

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 20010096 GARY ROBINSON / 4 PBC

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: E14017203 thru E14017256

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

January 30,2020

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	A1	Roof Special	2	1	Job Reference (optional)	E14017203

BCLL

BCDL

1)

Run: 8.33 S. Jan 22 2020 Print: 8.330 S. Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:55:41 ID:e3thY2orL9EsYCB6sJzUEYzvsB5-CJp_DRb7MHu_9IluHB0k1gR1oahRYU5fOmR_qgzqCG3

Page: 1

January 30,2020

VIIIIIIIIIII

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	A2	Roof Special	7	1	Job Reference (optional)	E14017204

TCDL

BCLL

BCDL

WEBS

WEBS

WEBS

1)

2)

Run: 8.33 S. Jan 22 2020 Print: 8.330 S. Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:55:43

Page: 1

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	A3	Common	2	1	Job Reference (optional)	E14017205

TCDL

BCLL

BCDL

WEBS

WEBS

WEBS

1)

2)

Run: 8.33 S. Jan 22 2020 Print: 8.330 S. Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:55:44 ID:NilkKbzlyTvK8sxiP7ChXWzvs8H-1TAFUUgux7e8tgD1eR78Gxh49?jjyAVYmiul1KzqCFz

Page: 1

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	A4	Common	2	1	Job Reference (optional)	E14017206

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:55:44 ID:eA2pUVIWDDFScHt2NuiiQPzvryy-1TAFUUgux7e8tgD1eR78Gxh5Q?jvyAHYmiuI1KzqCFz

Page: 1

Scale = 1:75.4

Plate Offsets	(X, Y): [1:Edge,0-0-15], [2	2:0-5-0,0-4-8], [9:	0-5-0,0-4-8	3]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) S 20.0 F 13.9/20.0 L 10.0 F 0.0* C 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.37 0.59 0.77	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.21 0.02	(loc) 8-9 8-9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 207 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	 2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 *Except* 7 Left: 2x4 SP No.3 Structural wood sheath 5-9-5 oc purlins, excep Rigid ceiling directly ap bracing. 1 Row at midpt 3-{ (Ib/size) 1=891/ Mech Max Horiz 1=211 (LC 1 Max Grav 1=1136 (LC (Ib) - Maximum Compret Tension 1-2=-1525/253, 2-3=-13 3-4=-837/256, 4-5=-40/ 01 -1-3=-285/1301, 13-14 9-14=-247/1301, 9-15= 15-16=-49/687, 8-16=-4 6-7=0/0 	7-5:2x4 SP No.3 hing directly applie pt end verticals. oplied or 10-0-0 oc 8 hanical, 7=896/0-3 0) 24), 7=1117 (LC 2 ession/Maximum 365/345, /124, 5-7=-75/112 4=-247/1301, =-49/687, 7-8=-85/3	3) 4) 6d or 5) 3-8 6) 7) 24) 8) 24) 8) 24) 8) 24) 24) 8) 24) 24) 24) 24) 24) 24) 24) 24) 24) 24	TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are capacity of 5 Refer to girdt One RT7A U truss to beari forces. This truss is International R802.10.2 ar	7-10; Pr=20.0 psf late DOL=1.15); Ps 3.9 psf (flat roof snd .15); Category II; E has been designed in chord in all areas by 2-00-00 wide will by other members, assumed to be: , 65 psi. er(s) for truss to tru SP connectors rec ing walls due to UF for uplift only and designed in accord Residential Code stan Standard	(roof liv ==20.0 p w: Lum Exp B; F for a liv s where I fit betv with BC Joint 7 S iss conre- commen PLIFT at does no dance w sections dard AN	e load: Lumb sf (ground ber DOL=1. ully Exp.; e load of 20. a rectangle yeen the bott DL = 10.0ps SP No.2 crus bections. ded to conne jt(s) 7. This of consider la ith the 2015 R502.11.1 a ISI/TPI 1.	ber 15 Opsf om f. hing ect ateral					CAPO	
WEBS	4-7=-1283/275, 2-9=-47 3-8=-182/87, 4-8=0/528	75/299, 3-9=-152/ 8	/939,									NORTH	SSO	14
NOTES 1) Unbalance this desig 2) Wind: AS Vasd=100 Cat. II; Ex- Exterior (ed roof live loads have be n. CE 7-10; Vult=130mph (3 3mph; TCDL=6.0psf; BCD xp B; Enclosed; MWFRS (r 2) zone:C-C for members	een considered for -second gust) DL=6.0psf; h=25ft; (envelope) and C-I and forces &	C								Winner	03	SEAL 36322	

Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

January 30,2020

A. GILE

C

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	A4A	Common Girder	1	2	Job Reference (optional)	E14017207

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:55:45 ID:W9nTIdJ3AynMOhGtfotzR?zvrmc-1TAFUUgux7e8tgD1eR78Gxh6w?hyyH0Ymiul1KzqCFz

Page: 1

Plate Offsets (X, Y): [1:Edge,0-0-15], [2:0-1-12,0-2-0], [10:0-5-0,0-4-8]

Scale = 1:75.4

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.27 0.72 0.34	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.23 -0.42 0.02	(loc) 9-10 9-10 8	l/defl >999 >758 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 414 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x6 SP No.2 2x6 SP No.2 *Except 2.0E 2x4 SP No.2 *Except Left: 2x4 SP No.3 Structural wood shee 6-0-0 oc purlins, exc	* 10-7:2x6 SP 2400F * 8-6:2x4 SP No.3 athing directly applied ept end verticals.	2) 3) 1 or 4)	All loads are except if note CASE(S) sec provided to d unless otherw Unbalanced n this design. Wind: ASCE Vasd=103mp	considered equally d as front (F) or ba tion. Ply to ply conr istribute only loads vise indicated. oof live loads have 7-10; Vult=130mph h; TCDL=6.0psf; Bu	applied ck (B) i nection noted i been o (3-sec CDL=6	d to all plies, ace in the LC s have been as (F) or (B), considered for ond gust) .0psf; h=25ft;	DAD	13) Fill : LOAD (1) De Inc Un Co	all nail ho CASE(S) ead + Sno crease=1 iform Lo Vert: 1-4 oncentrat Vert: 17=	Star ow (ba .15 ads (lt =-48, ed Loa =-1028	here hanger is in Idard Ilanced): Lumber b/ft) 4-6=-48, 7-11=-2 ads (Ib) i (F)	contact with lumber. Increase=1.15, Plate
BOT CHORD	Rigid ceiling directly bracing. (Ib/size) 1=1245/ M Max Horiz 1=269 (LC Max Uplift 1=-46 (LC Max Grav 1=1526 (L	applied or 10-0-0 oc lechanical, 8=1570/0 : 8) 9), 8=-77 (LC 9) C 42), 8=1905 (LC 3)	⁻³⁻⁸ 5)	cat. II; EXP B left and right exposed; Lun TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1	; Enclosed; MWFR exposed; end verti nber DOL=1.60 pla 7-10; Pr=20.0 psf (ate DOL=1.15); Pg: .9 psf (flat roof sno 15): Category II: E:	s (env cal left te grip roof liv =20.0 p w: Lum xp B: F	and right DOL=1.33 e load: Lumbosf (ground ber DOL=1.1 ully Exp.:	er 5					
FORCES	(lb) - Maximum Com	pression/Maximum		Ct=1.10		лр D, I							
TOP CHORD	1-2=-2293/135, 2-3= 3-4=-2117/220, 4-5= 6-8=-80/99	-2071/137, -1642/199, 5-6=-66/1	6) 27,	 This truss h on the bottom 3-06-00 tall b chord and an 	as been designed f i chord in all areas y 2-00-00 wide will v other members, v	or a liv where fit betw vith BC	e load of 20.0 a rectangle /een the botto DL = 10.0psf.	om					
BOT CHORD	1-14=-307/1916, 14- 10-15=-131/1916, 10 16-17=-62/1139, 17- 9-18=-62/1139, 8-9= 5-8=-2452/204, 3-10	15=-131/1916, 0-16=-62/1139, 18=-62/1139, -76/743, 7-8=0/0 =-473/240,	7) 8) 9)	Bearings are crushing capa Refer to girde Provide mech bearing plate	assumed to be: , Jacity of 805 psi. er(s) for truss to trus nanical connection capable of withstar	oint 8 S ss conr (by oth nding 4	P 2400F 2.00 ections. ers) of truss to 6 lb uplift at jo	E D Dint			6	N'I ORTH	CARO,
NOTES 1) 2-ply truss (0.131"x3' Top chord staggered Bottom ch staggered Web conn	4-10=-115/1387, 4-9: to be connected toget i) nails as follows: ls connected as follows at 0-9-0 cc, 2x4 - 1 rov lords connected as follows at 0-9-0 oc. lected as follows: 2x4 -	=-204/511, 5-9=-74/1 her with 10d : 2x6 - 2 rows v at 0-9-0 oc. ws: 2x6 - 2 rows 1 row at 0-9-0 oc.	258 10) 11) 12)	1.) One RT7A U: truss to beari connection is forces.) This truss is of International R802.10.2 ar) Use USP THI 8-16d nails in left end to co chord.	SP connectors reco ng walls due to UPI for uplift only and o designed in accorda Residential Code so d referenced stand DH26-2 (With 20-16 to Truss) or equiva nnect truss(es) to fr	DIFT at LIFT at does no ance w ections lard AN 6d nails lent at ront fac	ded to connect it(s) 8. This of consider lat th the 2015 R502.11.1 a SI/TPI 1. s into Girder 8 17-3-0 from th e of bottom	ct eral nd k			Contraction of the second s		SEAL B6322 SINEER.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

January 30,2020

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	A4B	Common	2	1	Job Reference (optional)	E14017208

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:55:45 ID:FleyXbmGuXIm8x88fSCthczvrwL-VgkdhqhWiQm?VqoEB9eNp8EFdO6chhnh?MdsZmzqCFy

6-2-3

17-1-8 8-3-10 16-3-12 8-3-10 8-0-2 0-9-12 2x4 🛛 5x6= 4 5 8¹² 5x8 🖌 2³ 11-2-7 0-10-7 7 12 13 8 14 15 6 3x5= 8x10= 4x5= 10-11-5 17-1-8 -

10-11-5

Scale = 1:72.8

Plate Offsets (X, Y): [2:0-4-0,0-3-4], [8:0-5-0,0-4-8]

1-8-15

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing 22 Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr 1 Code 1	2-0-0 1.15 1.15 YES RC2015	/TPI2014	CSI TC BC WB Matrix-MSH	0.40 0.44 0.56	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.17 0.01	(loc) 8-11 8-11 1	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 149 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 Left: 2x4 SP No.3 Structural wood sheat 6-0-0 oc purlins, exce Rigid ceiling directly a bracino.	thing directly applied of applied of applied of applied or 10-0-0 oc	2) or 3)	Wind: ASCE Vasd=103mp Cat. II; Exp B Exterior (2) z MWFRS for r grip DOL=1.3 TCLL: ASCE DOL=1.15 PI snow); Pf=13 Plate DOL=1	7-10; Vult=130mph h; TCDL=6.0psf; B ; Enclosed; MWFR one;C-C for membe eactions shown; Lu 3 7-10; Pr=20.0 psf (ate DOL=1.15); Pg .9 psf (flat roof sno .15); Category II; E	n (3-sec CDL=6 S (enve ers and umber I (roof liv =20.0 p w: Lum xp B; F	ond gust) .0psf; h=25ft elope) and C forces & OOL=1.60 pla e load: Lumb sf (ground ber DOL=1.1 ully Exp.;	; -C ate per 15					
WEBS	T-Brace: 2 Fasten (2X) T and I b of web with 10d (0.13' o.c.,with 3in minimum Brace must cover 90 (lb/size) 1=571/ Mec Mechanical Max Horiz 1=286 (LC Max Uplit 7=-113 (LC Max Grav 1=706 (LC)	x4 SPF No.2 - 5-7, 4-7 vraces to narrow edge 1"x3") nails, 6in end distance. % of web length. chanical, 7=576/ 1 13) 13) 24), 7=837 (LC 24)	7 4) 5) 6) 7)	Ct=1.10 * This truss h on the bottom 3-06-00 tall b chord and an Refer to girde Provide mech bearing plate 7. This truss is of International	as been designed fa n chord in all areas y 2-00-00 wide will y other members, we er(s) for truss to trus hanical connection capable of withsta designed in accorda Residential Cordes	for a liv where fit betw with BC ss conr (by oth nding 1 ance wi	e load of 20.0 a rectangle reen the botte DL = 10.0psf ections. ers) of truss t 13 lb uplift at th the 2015 R502 11 1 a	Opsf om f. to t joint					
FORCES	(lb) - Maximum Comp Tension	ression/Maximum	8)	R802.10.2 ar	nd referenced stand	ard AN	SI/TPI 1.	for				min	CADIN
TOP CHORD	1-2=-768/0, 2-3=-553/	/0, 3-4=-629/66, 95	0)	truss system	(not part of this cor	nponer	it design) is	101				I'L'RTH	Ser States
BOT CHORD	1-12=-453/653, 12-13 8-13=-240/653, 8-14= 7-15=-18/44, 6-7=0/0	=-240/653, -18/44, 14-15=-18/44,	LO	AD CASE(S)	Standard						Gr.	THE FE	A ANT
WEBS	3-8=-519/317, 4-8=-20	03/906, 4-7=-836/344									Ξ	: 5	SEAL :
NOTES											Ξ	01	6322
1) Unhalance	ed roof live loads have h	een considered for											0022

 Unbalanced roof live loads have been considered for this design.

Page: 1

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	A5	Common	2	1	Job Reference (optional)	E14017209

Scale = 1:75.4

Loading

TCDL

BCLL

TCLL (roof)

Snow (Pf/Pg)

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:55:46 ID:4X6w3vfhTGdG1JoM??XDhDzvrvB-zsI?vAi8Tkvr7_MQIs9cMMnR0oPMQ4cqE0NP5CzqCFx

Page: 1

BCDL	10.0							Weight: 210 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 *Except* Left: 2x4 SP No.3 Structural wood shear 5-9-0 oc purlins, exce Rigid ceiling directly a bracing. T-Brace: 2 Fasten (2X) T and I t of web with 10d (0.13 o.c.,with 3in minimum Brace must cover 90 (lb/size) 2=931/0-3- Max Horiz 2=218 (LC Max Grav 2=1183 (LC	* 8-6:2x4 SP No.3 thing directly applied or ept end verticals. applied or 10-0-0 oc 2x4 SPF No.2 - 4-9 braces to narrow edge 11"x3") nails, 6in n end distance. 0% of web length. -8, 8=902/ Mechanical 10) C 25), 8=1120 (LC 25)	3) 1 5) * 6) E 7) F 8) 0 t	TCLL: ASCE DOL=1.15 PI snow); Pf=13 Plate DOL=1 Ct=1.10 This truss ha load of 12.0 ij overhangs nu * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are capacity of 5 Refer to girdk One RT7A U truss to beari connection is forces	7-10; Pr=20.0 psf (roof liv ate DOL=1.15); Pg=20.0 p .9 psf (flat roof snow: Lum .15); Category II; Exp B; F s been designed for greate bon-concurrent with other liv has been designed for a live n chord in all areas where i by 2-00-00 wide will fit betw y other members, with BC assumed to be: Joint 2 SF 65 psi. er(s) for truss to truss conn SP connectors recommend ing walls due to UPLIFT at a for uplift only and does no	e load: Lumber isf (ground ber DOL=1.15 ully Exp.; er of min roof live pad of 13.9 psf on re loads. e load of 20.0psf a rectangle reen the bottom DL = 10.0psf. P No.2 crushing vections. ded to connect jt(s) 2. This t consider lateral			
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Comp Tension 1-2=0/30, 2-3=-1531// 4-5=-860/262, 5-6=-3 2-14=-311/1305, 14-1 10-15=-243/1305, 10- 16-17=-47/697, 9-17= 7-8=0/0 3-10=-475/299, 4-10=	254, 3-4=-1377/351, 3/119, 6-8=-62/93 15=-243/1305, -16=-47/697, 47/697, 8-9=-88/424, =-155/942, 4-9=-162/90,	9) 7 1 10) \ t LOA	This truss is International R802.10.2 ar Warning: Add truss system always require AD CASE(S)	designed in accordance wi Residential Code sections nd referenced standard AN ditional permanent and stal (not part of this componen red. Standard	th the 2015 R502.11.1 and SI/TPI 1. bility bracing for tt design) is	Win	UNIORTH RTH	CARC
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103	5-9=0/504, 5-8=-1276 ed roof live loads have b n. CE 7-10; Vult=130mph (mph; TCDL=6.0psf; BC	5/266 been considered for (3-second gust) (DL=6.0psf; h=25ft;					minute.	03	SEAL 36322

Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

4. Ginn

January 30,2020

A. GILB

C

hommuna

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	A6	Flat	1	1	Job Reference (optional)	E14017210

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:55:46 MnP5oTLQADqE0NP5CzqCFx

Page: 1

		ID:Dlg	6TTtUMVgIURHXDx	J8cpzvrsK-zsl?vAi8	Tkvr7_MQls9cMl
	0-3-4 	<u>8-6-12</u> 8-3-8	ł	<u>16-10-4</u> 8-3-8	17-1-8 0-3-4
	3x4=		1x4 u	4x6=	3x4=
11-6-13					56
	1 2 1	13	10	14 9	87
	1.5x3 ॥ 0-3-4 	8-6-12 8-3-8	3x8=	4x6= <u>16-10-4</u> 8-3-8	1.5x3 ॥ 17-1-8
2-	0-0	CSI	0.49		in (loc)

Scale = 1:72.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.48 0.34 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.09 0.00	(loc) 10-11 10-11 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 167 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 2-0-0 oc purlins (6-0- Rigid ceiling directly a bracing. T-Brace: 2 2	0 max.): 1-6. applied or 10-0-0 oc 2x4 SPF No.2 - 3-10 2-11, 5-8	3) 4) 5) 6) ^{1,} 7)	Provide adeq * This truss h on the bottom 3-06-00 tall b chord and an Refer to girdd Provide mect bearing plate 11 and 23 lb This truss is o International	uate drainage to p as been designed n chord in all areas y 2-00-00 wide wil y other members, er(s) for truss to tru nanical connection capable of withsta uplift at joint 8. designed in accord Residential Code	prevent v for a liv s where I fit betw with BC uss conr (by oth anding 2 dance w	vater pondinu e load of 20.1 a rectangle veen the bott DL = 10.0psi vections. ers) of truss i 3 lb uplift at j th the 2015	g. Opsf om f. to joint					
REACTIONS	Fasten (2X) T and I b of web with 10d (0.13 o.c.,with 3in minimum Brace must cover 90 (Ib/size) 8=665/ Mer Mechanica Max Uplift 8=-23 (LC Max Grav 8=751 (LC	races to narrow edg (1"x3") nails, 6in a end distance.)% of web length. chanical, 11=665/ I 10), 11=-23 (LC 9) 3), 11=-751 (LC 3)	ge 8) 9) LC	R802.10.2 ar Graphical pui or the orienta bottom chord Warning: Add truss system always requir	Id referenced stan- ilin representation tion of the purlin a Iditional permanent (not part of this co red. Standard	dard AN does no long the and sta	ISI/TPI 1. of depict the s top and/or bility bracing t design) is	size					
FORCES	(lb) - Maximum Comp Tension	pression/Maximum											
TOP CHORD	1-2=0/0, 2-3=-321/60, 4-5=-321/60, 5-6=0/0	, 3-4=-321/60,											en l'en anti-
BOT CHORD	11-12=0/0, 11-13=0/0), 10-13=0/0, 10-14=	=0/0,									and the second	CAD
WEBS	9-14=0/0, 8-9=0/0, 7-8 2-10=-101/536, 3-10= 5-10=-101/536, 2-11=	8=0/0 =-617/286, =-615/174, 5-8=-615/	/174									ORTA	SHOW N'
NOTES											4		/him/
 Wind: AS Vasd=100 Cat. II; Eb Exterior (MWFRS grip DOL: TCLL: AS DOL=1.1: snow); Pf Plate DO Ct=1.10, 	CE 7-10; Vult=130mph (3mph; TCDL=6.0psf; BC qp B; Enclosed; MWFRS 2) zone; C-C for member: =1.33 SCE 7-10; Pr=20.0 psf (rc 5 Plate DOL=1.15); Pg=2 =18.9 psf (flat roof snow L=1.15); Category II; Exp Lu=50-0.0	3-second gust) DL=6.0psf; h=25ft; (envelope) and C-C s and forces & nber DOL=1.60 plate Dof live load: Lumbe 20.0 psf (ground : Lumber DOL=1.15 b B; Fully Exp.;	C e r 5								Contractive.	CANCE A	SEAL 36322 SINEER GILBER

