M=-129(LC 12), I=-149(LC 13),

Truss

Max Grav All reactions 250 lb or less at joint(s) A, G except J=299(LC 22), K=352(LC 19), M=293(LC 19), I=352(LC 20), H=293(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-4 to 3-5-4, Interior(1) 3-5-4 to 8-7-13, Exterior(2R) 8-7-13 to 11-7-13, Interior(1) 11-7-13 to 16-10-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, G except (jt=lb) K=149, M=129, I=149, H=129
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

MASTER	V02	lley	1	Job Reference (opti	ional)
			Run: 8.240 s Mar	9 2020 Print: 8.240 s Mar 9 2020	ional) MiTek Industries, Inc. Tue Apr 7 09:45:22 2020 Page 1 JD?EmygZ29ibDzn_dacFRwcrnsuZCJd0RzT9cB
		7-1-3	ID:qesddir	miofiJcjg3nOl3r8zrBHb-vvVD? 14-2-5	JD?EmygZ29ibDzn_dacFRwcrnsuZCJd0Rz19cB
		7-1-3		7-1-3	
			4x6 =		Scale = 1:33.1
			С		
	Ţ		\triangle		
	9.0	0 12			
		' //			
	<u>≠</u> 2x4	II +1//		J J1 24 II	
	မှ ဗု 2x4	" '//		2,74	
	<u>, </u>	В //	\$T2	D	
				M	
		\$T1		\$T1	
		11		11	E
	Α //				
	4				4
	\$ \times	***************************************	**********	******	***************************************
	3x4 //	Н	G	F	3x4 ≪
		2x4	2x4	2x4	
		2,4 11	2.4 11	2,4 11	
	0- Q -5		14-2-5		1
	0- <u>0-5</u> 0-0-5		14-2-0		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL . in	(loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.18	Vert(LL) n/a	- n/a 999	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.12	Vert(CT) n/a	- n/a 999	200
BCLL 0.0 *	Rep Stress Incr YES	WB 0.08	Horz(CT) 0.00	E n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S	, ,		Weight: 58 lb FT = 20%

Job

MASTER

Truss

V02

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

H&H/Cardinal/LOt149/AndersonCreekCrossi

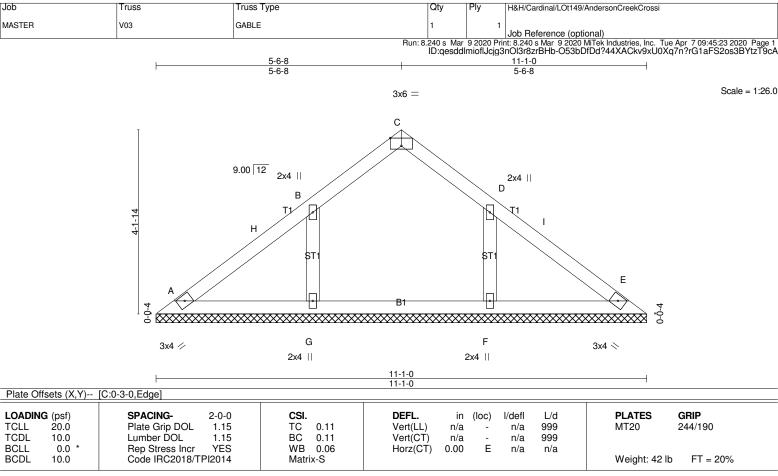
MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 14-1-11.

(lb) - Max Horz A=-142(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) A except H=-188(LC 12), F=-188(LC 13)

Truss Type


Valley

Max Grav All reactions 250 lb or less at joint(s) A, E except G=251(LC 1), H=352(LC 19), F=351(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

