

RE: 812025 - H&H/Jessamine/

Site Information:

Project Customer: h and h Project Name: 812025 120 mph Lot/Block: c Subdivision: ALL Model: Address: City: Fayetteville State: nc

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Wind Speed: 120 mph Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.2 Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-10 Floor Load: N/A psf

Mean Roof Height (feet): 25

Exposure Category: C

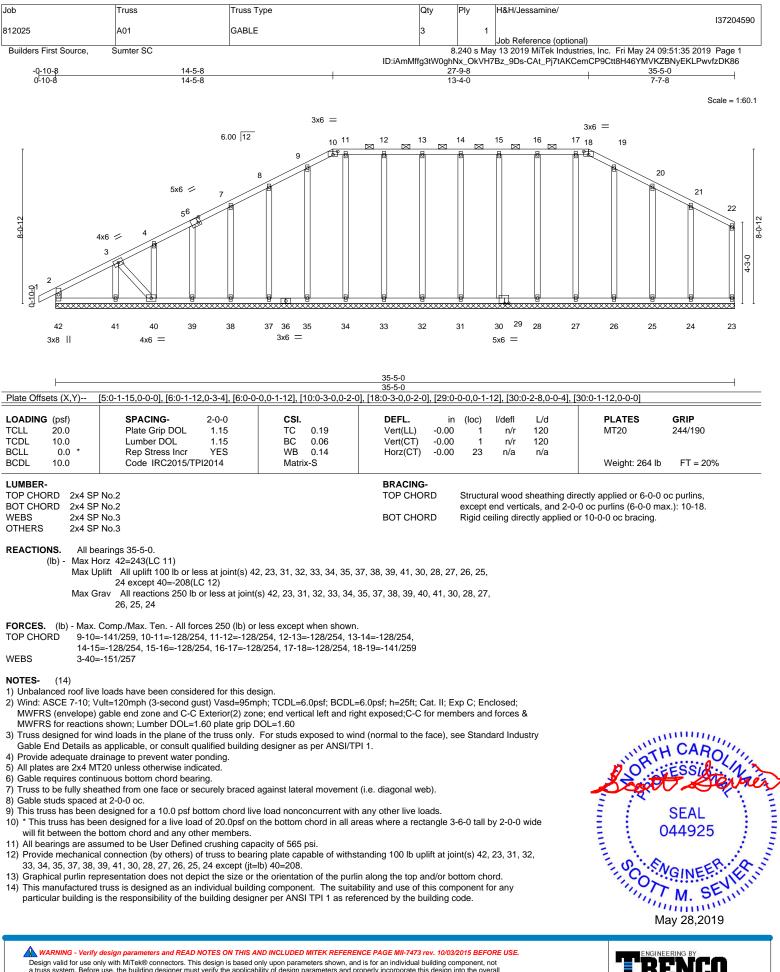
No. 123456789011121341567892122234256728	Seal# 137204590 137204591 137204592 137204593 137204596 137204596 137204596 137204597 137204598 137204599 137204600 137204601 137204602 137204605 137204605 137204605 137204605 137204609 137204609 137204609 137204610 137204611 137204613 137204614 137204614	Truss Name A01 A02 A03 A04 A05 A06 A06 A07 A08 A07 A08 A07 A08 A07 A08 A07 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A22 A23 A24 A25 A27	5/28/19 5/28/19	N 356789012344567890123456789012	Seal# 137204624 137204625 137204626 137204629 137204630 137204630 137204631 137204633 137204633 137204633 137204635 137204635 137204638 137204638 137204639 137204640 137204642 137204644 137204644 137204645 137204645 137204645 137204645 137204645 137204645 137204645 137204645 137204645 13720465 1	Truss Name B06 B10 C01 C02 C03 C04 C05 C11 C12 C13 C14 C15 C21 C22 C23 C24 C25 CP01 C22 CP03 D01 D11 D21 E01 E02 G02	5/28/19 5/28/19
24	137204613	A23	5/28/19	58	137204647	D21	5/28/19
25	137204614	A24	5/28/19	59	137204648	E01	5/28/19
26	137204615	A25	5/28/19	60	137204649	E02	5/28/19

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters

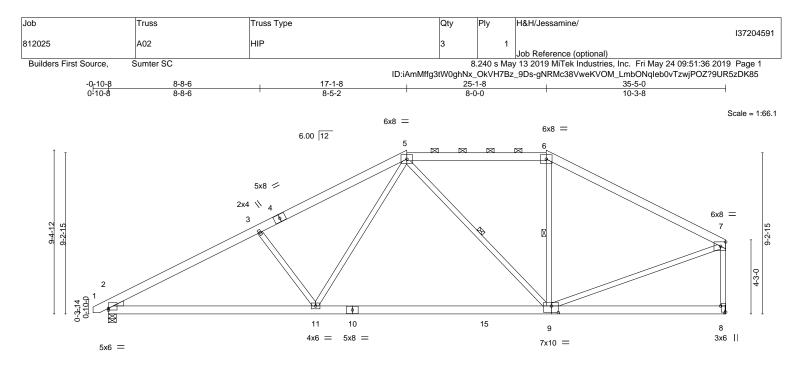
Iruss Design Engineer's Name: Sevier, Scott My license renewal date for the state of North Carolina is December 31, 2019 **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building the the building designer should verify applicability of the designs for any particular building the design the incorporate these designs in the preparation of these designs in the designs for any particular building the design the state designs for any particular building the design the building designer should verify applicability of the designs for any particular building the design the design the design of the design the design for any particular building the design of the design the design the design for any particular building the design of the design for any particular building the design of the design for any particular building the design of the design for any particular building the design for any particular bui incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

May 28,2019


Trenco 818 Soundside Rd Edenton, NC 27932

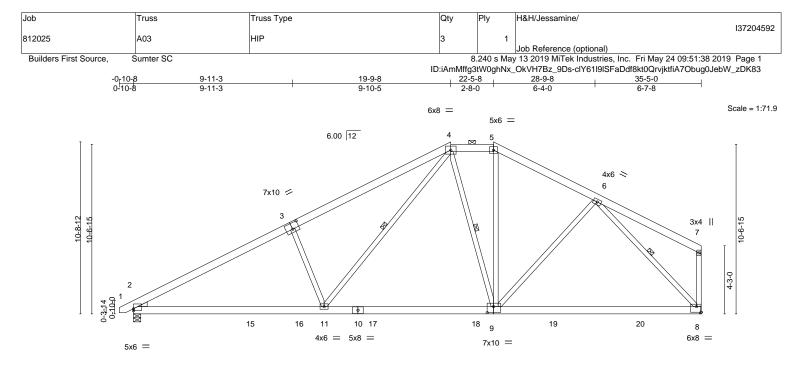
RE: 812025 - H&H/Jessamine/


Trenco 818 Soundside Rd Edenton, NC 27932

No.	Seal#	Job ID#	Truss Name	e Date
No. 6701723456778901234567889012345678900110045667890111111111111111111111111111111111111	Seal# I37204658 I37204660 I37204661 I37204662 I37204663 I37204663 I37204665 I37204665 I37204666 I37204667 I37204667 I37204670 I37204670 I37204673 I37204673 I37204673 I37204675 I37204678 I37204678 I37204678 I37204680 I37204681 I37204683 I37204683 I37204683 I37204684 I37204685 I37204685 I37204688 I37204688 I37204688 I37204688 I37204689 I37204689 I37204691 I37204691 I37204695 I37204695 I37204695 I37204695 I37204696 I37204697 I37204697 I37204697 I37204697 I37204695 I37204696 I37204697 I372	Job ID# 812025	Truss Name J06 J07 J08 J09 J10 J11 J12 J13 J14 J15 J201 J202 J203 J204 J205 J206 J207 J208 J207 J208 J207 J208 J207 J208 J207 J208 J207 J208 J207 J208 J207 J212 J212 J212 J212 J212 J214 J215 J216 J217 J220 J221 J222 J223 J224 J225 J226 J227 J228 J223 J223 J231 J233 J234 J235 J236 J237	 Date 5/28/19

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

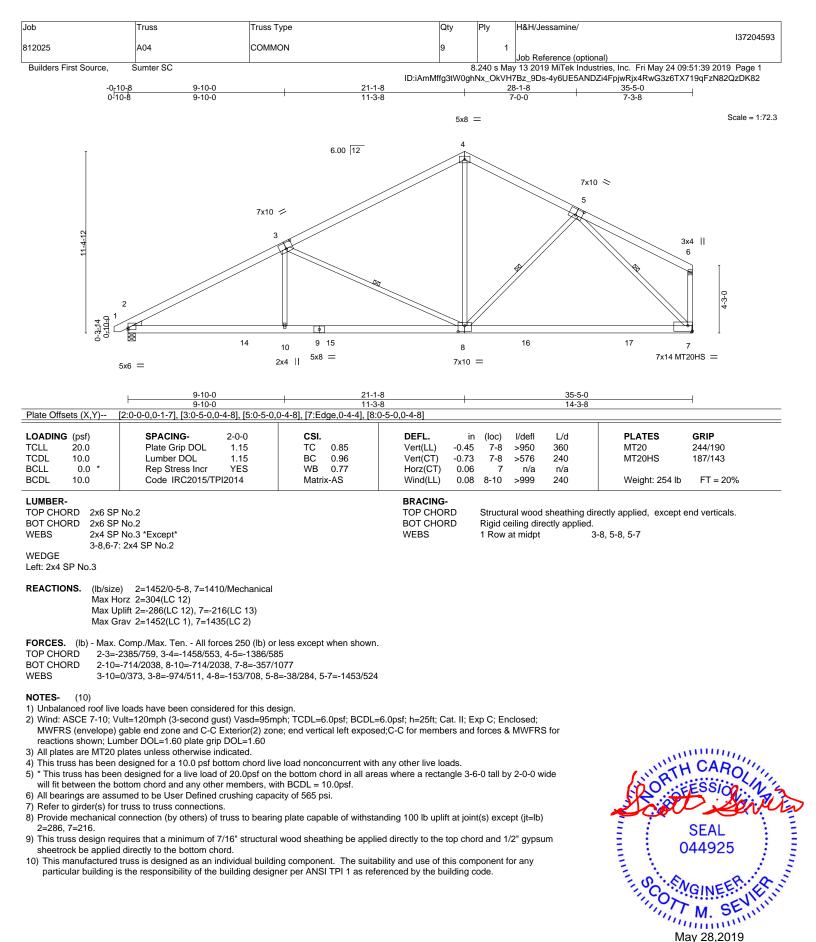
	11 10 11		05.4.0			05.5.0		
	<u>11-10-11</u> 11-10-11		<u>25-1-8</u> 13-2-13			<u>35-5-0</u> 10-3-8		
Plate Offsets (X,Y) [2:0-0	-0,0-1-3], [8:Edge,0-3-8], [9:0-4-12	2,0-4-8]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.64 BC 0.88 WB 0.58 Matrix-AS	Vert(LL) -0.4 Vert(CT) -0.62 Horz(CT) 0.05	2 9-11 >686	L/d 360 240 n/a 240	PLATES MT20 Weight: 250 lb	GRIP 244/190 FT = 20%	
Max Horz 2:	lo.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural woo 2-0-0 oc purlin Rigid ceiling di 1 Row at midp	s (6-0-0 max.): rectly applied.	ectly applied, except 6 5-6. -9, 6-9	end verticals, and	
FORCES. (lb) - Max. Comp TOP CHORD 2-3=-2388/ BOT CHORD 2-11=-720/	./Max. Ten All forces 250 (lb) or 755, 3-5=-2107/736, 5-6=-1218/54 2032, 9-11=-396/1413 392, 5-11=-186/809, 5-9=-405/193	1, 6-7=-1482/481, 7-8=-1	330/474					
 Wind: ASCE 7-10; Vult=12 MWFRS (envelope) gable reactions shown; Lumber I Provide adequate drainagg This truss has been design * This truss has been design will fit between the bottom 	ned for a 10.0 psf bottom chord liv gned for a live load of 20.0psf on t chord and any other members, wi to be User Defined crushing capa	ph; TCDL=6.0psf; BCDL= e; end vertical left expose e load nonconcurrent with he bottom chord in all are th BCDL = 10.0psf.	ed;C-C for members and any other live loads.	d forces & MWFF	RS for	NUMPTH NORTH	CARO	


- ural wood sheathing be a gyr 9) sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932

044925

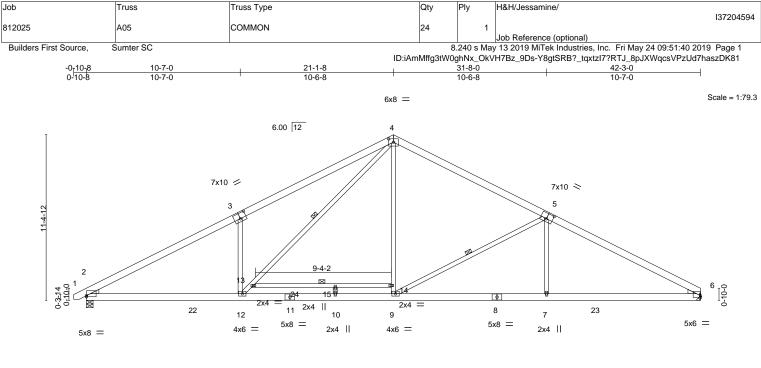
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



	11-10-11		22-5-8			5-5-0	
Plate Offsets (X,Y) [2:0-0-0,0	11-10-11)-1-7], [3:0-5-0,0-4-8], [8:Edge,0	-4-4], [9:0-4-12,0-4-8]	10-6-13	-	12	2-11-8	
TCLL 20.0 Pla TCDL 10.0 Lu BCLL 0.0 * Re	PACING- 2-0-0 ate Grip DOL 1.15 mber DOL 1.15 pp Stress Incr YES ode IRC2015/TPI2014	CSI. TC 0.95 BC 0.78 WB 0.71 Matrix-AS	Vert(CT) - Horz(CT)	in (loc) 0.23 8-9 0.44 8-9 0.05 8 0.08 11-14	l/defl L/d >999 360 >972 240 n/a n/a >999 240	PLATES MT20 Weight: 266 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 *Ex 4-11: 2x4 SP No WEDGE Left: 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD WEBS	2-0-0 o Rigid c	ural wood sheathing o oc purlins (6-0-0 max eiling directly applied at midpt		end verticals, and
Max Horz 2=29 Max Uplift 2=-20 Max Grav 2=14 FORCES. (Ib) - Max. Comp./M TOP CHORD 2-3=-2417/758	80(LC 12), 8=-204(LC 13) 61(LC 2), 8=1490(LC 2) ax. Ten All forces 250 (lb) or 5, 3-4=-2242/851, 4-5=-1275/56	4, 5-6=-1495/568					
 WEBS 3-11=-553/458 NOTES- (11) 1) Unbalanced roof live loads ha 2) Wind: ASCE 7-10; Vult=120m MWFRS (envelope) gable env reactions shown; Lumber DOD 3) Provide adequate drainage to 4) This truss has been designed 5) * This truss has been designed 6) All bearings are assumed to b 7) Refer to girder(s) for truss to to 8) Provide mechanical connection 2=280, 8=204. 9) This truss design requires that sheetrock be applied directly 10) Graphical purlin representation 11) This manufactured truss is done 	aph (3-second gust) Vasd=95mg d zone and C-C Exterior(2) zon- L=1.60 plate grip DOL=1.60 prevent water ponding. for a 10.0 psf bottom chord live d for a live load of 20.0psf on th ord and any other members, with the User Defined crushing capaci- russ connections. on (by others) of truss to bearing t a minimum of 7/16" structural to the bottom chord. ion does not depict the size or t	5-9=-148/483, 6-9=0/357 ign. ih; TCDL=6.0psf; BCDL=6 e; end vertical left exposed load nonconcurrent with the bottom chord in all area h BCDL = 10.0psf. ity of 565 psi. g plate capable of withstar wood sheathing be applie ne orientation of the purlin g component. The suitab	6.0psf; h=25ft; Cat. d;C-C for members any other live loads as where a rectangl nding 100 lb uplift a d directly to the top along the top and/ ility and use of this	joint(s) exce chord and 1 pr bottom ch	& MWFRS for y 2-0-0 wide ept (jt=lb) /2" gypsum iord.	Solution Solution	SEAL 044925

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

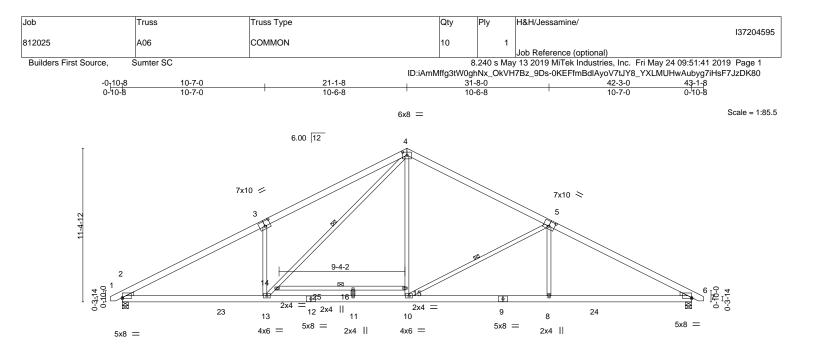
A MITek A 818 Soundside Road Edenton, NC 27932


May 28,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TRENCISERING BY A MITCH Atfiliate 818 Soundside Road

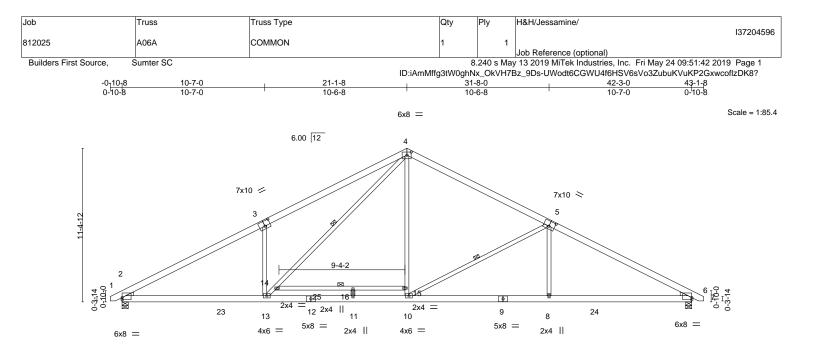
Edenton, NC 27932


<u>10-7-0</u> <u>17-1-8</u> <u>21-1-8</u> <u>31-8-0</u> 10-7-0 <u>6-6-8</u> <u>4-0-0</u> <u>10-6-8</u>	42-3-0
10-7-0 6-6-8 4-0-0 10-6-8 Plate Offsets (X,Y) [2:0-0-0,0-0-15], [3:0-5-0,0-4-8], [4:0-4-0,0-2-12], [5:0-5-0,0-4-8], [6:Edge,0-1-7] 10-6-8	10-7-0
LOADING (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) TCLL 20.0 Plate Grip DOL 1.15 TC 0.54 Vert(LL) -0.26 10-12	I/defl L/d PLATES GRIP >999 360 MT20 244/190
TCDL 10.0 Lumber DOL 1.15 BC 0.84 Vert(CT) -0.43 10-12	
BCLL 0.0 * Rep Stress Incr NO WB 0.71 Horz(CT) 0.10 6	
BCDL 10.0 Code IRC2015/TPI2014 Matrix-AS Wind(LL) 0.11 10-12	>999 240 Weight: 299 lb FT = 20%
LUMBER- BRACING-	
	ural wood sheathing directly applied.
	ceiling directly applied.
WEBS 2x4 SP No.3 *Except* WEBS 1 Row	v at midpt 5-9, 4-12, 13-14
4-12,13-14: 2x4 SP No.2	
WEDGE	
Left: 2x4 SP No.3, Right: 2x4 SP No.3	
REACTIONS. (lb/size) 2=1731/0-5-8, 6=1690/Mechanical	
Max Horz 2=136(LC 9)	
Max Uplift 2=-79(LC 12), 6=-70(LC 13)	
Max Grav 2=1762(LC 2), 6=1736(LC 2)	
FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown.	
TOP CHORD 2-3=-3052/938.3-4=-3039/1226.4-5=-2137/786.5-6=-3067/91	
BOT CHORD 2-12=-687/2670, 10-12=-299/1846, 9-10=-299/1846, 7-9=-689/2642, 6-7=-691/2637	
WEBS 9-14=-93/856, 4-14=-91/939, 5-9=-992/457, 5-7=0/440, 12-13=-559/1184,	
4-13=-568/1222, 3-12=-653/534	
NOTES- (9)	
1) Unbalanced roof live loads have been considered for this design.	
2) Wind: ASCE 7-10; Vult=120mph (3-second qust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; E	inclosed:
MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for re	
Lumber DOL=1.60 plate grip DOL=1.60	
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.	WH CARO
4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall to will fit between the bet	by 2-0-0 wide
will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Bearings are assumed to be: Joint 2 User Defined crushing capacity of 565 psi.	NO SEESSION A
6) Refer to girder(s) for truss to truss connections.	N.O. A. A.
 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 	a second a second
8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and	1/2" gypsum E SEAL E
sheetrock be applied directly to the bottom chord.	OLAL
9) This manufactured truss is designed as an individual building component. The suitability and use of this component for	iorany <u>=</u> 044925 <u>=</u>
particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.	ション 人口 人名
	Epis ains
LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1 15, Plate Increase=1 15	CONGINEE
LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)	1/2" gypsum or any SEAL 044925
1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15	M. SEVIE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

May 28,2019



	10-7-0 10-7-0	17-1-8 21-1-8 6-6-8 4-0-0	+ <u>31-8-0</u> 10-6-8	42-3-0	
Plate Offsets (X,Y)	[2:0-0-0,0-0-15], [3:0-5-0,0-4-8], [4:0-4-0),0-2-12], [5:0-5-0,0-4-8], [6:Edg	e,0-0-15]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2015/TPI2014	TC 0.54 BC 0.84 WB 0.71	DEFL. in (loc) //defl Vert(LL) -0.26 11-13 >999 Vert(CT) -0.42 11-13 >999 Horz(CT) 0.10 6 n/a Wind(LL) 0.11 11-13 >999	9 360 MT20 9 240 a n/a	
	P No.2 P No.3 *Except* 4-15: 2x4 SP No.2			od sheathing directly applied directly applied. pt 5-10, 4-13, 14	
Max Hu Max Uj Max G FORCES. (Ib) - Max. TOP CHORD 2-3=- BOT CHORD 2-13= WEBS 10-15	 2=1731/0-5-8, 6=1731/0-5-8 orz 2=135(LC 11) plift 2=-79(LC 12), 6=-79(LC 13) irav 2=1759(LC 2), 6=1770(LC 2) Comp./Max. Ten All forces 250 (lb) or 3046/937, 3-4=-3034/1225, 4-5=-2133/7 e-671/2669, 11-13=-284/1846, 10-11=-2 e-93/854, 4-15=-90/937, 5-10=-991/456 e-568/1219, 3-13=-653/534 	785, 5-6=-3063/940 84/1846, 8-10=-673/2638, 6-8=-	675/2633		
 NOTES- (8) 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) reactions shown; Lui 3) This truss has been will fit between the b 5) Bearings are assume 6) Provide mechanical 7) This truss design reoc sheetrock be applied 8) This manufactured tr particular building is LOAD CASE(S) Stand 1) Dead + Roof Live (ba Uniform Loads (plf) 	e loads have been considered for this de (ult=120mph (3-second gust) Vasd=95m and C-C Exterior(2) zone; end vertical le mber DOL=1.60 plate grip DOL=1.60 designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on t vottom chord and any other members, wi ed to be: Joint 2 User Defined crushing - connection (by others) of truss to bearin quires that a minimum of 7/16" structural d directly to the bottom chord. russ is designed as an individual building the responsibility of the building designed	pr); TCDL=6.0psf; BCDL=6.0psf aft and right exposed;C-C for me e load nonconcurrent with any o he bottom chord in all areas whe th BCDL = 10.0psf. capacity of 565 psi. g plate capable of withstanding wood sheathing be applied dire g component. The suitability and or per ANSI TPI 1 as referenced	embers and forces & MWFRS for ther live loads. ere a rectangle 3-6-0 tall by 2-0-0 100 lb uplift at joint(s) 2, 6. ectly to the top chord and 1/2" gyp d use of this component for any) wide	SEAL 044925

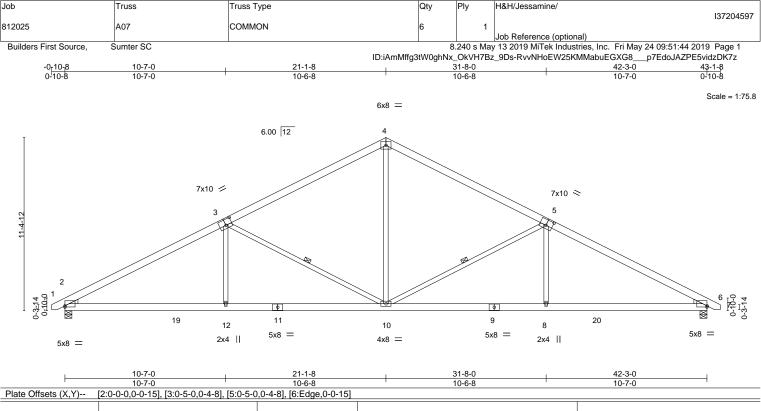
May 28,2019

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	10-7-0	<u>17-1-8</u> <u>21-</u> 6-6-8 <u>4-0</u>		42-3-0	
Plate Offsets (X,Y)	[2:0-0-0,0-1-15], [3:0-5-0,0-4-8], [4:0-3-1			10-1-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-1-8 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.81 BC 0.91 WB 0.76 Matrix-MS	DEFL. in (loc) I/defl Vert(LL) -0.26 11-13 >999 Vert(CT) -0.43 11-13 >999 Horz(CT) 0.11 6 n/a Wind(LL) 0.12 11-13 >999	L/d PLATES 360 MT20 240 n/a 240 Weight: 301 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x6 SP WEBS 2x4 SP 4-13,14 WEDGE Left: 2x4 SP No.3, Righ REACTIONS. (Ib/size Max He Max U	: 2x6 SP No.2 No.2 No.3 *Except* I-15: 2x4 SP No.2			l sheathing directly applied or 3-4-13 ectly applied or 8-7-1 oc bracing. 5-10, 4-13, 14-15	3 oc purlins.
TOP CHORD 2-3=-2 BOT CHORD 2-13= WEBS 10-15	Comp./Max. Ten All forces 250 (lb) or 3227/1001, 3-4=-3223/1313, 4-5=-2250/ 719/2830, 11-13=-293/1941, 10-11=-2: 5=-106/906, 4-15=-103/990, 5-10=-1072/ -624/1315, 3-13=-709/581	829, 5-6=-3249/1003 93/1941, 8-10=-720/2800,	6-8=-722/2795		
 2) Wind: ASCE 7-10; V MWFRS (envelope) reactions shown; Lui 3) This truss has been will fit between the b 5) Bearings are assume 6) Provide mechanical 7) This manufactured tr 	and C-C Exterior(2) zone; end vertical le mber DOL=1.60 plate grip DOL=1.60 designed for a 10.0 psf bottom chord live n designed for a live load of 20.0psf on ti ottom chord and any other members, wi ed to be: Joint 2 User Defined crushing of connection (by others) of truss to bearin russ is designed as an individual building the responsibility of the building designed	ph; TCDL=6.0psf; BCDL= fift and right exposed;C-C e load nonconcurrent with he bottom chord in all area th BCDL = 10.0psf. sapacity of 565 psi. g plate capable of withsta g component. The suitabi	any other live loads. as where a rectangle 3-6-0 tall by 2-0-0 v nding 100 lb uplift at joint(s) 2, 6. lity and use of this component for any	DEat	SEAL 044925

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 1-4=-64, 4-7=-64, 17-20=-21

May 28,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/d	defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.53	Vert(LL) -0.15 8-10 >9	999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.71	Vert(CT) -0.32 8-10 >9	999 240	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.72	Horz(CT) 0.11 6 r	n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0.10 10-12 >9	999 240	Weight: 281 lb FT = 20%

BRACING-

WEBS

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

5-10, 3-10

Rigid ceiling directly applied

1 Row at midpt

LUMBER-

TOP CHORD2x6 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.3WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (Ib/size) 2=1731/0-5-8, 6=1731/0-5-8 Max Horz 2=135(LC 11) Max Uplift 2=-79(LC 12), 6=-79(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-2954/941, 3-4=-2041/784, 4-5=-2041/784, 5-6=-2954/940

BOT CHORD 2-12=-675/2589, 10-12=-673/2594, 8-10=-674/2542, 6-8=-676/2536

WEBS 4-10=-302/1155, 5-10=-1012/459, 5-8=0/432, 3-12=0/432, 3-10=-1011/459

NOTES- (8)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for

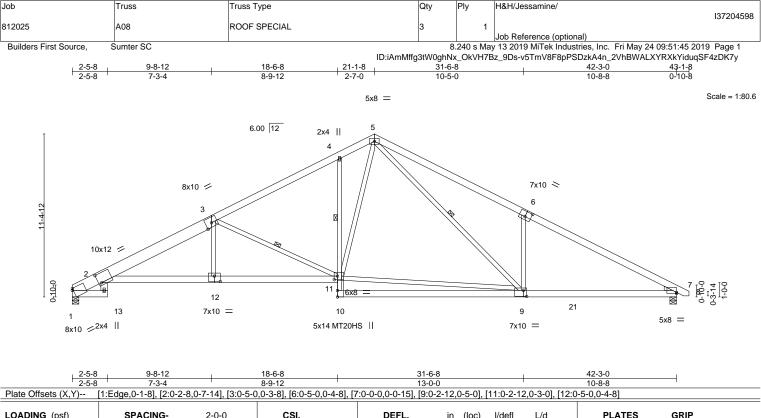
reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

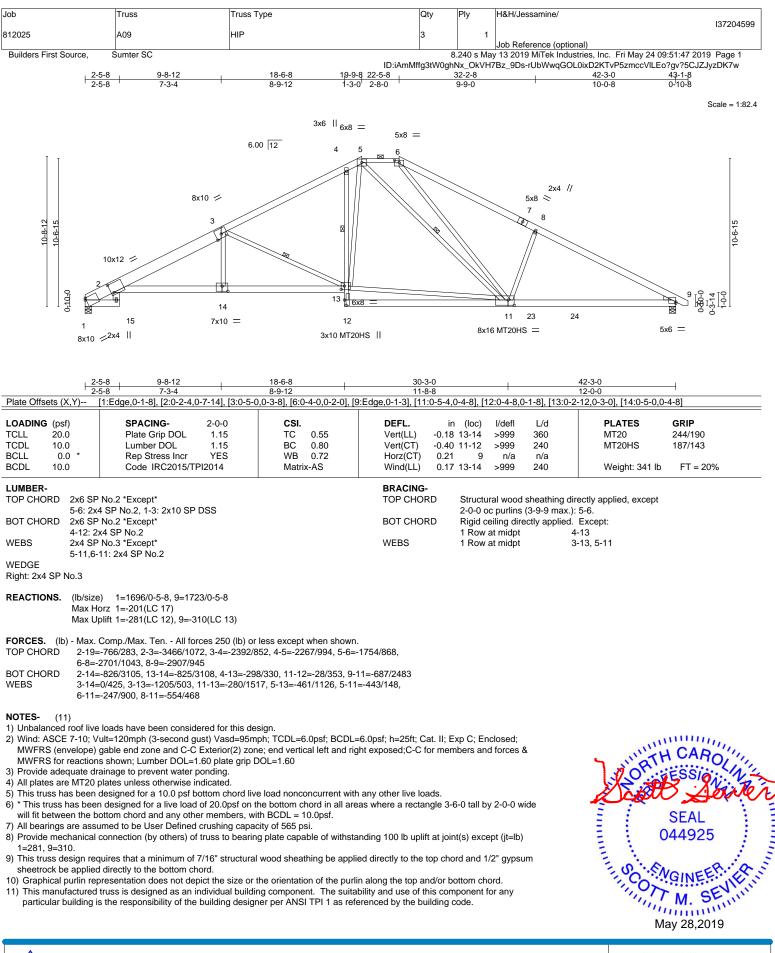
5) Bearings are assumed to be: Joint 2 User Defined crushing capacity of 565 psi.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.