1000000 January 30,2020

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	A6A	Half Hip	1	1	E1 Job Reference (optional)	4017211

Run: 8.33 S. Jan 22 2020 Print: 8.330 S. Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:55:47

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for use only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	A7	Flat Girder	1	2	Job Reference (optional)	E14017212

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:55:48 ID:8mEk7bOyNPtnRPBWPc2w1gzvrp4-vFPmKrjO?L9ZMHWptHC4RnsoBc7uuxb7hKsWA5zqCFv

Plate Offsets (X, Y): [10:0-3-0,0-4-8], [13:0-1-4,0-1-8]

Scale = 1:72

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	5/TPI2014	CSI TC BC WB Matrix-MSH	0.25 0.40 1.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.09 0.02	(loc) 10-12 10-12 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 459 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 2-0-0 oc purlins (6-0-1 Rigid ceiling directly a bracing.	0 max.): 1-7. applied or 10-0-0 oc	2) 3)	All loads are except if note CASE(S) sec provided to d unless otherw Wind: ASCE Vasd=103mp Cat. II; Exp B DOL=1.60 pla	considered equally d as front (F) or ba tion. Ply to ply com istribute only loads vise indicated. 7-10; Vult=130mph h; TCDL=6.0psf; B ; Enclosed; MWFR ate grip DOL=1.33	applied ack (B) f nection noted a (3-sec CDL=6 S (enve	d to all plies, ace in the LC s have been as (F) or (B), ond gust) .0psf; h=25ft; elope); Lumbe)AD er	13) Han prov Ib de desi resp 14) War trus alwa	ger(s) o vided suf own and gn/selec onsibilit ning: Ad s system ays requ	r other ficient 278 lb ction of y of oth Iditiona n (not p ired.	connection devia to support conce oup at 17-3-0 or such connection ners. al permanent and part of this compo-	ce(s) shall be intrated load(s) 1392 i bottom chord. The a device(s) is the stability bracing for onent design) is
REACTIONS	I-Brace: 2 Fasten (2X) T and I t of web with 10d (0.13 o.c.,with 3in minimum Brace must cover 90 (Ib/size) 9=1822/0-3 Mochanica	2x4 SPF No.2 - 5-9, ; braces to narrow edg \$1"x3") nails, 6in n end distance. 0% of web length. 3-8, 13=1454/	3-13 ge 4) 5)	TCLL: ASCE DOL=1.15 PI snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Provide adeq	7-10; Pr=20.0 psf (ate DOL=1.15); Pg .9 psf (flat roof sno .15); Category II; E 50-0-0 uate drainage to pr	(roof liv =20.0 p w: Lum xp B; F revent v	e load: Lumb sf (ground ber DOL=1.1 ully Exp.; vater ponding	er 5 J.	1) De Inc Un Co	ad + Sn rease=1 iform Lo Vert: 1-7 ncentrat	ow (ba 1.15 ads (lt 7=-58, 1 ted Loa =-1210	/ft) 8-14=-20 ads (Ib)	Increase=1.15, Plate
FORCES	Max Uplift 9=-213 (LC Max Grav 9=2041 (LC (Ib) - Maximum Comp	" C 6), 13=-131 (LC 5) C 3), 13=1639 (LC 3 pression/Maximum	6))	* This truss h on the botton 3-06-00 tall b chord and an	as been designed f n chord in all areas y 2-00-00 wide will y other members, v	for a liv where fit betw with BC	e load of 20.0 a rectangle reen the botto DL = 10.0psf.)psf om			- 1210		
TOP CHORD	Tension 1-2=0/0, 2-3=0/0, 3-4	=-1695/198,	7)	Bearings are capacity of 50	assumed to be: , J 55 psi.	oint 9 S	P No.2 crush	ning					
BOT CHORD	4-5=-1695/198, 5-6=(13-14=0/0, 13-15=-11 12-15=-118/1301, 12 11-16=-118/1301, 11 10-17=-118/1301, 10 9-18=-198/1695, 8-9=)/U, 6-7=0/0 18/1301, -16=-118/1301, -17=-118/1301, -18=-198/1695, =0/0	8) 9) 10	Refer to girde Provide mech bearing plate joint 13.) One RT7A U	er(s) for truss to trus nanical connection capable of withsta SP connectors reco	ss conr (by oth nding 1 ommen	ections. ers) of truss to 31 lb uplift at ded to conner it(s) 9 This	o ct			4	IN ORTH	CARO
WEBS	2-13=-227/54, 6-9=-2 3-12=0/537, 3-13=-18 5-10=-67/1306	28/55, 5-9=-2457/28 386/171, 3-10=-120/	37, 574, 11	connection is forces.	for uplift only and o	does no	th the 2015	teral			THIN		SEAL
NOTES				International	Residential Code s	ections	R502.11.1 a	nd			Ξ	03	36322
 2-ply truss (0.131"x3" Top chord staggered Bottom ch staggered Web conn 	s to be connected togeth ') nails as follows: Is connected as follows: at 0-9-0 oc. ords connected as follo at 0-7-0 oc. ected as follows: 2x4 -	ner with 10d 2x6 - 2 rows ws: 2x6 - 2 rows 1 row at 0-9-0 oc.	12	R802.10.2 ar) Graphical pur or the orienta bottom chord	Id referenced stanc flin representation of tion of the purlin al	dard AN does no ong the	SI/TPI 1. It depict the s top and/or	ize			100	CRIC A	SINEER.

January 30,2020

TREERING BY A MITCH Affiliate 818 Soundside Road Edenton, NC 27932

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componen
Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	A7A	Half Hip Girder	1	2	Job Reference (optional)	E14017213

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:55:49 ID:Emde3pPp5H8EFR2CkHCYXGzvrPF-vFPmKrjO?L9ZMHWptHC4RnsIHc1fu2B7hKsWA5zqCFv

Page: 1

			-										
Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 18.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.44 0.80 0.52	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.11 -0.21 0.03	(loc) 12-15 12-15 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL	0.0* 10.0	Code	IRC201	5/TPI2014	Matrix-MSH							Weight: 388 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 Left: 2x4 SP No.3 Structural wood sheat 6-0-0 oc purlins, exce 2-0-0 oc purlins, exce	thing directly applied o pt 0 max.): 3-7. applied or 10-0-0 oc	1) or 2)	2-ply truss to (0.131"x3") n Top chords c staggered at Bottom chord staggered at Web connect All loads are except if note CASE(S) see provided to d unless other	L be connected toge ails as follows: connected as follows 0-9-0 oc. s connected as foll 0-9-0 oc. ted as follows: 2x4 - considered equally ad as front (F) or ba ction. Ply to ply conr listribute only loads wise indicated.	ther win s: 2x6 - ows: 2: · 1 row applied ck (B) 1 nection noted a	h 10d 2 rows 6 - 2 rows at 0-9-0 oc. 4 to all plies, ace in the LO 5 have been as (F) or (B),	DAD	12) One trus con forc 13) This Inte R80 14) Gra or th bott	RT7A L s to bea nection i es. s truss is rnationa 22.10.2 a phical pr he orient om chor	JSP cc ring wa s for u desigu l Resic nd refu urlin re ation c d.	ponnectors recommination of the purification o	mended to connect T at jt(s) 2. This as not consider lateral we with the 2015 ions R502.11.1 and d ANSI/TPI 1. as not depict the size of the top and/or
WEBS REACTIONS	1 Row at midpt 4 (lb/size) 2=1785/0-3 Max Horiz 2=192 (LC Max Uplift 2=-468 (LC Max Grav 2=2168 (LC	I-9 3-8, 9=2038/ Mechanid 9) ≿ 9), 9=-832 (LC 6) ≿ 44), 9=2460 (LC 47)	cal ³⁾ 4)	Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II: Exp. F	7-10; Vult=130mph bh; TCDL=6.0psf; Bi	been o (3-sec CDL=6 S (envi	considered for ond gust) .0psf; h=25ft;	r Pr					
FORCES	(lb) - Maximum Comp	pression/Maximum	, د ا	DOL=1.60 pl	ate grip DOL=1.33								
TOP CHORD	1-2=0/30, 2-16=-2934 3-17=-2040/657, 17-1 18-19=-2042/658, 4-1 20-21=0/0, 5-21=0/0, 6-7-0/0	k/717, 3-16=-2714/748 8=-2041/657, 9=-2043/658, 4-20=0, 5-22=0/0, 6-22=0/0,	5) 3, 1/0,	DOL=1.15 Pl snow); Pf=18 Plate DOL=1 Ct=1.10, Lu=	ate DOL=1.15); Pg: 8.9 psf (flat roof snor .15); Category II; E: 50-0-0 s been designed for	=20.0 p w: Lum xp B; F	e load: Lumbe sf (ground ber DOL=1.1 ully Exp.;	5 live				(Internet)	CARO
BOT CHORD WEBS NOTES	2-23=-681/2362, 23-2 24-25=-681/2362, 12- 12-26=-677/2338, 26- 27-28=-677/2338, 11- 11-29=-677/2338, 10- 10-30=-657/2042, 30- 31-32=-657/2042, 32- 9-33=-657/2042, 8-9= 3-12=-161/1182, 4-9= 6-9=-267/138, 3-10=-	24=-681/2362, -25=-681/2362, -27=-677/2338, -28=-677/2338, -29=-677/2338, -31=-657/2042, -33=-657/2042, -0/0 2708/871, 398/58, 4-10=-273/12	9) 8) 9) 216 10 11	 Institution of 12.0 j overhangs no Provide adect This truss h on the bottom 3-06-00 tall b chord and an Bearings are capacity of 5 Refer to gird Provide mech bearing plate joint 9. 	so been designed to obsor 2.00 times fla on-concurrent with o quate drainage to pr nas been designed f n chord in all areas by 2-00-00 wide will yo other members, v assumed to be: Joi 65 psi. er(s) for truss to trus hanical connection f capable of withstar	t roof lo other liv event v or a liv where fit betw vith BC int 2 SF ss conr (by othe nding 8	ad of 13.9 ps re loads. vater ponding e load of 20.0 a rectangle even the botto DL = 10.0psf. P No.2 crushir ections. ers) of truss to 32 lb uplift at	ive sf on lpsf om ng			Winnin		SEAL B6322

January 30,2020

ENGINEERING BY A MI Tek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	A7A	Half Hip Girder	1	2	Job Reference (optional)	E14017213

Run: 8.33 S. Jan 22 2020 Print: 8.330 S. Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:55:49

ID:Emde3pPp5H8EFR2CkHCYXGzvrPF-vFPmKrjO?L9ZMHWptHC4RnsIHc1fu2B7hKsWA5zqCFv

Page: 2

Carter Components (Sanford), Sanford, NC - 27332,

15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 25 lb down and 29 lb up at 8-4-8, 151 lb down and 147 lb up at 10-3-12, 76 lb down and 66 lb up at 12-4-8, 76 lb down and 66 lb up at 14-4-8, 76 lb down and 66 lb up at 16-4-8, 76 lb down and 66 lb up at 18-4-8, 76 lb down and 66 lb up at 20-4-8, 76 lb down and 66 lb up at 22-4-8, and 76 lb down and 66 lb up at 24-4-8, and 71 Ib down and 65 lb up at 26-4-8 on top chord, and 469 lb down and 155 lb up at 6-4-8, 198 lb down and 84 lb up at 8-4-8, 67 lb down at 10-4-8, 160 lb down and 87 lb up at 12-4-8, 160 lb down and 87 lb up at 14-4-8, 160 Ib down and 87 lb up at 16-4-8, 160 lb down and 87 lb up at 18-4-8, 160 lb down and 87 lb up at 20-4-8, 160 Ib down and 87 lb up at 22-4-8, and 160 lb down and 87 Ib up at 24-4-8, and 166 lb down and 81 lb up at 26-4-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

 Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft) Vert: 1-3=-48, 3-7=-58, 8-13=-20

Concentrated Loads (lb)

Vert: 3=-94 (B), 12=-44 (B), 9=-130 (B), 4=-9 (B), 6=-26 (B), 10=-124 (B), 17=-9 (B), 18=-9 (B), 19=-9 (B), 20=-9 (B), 21=-9 (B), 22=-9 (B), 24=-419 (B), 25=-172 (B), 26=-124 (B), 28=-124 (B), 29=-124 (B), 30=-124 (B), 32=-124 (B), 33=-124 (B)

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	A8	Flat Girder	1	2	Job Reference (optional)	E14017214

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:55:51 ID:5FQkPtmCdiAob9le0fBlouzvrKv-NRz8XBk0mfHQ_R5?Q_jJz_Oua0TMdV_Hw_b3iXzqCFu

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MISUFPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

"IIIIIIIIIIIII

January 30,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	A8	Flat Girder	1	2	Job Reference (optional)	E14017214

Run: 8.33 S. Jan 22 2020 Print: 8.330 S. Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:55:51

ID:5FQkPtmCdiAob9le0fBlouzvrKv-NRz8XBk0mfHQ_R5?Q_jJz_Oua0TMdV_Hw_b3iXzqCFu

Page: 2

Carter Components (Sanford), Sanford, NC - 27332,

13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 155 Ib down and 134 lb up at 1-9-12, 155 lb down and 134 Ib up at 3-9-12, 155 lb down and 134 lb up at 5-9-12, 155 lb down and 134 lb up at 7-9-12, 155 lb down and 134 lb up at 9-9-12, 155 lb down and 134 lb up at 11-9-12, 155 lb down and 134 lb up at 13-9-12, 155 lb down and 134 lb up at 15-9-12, 155 lb down and 134 lb up at 17-9-12, 174 lb down and 127 lb up at 19-9-12, 174 lb down and 127 lb up at 21-9-12, 174 lb down and 127 lb up at 23-9-12, and 172 lb down and 128 lb up at 25-9-12, and 185 lb down and 126 lb up at 26-7-0 on top chord, and 67 lb down at 1-9-12, 67 lb down at 3-9-12, 67 lb down at 5-9-12, 67 lb down at 7-9-12, 67 lb down at 9-9-12, 67 lb down at 11-9-12, 67 lb down at 13-9-12, 67 lb down at 15-9-12, 67 lb down at 17-9-12, 68 lb down at 19-9-12, 68 lb down at 21-9-12, 68 lb down at 23-9-12, and 69 lb down at 25-9-12, and 74 lb down at 26-7-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-7=-58, 8-14=-20

Concentrated Loads (lb)

- Vert: 4=-89 (F), 11=-44 (F), 9=-52 (F), 5=-89 (F), 6=-118 (F), 10=-44 (F), 15=-89 (F), 16=-89 (F), 17=-89 (F), 18=-89 (F), 19=-89 (F), 20=-89 (F), 21=-89 (F), 22=-91 (F), 23=-91 (F), 24=-91 (F),
- 25=-98 (F), 26=-44 (F), 27=-44 (F), 29=-44 (F), 30=-44 (F), 31=-44 (F), 32=-44 (F), 34=-44 (F), 35=-42 (F), 36=-42 (F), 37=-42 (F), 38=-45 (F)

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	B1	Piggyback Base	4	1	Job Reference (optional)	E14017215

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:55:51 ID:knePukQliuiZKoJ?mFVt8Azvr8R-Kp5uytIHIGX8DIFNYPIn2PUJ3p9Y5TCaNI4AmQzqCFs

Page: 1

Scale = 1:75.4				011		020			01				
Plate Offsets	(X, Y): [4:0-5-0,0-4-8],	, [5:0-3-12,0-3-4], [6:	0-3-12,0-	3-4]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MSH	0.21 0.40 0.31	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.08 -0.11 0.02	(loc) 12-19 10-12 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 200 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 Left 2x4 SP No.3 2 2-6-0	2-6-0, Right 2x4 SP	3 No.3 4	 TCLL: ASC DOL=1.15 F snow); Pf=1 Plate DOL= Ct=1.10, Lu This truss h 	E 7-10; Pr=20.0 ps Plate DOL=1.15); I 18.9 psf (flat roof s :1.15); Category II; I=50-0-0 nas been designed	sf (roof liv Pg=20.0 p now: Lum ; Exp B; F for greate	e load: Lumb osf (ground iber DOL=1.' ully Exp.; er of min root	ber 15 f live				<u>.</u>	
BRACING TOP CHORD	Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0	eathing directly applie cept 0-0 max.): 5-6.	ed or 5 6	load of 12.0 overhangs r Provide ade) * This truss) psf or 2.00 times non-concurrent wit equate drainage to has been designe	flat roof le th other liv prevent v ed for a liv	bad of 13.9 p ve loads. water pondin e load of 20.	sf on g. 0psf					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	C	on the botto 3-06-00 tall	by 2-00-00 wide v	as where vill fit betv	a rectangle veen the bott	om					
REACTIONS	(lb/size) 2=900/0-3 Max Horiz 2=218 (L0 Max Gray 2=1098 (l	3-8, 9=863/0-3-8 C 10) ∟C 25), 9=1059 (LC	7 26) a	chord and a) All bearings capacity of	any other members s are assumed to b 565 psi.	s, with BC be SP No.	DL = 10.0ps 2 crushing	f.					
FORCES	(lb) - Maximum Com	pression/Maximum	/ 8	truss to bea	aring walls due to L	JPLIFT at	to conne tit(s) 9 and 2	ect 					
TOP CHORD	1-2=0/39, 2-3=-610/ 4-5=-1074/361, 5-6= 6-7=-1079/363, 7-8=	52, 3-4=-1159/239, =-613/300, =-1162/239, 8-9=-62	g 1/42	lateral force) This truss is Internationa	s designed in acco Residential Code	rdance w e sections	ith the 2015 R502.11.1 a	and					
BOT CHORD	2-21=-149/887, 21-2 12-22=-69/887, 12-2 10-11=0/653, 10-24 9-25=-59/775	22=-69/887, 23=0/653, 11-23=0/6 =-59/775, 24-25=-59	53, 1 9/775,	R802.10.2 a 0) Graphical p or the orient bottom chor	and referenced sta ourlin representatio tation of the purlin rd.	andard AN n does no along the	ISI/TPI 1. ot depict the s top and/or	size				IN ORTH	CAROLIN
WEBS	4-12=-325/258, 5-12 6-10=-137/555, 7-10	2=-134/543,)=-327/259	L	OAD CASE(S)) Standard						4	all the	1 And
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=103 Cat. II; Ex Exterior (2 vertical le forces & N DOL=1.60	ed roof live loads have n. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B ;p B; Enclosed; MWFR 2) zone; cantilever left : ft and right exposed;C- MWFRS for reactions s 0 plate grip DOL=1.33	been considered for CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; C for members and hown; Lumber	r C end								The first of the second s	AND	SEAL B6322

January 30,2020

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	B2	Piggyback Base Girder	1	2	Job Reference (optional)	E14017216

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:55:52 ID:zJG5UF8OZKG3X0uXHsayZpzvr7V-o0fGADmv3af?rvqa67G0bd0KkDRcqssjcyqjJszqCFr