B-H=-276/229, D-F=-276/229 **WEBS**

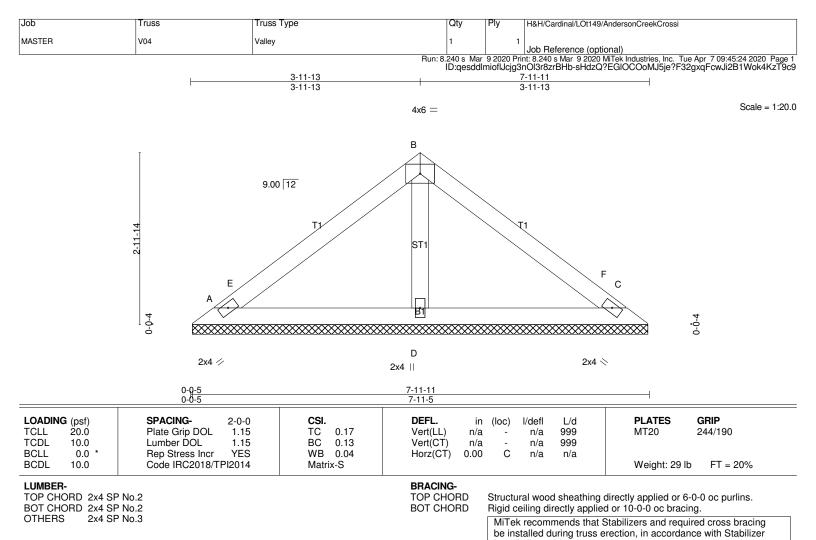
- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-4 to 3-5-4, Interior(1) 3-5-4 to 7-1-3, Exterior(2R) 7-1-3 to 10-1-3, Interior(1) 10-1-3 to 13-9-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A except (it=lb) H=188 F=188
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 **OTHERS** 2x4 SP No.3 **BRACING-**

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 11-1-0.


(lb) - Max Horz A=-109(LC 8)

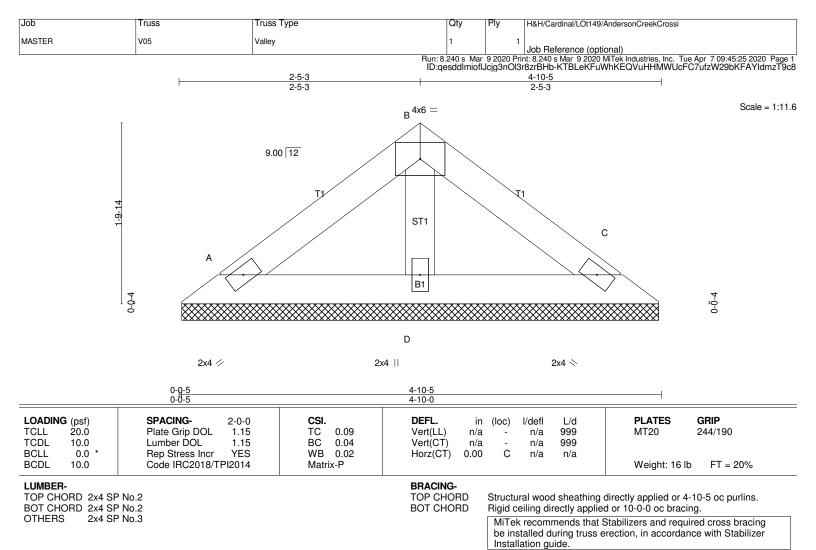
Max Uplift All uplift 100 lb or less at joint(s) except G=-134(LC 12), F=-132(LC 13) Max Grav All reactions 250 lb or less at joint(s) A, E except G=305(LC 19), F=303(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-4 to 3-6-8, Interior(1) 3-6-8 to 5-6-8, Exterior(2R) 5-6-8 to 8-6-8, Interior(1) 8-6-8 to 10-7-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 134 lb uplift at joint G and 132 lb uplift at
- joint F.

 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

| Installation guide. | REACTIONS. (lb/size) A=145/7-11-0 (min. 0-1-8), C=145/7-11-0 (min. 0-1-8), D=278/7-11-0 (min. 0-1-8)

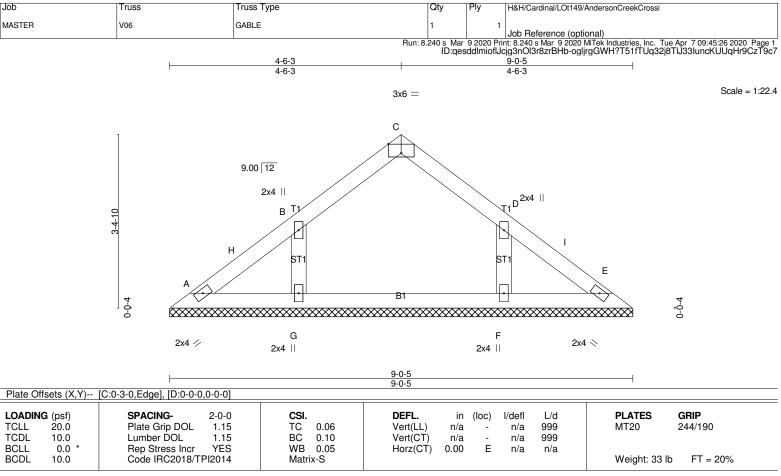

Max Horz A=-76(LC 10)