7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

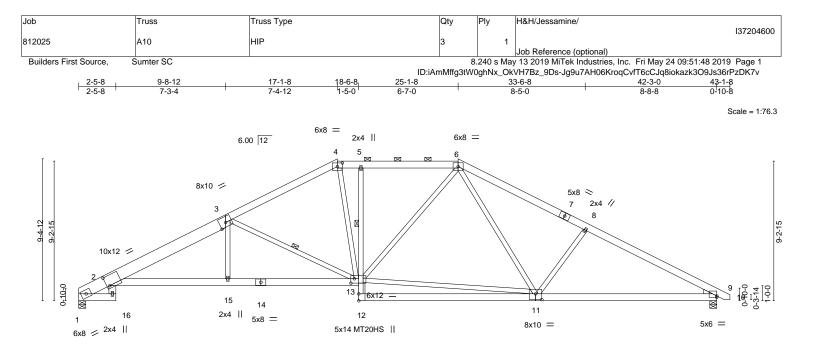
8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	· · ·	L/d PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.48	Vert(LL) -0.24		360 MT20	244/190
CDL 10.0 CLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.80	Vert(CT) -0.55		240 MT20HS	187/143
CLL 0.0 * CDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.84 Matrix-AS	Horz(CT) 0.20 Wind(LL) 0.17		n/a 240 Weight: 329 II	o FT = 20%
JDL 10.0	Code IRC2015/1FI2014	Maurix-AS	Wind(LL) 0.17	2-12 >999	240 Weight: 329 II	J FI=20%
JMBER-			BRACING-			
	No.2 *Except*		TOP CHORD	Structural wood sh	neathing directly applied.	
1-3: 2x	10 SP DSS		BOT CHORD		ly applied. Except:	
OT CHORD 2x6 SP	No.2 *Except*			1 Row at midpt	4-11	
4-10: 2	x4 SP No.2		WEBS	1 Row at midpt	3-11, 5-9	
	No.3 *Except*					
	9: 2x4 SP No.2					
VEDGE						
light: 2x4 SP No.3						
	orz 1=-215(LC 17) blift 1=-291(LC 12), 7=-320(LC 13)					
()	Comp./Max. Ten All forces 250 (lb) or					
	:-766/285, 2-3=-3460/1086, 3-4=-2393/8 2915/925	363, 4-5=-2217/960, 5-6=-2	898/1206,			
	-840/3100. 11-12=-835/3112. 4-11=-29	3/238. 9-10=0/389. 7-9=-66	63/2483			
VEBS 3-12=	0/421, 3-11=-1209/505, 9-11=-300/138	7, 5-11=-328/1091, 5-9=-50	05/1095,			
6-9=-	636/543					
IOTES- (9)						
,	loads have been considered for this de	0				
	ult=120mph (3-second gust) Vasd=95m				K WHAT	
	gable end zone and C-C Exterior(2) zor s shown; Lumber DOL=1.60 plate grip [it exposed;U-U for men	nuers and forces &	III'T	H CARO
	s shown; Lumber DOL=1.60 plate grip L	JOL=1.00			L. CAL	and the second of the

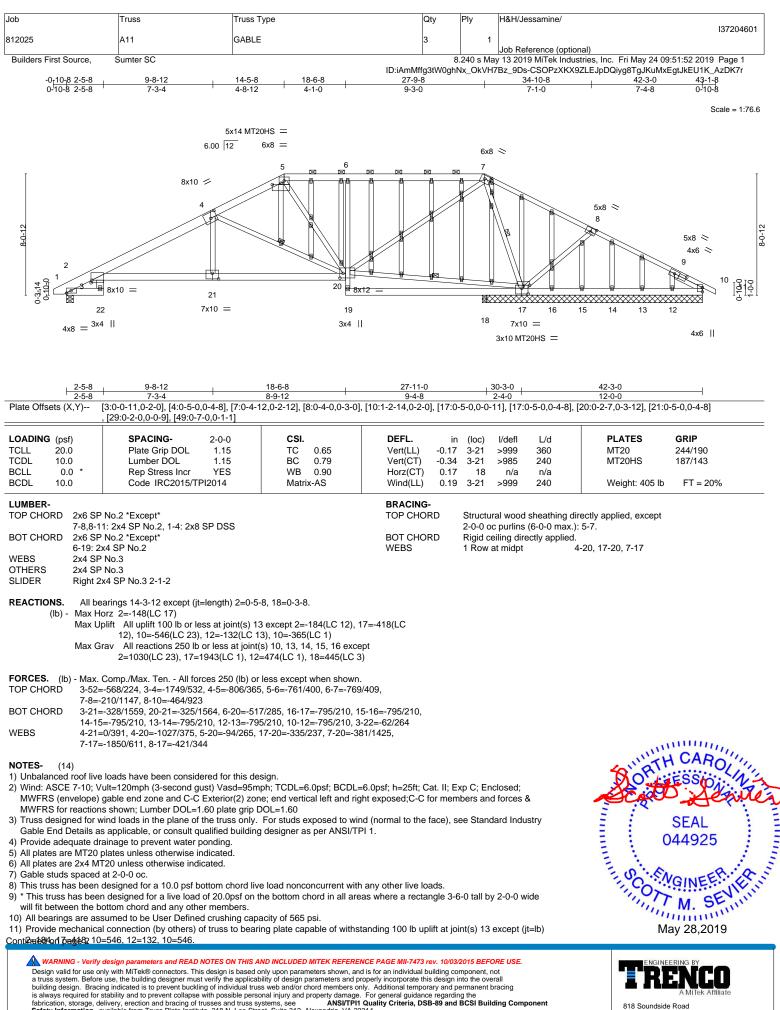
- 3) All plates are MT20 plates unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=291, 7=320.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. Based Content of the stability and truss systems and the systems of the stability and the prevent of the stability and the prevent of the stability and the systems of the stability and the prevent on the system of trusses and truss systems. See **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932


2-5-8	9-8-12	18-6-8	30-3-0	42-3-0	
2-5-8 Plate Offsets (X,Y)	7-3-4 [2:0-2-4,0-7-14], [3:0-5-0,0-3-8], [4:0-4-0	<u>8-9-12</u>	<u>11-8-8</u>	12-0-0	
	[2.0-2-4,0-7-14], [3.0-3-0,0-3-6], [4.0-4-0	J,0-2-15J, [9.0-0-0,0-1-5J, [[11.0-3-0,0-4-0]; [13.0-2-12,0-3-8]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.40 BC 0.81 WB 0.96 Matrix-AS	DEFL. in (loc) I/defl Vert(LL) -0.17 13-15 >999 Vert(CT) -0.39 11-12 >999 Horz(CT) 0.21 9 n/a Wind(LL) 0.16 2-15 >999	L/d PLATES 360 MT20 240 MT20HS n/a 240 Weight: 328 lb	GRIP 244/190 187/143 FT = 20%
1-3: 2x BOT CHORD 2x6 SF	P No.2 *Except* 10 SP DSS P No.2 *Except* x4 SP No.2 P No.3		2-0-0 oc purlins		
Max H	e) 1=1696/0-5-8, 9=1723/0-5-8 lorz 1=-175(LC 17) plift 1=-258(LC 12), 9=-288(LC 13)				
TOP CHORD 2-20: 6-8= BOT CHORD 2-15: WEBS 3-15:	Comp./Max. Ten All forces 250 (lb) or =-766/279, 2-3=-3432/1029, 3-4=-2425/8 -2638/923, 8-9=-2934/945 =-782/3065, 13-15=-779/3074, 5-13=-26 =0/426, 3-13=-1097/436, 4-13=-179/771 =-150/563, 8-11=-434/381	337, 4-5=-2232/848, 5-6=- 8/170, 11-12=-33/359, 9-1	2226/850, 1=-701/2515		
 Wind: ASCE 7-10; MWFRS (envelope) MWFRS for reaction Provide adequate d All plates are MT20 This truss has been * This truss has been * This truss has been will fit between the b All bearings are ass Provide mechanical 1=258, 9=288. This truss design re sheetrock be applie 	gable end zone and C-C Exterior(2) zor is shown; Lumber DOL=1.60 plate grip I rainage to prevent water ponding. plates unless otherwise indicated. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on to ottom chord and any other members. umed to be User Defined crushing capa connection (by others) of truss to bearin	ph; TCDL=6.0psf; BCDL= te; end vertical left and rig DOL=1.60 e load nonconcurrent with the bottom chord in all are city of 565 psi. Ig plate capable of withsta	as where a rectangle 3-6-0 tall by 2-0-0 w nding 100 lb uplift at joint(s) except (jt=lb ad directly to the top chord and 1/2" gyps	wide	SEAL D44925

11) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

7 SEVIE Marian Maria May 28,2019

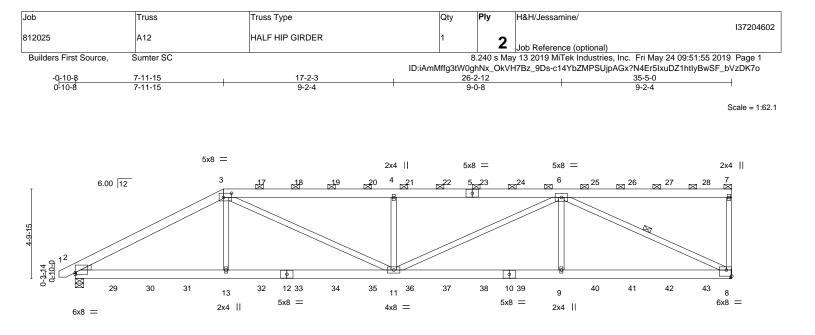
818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

lob	Truss	Truss Type	Qty	Ply	H&H/Jessamine/
					137204601
312025	A11	GABLE	3	1	
					Job Reference (optional)
Builders First Source, S	Sumter SC		8	240 s May	/ 13 2019 MiTek Industries, Inc. Fri May 24 09:51:52 2019 Page 2
		ID:iAmMfl	fg3tW0ghN	x_OkVH7	Bz_9Ds-CSOPzXKX9ZLEJpDQiyg8TgJKuMxEgtJkEU1K_AzDK7r


NOTES-(14)

12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

 	7-11-15	<u>17-2-3</u> 9-2-4		-2-12 -0-8		35-5-0 9-2-4			
Plate Offsets (X,Y)	[2:0-0-0,0-1-3], [3:0-5-4,0-2-12], [8:Edg			-0-0		5-2-4			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.45 BC 0.55 WB 0.65 Matrix-MS	Vert(LL) -0.1 Vert(CT) -0.23 Horz(CT) 0.06	n (loc) l/defl 9-11 >999 9-11 >999 8 9-11 >999 8 8 n/a 8 9-11 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 474 lb	GRIP 244/190 FT = 20%		
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF WEBS 2x4 SF WEDGE Left: 2x4 SP No.3	No.2		BRACING- TOP CHORD BOT CHORD WEBS	except end ve	ticals, and 2-0-0 rectly applied or	ctly applied or 6-0-0 oc purlins (6-0-0 ma 10-0-0 oc bracing.			
Max H	 8=2114/Mechanical, 2=2185/0-5-8 orz 2=133(LC 23) plift 8=-588(LC 5), 2=-466(LC 8) 								
TOP CHORD 2-3=- BOT CHORD 2-13= WEBS 3-13=	BOT CHORD 2-13=-819/3124, 11-13=-816/3136, 9-11=-963/3460, 8-9=-963/3460								
 Top chords connects Bottom chords conn Webs connected as 2) All loads are conside ply connections have 3) Wind: ASCE 7-10; V MWFRS (envelope); 4) Provide adequate dr 5) This truss has been 6) * This truss has been 6) * This truss has been 7) All bearings are assis 8) Refer to girder(s) for 9) Provide mechanical 8=588, 2=466. 	nected together with 10d (0.131"x3") na ad as follows: 2x6 - 2 rows staggered at ected as follows: 2x6 - 2 rows staggere follows: 2x4 - 1 row at 0-9-0 oc. ered equally applied to all plies, except i e been provided to distribute only loads 'ult=120mph (3-second gust) Vasd=95n end vertical left exposed; Lumber DOL ainage to prevent water ponding. designed for a 10.0 psf bottom chord lin n designed for a live load of 20.0psf on ottom chord and any other members. Jumed to be User Defined crushing capa truss to truss connections. connection (by others) of truss to bearin presentation does not depict the size or	0-9-0 oc, 2x4 - 1 row at 0-9- d at 0-9-0 oc. f noted as front (F) or back (I noted as (F) or (B), unless o nph; TCDL=6.0psf; BCDL=6. =1.60 plate grip DOL=1.60 re load nonconcurrent with a the bottom chord in all areas city of 565 psi.	B) face in the LOAD (therwise indicated. 0psf; h=25ft; Cat. II; f ny other live loads. where a rectangle 3- ling 100 lb uplift at joi	Exp C; Enclosed; 6-0 tall by 2-0-0 nt(s) except (jt=lt	wide		SEAL SEAL OHA925 M. SEVILIA		

May 28,2019

818 Soundside Road Edenton, NC 27932

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	Job	Truss	Truss Type	Qty	Ply	H&H/Jessamine/
	812025	A12	HALF HIP GIRDER	1	-	137204602
	012025			ľ	2	Job Reference (optional)
	Builders First Source, S	Sumter SC		8	.240 s Ma	/ 13 2019 MiTek Industries, Inc. Fri May 24 09:51:55 2019 Page 2

NOTES-

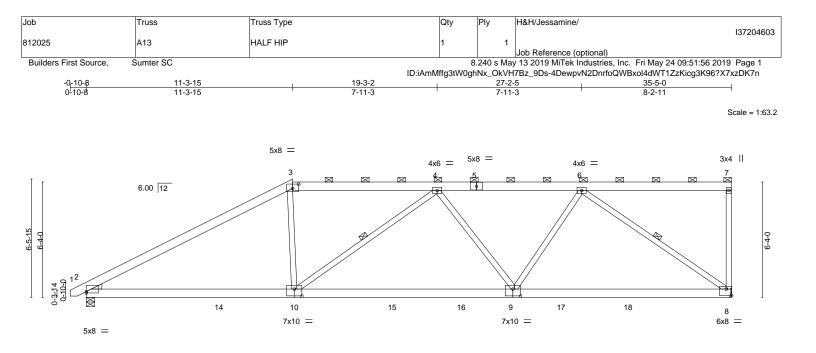
ID:iAmMffg3tW0ghNx_OkVH7Bz_9Ds-c14YbZMPSUjpAGx?N4Er5IxuDZ1htlyBwSF_bVzDK7o

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 106 lb down and 99 lb up at 7-11-15, 111 lb down and 99 lb up at 10-0-11, 111 lb down and 99 lb up at 12-0-11, 111 lb down and 99 lb up at 12-0-11, 111 lb down and 99 lb up at 22-0-11, 111 lb down at 22-0-11, 111 lb down at 22-0-11, 111 lb down at 12-0-11, 111 lb down at 22-0-11, 111 lb down at 22-0-

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)


Vert: 1-3=-60, 3-7=-60, 8-14=-20

Concentrated Loads (lb)

Vert: 3=-53(F) 13=-27(F) 9=-27(F) 6=-53(F) 17=-53(F) 18=-53(F) 19=-53(F) 20=-53(F) 21=-53(F) 22=-53(F) 23=-53(F) 24=-53(F) 25=-53(F) 26=-53(F) 27=-53(F) 28=-53(F) 29=-140(F) 30=-70(F) 31=-106(F) 32=-27(F) 33=-27(F) 35=-27(F) 36=-27(F) 37=-27(F) 38=-27(F) 39=-27(F) 40=-27(F) 41=-27(F) 42=-27(F) 43=-27(F) 35=-27(F) 36=-27(F) 3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

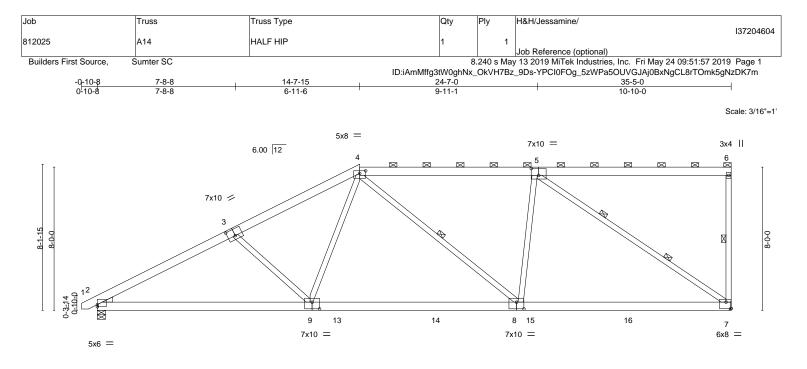
L	11-5-0		23-6-2			35-5-0	
	11-5-0		12-1-2			11-10-14	1
Plate Offsets (X,Y)	[2:0-0-0,0-0-15], [3:0-4-0,0-2-14], [8:Ed	ge,0-4-4], [9:0-5-0,0-4-8], [1	10:0-5-0,0-4-8]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.60 BC 0.75 WB 0.98 Matrix-AS	Vert(LL) -0.15 Vert(CT) -0.32 Horz(CT) 0.07	2 8-9 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 237 lb	GRIP 244/190 FT = 20%
· · · · ·	 P No.2 P No.3 e) 8=1410/Mechanical, 2=1452/0-5-8 	11	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood 2-0-0 oc purlins Rigid ceiling dir 1 Row at midpt	s (5-0-2 max.) rectly applied		end verticals, and
Max U Max G ORCES. (lb) - Max. OP CHORD 2-3=- OT CHORD 2-10:	lorz 2=180(LC 12) Jplift 8=-117(LC 9), 2=-32(LC 9) Grav 8=1415(LC 2), 2=1452(LC 1) Comp./Max. Ten All forces 250 (lb) of -2341/611, 3-4=-1995/650, 4-6=-1987/52 =-650/1986, 9-10=-675/2169, 8-9=-489/ =0/580, 4-10=-423/140, 4-9=-387/266, 6	21 1556	2				
2) Wind: ASCE 7-10; V MWFRS (envelope) Lumber DOL=1.60 p 3) Provide adequate di 4) This truss has been 5) * This truss has bee	e loads have been considered for this de /ult=120mph (3-second gust) Vasd=95m and C-C Exterior(2) zone; end vertical I olate grip DOL=1.60 rainage to prevent water ponding. designed for a 10.0 psf bottom chord liv in designed for a live load of 20.0psf on	iph; TCDL=6.0psf; BCDL=6 eft exposed;C-C for member e load nonconcurrent with the bottom chord in all area	ers and forces & MWFI any other live loads.	RS for reactions s	ŗ		CARO

b) This trust has been designed for a live load of 20.0psr on the bottom chord in all areas where a rectangle 3-6-0 fall by 2-0-0 wick will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 8=117.


9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Contraction of the State MULLIUM III SEAL 044925 munn May 28,2019

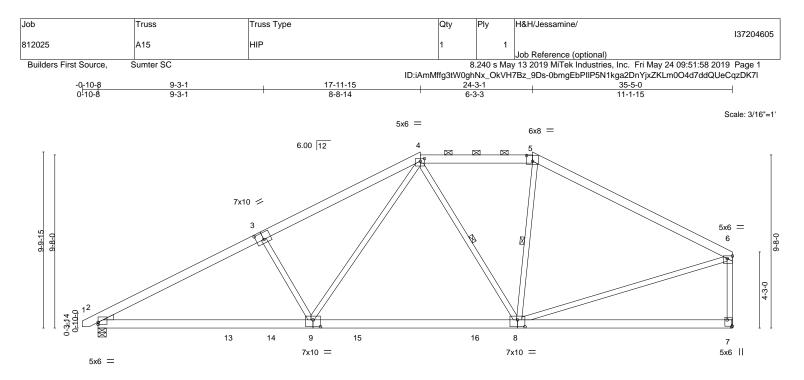
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

⊢—	<u>11-10-11</u> 11-10-11		23-6-2		<u>35-5-0</u> 11-10-14	
Plate Offsets (X,Y)	[2:0-0-0,0-1-7], [3:0-5-0,0-4-8], [4:0-4-0,	0-1-12], [5:0-5-0,0-4-8], [7:E	dge,0-4-4], [8:0-5-0,0	-4-8], [9:0-5-0,0-4-8]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.69 BC 0.73 WB 0.95 Matrix-AS	DEFL. ir Vert(LL) -0.17 Vert(CT) -0.32 Horz(CT) 0.06 Wind(LL) 0.07	7 8-9 >999 36 2 7-8 >999 24 6 7 n/a n	/d PLATES 60 MT20 40 1/a 40 Weight: 250 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x6 S WEBS 2x4 S	P No.2 P No.2 P No.3 *Except* x4 SP No.1		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood she 2-0-0 oc purlins (5-1 Rigid ceiling directly 1 Row at midpt 2 Rows at 1/3 pts	,	end verticals, and
Max Max	ze) 7=1410/Mechanical, 2=1452/0-5-8 Horz 2=231(LC 12) Uplift 7=-114(LC 9), 2=-37(LC 12) Grav 7=1435(LC 2), 2=1452(LC 1)					
TOP CHORD2-3BOT CHORD2-9	 Comp./Max. Ten All forces 250 (lb) or =-2389/688, 3-4=-2097/612, 4-5=-1628/47 =-850/2039, 8-9=-584/1645, 7-8=-485/154 	6, 6-7=-266/146				

WEBS 3-9=-355/325, 4-9=-90/570, 5-8=0/532, 5-7=-1862/588

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown;
- Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.


7) Refer to girder(s) for truss to truss connections.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 7=114.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

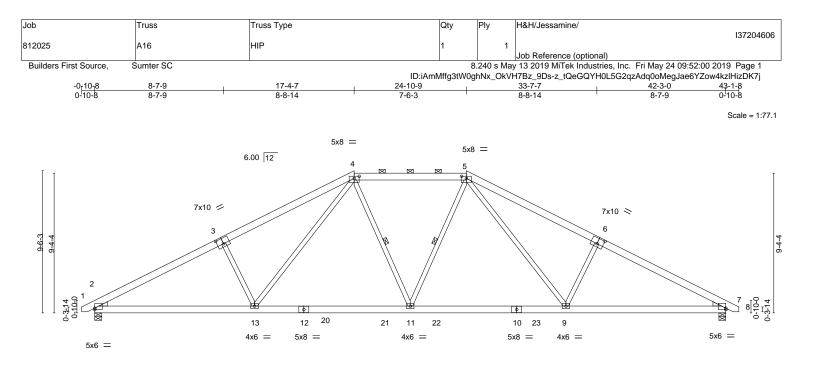
⊢—	<u>11-10-11</u> 11-10-11		<u>23-6-2</u> 11-7-7			<u>35-5-0</u> 11-10-14	
Plate Offsets (X,Y)	[2:0-0-0,0-1-7], [3:0-5-0,0-4-8], [4:0-2-12	,0-1-12], [5:0-4-0,0-3-14],	[6:Edge,0-1-12], [7:Edg	je,0-3-8], [8	:0-5-0,0-4-8], [9:0-5-	-0,0-4-8]	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.78 BC 0.67 WB 0.82 Matrix-6S	DEFL. in Vert(LL) -0.22 Vert(CT) -0.33 Horz(CT) 0.04 Wind(LL) 0.07	8-9 > 8-9 > 7	/defl L/d •999 360 •999 240 n/a n/a •999 240	PLATES MT20 Weight: 253 lb	GRIP 244/190 FT = 20%
BCDL 10.0 Code IRC2015/TPI2014 Matrix-AS LUMBER- TOP CHORD 2x6 SP No.2 SP No.2 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 *Except*			BRACING- TOP CHORD BOT CHORD	Structural 2-0-0 oc p		ectly applied, except e	
6-7: 2: /EDGE	x4 SP No.2		WEBS	1 Row at	midpt 4	-8, 5-8	

Left: 2x4 SP No.3

REACTIONS. (lb/size) 2=1452/0-5-8, 7=1410/Mechanical Max Horz 2=178(LC 12)

- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 2-3=-2366/757, 3-4=-2143/777, 4-5=-1260/564, 5-6=-1529/518, 6-7=-1301/495
- BOT CHORD 2-9=-714/2025, 8-9=-362/1358
- WEBS 3-9=-484/415, 4-9=-266/901, 4-8=-329/126, 5-8=-83/280, 6-8=-280/1224

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Max Horz 2=178(LC 12) Max Uplift 2=-65(LC 12), 7=-20(LC 13)

	10-8-6 10-8-6	<u>21-1-8</u> 10-5-2		31-6-10 10-5-2		<u>42-3-0</u> 10-8-6	
Plate Offsets (X,Y)	[2:0-0-0,0-1-3], [3:0-5-0,0-4-8], [4:0-	-4-0,0-1-12], [5:0-4-0,0-1-12], [6:0-5-0),0-4-8], [7:0-0-0,0	0-1-3]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-1-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2015/TPI2014	TC 0.75 N BC 0.91 N WB 0.68 H	DEFL. in Vert(LL) -0.22 Vert(CT) -0.39 Horz(CT) 0.11 Wind(LL) 0.11	9-11 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 288 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3, Right: 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD	except 2-0-0 oc purlins	(4-8-1 max.) ectly applied	rectly applied or 3-3-14 : 4-5. or 8-6-0 oc bracing. I-11, 5-11	oc purlins,
REACTIONS. (lb/size		·		i now at most	_	F 11, 0 11	

REACTIONS. (lb/size) 2=1803/0-5-8, 7=1803/0-5-8 Max Horz 2=-115(LC 10) Max Uplift 2=-63(LC 12), 7=-63(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-3094/990, 3-4=-2900/1047, 4-5=-2188/827, 5-6=-2900/1047, 6-7=-3094/990

BOT CHORD 2-13=-739/2661, 11-13=-397/2086, 9-11=-397/2086, 7-9=-740/2661

- WEBS 3-13=-462/409, 4-13=-282/755, 4-11=-44/392, 5-11=-44/392, 5-9=-282/755,
 - 6-9=-462/409

NOTES-

1) Unbalanced roof live loads have been considered for this design.

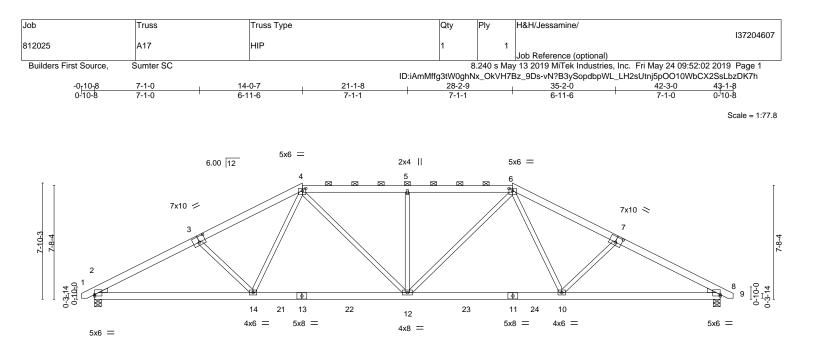
2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MITek Affiliate 818 Soundside Road Edenton, NC 27932

10-8 10-8 Plate Offsets (X,Y) [2:0-0-0,0-1-3]	B-6	<u>21-1-8</u> 10-5-2 ,0-1-12], [6:0-2-12,0-1-12],	, [7:0-5-0,0-4-8],	<u>31-6-10</u> 10-5-2 [8:0-0-0,0-1-3]			42-3-0 10-8-6	
TCDL 10.0 Lumber BCLL 0.0 * Rep Str	rip DOL 1.15	CSI. TC 0.43 BC 0.69 WB 0.47 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.20 10-12 -0.37 10-12 0.10 8 0.12 12-14	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 289 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BRACING- TOP CHORD TOP CHORD Structural wood sheathing directly applied, except 2-0-0 oc purlins (4-5-4 max.): 4-6. WEBS 2x4 SP No.3 BOT CHORD Rigid ceiling directly applied. WEDGE Left: 2x4 SP No.3, Right: 2x4 SP No.3 BOT CHORD Rigid ceiling directly applied. REACTIONS. (lb/size) 2=1731/0-5-8, 8=1731/0-5-8 E								
Max Horz 2=-90(LC Max Uplift 2=-41(LC FORCES. (lb) - Max. Comp./Max. T TOP CHORD 2-3=-2987/942, 3-4 7-8=-2987/942 BOT CHORD 2-14=-715/2568, 12	10) 12), 8=-41(LC 13) en All forces 250 (lb) or =-2718/889, 4-5=-2529/89 -14=-476/2188, 10-12=-47 4=-82/503, 4-12=-92/628,	4, 5-6=-2529/894, 6-7=-27						

NOTES-

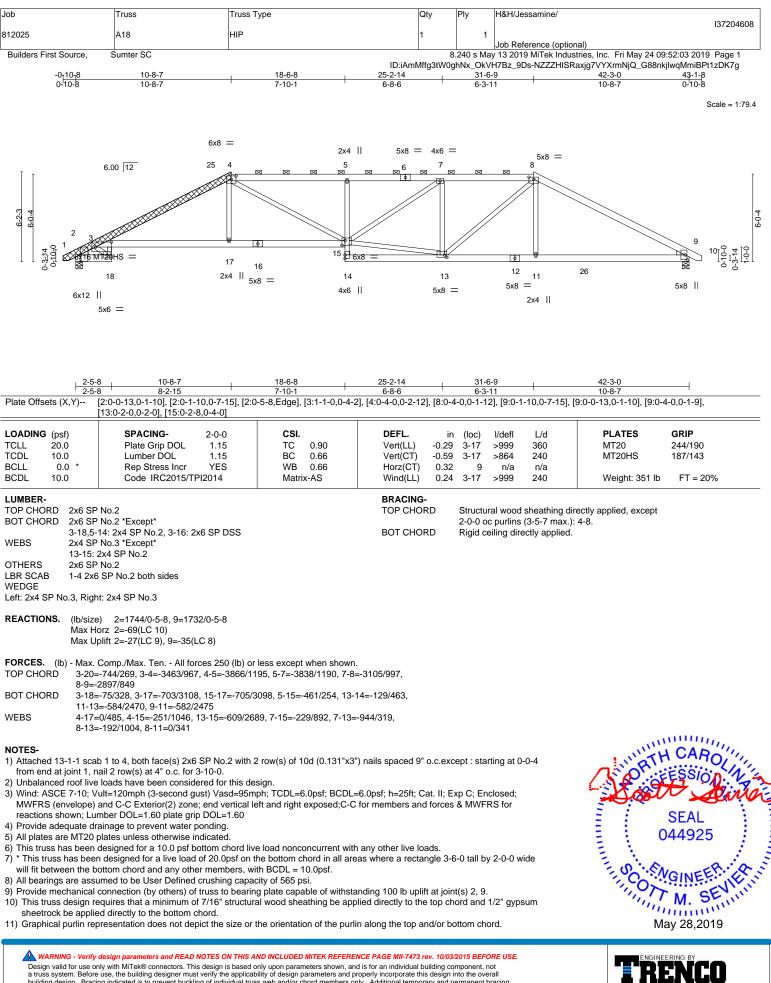
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

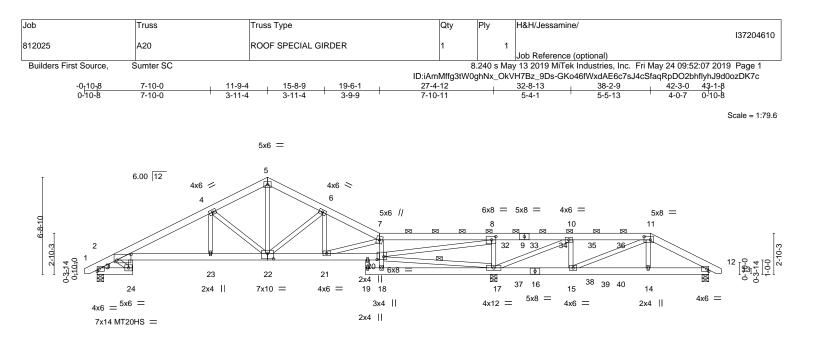

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

basing value to design a trust system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall salways required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932



2-5-2-5-	8 <u>11-9-4</u>	<u>16-2-1 18-6-8 </u> 4-4-13 2-4-7	<u>27-4-12</u> 8-10-4	34-10-9 7-5-13	42-3-0	
Plate Offsets (X,Y)	[3:0-11-8,0-5-6], [6:0-5-4,0-3-8], [15:0-5					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.89 BC 0.71 WB 0.60 Matrix-AS	Vert(CT) -0 Horz(CT) 0	in (loc) l/defl L/d 18 3-20 >999 360 43 3-20 >770 240 19 15 n/a n/a 15 3-20 >999 240	PLATES MT20 Weight: 300 lb	GRIP 244/190 FT = 20%
1-5: 2x BOT CHORD 2x6 SF 7-16: 2 WEBS 2x4 SF 3-21,9 WEDGE Left: 2x4 SP No.3, Rig REACTIONS. (lb/siz Max H	2x4 SP No.2 P No.3 *Except* -17: 2x4 SP No.2 ht: 2x4 SP No.3 e) 2=910/0-5-8, 15=2401/0-5-8, 11=16 forz 2=-77(LC 10)		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathin 2-0-0 oc purlins (6-0-0 m Rigid ceiling directly appl 1 Row at midpt	ax.): 6-10.	
Max G FORCES. (lb) - Max. TOP CHORD 3-23 7-9= BOT CHORD 3-20 11-1. WEBS 4-20	Jplift 2=-34(LC 12), 15=-97(LC 13), 11=- Srav 2=910(LC 1), 15=2401(LC 1), 11=2 . Comp./Max. Ten All forces 250 (lb) or =-346/162, 3-4=-1644/570, 4-5=-1140/40 -830(370, 9-10=-327/1579, 10-11=-62/38 =-398/1507, 18-20=-248/1113, 17-18=-2 3=-309/144 =-653/337, 5-20=-186/719, 6-20=-348/17 5=-1513/437, 10-13=0/291, 15-17=-1417	67(LC 24) less except when shown. 19, 5-6=-1099/404, 6-7=-81 34 45/1108, 7-17=-394/224, 13 7, 6-17=-501/127, 9-15=-13	3-15=-314/142,			
 Wind: ASCE 7-10; MWFRS (envelope) reactions shown; LL Provide adequate d This truss has been * This truss has been * All bearings are ass Provide mechanical This truss design re sheetrock be applie 	e loads have been considered for this de Vult=120mph (3-second gust) Vasd=95m and C-C Exterior(2) zone; end vertical lu umber DOL=1.60 plate grip DOL=1.60 rainage to prevent water ponding. In designed for a 10.0 psf bottom chord liv en designed for a live load of 20.0psf on t bottom chord and any other members. Sumed to be User Defined crushing capaa I connection (by others) of truss to bearin rquires that a minimum of 7/16" structural d directly to the bottom chord. resentation does not depict the size or th	př; TCDL=6.0psf; BCDL=6 eft and right exposed;C-C for e load nonconcurrent with a he bottom chord in all areas city of 565 psi. g plate capable of withstan wood sheathing be applied	or members and for any other live loads, s where a rectangle ding 100 lb uplift at d directly to the top	ces & MWFRS for 3-6-0 tall by 2-0-0 wide joint(s) 2, 15, 11. chord and 1/2" gypsum		H CAROL ESSION SEAL 044925 MGINEER, HELINING

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

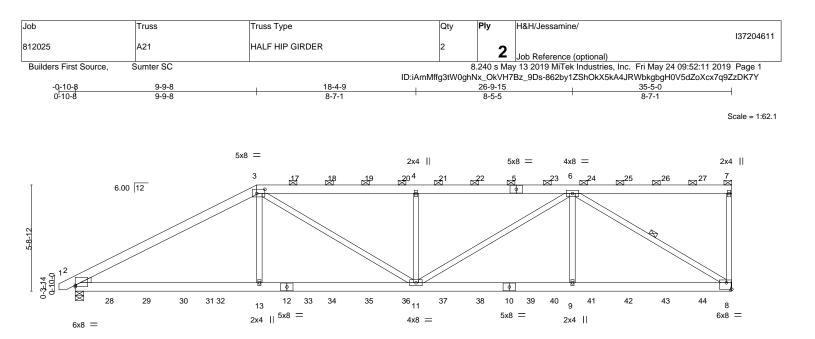
May 28,2019

Plate Offsets (X,Y) [3:0-11-12,0-4-10], [8:0-3	<u>11-9-4</u> <u>15-8-9</u> <u>18-6-8</u> <u>19-6-</u> <u>3-11-4</u> <u>3-11-4</u> <u>2-9-15</u> <u>0-11-</u> <u>3-8.0-2-12], [11:0-5-4,0-2-12], [20:0-5-8,0</u>	9 7-10-11	32-8-13 38- 5-4-1 5-5-	
LOADING (psf) SPACING- TCLL 20.0 Plate Grip DOL TCDL 10.0 Lumber DOL BCLL 0.0 * Rep Stress Incr Code IRC2015/T Code IRC2015/T	2-0-0 CSI. 1.15 TC 0.96 1.15 BC 0.86 NO WB 0.92	DEFL. in (loc) Vert(LL) -0.19 15 Vert(CT) -0.39 15 Horz(CT) 0.18 17 Wind(LL) 0.14 15	9 >999 360 9 >856 240 7 n/a n/a	PLATES GRIP MT20 244/190 MT20HS 187/143 Weight: 303 lb FT = 20%
LUMBER- TOP CHORD 2x6 SP No.2 *Except* 1-5: 2x6 SP DSS BOT CHORD 2x6 SP No.2 *Except* 3-24,7-18,19-25: 2x4 SP No.2, 3 WEBS 2x4 SP No.2 WEDGE Left: 2x4 SP No.3	3-22: 2x6 SP No.1	2-0-0 BOT CHORD Rigid 6-0-0 10-0-	tural wood sheathing direct oc purlins (6-0-0 max.): 7-1 ceiling directly applied or 1 oc bracing: 2-24,17-18,15- 0 oc bracing: 18-20 w at midpt 17-2	0-0-0 oc bracing, Except: 17.
REACTIONS. (Ib/size) 2=931/0-5-8, 17=23 Max Horz 2=77(LC 7) Max Uplift 2=-41(LC 27), 17=-2 Max Grav 2=931(LC 1), 17=23	65(LC 9), 12=-141(LC 4)			
7-8=-1230/185, 8-10=-31/237 BOT CHORD 3-23=-59/1528, 22-23=-59/153 15-17=-1019/388, 14-15=-284 WEBS 4-23=0/344, 4-22=-799/121, 5	4-5=-1111/85, 5-6=-1081/85, 6-7=-1390/ 5, 10-11=-344/1038, 11-12=-374/367 30, 21-22=0/1223, 20-21=-98/1277, 7-20	94, =-834/102, 6/3562,		
 NOTES- 1) Unbalanced roof live loads have been consid 2) Wind: ASCE 7-10; Vult=120mph (3-second g MWFRS (envelope); end vertical left and righ 3) Provide adequate drainage to prevent water r 4) All plates are MT20 plates unless otherwise i 5) This truss has been designed for a 10.0 psf b 6) * This truss has been designed for a live load will fit between the bottom chord and any oth 7) All bearings are assumed to be User Defined 8) Provide mechanical connection (by others) of 17=265, 12=141. 9) Graphical purlin representation does not depi 10) Hanger(s) or other connection device(s) sha 28-1-13, 62 lb down and 44 lb up at 30-1-1 down and 44 lb up at 30-1-13, and 93 lb do down and 18 lb up tr up at 36-1-13, and 28 lb down and 18 lb up responsibility of others. Chrint the bOPage ASE(S) section, loads applie 	ust) Vasd=95mph; TCDL=6.0psf; BCDL= t exposed; Lumber DOL=1.60 plate grip onding. ndicated. ottom chord live load nonconcurrent with of 20.0psf on the bottom chord in all are er members. crushing capacity of 565 psi. truss to bearing plate capable of withsta ct the size or the orientation of the purlin II be provided sufficient to support conce 3, 62 lb down and 44 lb up at 32-1-13, 6 wn and 89 lb up at 38-2-9 on top chord, ind 18 lb up at 32-1-13, 17 lb down and at 38-1-13 on bottom chord. The desig	DOL=1.60 any other live loads. as where a rectangle 3-6-0 tall anding 100 lb uplift at joint(s) 2 d along the top and/or bottom ch entrated load(s) 62 lb down and 2 lb down and 44 lb up at 34-1 and 17 lb down and 18 lb up a 18 lb up at 34-1-13, and 17 lb In/selection of such connection	by 2-0-0 wide except (jt=lb) nord. 144 lb up at -13, and 62 lb t 28-1-13, 17 lb down and 18 lb	SEAL 044925 May 28,2019
WARNING - Verify design parameters and READ Design valid for use only with MiTek® connectors. Th a truss system. Before use, the building designer mus building design. Bracing indicated is to prevent buckl is always required for stability and to prevent collapse fabrication, storage, delivery, erection and bracing of Safety Information available from Truss Plate Institu	s design is based only upon parameters shown, an t verify the applicability of design parameters and p ng of individual truss web and/or chord members or with possible personal injury and property damage. russes and truss systems, see ANS/JTPI	d is for an individual building componen roperly incorporate this design into the of nly. Additional temporary and permaneu . For general guidance regarding the Quality Criteria, DSB-89 and BCSI B	it, not overall nt bracing	ENGINEERING BY REENCED A Mitek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Jessamine/			
					137204610			
812025	A20	ROOF SPECIAL GIRDER	1	1				
					Job Reference (optional)			
Builders First Source, S	Sumter SC		8	240 s May	/ 13 2019 MiTek Industries, Inc. Fri May 24 09:52:08 2019 Page 2			
		ID:IAmMffg3tW0ghNx OkVH7Bz 9Ds-kXMSK?WZOTMyEGRVeJzu72z zoOgQ6 5wzvAZEzDK7b						