Page: 1

Scale = 1:77.8 Plate Offsets (X, Y): [2:0-5-10,0-0-3], [6:0-5-8,0-3-0], [7:0-5-8,0-3-0], [10:0-6-14,Edge], [13:0-5-0,0-4-8], [14:0-3-8,0-4-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.86 0.67 0.54	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.28 0.05	(loc) 14-15 14-15 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 472 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x6 SP No.2 2x6 SP 2400F 2.0E 2x4 SP No.2 Left 2x6 SP No.2 1 1-6-0 Structural wood shea	-6-0, Right 2x6 SP N	1) lo.2 d or 2)	2-ply truss to (0.131"x3") n Top chords c staggered at Bottom chorc staggered at Web connect All loads are except if note	be connected toget ails as follows: onnected as follows 0-9-0 oc. Is connected as follo 0-5-0 oc. ed as follows: 2x4 - considered equally d as front (F) or bad	her wit 2x6 - 2ws: 2 1 row applied 2k (B) f	h 10d 2 rows 36 - 2 rows at 0-9-0 oc. 1 to all plies, ace in the LO.	AD	11) One truss This later 12) This Inter R80 13) Grap or th	RT7A L s to bear connec al forces truss is rnational 2.10.2 a phical pu e orient	JSP co ring wa tion is s. design Resid nd refe urlin re ation c	nnectors recomr alls due to UPLIF for uplift only and hed in accordanc lential Code secti erenced standarc presentation doe of the purlin along	nended to conne T at jt(s) 10 and I does not consi e with the 2015 ons R502.11.1 a ANSI/TPI 1. s not depict the the top and/or	ect 2. der and size
BOT CHORD	2-0-0 oc purlins, ex 2-0-0 oc purlins (6-0- Rigid ceiling directly bracing. (Ib/size) 2=5026/0- Max Horiz 2=212 (LC	cept 0 max.): 6-7. applied or 10-0-0 oc 3-8, 10=7387/0-3-8 : 30)	3) 4)	CASE(S) sec provided to d unless otherv Unbalanced in this design. Wind: ASCE	tion. Ply to ply conn istribute only loads i vise indicated. oof live loads have 7-10; Vult=130mph	been c	s have been as (F) or (B), considered for ond gust)		botto 14) Use 8-16 max conr 15) Use	om chore USP TH 6d nails i starting nect trus USP TH	d. IDH26 nto Tru g at 6-7 s(es) t ID26 (-2 (With 20-16d ı uss) or equivalen 7-13 from the left o front face of bo With 18-16d nails	nails into Girder t spaced at 8-0-(end to 16-7-13 ttom chord. s into Girder &	&) oc to
	Max Uplift 2=-191 (LC Max Grav 2=5610 (L (Ib) - Maximum Comp Tension	C 9) C 2), 10=8556 (LC 2) pression/Maximum)	Vasd=103mp Cat. II; Exp B left and right exposed; Lur	h; TCDL=6.0psf; BC ; Enclosed; MWFRS exposed ; end vertion nber DOL=1.60 plat	CDL=6 6 (enve cal left e grip	.0psf; h=25ft; elope); cantilev and right DOL=1.33	ver	12-1 4-0- 22-7	0d x 1-1 0 oc ma: '-1 to co	/2 nail x. stari nnect f	s into Truss) or e ting at 10-7-1 fror truss(es) to front	quivalent space n the left end to face of bottom c	d at hord.
BOT CHORD	1-2=0/38, 2-3=-4819, 4-5=-5727/36, 5-6=-5 7-8=-5703/0, 8-9=-79 2-15=-282/4819, 15- 24-25=-282/4819, 14	/123, 3-4=-/133/343, 5638/57, 6-7=-4028/0 937/0, 9-10=-6605/0 24=-282/4819, -25=-282/4819), 5)	DOL=1.15 PI snow); Pf=18 Plate DOL=1 Ct=1 10 Lu=	7-10; Pr=20.0 pst (i ate DOL=1.15); Pg= .9 psf (flat roof snov .15); Category II; Ex 50-0-0	20.0 p ⊧20.0 p v: Lum p B; F	e load: Lumbe sf (ground ber DOL=1.15 ully Exp.;	er 5	16) Fill a	all nail ho	oles wi	here hanger is in	CARO	iber.
	14-26=0/4066, 26-27 12-13=0/5495, 12-28 11-29=0/5495, 11-30 31-32=0/5495, 10-32	2=0/4066, 13-27=0/40 =0/5495, 28-29=0/54 =0/5495, 30-31=0/54 =0/5495	066, 6) 195, 195, 7)	This truss ha load of 12.0 p overhangs no Provide adeo	s been designed for osf or 2.00 times flat on-concurrent with o uate drainage to pre	greate roof lo ther liv	er of min roof l pad of 13.9 psi re loads. vater ponding	ive f on			6	2 Port	SSI	
WEBS NOTES	4-15=-524/1872, 4-1 6-14=-533/3875, 6-1 7-13=0/3769, 8-13=-	4=-1279/513, 3=-244/643, 2326/0, 8-11=0/3153	8)	* This truss h on the botton 3-06-00 tall b chord and an	as been designed for n chord in all areas in y 2-00-00 wide will f y other members, w	or a live where fit betw with BC	e load of 20.0 a rectangle een the botto DL = 10.0psf.	psf m			THINK	9 03	EAL 6322	Minnin V
			9)	than input be	kequirea bearing siz aring size.	e at jo	nu(s) 10 great	er			-	A. SAU	FER.	L E

10) All bearings are assumed to be SP 2400F 2.0E crushing capacity of 805 psi.

A. GILDIN January 30,2020

C

Continued on page 2 - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-1473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A. GILB

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	B2	Piggyback Base Girder	1	2	Job Reference (optional)	E14017216

17) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1100 Ib down at 23-2-4, and 983 Ib down and 15 Ib up at 24-7-1 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-6=-46, 6-7=-56, 7-10=-46, 16-20=-19 Concentrated Loads (lb)

Vert: 14=-666 (F), 13=-551 (F), 18=-828 (F), 24=-1861 (F), 25=-1465 (F), 26=-551 (F), 28=-1225

(F), 29=-872 (F), 30=-872 (F), 31=-908 (F), 32=-908 (F)

Run: 8.33 S. Jan 22 2020 Print: 8.330 S. Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:55:52 ID:zJG5UF8OZKG3X0uXHsayZpzvr7V-o0fGADmv3af?rvqa67G0bd0KkDRcqssjcyqjJszqCFr

Page: 2

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	B3	Piggyback Base Structural Gable	1	1	. Job Reference (optional)	E14017217

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:55:52 ID:LP96OvegoWFEI8jV2MB69Mzvqzq-o0fGADmv3af?rvqa67G0bd0SYDYNqwXjcyqjJszqCFr

	0-10-11	8-4-4	11-10-5	24-11-0	
Scale = 1:77.2	0-10-11	7-5-9	3-6-1 0-9-4	12-3-6	

Plate Offsets (X, Y):	[3:0-5-0,0-4-8]	[6:0-3-12,0-3-4],	[8:0-5-8,0-3-0]	, [25:Edge,0-3-4]
-----------------------	-----------------	-------------------	-----------------	-------------------

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10 1															
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(ps 20 18.9/20 10 0 10	sf) Sp 1.0 Pla 1.0 Lui 1.0 Re 1.0* Co 1.0	ate Grip DOL mber DOL p Stress Incr de	1-11- 1.15 1.15 YES IRC2	4 015/TPI2014	CSI TC BC WB Matri	<-MSH	0.36 0.24 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(l 23 23	oc) -24 -24 14	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 279 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 *E: 2x4 SP No.2 *E: SP No.3	xcept* 25 xcept* 30	5-2,4-26:2x4 SP)-5,16-11,15-12:	No.3 2x4		Max Gra	/ 14=340 16=160 18=152 21=234 24=407 31=340	(LC 25), (LC 26), (LC 26), (LC 25), (LC 25), (LC 25)	15=201 (LC 17=181 (LC 20=88 (LC 22=163 (LC 25=427 (LC	; 26), ; 26), 13), ; 29), ; 2),	2)	Wind: Vasd= Cat. I Exteri vertic forces	ASCE =103mp I; Exp E ior (2) z al left a s & MW	7-10; oh; TC 3; Encl cone; c nd rigl /FRS f	Vult=130mph (DL=6.0psf; BCI losed; MWFRS cantilever left an ht exposed;C-C for reactions sho	3-second gust) DL=6.0psf; h=25ft; (envelope) and C-C di right exposed ; end for members and own; Lumber	
SLIDER	Right 2x4 SP No	o.3 2-6-	-0		FORCES	(lb) - Ma	aximum Co	mpressio	on/Maximum	I III		DOL=	⊧1.60 pl	late gr	ip DOL=1.33		
BRACING						Tensior					3)	Iruse	s desigi	ned to	r wind loads in t	he plane of the truss	
TOP CHORD BOT CHORD	Structural wood 6-0-0 oc purlins 2-0-0 oc purlins Rigid ceiling dire	sheathin , except (6-0-0 m ectly appl	ng directly applie end verticals, an ax.): 6-8. lied or 10-0-0 oc	ed or nd	TOP CHORD	1-2=0/46, 2-3=-323/221, 3-4=-387/200, 4-5=-371/211, 5-6=-361/259, 6-7=-265/217, 7-8=-265/217, 8-9=-330/254, 9-10=-280/165, 10-11=-291/82, 11-12=-296/82, 12-13=-315/99, 13-14=-163/32.					4)	or cor TCLL DOL=	itandaro nsult qu : ASCE 1.15 P	d Indu: alified 7-10; late D	stry Gable End Details as applicable, d building designer as per ANSI/TPI 1. ; Pr=20.0 psf (roof live load: Lumber OL=1.15); Pg=20.0 psf (ground f (flat roof snow: Lumber DOL = 1 15		
WEBS	T-Brace:	2x4	SPF No.2 - 7-27	7,	BOT CHORD	2-25=-3 24-25=-	69/229 123/429 24	4-35=-12	23/429			snow) Plate); Pf=18 DOL=1	3.9 psf .15); (f (flat roof snow: Category II; Exp	Lumber DOL=1.15 B; Fully Exp.;	
JOINTS REACTIONS	Fasten (2X) T a of web with 10d o.c.,with 3in mir Brace must co 1 Brace at Jt(s): (lb/size) 14=2: 16=1: 18=1: 24=2: 31=2: Max Horiz 25=-2 Max Uplift 14=-5 16=-5 16=-5	and I brac (0.131"x himum en ver 90% (26 47/13-4-3 33/13-4-3 97/13-4-3 97/13-4-3 97/13-4-3 224 (LC 1 50 (LC 10 35 (LC 14 52 (LC 14	 a, 5, 6, 7, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 15, 8, 15, 12/13, 4, 3, 15, 12, 138/13, 4, 3, 20, 445/13, 4, 3, 20, 445/13, 4, 3, 20, 445/13, 4, 3, 20, 245, 334/1, 0, 7, 3 b), 15, 145, 145, 145, 145, 145, 145, 145,	lge 3, 3, , 14), 4), 1),	WEBS	35-36=- 22-23=- 20-21=- 18-19=- 16-17=- 14-15=- 3-25=-3 26-29=- 26-30=- 7-27=-1 8-20=-9 10-17=- 12-15=-	123/429, 2: 94/435, 21. 65/215, 19. 65/215, 17. 65/215, 15. 64/215 03/0, 3-23= 83/158, 6-2 325/124, 21 311/102, 2 25/21, 28-2 2/116, 9-18 171/129, 1 192/172	3-36=-12 -22=-94/ -20=-65/ -18=-65/ -16=-65/ -6-4/158 29=-85/1 6-28=-30 1-27=-38 29=-11/1 3=-128/11 1-16=-14	23/429, 435, 215, 215, 215, 215, 215, 215, 215, 21	128, 08/95, 41,	5) 6) 7) 8)	Ct=1. This t load c overh Provid All pla Gable	10, Lu= russ ha of 12.0 angs n de adec ates are e studs	=50-0-(is been psf or on-cor quate (> 2x4 N space	0 n designed for <u>c</u> 2.00 times flat r neurrent with oth drainage to prev VT20 unless oth d at 2-0-0 oc.	reater of min roof live oof load of 13.9 psf on ter live loads. rent water ponding. terwise indicated.	
	21=-2 25=-8	23 (LC 10 32 (LC 14	0), 22=-8 (LC 10 1), 31=-50 (LC 1), 0)	 Unbalance this design 	d roof live	e loads hav	e been c	considered fo	or							

January 30,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC		
20010096	B3	Piggyback Base Structural Gable	1	1	Job Reference (optional)	E14017217	

- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 14, 25, 21, 20, 18, 17, 16, 15, 24, and 22. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:55:52 ID:LP96OvegoWFEl8jV2MB69Mzvqzq-o0fGADmv3af?rvqa67G0bd0SYDYNqwXjcyqjJszqCFr Page: 2

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	C1	Attic	6	1	Job Reference (optional)	E14017218

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:55:54 ID:yA76cyd6Uiab8k_GrafKUezvqyY-kOn1avo9aBvj4C_yDYJUg26gF1A4Iqs03GJqNkzqCFp

Scale = 1:78.9														
Plate Offsets ((X, Y): [2:0-3-4,0-0-8],	[4:0-1-13,0-2-0], [5:0	-5-8,0-3-0], [6:0-5-8,0-3-	-0], [7:0-1-13,0-2-0]	, [9:0-3	-4,0-0-8], [12	2:0-3-8,0-	5-8], [14	:0-3-8,0	-5-8]			
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MSH	0.86 0.41 0.31	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.32 -0.43 0.01 -0.21	(loc) 12-14 12-14 11 12-14	l/defl >804 >588 n/a >698	L/d 240 180 n/a 360	PLATES MT20 Weight: 192 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x6 SP No.2 2x8 SP 2400F 2.0E 2x4 SP No.3 *Except No.2 Structural wood shea 2-8-10 oc purlins, ex 2-0-0 oc purlins (6-0- Rigid ceiling directly bracing. 1 Brace at Jt(s): 16 (lb/size) 11=896/0- Max Gray 11=1275 (* 3-14,8-12,4-7:2x4 \$ athing directly applied copt end verticals, ar o max.): 5-6. applied or 10-0-0 oc 3-8, 15=896/0-3-8 LC 11) LC 3) 15=1275 (LC 2)	3) SP 4) f or nd 5) 6) 7)	TCLL: ASCE DOL=1.15 PI snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= This truss ha overhangs no Provide adec * This truss h on the bottor 3-06-00 tall b chord and ar Ceiling dead 7-16; Wall d	7-10; Pr=20.0 psf late DOL=1.15); Pg 3.9 psf (flat roof sno .15); Category II; E :50-0-0 ls been designed for psf or 2.00 times fla on-concurrent with quate drainage to p has been designed in chord in all areas by 2-00-00 wide will by other members. load (5.0 psf) on m ead load (5.0 psf) on	(roof liv =20.0 p w: Lum xp B; F or greate at roof lo other liv revent v for a liv where fit betw hember(n memb	e load: Lumb osf (ground ber DOL=1.' ully Exp.; er of min rool ad of 13.9 p re loads. vater pondin e load of 20. a rectangle reen the bott s). 3-4, 7-8, - ber(s).3-14, 8	ber 15 f live ssf on g. Opsf com 4-16, 3-12						
FORCES	(lb) - Maximum Comp Tension 1-2=0/47, 2-3=-1348, 4-5=-198/146, 5-6=-4 7-8=-822/182, 8-9=-1	/44, 3-4=-823/182, 18/255, 6-7=-198/146 1348/44, 9-10=0/47,	8) 9) 5, 10)	 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 12-14 9) All bearings are assumed to be SP 2400F 2.0E crushing capacity of 805 psi. 										
BOT CHORD	2-15=-1410/71, 9-11 14-15=-226/291, 13- 11-12=-43/115	=-1410/71 14=0/851, 12-13=0/8	51,	truss to bear This connect lateral forces	ing walls due to UP ion is for uplift only	LIFT at and do	jt(s) 15 and es not consid	11. der				INTH	CARO	1,
WEBS	3-14=-61/643, 8-12= 7-16=-998/218, 2-14 5-16=-44/95, 6-16=-4	-61/643, 4-16=-999/2 =0/822, 9-12=0/823, 14/95	218, 11)	This truss is International R802.10.2 ar	designed in accord Residential Code s nd referenced stand	ance wi sections dard AN	th the 2015 R502.11.1 a ISI/TPI 1.	and			4	IN OFF	SAR	and the
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & N DOL=1.60	ed roof live loads have n. CE 7-10; Vult=130mph imph; TCDL=6.0psf; BC p B; Enclosed; MWFRS 2) zone; cantilever left a it and right exposed;C-0 MWFRS for reactions sf 0 plate grip DOL=1.33	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C S (envelope) and c-C for members and hown; Lumber	12) 13) LO	Graphical pu or the orienta bottom choro Attic room ch AD CASE(S)	rlin representation ation of the purlin al 1. necked for L/360 de Standard	does no long the	ot depict the top and/or	size			The second s	OS MARIC A	SEAL 36322 SINEER.	

January 30,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	C2	Attic	2	1	Job Reference (optional)	E14017219

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:55:54 ID:NrvxVEUemWXW9fwvV_Q_sdzvqxR-kOn1avo9aBvj4C_yDYJUg26gD1A4Ipj03GJqNkzqCFp

Scale =	1:78.9
---------	--------

	(,,, ,); [::::::],[[010 1 10;0 2 0]; [11	0 0 0,0 0	0], [0.0 0 0,0 0		0], [0:0	.,						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) \$ 20.0 F 18.9/20.0 L 10.0 F 0.0* (10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.86 0.41 0.32	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.32 -0.43 0.01 -0.21	(loc) 11-13 11-13 10 11-13	l/defl >802 >586 n/a >698	L/d 240 180 n/a 360	PLATES MT20 Weight: 189 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	 2x6 SP No.2 2x8 SP 2400F 2.0E 2x4 SP No.3 *Except* No.2 Structural wood sheath 2-4-4 oc purlins, excepted and the second seco	2-13,7-11,3-6:2x4 5 hing directly applied pt end verticals, and max.): 4-5. pplied or 10-0-0 oc -8, 14=852/0-3-8 C 9) C 3), 14=1231 (LC 2	3) SP 4) or 5) 6) 7) 27)	TCLL: ASCE DOL=1.15 Pl snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= This truss ha load of 12.0 p overhangs nd Provide adec * This truss h on the bottom 3-06-00 tall b chord and an Ceiling dead 6-15; Wall d	7-10; Pr=20.0 psi ate DOL=1.15); P 8.9 psf (flat roof sn .15); Category II; .50-0-0 s been designed f osf or 2.00 times fi pon-concurrent with quate drainage to pas been designed n chord in all area y 2-00-00 wide wi by other members. load (5.0 psf) on r ead load (5.0 psf) on	f (roof livy g=20.0 p ow: Lum Exp B; F for great lat roof lo o ther liv prevent \ f for a liv s where ll fit betw member(on memb	e load: Lumb sf (ground ber DOL=1.1 ully Exp.; er of min roof vad of 13.9 p: re loads. vater ponding e load of 20.0 a rectangle reen the bottor s). 2-3, 6-7, 5 per(s).2-13, 7	er 5 live sf on g. Dpsf om 3-15, -11					
FORCES	(Ib) - Maximum Compression/Maximum8)Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 11-131-2=-1345/37, 2-3=-824/180, 3-4=-196/147, 4-5=-47/257, 5-6=-196/147, 6-7=-823/180, 7-8=-1350/42, 8-9=0/47, 1-14=-1372/36,8)Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 11-139)All bearings are assumed to be SP 2400F 2.0E crushing capacity of 805 psi.7-8=-1350/42, 8-9=0/47, 1-14=-1372/36,10)0)One RT7A USP connectors recommended to connect												
BOT CHORD WEBS	13-14=-214/277, 12-13 10-11=-43/115 2-13=-67/635, 7-11=-6 3-15=-1003/216, 6-15= 1-13=0/831, 8-11=0/82 5-15=-43/95	3=0/852, 11-12=0/8 60/644, =-1002/216, 24, 4-15=-44/95,	52, 11	truss to beari This connect lateral forces) This truss is International R802.10.2 ar	ing walls due to U ion is for uplift only designed in accorr Residential Code nd referenced star	PLIFI at y and do dance w sections idard AN	Jt(s) 14 and es not consid th the 2015 R502.11.1 a ISI/TPI 1.	ind			Jun	TIL ORTH	CAROLIN
5-15=-43/95 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) reversible used is not interpret of the order of t			12 13 LC	 Graphical pu or the orienta bottom chord Attic room ch AD CASE(S) 	run representation ation of the purlin a l. lecked for L/360 d Standard	along the	t depict the s	SIZE			the second s	03	SEAL 36322