Max UpliftA=-35(LC 12), C=-45(LC 13), D=-22(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-4 to 3-5-4, Interior(1) 3-5-4 to 3-11-13, Exterior(2R) 3-11-13 to 6-11-13, Interior(1) 6-11-13 to 7-6-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint A, 45 lb uplift at joint C and 22 lb uplift at joint D.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


REACTIONS. (lb/size) A=89/4-9-11 (min. 0-1-8), C=89/4-9-11 (min. 0-1-8), D=141/4-9-11 (min. 0-1-8) Max Horz $A=43(LC\ 9)$

Max UpliftA=-26(LC 12), C=-31(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

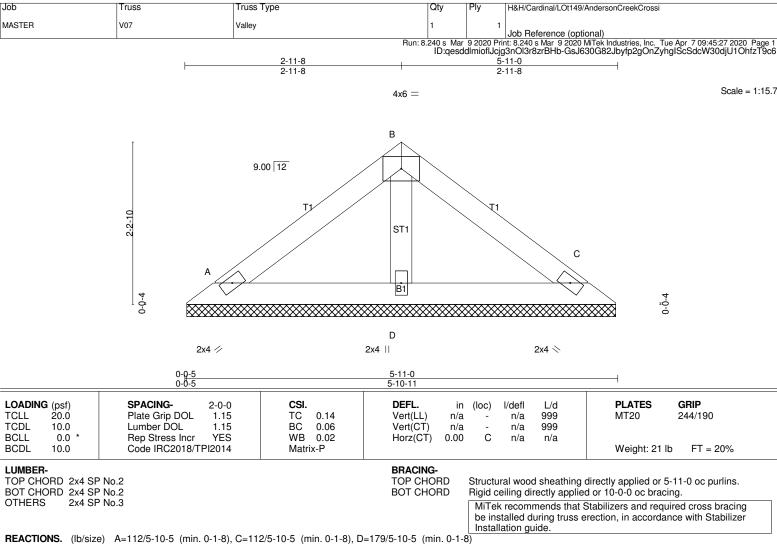
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint A and 31 lb uplift at joint C.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 **OTHERS** 2x4 SP No.3 **BRACING-**

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 9-0-5.

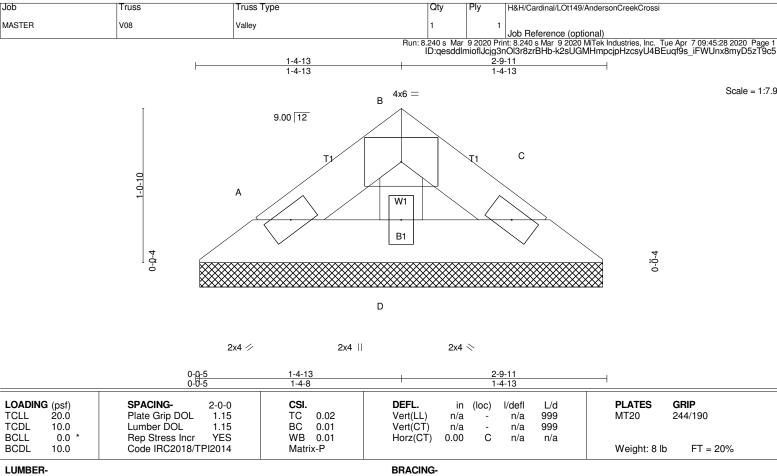

(lb) - Max Horz A=87(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) G, F

Max Grav All reactions 250 lb or less at joint(s) A, E, G, F

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-4 to 3-5-4, Interior(1) 3-5-4 to 4-6-3, Exterior(2R) 4-6-3 to 7-6-3, Interior(1) 7-6-3 to 8-7-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) G, F.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


Max Horz A=-54(LC 10)

Truss

Max UpliftA=-32(LC 12), C=-39(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed: MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WFBS 2x4 SP No.3

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 2-9-11 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) A=43/2-9-0 (min. 0-1-8), C=43/2-9-0 (min. 0-1-8), D=68/2-9-0 (min. 0-1-8) Max Horz A=21(LC 11)

Max UpliftA=-12(LC 12), C=-15(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.