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)


Vert: 1-3=-60, 3-5=-60, 5-7=-60, 7-11=-60, 11-13=-60, 24-26=-20, 3-20=-20, 18-19=-20, 18-29=-20

Concentrated Loads (lb)

Vert: 16=1(B) 14=1(B) 37=1(B) 38=1(B) 39=1(B) 40=1(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

 	9-9-8 9-9-8	<u>18-4-9</u> 8-7-1		<u>26-9-15</u> 8-5-5		<u>35-5-0</u> 8-7-1	
Plate Offsets (X,Y)	[2:0-0-0,0-0-15], [3:0-5-4,0-2-12], [8:Ed			6-0-0		0-7-1	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.32 BC 0.50 WB 0.53 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/def 0.13 9-11 >999 -0.16 9-11 >999 0.05 8 n/a	240 240 240	PLATES MT20 Weight: 485 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP WEBS 2x4 SP WEDGE Left: 2x4 SP No.3	No.2	<u> </u>	BRACING- TOP CHOR BOT CHOR WEBS	D Structural wo except end v	erticals, and 2-0-0 directly applied or	ectly applied or 6-0-0 0 oc purlins (6-0-0 ma r 10-0-0 oc bracing. 8	
Max H Max U	e) 8=2067/Mechanical, 2=2159/0-5-8 orz 2=161(LC 23) plift 8=-1029(LC 5), 2=-749(LC 8) rav 8=2146(LC 32), 2=2159(LC 1)						
TOP CHORD 2-3=- BOT CHORD 2-13= WEBS 3-13=	Comp./Max. Ten All forces 250 (lb) o 3513/1443, 3-4=-3753/1776, 4-6=-3753 1315/3023, 11-13=-1316/3038, 9-11= 49/600, 3-11=-598/879, 4-11=-749/56 3256/1563	3/1776, 7-8=-291/203 1343/2796, 8-9=-1343/279					
Top chords connecte Bottom chords conn- Webs connected as 2) All loads are conside ply connections have 3) Wind: ASCE 7-10; V MWFRS (envelope); 4) Provide adequate dr 5) This truss has been 6) * This truss has been will fit between the b 7) All bearings are ass 8) Refer to girder(s) for 9) Provide mechanical 8=1029, 2=749.	nected together with 10d (0.131"x3") na ed as follows: 2x6 - 2 rows staggered at ected as follows: 2x6 - 2 rows staggere follows: 2x4 - 1 row at 0-9-0 oc. ered equally applied to all plies, except is a been provided to distribute only loads ult=120mph (3-second gust) Vasd=95n end vertical left exposed; Lumber DOL ainage to prevent water ponding. designed for a 10.0 psf bottom chord lin in designed for a live load of 20.0psf on ottom chord and any other members, w umed to be User Defined crushing capa truss to truss connections. connection (by others) of truss to bearin presentation does not depict the size or	0-9-0 oc, 2x4 - 1 row at 0-5 d at 0-9-0 oc. f noted as front (F) or back noted as (F) or (B), unless uph; TCDL=6.0psf; BCDL=6 =1.60 plate grip DOL=1.60 re load nonconcurrent with a the bottom chord in all area ith BCDL = 10.0psf. city of 565 psi.	(B) face in the L otherwise indica 5.0psf; h=25ft; Ca any other live loa s where a rectar ding 100 lb uplift	ted. at. II; Exp C; Enclosed ads. ugle 3-6-0 tall by 2-0-0 at joint(s) except (jt=	d;	SCON	SEAL 044925

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

May 28,2019

Job	Truss	Truss Type	Qty	Ply	H&H/Jessamine/
040005	101				137204611
812025	A21	HALF HIP GIRDER	2	2	Job Reference (optional)
Builders First Source,	Sumter SC		3	3.240 s May	y 13 2019 MiTek Industries, Inc. Fri May 24 09:52:11 2019 Page 2

ID:iAmMffg3tW0ghNx_OkVH7Bz_9Ds-862by1ZShOkX5kA4JRWbkgbgH0V5dZoXcx7q9ZzDK7Y

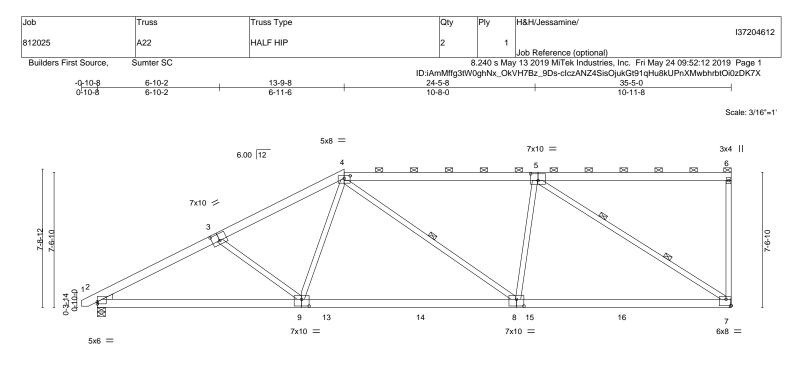
NOTES-

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 114 lb down and 118 lb up at 9-9-8, 118 lb down and 118 lb up at 11-10-4, 118 lb down and 118 lb up at 13-10-4, 118 lb down and 118 lb up at 15-10-4, 118 lb down and 118 lb up at 12-10-4, 118 lb down and 118 lb up at 12-10-4, 118 lb down and 118 lb up at 23-10-4, 118 lb down and 118 lb up at 25-10-4, 118 lb down and 118 lb up at 27-10-4, 118 lb down and 118 lb up at 23-10-4, 118 lb down and 118 lb up at 25-10-4, 118 lb down and 118 lb up at 27-10-4, 118 lb down and 118 lb up at 29-10-4, and 118 lb up at 23-10-4, and 118 lb up at 31-10-4, and 118 lb up at 33-10-4 on top chord, and 145 lb down and 40 lb up at 1-10-4, 54 lb down and 22 lb up at 3-10-4, 82 lb down and 50 lb up at 5-10-4, 117 lb down and 91 lb up at 7-10-4, 47 lb down and 31 lb up at 13-10-4, 47 lb down and 31 lb up at 13-10-4, 47 lb down and 31 lb up at 13-10-4, 47 lb down and 31 lb up at 13-10-4, 47 lb down and 31 lb up at 23-10-4, 50 lb up at 23-10-4, 47 lb down and 31 lb up at 23-10-4, 50 lb up at 23-10-4, 47 lb down and 31 lb up at 23-10-4, 50 lb up at 23-10-4, 47 lb down and 31 lb up at 23-10-4, 50 lb up at 23-10-4, 50 lb up

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)


Vert: 1-3=-60, 3-7=-60, 8-14=-20

Concentrated Loads (lb)

Vert: 3=-48(F) 5=-48(F) 13=-27(F) 17=-48(F) 18=-48(F) 19=-48(F) 20=-48(F) 21=-48(F) 22=-48(F) 23=-48(F) 24=-48(F) 25=-48(F) 25

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

<u> </u>	<u>11-5-0</u> 11-5-0		23-6-2 12-1-2					35-5-0 11-10-14	
Plate Offsets (X,Y)	[2:0-0-0,0-1-7], [3:0-5-0,0-4-8], [4:0-4-0,0)-1-12], [5:0-5-0,0-4-8], [7	:Edge,0-4-4], [8:0	-5-0,0-4	1-8], [9:0	0-5-0,0-4	-8]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.73 BC 0.75 WB 0.95 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.18 -0.32 0.07 0.08	(loc) 8-9 8-9 7 8-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 248 lb	GRIP 244/190 FT = 20%
			BRACING- TOP CHOR BOT CHOR WEBS	RD RD	2-0-0 o Rigid c 1 Row	c purlins	(4-10-14 ma ectly applied	,	end verticals, and
Max U	e) 7=1410/Mechanical, 2=1452/0-5-8 lorz 2=218(LC 12) plift 7=-115(LC 9), 2=-34(LC 12) rav 7=1420(LC 2), 2=1452(LC 1)								

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-2418/704, 3-4=-2134/613, 4-5=-1718/498, 6-7=-263/144

BOT CHORD 2-9=-854/2068, 8-9=-603/1708, 7-8=-510/1640

WEBS 3-9=-305/301, 4-9=-47/542, 5-8=0/527, 5-7=-1933/606

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown;

Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.

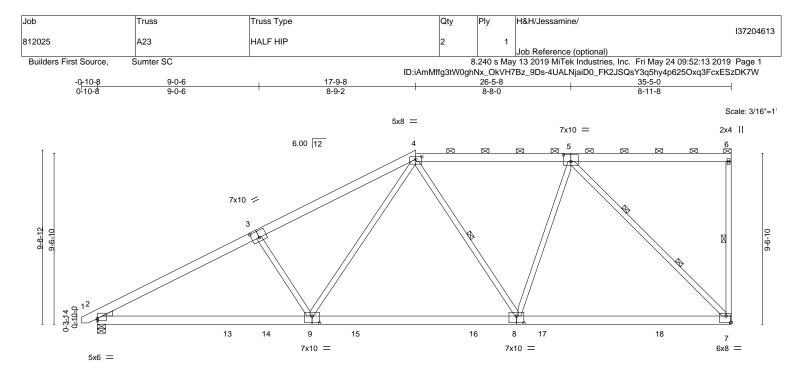
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 7=115.


9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	11-10-11			23-6-2			-		35-5-0	
1	11-10-11	1		11-7-7			1		11-10-14	I
Plate Offsets (X,Y)	[2:0-0-0,0-1-7], [3:0-5-0,0-4-8]	, [4:0-4-0,0-1-12], [5:	0-5-0,0-4-8], [7:E	dge,0-4-4], [8:0	-5-0,0-4	1-8], [9:0	0-5-0,0-4	-8]		
LOADING (psf)	SPACING- 2-0)-0 CSI .		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1	15 TC	0.55	Vert(LL)	-0.20	7-8	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.	15 BC	0.79	Vert(CT)	-0.37	7-8	>999	240		
BCLL 0.0 *	Rep Stress Incr Y	ES WB	0.88	Horz(CT)	0.06	7	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI201	4 Mati	ix-AS	Wind(LL)	0.07	8-9	>999	240	Weight: 257 lb	FT = 20%
LUMBER-				BRACING-						
TOP CHORD 2x6 SP No.2				TOP CHOR	D	Structu	ral wood	sheathing d	irectly applied, except e	end verticals, and
BOT CHORD 2x6 S	P No.2					2-0-0 o	c purlins	(5-11-3 max	.): 4-6.	

BOT CHORD	2x6 SP No.2		2-0-0 oc purlins (5-11-3 ma	x.): 4-6.
WEBS	2x4 SP No.3 *Except*	BOT CHORD	Rigid ceiling directly applied	d.
	5-7: 2x4 SP No.2	WEBS	1 Row at midpt	6-7, 4-8
WEDGE			2 Rows at 1/3 pts	5-7

Left: 2x4 SP No.3

REACTIONS. (Ib/size) 7=1410/Mechanical, 2=1452/0-5-8 Max Horz 2=280(LC 12) Max Uplift 7=-109(LC 9), 2=-45(LC 12) Max Grav 7=1506(LC 2), 2=1457(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2435/648, 3-4=-2203/652, 4-5=-1374/400

- BOT CHORD 2-9=-878/2088, 8-9=-530/1464, 7-8=-379/1149
- WEBS 3-9=-465/406, 4-9=-246/829, 4-8=-270/251, 5-8=-61/729, 5-7=-1624/543

NOTES-

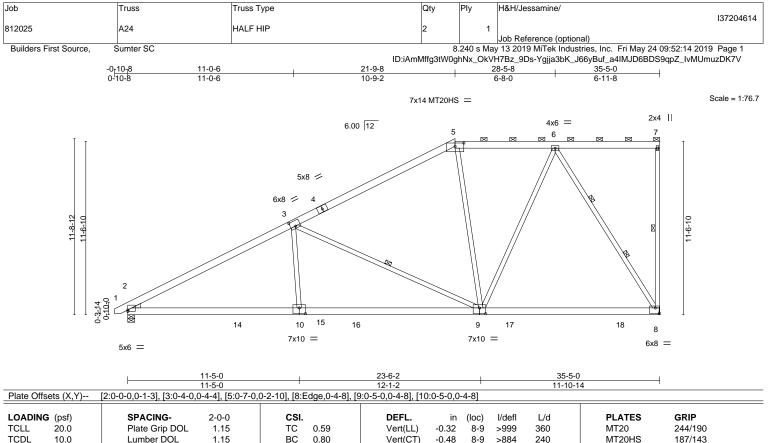
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

- MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 7=109.


9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BCLL BCDL	0.0 * 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.98 Matrix-AS	Horz(CT) 0.0 Wind(LL) 0.0			71 lb FT = 20%
LUMBER-				BRACING-			
TOP CHOP	RD 2x6 SP	No.2		TOP CHORD	Structural wood sheat	hing directly applied, ex	cept end verticals, and
BOT CHOP	RD 2x6 SP	2 No.2			2-0-0 oc purlins (6-0-0) max.): 5-7.	
WEBS	2x4 SP	No.3 *Except*		BOT CHORD	Rigid ceiling directly a	pplied.	
	3-9,6-8	: 2x4 SP No.2		WEBS	1 Row at midpt	7-8, 3-9	
WEDGE					2 Rows at 1/3 pts	6-8	

Left: 2x4 SP No.3

REACTIONS. (lb/size) 8=1410/Mechanical, 2=1452/0-5-8 Max Horz 2=341(LC 12) Max Uplift 8=-103(LC 9), 2=-47(LC 12) Max Grav 8=1488(LC 2), 2=1461(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-2395/560, 3-5=-1316/343, 5-6=-1081/375

BOT CHORD 2-10=-874/2039, 9-10=-865/2067, 8-9=-275/720

WEBS 3-10=0/457, 3-9=-1155/519, 6-9=-236/889, 6-8=-1350/527

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown;
- Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding

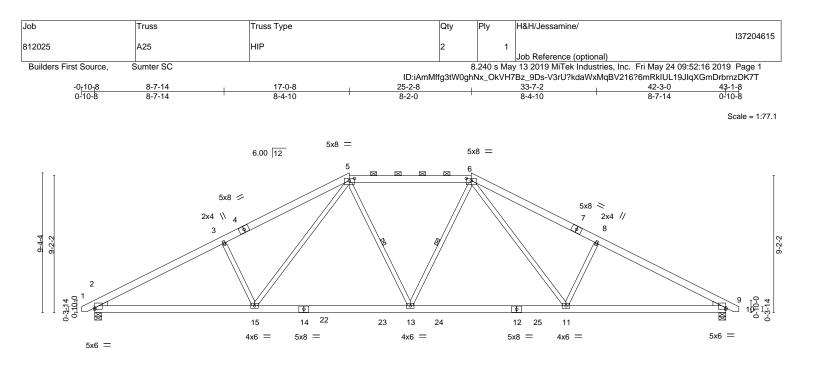
4) All plates are MT20 plates unless otherwise indicated.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) All bearings are assumed to be User Defined crushing capacity of 565 psi.

8) Refer to girder(s) for truss to truss connections.


9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 8=103

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 1003/2016 Sec. 1005/2016 Sec. Design valid for use only with MITER & connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-98 and BCSI Building Component** 818 Soundside Road Edenton, NC 27932

	10-8-6	21-1-8 10-5-2		31-6-10 10-5-2	42-3-0 10-8-6			
Plate Offsets (X,Y)	[2:0-0-0,0-1-3], [5:0-4-0,0-1-12], [6:0-4-	0,0-1-12], [9:Edge,0-1-3]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.42 BC 0.76 WB 0.56 Matrix-AS	Vert(LL) -0.21 Vert(CT) -0.37 Horz(CT) 0.10	11-13 >999 3 11-13 >999 2 9 n/a	L/d PLATES 360 MT20 240 n/a 240 Weight: 286	GRIP 244/190 6 lb FT = 20%		
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF WEBS 2x4 SF WEDGE Left: 2x4 SP No.3, Right	2 No.2 2 No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood she 2-0-0 oc purlins (4- Rigid ceiling directly 1 Row at midpt	,	pt		
REACTIONS. (lb/size) 2=1731/0-5-8, 9=1731/0-5-8 Max Horz 2=108(LC 11) Max Uplift 2=-59(LC 12), 9=-59(LC 13)								
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2957/941, 3-5=-2768/995, 5-6=-2131/797, 6-8=-2768/995, 8-9=-2957/941 BOT CHORD 2-15=-697/2534, 13-15=-396/2025, 11-13=-396/2025, 9-11=-698/2534 WEBS 3-15=-407/371, 5-15=-250/692, 5-13=-39/372, 6-13=-39/372, 6-11=-250/692, 8-11=-407/371								
10750								

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

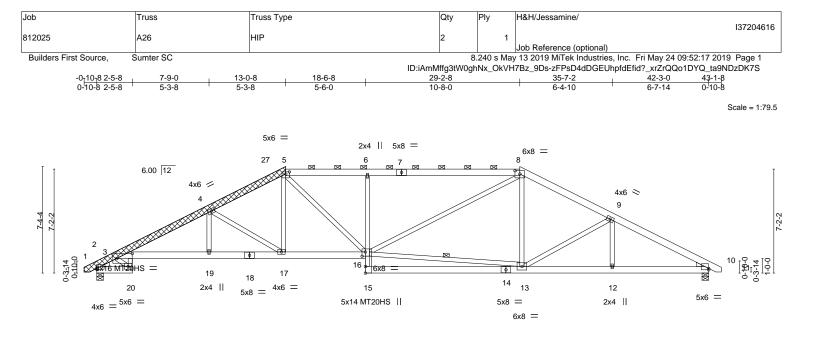
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

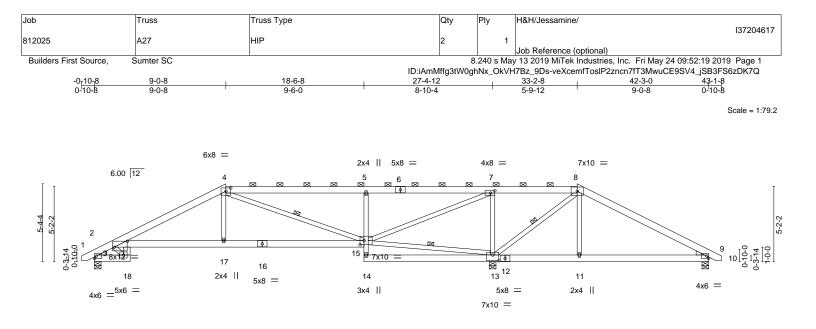
6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9.


8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

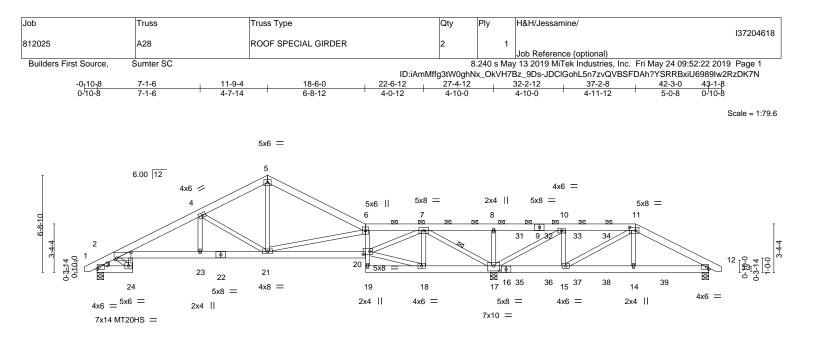
9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2-5-		18-6-8	29-2-8	35-7-2	42-3-0			
2-5-		5-6-0	10-8-0	6-4-10	6-7-14			
Plate Offsets (X,Y)	[2:0-0-0,0-0-11], [3:1-1-0,0-4-2], [5:0-3-(J,0-1-12], [8:0-4-0,0-2-12] ⊺	, [10:Edge,0-1-3], [16:0-2-12,0-3-	-8]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.82 BC 1.00 WB 0.77 Matrix-AS	DEFL. in (loc) Vert(LL) -0.24 16-17 Vert(CT) -0.49 16-17 Horz(CT) 0.30 10 Wind(LL) 0.20 16-17	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES MT20 MT20HS Weight: 388 lb	GRIP 244/190 187/143 FT = 20%		
BCDL 10.0	Code IRC2015/1F12014	Mauix-AS	Wind(LL) 0.20 18-17	>999 240	weight. Soo ib	F1 = 20%		
3-20,6- WEBS 2x4 SF OTHERS 2x6 SF	P No.2 *Except* 15: 2x4 SP No.2, 3-18: 2x6 SP No.1 P No.3 P No.2 S SP No.2 both sides		2-0-0 a BOT CHORD Rigid a	rral wood sheathing dire c purlins (2-10-11 max. eiling directly applied. at midpt 13				
Max H	e) 2=1744/0-5-8, 10=1732/0-5-8 orz 2=84(LC 11) plift 2=-26(LC 12), 10=-33(LC 13)							
TOP CHORD 3-22= 8-9=- BOT CHORD 3-19= 12-13 WEBS 4-19=	8-9=-2637/848, 9-10=-2969/898 BOT CHORD 3-19=-898/3499, 17-19=-898/3500, 16-17=-564/2651, 6-16=-629/334, 13-15=-33/470, 12-13=-683/2550, 10-12=-683/2550							
 NoTES- 1) Attached 15-8-7 scab 1 to 5, both face(s) 2x6 SP No.2 with 2 row(s) of 10d (0.131*x3") nails spaced 9" o.c.except : starting at 0-0-4 from end at joint 1, nail 2 row(s) at 4" o.c. for 3-10-0. 2) Unbalanced roof live loads have been considered for this design. 3) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 4) Provide adequate drainage to prevent water ponding. 5) All plates are MT20 plates unless otherwise indicated. 6) This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) All bearings are assumed to be User Defined crushing capacity of 565 psi. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 								

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


	2-5-8 9-0-8 2-5-8 6-7-0		18-6-8 9-6-0	<u>27-4-12</u> 8-10-4		3-2-8 -9-12	42-3-0 9-0-8	
Plate Offsets (X,Y)	[3:0-10-12,0-4-14], [4:0-	4-0,0-2-12], [7:0	-3-8,0-2-0], [13:0-5-0,0-4	1-12], [15:0-3-4,0-3-8]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC 0.90 BC 0.79 WB 0.97 Matrix-AS	Vert(LL) -0.18 Vert(CT) -0.36 Horz(CT) 0.18	(loc) I/d 3-17 >9 3-17 >9 13 r 3-17 >9	99 360 25 240 n/a n/a	PLATES MT20 Weight: 290 lb	GRIP 244/190 FT = 20%
LUMBER- BRACING- TOP CHORD 2x6 SP No.1 *Except* TOP CHORD 4-6,6-8: 2x6 SP No.2 TOP CHORD Structural wood sheathing directly applied, except BOT CHORD 2x6 SP No.2 *Except* BOT CHORD Rigid ceiling directly applied. 3-16: 2x6 SP No.1, 5-14: 2x4 SP No.2 WEBS 1 Row at midpt 4-15, 13-15, 8-13 WEBS 2x4 SP No.3, Right: 2x4 SP No.3 How at midpt 4-15, 13-15, 8-13								
Left: 2x4 SP No.3, Right: 2x4 SP No.3 REACTIONS. (lb/size) 2=917/0-5-8, 13=2368/0-5-8, 9=189/0-5-8 Max Horz 2=59(LC 11) Max Uplift 2=-21(LC 12), 13=-128(LC 9), 9=-105(LC 23) Max Grav 2=917(LC 1), 13=2368(LC 1), 9=276(LC 24) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 3-20=-446/179, 3-4=-1566/448, 4-5=-830/335, 5-7=-807/339, 7-8=-207/1320, 8-9=-134/614 BOT CHORD 3-17=-255/1387, 5-15=-586/324, 11-13=-510/162, 9-11=-505/164 WEBS 4-17=0/463, 4-15=720/169, 13-15=1215/409, 7-15=-577/2127, 7-13=-1287/450, 8-13=-1257/370, 8-11=0/305								
 2) Wind: ASCE 7-1 MWFRS (envelor reactions shown 3) Provide adequa 4) This truss has b 5) * This truss has will fit between t 6) All bearings are 7) Provide mecharing 13=128, 9=105. 8) This truss designed 	f live loads have been consid 0; Vult=120mph (3-second g pe) and C-C Exterior(2) zon ; Lumber DOL=1.60 plate gr te drainage to prevent water een designed for a 10.0 psf t been designed for a live load ne bottom chord and any oth assumed to be User Defined ical connection (by others) o n requires that a minimum of plied directly to the bottom cl	just) Vasd=95m e; end vertical le ip DOL=1.60 ponding. poottom chord livu d of 20.0psf on ti ver members. d crushing capad f truss to bearin 7/16" structural hord.	ph; TCDL=6.0psf; BCDL ff and right exposed;C-C e load nonconcurrent wit he bottom chord in all are sity of 565 psi. g plate capable of withst wood sheathing be appl	C for members and forces h any other live loads. eas where a rectangle 3-6 anding 100 lb uplift at join lied directly to the top cho	& MWFRS f 6-0 tall by 2-0 t(s) 2 except rd and 1/2" g	or)-0 wide (jt=lb)		CAROUNESSION SEAL 44925

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

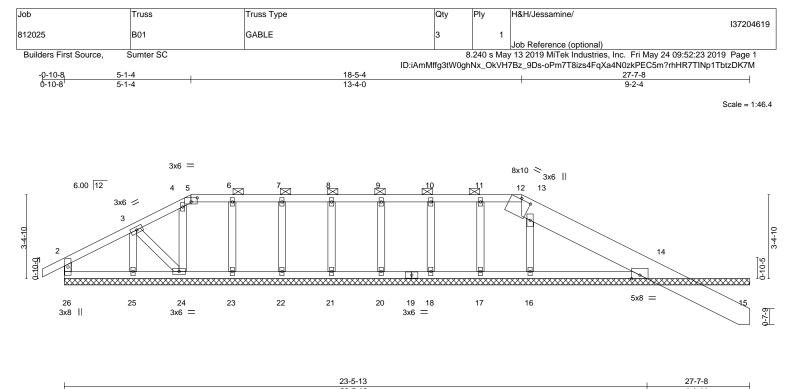
818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2-5			6-12 27-4-12 0-4 4-10-0		37-2-8 42-3-0 I-11-12 5-0-8			
Plate Offsets (X,Y)	[3:0-11-12,0-4-10], [11:0-5-4,0-2-12], [1	7:0-5-0,0-4-4], [20:0-5-8,0-2-	8]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2015/TPI2014	CSI. TC 0.64 BC 0.81 WB 0.81 Matrix-MS	Vert(LL) -0.12 Vert(CT) -0.25 Horz(CT) 0.16	5 3-23 >999 240	PLATES GRIP MT20 244/190 MT20HS 187/143 Weight: 296 lb FT = 20%			
BOT CHORD 2x6 SF	x6 SP DSS P No.2 *Except* -19: 2x4 SP No.2, 3-22: 2x6 SP No.1		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing except 2-0-0 oc purlins (6-0-0 max Rigid ceiling directly applied 1 Row at midpt				
Max H Max U	e) 2=901/0-5-8, 17=2403/0-5-8, 12=20 łorz 2=78(LC 7) Jplift 2=-44(LC 27), 17=-329(LC 9), 12=- Grav 2=901(LC 1), 17=2403(LC 1), 12=2	197(LC 9)						
TOP CHORD 3-26 7-8= BOT CHORD 3-23 15-1 WEBS 4-23 7-20	7-8=-32/2209, 8-10=-32/2209, 10-11=-304/1011, 11-12=-371/451 BOT CHORD 3-23=-81/1529, 21-23=-81/1531, 20-21=-99/1139, 6-20=-685/90, 17-18=-411/103, 15-17=-989/359, 14-15=-357/356, 12-14=-360/351							
 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) All plates are MT20 plates unless otherwise indicated. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) All bearings are assumed to be User Defined crushing capacity of 565 psi. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=b) 17=329, 12=197. 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 68 lb down and 57 lb up at 32-1-12, 20 lb down and 26 lb up at 33-1-12, and 68 lb down and 57 lb up at 33-1-12, and 28 lb up at 33-1-12, and 28 lb down and 26 lb up at 33-1-12, and 54 lb down and 26 lb up at 33-1-12, and 28 lb down and 26 lb up at 33-1-12, and 54 lb down and 26 lb up at 33-1-12, and 28 lb down and 26 lb up at 33-1-12, and 28 lb down and 26 lb up at 33-1-12, and 28 lb down and 26 lb up at 33-1-12, and 54 lb down and 26 lb up at 33-1-12, and 28 lb down and 26 lb up at 33-1-12, and 54 lb down and 26 lb up at 33-1-12, and 28 lb down and 26 lb up at 33-1-12, and 54 lb down and 26 lb up at 33-1-12, and 54 lb down and 26 lb up at 33-1-12, and 54 lb down and 26 lb up at 33-1-12, and 54 lb down and 57 lb up at 33-1-12, and 54 lb down and 26 lb up at 33-1-12, and								
Design valid for use of a truss system. Before building design. Brace is always required for fabrication, storage, or fabrication, storage, st	y design parameters and READ NOTES ON THIS A only with MITek® connectors. This design is based re use, the building designer must verify the applicat ing indicated is to prevent buckling of individual trus stability and to prevent collapse with possible pers- delivery, erection and bracing of trusses and truss sy available from Truss Plate Institute, 218 N. Lee Stre	only upon parameters shown, and is vility of design parameters and propers sweb and/or chord members only. onal injury and property damage. For vistems, see ANSUTPI1 Qu	for an individual building c rrly incorporate this design Additional temporary and or general guidance regard ality Criteria, DSB-89 and	omponent, not into the overall permanent bracing	AllTek Affiliate B18 Soundside Road Edenton, NC 27932			

Job	Truss	Truss Type	Qty	Ply	H&H/Jessamine/		
					137204618		
812025	A28	ROOF SPECIAL GIRDER	2	1			
					Job Reference (optional)		
Builders First Source, S	Sumter SC		8	.240 s May	/ 13 2019 MiTek Industries, Inc. Fri May 24 09:52:22 2019 Page 2		
		ID:iAmMffg	ID:iAmMffg3tW0ghNx_0kVH7Bz_9Ds-JDClGohL5n7zvQVBSFDAh?YSRRBxiU6989Iw2RzDK7N				

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 5-6=-60, 6-11=-60, 11-13=-60, 24-25=-20, 3-20=-20, 19-28=-20 Concentrated Loads (lb)

Vert: 14=1(B) 35=1(B) 36=1(B) 37=1(B) 38=1(B) 39=-40(B)

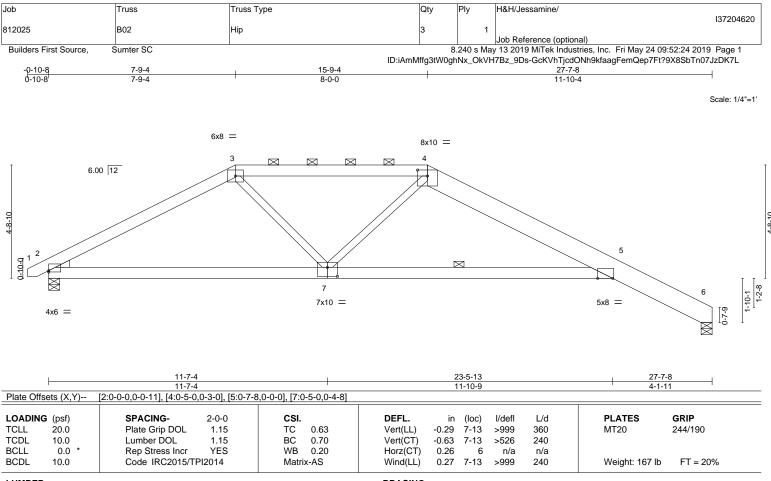
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		23-5-13					I	4-1-11
Plate Offsets (X,Y)	[5:0-3-0,0-2-0], [12:0-5-0,0-0-9]							
OADING (psf) "CLL 20.0 "CDL 10.0 3CLL 0.0 * 3CDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.08 BC 0.16 WB 0.04 Matrix-S	DEFL. in Vert(LL) 0.00 Vert(CT) -0.00 Horz(CT) 0.00) 1) 1	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 145 lb	GRIP 244/190 FT = 20%
	No.3		BRACING- TOP CHORD BOT CHORD	except	end verti	cals, and 2-0-	ectly applied or 6-0-0 (0 oc purlins (6-0-0 ma or 10-0-0 oc bracing.	
(Ib) - Max H Max U Max G	arings 27-7-8. orz 26=-126(LC 13) plift All uplift 100 lb or less at joint(s) 2 13) rav All reactions 250 lb or less at joint 14=418(LC 24) Comp./Max. Ten All forces 250 (lb) of	(s) 26, 15, 21, 22, 23, 24, 2	25, 20, 18, 17 except 16	,				
NOTES- (14) 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) MWFRS for reaction 3) Truss designed for w Gable End Details a: 4) Provide adequate dr 5) All plates are 2x4 MT	loads have been considered for this de ult=120mph (3-second gust) Vasd=95m gable end zone and C-C Exterior(2) zou s shown; Lumber DOL=1.60 plate grip I vind loads in the plane of the truss only. s applicable, or consult qualified building ainage to prevent water ponding. I20 unless otherwise indicated. nuous bottom chord bearing.	sign. hph; TCDL=6.0psf; BCDL= he; end vertical left and rig DOL=1.60 For studs exposed to win	6.0psf; h=25ft; Cat. II; E ht exposed;C-C for mer d (normal to the face), :	nbers and	d forces &		Lunun	CARO

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


10) All bearings are assumed to be User Defined crushing capacity of 565 psi.