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

11111111 January 30,2020

GI

C

818 Soundside Road Edenton, NC 27932

Page: 1

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	СЗ	Attic	4	1	Job Reference (optional)	E14017220

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:55:55 ID:FtguvPlppzAYAt0yEvJvC2zvqx6-CbKPoFpnLV1aiMY9nFqjDFer_QWI1Gz9lv2OwBzqCFo

Scale = 1:78.	9		-	1012	12	50		-	1012					
Plate Offsets	s (X, Y): [1:0-1-12,0-1-8]	, [3:0-1-13,0-2-0], [4	4:0-5-8,0-3-	0], [5:0-5-8,0-3	3-0], [6:0-1-13,0-2-	0], [8:0-	1-12,0-1-8], [10:0-3-8	,0-5-8], [12:0-3-8	,0-5-8]		
Loading TCLL (roof) Snow (Pf/Pg TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.86 0.41 0.32	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.32 -0.43 0.01 -0.21	(loc) 10-12 10-12 9 10-12	l/defl >801 >585 n/a >697	L/d 240 180 n/a 360	PLATES MT20 Weight: 187 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORI BOT CHORI WEBS BRACING TOP CHORI	 D 2x6 SP No.2 D 2x8 SP 2400F 2.0E 2x4 SP No.3 *Except No.2 D Structural wood sheat 2-8-10 oc purlins, ex 2-00 oc p	t* 2-12,7-10,3-6:2x4 athing directly applie ccept end verticals, a 0 max): 4-5	3) SP 4) ed or 5) and	TCLL: ASCE DOL=1.15 PI snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Provide adec * This truss h on the botton 3-06-00 tall b	7-10; Pr=20.0 psf ate DOL=1.15); Pg .9 psf (flat roof snc .15); Category II; E 50-0-0 juate drainage to p as been designed n chord in all areas y 2-00-00 wide will	(roof liv =20.0 p w: Lum xp B; F revent v for a liv where fit betw	e load: Lumb osf (ground ber DOL=1.1 ully Exp.; vater ponding e load of 20.0 a rectangle veen the bott	per 15 g. Opsf om						
3OT CHORI JOINTS REACTIONS	D Rigid ceiling directly bracing. 1 Brace at Jt(s): 14 (lb/size) 9=853/0-3	-0 max.). 4-5. applied or 10-0-0 oc -8. 13=853/0-3-8	c 6)	chord and an Ceiling dead 6-14; Wall de	y other members. load (5.0 psf) on m ead load (5.0psf) o	nember(n memb	s). 2-3, 6-7, 3 per(s).2-12, 7	3-14, ′-10						
FORCES	(ib) - Max Horiz 13=-231 (i Max Grav 9=1232 (L (ib) - Maximum Com Tension D 1-2=-1347/32, 2-3=-8 4-5=-45/258, 5-6=-19 7-8=-1347/33, 1-13=	LC 9) C 25), 13=1232 (LC pression/Maximum 325/179, 3-4=-195/1 35/148, 6-7=-825/17 -1374/34, 8-9=-1374	7) 26) 8) 9) 48, '9, 4/34	Bottom chord chord dead lo All bearings a capacity of 8 One RT7A U truss to beari This connect lateral forces	I live load (40.0 psf aad (0.0 psf) applie are assumed to be 05 psi. SP connectors rec ng walls due to UF ion is for uplift only	of and a d only t SP 240 ommen LIFT at and do	dditional bott o room. 10-1 0F 2.0E crus ded to conne jt(s) 13 and es not consid	om 2 shing ect 9. der						
BOT CHORI WEBS	D 12-13=-225/265, 11- 9-10=-46/95 2-12=-66/637, 7-10= 3-14=-1006/213, 6-1- 1-12=0/833, 8-10=0/: 5-14=-43/95	12=0/845, 10-11=0/ -66/637, 4=-1006/213, 834, 4-14=-44/95,	845, 10) 11)	 This truss is a International R802.10.2 ar Graphical pu or the orienta bottom chord 	designed in accord Residential Code s nd referenced stand rlin representation tion of the purlin al	ance wi sections dard AN does no long the	th the 2015 R502.11.1 a ISI/TPI 1. ot depict the s top and/or	and size			6	ORTH	CARO	
NOTES 1) Unbalan this desi 2) Wind: A ² Vasd=10 Cat. II; E Exterior vertical I forces &	iced roof live loads have ign. SCE 7-10; Vult=130mph D3mph; TCDL=6.0psf; BC Exp B; Enclosed; MWFRS (2) zone; cantilever left a left and right exposed;C-(MWFRS for reactions st	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed; e C for members and nown: I umber	12) r LO C end) Attic room ch AD CASE(S)	ecked for L/360 de Standard	flection					THILLING STREET	03	SEAL 36322	Mananananananananananananananananananan

This design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end 2) vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

С Α. GI minimum) January 30,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	C4	Attic Supported Gable	1	1	Job Reference (optional)	E14017221

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:55:55 ID:yA76cyd6Uiab8k_GrafKUezvqyY-CbKPoFpnLV1aiMY9nFqjDFesyQWk19w9lv2OwBzqCFo

Scale =	1:81.5
---------	--------

	(, .), [== .,]	, [ete : :e;e = e]; [:		-],[- •],[···									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.80 0.39 0.77	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.29 -0.39 0.01 -0.20	(loc) 18-20 18-20 16 18-20	l/defl >882 >647 n/a >756	L/d 240 180 n/a 360	PLATES MT20 Weight: 211 lb	GRIP 244/190 FT = 20%		
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x6 SP No.2 2x8 SP 2400F 2.0E 2x4 SP No.2 *Except 22-2,16-14,7-23,23-5 2x4 SP No.3 Structural wood shea 4-5-2 oc purlins, exc	t* 9:2x4 SP No.3 athing directly applie cept end verticals, ar	NC 1) 2) ed or nd	 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 14) One RT7A USP connectors recommend truss to bearing walls due to UPLIFT at Truss to bearing walls due to UPLIFT at This connection is for uplift only and doe lateral forces. 15) This truss is designed in accordance with International Residential Code sections R802.10.2 and referenced standard AN: 16) Graphical purlin representation does no or the orientation of the purlin along the bottom chord. 										ect 16. der and size	
BOT CHORD JOINTS	2-0-0 oc purlins (10- Rigid ceiling directly bracing. 1 Brace at Jt(s): 23, 25, 28	0-0 max.): 7-9. applied or 10-0-0 oc	; 3)	 DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. bottom chord. 17) Attic room checked for L/360 deflection. LOAD CASE(S) Standard 									ction.		
REACTIONS	LS, LS 16=868/0-3-8, 22=868/0-3-8 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.0 psf (flat roof snow: Lumber DOL=1.15 Max Horiz 22=-241 (LC 11) snow); Pf=18.0 psf (flat roof snow: Lumber DOL=1.15 Max Grav 16=1235 (LC 3), 22=1235 (LC 3) Plate DOL=1.15); Category II; Exp B; Fully Exp.; (Ct=1.10, Lu=50-0-0														
TOP CHORD	Tension 1-2=0/46, 2-3=-1255 4-5=-799/176, 5-6=- 7-8=0/407, 8-9=0/40 10-11=-188/142, 11- 12-13=-1286/73, 13- 2-22=-1042/0, 14-16	/9, 3-4=-1286/73, 188/142, 6-7=-28/36 7, 9-10=-28/362, 12=-798/176, 14=-1254/9, 14-15= =-1042/0	5) 2, 6) 7) 0/46, 8)	 This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. All plates are 2x4 MT20 unless otherwise indicated. Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 						HCARO					
BOT CHORD	21-22=-216/277, 20- 19-20=0/826, 18-19= 16-17=-37/104	21=-216/277, =0/826, 17-18=-37/1	9) 04, 10	Gable studs :) * This truss h	Gable studs spaced at 2-0-0 oc. * This truss has been designed for a live load of 20.0psf								SEAL		
WEBS	4-20=-5/737, 12-18= 23-24=-1041/223, 23 11-27=-1010/216, 8- 6-24=-43/313, 3-25= 21-26=-393/101, 10- 13-28=-213/70, 17-2 7-23=-200/49, 9-23=	-5/737, 5-24=-1011/ 3-27=-1040/223, 23=-247/38, -213/70, 27=-43/313, 9=-393/101, -200/49, 18-28=0/78	216, 11 32,	3-06-00 tall b chord and an) Ceiling dead 5-24, 23-24, 1 member(s).4) Bottom chord chord dead lo	y 2-00-00 wide wi y other members. load (5.0 psf) on r 23-27, 11-27; Wa -20, 12-18 I live load (40.0 ps pad (0.0 psf) appli	Il fit betw nember(Il dead l f) and a ed only t	veen the botto s). 4-5, 11-12 bad (5.0psf) o dditional botto o room. 18-20	m , n))			IIIIIIII III	OS SPIC	36322	All and a second second	

- 13) All bearings are assumed to be SP 2400F 2.0E crushing capacity of 805 psi.

A. GILDIN January 30,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	CJ06	Roof Special Girder	1	1	Job Reference (optional)	E14017222

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:55:56 ID:PMmqEJCXCBZ5jpm2MGBnI6zvrk9-gnun?apP6p9RJW7LLyLyITB8tqvFmoGJXZoxSdzqCFn

Scale = 1:46.1

Plate Offsets (X, Y): [2:0-5-5,0-0-2]

(psf) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	/TPI2014	CSI TC BC WB Matrix-MP	0.34 0.24 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.04 -0.05 0.02	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
10.0											Weight: 48 lb	FT = 20%
2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 1 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly a bracing. (lb/size) 2=311/0-5: Max Horiz 2=117 (LC Max Uplift 2=-18 (LC Max Grav 2=372 (LC (lb) - Maximum Comp Tension 1-2=0/53, 2-3=-172/9 10-11=-69/54, 11-12: 4-5=-196/98 2-13=-101/83, 13-14:	-6-0 athing directly applie appt end verticals. applied or 10-0-0 oc -3, 5=230/ Mechanie -11) 11), 5=-97 (LC 11) -2), 5=303 (LC 43) pression/Maximum -0, 3-10=-115/41, =-60/42, 4-12=-59/8 =0/0, 14-15=0/0,	5) 6) ed or 7) 8) cal 9) 10) .0, 11) 12)	* This truss h on the botton 3-06-00 tall b chord and an Bearings are capacity of 5 Refer to girde Provide mecl bearing plate 5. One RT7A U truss to beari connection is forces. This truss is 1 International R802.10.2 ar "NAILED" inc NDS guidline In the LOAD	as been designed to n chord in all areas y 2-00-00 wide will y other members. assumed to be: Jo 55 psi. er(s) for truss to trus nanical connection capable of withsta SP connectors record ng walls due to UP for uplift only and of designed in accord: Residential Code s and referenced stance licates 2-12d (0.144 s. CASE(S) section, lift re noted as front (F	for a live where fit betw int 2 SF ss conn (by othen nding 9 commen- LIFT at does no ance wi sections dard AN 8"x3.25 oads ap () or bac	e load of 20. a rectangle een the bott P No.2 crush ections. ers) of truss 7 lb uplift at ded to conne jt(s) 2. This of consider la th the 2015 R502.11.1 a SI/TPI 1. ") toe-nails p oplied to the ck (B).	Opsf om ing to joint ect and er face				vveignit. 40 ID	11 - 2078
5-15=0/0		LO	AD CASE(S)	Standard								
		1)	Dead + Sno	w (balanced): Lum	ber Inci	ease=1.15,	Plate				UN'TH	CARO
CE 7-10; Vult=130mph smph; TCDL=6.0psf; BC p B; Enclosed; MWFRS 0 plate grip DOL=1.33 CE 7-10; Pr=20.0 psf (r i Plate DOL=1.15); Pg= =13.9 psf (flat roof snow .=1.15); Category II; Ex ed snow loads have been has been designed for .0 psf or 2.00 times flat s non-concurrent with of	(3-second gust) CDL=6.0psf; h=25ft; 5 (envelope); Lumber 20.0 psf (ground 2: Lumber DOL=1.1; p B; Fully Exp.; en considered for th greater of min roof roof load of 13.9 ps ther live loads.	er er 5 is live if on	Increase=1. Uniform Loa Vert: 1-4: Concentrate Vert: 11= B=-1)	15 ads (lb/ft) 48, 5-6=-20 d Loads (lb) -4 (F), 13=-4 (F), 1-	4=1 (B)	, 15=-13 (F=	-13,			Winnin		SEAL B6322
	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0 2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 1 Structural wood sheat 6-0-0 oc purlins, exc Rigid ceiling directly: bracing. (lb/size) 2=311/0-5 Max Horiz 2=117 (LC Max Uplift 2=-18 (LC Max Grav 2=372 (LC (lb) - Maximum Comp Tension 1-2=0/53, 2-3=-172/9 10-11=-69/54, 11-12: 4-5=-196/98 2-13=-101/83, 13-14: 5-15=0/0 CE 7-10; Vult=130mph imph; TCDL=6.0psf; BC p B; Enclosed; MWFRS 0 plate grip DOL=1.33 CE 7-10; Pr=20.0 psf (r 5 Plate DOL=1.15); Pg= 13.9 psf (flat roof snow =1.15); Category II; Ex ed snow loads have been has been designed for .0 psf or 2.00 times flat s non-concurrent with o	(psf) 20.0 13.9/20.0 13.9/20.0 10.0 0.0* 10.0 0.0* 10.0 2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 1-6-0 Structural wood sheathing directly applie 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. (lb/size) 2=311/0-5-3, 5=230/ Mechani Max Horiz 2=117 (LC 11) Max Uplift 2=-18 (LC 11), 5=-97 (LC 11) Max Grav 2=372 (LC 2), 5=303 (LC 43) (lb) - Maximum Compression/Maximum Tension 1-2=0/53, 2-3=-172/90, 3-10=-115/41, 10-11=-69/54, 11-12=-60/42, 4-12=-59/8 2-13=-101/83, 13-14=0/0, 14-15=0/0, 5-15=0/0 CE 7-10; Vult=130mph (3-second gust) imph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; p B; Enclosed; MWFRS (envelope); Lumbe 0 plate grip DOL=1.33 CE 7-10; Pr=20.0 psf (roof live load: Lumbe 5 Plate DOL=1.15); Pg=20.0 psf (ground =13.9 psf (flat roof snow: Lumber DOL=1.1: =1.15); Category II; Exp B; Fully Exp.; ed snow loads have been considered for th has been designed for greater of min roof .0 psf or 2.00 times flat roof load of 13.9 ps s non-concurrent with other live loads.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(psf) 20.0Spacing Plate Grip DOL 1.152-0-0 Plate Grip DOL 1.1513.9/20.0 10.0Plate Grip DOL Lumber DOL 1.151.15Rep Stress Incr CodeNO CodeIRC2015/TPI2014 $2x6$ SP No.2 2x4 SP No.25) * This truss h on the botton 3-06-00 tall b chord and an the botton 3-06-00 tall b chord and an 0-0-0 oc bracing.5) * This truss h on the botton 3-06-00 tall b chord and an 0-0 co the to girde 0-0 co purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.5) * This truss h on the botton 3-06-00 tall b chord and an 0-Provide mech bearing plate 5.(Ib/size) $2=311/0-5-3, 5=230/$ Mechanical Max Horiz $2=117$ (LC 11) Max Grav $2=372$ (LC 2), $5=303$ (LC 43) (Ib) - Maximum Compression/Maximum Tension $1-2=0/53, 2-3=-172/90, 3-10=-115/41,10-11=-69/54, 11-12=-60/42, 4-12=-59/80,2-13=-101/83, 13-14=0/0, 14-15=0/0,5-15=0/01) Dead + SnoIncrease=1.Uniform LoaDOL = 1.33CE 7-10; Vult=130mph (3-second gust)mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;p B; Enclosed; MWFRS (envelope); Lumberp late grip DOL=1.33CE 7-10; Vult=130mph (3-second gust)mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;p B; Enclosed; MWFRS (envelope); LumberPlate grip DOL=1.33CE 7-10; Vult=130mph (3-second gust)mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;p B; Enclosed; MWFRS (envelope); Lumberi Plate grip DOL=1.33CE 7-10; Vult=130mph (3-second gust)mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;p B; Enclosed; MWFRS (envelope); Lumberi Plate drip DOL=1.15;=1.15); Category II; Exp B; Fully Exp.;ed snow loads have been considered for thishas been designed for greater of min roof live.0 psf or 2.00 times flat roof$	(psf) 20.0 13.9/20.0 10.0Spacing Plate Grip DOL 1.152-0-0 TC TC BC BC CodeCSI TC TC BC BC WB Matrix-MP2x6 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 Left 2x6 SP No.2 Left 2x6 SP No.2 1.6-05) * This truss has been designed on the bottom chord in all areas 3-06-00 tall by 2-0-00 wide will chord and any other members. Bearings are assumed to be: Jo capacity of 565 psi.Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.5) * This truss has been designed on the bottom chord in all areas 3-06-00 tall by 2-00-00 wide will chord and any other members.(Ib/size) 2=311/0-5-3, 5=230/ Mechanical Max Grav 1-2=0/53, 2-3=-172/90, 3-10=-115/41, 10-11=-69/54, 11-12=-60/42, 4-12=-59/80, 2-13=-101/83, 13-14=0/0, 14-15=0/0, 5-15=0/05) * This truss is designed in accord International Residential Code s R802-10.2 and referenced stand 10 Dead + Snow (balanced): Lumber is Plate DDL=1.33 CE 7-10; Vult=130mph (3-second gust) imph; TCDL=6.0psf; BCDL=6.0psf; h=-26f; p B; Enclosed; MWFRS (envelope); Lumber P late grip DDL=1.33 CE 7-10; Pr=20.0 psf (roof live load: Lumber P late grip DDL=1.33 (E 7-10; Pr=20.0 psf (roof live load: Lumber P late DDL=1.15); Pg=20.0 psf (ground 1-13.9 psf (flat roof snow: Lumber DDL=1.15; indicate product of this has been designed for greater of min roof live .0 psf or 2.00 times flat roof load of 13.9 psf on snon-concurrent with other live loads.CSI	(psf) 20.0 13.9/20.0 13.9/20.0 13.9/20.0 13.9/20.0 13.9/20.0 13.9/20.0 13.9/20.0 13.9/20.0 13.9/20.0 13.9/20.0 13.9/20.0 13.9/20.0 10.0Spacing Plate Grip DOL 1.15 1.15 CodeCSI TC C 0.24 WB 0.00 WB 0.00 WB 0.002x6 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 - 1-6-05)* This truss has been designed for a live on the bottom chord in all areas where - $3-06-00$ col tall by 2-00-00 wide will fit betw chord and any other members.Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.5)* This truss has been designed for a live on the bottom chord in all areas where - $3-06-00-00$ wide will fit betw chord and any other members.(Ib/size) $2=311/0-5-3, 5=230$ / Mechanical Max Upift $2=-18$ (LC 11), $5=-97$ (LC 11) Max Grav $2=372$ (LC 2), $5=303$ (LC 43) (Ib) - Maximum Compression/Maximum Tension $1-2=0/53, 2-3=-172/90, 3-10=-115/41,10-11=-69/54, 11-12=-60/42, 4-12=-59/80,4-5=-196/989) One RT7A USP connectors recommenurus to bearing walls due to UPLIFT atconnection is for uplift only and does noforces.12 Dif Argin DDL=1.332-13=-101/83, 13-14=0/0, 14-15=0/010) Dead + Snow (balanced): Lumber InciIncrease=1.152E 7-10; Vult=130mph (3-second gust)mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;p B; Enclosed; MWFRS (envelope); LumberPlate grid DDL=1.332-13=-920.0 psf (ground13.9 psf (flat roof snow: Lumber DDL=1.151-3.9 psf (ground13.9 psf (flat roof snow: Lumber DDL=1.151-3.9 psf (ground13.9 psf (flat roof snow: Lumber DDL=1.151-3.9 psf (f$	(psf) 20.0Spacing Plate Grip DOL 1.152-0-0CSI TCDEFL Vert(L1)13.9/20.0Lumber DOL 1.151.15BC0.24Vert(CT) Vert(CT)10.00.0*CodeIRC2015/TPI2014BC0.24Vert(CT) Vert(CT)2x6 SP No.2CodeIRC2015/TPI2014WB0.00Do2x6 SP No.2	(psf) 20.0 Plate Grip DOL 1.15Spacing Plate Grip DOL 1.152-0-0 TCCSI TCDEFLin Vert(LL)0.04 Vert(LL)13.9/20.0 10.0Rep Stress IncNO CodeIRC2015/TPI2014Matrix-MPVert(CT)-0.022x6 SP No.2 2x6 SP No.2 2x6 SP No.3 Left 2x6 SP No.2 2x6 SP No.2 2x6 SP No.3 Left 2x6 SP No.2 2x6 SP No.3 Left 2x6 SP No.2 2x6 SP No.4 5 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 wild lib y2-00-00 wide will fit between the bottom chord and any other members.Structural wood sheathing directly applied or 6-0-0 co purins, except end verticals. Rigid ceiling directly applied or 10-0-0 co bracing.5)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.(Ib/size) Legality of 565 psi.7)Refer to girder(s) for truss to truss connections. 6)Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 97 Ib uplift at joint 5.(Ib/size) Lagality 112=-18 (LC 11), 5=-37 (LC 11) Max Grav 2-372 (LC 2), 5=303 (LC 43) (Ib) - Maximum Compression/Maximum Tension10.00None RT7A USP connectors recommended to connect truss to bearing value disclenitial Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1.1-2=0/53, 2-3=-172/90, 3-10=-115/41, 10-11=-69/54, 11-12=-60,951, h=25ft; p B; Enclosed; MWFRS (envelope); Lumber plate grip DOL=1.33 CF 7-10; Vr=20.0 psf (root live load; Lumber plate grip DOL=1.33 CF 7-10; Pr=20.0 psf (ro	(psf) 20.0 Plate Grip DOL 13.9/20.0 13.9/20.0 10.0Spacing Plate Grip DOL 1.15 Lumber DOL 1.15 Mex Structural wood sheathing directly applied or 6-0-0 cp urling, except end verticals. Rrigid celling directly applied or 10-0-0 cp bracing.C5TC TC 0.04 WB WC Matrix-MPDEFL vertic11in (loc) Vertic115TC Code0.04 $3-66-00$ choose the bottom chord in all areas where a rectangle $3-06-00$ tall by 2-00-00 wide will fit between the bottom chord and any other members.5* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle $3-06-00$ tall by 2-00-00 wide will fit between the bottom chord and any other members.5* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle $3-06-00$ tall by 2-00-00 wide will fit between the bottom chord and any other members.6 -0.0 oc purling, except end verticals. Rigid celling directly applied or thoriz 2=117 (LC 11) Max Uplit 2=-18 (LC 11), 5=-97 (LC 11) Max Grav 2=372 (LC 2), 5=303 (LC 43) $4-5=-196/98$ >10 $-12-0/53, 2-3=-172/90, 3-10=-115/41,10-11=-69/54, 11-12=-60/42, 4+12=-59/80,2-13=-107/83, 13=14=0/0, 14=15=0/0,5-15=00>2C 7-10; Vult=130mph (3-second gust)mph; TCDL=6.0psf; BCDL=6.0psf; HCDL1-15=-15, Crasegory II; Exp B; Fully Exp;ad snow loads have been considered for thishas been designed for greater of min roof live0.9 for 2.00 times flat roof foad of 13.9 psf on1-00-00-1.132C 7-10; Vult=130mph (3-second gust)mph; TCDL=6.0psf; BCDL=6.0psf; HCDL1-15=-15, Category II; Exp B; Fully Exp;$	(psf) 20.0 Plate Grip DOL 1.15Spacing 1.152-0-0 TCCSI TCDEFL or 0.44 Vert(L1)in(loc) 1/defl Vert(L1)10.0 0.0° 10.0Rep Stress Incr CodeNO CodeNO CodeNO NO CodeNO NO Matrix-MPNODEFL inin(loc)1/defl Vert(L1)2x6 SP No.2 2x6 S	(pst) 20.0 133.9/20.0 100 0.0°Spacing Plate Grip DOL 1.15 Rep Stress Incr NO CodeCSI TC TC C 0.34 WB WB 0.00 WB WB 0.00 Matrix-MPDEFL in (loc)(loc) I/deft I/deft I/deft Vert(CT)2x6 SP No.2 2x6 SP No.2 <td>(psf) Spacing 2-0-0 CSI DEFL in (toc) I/deft L/deft L/deft PLATES 13.92/0.0 Lumber DOL 1.15 TC 0.34 Vert(T) 0.04 5-8 5-999 240 MT20 10.0 Rep Stress Incr NO WB 0.00 Horz(CT) 0.02 2 n/a N/a 2x6 SP No.2 Code IRG2015/TP12014 WB 0.00 Horz(CT) 0.02 2 n/a N/a 2x6 SP No.2 Code incode of 20.00 pdf on the bottom chord in all areas where a rectangle 306-00 tall by 2-00-00 wide will fit between the bottom chord in all areas where a rectangle 306-00 tall by 2-00-00 wide will fit between the bottom chord in all areas where a rectangle 306-00 tall by 2-00-00 wide will fit between the bottom chord in all areas where a rectangle 306-00 tall by 2-00-00 wide will fit between the bottom chord in all areas where a rectangle 306-00 tall by 2-00-00 wide will fit between the bottom chord in all areas where a rectangle 306-00 tall by 2-00-00 wide will fit between the bottom chord in all areas where a rectangle 306-00 tall by 2-00-00 wide will fit between the bottom chord in all areas where a rectangle 306-00 tall by 2-00-10 wide will fit between the bot b</td>	(psf) Spacing 2-0-0 CSI DEFL in (toc) I/deft L/deft L/deft PLATES 13.92/0.0 Lumber DOL 1.15 TC 0.34 Vert(T) 0.04 5-8 5-999 240 MT20 10.0 Rep Stress Incr NO WB 0.00 Horz(CT) 0.02 2 n/a N/a 2x6 SP No.2 Code IRG2015/TP12014 WB 0.00 Horz(CT) 0.02 2 n/a N/a 2x6 SP No.2 Code incode of 20.00 pdf on the bottom chord in all areas where a rectangle 306-00 tall by 2-00-00 wide will fit between the bottom chord in all areas where a rectangle 306-00 tall by 2-00-00 wide will fit between the bottom chord in all areas where a rectangle 306-00 tall by 2-00-00 wide will fit between the bottom chord in all areas where a rectangle 306-00 tall by 2-00-00 wide will fit between the bottom chord in all areas where a rectangle 306-00 tall by 2-00-00 wide will fit between the bottom chord in all areas where a rectangle 306-00 tall by 2-00-00 wide will fit between the bottom chord in all areas where a rectangle 306-00 tall by 2-00-00 wide will fit between the bottom chord in all areas where a rectangle 306-00 tall by 2-00-10 wide will fit between the bot b

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

January 30,2020

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	E1	Common Girder	1	2	Job Reference (optional)	E14017223

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:55:56 ID:RVnbgE4teg3KQFVTNEBYvLzvqox-gnun?apP6p9RJW7LLyLyITB8FqqymZgJXZoxSdzqCFn Page: 1

Scale = 1:78.8

Plate Offsets (X, Y): [2:0-4-14,0-0-3], [4:0-5-0,0-4-8], [5:0-3-8,0-2-4], [9:0-3-8,0-4-12]

	(, , L	,		,														
Loading		(psf)	Spacing	1-11-4		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP				
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.38	Vert(LL)	-0.09	9-10	>999	240	MT20	244/190				
Snow (Pf/Pg)	1	3.9/20.0	Lumber DOL	1.15		BC	0.52	Vert(CT)	-0.17	9-10	>839	180						
TCDL		10.0	Rep Stress Incr	NO		WB	1.00	Horz(CT)	-0.01	2	n/a	n/a						
BCLL		0.0*	Code	IRC2015	5/TPI2014	Matrix-MSH												
BCDL		10.0		_									Weight: 286 lb	FT = 20%				
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS	2x6 SP N 2x6 SP 2 2x4 SP N Left 2x6 S Structura 6-0-0 oc Rigid ceil bracing. I-Brace: Fasten (2 of web w o.c.,with	lo.2 400F 2.0E lo.2 SP No.2 ⁻ I wood she purlins. ing directly 2X) T and I ith 10d (0.1 3in minimu	I-6-0 athing directly applied applied or 10-0-0 oc 2x4 SPF No.2 - 5-8 braces to narrow edg 3/*x3") nails, 6in n end distance.	2) 3) d or 4) ge 5)	All loads are except if note CASE(S) sec provided to d unless otherw Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II; Exp B DOL=1.60 pli TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1	considered equally ed as front (F) or ba tion. Ply to ply con istribute only loads vise indicated. roof live loads have 7-10; Vult=130mpl h; TCDL=6.0psf; E s; Enclosed; MWFF ate grip DCL=1.33 7-10; Pr=20.0 psf tate pop DCL=1.35; Pg .9 psf (flat roof snc 15); Cateopy II: 5	ack (B) 1 nection nection noted a been o n (3-sec SCDL=6 SC (enve (roof liv g=20.0 p w: Lum	to all plies, face in the LC s have been as (F) or (B), considered fo ond gust) .0psf; h=25ft; elope); Lumb e load: Lumb usf (ground ber DCL=1.1	 Use USP THD26 (With 18-16d nails into Girder & 12-10d x 1-1/2 nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 8-7-1 from the left end to 10-7-1 to connect truss(es) to front face of bottom chord. Fill all nail holes where hanger is in contact with lumber. Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1074 Ib down at 11-9-15 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others. Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required. 									
REACTIONS	Brace m (Ib/size) Max Horiz Max Uplift Max Grav	nust cover 9 2=1720/0- 2=263 (LC 2=-264 (L 2=1961 (L	00% of web length. ·3-8, 8=3901/0-3-8 C 33) C 10), 8=-34 (LC 9) .C 2), 8=4472 (LC 2)	6)	 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. 7) * This truss has been designed for a live load of 20 0 psf 							 Lond CASE(3) Standard Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-5=-46, 5-6=-46, 7-11=-19 						
FORCES	(lb) - Max Tension	kimum Com	pression/Maximum	")	on the botton	n chord in all areas	where	a rectangle	om o	Co	oncentral	ted Loa	ads (lb)					
TOP CHORD	1-2=0/38	, 2-3=-1487	//241, 3-4=-2556/461	,	chord and an	y other members.							UNITH.	CARO				
BOT CHORD	4-5=-751 2-10=-45 15-16=-4 8-9=-64/4	i1/95, 5-6=-31/538) All bearings are assumed to be SP 2400F 2.0E crushing capacity of 805 psi.i57/1668, 10-15=-459/1675, -459/1675, 9-16=-459/1675, 4/483, 7-8=0/09) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8.									S AN							
WEBS	4-9=-184 5-8=-370	3/611, 5-9= 8/491, 4-10	-469/3932, =-665/2470, 6-8=-54	/21	This connecti lateral forces	ion is for uplift only	and do	es not consid	ler			11		SEAL				
NOTES				10) This truss is a	designed in accord	ance w	th the 2015				- 8		0000				
 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-4-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. 					International R802.10.2 ar) Use USP TH 8-16d nails ir left end to co chord.	Residential Code s d referenced stan DH26-2 (With 20-1 to Truss) or equiva nnect truss(es) to f	sections dard AN 6d nails alent at front fac	R502.11.1 a SI/TPI 1. s into Girder & 6-7-13 from t e of bottom	ınd & he			11012	January	SINEER.				

TEREPRESENCE A MITCH Attillate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type		Qty	Ply	GARY ROBINSON / 4 PBC		
20010096	E1	Common Girder		1	2	Job Reference (optional)	E14017223	
Carter Components (Sanford), Sa	(Sanford), Sanford, NC - 27332, Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:55:56						Page: 2	

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:55:56 ID:RVnbgE4teg3KQFVTNEBYvLzvqox-gnun?apP6p9RJW7LLyLyITB8FqqymZgJXZoxSdzqCFn

Vert: 9=-882 (F), 8=-886 (F), 15=-2019 (F), 16=-997 (F)

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	F1	Common	3	1	Job Reference (optional)	E14017224

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:55:57 ID:e2hb5J3I13k35S2_h70YwzvqmN-8zS9Dwq1t6HlxgiXugsBlgkMxEGGVEOSIDXU_3zqCFm

Page: 1

Scale = 1:53.1													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	0.01	7-14	>999	240	MT20	244/190	
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.19	Vert(CT)	-0.02	7-14	>999	180			
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.01	2	n/a	n/a			
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MSH									
BCDL	10.0										Weight: 88 lb	FT = 20%	
			4) This truss I	has been designed	for greate	er of min root	flive						

LUMBER	
TOP CHORD	2x6 SP No.2
BOT CHORD	2x6 SP No.2
WEBS	2x4 SP No.2
SLIDER	Left 2x4 SP No.3 1-6-0, Right 2x4 SP No.3 1-6-0
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(lb/size) 2=457/0-3-8, 6=419/0-3-8
	Max Horiz 2=133 (LC 12)
	Max Grav 2=566 (LC 25), 6=533 (LC 25)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/39, 2-3=-282/128, 3-4=-544/143, 4-5=-543/143, 5-6=-235/0
BOT CHORD	2-16=-117/337, 7-16=0/337, 7-17=0/337, 6-17=0/337
WEBS	4-7=-9/321

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

- load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.2 crushing 6) capacity of 565 psi.
- 7) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6 and 2. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2015 8) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

MILLIN CAR \cap WITH COMPANY MULTIN SEAL 036322 G١ minum January 30,2020

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	F2	Common Supported Gable	1	1	Job Reference (optional)	E14017225

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:55:58

3x6 II

12-5-0

Scale =	1:49.9
---------	--------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 20.0 3.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.04 0.04 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 112 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP N 2x6 SP N 2x4 SP N Left 2x4 S 1-6-0 Structura 6-0-0 oc Rigid ceil bracing. (Ib/size) Max Horiz Max Uplift Max Grav	0.2 0.3 *Excep SP No.3 1 I wood sheat purlins. ing directly 2=131/12- 12=138/12 14=86/12- 16=138/12 21=131/12 2=-34 (LC 12=-133 (LC 12=205 (L 12=205 (L	t* 14-6:2x4 SP No.2 -6-0, Right 2x4 SP N athing directly applied applied or 10-0-0 oc 5-0, 10=131/12-5-0, 2-5-0, 13=129/12-5-0, 2-5-0, 17=131/12-5-0, 2-5-0, 17=131/12-5-0, 2-5-0 C 11), 17=-133 (LC 1 9), 10=-15 (LC 10), LC 14), 13=-34 (LC 1 C 13), 16=-114 (LC 1 C 26), 13=163 (LC 25) C 26), 13=163 (LC 26)	1) 2) 0.3 1 or 3) (1) (1) (1) (2) (3) (4) (5) (3), (6) (7) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7	Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II; Exp E Exterior (2) z vertical left at forces & MW DOL=1.60 pl. Truss design only. For stu see Standarc or consult qu TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 This truss ha load of 12.0 p overhangs no All plates are Gable require	roof live loads have 7-10; Vult=130mpl h; TCDL=6.0psf; E ; Enclosed; MWFF one; cantilever left nd right exposed; C FRS for reactions : ate grip DOL=1.33 ned for wind loads ds exposed to winn a lindustry Gable Er alified building des 7-10; Pr=20.0 psf ate DOL=1.15); Pg .9 psf (flat roof sno .15); Category II; E s been designed for basf or 2.00 times flat on-concurrent with 2x4 MT20 unless as continuous botto	e been of h (3-sec 3CDL=6 RS (envi and rig) -C for n shown; in the pl d (norm nd Detai igner as (roof liv g=20.0 p bw: Lum Exp B; F or greated at roof l to ther liv other liv other liv	considered for ond gust) .0psf; h=25ft; elope) and C-(nt exposed; e embers and Lumber ane of the tru: ane of the face) is as applicab ; per ANSI/TP e load: Lumbe sof (ground ber DOL=1.1{ ully Exp.; er of min roof I and of 13.9 ps re loads. se indicated. d bearing.	C end ss jole, jole, il 1. er 5 live f on					11111111
FORCES	(lb) - Max Tension 1-2=0/38	14=121 (L 16=209 (L 21=167 (L timum Com , 2-3=-61/3	C 28), 15=163 (LC 2 C 25), 17=183 (LC 2 C 25) pression/Maximum 9, 3-4=-117/92,	5), 9) 5), 9)	* This truss h on the bottom 3-06-00 tall b chord and an) All bearings a capacity of 50	as been designed n chord in all areas y 2-00-00 wide wil y other members. are assumed to be 65 psi.	for a liv where I fit betw SP No.	e load of 20.0 a rectangle veen the botto 2 crushing	psf m			Win	THORTH RTH	SET VI
BOT CHORD	4-5=-107 7-8=-91/6 10-11=0/ 2-16=-70 14-15=-7 12-13=-7 6-14=-14	/69, 5-6=-1 39, 8-9=-99/ 38 /122, 15-16 2/124, 13-1 1/123, 10-1 3/88, 5-15=	54/155, 6-7=-154/155 '68, 9-10=-50/22, =-71/123, 4=-72/124, 2=-70/122 -139/100	, 11 12	 11) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 10, 14, 15, 16, 13, and 12. This connection is for uplift only and does not consider lateral forces. 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and P000 40.0 explore the destruction AND/CT1.1 and P000 40.0 explore the destruction and the sections R502.11.1 and P000 40.0 explore the destruction and the sections R502.11.1 and P000 40.0 explore the destruction and the sections R502.11.1 and P000 40.0 explore the destruction and the sections R502.11.1 and P000 40.0 explore the sections R502.11.1 and P000 40.0 explo							BEER A		
NOTES	4-16=-19	2/160, 7-13	=-139/99, 8-12=-192/	^{'160} LC	R802.10.2 ar AD CASE(S)	nd referenced stand Standard	dard AN	SI/ [PI 1.					Chin C A	GILBE

January 30,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	G1	Monopitch	6	1	Job Reference (optional)	E14017226

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:55:59 ID:3FXI8DKcIJy9BbZ9eEWeJ3zvqkk-dA0YQGrgeQP8ZqHkSNNQruGQuebnEevb_tH2WWzqCFI

Page: 1

Scale = 1:47.2

10-3-8

Plate Offsets (X, Y): [2:Edge,0-0-8], [3:0-5-0,0-4-8], [5:0-2-8,0-2-1], [7:0-4-0,0-4-4], [8:0-4-0,0-1-12]

Loading FCLL (roof) Snow (Pf/Pg) FCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.62 0.24 0.31	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.12 -0.08 0.00	(loc) 7-11 7-11 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 98 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 3OT CHORD WEBS	2x6 SP No.2 2x6 SP No.2 2x6 SP No.2 *Excep 8-5:2x4 SP No.2	t* 7-3:2x4 SP No.3,	3)	TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 Unbalanced	7-10; Pr=20.0 ps ate DOL=1.15); I 3.9 psf (flat roof s .15); Category II; snow loads have	sf (roof liv Pg=20.0 p now: Lum ; Exp B; F been cor	e load: Lumb osf (ground ber DOL=1. ully Exp.; usidered for t	ber 15 his						
TOP CHORD	Structural wood shea 6-0-0 oc purlins, exo Except: 6-0-0 oc bracing: 7-8	athing directly applie cept end verticals.	d or 5)	design. This truss ha load of 12.0 p overhangs no	s been designed osf or 2.00 times on-concurrent wit	for greate flat roof lo th other liv	er of min roo bad of 13.9 p ve loads.	f live osf on						
BOT CHORD WEBS REACTIONS	Rigid ceiling directly bracing. 1 Row at midpt (Ib/size) 2=184/0-3 Max Horiz 2=172 (LC Max Uplift 2=-30 (LC Max Grav 2=206 (LC	applied or 6-0-0 oc 5-8 8-8, 7=952/0-3-8 2 11) 2 11), 7=-315 (LC 11) 2 2), 7=1171 (LC 2)	6) 7) 8)	Gable studs * This truss h on the botton 3-06-00 tall b chord and ar All bearings capacity of 5 One RTA II	spaced at 0-0-0 of as been designed in chord in all area by 2-00-00 wide w y other members are assumed to b 65 psi. SP connectors re	oc. ed for a liv as where vill fit betw s. be SP No.	e load of 20. a rectangle veen the bott 2 crushing	0psf com						
FORCES	(Ib) - Maximum Com Tension 1-2=0/15, 2-3=-429/4 4-12=-1041/1082, 5-	pression/Maximum 411, 3-4=-840/809, 12=-1023/1130, //51,4,8,206/121	10	truss to bear This connect lateral forces) This truss is	ng walls due to L ion is for uplift on designed in acco	JPLIFT at	jt(s) 2 and 7 es not consid th the 2015	der				, unit		
BOT CHORD WEBS NOTES	2-7=-354/169 3-7=-563/535, 5-8=-	1293/1078	LC	R802.10.2 ar	nd referenced sta	andard AN	ISI/TPI 1.	and			4	IN ORTH	ESSI	N. N.
 Wind: ASt Vasd=103 Cat. II; Ex Exterior (2 members Lumber D Truss des only. For see Stand 	CE 7-10; Vult=130mph mph; TCDL=6.0psf; BG p B; Enclosed; MWFRS 2) zone; porch left and 1 and forces & MWFRS OL=1.60 plate grip DO signed for wind loads ir studs exposed to wind lard Industry Gable End	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C right exposed; C-C fo for reactions shown; L=1.33 the plane of the trus (normal to the face), d Details as applicab	C r ss								(THEFTER AND	0. 	SEAL 36322	A THE AND A