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 26, 15, 21, 22, 23, 24, 25, 20, 18, 17, 16 except (jt=lb) 14=131.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 15.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

TREERING BY A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

LUMBER-

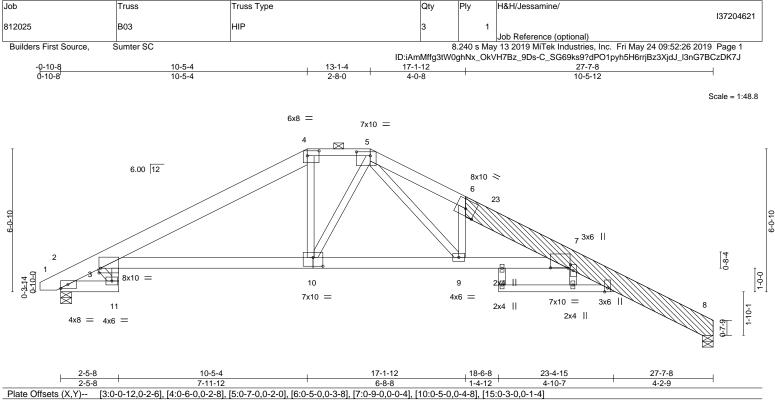
BRACING-TOP CHORD 2x6 SP No.2 *Except* TOP CHORD Structural wood sheathing directly applied, except 4-6: 2x10 SP DSS 2-0-0 oc purlins (5-2-0 max.): 3-4. BOT CHORD 2x6 SP No.2 BOT CHORD Rigid ceiling directly applied. Except: WEBS 2x4 SP No.3 10-0-0 oc bracing: 5-7 WEDGE

Left: 2x4 SP No.3

REACTIONS. (lb/size) 6=1104/0-5-8, 2=1138/0-5-8 Max Horz 2=-162(LC 13) Max Uplift 6=-184(LC 13), 2=-155(LC 12)

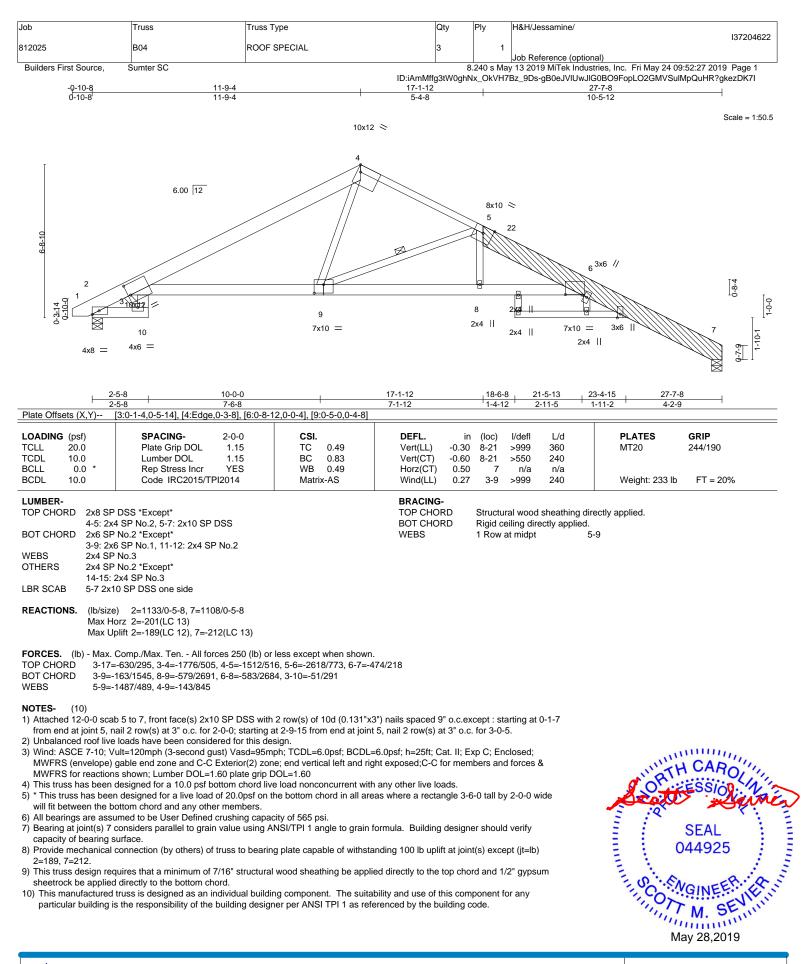
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-1749/554, 3-4=-1753/550, 4-5=-1881/592, 5-6=-479/191 BOT CHORD 2-7=-269/1466, 5-7=-354/1787

WEBS 3-7=0/517

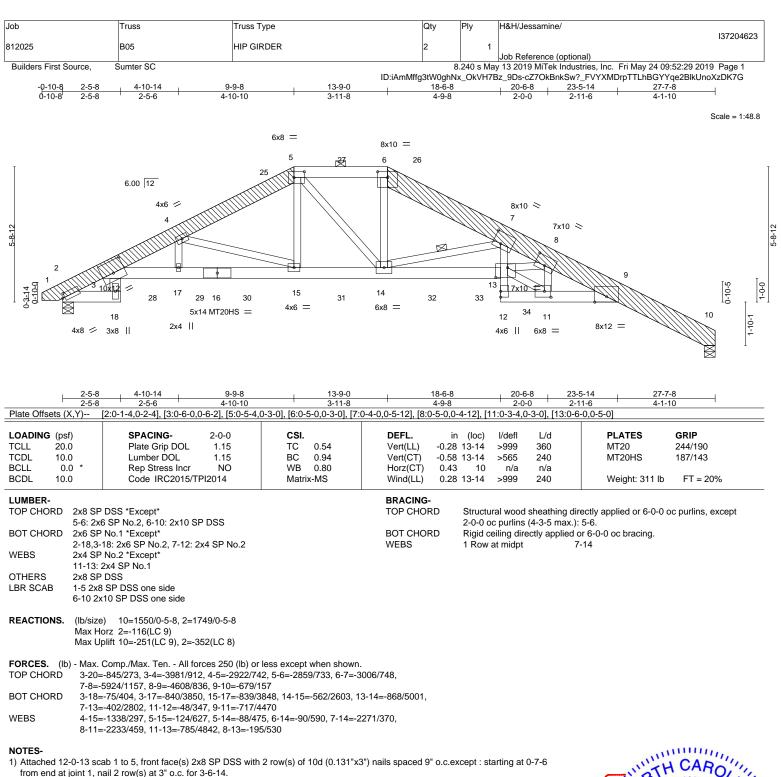

NOTES-(11)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=184, 2=155.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



	[5.0-0-12,0-2-0], [4.0-0-0,0-2-0], [5.0-1-0	,0-2-0j, [0.0-3-0,0-3-0j, [7.	.0-9-0,0-0-4], [10.0-3-0,	0-4-0], [10.0-0-0,0	J-1- 4]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.48 BC 0.88 WB 0.69 Matrix-AS	DEFL. ir Vert(LL) -0.29 Vert(CT) -0.59 Horz(CT) 0.48 Wind(LL) 0.25	9 9-22 >999 9 9-22 >556	L/d 360 240 n/a 240	PLATES MT20 Weight: 237 lb	GRIP 244/190 FT = 20%
4-5: 2x BOT CHORD 2x6 SP 3-11,12 WEBS 2x4 SP 12-14: OTHERS 2x4 SP LBR SCAB 6-8 2x1 REACTIONS. (lb/size	P DSS *Except* 4 SP No.2, 5-6: 2x6 SP No.2, 6-8: 2x10 No.2 *Except* 2-13: 2x4 SP No.2 No.3 *Except* 2x4 SP No.2 P No.3 10 SP DSS one side e) 2=1136/0-5-8, 8=1109/0-5-8 orz 2=-189(LC 13)	SP DSS	BRACING- TOP CHORD BOT CHORD		(4-0-10 max.): 4	ly applied, except 5.	
FORCES. (lb) - Max. TOP CHORD 3-18= 7-8=- 80T CHORD BOT CHORD 3-10= WEBS 4-10= NOTES- (12) 1) Attached 12-0-0 sca 0-0-15 from end at ju 0.0 -15 from end roof live 2) Unbalanced roof live	plift 2=-175(LC 12), 8=-203(LC 13) Comp./Max. Ten All forces 250 (lb) or =-532/272, 3-4=-1830/519, 4-5=-1632/56 474/216 =-200/1619, 9-10=-215/1625, 7-9=-586/2 =-23/332, 6-9=-1165/468, 5-9=-538/1678 b 6 to 8, front face(s) 2x10 SP DSS with bint 6, nail 2 row(s) at 3" o.c. for 2-0-0; s b loads have been considered for this de fult=120mph (3-second gust) Vasd=95m	\$3, 5-6=-3110/1000, 6-7=-2 2765 3 2 row(s) of 10d (0.131"x3 tarting at 2-9-15 from end a sign.	") nails spaced 9" o.c.e at joint 6, nail 2 row(s) a	at 3" o.c. for 3-0-5			
MWFRS for reaction 4) Provide adequate dr 5) This truss has been 6) * This truss has been will fit between the b 7) All bearings are assi 8) Bearing at joint(s) 8 capacity of bearing s	gable end zone and C-C Exterior(2) zor is shown; Lumber DOL=1.60 plate grip I rainage to prevent water ponding. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on t ottom chord and any other members. umed to be User Defined crushing capar considers parallel to grain value using A surface.	DOL=1.60 e load nonconcurrent with he bottom chord in all area city of 565 psi. NSI/TPI 1 angle to grain fo	any other live loads. as where a rectangle 3- prmula. Building desigr	6-0 tall by 2-0-0 v ner should verify		Contraction of the second seco	SEAL 044925
sheetrock be applie 11) Graphical purlin rep 12) This manufactured	equires that a minimum of 7/16" structur ed directly to the bottom chord. presentation does not depict the size or truss is designed as an individual buildi s the responsibility of the building design	the orientation of the purlir ng component. The suitab	along the top and/or b ility and use of this con	ottom chord.	sum	111	GINEER, IER, INT. 1997
Design valid for use o a truss system. Before building design. Braci	design parameters and READ NOTES ON THIS A nly with MITek® connectors. This design is based o use, the building designer must verify the applicat ing indicated is to prevent buckling of individual trus stability and to prevent collapse with possible pers	only upon parameters shown, and bility of design parameters and pro ss web and/or chord members onl	is for an individual building coperly incorporate this design y. Additional temporary and provide the second provided the second	omponent, not into the overall permanent bracing			ERING BY ENCO A MITek Affiliate


818 Soundside Road Edenton, NC 27932

bilding design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

2) Attached 15-9-9 scab 6 to 10, front face(s) 2x10 SP DSS with 2 row(s) of 10d (0.131"x3") nails spaced 9" o.c.except : starting at 0-1-1 from end at joint 6, nail 2 row(s) at 7" o.c. for 2-0-0; starting at 4-6-4 from end at joint 6, nail 2 row(s) at 7" o.c. for 2-0-0; starting at 6-7-2 from end at joint 6, nail 2 row(s) at 7" o.c. for 2-0-0; starting at 8-10-5 from end at joint 6, nail 2 row(s) at 2" o.c. for 3-0-5.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

5) Provide adequate drainage to prevent water ponding.

6) All plates are MT20 plates unless otherwise indicated.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) All bearings are assumed to be User Defined crushing capacity of 565 psi.

10) Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

Continued on page 2

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

SEAL

818 Soundside Road Edenton, NC 27932

0

Job	Truss	Truss Type	Qty	Ply	H&H/Jessamine/	
			-	-	137204623	
812025	B05	HIP GIRDER	2	1		
			_		Job Reference (optional)	
Builders First Source.	Sumter SC	1	8.240 s May 13 2019 MiTek Industries. Inc. Fri May 24 09:52:29 2019 Pag			

ID:iAmMffg3tW0ghNx_OkVH7Bz_9Ds-cZ7OkBnkSw?_FVYXMDrpTTLhBGYYqe2BlkUnoXzDK7G

NOTES-

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=251, 2=352.

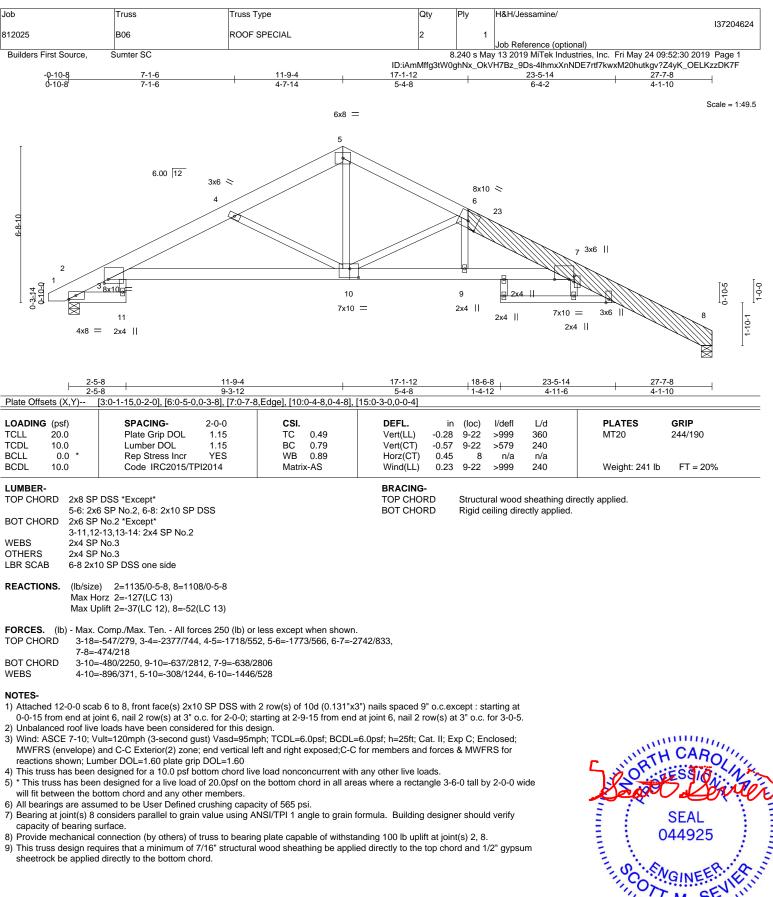
12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 119 lb down and 117 lb up at 9-9-8, and 123 lb down and 117 lb up at 11-10-4, and 119 lb down and 117 lb up at 13-9-0 on top chord, and 145 lb down and 40 lb up at 2-0-2, 67 lb down at 3-10-4, 82 lb down and 51 lb up at 5-10-4, 119 lb down and 91 lb up at 7-10-4, 64 lb down and 25 lb up at 13-8-4, 119 lb down and 91 lb up at 7-10-4, 64 lb down and 25 lb up at 13-8-4, and 91 lb up at 15-8-4, and 82 lb down and 51 lb up at 17-8-4, and 195 lb down at 19-8-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

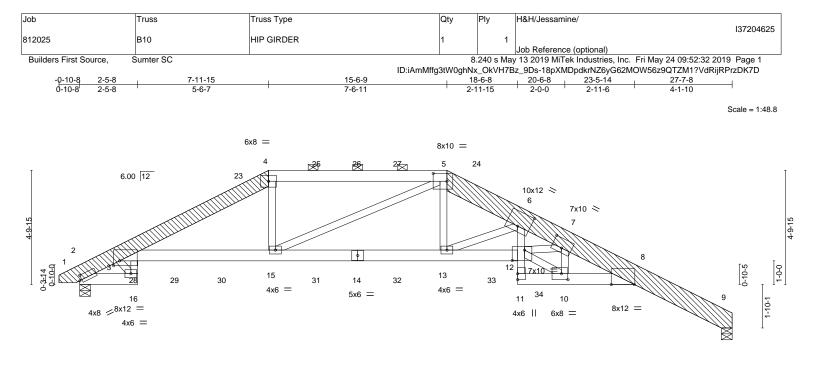
1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 5-6=-60, 6-9=-60, 9-10=-82, 18-19=-20, 3-13=-20, 12-22=-20

Concentrated Loads (lb)

Vert: 5=-64(B) 6=-64(B) 18=-145(B) 15=-28(B) 14=-28(B) 27=-64(B) 28=-58(B) 29=-82(B) 30=-112(B) 31=-28(B) 32=-112(B) 33=-82(B) 34=-195(B) 34=-1



Μ. //////// May 28,2019

818 Soundside Road Edenton, NC 27932

<u>2-5-8</u> 2-5-8		<u>15-6-9</u> 7-6-11	18-6-8 2-11-15	<u>20-6-8</u> 23-5- 2-0-0 2-11					
Plate Offsets (X,Y)	[2:0-1-4,0-2-8], [3:0-3-0,0-2-6], [5:0-7-0,	0-4-0], [6:0-6-0,0-7-4], [7:0	-5-0,0-4-12], [8:0-11-12,0-0-0],	[10:0-3-4,0-3-0], [12:0-6	6-4,0-5-4]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.67 BC 0.93 WB 0.82 Matrix-MS	DEFL. in (loc) Vert(LL) -0.28 12-13 Vert(CT) -0.57 12-13 Horz(CT) 0.44 9 Wind(LL) 0.22 12-13	l/defl L/d >999 360 >576 240 n/a n/a >999 240	PLATES MT20 Weight: 281 lb	GRIP 244/190 FT = 20%			
4-5: 2x BOT CHORD 2x6 SF 2-16: 2 WEBS 2x4 SF 10-12: OTHERS 2x8 SF LBR SCAB 1-4 2x6	DSS *Except* 6 SP No.2, 5-9: 2x10 SP DSS No.1 *Except* 2x6 SP No.2, 3-16,6-11: 2x4 SP No.2 No.2 *Except* 2x4 SP No.1, 3-16: 2x4 SP No.3 P DSS 8 SP DSS one side 10 SP DSS one side		2-0-0 c BOT CHORD Rigid c	ural wood sheathing dire oc purlins (3-3-13 max.): eiling directly applied or oc bracing: 2-16.	: 4-5.				
Max H	e) 9=1591/0-5-8, 2=1776/0-5-8 lorz 2=-106(LC 9) plift 9=-138(LC 9), 2=-246(LC 8)								
TOP CHORD 3-18= 7-8=- BOT CHORD 3-16= 10-17 WEBS 4-15=	7-8=-4764/423, 8-9=-697/106 BOT CHORD 3-16=-57/349, 3-15=-352/3157, 13-15=-267/3662, 12-13=-384/5254, 6-12=-186/2870, 10-11=-12/399, 8-10=-321/4618 WEBS 4-15=0/705, 5-15=-645/34, 5-13=0/937, 6-13=-1809/128, 7-10=-2283/248,								
 NOTES- 10-12=-362/4954, 7-12=-124/659 NOTES- 1) Attached 10-0-11 scab 1 to 4, front face(s) 2x8 SP DSS with 2 row(s) of 10d (0.131*x3") nails spaced 9" o.c.except : starting at 0-7-6 from end at joint 1, nail 2 row(s) at 3" o.c. for 3-5-15; starting at 7-11-3 from end at joint 1, nail 2 row(s) at 7" o.c. for 2-0-0. 2) Attached 13-9-7 scab 5 to 9, front face(s) 2x10 SP DSS with 2 row(s) of 10d (0.131*x3") nails spaced 9" o.c.except : starting at 0-11-1 from end at joint 5, nail 2 row(s) at 3" o.c. for 2-0-0; starting at 2-6-2 from end at joint 5, nail 2 row(s) at 7" o.c. for 2-0-0; starting at 2-6-2 from end at joint 5, nail 2 row(s) at 7" o.c. for 2-0-0; starting at 2-6-2 from end at joint 5, nail 2 row(s) at 7" o.c. for 3-0-5. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); end vertical left and right exposed; Lumber DOL=1.60 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) All bearings are assumed to be User Defined crushing capacity of 565 psi. 9) Bearing at joint(s) 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 9=138, 2=246. OdbitGraef brand dig representation does not depict the size or the orientation of the purin along the top and/or bottom chord. 									
Design valid for use o a truss system. Before building design. Brac	r design parameters and READ NOTES ON THIS A nly with MITek® connectors. This design is based to use, the building designer must verify the applicat ing indicated is to prevent buckling of individual trus stability and to prevent collapse with possible pers.	only upon parameters shown, and pility of design parameters and pro s web and/or chord members onl	is for an individual building component, operly incorporate this design into the over y. Additional temporary and permanent	not rerall		ERING BY ENCED A MITCH Affiliate			

Saladi design. Dialog induction of the prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

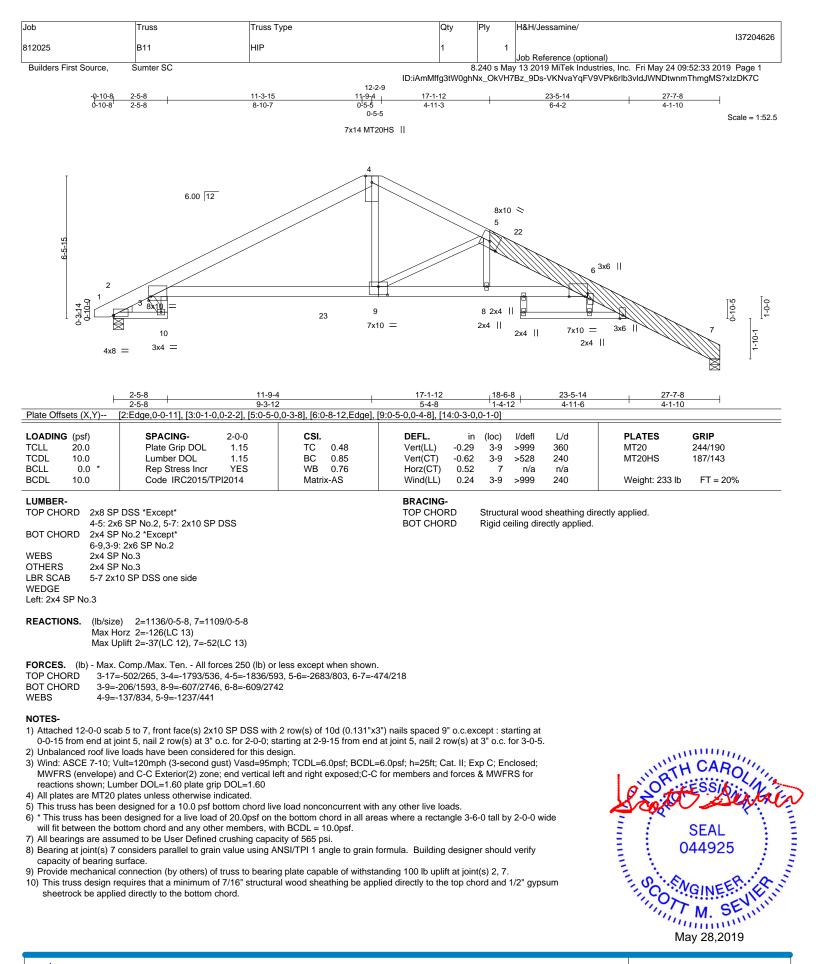
Job	Truss	Truss Type	Qty	Ply	H&H/Jessamine/		
					137204625		
812025	B10	HIP GIRDER	1	1			
					Job Reference (optional)		
Builders First Source, S	Sumter SC	8.240 s May 13 2019 MiTek Industries, Inc. Fri May 24 09:52:32 2019 Page 2					
		ID:iAmMffg3tW0ghNx_0kVH7Bz_9Ds-18pXMDpdkrNZ6yG62MOW56z9QTZM1?VdRijRPrzDK7D					

NOTES-

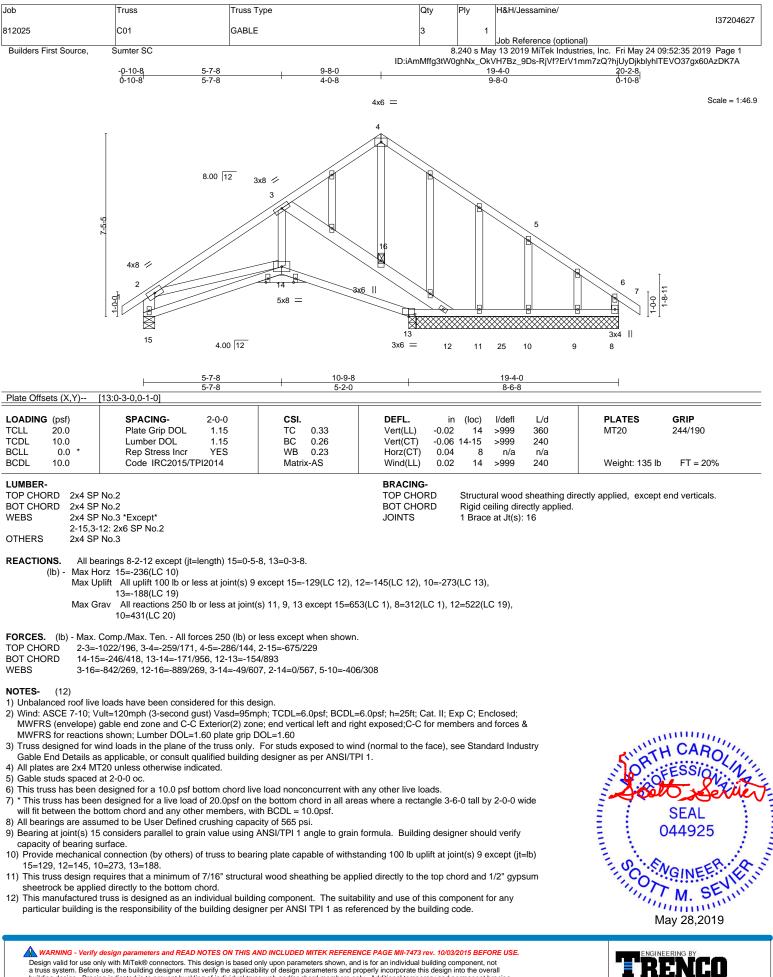
12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 105 lb down and 93 lb up at 7-11-15, 109 lb down and 93 lb up at 10-0-11, 109 lb down and 93 lb up at 11-9-4, and 109 lb down and 93 lb up at 13-5-13, and 105 lb down and 93 lb up at 15-6-9 on top chord, and 140 lb down and 46 lb up at 2-3-12, 70 lb down and 27 lb up at 4-0-11, 106 lb down and 62 lb up at 6-0-11, 67 lb down at 8-0-11, 67 lb down at 10-0-11, 67 lb down at 11-9-4, 67 lb down at 13-5-13, and 106 lb down at 15-5-13, and 106 lb down and 62 lb up at 17-5-13, and 249 lb down at 19-5-13 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

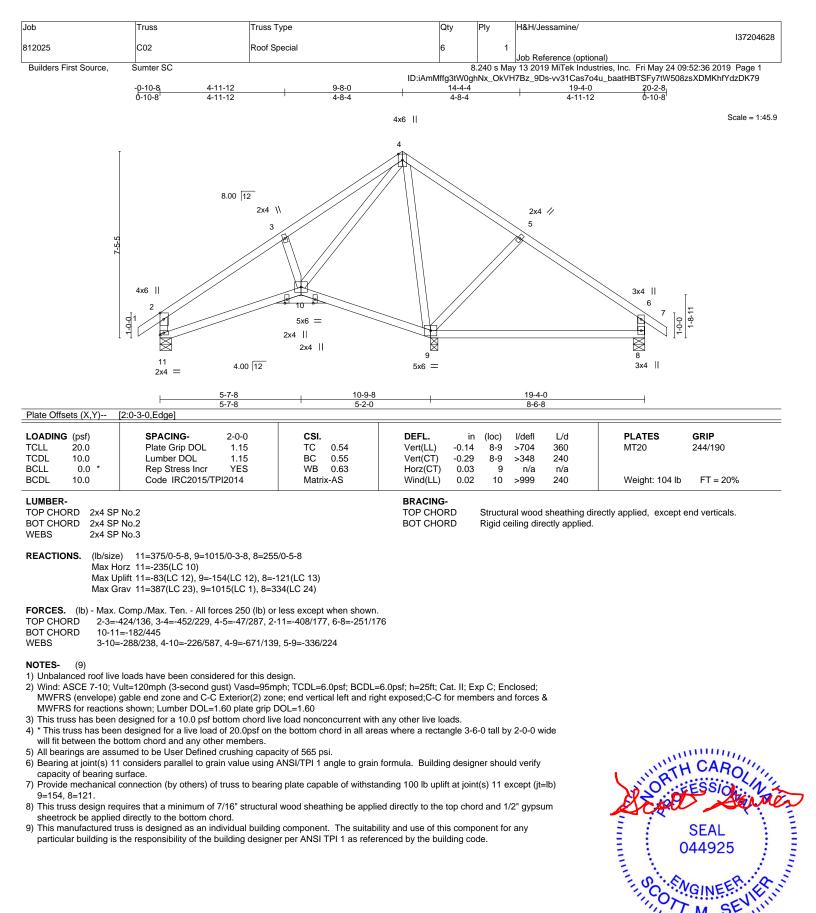
LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 4-5=-60, 5-8=-60, 8-9=-82, 16-17=-20, 3-12=-20, 11-20=-20

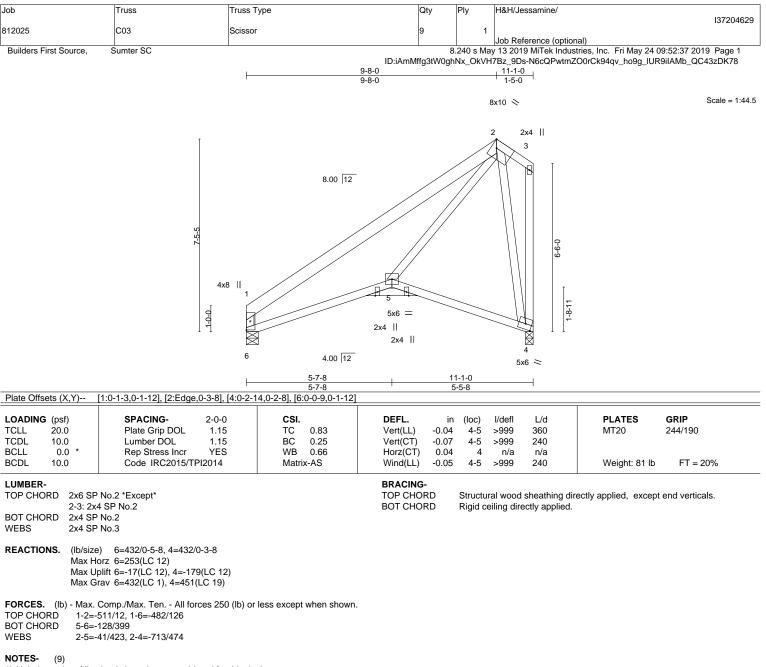

Concentrated Loads (lb)

Vert: 4=-55(B) 5=-55(B) 14=-36(B) 15=-36(B) 13=-36(B) 16=-140(B) 25=-55(B) 26=-55(B) 27=-55(B) 29=-70(B) 30=-106(B) 31=-36(B) 32=-36(B) 33=-106(B) 34=-249(B) 34=-248(B) 34=-248



818 Soundside Road Edenton, NC 27932

a truss system and to use only wind interest contractions. This design to base only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building designer must be applicability of property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

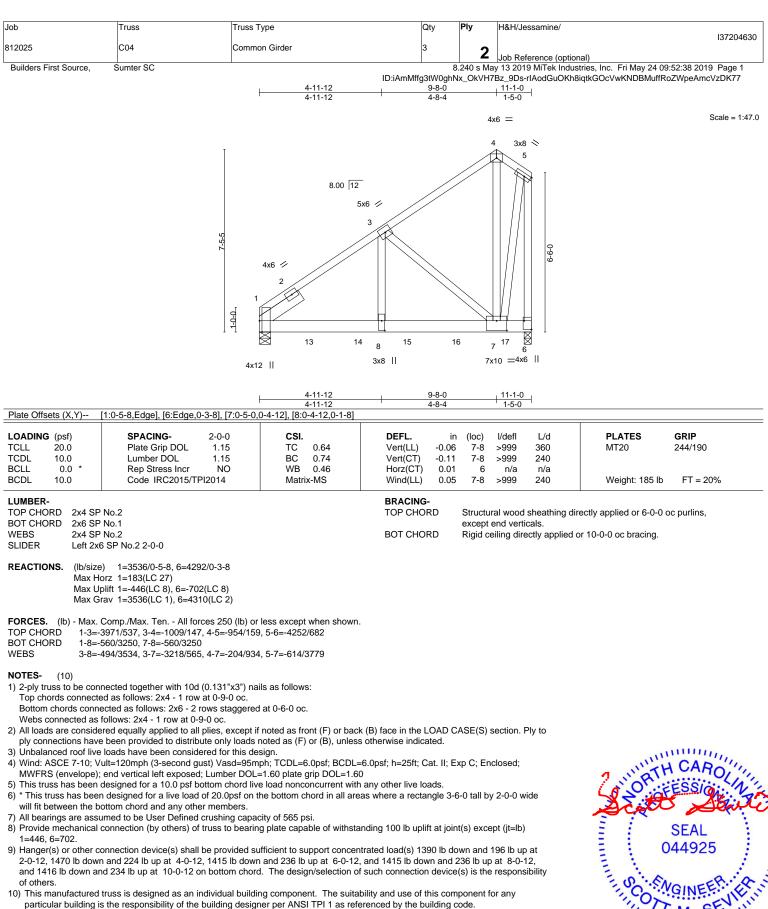

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

May 28,2019

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 6) Bearing at joint(s) 6, 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 4=179.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

- 7) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 1=446. 6=702.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1390 lb down and 196 lb up at 2-0-12, 1470 lb down and 224 lb up at 4-0-12, 1415 lb down and 236 lb up at 6-0-12, and 1415 lb down and 236 lb up at 8-0-12, and 1416 lb down and 234 lb up at 10-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others
- 10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

Continued on page 2

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

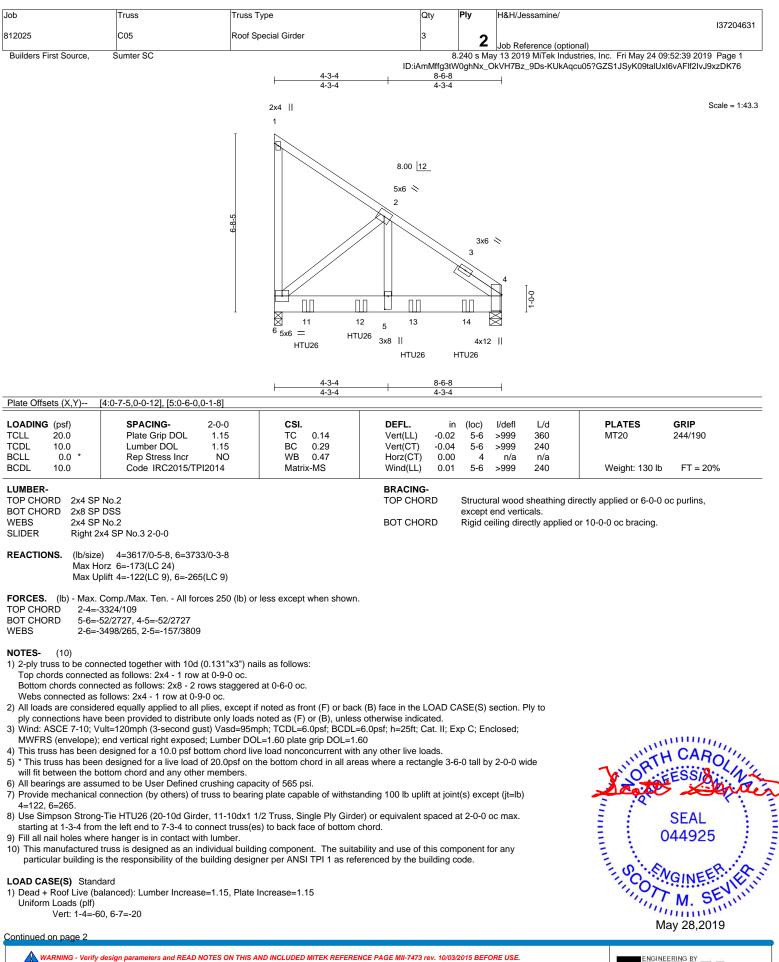
Edenton, NC 27932

4925

Job	Truss	Truss Type	Qty	Ply	H&H/Jessamine/
					137204630
812025	C04	Common Girder	3	2	
				_	Job Reference (optional)
Builders First Source.	Sumter SC		8	.240 s Ma	v 13 2019 MiTek Industries, Inc. Fri May 24 09:52:38 2019 Page 2

ID:iAmMffg3tW0ghNx_OkVH7Bz_9Ds-rIAodGuOKh8iqtkGOcVwKNDBMuffRoZWpeAmcVzDK77

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

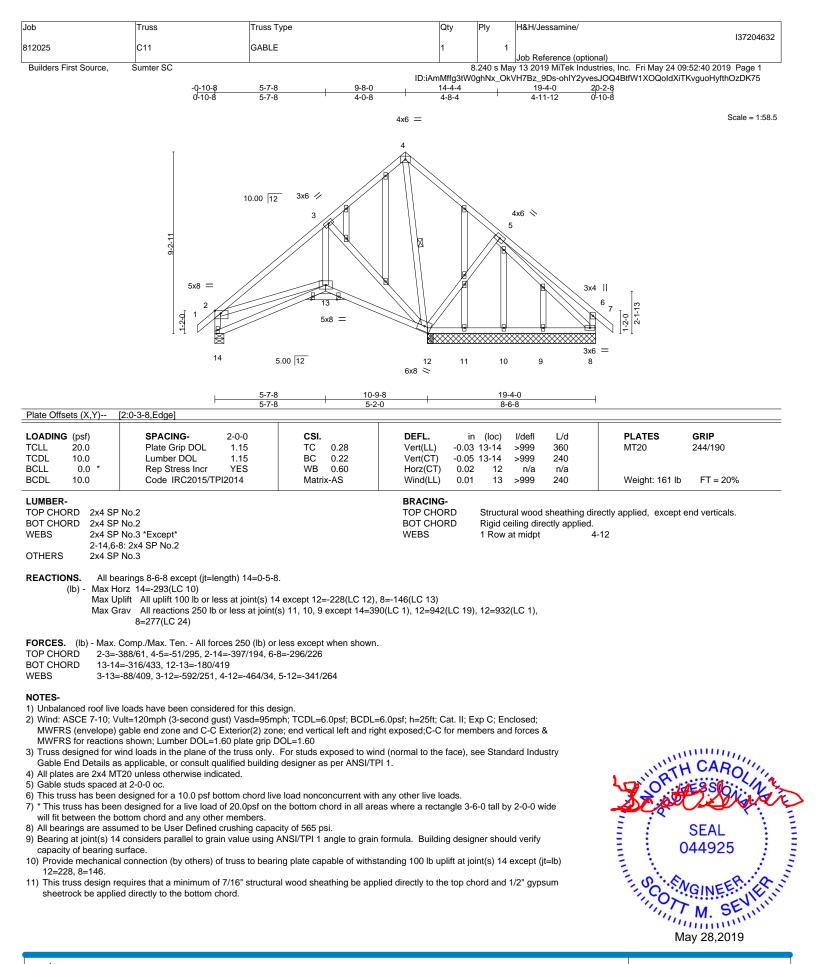
Uniform Loads (plf) Vert: 1-4=-60, 4-5=-60, 6-9=-20