- members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

GI minum January 30,2020

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	G2	Monopitch	1	1	Job Reference (optional)	E14017227

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:55:59 ID:3FXI8DKcIJy9BbZ9eEWeJ3zvqkk-5MawecsIPkX?Azsw05ufN5pbC2yqz4yIDX0b3yzqCFk

Page: 1

Scale = 1:46.8 Plate Offsets (X, Y): [8:0-2-8,0-2-1], [14:0-2-7,0-1-12]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.59 0.18 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.02	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 98 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x6 SP No.2 2x6 SP No.2 2x6 SP No.2 *Excep 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Except: 10-0-0 oc bracing: 1 Piod ceiling directly	t* 14-8:2x4 SP No.2 athing directly applie cept end verticals. 0-14	1) d or 2)	Wind: ASCE Vasd=103mp Cat. II; Exp B Exterior (2) zz vertical left ar forces & MWI DOL=1.60 pla Truss design only. For stu see Standard or consult qua	7-10; Vult=130mph h; TCDL=6.0psf; B ; Enclosed; MWFR one; cantilever left in dright exposed;C- FRS for reactions s ate grip DOL=1.33 red for wind loads in ds exposed to wind I Industry Gable En alfied building desi	(3-sec CDL=6 S (enve and righ C for m hown; I n the pl I (norma d Detai gner as	ond gust) .0psf; h=25ft; lope) and C- nt exposed ; - nembers and _umber ane of the tru al to the face Is as applical per ANSI/TF	; -C end uss), ble, PI 1.	12) One trus: 12, i not 13) This Inte R80 14) See Deta cons	RT7A L s to beau and 11. consider truss is rnational 2.10.2 a Standau ail for Co sult qual	JSP co ing wa This co latera desigr Resid nd refe d Indu nnecti fied bu Star	nnectors recomm ills due to UPLIF nnection is for u I forces. ned in accordance ential Code sect erenced standard stry Piggyback T on to base truss uilding designer. idard	nended to connect T at jt(s) 2, 14, 13, plift only and does e with the 2015 ions R502.11.1 an I ANSI/TPI 1. russ Connection as applicable, or	t , id
BOT CHORD WEBS REACTIONS	Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 2=-51/10- 11=127/1 13=283/1 15=-51/10 Max Horiz 2=159 (L0	applied or 6-0-0 oc 8-14 3-8, 10=-72/10-3-8, 0-3-8, 12=73/10-3-8, 0-3-8, 14=773/10-3-8 0-3-8 C 11), 15=159 (LC 11	3) ^{3,} 4) 1) 5)	TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 Unbalanced s design. This truss ha	7-10; PF=20.0 psf (ate DOL=1.15); Pg .9 psf (flat roof sno .15); Category II; E snow loads have be	roof live =20.0 p w: Lum xp B; F een con	e load: Lumb sf (ground ber DOL=1.1 ully Exp.; sidered for th	nis	LOAD C	,ASE(S)	Star	laara		
	Max Uplift 2=-136 (L 12=-8 (LC 14=-262 (L 11=148 (l 13=335 (l 15=132 (l (15=132 (L)	C 22), 10=-108 (LC 2 ; 11), 13=-30 (LC 15) ;LC 12), 15=-136 (LC C 12), 10=42 (LC 12) ;C 2), 12=86 (LC 2), ;C 2), 14=1013 (LC 2) ;C 2), 14=1013 (LC 2)	22), 5)), ; 22) 6) , 7) 22), 8)	load of 12.0 p overhangs no Gable require Gable studs s * This truss h on the bottom 3-06-00 tall b	sof or 2.00 times fla no-concurrent with or so continuous botto spaced at 2-0-0 oc. as been designed f n chord in all areas y 2-00-00 wide will	t roof lo other liv m chore for a live where fit betw	ad of 13.9 ps e loads. d bearing. e load of 20.0 a rectangle een the botto	sf on Opsf			4	I I I I I I I I I I I I I I I I I I I	CAROL	
TOP CHORD	(ib) - Maximum Com Tension 1-2=0/15, 2-3=-1012 4-5=-954/855, 5-6=- 7-19=-1061/1110, 8 8-9=-84/0, 10-14=0/	2/877, 3-4=-961/827, 923/851, 6-7=-932/90 -19=-1043/1157, 0, 7-14=-253/199	9) 04, 10	chord and an All bearings a capacity of 56) Bearing at joi using ANSI/T designer sho	y other members. are assumed to be 5 55 psi. nt(s) 14 considers PI 1 angle to grain	SP No.: parallel formula	2 crushing to grain valu a. Building	e			The second second	03	EAL 6322	
BOT CHORD WEBS NOTES	2-13=-802/687, 12-1 11-12=-802/687, 10 8-14=-1318/1095, 3 5-12=-118/95, 6-11=	3=-802/687, -11=-802/687 -13=-204/131, 50/66	11	 bearing plate joint 10. 	capable of withsta	(by othe nding 1	ers) of truss t 08 lb uplift at	io i			1111	AND AND A	MEER.	a la

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

January 30,2020

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	GR1	Common Girder	1	2	Job Reference (optional)	E14017228

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:55:59 ID:gZgMwFOKc5lwpFcKrvXhVTzvrp5-5MawecsIPkX?Azsw05ufN5pi_2qSz8PIDX0b3yzqCFk

Page: 1

Scale = 1:71.3

Plate Offsets	(X, Y)	[5:0-3-12,0-1-8]
---------------	--------	------------------

Loa TCI Sno TCI BCI BCI	ading _L (roof) ow (Pf/Pg) DL LL DL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.15 0.66 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.24 0.00	(loc) 5-6 5-6 5	l/defl >653 >344 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 193 lb	GRIP 244/190 FT = 20%
LUI TOI BO WE BR. TOI BO RE	MBER > CHORD T CHORD BS ACING > CHORD T CHORD ACTIONS	2x6 SP No.2 2x6 SP 2400F 2.0E 2x4 SP No.2 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (Ib/size) 5=1230/ M Mechanic Max Horiz 6=121 (LC Max Uplift 5=-258 (L)	athing directly applied applied or 10-0-0 oc lechanical, 6=1048/ al 2 9) C 9), 6=-127 (LC 5)	3) 4) d or 5) 6)	Unbalanced it this design. Wind: ASCE Vasd=103mp Cat. II; Exp B DOL=1.60 pli TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 * This truss h on the botton 3-06-00 tall b	roof live loads have 7-10; Vult=130mpt h; TCDL=6.0psf; B ; Enclosed; MWFR ate grip DOL=1.33 7-10; Pr=20.0 psf ate DOL=1.15); Pg .9 psf (flat roof sno .15); Category II; E as been designed in the chord in all areas y 2-00-00 wide will	e been of GCDL=6 S (envel (roof liv =20.0 p w: Lum xp B; F for a liv where fit betw	considered fo ond gust) .0psf; h=25ft; elope); Lumb el load: Lumb sf (ground ber DOL=1.1 ully Exp.; e load of 20.0 a rectangle reen the botto	r ; er 5 Dpsf om					
FOI TOI BO	Max Horiz 6=121 (LC 9) Max Uplift 5=-258 (LC 9), 6=-127 (LC 5) Max Grav 5=1419 (LC 3), 6=1321 (LC 43) (Ib) - Maximum Compression/Maximum Tension DP CHORD 1-2=-141/91, 2-3=-32/39 DT CHORD 6-7=0/0, 6-8=-121/80, 8-9=-121/80, 9-10=-121/80, 10-11=-121/80, 5-11=-121/8				 chord and any other members, with BCDL = 10.0psf. 7) Refer to girder(s) for truss to truss connections. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 258 lb uplift at joint 5 and 127 lb uplift at joint 6. 9) This truss is designed in accordance with the 2015 									
WE NO 1) 2)	BS 2-ply truss (0.131"x3' Top chord staggered Bottom ch staggered Web conn All loads a except if n CASE(S) provided t unless oth	4-5=0/0 1-5=-83/147, 1-6=-2 ⁻ 2-5=-217/70 s to be connected toget ") nails as follows: Is connected as follows: at 0-9-0 oc. nords connected as follows: 2x4 - are considered equally noted as front (F) or bac section. Ply to ply conno to distribute only loads nerwise indicated.	18/12, 3-5=-56/34, her with 10d :: 2x6 - 2 rows ows: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO <i>F</i> ections have been noted as (F) or (B),	10 11 LC 1)	International R802.10.2 ar) Use USP TH 12-10d x 1-1/ 2-0-0 oc max 9-9-15 to con) Fill all nail ho DAD CASE(S) Dead + Sno Increase=1. Uniform Loa Vert: 1-2= Concentrate Vert: 8=-5	Residential Code s d referenced stand D26 (With 18-16d r 2 nails into Truss) . starting at 5-9-15 nect truss(es) to fro les where hanger is Standard w (balanced): Lum 15 ids (Ib/ft) =-48, 2-3=-48, 4-7= id Loads (Ib) 556 (F), 10=-556 (F	ections dard AN nails int or equiv from th ont face s in con ber Ince -20	R502.11.1 a SI/TPI 1. o Girder & valent spaced e left end to e of bottom ch tact with lum rease=1.15, F	nd d at nord. ber. Plate			Van minnen	DE CONTRACTOR DE C	CARO SEAL 36322

"munnin January 30,2020

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	J01	Jack-Open	1	1	Job Reference (optional)	E14017229

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:56:00 ID:WirKQFjOAO4YTvsQexUxpAzvrm4-ZY8IryswA1fso7R6aoQuwJMuLRJXicFuSBm9bOzqCFj

1-1-7

Scale - 1.33

Loading TCLL (roof) Snow (Pf/Pg TCDL BCLL BCDL	(psf) 20.0) 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MR	0.11 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5 5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE REACTIONS	 2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood sheat 1-1-7 oc purlins, exit Rigid ceiling directly bracing. (lb/size) 3=6/ Mect 5=94/0-3- Max Horiz 5=44 (LC Max Uplift 3=-26 (LC Max Grav. 3=-10 (LC Max Grav. 3	athing directly applie cept end verticals. applied or 10-0-0 oc hanical, 4=7/ Mecha 8 10) 2 13), 4=-12 (LC 13) 11) 4=-21 (LC 13)	4) 5) ed or 6) 5 7) nical, 8)	* This truss h on the bottor 3-06-00 tall b chord and ar Bearings are capacity of 5 Refer to girdd Provide mec bearing plate 4 and 26 lb u Une RT7A U truss to bear connection is forces.	has been designer in chord in all area by 2-00-00 wide w by other members assumed to be: , 65 psi. er(s) for truss to tr hanical connection capable of withs plift at joint 3. SP connectors re ing walls due to U for uplift only and	d for a liv as where vill fit betw Joint 5 S russ conr n (by oth tanding 1 commen JPLIFT at d does no	e load of 20.1 a rectangle even the bott SP No.2 crusi ections. ers) of truss t 2 lb uplift at j ded to conne jt(s) 5. This t consider la	Opsf om hing to ioint ect teral					
FORCES	(LC 19) (lb) - Maximum Com Tension 2-5=-104/44, 1-2=0/-	pression/Maximum 47, 2-3=-40/36	L(Inis truss is International R802.10.2 ai DAD CASE(S)	designed in accor Residential Code nd referenced star Standard	rdance w sections ndard AN	R502.11.1 a	and					
NOTES 1) Wind: AS Vasd=10 Cat. II; E Exterior vertical II forces & DOL=1.6 2) TCLL: A: DOL=1.1 snow); P Plate DC Ct=1.10) This true	S 4-3=0/0 SCE 7-10; Vult=130mph J3mph; TCDL=6.0psf; B(xp B; Enclosed; MWFR3 (2) zone; cantilever left a eft and right exposed;C- MWFRS for reactions sl 50 plate grip DOL=1.33 SCE 7-10; Pr=20.0 psf (15 Plate DOL=1.15); Pg= tf=13.9 psf (flat roof snov DL=1.15); Category II; Es	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and hown; Lumber roof live load: Lumber =20.0 psf (ground w: Lumber DOL=1.1: xp B; Fully Exp.;	C end er 5								Comments of the second	UNICATION OF	CARO ESSO SEAL 36322

3) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	J01A	Jack-Open	1	1	Job Reference (optional)	E14017230

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:56:00 ID:DdR6XgrfpTK7gSdLE2gHDHzvrlw-ZY8IryswA1fso7R6aoQuwJMvmRJqicFuSBm9bOzqCFj

Page: 1

NGINEERING

818 Soundside Road Edenton, NC 27932

-0-11-01-2-60-11-01-2-6

3x5 =

1-2-6

Scale = 1:31														
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.02 0.01 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 7 7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%	
ECDL LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103 Cat. II; Exj Exterior (2 vertical lef forces & M DOL=1.60 (2) TCLL: ASC DOL=1.15 snow); Pf= Plate DOL Ct=1.10 (3) This truss load of 12. overhangs 4) * This truss on the bott 3.06-00 ta	10.0 2x6 SP No.2 2x6 SP No.2 Structural wood sheat 1-2-6 oc purlins. Rigid ceiling directly bracing. (lb/size) 2=85/0-3- 4=11/ Mer Max Horiz 2=32 (LC Max Uplift 3=-15 (LC Max Uplift 3=-15 (LC Max Uplift 3=-15 (LC Max Grav 2=104 (LC (LC 11) (lb) - Maximum Com Tension 1-2=0/30, 2-3=-21/2 2-4=-41/27 CE 7-10; Vult=130mph mph; TCDL=6.0psf; Bf p B; Enclosed; MWFRS p B; Enclosed; MWFRS p B; Enclosed; MWFRS p B; Enclosed; MWFRS p Date grip DOL=1.33 CE 7-10; Pr=20.0 psf (l Plate DDL=1.15); Pg= 13.9 psf (flat roof snov. =1.15); Category II; Ex has been designed for 0 psf or 2.00 times flat s non-concurrent with c s has been designed for 10 psf or 2.00 times flat s non-concurrent with c	athing directly applie applied or 10-0-0 oc 8, 3=18/ Mechanical chanical 13) 2 (3) 2 (2), 3=26 (LC 25), 4 pression/Maximum 1 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and hown; Lumber roof live load: Lumber =20.0 psf (ground w: Lumber DOL=1.1: xp B; Fully Exp.; r greater of min roof t roof load of 13.9 ps ther live loads. or a live load of 20.0 where a rectangle fit between the botto	5) 6) 7) ed or 6 8) 1, 9) 4=14 LO C end er 5 live sf on 0psf om	Bearings are capacity of 5 Refer to gird Provide mec 3. One RT7A U truss to bear connection is forces. This truss is International R802.10.2 ar AD CASE(S)	e assumed to be: 65 psi. er(s) for truss to 1 hanical connectio e capable of withs ISP connectors re- ing walls due to 1 s for uplift only ar designed in acco Residential Code nd referenced sta Standard	, Joint 2 S truss conn on (by oth standing 1 ecommen- UPLIFT at ad does no ordance wi e sections andard AN	P No.2 crush ections. ers) of truss t 5 lb uplift at ju ded to conne jt(s) 2. This of consider lat th the 2015 R502.11.1 a SI/TPI 1.	ning o oint ct teral nd			Walthin		CARO SEAL 36322	
chord and	any other members.											Janua	ry 30,2020	

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	J02	Jack-Open	1	1	Job Reference (optional)	E14017231

2<u>-5-7</u>

2-5-7

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:56:00 ID:h4XvIq3ya?bZqD?oHp_Vy3zvrle-ZY8IryswA1fso7R6aoQuwJMtFRJBicFuSBm9bOzqCFj

Page: 1

Scale = 1:31.3

-		1											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.18	Vert(LL)	0.00	4-5	>999	240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.05	Vert(CT)	0.00	4-5	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2015	5/TPI2014	Matrix-MR								
BCDL	10.0											Weight: 18 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood shea 2-5-7 oc purlins, exc Rigid ceiling directly bracing. (Ib/size) 3=45/ Mer Mechanic: Max Horiz 5=74 (LC Max Uplift 3=-53 (LC Max Grav 3=70 (LC	athing directly applied sept end verticals. applied or 10-0-0 oc chanical, 4=23/ al, 5=126/0-3-8 13) 13), 4=-3 (LC 13) 25), 4=31 (LC 11), 5:	4) 5) d or 6) 7) 8) =153 9)	* This truss h on the bottom 3-06-00 tall b chord and an Bearings are capacity of 50 Refer to girde Provide mect bearing plate 3 and 3 lb up One RT7A U truss to beari connection is forces. This truss is o	as been designed in chord in all areas y 2-00-00 wide will y other members. assumed to be: , J 55 psi. er(s) for truss to tru nanical connection capable of withsta lift at joint 4. SP connectors recong walls due to UP for uplift only and designed in accord	for a live where a l fit betw Joint 5 S ass conn (by othe anding 5 ommene PLIFT at does no lance wi	e load of 20.0 a rectangle een the botto P No.2 crush ections. ers) of truss t 3 lb uplift at j ded to conne jt(s) 5. This t consider la th the 2015	Opsf om hing o oint ct teral					
500050	(LC 2)			International	Residential Code s	sections	R502.11.1 a	ind					
FORCES	(Ib) - Maximum Com	pression/Maximum		R802.10.2 ar	d referenced stand	dard AN	SI/TPI 1.						
TOP CHORD	2-5=-131/27 1-2=0/4	17 2-3=-83/71	LO	AD CASE(S)	Standard								
BOT CHORD	4-5=0/0	11, 2 0 - 00,11											
NOTES													
 Wind: ASt Vasd=103 Cat. II; Ex Exterior (2 vertical ler forces & M DOL=1.60 TCLL: AS DOL=1.15 snow); Pfr Plate DOI Ct=1.10 This truss load of 12 overhang: 	CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B(sp B; Enclosed; MWFRS 2) zone; cantilever left at ft and right exposed;C-1 WWFRS for reactions sl 0 plate grip DOL=1.33 CE 7-10; Pr=20.0 psf (1 5 Plate DOL=1.15); Pg= =13.9 psf (flat roof snov ==1.15); Category II; Ex- thas been designed for 2.0 psf or 2.00 times flat s non-concurrent with o	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed; end C for members and hown; Lumber roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 to B; Fully Exp.; greater of min roof li roof load of 13.9 psf ther live loads.	r r ive on								Mannan	DE TRANSPORT	CAROL SEAL 36322

> A. GIL January 30,2020

A. GI

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	J04	Jack-Open	1	1	Job Reference (optional)	E14017232

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:56:01 ID:D9VyfIF_owcllgDtDBHGbRzvrIO-1lig2ltYxLojQH0I7Wx7SWu3Dre1R3V2grVi7qzqCFi Page: 1

3x5 =

4-2-6

Scale = 1.31														
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.11	Vert(LL)	0.00	4-7	>999	240	MT20	244/190
Snow (Pf/Pg)	13.9	/20.0	Lumber DOL	1.15		BC	0.07	Vert(CT)	-0.01	4-7	>999	180		
TCDL		10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL		0.0^	Code	IRC201	5/TPI2014	Matrix-MP							Mainha OF Ih	FT 000/
BCDL		10.0											vveight: 25 lb	FI = 20%
LUMBER				5)	Bearings are	assumed to be:	, Joint 2 S	P No.2 crush	hing					
TOP CHORD	2x6 SP No.2				capacity of 5	65 psi.								
BOT CHORD	2x6 SP No.2			6)	Refer to gird	er(s) for truss to f	truss conn	ections.						
BRACING	_ .			()	Provide mec	nanical connection	on (by othe standing 4	ers) or truss t 8 lb uplift at i	ioint					
TOP CHORD	Structural wo 4-2-6 oc purl	ood shea lins.	athing directly applie	ed or	3.		stanuing 4	o ib upilit at j	John					
BOT CHORD	Rigid ceiling bracing.	directly	applied or 10-0-0 or	c 8)	One RT7A U truss to bear	SP connectors re ing walls due to l	ecommen UPLIFT at	ded to conne jt(s) 2. This	ect					
REACTIONS	(lb/size) 2=	=177/0-3-	-8, 3=88/ Mechanic	al,	connection is forces.	s for uplift only ar	nd does no	ot consider la	iteral					
	4= Max Horiz 2=	=49/ Wet	13)	9)	This truss is	designed in acco	ordance wi	th the 2015						
	Max Uplift 3=	=-48 (LC	13)		International	Residential Code	e sections	R502.11.1 a	and					
	Max Grav 2=	=213 (LC	2), 3=116 (LC 25),	4=54	R802.10.2 a	nd referenced sta	andard AN	ISI/TPI 1.						
	(Le	C 25)		L	DAD CASE(S)	Standard								
FORCES	(lb) - Maximu Tension	um Comp	pression/Maximum											
TOP CHORD	1-2=0/30, 2-3	3=-96/68	3											
BOT CHORD	2-4=-153/121	1												
NOTES														
 Wind: ASC Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & M DOL=1.60 	CE 7-10; Vult=1 smph; TCDL=6. p B; Enclosed; 2) zone; cantilev it and right expo /WFRS for read plate grip DOL	130mph .0psf; BC MWFRS ver left a osed;C-0 ctions sh L=1.33	(3-second gust) CDL=6.0psf; h=25ft; 6 (envelope) and C- nd right exposed ; e C for members and hown; Lumber	-C end									THUN BTH	CARO
2) TCLL: AS(DOL=1.15 snow); Pf= Plate DOL Ct=1.10	CE 7-10; Pr=20 Plate DOL=1. =13.9 psf (flat ro .=1.15); Catego	0.0 psf (r 15); Pg= oof snow ory II; Ex	oof live load: Lumb 20.0 psf (ground /: Lumber DOL=1.1 p B; Fully Exp.;	er 5								Winn	0	SEAL 36322
 This truss load of 12 overhangs 	has been desig .0 psf or 2.00 ti s non-concurrer	gned for mes flat nt with o	greater of min roof roof load of 13.9 ps ther live loads.	live sf on								100	A .EA	CR. A
4) * This trus on the bot 3-06-00 ta chord and	s has been des tom chord in al Il by 2-00-00 w any other men	signed fo Il areas v vide will f nbers.	or a live load of 20.0 vhere a rectangle it between the botto)psf om									Januar	GINEE: FR I. GILBER y 30,2020

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	J06	Jack-Open	1	1	Job Reference (optional)	E14017233

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:56:01 ID:psLFb4QmVDNJQqIZ27XYAOzvrlA-1lig2ltYxLojQH0I7Wx7SWu1KrbqR2X2grVi7qzqCFi

Page: 1

Scale = 1:47.8

Plate Offsets	(X, Y):	[2:0-4-10,0-0-3]
---------------	---------	------------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.23 0.28 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.05 -0.07 0.07	(loc) 7-10 7-10 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=103 Cat. II; Ex Exterior (2 MWFRS f grip DOL=	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 Left 2x6 SP No.2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins; 4-3 Rigid ceiling directly bracing. (lb/size) 2=257/0- 6=192/ M Max Horiz 2=154 (L Max Uplift 5=-9 (LC Max Grav 2=305 (L (LC 25) (lb) - Maximum Cor Tension 1-2=0/39, 2-3=-233 4-5=0/0 2-7=-160/137, 6-7= 4-7=-229/192 ed roof live loads have n. CE 7-10; Vult=130mpl 3mph; TCDL=6.0psf; E p B; Enclosed; MWFR 2) zone;C-C for memb for reactions shown; Li =1.33	1-6-0 eathing directly applied cept 5. y applied or 10-0-0 or 3-8, 5=37/ Mechanic lechanical C 13) 9), 6=-64 (LC 13) C 2), 5=38 (LC 2), 6= npression/Maximum /104, 3-4=-146/135, 0/0 e been considered for h (3-second gust) iCCL=6.0psf; h=25ft; S (envelope) and C- ers and forces & umber DOL=1.60 pla	3) ed or 5) c 6) al, 7) =228 9) 1(1' r 12 c L(te	 TCLL: ASCE DOL=1.15 P Plate DOL=1 Ct=1.10, Lu= This truss ha load of 12.0 overhangs n Provide adeet This truss Is on the bottor 3-06-00 tall Ib chord and ar Bearings are capacity of 5 Refer to gird Provide mec bearing plate and 64 lb up On RT7A L truss to bear connection is forces. This truss is International R802.10.2 a Graphical pu or the orienta bottom chord DAD CASE(S) 	7-10; Pr=20.0 ps iate DOL=1.15); F 3.9 ps (flat roof si .15); Category II; 50-0-0 is been designed psf or 2.00 times on-concurrent wit yuate drainage to has been designed in chord in all area y 2-00-00 wide w yo other members assumed to be: .65 psi. er(s) for truss to t hanical connectio e capable of withs lift at joint 6. ISP connectors re- ing walls due to L s for uplift only an designed in accoo Residential Code nd referenced sta r/lin representatio ation of the purlin J. Standard	sf (roof liv Pg=20.0 p now: Lum Exp B; F for greate flat roof lc h other liv prevent v d for a liv as where vill fit betw s. , Joint 2 S russ conr n (by oth- tanding 9 ecommen JPLIFT at d does no rdance wie sectionss indard AN n does no along the	e load: Lumb ssf (ground ber DOL=1.' ully Exp.; er of min roo aad of 13.9 p e loads. vater pondin e load of 20. a rectangle reen the bott SP No.2 crus ections. ers) of truss lb uplift at jo ded to conne jt(s) 2. This of consider la th the 2015 R502.11.1 a ISI/TPI 1. th depict the top and/or	ber 15 15 15 9 9 0psf 0psf 4 0psf 4 0psf 4 0psf 4 0 0psf 4 0 0psf 4 0 0psf 4 0 0psf 4 0 0psf 4 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 1 0 1			Contraction of the second seco	UNDER STORE	CAP SEAL 36322
												BIC	CILBE NIN

A. GIV The Gran January 30,2020

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	J06A	Jack-Closed Girder	1	1	Job Reference (optional)	E14017234

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:56:01 ID:PMmqEJCXCBZ5jpm2MGBnI6zvrk9-1lig2ltYxLojQH0I7Wx7SWu1ircIR1z2grVi7qzqCFi

-0-11-0	3-10-5	6-6-5	
0-11-0	3-10-5	2-8-0	

6-6-5

Scale = 1:46.3

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.20	Vert(LL)	0.01	6-9	>999	240	MT20	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.25	Vert(CT)	-0.03	6-9	>999	180		
TCDL	10.0	Rep Stress Incr	NO		WB	0.16	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MP								FT 000/
BCDL	10.0											Weight: 53 lb	FT = 20%
LUMBER			6)	* This truss h	as been designed f	for a liv	e load of 20.	Opsf		Vert: 1-4	=-48,	4-5=-58, 6-7=-20)
TOP CHORD	2x6 SP No.2			on the botton	n chord in all areas	where	a rectangle		Co	ncentrat	ed Loa	ads (lb)	
BOT CHORD	2x6 SP No.2			3-06-00 tall b	y 2-00-00 wide will	fit betw	een the bott	om		Vert: 4=	-188 (F	F), 11=-50 (F), 12	2=-78 (F)
WEBS	2x4 SP No.3		-	chord and an	y other members.								
SLIDER	Left 2x4 SP No.3	1-6-0	7)	Bearings are	assumed to be: Jo	int 2 SF	No.2 crush	ng					
BRACING			8)	Pefer to girde	or poil.	ee conr	ections						
TOP CHORD	Structural wood she	athing directly applied	dor o	Provide mech	anical connection	(by oth	ers) of truss i	0					
	6-0-0 oc purlins, ex	cept end verticals, an	d o,	bearing plate	capable of withsta	nding 1	35 lb uplift at						
	2-0-0 00 putitis. 4-5	applied or 10.0.0 oc		joint 6.		5							
BOT CHORD	bracing		1() One RT7A U	SP connectors reco	ommen	ded to conne	ct					
REACTIONS	(lb/size) 2=368/0-3	3-8 6=439/ Mechanic	al	truss to beari	ng walls due to UP	LIFT at	jt(s) 2. This						
	Max Horiz 2=141 (L0	C 8)		connection is	for uplift only and	does no	ot consider la	teral					
	Max Uplift 2=-43 (LC	C 9), 6=-135 (LC 6)	1.	TOFCES.	designed in accord	anco wi	th the 2015						
	Max Grav 2=426 (L0	C 2), 6=489 (LC 2)	'	International	Residential Code s	ections	R502 11 1 a	ind					
FORCES	(lb) - Maximum Corr	pression/Maximum		R802.10.2 ar	d referenced stand	ard AN	ISI/TPI 1.						
	Tension		1:	2) Graphical pu	lin representation	does no	t depict the	size					
TOP CHORD	1-2=0/39, 2-3=-294/	0, 3-4=-256/107,		or the orienta	tion of the purlin al	ong the	top and/or						
	4-11=-51/38, 5-11=-	51/38, 5-6=-97/27		bottom chord									
BOT CHORD	2-12=-136/178, 6-12	2=-112/178	1:	3) Use USP SN	P3 (With 6-8d x 1-1	1/2 nails	into Girder	&					
WEBS	4-6=-342/138			6-8d x 1-1/2	hails into Truss) or	equival	ent at 3-10-5	100					
NOTES				chord skewe	d 33 7 deg to the k	s(es) to	ing 0.0 deg	top					
1) Unbalanc	ed roof live loads have	been considered for		down.	a 55.7 deg.to the R	en, siop	ing 0.0 deg.					"TH	CARO
2) Wind AS	0E 7-10: \/ult–130mph	(3-second quist)	14	4) Fill all nail ho	les where hanger is	s in con	tact with lum	ber.				NR	······································
Vasd=10	3mph ⁻ TCDI =6 0psf ⁻ B	$CDI = 6 \ Opsf' h = 25ft'$	1	5) "NAILED" ind	licates 3-10d (0.148	8"x3") c	r 3-12d				6	SHIFT	->PON: Mi
Cat. II; Ex	p B; Enclosed; MWFR	S (envelope); cantile	/er	(0.148"x3.25) toe-nails per NDS	3 guidlii	nes.				V		n
left and ri	ght exposed ; end verti	cal left and right	10	6) A minimum o	f (6) 8d x 1-1/2" na	ils are r	equired into	each			3	14	1 1 E
exposed;	Lumber DOL=1.60 pla	te grip DOL=1.33		member for S	SNP3 installation. A	II nailin	g is required	in			=	: 5	SEAL : =
3) TCLL: AS	SCE 7-10; Pr=20.0 psf (roof live load: Lumbe	r	face of suppo	orted chords. For signature	oped al	oplications,					: 03	62222
DOL=1.1	5 Plate DOL=1.15); Pg	=20.0 psf (ground		Bending of ex	tended flanges is r	permitte	ad				1	03	00322
Plate DO	= 10.9 psi (fiat 100) sho	w. Lumber DOL=1.15	17	7) In the LOAD	CASE(S) section. I	oads ar	polied to the	face			- 3		1 - E
Ct=1.10.	Lu=50-0-0			of the truss a	re noted as front (F) or ba	ck (B).				5	- A. E.	Rik S
 This truss 	has been designed fo	r greater of min roof li	ve L	OAD CASE(S)	Standard							TA NO	SINEF
load of 12	2.0 psf or 2.00 times fla	t roof load of 13.9 psf	on 1)	Dead + Sno	w (balanced): Lum	ber Inc	rease=1.15,	Plate				MIC A	OUBEN
overhang	s non-concurrent with o	other live loads.		Increase=1.	15							"ILA	. GIL
5) Provide a	dequate drainage to pr	event water ponding.		Uniform Loa	ids (lb/ft)								THURSE .

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

January 30,2020

Page: 1

Job	Truss	Truss Type Qty		Ply	GARY ROBINSON / 4 PBC		
20010096	J06B	Jack-Open	1	1	Job Reference (optional)	E14017235	

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:56:01 ID:xADR1zCvRtRE6fBsoZgYmuzvrkA-1lig2ltYxLojQH0I7Wx7SWu28rciR332grVi7qzqCFi Page: 1

January 30,2020

818 Soundside Road Edenton, NC 27932

Scale = 1:37.5

Plate Offsets (X, Y): [2:0-2-0,0-0-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.17 0.22 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.05 0.01	(loc) 7-10 7-10 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0											Weight: 43 lb	FT = 20%	
LUMBER TOP CHORD 30T CHORD 30T CHORD SLIDER BRACING TOP CHORD 30T CHORD REACTIONS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 1 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (lb/size) 2=251/0-3 6=98/ Mec Max Horiz 2=122 (LC Max Uplift 5=-40 (LC Max Grav 2=300 (LC 6=118 (LC (lb) - Maximum Com Tancion	-6-0 athing directly applied applied or 10-0-0 oc -8, 5=106/ Mechanic chanical > 13) 13), 6=-13 (LC 13) > 2), 5=135 (LC 25), > 25) pression/Maximum	3) 4) d or 5) (6) 7) (al, 7) 8) 9)	This truss ha load of 12.0 J overhangs nr * This truss h on the botton 3-06-00 tall b chord and an Bearings are capacity of 5 Refer to girdd Provide mech bearing plate 5 and 13 lb u One RT7A U truss to beari connection is forces.	s been designed fo osf or 2.00 times fla on-concurrent with o ias been designed fn ichord in all areas y 2-00-00 wide will y other members. assumed to be: , Ji 65 psi. er(s) for truss to trus anical connection capable of withstan plift at joint 6. SP connectors reco ng walls due to UP for uplift only and o designed in accorda	r greatu t roof k other liv for a liv where fit betw oint 2 \$ ss conr (by oth nding 4 ommen LIFT at does no	er of min roof pad of 13.9 p re loads. e load of 20.1 a rectangle even the bott B No.2 crusl ections. ers) of truss i 0 lb uplift at j ded to conne jt(s) 2. This ot consider la	f live sf on Opsf om hing to joint ect ateral						
TOP CHORD	1-2=0/36, 2-3=-145/6 4-5=-59/80	62, 3-4=-131/101,		R802.10.2 ar	nd referenced stand	ard AN	ISI/TPI 1.							
BOT CHORD WEBS	2-7=0/0, 6-7=0/0 4-7=-84/95		LC	OAD CASE(S)	Standard							minin	CAD	
NOTES 1) Wind: ASI Vasd=102 Cat. II; Ex Exterior (2 MWFRS f grip DOL= 2) TCLL: AS DOL=1.15 snow); Pfr Plate DOL Ct=1.10	CE 7-10; Vult=130mph imph; TCDL=6.0psf; BC p B; Enclosed; MWFRS 2) zone;C-C for membe or reactions shown; Lui =1.33 CE 7-10; Pr=20.0 psf (i 5 Plate DOL=1.15); Pg= =13.9 psf (flat roof snow _=1.15); Category II; Ex	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C rs and forces & mber DOL=1.60 plate roof live load: Lumbe =20.0 psf (ground v: Lumber DOL=1.15 p B; Fully Exp.;	e r								Winnin	C. A.	SEAL 36322	The second second

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	J06C	Jack-Open	10	1	Job Reference (optional)	E14017236

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:56:02 ID:uppl06LhHIWy8gAFxjcNqCzvrPK-VxG2GeuAifwa1RbVhDSM?kR?8FwhATkBvVFFfHzqCFh

Page: 1

Scale = 1:48.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MP	0.99 0.37 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a -0.10 -0.01	(loc) - 4-5 3	l/defl n/a >770 n/a	L/d 999 180 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103r Cat. II; Exp	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood shea except end verticals. Rigid ceiling directly bracing. (Ib/size) 3=147/ Ma Machanicz 5=184 (LC Max Uplift 3=-130 (LI Max Grav 3=210 (LC 5=318 (LC (Ib) - Maximum Com Tension 2-5=-254/0, 1-2=0/5 4-5=-319/253 2-4=-257/323 E 7-10; Vult=130mph nph; TCDL=6.0psf; BC	t* 4-2:2x4 SP No.2 athing directly applied applied or 10-0-0 oc echanical, 4=64/ al, 5=266/0-3-8 2 (13) C 13) C 14) C 14) C 15) C 15) C 14) C 14) C 15) C 15	4) 5) 7) 8) 9) LO	* This truss h on the botton 3-06-00 tall b chord and an Bearings are capacity of 5/ Refer to girde Provide mecl bearing plate point 3. One RT7A U truss to beari connection is forces. This truss is 4 International R802.10.2 ar AD CASE(S)	as been designed a chord in all areas y 2-00-00 wide wil y other members. assumed to be: , , 55 psi. er(s) for truss to tru- nanical connection capable of withsta SP connectors rec ng walls due to UF for uplift only and designed in accord Residential Code s and referenced stan Standard	for a live s where Il fit betw Joint 5 S uss conn (by oth anding 1 commen- PLIFT at does no dance wi sections dard AN	e load of 20.0 a rectangle een the botto P No.2 crush ections. ers) of truss tr 30 lb uplift at ded to conner jt(s) 5. This t consider lat th the 2015 R502.11.1 a SI/TPI 1.	opsf om o ct teral				unin martin	CARO
Exterior (2)	zone; cantilever left a	and right exposed ; er	nd									CON.	SSI

- Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed; ency vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber
- 2) TCLL: ASCE 7-10; PF=20.0 pst (root live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

SEAL 036322 January 30,2020

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	J06D	Jack-Open	8	1	Job Reference (optional)	E14017237

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:56:02 ID:uppI06LhHIWy8gAFxjcNqCzvrPK-VxG2GeuAifwa1RbVhDSM?kRC5FwVAUdBvVFFfHzqCFh