Concentrated Loads (lb)

Vert: 13=-1390(B) 14=-1390(B) 15=-1390(B) 16=-1390(B) 17=-1392(B)

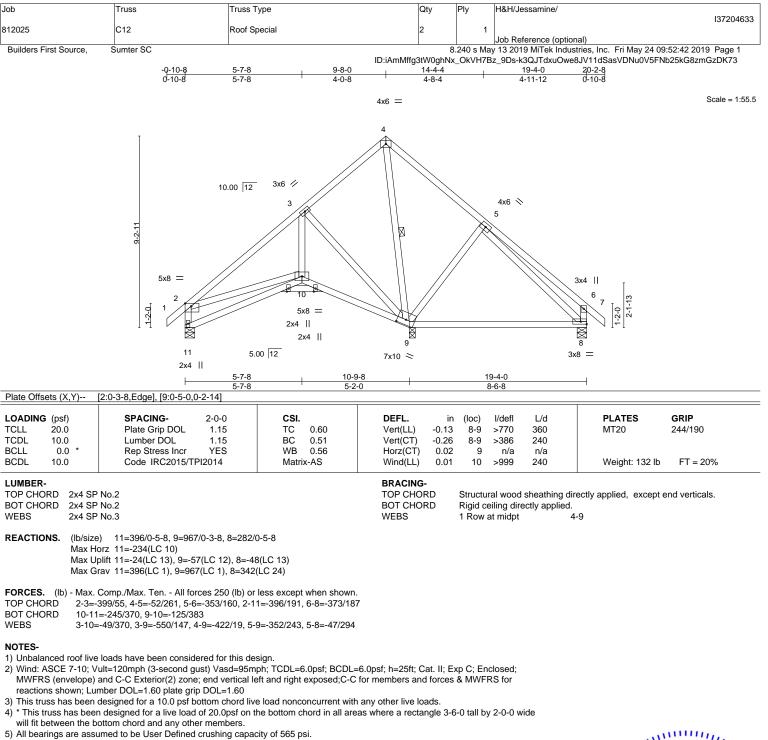
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

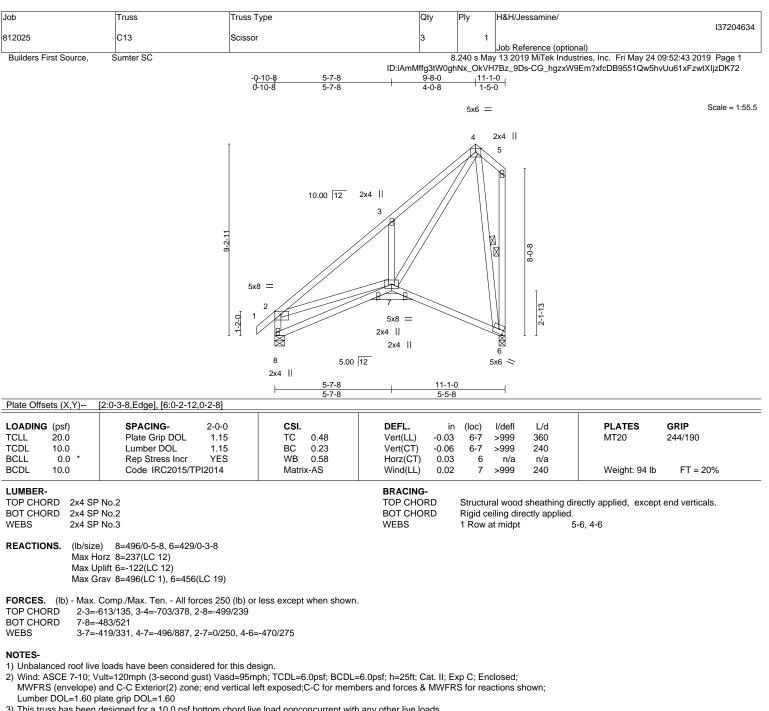
818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	H&H/Jessamine/
					137204631
812025	C05	Roof Special Girder	3	ົ	
				2	Job Reference (optional)
Builders First Source, S	Sumter SC		8	.240 s May	y 13 2019 MiTek Industries, Inc. Fri May 24 09:52:39 2019 Page 2

ID:iAmMffg3tW0ghNx_OkVH7Bz_9Ds-KUkAqcu05?GZS1JSyK09talUxI6vAFIf2lvJ9xzDK76

LOAD CASE(S) Standard


Concentrated Loads (lb) Vert: 11=-1670(B) 12=-1670(B) 13=-1670(B) 14=-1670(B)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

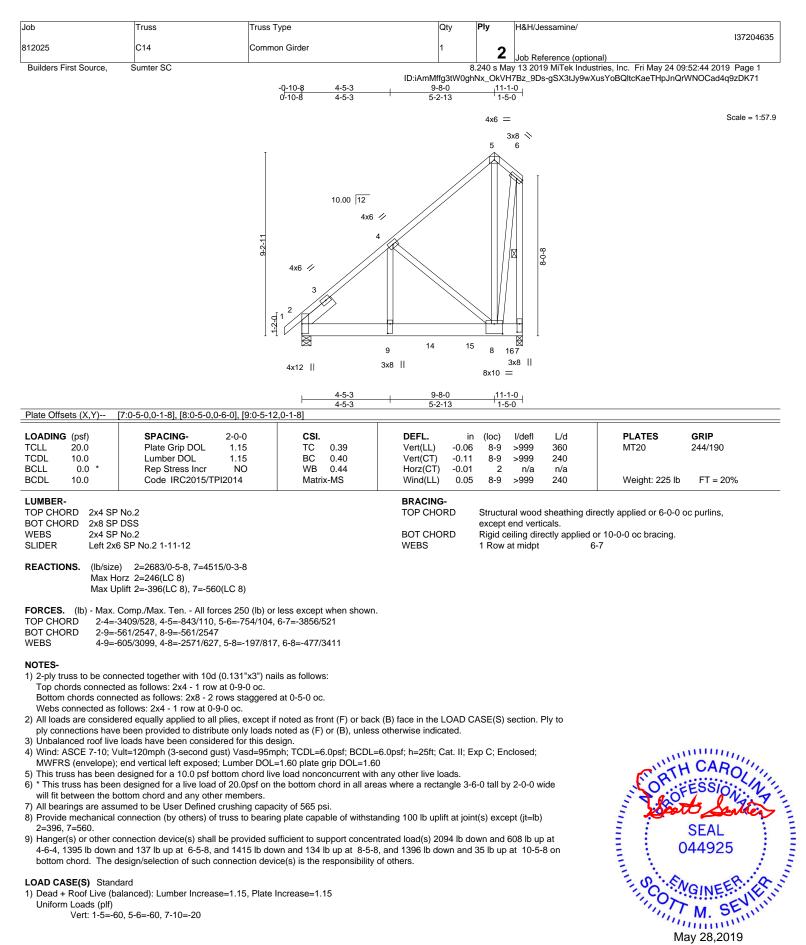
- 6) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify
- capacity of bearing surface. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 9, 8.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Bearing at joint(s) 8, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=122

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REFERENCE FACE INTERCISES. To according to the operation of a second sec fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Continued on page 2

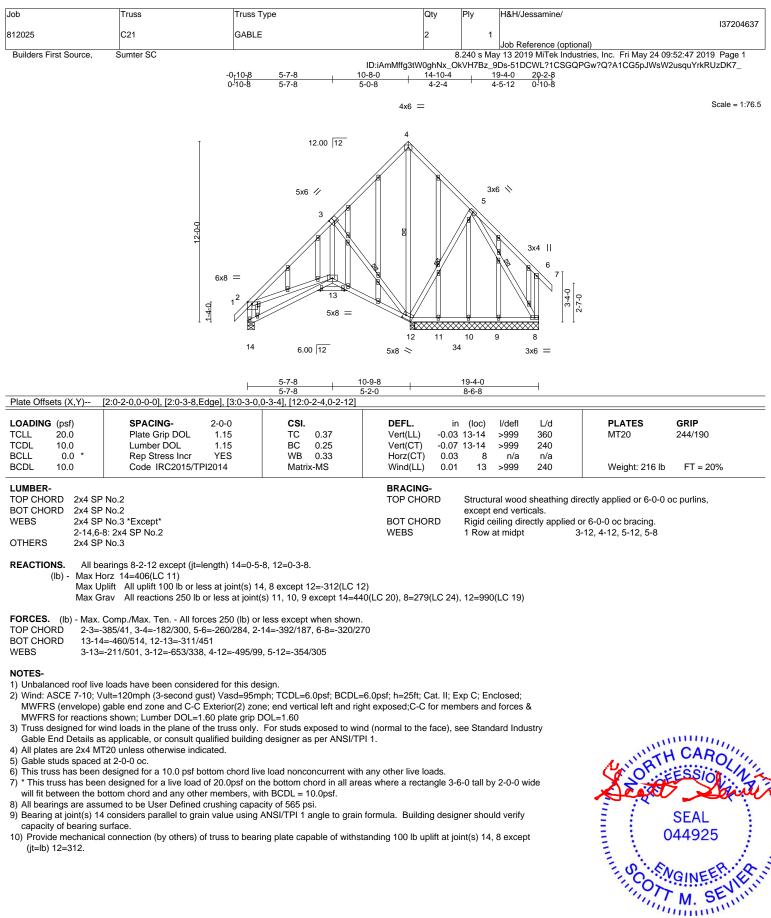
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affiliat 818 Soundside Road Edenton, NC 27932

[lob	Truss	Truss Type	Qty	Ply	H&H/Jessamine/		
						137204635		
	312025	C14	Common Girder	1	2			
					_	Job Reference (optional)		
	Builders First Source, S	Sumter SC	8.240 s May 13 2019 MiTek Industries, Inc. Fri May 24 09:52:44 2019 Page 2					
			ID:iAmMffg3tW0ghNx_OkVH7Bz_9Ds-gSX3tJy9wXusYoBQltcKaeTHpJnQrWNOCad4q9zDK71					

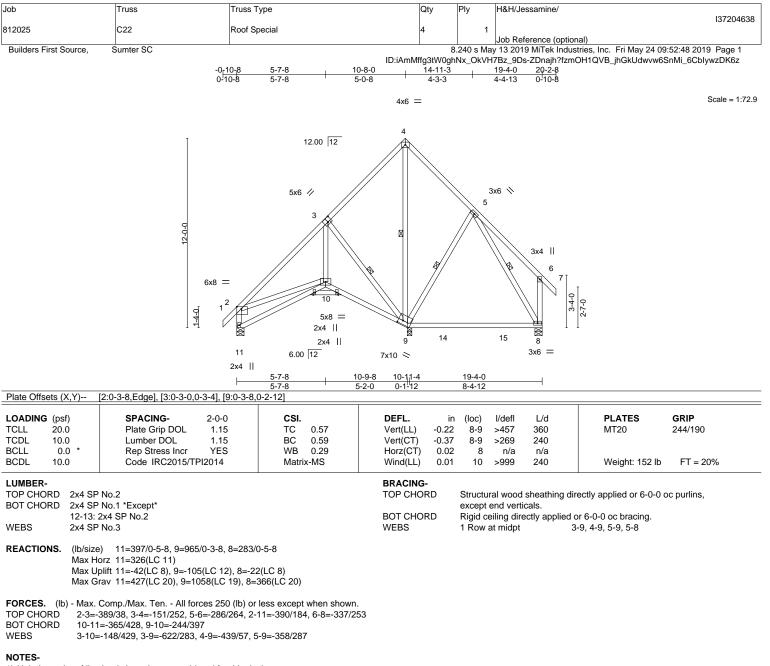
LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 9=-2094(B) 14=-1390(B) 15=-1390(B) 16=-1396(B)



b	Truss	Truss Type	Qty	Ply	H&H/Jessamine/	
2025	C15	Roof Special Girder	1	n		137204636
uilders First Source,	Sumter SC			8.240 s Ma	Job Reference (option v 13 2019 MiTek Indust	al) ries, Inc. Fri May 24 09:52:45 2019 Page 1
		4.9.4				biAymcla7Z7r?WGj9KayHYQEMdMbzDK70
		4-3-4	8-6-8			
		2x4				Scale = 1:51.2
		1				
		I				
			10.00 12			
			4x8 📎			
			2			
		8-3-7				
				446		
				4x6 ∖\ 3	·	
					0	
					1-2-0	
		1 6 11	12 ₅ 13	⊠_14		
		5x6 =	3x8	4x12		
		4-3-4	8-6-8			
ate Offsets (X,Y)	[4:0-8-3,0-1-0], [5:0-6-0,0-1-8]					
DADING (psf)	SPACING- 2-0-0			in (loc)	l/defl L/d	PLATES GRIP
CLL 20.0 CDL 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15		Vert(LL) -0.0 Vert(CT) -0.0		>999 360 >999 240	MT20 244/190
CLL 0.0 *	Rep Stress Incr NC	O WB 0.46	Horz(CT) 0.0	0 4	n/a n/a	
CDL 10.0	Code IRC2015/TPI2014	Matrix-MS	Wind(LL) 0.0)1 5-6	>999 240	Weight: 145 lb FT = 20%
UMBER- OP CHORD 2x4 SP	No 2		BRACING- TOP CHORD	Structur	al wood sheathing dire	ectly applied or 6-0-0 oc purlins,
OT CHORD 2x8 SP	DSS			except e	end verticals.	
/EBS 2x4 SP LIDER Right 2	x6 SP No.2 1-11-12		BOT CHORD WEBS	Rigid ce 1 Row a	iling directly applied o at midpt 1-	
EACTIONS. (Ib/size	e) 6=3418/0-3-8, 4=3933/0-5-8	0				
Max H	orz 6=-216(LC 9))				
Max U	plift 6=-288(LC 9), 4=-98(LC 9)					
	Comp./Max. Ten All forces 250 2876/88	60 (lb) or less except when shown.				
DT CHORD 5-6=-	42/2165, 4-5=-42/2165					
EBS 2-6=-	3086/276, 2-5=-174/3782					
DTES-						
	nected together with 10d (0.131' ed as follows: 2x4 - 1 row at 0-9-					
	ected as follows: 2x8 - 2 rows sta follows: 2x4 - 1 row at 0-9-0 oc.					
All loads are conside	ered equally applied to all plies, e	except if noted as front (F) or back		CASE(S) s	ection. Ply to	
		ly loads noted as (F) or (B), unless isd=95mph; TCDL=6.0psf; BCDL=		Exp C; End	closed;	
MWFRS (envelope)		nber DOL=1.60 plate grip DOL=1.0 chord live load nonconcurrent with				
	n designed for a live load of 20.0	Opsf on the bottom chord in all are		8-6-0 tall by	2-0-0 wide	TH CARO
This truss has been * This truss has been	ottom chord and any other mem umed to be User Defined crushir					S C HEESSIN ??
This truss has been * This truss has been will fit between the b		to bearing plate capable of withsta	inding 100 lb uplift at jo	oint(s) 4 exc	cept (jt=lb)	A share a share
This truss has been * This truss has been will fit between the b All bearings are asso Provide mechanical	connection (by others) of truss to		trated load(s) 1670 lb		00 lb up at	SEAL
This truss has been * This truss has been will fit between the b All bearings are asso Provide mechanical 6=288. Hanger(s) or other c	onnection device(s) shall be prov	ovided sufficient to support concen		39 lb up at	7-8-0 on	-
This truss has been * This truss has been will fit between the b All bearings are asso Provide mechanical 6=288. Hanger(s) or other c 1-8-0, 1670 lb down	onnection device(s) shall be pro- and 90 lb up at 3-8-0, and 1670	0 lb down and 90 lb up at 5-8-0, a				= : ()44925 :
This truss has been * This truss has been will fit between the b All bearings are asss Provide mechanical 6=288. Hanger(s) or other c 1-8-0, 1670 lb down bottom chord. The c	onnection device(s) shall be prov and 90 lb up at 3-8-0, and 1670 design/selection of such connecti			50 10 up ut		044925
This truss has been * This truss has been will fit between the b All bearings are asso Provide mechanical 6=288. Hanger(s) or other c 1-8-0, 1670 lb down bottom chord. The c DAD CASE(S) Stand	onnection device(s) shall be prov and 90 lb up at 3-8-0, and 1670 Jesign/selection of such connecti dard	0 lb down and 90 lb up at 5-8-0, a tion device(s) is the responsibility				044925
 This truss has been This truss has been This truss has been This truss has been Will fit between the b All bearings are assisted Provide mechanical 6=288. Hanger(s) or other c 1-8-0, 1670 lb down bottom chord. The c OAD CASE(S) Stand Dead + Roof Live (b) Uniform Loads (plf)	onnection device(s) shall be prov and 90 lb up at 3-8-0, and 1670 design/selection of such connecti dard alanced): Lumber Increase=1.15	0 lb down and 90 lb up at 5-8-0, a tion device(s) is the responsibility				044925
This truss has been * This truss has been will fit between the b All bearings are asso Provide mechanical 6=288. Hanger(s) or other c 1-8-0, 1670 lb down bottom chord. The c DAD CASE(S) Stand Dead + Roof Live (b	onnection device(s) shall be pro- and 90 lb up at 3-8-0, and 1670 design/selection of such connecti dard alanced): Lumber Increase=1.15 i0, 6-7=-20	0 lb down and 90 lb up at 5-8-0, a tion device(s) is the responsibility				COT M SEVIE
This truss has been * This truss has been will fit between the b All bearings are ass Provide mechanical 6=288. Hanger(s) or other c 1-8-0, 1670 lb down bottom chord. The c AD CASE(S) Stanc Dead + Roof Live (b Uniform Loads (pf) Vert: 1-4=-6 Concentrated Loads	onnection device(s) shall be pro- and 90 lb up at 3-8-0, and 1670 design/selection of such connecti dard alanced): Lumber Increase=1.15 i0, 6-7=-20	0 lb down and 90 lb up at 5-8-0, a tion device(s) is the responsibility 5, Plate Increase=1.15				May 28,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria**, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


818 Soundside Road Edenton, NC 27932

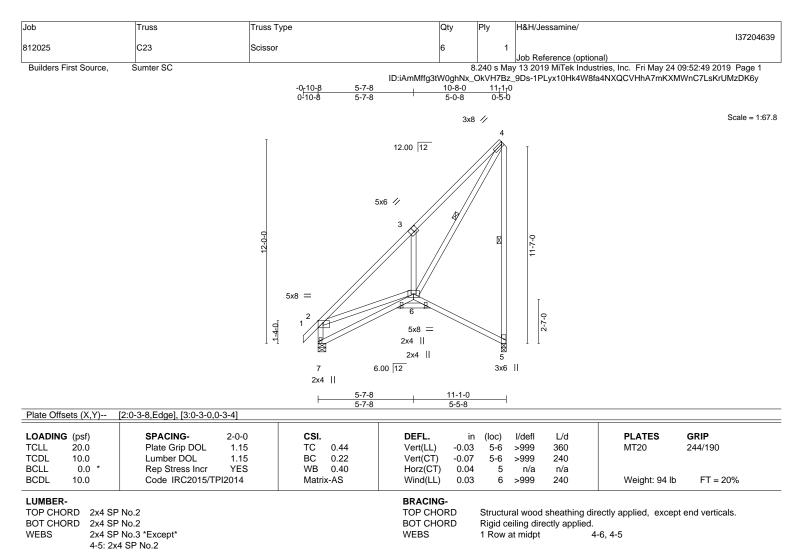
ENGINEERING B

May 28,2019

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

 Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 8 except (jt=lb) 9=105.

REACTIONS. (lb/size) 7=496/0-5-8, 5=429/0-3-8 Max Horz 7=349(LC 12) Max Uplift 5=-244(LC 12) Max Grav 7=496(LC 1), 5=502(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-588/21, 3-4=-690/388, 2-7=-489/184, 4-5=-605/439

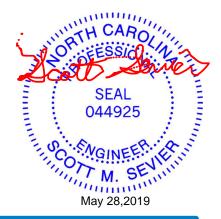
BOT CHORD 6-7=-686/661

WEBS 3-6=-549/463, 4-6=-721/1074, 2-6=-21/253

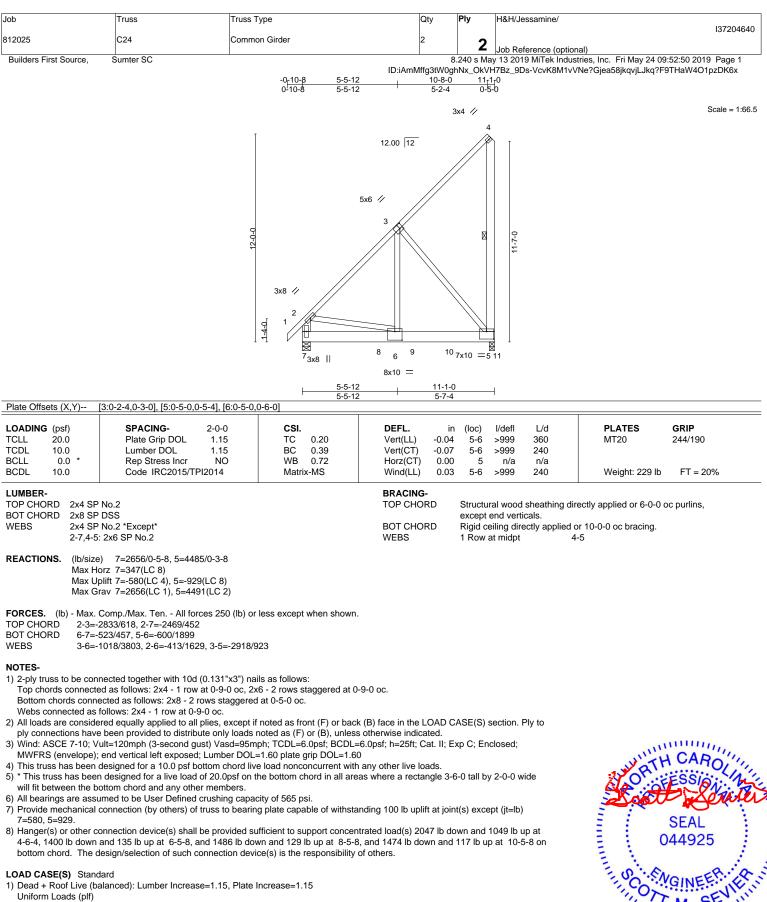
NOTES-

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) All bearings are assumed to be User Defined crushing capacity of 565 psi.


5) Bearing at joint(s) 7, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=244.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Vert: 1-2=-60, 2-4=-60, 5-7=-20

Continued on page 2

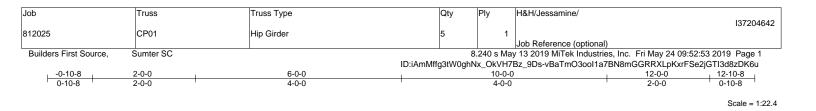
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

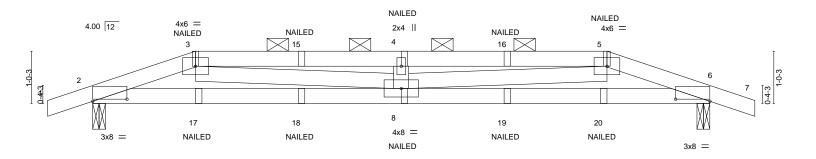
818 Soundside Road Edenton, NC 27932

May 28,2019

Job	Truss	Truss Type	Qty	Ply	H&H/Jessamine/		
					137204640		
812025	C24	Common Girder	2	2			
				_	Job Reference (optional)		
Builders First Source, S	Sumter SC	8.240 s May 13 2019 MiTek Industries, Inc. Fri May 24 09:52:50 2019 Page 2					
		ID:iAmMffg3tW0ghNx_OkVH7Bz_9Ds-VcvK8M1vVNe?Gjea58jkqvjLJkq?F9THaW4O1pzDK6x					

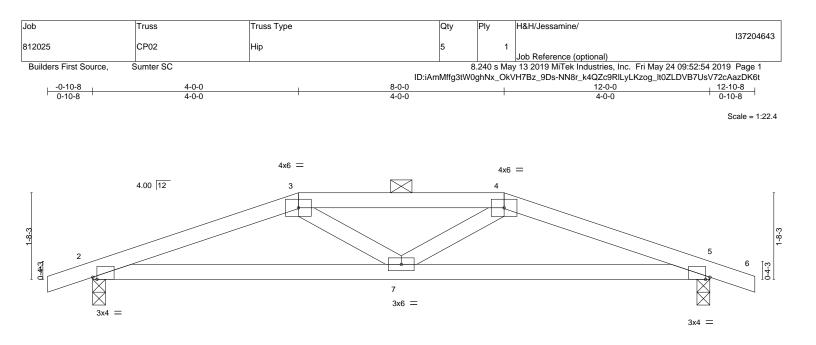
LOAD CASE(S) Standard


Concentrated Loads (lb) Vert: 8=-2047(B) 9=-1390(B) 10=-1390(B) 11=-1396(B)



ob	Truss	Truss Type	Qty	Ply	H&H/Jessamine/		004044
12025	C25	Roof Special Girder	2	2			204641
Builders First Source,	Sumter SC			8.240 s Ma		stries, Inc. Fri May 24 09:52:51 2019 Pa	
		4-3-4	8-6-8	ghNx_OkVł ı	H7Bz_9Ds-zoTiLi2YGI	hnsutDmfrEzM6FXa8CF_eAQpApyZFzDI	K6w
		4-3-4	4-3-4	1			
		2x4				Scale	9 = 1:75.3
		1					
			12.00 12 5x6 × 2 3x6 3	3-4-0			
		6	859104 8x10 = 3x1 HTU26 HTU26 HTU26	5			
		<u>4-3-4</u> 4-3-4	8-6-8 4-3-4	1			
Plate Offsets (X,Y)	[5:0-3-8,0-6-0], [6:Edge,0-3-12]						
OADING (psf) CLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.1		DEFL. i Vert(LL) -0.0	n (loc) 2 4-5	l/defl L/d >999 360	PLATES GRIP MT20 244/190	
CDL 10.0 SCLL 0.0 *	Lumber DOL 1.1 Rep Stress Incr NO	5 BC 0.26	Vert(CT) -0.0 Horz(CT) 0.0	4 4-5	>999 240 n/a n/a		
CDL 10.0	Code IRC2015/TPI2014		Wind(LL) 0.0		>999 240	Weight: 186 lb FT = 20%	
UMBER-			BRACING-				
OP CHORD 2x4 SP OT CHORD 2x8 SP			TOP CHORD		al wood sheathing di and verticals.	irectly applied or 6-0-0 oc purlins,	
/EBS 2x4 SP	No.2		BOT CHORD	Rigid ce	iling directly applied	or 10-0-0 oc bracing.	
Max Ho) 4=3993/0-5-8, 6=3349/0-3- brz 6=-237(LC 4) Dilft 4=-90(LC 5), 6=-392(LC 9)	3	WEBS	1 Row a	ι παρι	1-6	
TOP CHORD 2-3=-2 BOT CHORD 5-6=-2	Comp./Max. Ten All forces 25 1899/70, 3-4≕-2291/35 128/1289 2555/322, 2-5≕-197/3209, 3-5≕	0 (lb) or less except when shown. 115/1531					
		"v2") poile op follower					
Top chords connecte Bottom chords conne Webs connected as 1 2) All loads are conside ply connections have 3) Wind: ASCE 7-10; V/ MWFRS (envelope); 4) This truss has been 5) * This truss has been will fit between the bo	been provided to distribute onlult=120mph (3-second gust) Va end vertical right exposed; Lund designed for a 10.0 psf bottom of designed for a live load of 20.0 totom chord and any other men	-0 oc. aggered at 0-6-0 oc. except if noted as front (F) or back (y loads noted as (F) or (B), unless of sd=95mph; TCDL=6.0psf; BCDL=6 iber DOL=1.60 plate grip DOL=1.60 chord live load nonconcurrent with a lopsf on the bottom chord in all areas ibers.	otherwise indicated. .0psf; h=25ft; Cat. II;) ny other live loads.	Exp C; Enc	blosed;	TH CARO	
 2-ply truss to be com Top chords connecte Bottom chords connecte Bottom chords conne Webs connected as 1 All loads are conside ply connections have Wind: ASCE 7-10; V/ MWFRS (envelope); This truss has been will fit between the bois) All bearings are assu Provide mechanical of 6=392. Use Simpson Strong starting at 1-8-0 from 	ed as follows: 2x4 - 1 row at 0-9 octed as follows: 2x8 - 2 rows st follows: 2x4 - 1 row at 0-9-0 oc. red equally applied to all plies, the been provided to distribute onl ult=120mph (3-second gust) Va end vertical right exposed; Lun designed for a 10.0 psf bottom of designed for a 10.0 psf bottom of designed for a live load of 20.0. bottom chord and any other men imed to be User Defined crushi connection (by others) of truss t -Tie HTU26 (20-10d Girder, 11-	-0 oc. aggered at 0-6-0 oc. except if noted as front (F) or back (y loads noted as (F) or (B), unless of sd=95mph; TCDL=6.0psf; BCDL=6 iber DOL=1.60 plate grip DOL=1.60 chord live load nonconcurrent with a lopsf on the bottom chord in all areas ibers. ng capacity of 565 psi. o bearing plate capable of withstand 10dx1 1/2 Truss, Single Ply Girder) truss(es) to back face of bottom chord	otherwise indicated. Opsf; h=25ft; Cat. II; iny other live loads. s where a rectangle 3 ding 100 lb uplift at jo or equivalent spaced	Exp C; Enc -6-0 tall by nt(s) 4 exc	closed; 2-0-0 wide rept (jt=lb)	SEAL 044925	we
 2-ply truss to be com Top chords connecte Bottom chords connecte Bottom chords connected Webs connected as 4 All loads are conside ply connections have Wind: ASCE 7-10; Vi MWFRS (envelope); This truss has been will fit between the bis All bearings are assu Provide mechanical of 6=392. Use Simpson Strong starting at 1-8-0 from Fill all nail holes whe 	ed as follows: 2x4 - 1 row at 0-9 acted as follows: 2x8 - 2 rows st follows: 2x4 - 1 row at 0-9 oc. red equally applied to all plies, been provided to distribute onl ult=120mph (3-second gust) Va end vertical right exposed; Lun designed for a 10.0 psf bottom on designed for a live load of 20.0 ottom chord and any other mer immed to be User Defined crushi connection (by others) of truss t -Tie HTU26 (20-10d Girder, 11- the left end to 7-8-0 to connect re hanger is in contact with lum lard	-0 oc. aggered at 0-6-0 oc. except if noted as front (F) or back (y loads noted as (F) or (B), unless of sd=95mph; TCDL=6.0psf; BCDL=6 her DOL=1.60 plate grip DOL=1.60 chord live load nonconcurrent with a opsf on the bottom chord in all areas hers. ng capacity of 565 psi. o bearing plate capable of withstand 10dx1 1/2 Truss, Single Ply Girder) truss(es) to back face of bottom ch ber.	otherwise indicated. Opsf; h=25ft; Cat. II; iny other live loads. s where a rectangle 3 ding 100 lb uplift at jo or equivalent spaced	Exp C; Enc -6-0 tall by nt(s) 4 exc	closed; 2-0-0 wide rept (jt=lb)	SEAL 044925	inte
 2-ply truss to be com Top chords connected Bottom chords connected Webs connected as if All loads are conside ply connections have Wind: ASCE 7-10; V/ MWFRS (envelope); This truss has been will fit between the bo All bearings are assu Provide mechanical of 6=392. Use Simpson Strong starting at 1-8-0 from Fill all nail holes whe OAD CASE(S) Stand Dead + Roof Live (be Uniform Loads (plf) 	ad as follows: 2x4 - 1 row at 0-9 octed as follows: 2x8 - 2 rows st follows: 2x4 - 1 row at 0-9-0 oc. red equally applied to all plies, been provided to distribute onl ult=120mph (3-second gust) Va end vertical right exposed; Lun designed for a 10.0 psf bottom of designed for a 10.0 psf bottom totom chord and any other merr umed to be User Defined crushi connection (by others) of truss t -Tie HTU26 (20-10d Girder, 11- the left end to 7-8-0 to connect re hanger is in contact with lum lard alanced): Lumber Increase=1.18	-0 oc. aggered at 0-6-0 oc. except if noted as front (F) or back (y loads noted as (F) or (B), unless of sd=95mph; TCDL=6.0psf; BCDL=6 her DOL=1.60 plate grip DOL=1.60 chord live load nonconcurrent with a opsf on the bottom chord in all areas hers. ng capacity of 565 psi. o bearing plate capable of withstand 10dx1 1/2 Truss, Single Ply Girder) truss(es) to back face of bottom ch ber.	otherwise indicated. Opsf; h=25ft; Cat. II; iny other live loads. s where a rectangle 3 ding 100 lb uplift at jo or equivalent spaced	Exp C; Enc -6-0 tall by nt(s) 4 exc	closed; 2-0-0 wide rept (jt=lb)	SEAL 044925	in the
 2-ply truss to be com Top chords connecte Bottom chords connecte Bottom chords conne Webs connected as f All loads are conside ply connections have Wind: ASCE 7-10; V/ MWFRS (envelope); This truss has been of the trust has been of trust has been of the trust has been of trust has been of the trust has been of t	ed as follows: 2x4 - 1 row at 0-9 octed as follows: 2x8 - 2 rows st follows: 2x4 - 1 row at 0-9-0 oc. red equally applied to all plies, been provided to distribute onl ult=120mph (3-second gust) Va end vertical right exposed; Lun designed for a 10.0 psf bottom of a designed for a live load of 20.0 ottom chord and any other merr uned to be User Defined crushi connection (by others) of truss t -Tie HTU26 (20-10d Girder, 11- the left end to 7-8-0 to connect re hanger is in contact with lum lard alanced): Lumber Increase=1.15 0, 4-6=-20	-0 oc. aggered at 0-6-0 oc. except if noted as front (F) or back (y loads noted as (F) or (B), unless of sd=95mph; TCDL=6.0psf; BCDL=6 her DOL=1.60 plate grip DOL=1.60 chord live load nonconcurrent with a opsf on the bottom chord in all areas hers. ng capacity of 565 psi. o bearing plate capable of withstand 10dx1 1/2 Truss, Single Ply Girder) truss(es) to back face of bottom ch ber.	otherwise indicated. Opsf; h=25ft; Cat. II; iny other live loads. s where a rectangle 3 ding 100 lb uplift at jo or equivalent spaced	Exp C; Enc -6-0 tall by nt(s) 4 exc	closed; 2-0-0 wide rept (jt=lb)		in the

May 28,2019



H	<u>6-0-0</u> 6-0-0			<u>12-0-0</u> 6-0-0						
Plate Offsets (X,Y)	[2:0-8-0,0-0-8], [6:0-8-0,0-0-8]									
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.40 BC 0.48 WB 0.22 Matrix-MS	DEFL. ii Vert(LL) -0.09 Vert(CT) -0.18 Horz(CT) 0.02 Wind(LL) 0.13	8 8 >804 240 2 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 51 lb FT = 20%					
	≥ No.2 No.2 ≥) 2=549/0-3-0, 6=549/0-3-0		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d 2-0-0 oc purlins (3-9-9 max.) Rigid ceiling directly applied						
Max U	orz 2=14(LC 4) plift 2=-228(LC 4), 6=-228(LC 5)									
TOP CHORD 2-3=- BOT CHORD 2-8=-	BOT CHORD 2-8=-456/1156, 6-8=-458/1157									
 2) Wind: ASCE 7-10; V MWFRS (envelope); 3) Provide adequate dr 4) This truss has been 5) * This truss has been b) * This truss has been b) * This truss has been c) * This truss has been <lic) *="" been<="" has="" li="" this="" truss=""> <lic) *="" td="" this<=""><td>e loads have been considered for this de 'ult=120mph (3-second gust) Vasd=95m end vertical left and right exposed; porc ainage to prevent water ponding. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on t ottom chord and any other members. connection (by others) of truss to bearin resentation does not depict the size or th 3-10d Nails (0.148" x 3") toe-nails per N S) section, loads applied to the face of th truss is designed as an individual buildin s the responsibility of the building design dard alanced): Lumber Increase=1.15, Plate I</td><td>ph; TCDL=6.0psf; BCDL= th left and right exposed; L e load nonconcurrent with he bottom chord in all area g plate capable of withstar e orientation of the purlin DS guidelines. the truss are noted as front og component. The suitat ler per ANSI TPI 1 as refe</td><td>Lumber DOL=1.60 plate any other live loads. as where a rectangle 3- nding 100 lb uplift at joi along the top and/or bo (F) or back (B). billity and use of this cor</td><td>e grip DOL=1.60 6-0 tall by 2-0-0 wide nt(s) except (jt=lb) ttom chord. nponent for any</td><td>SEAL 044925</td></lic)></lic)>	e loads have been considered for this de 'ult=120mph (3-second gust) Vasd=95m end vertical left and right exposed; porc ainage to prevent water ponding. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on t ottom chord and any other members. connection (by others) of truss to bearin resentation does not depict the size or th 3-10d Nails (0.148" x 3") toe-nails per N S) section, loads applied to the face of th truss is designed as an individual buildin s the responsibility of the building design dard alanced): Lumber Increase=1.15, Plate I	ph; TCDL=6.0psf; BCDL= th left and right exposed; L e load nonconcurrent with he bottom chord in all area g plate capable of withstar e orientation of the purlin DS guidelines. the truss are noted as front og component. The suitat ler per ANSI TPI 1 as refe	Lumber DOL=1.60 plate any other live loads. as where a rectangle 3- nding 100 lb uplift at joi along the top and/or bo (F) or back (B). billity and use of this cor	e grip DOL=1.60 6-0 tall by 2-0-0 wide nt(s) except (jt=lb) ttom chord. nponent for any	SEAL 044925					
Uniform Loads (plf) Vert: 1-3=-6 Concentrated Loads	(lb)				044925					

Vert: 8=-6(B) 17=-6(B) 18=-6(B) 19=-6(B) 20=-6(B)

May 28,2019

Plate Offsets (X,Y)	<u>6-0-0</u> <u>6-0-0</u> [2:0-1-0,Edge], [5:0-1-0,Edge]			12-0-0 6-0-0		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.31 BC 0.35 WB 0.08 Matrix-AS	DEFL. ir Vert(LL) 0.08 Vert(CT) -0.07 Horz(CT) 0.02	7-13 >999 240 7-13 >999 240	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
LUMBER- BRACING- TOP CHORD 2x4 SP No.2 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2-0-0 oc purlins (5-7-3 max.): 3-4. WEBS 2x4 SP No.3 BOT CHORD Rigid ceiling directly applied. REACTIONS. (lb/size) 2=533/0-3-0, 5=532/0-3-0 BOT CHORD Rigid ceiling directly applied.						
Max Horz 2=-31(LC 13) Max Uplift 2=-281(LC 8), 5=-281(LC 9) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-989/1049, 3-4=-1017/1236, 4-5=-989/1049 BOT CHORD 2-7=-940/922, 5-7=-943/922 WEBS 3-7=-254/214, 4-7=-254/214						
 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 						

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=281, 5=281.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

AMITEK AMITEK AMITEK

	<u>6-0-0</u> 6-0-0			12-0-0 6-0-0	
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Des Strass lass	CSI. TC 0.37 BC 0.42	DEFL. in (loc) Vert(LL) 0.09 6-12 Vert(CT) -0.09 6-12	l/defl L/d >999 240 >999 240	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.10 Matrix-AS	Horz(CT) 0.01 4	n/a n/a	Weight: 42 lb FT = 20%

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

```
LUMBER-
```

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.3

REACTIONS. (lb/size) 2=533/0-3-0, 4=532/0-3-0 Max Horz 2=-44(LC 13) Max Uplift 2=-268(LC 8), 4=-268(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-889/982, 3-4=-889/982

BOT CHORD 2-6=-857/813, 4-6=-857/813

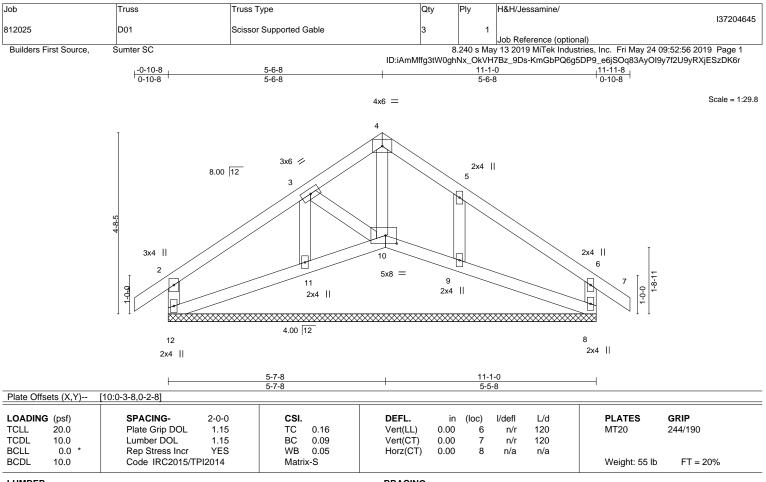
WEBS 3-6=-330/265

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=268. 4=268.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LUMBER-		BRACING-	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,
BOT CHORD	2x4 SP No.2		except end verticals.
WEBS	2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
OTHERS	2x4 SP No.3		

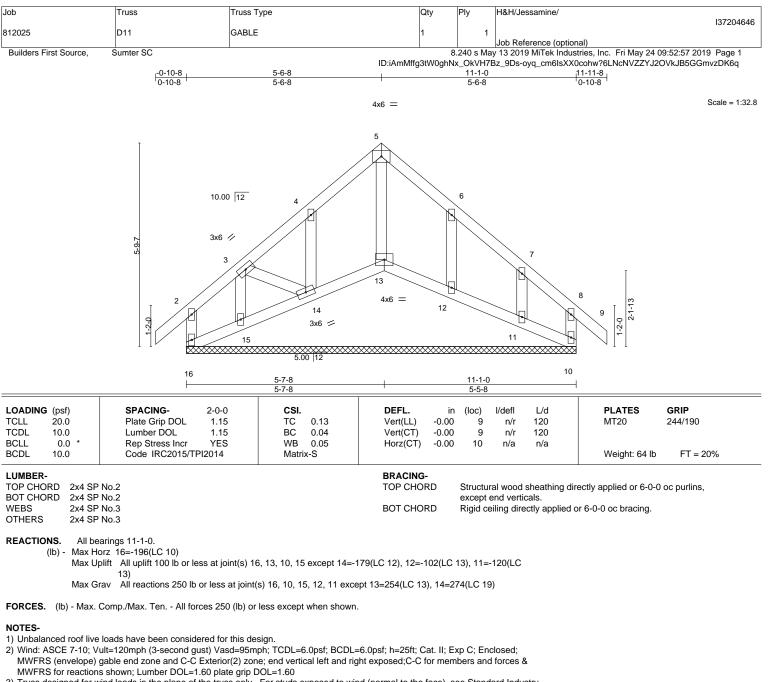
REACTIONS. All bearings 11-1-0.

Max Horz 12=-157(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 12, 8, 11 except 10=-179(LC 11), 9=-130(LC 13) Max Grav All reactions 250 lb or less at joint(s) 12, 8 except 10=263(LC 8), 11=278(LC 20), 9=278(LC 20)

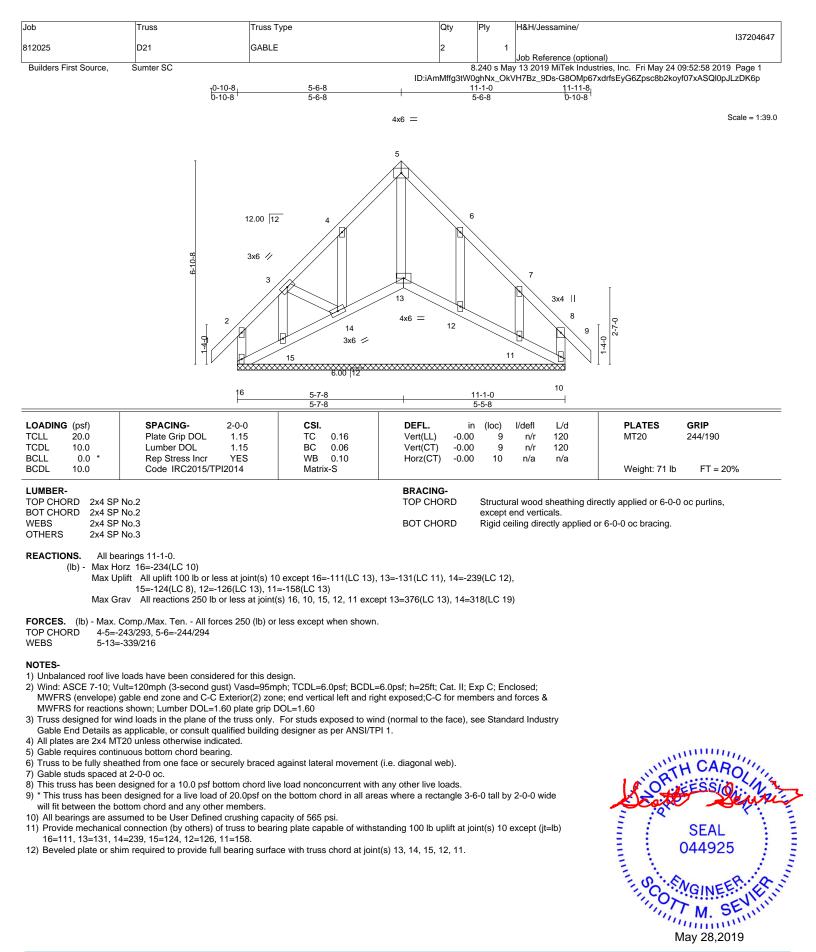
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

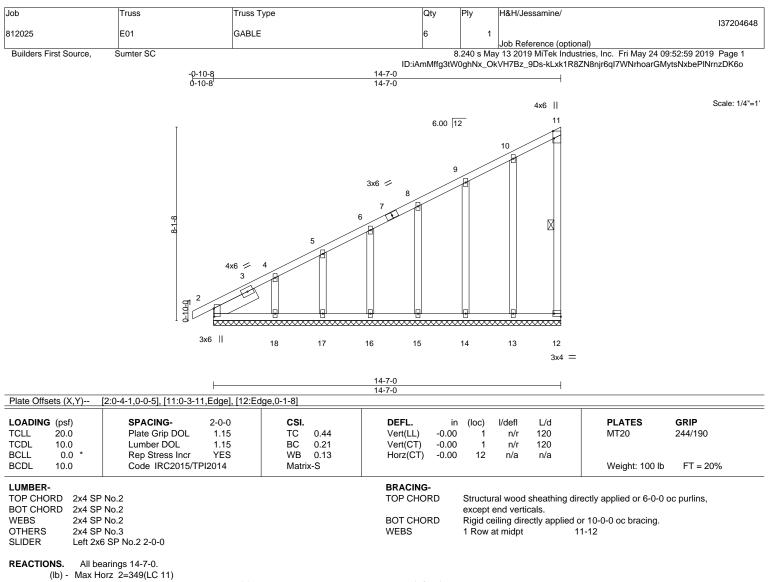

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 8, 11 except (jt=lb) 10=179, 9=130.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 10, 11, 9.

818 Soundside Road Edenton, NC 27932


🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOI ES ON THIS AND INCLUDED MILER REFERENCE FACE INFORMATION TO BE ONE OPEN
Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
ANSUPPI Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

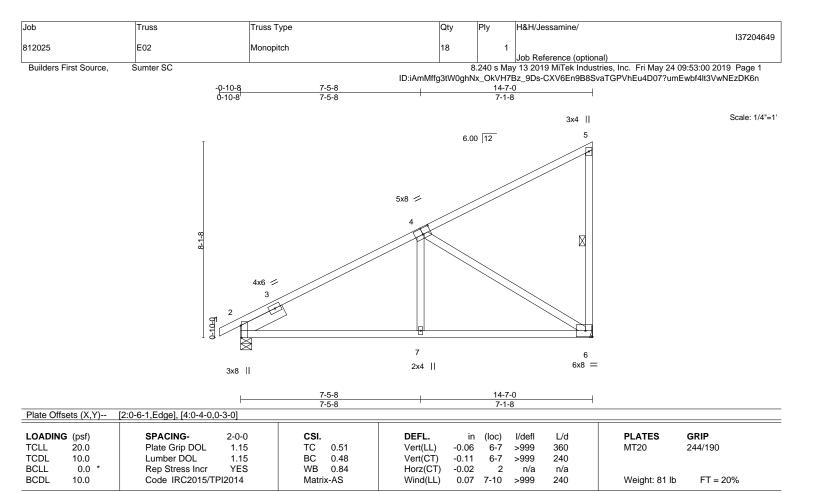
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 13, 10, 15 except (jt=lb) 14=179, 12=102, 11=120.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 13, 14, 15, 12, 11.



818 Soundside Road Edenton, NC 27932

Max Uplift All uplift 100 lb or less at joint(s) 12, 2, 13, 14, 15, 16, 17 except 18=-140(LC 12) Max Grav All reactions 250 lb or less at joint(s) 12, 2, 13, 14, 15, 16, 17, 18

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


TOP CHORD 2-4=-550/287, 4-5=-413/232, 5-6=-365/217, 6-8=-305/196

NOTES- (10)

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 2, 13, 14, 15, 16, 17 except (jt=lb) 18=140.
- 10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932

WEBS

TOP CHORD

BOT CHORD

LUMBER-

WEBS

SLIDER REACTIONS.

TOP CHORD

BOT CHORD

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

Left 2x6 SP No.2 2-0-0

Max Horz 2=337(LC 12)

TOP CHORD 2-4=-566/72

BOT CHORD 2-7=-330/580, 6-7=-331/579

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

WEBS 4-7=0/313, 4-6=-661/381

NOTES- (8

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

All bearings are assumed to be User Defined crushing capacity of 565 psi.

(lb/size) 2=632/0-5-8, 6=576/Mechanical

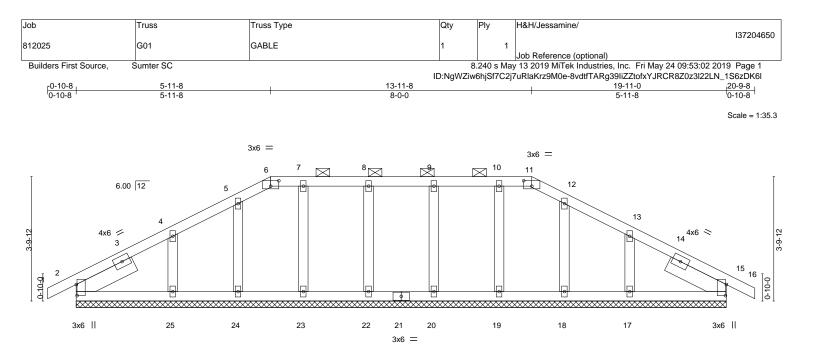
Max Uplift 2=-79(LC 12), 6=-239(LC 12)

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 6=239.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.


818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied, except end verticals.

5-6

Rigid ceiling directly applied.

1 Row at midpt

OADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	0.00	15	n/r	120	MT20	244/190
CDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	0.00	15	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	15	n/a	n/a		
CDL	10.0	Code IRC2015/T	PI2014	Matrix	k-S						Weight: 107 lb	FT = 20%

10 11 0

OTHERS 2x4 SP No.3 SLIDER Left 2x6 SP No.2 1-11-12, Right 2x6 SP No.2 1-11-12 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

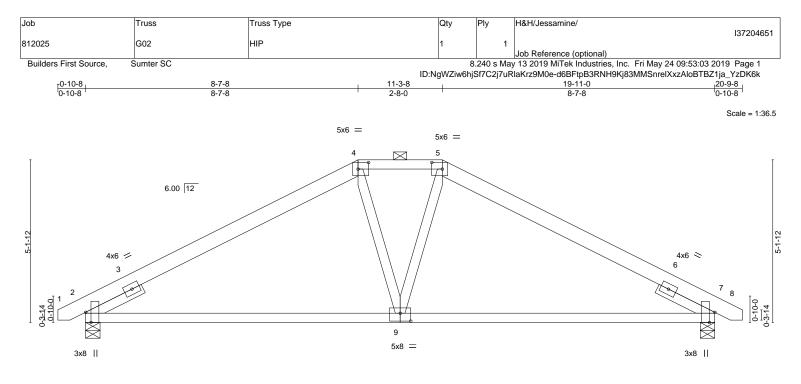
REACTIONS. All bearings 19-11-0.

Max Horz 2=-44(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 22, 23, 24, 25, 20, 19, 18, 17, 15 Max Grav All reactions 250 lb or less at joint(s) 2, 22, 23, 24, 25, 20, 19, 18, 17, 15

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 22, 23, 24, 25, 20, 19, 18, 17, 15.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS ON TIPS REPREVED PAGE MIT-14/3 reference of the second secon fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	<u>9-11-8</u> 9-11-8						<u>19-11-0</u> 9-11-8		
Plate Offsets (X,Y)	[2:0-3-14,Edge], [4:0-4-0,0-2-8], [5:0-4-(0,0-2-8], [7:0-3-14,Edge], [9:0-4-0,0-3-0]				0110	1	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.39 BC 0.79 WB 0.10 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.11 -0.25 0.02 0.05	2	l/defl >999 >967 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 104 lb	GRIP 244/190 FT = 20%
4-5: 2 BOT CHORD 2x4 S WEBS 2x4 S	P No.2 *Except* tx4 SP No.2 iP No.2 iP No.3 x4 SP No.3 1-11-12, Right 2x4 SP No.3 1	1-11-12	BRACING- TOP CHOR BOT CHOR	D	2-0-0 o	c purlins	sheathing dii (5-10-4 max. ectly applied.	rectly applied, except): 4-5.	
	ze) 2=838/0-5-8, 7=838/0-5-8 Horz 2=59(LC 11) Uplift 2=-35(LC 12), 7=-35(LC 13)								

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-945/337, 4-5=-870/367, 5-7=-945/337

BOT CHORD

2-9=-149/840, 7-9=-149/840

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

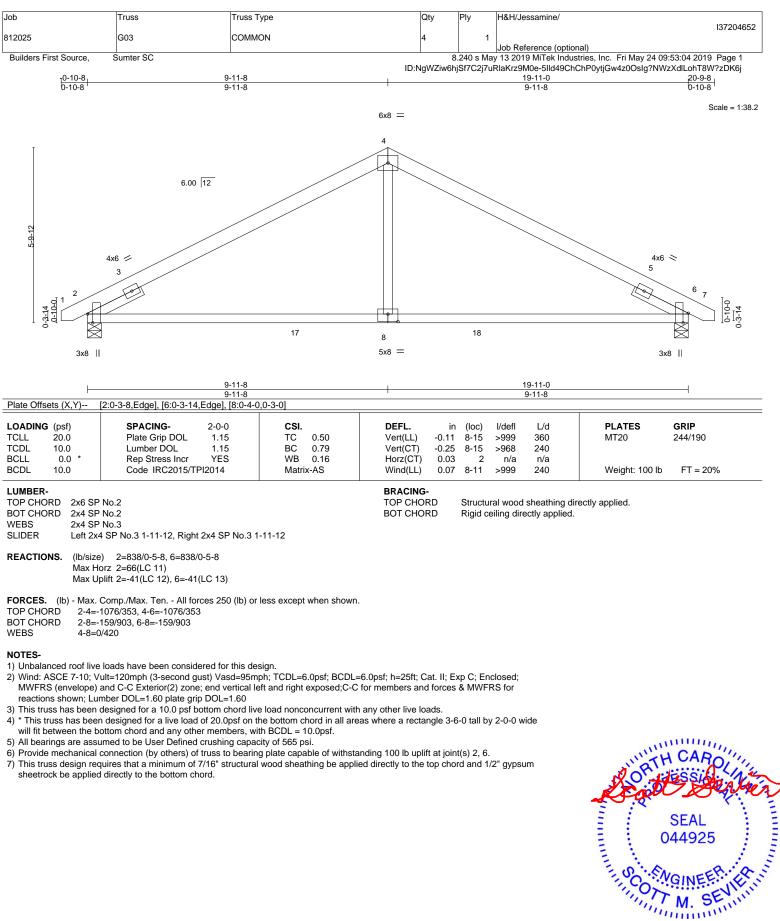
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

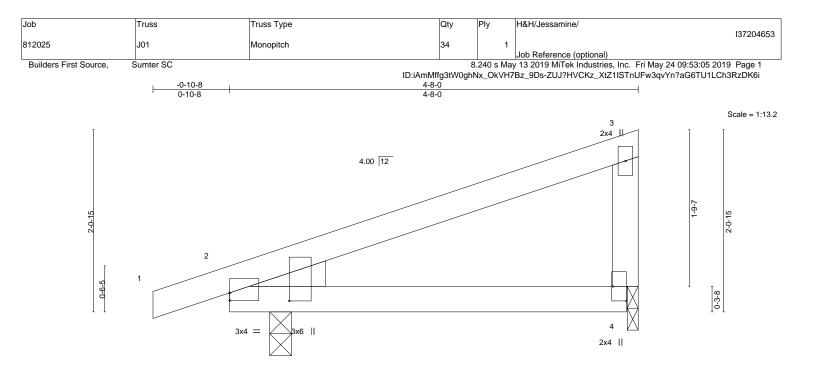
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.


8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-14's rev. Towasons beroke osc. Design valid for use only with MiTeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

May 28,2019

0-5-8 0-5-8 Plate Offsets (X,Y)--[2:0-0-0,0-1-1], [2:0-1-2,0-8-3], [4:Edge,0-1-14]

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.19	Vert(LL) 0.03 4-9 >999 240	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.19	Vert(CT) -0.02 4-9 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.01 2 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS		Weight: 19 lb FT = 20%
LUMBER-			BRACING-	

TOP CHORD

BOT CHORD

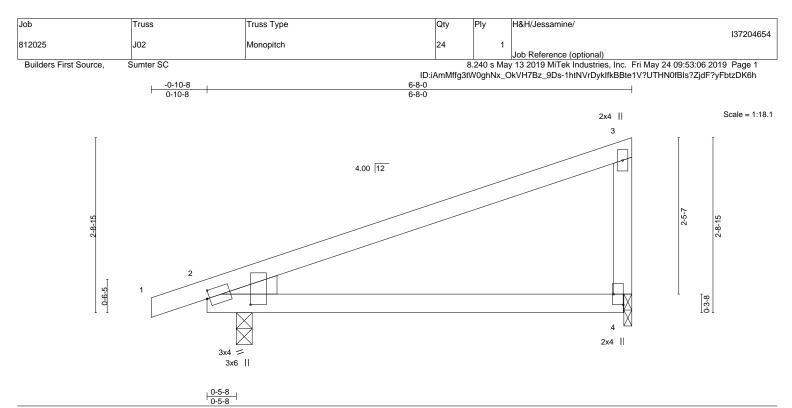
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3

REACTIONS. (lb/size) 2=265/0-3-0, 4=149/0-1-8 Max Horz 2=84(LC 8) Max Uplift 2=-139(LC 8), 4=-91(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=139.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.



Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 1003/2016 Sec. 1005/2016 Sec. Design valid for use only with MITER & connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Off	sets (X,Y)	[2:0-0-8,0-1-8], [2:0-1-2,0)-8-3], [4:Edge	,0-1-14]								
	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.49	Vert(LL)	0.17	4-9	>461	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.45	Vert(CT)	-0.12	4-9	>652	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.02	2	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matri	x-AS						Weight: 26 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

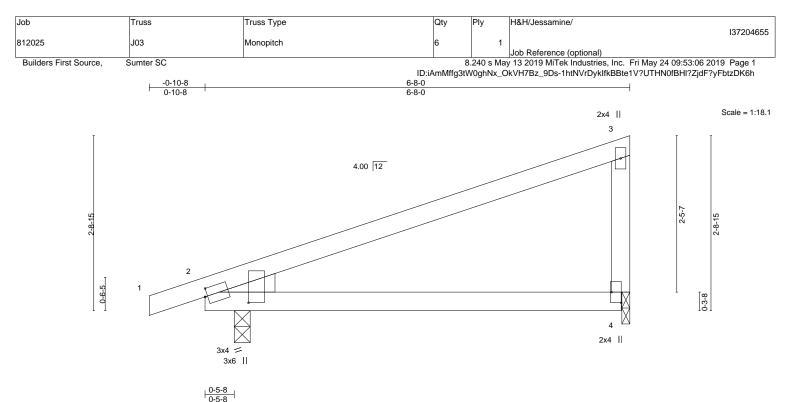
 WEBS
 2x4 SP No.3

 WEDGE
 Left: 2x4 SP No.3

REACTIONS. (Ib/size) 2=341/0-3-0, 4=233/0-1-8 Max Horz 2=114(LC 8) Max Uplift 2=-172(LC 8), 4=-140(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=172, 4=140.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

Plate Offsets	s (X,Y)	[2:0-0-8,0-1-8], [2:0-1-2,0	0-8-3], [4:Edge	,0-1-14]								
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 2	20.0	Plate Grip DOL	1.15	тс	0.49	Vert(LL)	0.17	4-9	>455	240	MT20	244/190
TCDL 1	0.0	Lumber DOL	1.15	BC	0.45	Vert(CT)	-0.12	4-9	>652	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.02	2	n/a	n/a		
BCDL 1	0.0	Code IRC2015/T	PI2014	Matri	x-AS						Weight: 26 lb	FT = 20%

TOP CHORD

BOT CHORD

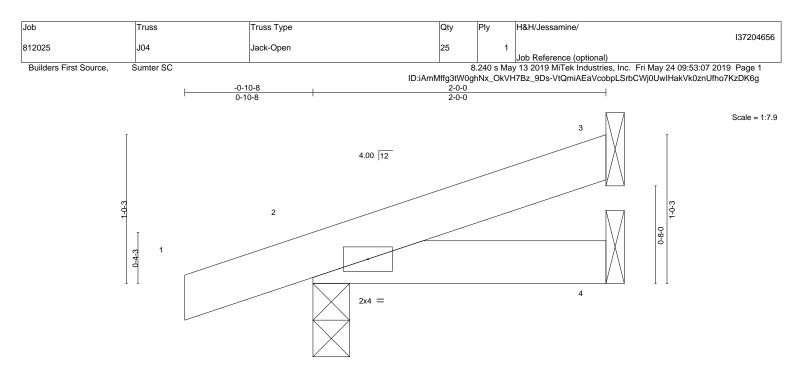
LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3WEDGELeft: 2x4 SP No.3

REACTIONS. (Ib/size) 2=341/0-3-0, 4=233/0-1-8 Max Horz 2=119(LC 11) Max Uplift 2=-183(LC 8), 4=-129(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be User Defined crushing capacity of 565 psi.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=183, 4=129.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

			2-0-0			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	()	l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.05	Vert(LL) 0.00	7	>999 240	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.04	Vert(CT) -0.00	7	>999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00	3	n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP				Weight: 8 lb FT = 20%

BRACING-TOP CHORD

BOT CHORD

200

Structural wood sheathing directly applied or 2-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

```
LUMBER-
```

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (Ib/size) 3=43/Mechanical, 2=144/0-3-0, 4=25/Mechanical Max Horz 2=47(LC 8) Max Uplift 3=-25(LC 8), 2=-87(LC 8), 4=-12(LC 8) Max Grav 3=43(LC 1), 2=144(LC 1), 4=33(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

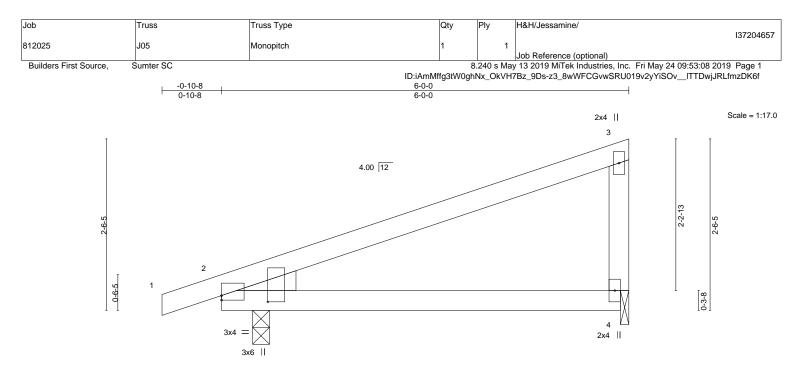
NOTES-

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; porch left and right exposed;C-C for

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.

Plate Offsets (X,Y) [2:0-0-0,0-0-13], [2:0-1-2,0-8-3]											
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.38	Vert(LL)	0.11	4-9	>647	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.35	Vert(CT)	-0.07	4-9	>939	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	2	n/a	n/a		
BCDL 10.0	Code IRC2015/TF	PI2014	Matri	x-AS						Weight: 24 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 WEDGE
 Left: 2x4 SP No.3

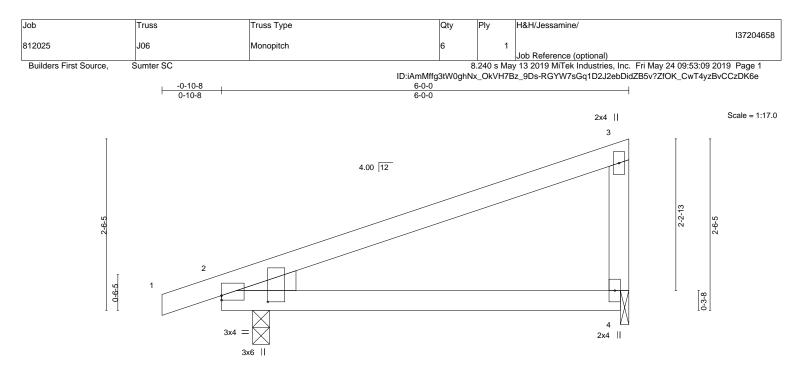
REACTIONS. (lb/size) 2=315/0-3-0, 4=206/0-1-8 Max Horz 2=74(LC 8) Max Uplift 2=-110(LC 8), 4=-84(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

0 5 0


- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be User Defined crushing capacity of 565 psi.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=110.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

Plate Offsets (X,Y) [2:0-0-0,0-0-13], [2:0-1-2,0-8-3]											
_OADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.38	Vert(LL)	0.11	4-9	>647	240	MT20	244/190
CDL 10.0	Lumber DOL	1.15	BC	0.35	Vert(CT)	-0.07	4-9	>939	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	2	n/a	n/a		
BCDL 10.0	Code IRC2015/T	PI2014	Matrix	x-AS						Weight: 24 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

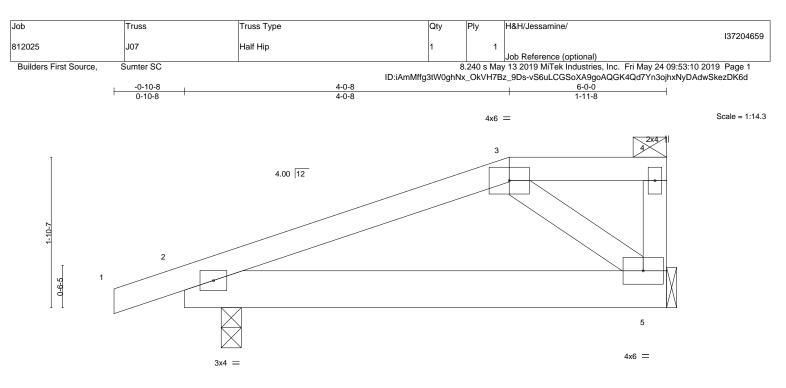
 WEBS
 2x4 SP No.3

 WEDGE
 Left: 2x4 SP No.3

REACTIONS. (lb/size) 2=315/0-3-0, 4=206/0-1-8 Max Horz 2=74(LC 8) Max Uplift 2=-110(LC 8), 4=-84(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=110.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

	<u> 0-5-8</u> 0-5-8		<u>6-0-0</u> 5-6-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.14 BC 0.13 WB 0.05 Matrix-AS	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 5-10 >999 360 Vert(CT) -0.02 5-10 >999 240 Horz(CT) -0.00 2 n/a n/a Wind(LL) 0.02 5-10 >999 240	PLATES GRIP MT20 244/190 Weight: 29 lb FT = 20%

TOP CHORD

BOT CHORD

2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied.

LUMBER-

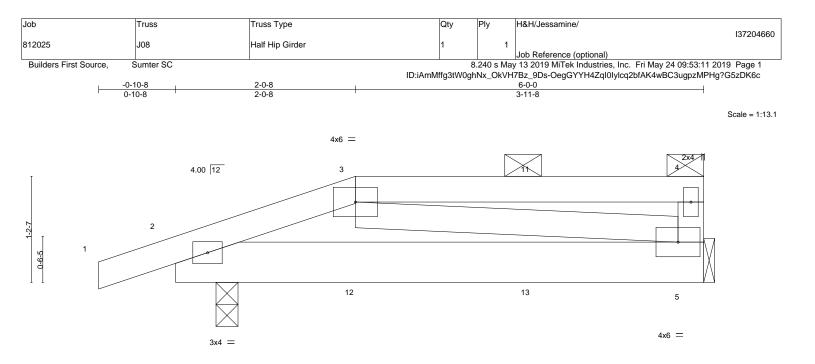
TOP CHORD 2x4 SP No.2 2x6 SP No.2 BOT CHORD

WEBS 2x4 SP No.3

REACTIONS. 2=315/0-3-0, 5=206/Mechanical (lb/size) Max Horz 2=55(LC 8) Max Uplift 2=-117(LC 8), 5=-77(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left exposed;C-C for
- members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 2=117.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied, except end verticals, and

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS ON TIPS REPRETED FACE PAGE MIT-1473 refer to 10052000 to 2005. Design valid for use only with MTRK deconnectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	<u>0-5-8</u> 0-5-8		6-0-0 5-6-8			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP MT20 244/190		
TCLL 20.0	Plate Grip DOL 1.15	TC 0.31	Vert(LL) -0.01 5-10 >999 360			
TCDL 10.0	Lumber DOL 1.15	BC 0.13	Vert(CT) -0.01 5-10 >999 240			
BCLL 0.0 *	Rep Stress Incr NO	WB 0.06	Horz(CT) 0.00 5 n/a n/a	Weight: 31 lb FT = 20%		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP	Wind(LL) 0.01 5-10 >999 240			

LUMBER-

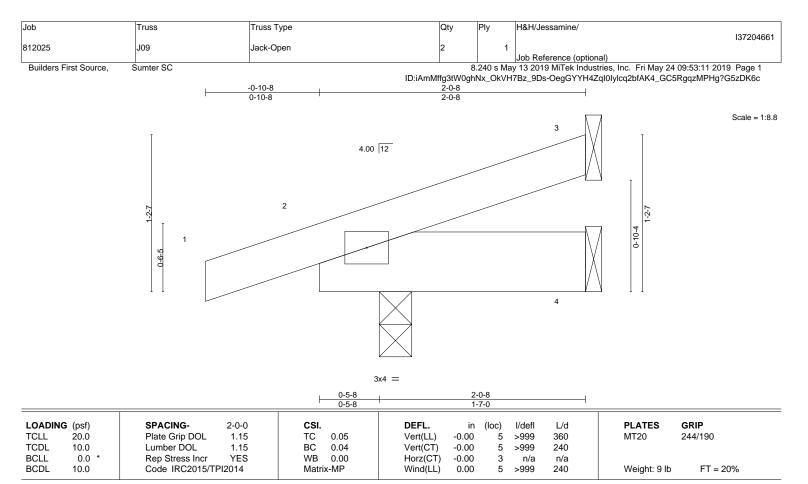
TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

- REACTIONS. (lb/size) 5=198/Mechanical, 2=308/0-3-0 Max Horz 2=35(LC 4) Max Uplift 5=-74(LC 4), 2=-123(LC 4)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-256/81

NOTES-


- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left exposed; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 2=123.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 10 lb down and 11 lb up at 2-0-8, and 10 lb down and 11 lb up at 4-1-4 on top chord, and 26 lb down and 16 lb up at 2-1-4, and 26 lb down and 16 lb up at 4-1-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
- Vert: 1-3=-60, 3-4=-60, 5-6=-20
- Concentrated Loads (lb)
 - Vert: 12=8(F) 13=8(F)

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2

REACTIONS. (lb/size) 3=26/Mechanical, 2=186/0-3-0, 4=-2/Mechanical Max Horz 2=34(LC 8) Max Uplift 3=-11(LC 12), 2=-77(LC 8), 4=-8(LC 9) Max Grav 3=26(LC 1), 2=186(LC 1), 4=21(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left exposed;C-C for

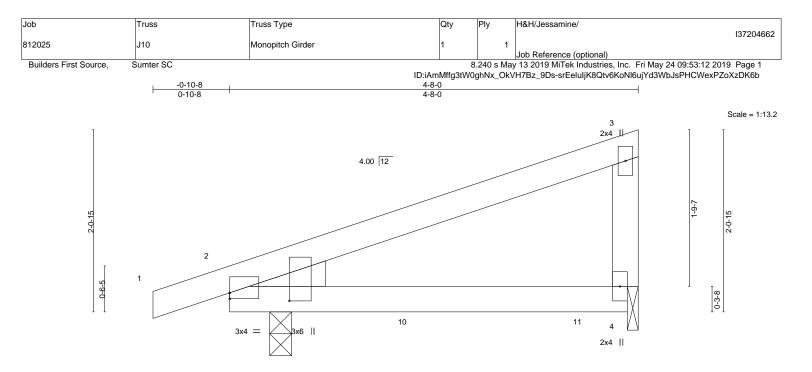
members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.

Structural wood sheathing directly applied or 2-0-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

Plate Offsets (X,Y)	[2:0-0-0,0-0-13], [2:0-1-2,0-8-3]		4-8-0 4-2-8		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.40 BC 0.54 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl Vert(LL) -0.03 4-9 >999 Vert(CT) -0.07 4-9 >798 Horz(CT) 0.01 2 n/a Wind(LL) 0.04 4-9 >999	360 240 n/a	PLATES GRIP MT20 244/190 Weight: 19 lb FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.2

 WEDGE
 Left: 2x4 SP No.3

REACTIONS. (Ib/size) 2=391/0-3-0, 4=393/0-1-8 Max Horz 2=66(LC 7) Max Uplift 2=-111(LC 4), 4=-132(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

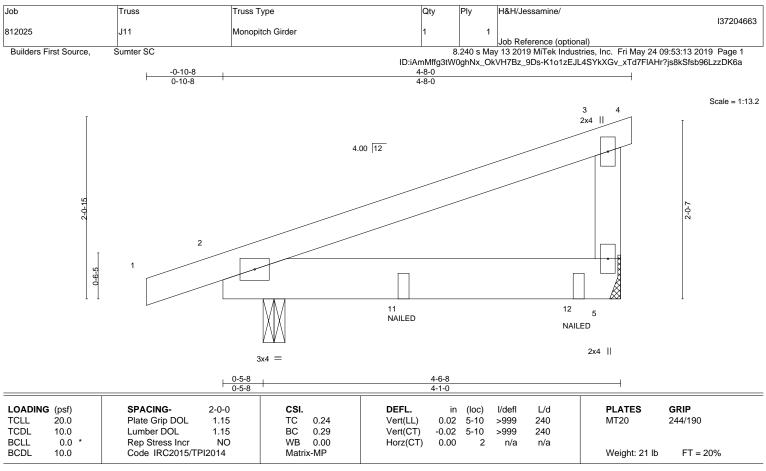
- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=111, 4=132.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 178 lb down and 97 lb up at 2-1-4, and 191 lb down and 94 lb up at 4-1-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 4-5=-20 Concentrated Loads (lb)

Vert: 10=-178(B) 11=-191(B)



Structural wood sheathing directly applied or 4-8-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

LUMBER-

TOP CHORD 2x4 SP No.2 2x6 SP No.2 BOT CHORD 2x4 SP No.2 WEBS

BRACING-TOP CHORD

Structural wood sheathing directly applied or 4-8-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

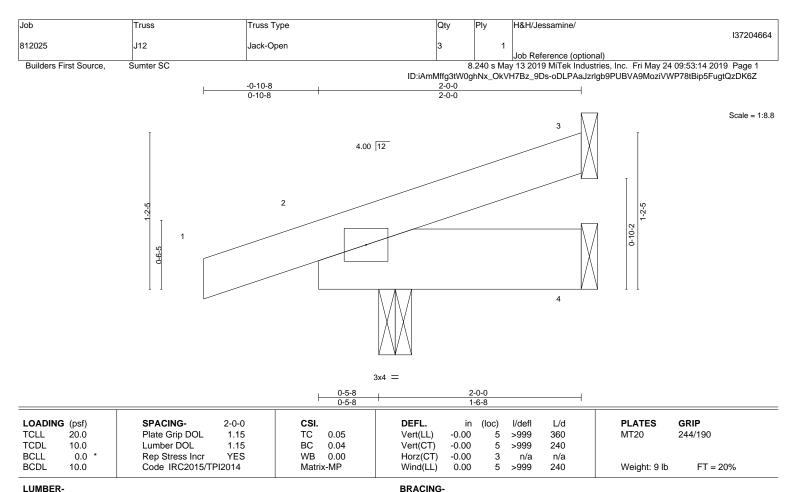
REACTIONS. (lb/size) 5=415/Mechanical, 2=389/0-3-0 Max Horz 2=61(LC 19) Max Uplift 5=-165(LC 4), 2=-145(LC 4)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left exposed ; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 5=165, 2=145.
- 7) "NAILED" indicates 3-10d Nails (0.148" x 3") toe-nails per NDS guidelines.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard


- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf) Vert: 1-3=-60, 3-4=-20, 5-6=-20 Concentrated Loads (lb)

Vert: 11=-187(B) 12=-208(B)

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS ON TIPS REPRETED FACE PAGE MIT-1473 refer to 10052000 to 2005. Design valid for use only with MTRK deconnectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 2-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

```
LUMBER-
```

TOP CHORD 2x4 SP No.2 2x6 SP No.2 BOT CHORD

REACTIONS. 3=27/Mechanical, 4=-2/Mechanical, 2=187/0-3-0 (lb/size) Max Horz 2=34(LC 8) Max Uplift 3=-11(LC 12), 4=-9(LC 9), 2=-77(LC 8) Max Grav 3=27(LC 1), 4=21(LC 3), 2=187(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

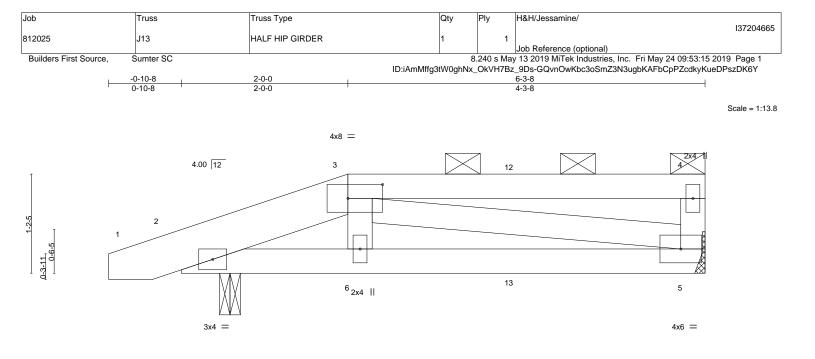
1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left exposed;C-C for

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) All bearings are assumed to be User Defined crushing capacity of 565 psi.


5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 2.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 1003/2016 Sec. 1005/2016 Sec. Design valid for use only with MITER & connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		-0-0 -6-8	6-3-8 4-3-8	
Plate Offsets (X,Y)	[3:0-5-0,0-2-0]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.38 BC 0.22 WB 0.08 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 5-6 >999 360 Vert(CT) -0.02 5-6 >999 240 Horz(CT) 0.00 5 n/a n/a Wind(LL) 0.01 5-6 >999 240	PLATES GRIP MT20 244/190 Weight: 30 lb FT = 20%

LUMBER-		BRACING-	
TOP CHORD	2x6 SP No.2 *Except*	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,
	3-4: 2x4 SP No.2		except end verticals, and 2-0-0 oc purlins: 3-4.
BOT CHORD	2x4 SP No.2	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
WEBS	2x4 SP No.2		

- REACTIONS. (lb/size) 5=207/Mechanical, 2=299/0-3-0 Max Horz 2=33(LC 4) Max Uplift 5=-82(LC 4), 2=-116(LC 4)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- 2-3=-303/115 TOP CHORD
- BOT CHORD 2-6=-106/251, 5-6=-111/268 WFBS 3-5=-274/114

NOTES-

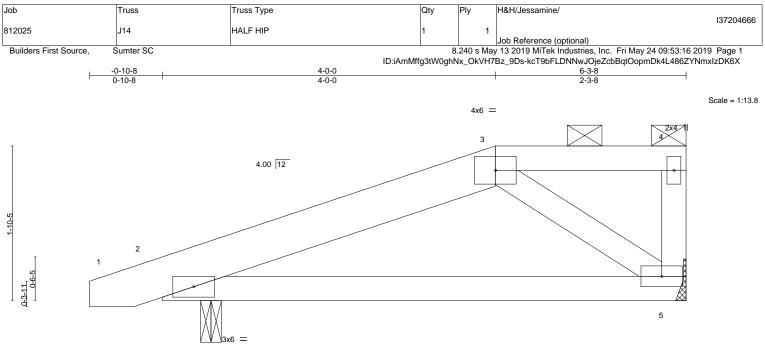
- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left exposed; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 2=116.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 10 lb down and 11 lb up at 2-0-0, and 10 lb down and 11 lb up at 4-0-12, and 10 lb down and 13 lb up at 6-1-12 on top chord, and 26 lb down and 16 lb up at 2-0-12, and 26 lb down and 16 lb up at 4-0-12, and 19 lb down and 16 lb up at 6-1-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 5-7=-20

Continued on page 2



Job	Truss	Truss Type	Qty	Ply	H&H/Jessamine/
					137204665
812025	J13	HALF HIP GIRDER	1	1	
					Job Reference (optional)
Builders First Source, S	Sumter SC		8	240 s Ma	/ 13 2019 MiTek Industries, Inc. Fri May 24 09:53:15 2019 Page 2
		ID:iAmMffg3	tW0ghNx_	OkVH7Bz	_9Ds-GQvnOwKbc3oSmZ3N3ugbKAFbCpPZcdkyKueDPszDK6Y

LOAD CASE(S) Standard

Concentrated Loads (Ib) Vert: 5=7(F) 6=7(F) 13=7(F)

3x6 =

Structural wood sheathing directly applied, except end verticals, and

	<u> 0-5-8</u> 0-5-8		6-3-8 5-10-0				
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.13	Vert(LL) -0.03	5-10	>999	360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.26	Vert(CT) -0.05	5-10	>999	240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.07	Horz(CT) -0.00	2	n/a	n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0.06	5-10	>999	240	Weight: 30 lb FT = 20%

TOP CHORD

BOT CHORD

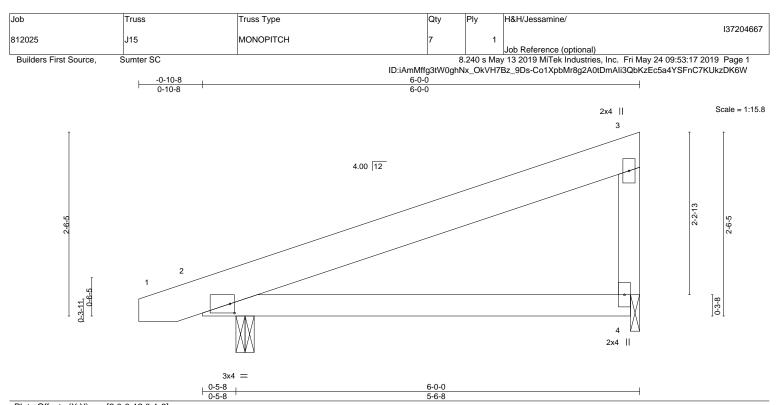
2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied.

LUMBER-

- 2x6 SP No.2 *Except* TOP CHORD 3-4: 2x4 SP No.2 BOT CHORD 2x4 SP No.2
- WEBS 2x4 SP No.3 REACTIONS. (lb/size) 2=307/0-3-0, 5=221/Mechanical

Max Horz 2=53(LC 8) Max Uplift 2=-110(LC 8), 5=-83(LC 8)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left exposed;C-C for
- members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 2=110.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.21	Vert(LL) -0	0.02 4-9	>999	360	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.24	Vert(CT) -0	0.05 4-9	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -(0.00 2	n/a	n/a		
3CDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) (0.07 4-9	>999	240	Weight: 28 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (lb/size) 2=296/0-3-0, 4=209/0-1-8 Max Horz 2=70(LC 8)

Max Uplift 2=-100(LC 8), 4=-85(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=100.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILER KETEKERICE FAGE MILETATION, INVERTIGATION AND INVERTI AND INVERTIGATION AND INVERTIGATION AND INVERTICAL AND IN fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

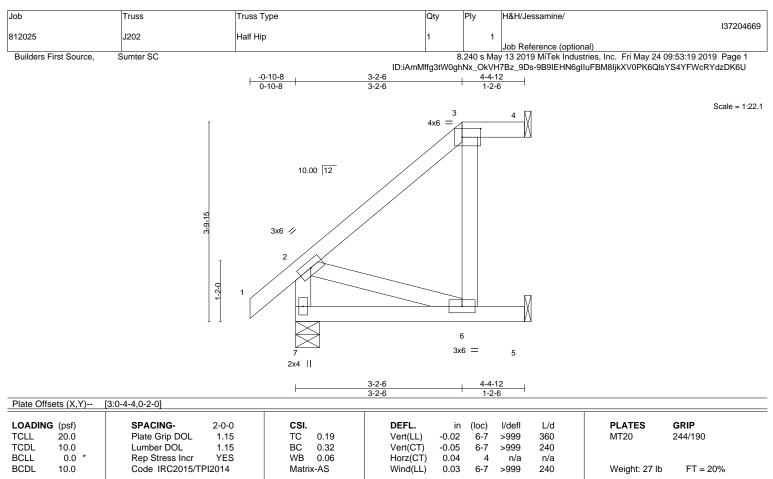
LUMBER-		

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (lb/size) 5=236/0-5-8, 3=113/Mechanical, 4=47/Mechanical Max Horz 5=121(LC 12) Max Uplift 3=-86(LC 12) Max Grav 5=236(LC 1), 3=133(LC 19), 4=79(LC 3)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown;
- Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

UMBER-		
OP CHORD	2x4 SP No.2	

BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD

Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied.

REACTIONS. (Ib/size) 4=34/Mechanical, 7=236/0-5-8, 5=126/Mechanical Max Horz 7=93(LC 12) Max Uplift 4=-11(LC 8), 5=-42(LC 12) Max Grav 4=34(LC 1), 7=236(LC 1), 5=134(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

L

T

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

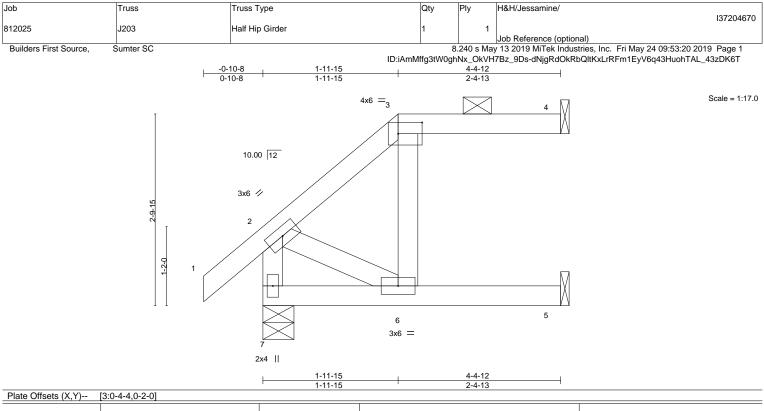
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.


9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

¹⁾ Unbalanced roof live loads have been considered for this design.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.11	Vert(LL)	-0.02	6	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.39	Vert(CT)	-0.05	6	>933	240		
BCLL 0.0 *	Rep Stress Incr NO	WB 0.03	Horz(CT)	0.07	4	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL)	0.05	6	>999	240	Weight: 23 lb	FT = 20%

L	U	м	в	E	R-	
-	U		L	-	1/-	

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.2

BRACING-TOP CHORD Stu 2-(BOT CHORD Rig

Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied.

REACTIONS. (Ib/size) 4=70/Mechanical, 7=236/0-5-8, 5=90/Mechanical Max Horz 7=66(LC 9) Max Uplift 4=-22(LC 8), 5=-7(LC 12) Max Grav 4=70(LC 1), 7=236(LC 1), 5=100(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

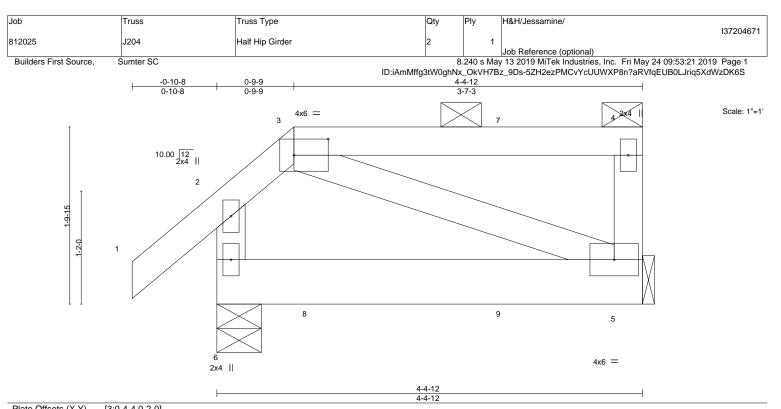
2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.


9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

¹⁾ Unbalanced roof live loads have been considered for this design.

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.17	Vert(LL) -0.00	5-6	>999 360	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.07	Vert(CT) -0.01	5-6	>999 240	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.01	Horz(CT) -0.00	5	n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MS	Wind(LL) -0.00	6	>999 240	Weight: 27 lb FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.2

REACTIONS. (lb/size) 6=238/0-5-8, 5=160/Mechanical Max Horz 6=62(LC 7)

Max Uplift 6=-22(LC 8), 5=-26(LC 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

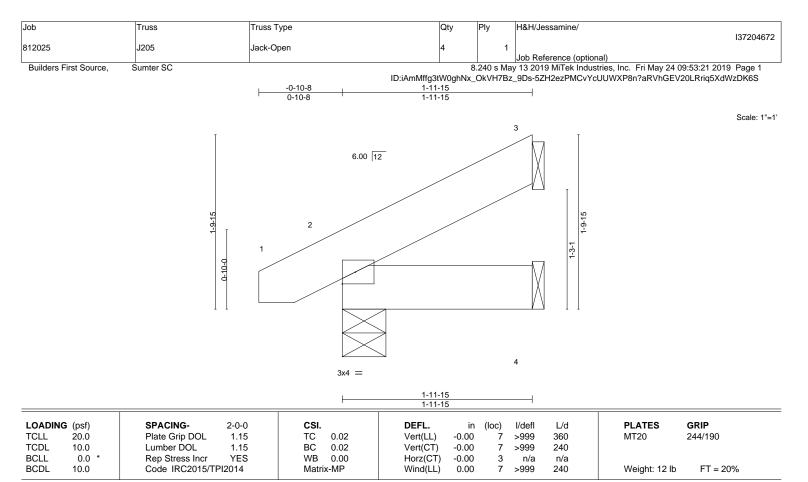
NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 5.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 19 lb down and 27 lb up at
- 0-9-9, and 20 lb down and 27 lb up at 3-0-12 on top chord, and 9 lb down at 1-0-12, and 9 lb down at 3-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-6=-20

Concentrated Loads (lb) Vert: 8=-4(F) 9=-4(F)


Structural wood sheathing directly applied or 4-4-12 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 1003/2016 Sec. 1005/2016 Sec. Design valid for use only with MITER & connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TOP CHORD

BOT CHORD

LU	MBER-	

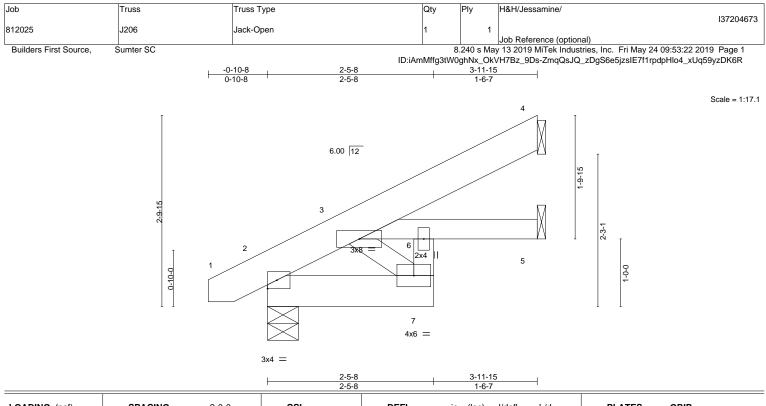
TOP CHORD2x6 SP No.2BOT CHORD2x6 SP No.2

REACTIONS. (lb/size) 3=49/Mechanical, 2=128/0-5-8, 4=23/Mechanical Max Horz 2=39(LC 12) Max Uplift 3=-23(LC 12), 2=-3(LC 12)

Max Grav 3=49(LC 1), 2=128(LC 1), 4=36(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown;
 - Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

Structural wood sheathing directly applied or 1-11-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.10	Vert(LL) -0.01	7	>999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.15	Vert(CT) -0.02	7	>999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.04	Horz(CT) 0.01	5	n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP	Wind(LL) 0.01	7	>999 240	Weight: 25 lb FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.2 2x6 SP No.2 *Except* BOT CHORD 3-5: 2x4 SP No.2

WEBS 2x4 SP No.2 *Except*

3-7: 2x4 SP No.3

REACTIONS. (lb/size) 4=107/Mechanical, 2=215/0-5-8, 5=56/Mechanical Max Horz 2=69(LC 12) Max Uplift 4=-34(LC 12) Max Grav 4=107(LC 1), 2=215(LC 1), 5=75(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

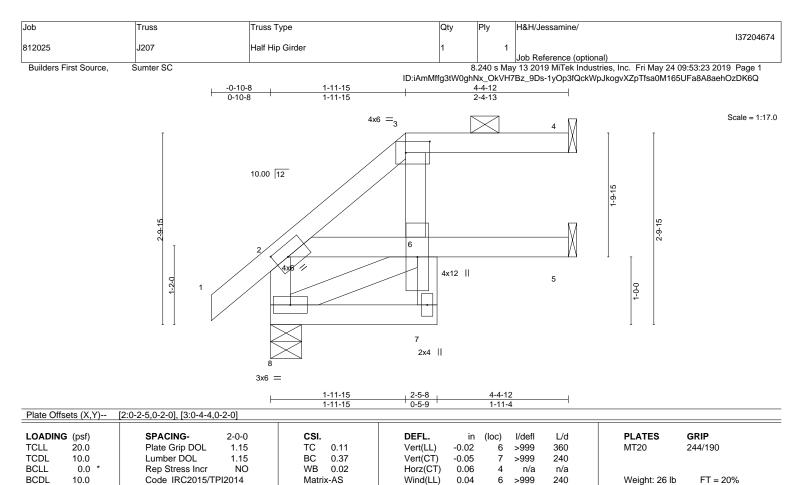
2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

All bearings are assumed to be User Defined crushing capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.



Structural wood sheathing directly applied or 3-11-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-14's rev. Towards BEFORE OSE. Design valid for use only with MiTeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

-	~	-	-			v

LUMBER-TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS

2x4 SP No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied.

BOT CHORD

REACTIONS. (lb/size) 4=70/Mechanical, 5=90/Mechanical, 8=236/0-5-8 Max Horz 8=67(LC 9) Max Uplift 4=-22(LC 8), 5=-7(LC 12) Max Grav 4=70(LC 1), 5=100(LC 3), 8=236(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

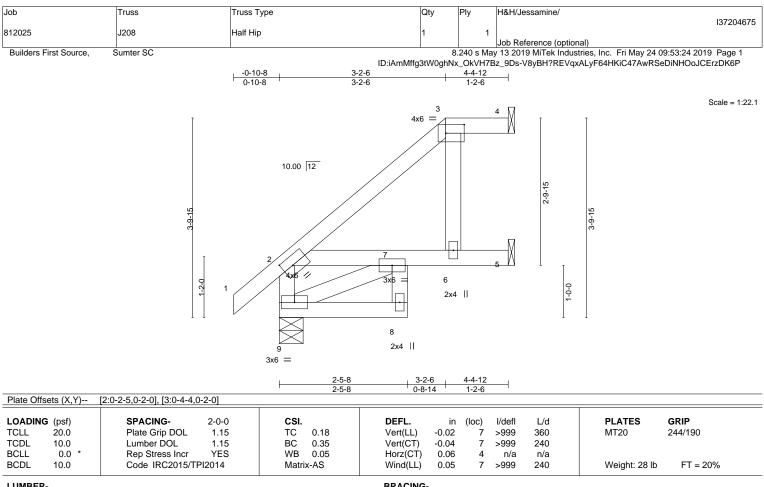
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILER KETEKERICE FAGE MILETATION, INVERTIGATION AND INVERTI AND INVERTIGATION AND INVERTIGATION AND INVERTICAL AND IN fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

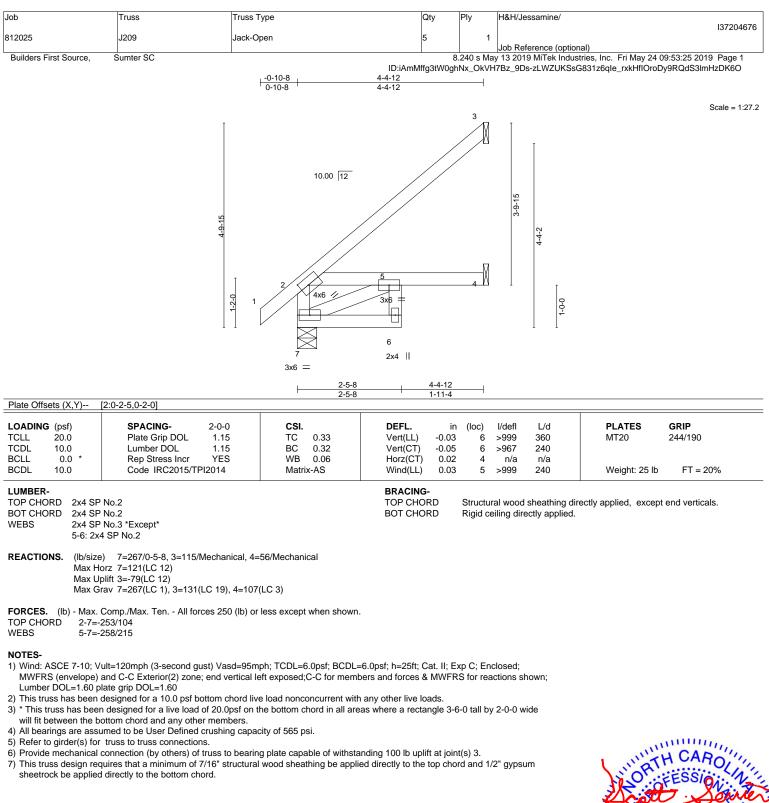
¹⁾ Unbalanced roof live loads have been considered for this design.

LUMBER-	BRACING-
TOP CHORD 2x4 SP No.2	TOP CHORD Structural wood sheathing directly applied, except end verticals, and
BOT CHORD 2x4 SP No.2	2-0-0 oc purlins: 3-4.
WEBS 2x4 SP No.3 *Except*	BOT CHORD Rigid ceiling directly applied.
7-8: 2x4 SP No.2	

REACTIONS. (lb/size) 4=34/Mechanical, 5=126/Mechanical, 9=236/0-5-8 Max Horz 9=93(LC 12) Max Uplift 4=-11(LC 8), 5=-42(LC 12) Max Grav 4=34(LC 1), 5=134(LC 19), 9=236(LC 1)

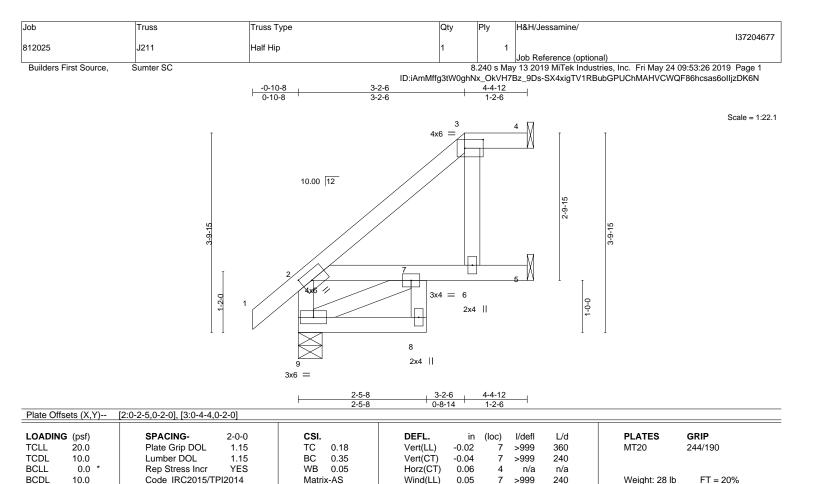
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



818 Soundside Road Edenton, NC 27932

TOP CHORD

BOT CHORD

2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied.

NOTES-
1) Unbalanced roof live loads have been considered for this design.

Max Uplift 4=-11(LC 8), 5=-42(LC 12)

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown;

Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

Max Horz 9=93(LC 12)

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

(lb/size) 4=34/Mechanical, 5=126/Mechanical, 9=236/0-5-8

Max Grav 4=34(LC 1), 5=134(LC 19), 9=236(LC 1) **FORCES.** (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

LUMBER-

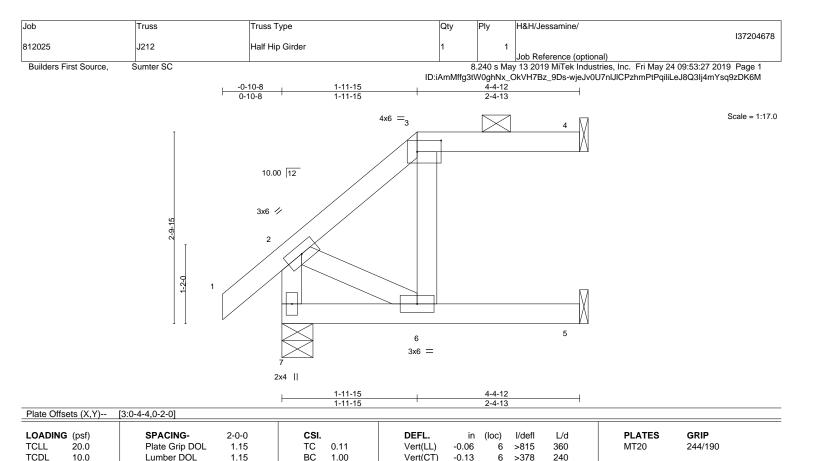
WEBS

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.3

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.


9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied, except end verticals, and

Horz(CT)

Wind(LL)

0.17

0.04

n/a

>999

4

6

BRACING-	
TOP CHORD	Structural
	except end
BOT CHORD	Rigid ceilir
	TOP CHORD

WВ

Matrix-MP

0.04

NO

 ORD
 Structural wood sheathing directly applied or 4-4-12 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4.

 ORD
 Rigid ceiling directly applied.

Weight: 23 lb

FT = 20%

n/a

240

REACTIONS. (lb/size) 4=266/Mechanical, 7=367/0-5-8, 5=269/Mechanical Max Horz 7=66(LC 5) Max Uplift 4=-10(LC 4)

Rep Stress Incr

Code IRC2015/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-6=-270/26

NOTES-

BCLL

BCDL

0.0

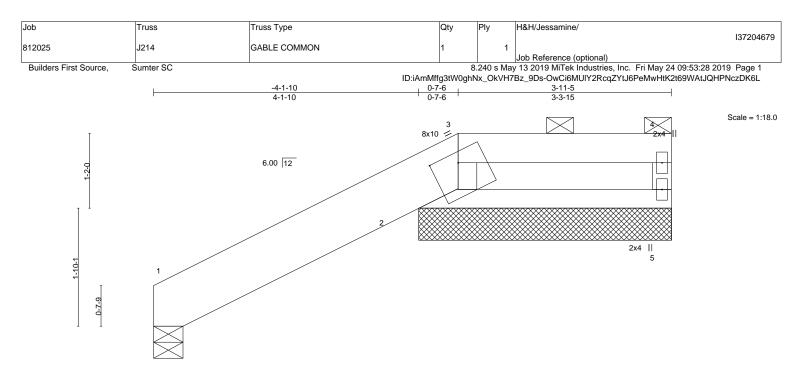
10.0

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 193 lb down and 17 lb up at 1-11-15, and 196 lb down and 9 lb up at 4-4-0 on top chord, and 64 lb down at 2-0-11, and 72 lb down at 4-4-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20 Concentrated Loads (lb)

Vert: 3=-174(B) 4=-196(B) 5=-72(B) 6=-64(B)

¹⁾ Unbalanced roof live loads have been considered for this design.

LOADING (psf)	SPACING-	2-0-0	CSL	DEFL	in (loc) l/defl	l /d	PLATES	GRIP	
Plate Offsets (X,Y)	[2:0-3-15,0-0-0], [3:0-5	5-1,0-1-15]							
			4-1-10	0-7-6	1	3-3-15	1		
	L		-4-1-10	0-7-6	1	3-11-5			

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDU 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2015/TPI2014	CSI. TC 0.09 BC 0.12 WB 0.00 Matrix-R	Vert(CT) -0. Horz(CT) 0.	in (loc) .01 2-5 .01 2-5 .00 5 .00 2	>999 36 >999 24 n/a n	40 /a	GRIP 244/190 FT = 20%
BCDL 10.0	Code IRC2015/TPI2014	Matrix-R	BRACING-	.00 2	>999 24	40 Weight: 37 lb	FT = 20%

 TOP CHORD
 2x10 SP DSS *Except*

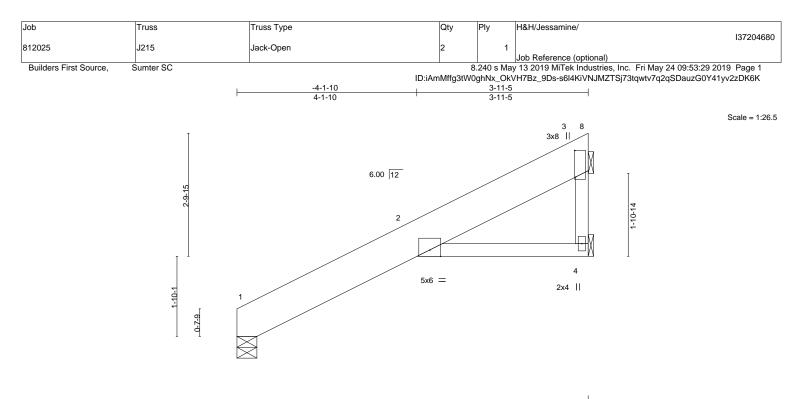
 3-4: 2x6 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-11-5 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.


- REACTIONS. (lb/size) 1=119/0-5-8, 5=125/3-11-5, 2=381/3-11-5 Max Horz 2=65(LC 9) Max Uplift 1=-16(LC 12), 5=-9(LC 8), 2=-25(LC 12)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Provide adequate drainage to prevent water ponding.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 2.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Plate Offsets (X,Y) [3:0-7-6,0-0-4]									
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.11	Vert(LL)	-0.02	5	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.10	Vert(CT)	-0.04	5	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.01	Horz(CT)	0.02	4	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP	Wind(LL)	0.03	5	>999	240	Weight: 45 lb	FT = 20%

LUMBER-

TOP CHORD2x10 SP DSSBOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-11-5 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

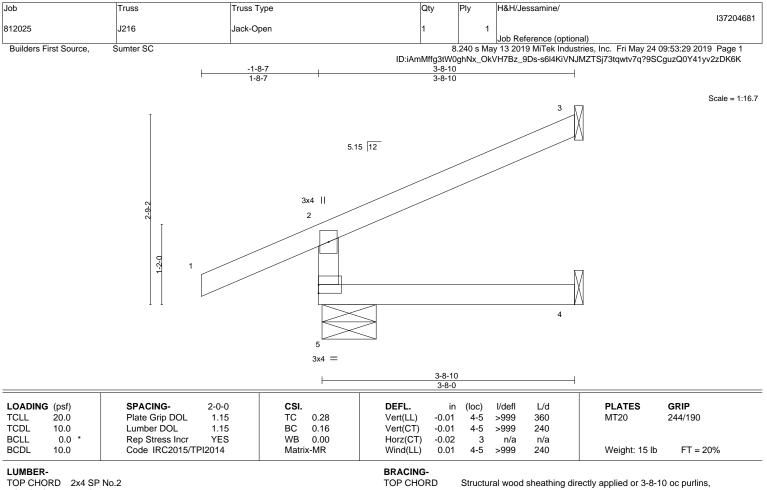
REACTIONS. (lb/size) 1=322/0-5-8, 4=84/Mechanical, 3=234/Mechanical Max Horz 3=121(LC 12) Max Uplift 1=-49(LC 12)

Max Grav 1=322(LC 1), 4=88(LC 3), 3=234(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.


5) Refer to girder(s) for truss to truss connections.

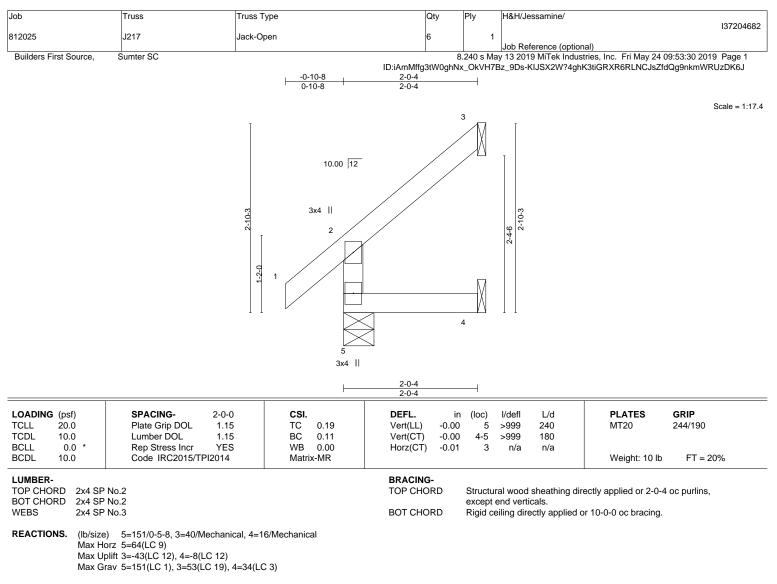
 Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1.

BOT CHORD

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 2x4 SP No.3 Structural wood sheathing directly applied or 3-8-10 oc purlins except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

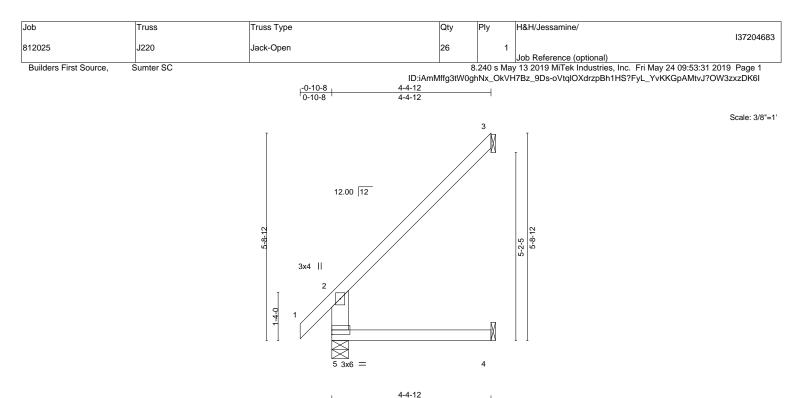
REACTIONS. (lb/size) 5=280/0-9-7, 3=80/Mechanical, 4=31/Mechanical Max Horz 5=66(LC 9) Max Uplift 5=-31(LC 8), 3=-40(LC 12) Max Grav 5=280(LC 1), 3=80(LC 1), 4=64(LC 3)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- All bearings are assumed to be user Defined clushing (
 5) Refer to girder(a) for trues to trues connections
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members. 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-14's rev. Towards BEFORE OSE. Design valid for use only with MiTeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

					I	4-4-12						
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.36	Vert(LL)	0.04	4-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.48	Vert(CT)	-0.05	4-5	>969	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.07	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matri	x-AS						Weight: 21 lb	FT = 20%

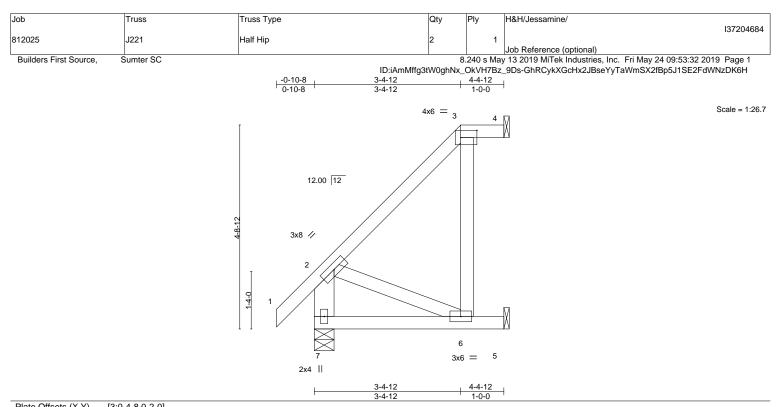
```
LUMBER-
```

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x6 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (lb/size) 5=239/0-5-8, 3=108/Mechanical, 4=47/Mechanical Max Horz 5=145(LC 12) Max Uplift 3=-105(LC 12), 4=-11(LC 12) Max Grav 5=239(LC 1), 3=136(LC 19), 4=77(LC 3)

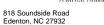

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

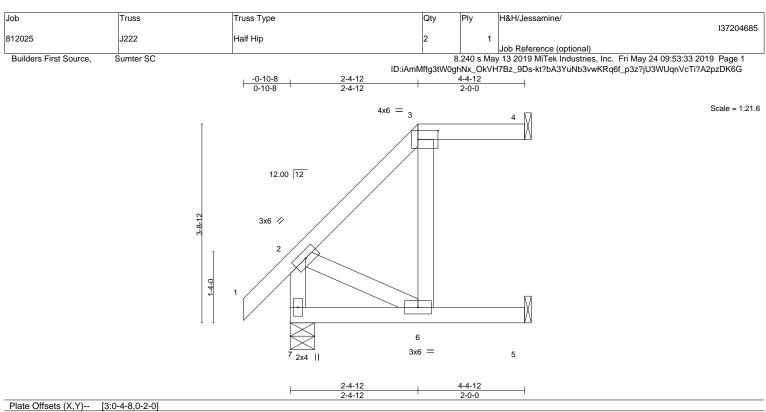
NOTES-

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 3=105.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

OADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	-0.02	6-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.33	Vert(CT)	-0.04	6-7	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.04	4	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matri	x-AS	Wind(LL)	0.03	6-7	>999	240	Weight: 31 lb	FT = 20%

LUMBER-		BRACING-	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied, except end verticals, and
BOT CHORD	2x4 SP No.2		2-0-0 oc purlins: 3-4.
WEBS	2x4 SP No.3 *Except*	BOT CHORD	Rigid ceiling directly applied.
	2-7: 2x6 SP No.2		


REACTIONS. (lb/size) 4=28/Mechanical, 7=239/0-5-8, 5=127/Mechanical Max Horz 7=117(LC 12) Max Uplift 4=-9(LC 8), 5=-71(LC 12) Max Grav 4=28(LC 1), 7=239(LC 1), 5=147(LC 19)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.13	Vert(LL) -0.02	6	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.43	Vert(CT) -0.05	6	>924	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.06	Horz(CT) 0.10	4	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0.06	6	>881	240	Weight: 26 lb	FT = 20%

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied.

REACTIONS. (lb/size) 4=58/Mechanical, 7=236/0-5-8, 5=102/Mechanical Max Horz 7=88(LC 9) Max Uplift 4=-18(LC 8), 5=-30(LC 12) Max Grav 4=58(LC 1), 7=236(LC 1), 5=107(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

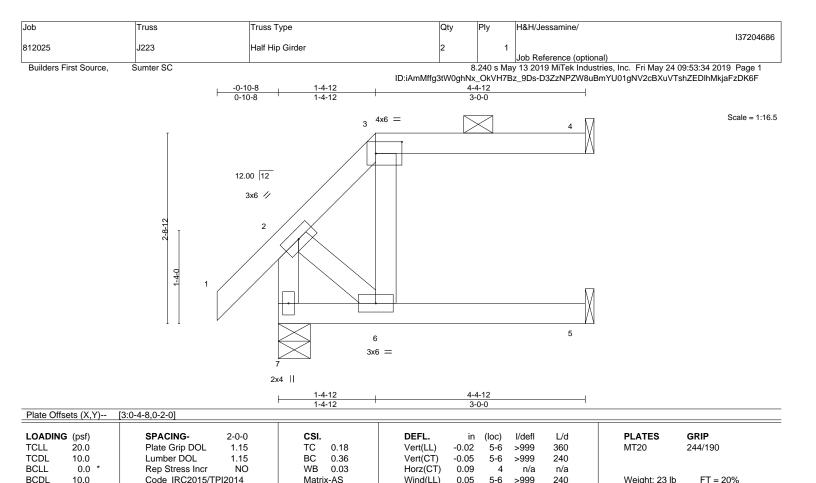
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.


9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

AMITEK Affiliate 818 Soundside Road Edenton, NC 27932

_	_	_	_	_	_	_	_

LUMBER-TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

0.05

5-6

>999

Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied.

Weight: 23 lb

REACTIONS. (Ib/size) 4=88/Mechanical, 7=236/0-5-8, 5=72/Mechanical Max Horz 7=66(LC 9) Max Uplift 4=-28(LC 8), 5=-2(LC 9)

Max Grav 4=88(LC 1), 7=236(LC 1), 5=94(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-AS

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

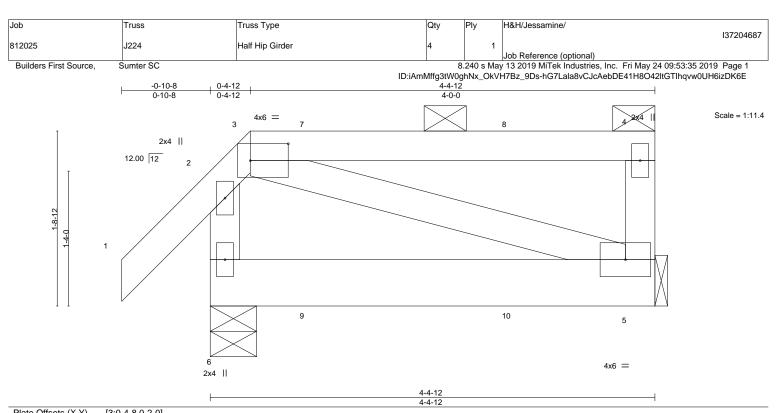
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOI ES ON THIS AND INCLUDED MILER REFERENCE FACE MILETATES. INVALUE DELIGIE ODE Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property dranage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

¹⁾ Unbalanced roof live loads have been considered for this design.

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.21	Vert(LL) -0.00	5-6	>999	360	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.07	Vert(CT) -0.01	5-6	>999	240	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.01	Horz(CT) 0.00	5	n/a	n/a	
SCDL 10.0	Code IRC2015/TPI2014	Matrix-MS	Wind(LL) -0.00	6	>999	240	Weight: 28 lb FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.2

REACTIONS. (lb/size) 6=227/0-5-8, 5=159/Mechanical

Max Horz 6=41(LC 5) Max Uplift 6=-12(LC 8), 5=-20(LC 5)

Max Grav 6=227(LC 1), 5=165(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope); end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

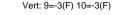
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 5.

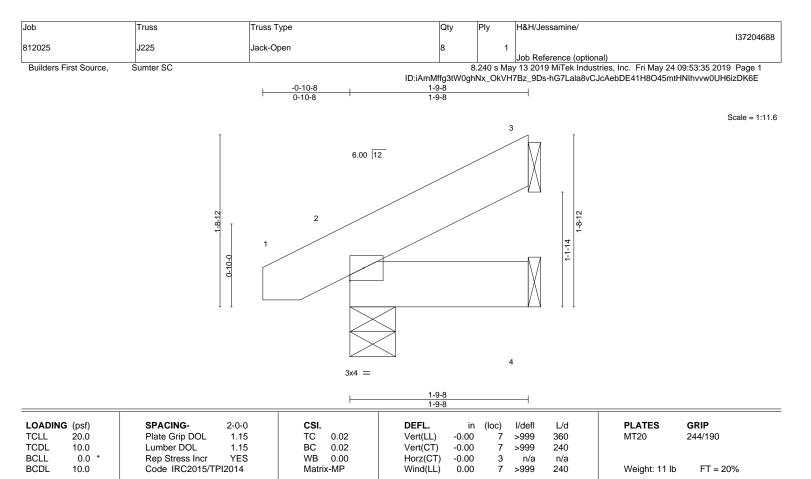

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 16 lb down and 22 lb up at 1-0-12, and 17 lb down and 23 lb up at 3-0-12 on top chord, and 7 lb down at 1-0-12, and 6 lb down at 3-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-20, 3-4=-60, 5-6=-20 Concentrated Loads (lb)


Structural wood sheathing directly applied or 4-4-12 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR CEPTERNCE PAGE MIT-1473 TeV. 100/32010 SECORE 052. Design valid for use only with MITER (be connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

BRACING-

TOP CHORD

BOT CHORD

LUMBER-	
---------	--

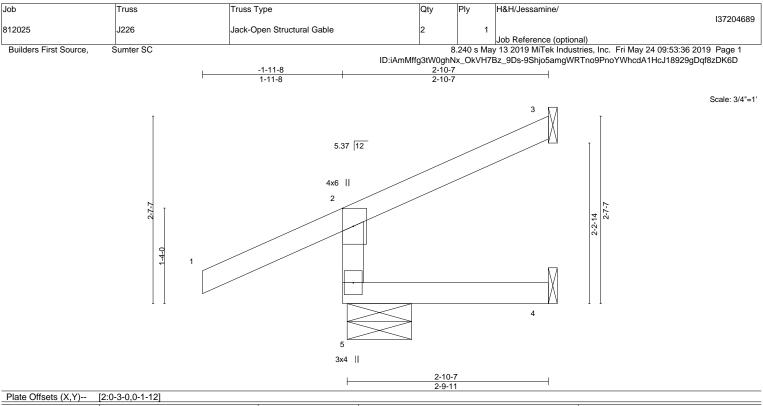
TOP CHORD2x6 SP No.2BOT CHORD2x6 SP No.2

REACTIONS. (lb/size) 3=43/Mechanical, 2=120/0-5-8, 4=21/Mechanical Max Horz 2=36(LC 12) Max Uplift 3=-20(LC 12), 2=-3(LC 12)

Max Grav 3=43(LC 1), 2=120(LC 1), 4=33(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown;
 - Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

Structural wood sheathing directly applied or 1-9-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

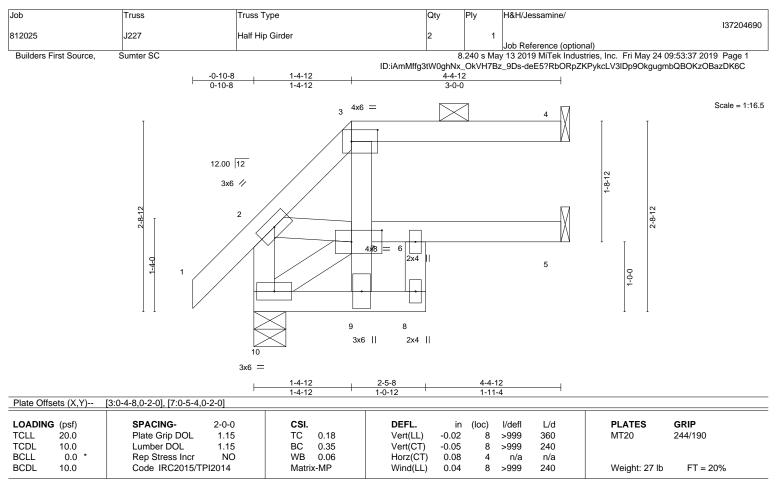
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (l	loc) l/	/defl L/d	PLATES GRIP	
TCLL 20.0	Plate Grip DOL 1.15	TC 0.37	Vert(LL) -(0.00	4-5 >	999 360	MT20 244/190	
TCDL 10.0	Lumber DOL 1.15	BC 0.10	Vert(CT) -(0.00	4-5 >	999 240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -(0.01	3	n/a n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MR	Wind(LL) (0.00	4-5 >	999 240	Weight: 14 lb FT = 20	%
LUMBER-		1	BRACING-				1	

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-10-7 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=42/Mechanical, 5=282/0-10-13, 4=15/Mechanical Max Horz 5=60(LC 12) Max Uplift 3=-32(LC 12), 5=-32(LC 8) Max Grav 3=42(LC 1), 5=282(LC 1), 4=46(LC 3)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left exposed; end vertical left exposed; C-C for members and forces & https://doi.org/10.1016/j.com/actional.com/actionactional.com/actional.com/actional.com/a
- MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 5.

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.2

 OTHERS
 2x4 SP No.2

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 4-4-12 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 4=88/Mechanical, 5=78/Mechanical, 10=245/0-5-8 Max Horz 10=66(LC 9) Max Uplift 4=-28(LC 8) Max Grav 4=88(LC 1), 5=107(LC 3), 10=245(LC 1)

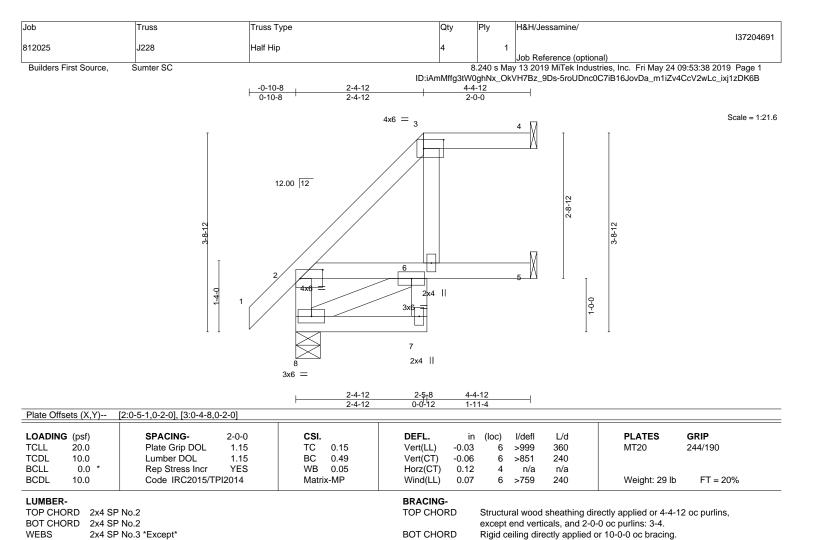
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 6-8=-207/267, 7-9=-381/341

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.


- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

6-7: 2x4 SP No.2 **REACTIONS.** (lb/size) 4=58/Mechanical, 5=102/Mechanical, 8=236/0-5-8 Max Horz 8=89(LC 12) Max Uplift 4=-18(LC 8), 5=-31(LC 12) Max Grav 4=58(LC 1), 5=107(LC 19), 8=236(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

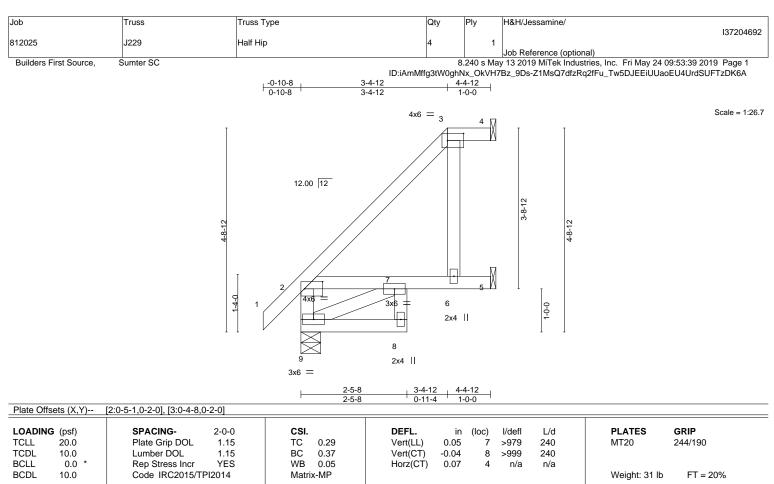
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.


7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LU	IMBER-		BRACING-	
TC	P CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 4-4-12 oc purlins,
BC	T CHORD	2x4 SP No.2		except end verticals, and 2-0-0 oc purlins: 3-4.
WE	EBS	2x4 SP No.3 *Except*	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
		7-8: 2x4 SP No.2		

REACTIONS. (lb/size) 4=28/Mechanical, 5=132/Mechanical, 9=236/0-5-8 Max Horz 9=120(LC 12) Max Uplift 4=-9(LC 8), 5=-71(LC 12) Max Grav 4=28(LC 1), 5=151(LC 19), 9=236(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

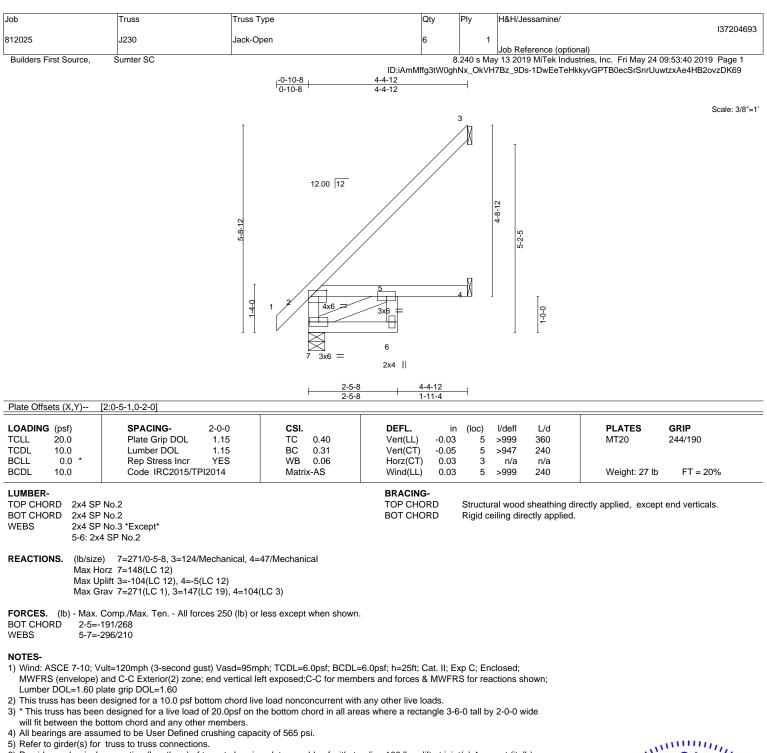
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

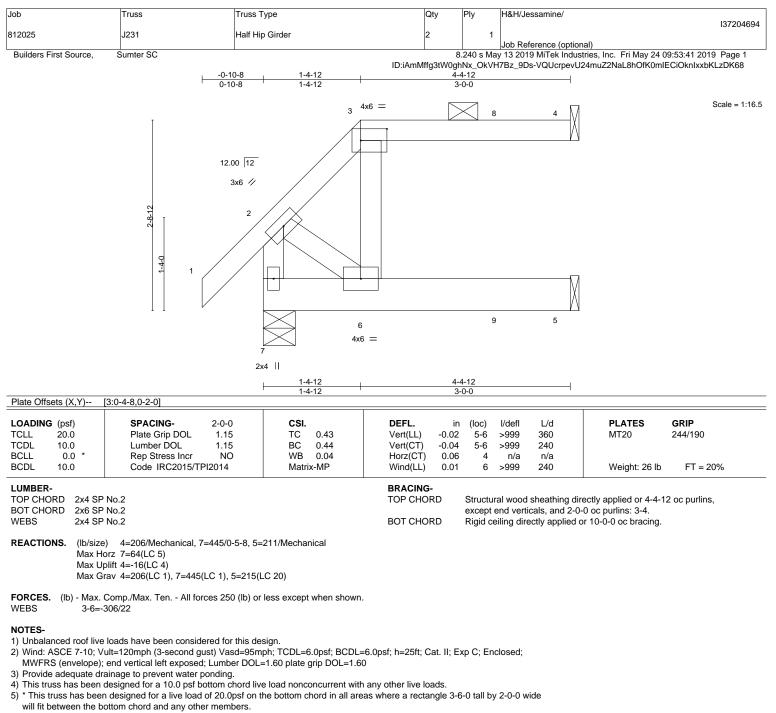
will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.


7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 3=104.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

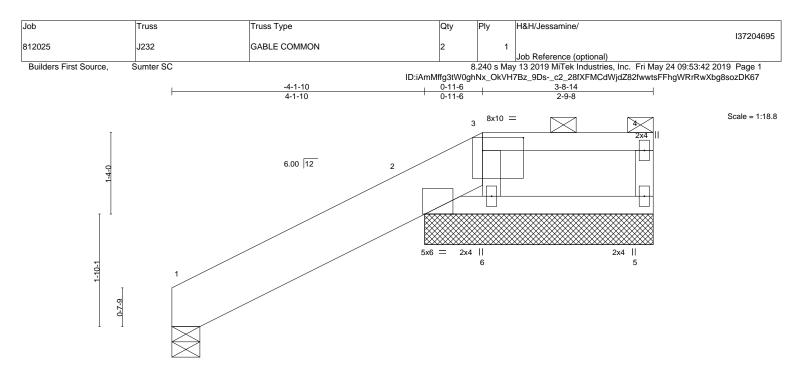
7) Refer to girder(s) for truss to truss connections.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 183 lb down and 18 lb up at 1-4-12, and 168 lb down and 14 lb up at 3-5-8 on top chord, and 67 lb down at 1-5-8, and 68 lb down at 3-5-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20

Concentrated Loads (lb) Vert: 3=-164(B) 6=-67(B) 8=-168(B) 9=-68(B)

		L		-4-1-10		1			3-8-1	4			
				4-1-10		I			3-8-1	4			
Plate Offsets ()	(,Y) [2:0-5-8,0	-0-0], [3:0-8-0,	0-2-8]										
LOADING (psf) SP	ACING-	2-0-0	CSI.		DEFL	. in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL 20.0) Pla	te Grip DOL	1.15	TC	0.13	Vert(L	L) -0.00	5-6	>999	360	MT20	244/190	
TCDL 10.0) Lui	nber DOL	1.15	BC	0.05	Verti	CT) -0.00	5-6	>999	240			

Horz(CT)

Wind(LL)

-0.00

0.00

n/a

6

n/a

240

Weight: 35 lb

FT = 20%

LUMBER-BRACING-2x10 SP DSS *Except* TOP CHORD TOP CHORD Structural wood sheathing directly applied or 3-8-14 oc purlins, 3-4: 2x4 SP No.2 except end verticals, and 2-0-0 oc purlins: 3-4. BOT CHORD 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3

WB 0.01

Matrix-P

REACTIONS. All bearings 3-8-14 except (jt=length) 1=0-5-8.

Max Horz 2=84(LC 12)

Rep Stress Incr

Code IRC2015/TPI2014

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 2, 6

YES

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6 except 2=341(LC 1)

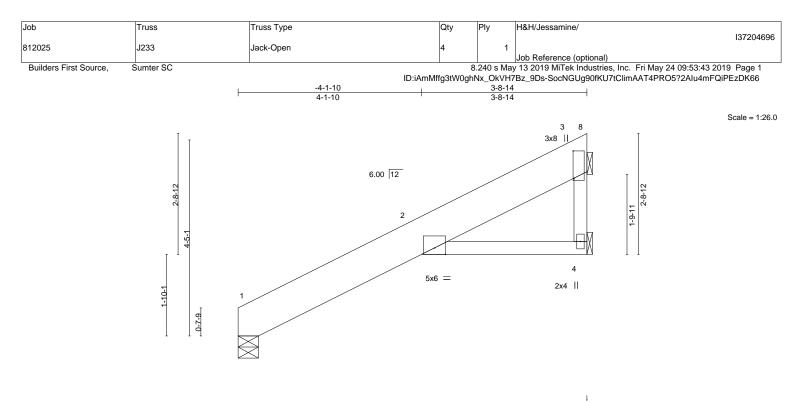
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

BCLL

BCDL

0.0


10.0

(lb) -

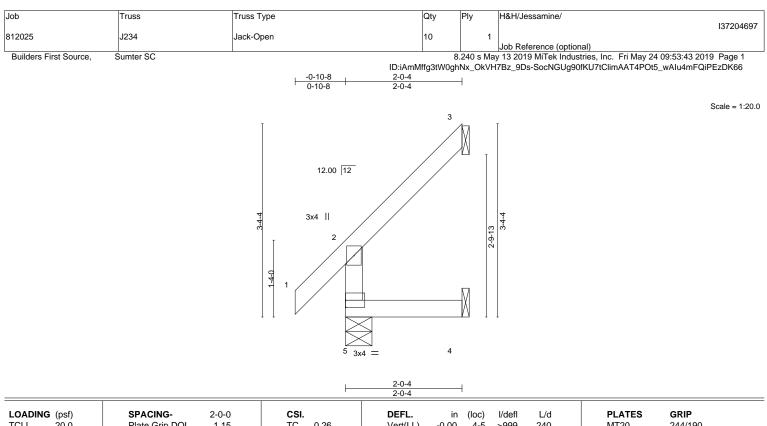
- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Provide adequate drainage to prevent water ponding.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 2, 6.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

	sets (X,Y) [
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	-0.02	5	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	-0.03	5	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.02	4	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matri	x-MP	Wind(LL)	0.03	5	>999	240	Weight: 44 lb	FT = 20%

LUMBER-		BRACING-	
TOP CHORD	2x10 SP DSS	TOP CHORD	Structural wood sheathing directly applied or 3-8-14 oc purlins,
BOT CHORD	2x4 SP No.2		except end verticals.
WEBS	2x4 SP No.2	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 1=313/0-5-8, 4=87/Mechanical, 3=224/Mechanical Max Horz 3=126(LC 9) Max Uplift 1=-45(LC 12), 3=-2(LC 12)

Max Grav 1=313(LC 1), 4=87(LC 3), 3=224(LC 1)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

TCLL 20.0 Plate Grip DOL 1.15 TC 0.26 Vert(LL) -0.00 4-5 >999 240 MT20 244/190	GRIP	PLATES	L/d	l/defl	(loc)	in	DEFL.		CSI.	2-0-0	SPACING-	í (psf)	LOADING
	244/190	MT20	240	>999	4-5	-0.00	Vert(LL)	0.26	TC	1.15	Plate Grip DOL	20.0	TCLL
TCDL 10.0 Lumber DOL 1.15 BC 0.16 Vert(CT) -0.00 4-5 >999 180			180	>999	4-5	-0.00	Vert(CT)	0.16	BC	1.15	Lumber DOL	10.0	TCDL
BCLL 0.0 * Rep Stress Incr YES WB 0.00 Horz(CT) -0.01 3 n/a n/a			n/a	n/a	3	-0.01	Horz(CT)	0.00	WB	YES	Rep Stress Incr	0.0 *	
BCDL 10.0 Code IRC2015/TPI2014 Matrix-MR Weight: 11 lb FT = 20%	FT = 20%	Weight: 11 lb						x-MR	Matri	PI2014	Code IRC2015/TF	10.0	BCDL

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-0-4 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 5=151/0-5-8, 3=39/Mechanical, 4=16/Mechanical Max Horz 5=77(LC 9) Max Uplift 3=-55(LC 12), 4=-16(LC 12) Max Grav 5=151(LC 1), 3=58(LC 19), 4=34(LC 10)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.

Job	Truss	Truss Type		Qty	Ply	H&H/Jessamine/
					1	137204698
812025	J235	Half Hip Girder		2	1	
						Job Reference (optional)
Builders First Source,	Sumter SC			6	8.240 s Ma	y 13 2019 MiTek Industries, Inc. Fri May 24 09:53:44 2019 Page 1
						VH7Bz_9Ds-w?AITqhnnzSLI1nyFThP0IycOVLBvIvD?v9FxgzDK65
		-0-10-8	1-0-4	2-0		4
		0-10-8	1-0-4	1-0)-0	I
			3	4x6 =		Scale = 1:14.8
		т	0		4	
			\square			
		3x6 🅢	, / /			
		12.00 12				
		12.00 112				
		2				
		T				
		4-4	///X			

.OADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	0.00	6	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	-0.00	6	>999	240		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.01	Horz(CT)	-0.01	4	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matrix	x-MP						Weight: 15 lb	FT = 20%

1-0-4

1-0-4

2x4 ||

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

6 3x6 = 5

2-0-4

1-0-0

Structural wood sheathing directly applied or 2-0-4 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 4=28/Mechanical, 7=170/0-5-8, 5=48/Mechanical Max Horz 7=58(LC 5) Max Uplift 4=-9(LC 4), 7=-9(LC 4), 5=-41(LC 5)

Max Grav 4=28(LC 1), 7=170(LC 1), 5=66(LC 25)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope); end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

-4-0

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 7, 5.

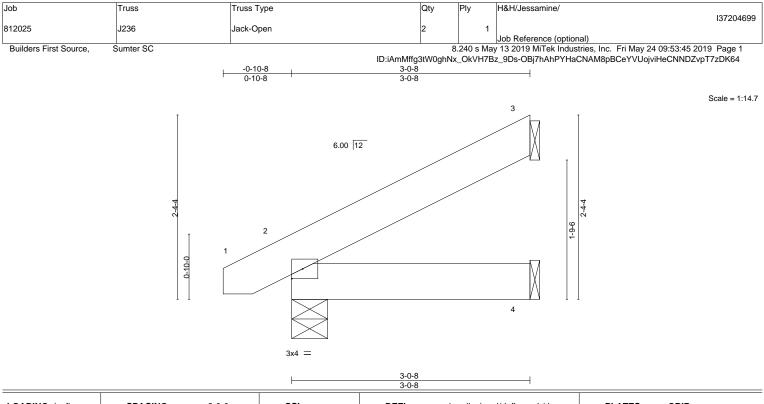
9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 63 lb down and 50 lb up at 1-0-4 on top chord, and 22 lb down and 18 lb up at 1-1-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

 Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)


Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20 Concentrated Loads (lb)

Vert: 3=-21(B) 6=-19(B)

¹⁾ Unbalanced roof live loads have been considered for this design.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defi L/d PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.05	Vert(LL) -0.00 7 >999 360 MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.04	Vert(CT) -0.00 4-7 >999 240
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 3 n/a n/a
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP	Wind(LL) 0.00 7 >999 240 Weight: 18 lb FT = 20%

TOP CHORD 2x6 SP No.2 2x6 SP No.2 BOT CHORD

REACTIONS. 3=77/Mechanical, 2=165/0-5-8, 4=29/Mechanical (lb/size) Max Horz 2=55(LC 12) Max Uplift 3=-35(LC 12), 2=-3(LC 12) Max Grav 3=77(LC 1), 2=165(LC 1), 4=56(LC 3)

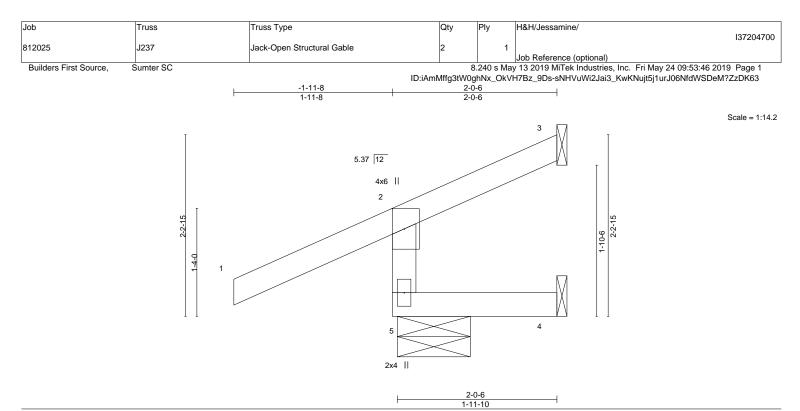
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown;
- Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 92 lb down and 50 lb up at 2-11-12 on top chord, and 2 lb down and 8 lb up at 2-11-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf) Vert: 1-3=-60, 4-5=-20 Concentrated Loads (lb)


🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR CEPTERNCE PAGE MIT-1473 TeV. 100/32010 SECORE 052. Design valid for use only with MITER (be connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BOT CHORD

Structural wood sheathing directly applied or 3-0-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

BRACING-TOP CHORD

LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.35	Vert(LL)	0.00	5	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	0.00	5	>999	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	3	n/a	n/a		
BCDL 10.0	Code IRC2015/TP	12014	Matri	x-MR	Wind(LL)	0.00	5	>999	240	Weight: 11 lb	FT = 20%

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-0-6 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=-1/Mechanical, 5=272/0-10-13, 4=1/Mechanical Max Horz 5=48(LC 12) Max Uplift 3=-19(LC 12), 5=-40(LC 8) Max Grav 3=3(LC 8), 5=272(LC 1), 4=29(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left exposed; end vertical left exposed;C-C for members and forces &

MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 5.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MILIEK Affill 818 Soundside Road Edenton, NC 27932