Page: 1

Scale = 1:48.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.16 0.38 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.12 0.00	(loc) 6-7 6-7 4	l/defl >999 >659 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 41 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing.	athing directly applied æpt end verticals. applied or 10-0-0 oc	4) 5) d or 7)	* This truss h on the botton 3-06-00 tall b chord and an Bearings are capacity of 5 Refer to girdd Provide mech bearing plate 4 and 67 lb u	as been designed f n chord in all areas y 2-00-00 wide will y other members. assumed to be: , J 65 psi. er(s) for truss to trus nanical connection capable of withsta plift at joint 5.	for a live where fit betw oint 7 S ss conn (by othe nding 5	e load of 20.0 a rectangle een the botto P No.2 crush ections. ers) of truss to 5 lb uplift at jo	Opsf om ning o oint					
REACTIONS	(ID/SiZe) 4=66/ Mec Mechanica Max Horiz 7=184 (LC Max Uplift 4=-55 (LC Max Grav 4=93 (LC 7=318 (LC	nanical, 5=144/ al, 7=266/0-3-8 ; 13) 13), 5=-67 (LC 13) 25), 5=192 (LC 25), ; 2)	8) 9)	One RT4 US truss to bear connection is forces. This truss is International	P connectors recorn ng walls due to UP for uplift only and o designed in accorda Residential Code s	nmende LIFT at does no ance wi	ed to connect jt(s) 7. This it consider lat th the 2015 R502.11.1 at	teral					
FORCES	(lb) - Maximum Com Tension 2-7=-201/195, 1-2=0 3-4=-97/78	pression/Maximum /53, 2-3=-141/166,	LO	R802.10.2 ar	Standard	dard AN	SI/TPI 1.						
BOT CHORD WEBS	6-7=-145/155, 5-6=0, 3-7=-292/165, 3-6=-2	/0 250/234											
NOTES 1) Wind: ASC	CE 7-10; Vult=130mph	(3-second gust)										annu l	CAD
Vasd=103/ Cat. II; Exterior (2 vertical left forces & M DOL=1.60 2) TCLL: ASC DOL=1.15 snow); Pf= Plate DOL Ct=1.10	mph; TCDL=6.0psf; BC p B; Enclosed; MWFRS) zone; cantilever left a t and right exposed;C-(WFRS for reactions sf plate grip DOL=1.33 CE 7-10; Pr=20.0 psf (r Plate DOL=1.15); Pg= =13.9 psf (flat roof snow =1.15); Category II; Ex	CDL=6.0psf; h=25ft; § (envelope) and C-C ind right exposed; ei C for members and nown; Lumber coof live load: Lumbe c20.0 psf (ground w: Lumber DOL=1.15 p B; Fully Exp.;	nd r								William	UNHTH 03	SEAL 36322

- vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 2) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground
- snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10 This truss has been designed for greater of min roof live 3)
- load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

818 Soundside Road Edenton, NC 27932

С Α. GI

The Gran January 30,2020

WITTER CONTRACTOR

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	J06E	Jack-Open	5	1	Job Reference (optional)	E14017238

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:56:02 ID:hgkcnrkJKnnDkia3LXd1AFzvrKy-VxG2GeuAifwa1RbVhDSM?kR0ZFwzATGBvVFFfHzqCFh

Page: 1

6-6-5

Loading TCLL (roof) Snow (Pf/Pg) TCDI	(psf) 20.0 13.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.90 0.35 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a -0.09 -0.01	(loc) - 3-4 2	l/defl n/a >826 n/a	L/d 999 180 n/a	PLATES MT20	GRIP 244/190
BCLL	0.0*	Code	IRC2015/TPI20	14	Matrix-MP	0.22	11012(01)	0.01	-	n/a	n/a		FT 000/
BCDL	10.0											Weight: 44 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep Structural wood she 2-2-0 oc purlins, exc Rigid ceiling directly bracing. (Ib/size) 2=149/ Mi Mechanic Max Horiz 4=220 (LC Max Uplift 2=-123 (L Max Grav 2=228 (LC 4=227 (LC	t* 4-1:2x4 SP No.3 athing directly applie cept end verticals. applied or 8-5-3 oc echanical, 3=62/ al, 4=211/0-3-8 C 10) C 10) C 24), 3=80 (LC 11), 2 25)	 4) Beari capar 5) Refer 6) Provi beari beari capar 7) One la truss conne force: 8) This to linterr R802 9) Gap I diago 	ngs are a city of 56 to girde de mech ng plate 2. RT7A US to bearir ection is 3. russ is d attonal f .10.2 an between nal or ve	assumed to be: , 5 psi. r(s) for truss to tri anical connectior capable of withst SP connectors rea g walls due to UI for uplift only and lesigned in accorr Residential Code d referenced star inside of top cho ertical web shall n	Joint 4 S uss conn n (by othe anding 1 commen- PLIFT at d does no dance wi sections ndard AN rd bearin not excee	P No.2 crus ections. ers) of truss 23 lb uplift a ded to conne jt(s) 4. This of consider la th the 2015 R502.11.1 a SI/TPI 1. g and first d 0.500in.	hing to t act ateral					
FORCES	(lb) - Maximum Com	pression/Maximum	LOAD CA	ASE(S)	Standard								
	Tension	0/0 1-4234/90											
BOT CHORD	3-4=-457/423	/0, 1-4=-234/90											
WEBS	1-3=-328/373												
NOTES													
1) Wind: AS Vasd=100 Cat. II; Ex Exterior (2 vertical le forces & I DOL=1.60	CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; Br (φ B; Enclosed; MWFR 2) zone; cantilever left a ff and right exposed;C- MWFRS for reactions s 0 plate grip DOL=1.33	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and hown; Lumber	C end								Jun	TUDRTH THORTH	CAROL
 2) TCLL: AS DOL=1.15 snow); Pf Plate DOI Ct=1.10 2) * This true 	SCE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pg= =13.9 psf (flat roof snov L=1.15); Category II; Ex	roof live load: Lumb =20.0 psf (ground w: Lumber DOL=1.1 xp B; Fully Exp.;	er 5								the state of the s	0	SEAL 36322
on the bo 3-06-00 ta chord and	ttom chord in all areas all by 2-00-00 wide will any other members.	where a rectangle fit between the botto	om									A SPIC A	GINEER

Ν 1

- 2
- 3

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	PB03		1	1	Job Reference (optional)	E14017239

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:56:03 ID:DcJu5IBiAK9vycSTqkkRkKzvqfl-z7pRT_voTy2RfbAhFxzbYx_P8fLPvy?L89_pCjzqCFg

5

12 12 Г

2x4 = 2x4 =

1-10-6

Scale =	1:33.3	

Plate Offsets (X, Y): [2:0-2-6,0-1-0], [3:0-2-8,Edge], [4:0-2-6,0-1-0]

								-						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(pst 20.0 13.9/20.0 10.0 0.0))))*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MP	0.01 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.)											Weight: 9 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalance this desig 2) Wind: AS(Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & N DOL=1.60 3) Truss des only. For see Stand or consult	2x4 SP No.2 2x4 SP No.2 Structural wood : 3-0-0 oc purlins. Rigid ceiling dire bracing. (lb/size) 2=77/ 6=77/ Max Horiz 2=-25 Max Uplift 2=-1 ((LC 13 Max Grav 2=93 ((LC 2) (lb) - Maximum C Tension 1-2=0/18, 2-3=-4 2-4=-4/35 ed roof live loads ha CE 7-10; Vult=130n imph; TCDL=6.0psi p B; Enclosed; MW 2) zone; cantilever I ft and right exposed MWFRS for reaction 0 plate grip DOL=1. signed for wind load studs exposed to w lard Industry Gable qualified building d	shea ctly a -10- -10- (LC 1 -10- (LC 2 ; 9=9 2/17 ave t ph (; BC FRS aft ac ; S sh 33 Is in (End esig	thing directly applied applied or 10-0-0 oc 6, 9=77/1-10-6, 6, 9=77/1-10-6 11), 6=-25 (LC 11) 3), 4=-1 (LC 14), 6=- -1 (LC 14) 2), 4=93 (LC 2), 6=93 33 (LC 2) oression/Maximum , 3-4=-42/17, 4-5=0/ been considered for 3-second gust) DL=6.0psf; h=25ft; (envelope) and C-C nd right exposed; er c for members and own; Lumber the plane of the trus normal to the face), Details as applicabl ner as per ANSI/TPI	-1 -1 3 18 s nd s e, 1.	 FOLL: ASCE DOL=1.15 P Snow); Pf=1: Plate DOL=' Ct=1.10 This truss ha load of 12.0 Gable requir Gable studs * This truss I on the botton 3-06-00 tall 1 chord and at All bearings capacity of 5 One RT7A L truss to bear This connec lateral forces This truss is International R802.10.2 a See Standar Detail for Co consult quali LOAD CASE(S) 	L 7-10; Pr=20.0 psf late DOL=1.15); Pg 3.9 psf (flat roof snd 1.15); Category II; E as been designed for psf or 2.00 times fli on-concurrent with es continuous botto spaced at 2-0-0 oc has been designed in chord in all areas by 2-00-00 wide will yo other members. are assumed to be 65 psi. ISP connectors rec ing walls due to UF tion is for uplift only a. designed in accord Residential Code sind referenced stand d Industry Piggyba nnection to base tr fied building design Standard	(roof liv g=20.0 p ow: Lum Exp B; F or greate at roof le other liv oom chor ; for a liv s where Il fit betw SP No. SP NO.	L e load: Lumb sf (ground ber DOL=1.1 ully Exp.; er of min roof yad of 13.9 ps re loads. d bearing. e load of 20.0 a rectangle reen the botto 2 crushing ded to conne jt(s) 2 and 4. es not consid th the 2015 R502.11.1 a SI/TPI 1. s Connection applicable, or	er 5 live sf on Dpsf om ct ler ind			Manufacture and a second se		CARO SEAL 36322
													in the	A. GILDIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A Mitek Affiliate B18 Soundside Road Edenton, NC 27932

January 30,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	PB03A		12	1	Job Reference (optional)	E14017240

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:56:03 ID:U_ZjOcdUjPSkWbP4Ht85xRzvqyZ-z7pRT_voTy2RfbAhFxzbYx_P7fLPvy?L89_pCjzqCFg

Page: 1

3x5 =

2x4 = 2x4 =

1-10-6

Scale =	1:33.3
---------	--------

Plate Offsets (X, Y): [2:0-2-6,0-1-0], [3:0-2-8,Edge], [4:0-2-6,0-1-0]

Loading TCLL (roof) Snow (Pf/Pg TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MP	0.02 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHOR BOT CHOR BRACING TOP CHOR BOT CHOR REACTION:	 D 2x4 SP No.2 D 2x4 SP No.2 D Structural wood she 3-0-0 oc purlins. D Rigid ceiling directly bracing. S (lb/size) 2=80/1-1(6=80/1-11) Max Horiz 2=-25 (LC Max Uplift 2=-1 (LC (LC 13), 5) Max Grav 2=96 (LC (LC 2), 9= (lb) - Maximum Com Tension 	athing directly applie applied or 10-0-0 or 0-6, 4=80/1-10-6, 0-6, 9=80/1-10-6 0-11), 6=-25 (LC 11) 13), 4=-1 (LC 14), 6= 9=-1 (LC 14) 2), 4=96 (LC 2), 6= 996 (LC 2) ppression/Maximum	4) ed or 5) c 6) 7) 8) =-1 96 9) 10	TCLL: ASCE DOL=1.15 PI snow); Pf=13 Plate DOL=1 Ct=1.10 This truss ha load of 12.0 µ overhangs no Gable require Gable studs * This truss h on the botton 3-06-00 tall b chord and ar All bearings a capacity of 5 0) One RT7A U truss to bear	7-10; Pr=20.0 psf ate DOL=1.15); P .9 psf (flat roof sn .15); Category II; I s been designed f bsf or 2.00 times fl pn-concurrent with es continuous bott spaced at 4-0-0 of as been designed n chord in all area: y 2-00-00 wide wi y other members. are assumed to be 55 psi. SP connectors ref no walls due to U	f (roof live g=20.0 p ow: Lum Exp B; F for greate lat roof lo o other live com chord c. d for a live s where ill fit betw S P No.: comment PLIFT at	e load: Lumb sf (ground ber DOL=1.1 ully Exp.; er of min roof ad of 13.9 p e loads. d bearing. e load of 20.0 a rectangle een the botto 2 crushing ded to conne it(s) 2 and 4	er 5 live sf on Opsf om						
TOP CHOR BOT CHOR	D 1-2=0/19, 2-3=-44/1 D 2-4=-4/36	8, 3-4=-44/18, 4-5=0	0/19	This connect lateral forces	ion is for uplift only	y and do	es not consid	ler						
NOTES 1) Unbalar this des 2) Wind: A Vasd=1I Cat. II; E Exterior vertical forces & DOL=1. 3) Truss d only. For see Stan or consi	nced roof live loads have ign. SCE 7-10; Vult=130mph O3mph; TCDL=6.0psf; B Exp B; Enclosed; MWFR (2) zone; cantilever left left and right exposed;C- & MWFRS for reactions s 60 plate grip DOL=1.33 lesigned for wind loads ii for studs exposed to wind ndard Industry Gable En	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and hown; Lumber h the plane of the tru (normal to the face) d Details as applicat gner as par ANS/TC	11 r I2 C end LC iss), ole, PI) This truss is International R802.10.2 at See Standarn Detail for Coi consult qualit	designed in accord Residential Code Id referenced star Industry Piggyba nnection to base tu ied building desig Standard	dance wi sections ndard AN ack Truss russ as a ner.	th the 2015 R502.11.1 a SI/TPI 1. a Connection pplicable, or	Ind			Junnan.	ORTHORTH ORTHON	CAROUNI ESSIC 94 SEAL 36322	

- fied building designer as per ANSI/TPI 1. iit qua

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	PB04	Piggyback	1	2	Job Reference (optional)	E14017241

0-6-9

1-5-5

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:56:04 ID:spzBlp_EdKdvT0P10druY4zvr7i-RKNphKwQEGAIHIItpeUq49Way3hgePCUNpkMk9zqCFf

Page: 1

818 Soundside Road Edenton, NC 27932

2-10-10

Scale = 1:31.2

Plate Offsets (X, Y): [2:0	-2-6,0-1-0],	[4:0-2-6,0-1-0]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.01 0.01 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%	
ECDL LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD Sources 1) 2-ply truss Top chord follows: 2x Bottom ch follows: 2x Bottom c	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structura 4-0-4 oc Rigid ceil bracing. (lb/size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=0/18 2-6=-15/3 3-6=-35/0 s to be conn is connected (4 - 1 row a ords connected (4 - 1 row a ords connected section. Ply o distribute indication for the service indication and represent the service of the service	10.0 lo.2 lo.2 lo.3 al wood shea purlins. ling directly 2=72/2-10 6=78/2-10 10=72/2-1 2=34 (LC 2=-4 (LC 1), 1 (LC 13), 1 2=87 (LC (LC 2), 7= kimum Com , 2-3=-48/3 39, 4-6=-15, 0 mected toget d with 10d (t 0-9-0 oc. rected with 10d (t 0-9-0 oc.	I athing directly applie applied or 10-0-0 oc 0-10, 4=72/2-10-10, 1-10, 7=72/2-10-10, 1-10, 7=72/2-10-10, 1-10, 7=72/2-10-10, 12), 7=34 (LC 12) 13), 4=-6 (LC 14), 7= 0=-6 (LC 14), 7= 0=-6 (LC 2), 10=87 (LC 2), 6=9 87 (LC 2), 10=87 (LC 2), 10=87 (LC 2), 10=87 (LC 2), 10=87 (LC 3) 14, 3-4=-46/32, 4-5=0, /39 ther as follows: (0.131"x3") nails as 0d (0.131"x3") nails as	4) d or 5) 6) 4 (2 2) 7) (18 9) 10, 10, 11, as 12, AD 13, 14,	Wind: ASCE Vasd=103mp Cat. II; Exp E Exterior (2) z vertical left at forces & MW DOL=1.60 pl. Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 This truss ha load of 12.0 g overhangs no Gable require Gable studs : * This truss ha on the bottom 3-06-00 tall b chord and an All bearings a capacity of 50 One RT7A U truss to beari This connect lateral forces This truss is International R802.10.2 ar Detail for Coi consult qualit	7-10; Vult=130mp 7-10; Vult=130mp bh; TCDL=6.0psf; bi; Enclosed; MWF one; cantilever lef and right exposed; FRS for reactions ate grip DOL=1.3; med for wind loads ds exposed to wind il ndustry Gable E alified building de 7-10; Pr=20.0 ps ate DOL=1.15; P sp sf (flat roof sr 15); Category II; s been designed il osf or 2.00 times f pn-concurrent with es continuous bot spaced at 4-0-0 o tas been designed il sp concurrent with es continuous bot spaced at 4-0-0 o tas been designed in accord in all area y 2-00-00 wide w by other members are assumed to be 65 psi. SP connectors re ing walls due to U ion is for uplift onl . designed in accor Residential Code and referenced star d Industry Piggyb; nnection to base t fied building designed in accor	oh (3-sec BCDL=6 IRS (envi ft and rig C-C for n s shown; 3 s in the pi nd (norm End Deta signer as f (roof liv Pg=20.0 p ow: Lum Exp B; F for greate flat roof liv Pg=20.0 p ow: Lum Exp B; F for greate flat roof lo n other lin to m chor to a liv is where lil fit betv e SP No. commen PLIFT at ly and do rdance w sections ndard AN ack Trus: rruss as a gner.	cond gust) i.0psf; h=25ft; elope) and C-1 ht exposed; e nembers and Lumber lane of the tru: al to the face) ils as applicat s per ANSI/TP e load: Lumbe osf (ground ber DOL=1.1! ully Exp.; er of min roof 1 ber DOL=1.1! ully Exp.; er of min roof 1 a rectangle veen the botto 2 crushing ded to connect its the 2015 R502.11.1 ar ISI/TPI 1. s Connection applicable, or	C end ss ble, ble, er 5 live of on psf om tt 6. er nd	LOAD C	ASE(S)	Star		CARO SEAL 36322 GINEER	
													Januar	y 30,2020	

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	PB04A	Piggyback	1	1	Job Reference (optional)	E14017242

Run: 8.33 S. Jan 22 2020 Print: 8.330 S. Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:56:04 ID:xqUzmucnVbtfRg_wNEdPXjzvqzt-RKNphKwQEGAIHIItpeUq49Wao3hSeP9UNpkMk9zqCFf

2-10-10

1-5-5

Page: 1

- 10) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 4, and 6. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 - 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being real of the set only water the building designer must verify the subject of building designer much the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Scale = 1:31.2 Plate Offsets (X, Y): [2:0-2-6,0-1-0], [4:0-2-6,0-1-0]

2x4 SP No 2

2x4 SP No.3

bracing.

Max Grav

Tension

3-6=-32/0

DOL=1.60 plate grip DOL=1.33

2-6=-15/39. 4-6=-15/39

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;

vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

or consult qualified building designer as per ANSI/TPI 1.

Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end

Wind: ASCE 7-10; Vult=130mph (3-second gust)

4-0-4 oc purlins.

Loading

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

FORCES

WEBS

NOTES

1)

2)

3)

TOP CHORD

BOT CHORD

this design.

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS (lb/size)

TOP CHORD 2x4 SP No 2

TCLL (roof)

Snow (Pf/Pg)

Spacing

Code

2=73/2-10-10, 4=73/2-10-10,

6=77/2-10-10, 7=73/2-10-10,

(LC 2), 7=88 (LC 2), 10=88 (LC 2)

10=73/2-10-10

Max Horiz 2=34 (LC 12), 7=34 (LC 12)

(LC 13), 10=-6 (LC 14)

1-2=0/18, 2-3=-49/31, 3-4=-47/31, 4-5=0/18

(lb) - Maximum Compression/Maximum

Plate Grip DOL

Rep Stress Incr

Lumber DOL

(psf)

20.0

10.0

0.0

10.0

13.9/20.0

4x5 = 12 12 Г ٦

1-5-5

1-5-5

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	PB04B	Piggyback	4	1	Job Reference (optional)	E14017243

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:56:04 ID:Ga41gOP7xaajjekpCY_ebyzvr8S-RKNphKwQEGAIHIltpeUq49Wan3hReP9UNpkMk9zqCFf Page: 1

Pag

C

818 Soundside Road Edenton, NC 27932

A. GILB

January 30,2020

2-10-10

Scale = 1:31.2

	() , E = -;=	1, 1	· ·											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(r 2 13.9/2 1	psf) \$ 20.0 20.0 10.0 0.0* (10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ²	15/TPI2014	CSI TC BC WB Matrix-MP	0.02 0.03 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural woo 4-0-4 oc purlin Rigid ceiling di bracing.	od sheatl ns. lirectly ap	hing directly applie	4 ed or 5 6 6) TCLL: ASCE DOL=1.15 P snow); Pf=1: Plate DOL= Ct=1.10) This truss ha load of 12.0 overhangs n) Gable requin	5 7-10; Pr=20.0 ps late DOL=1.15); F 3.9 psf (flat roof si 1.15); Category II; as been designed psf or 2.00 times on-concurrent wit es continuous bo	sf (roof live Pg=20.0 p now: Lum ; Exp B; F for greate flat roof lo th other live ttom chore	e load: Lumb sf (ground ber DOL=1.1 ully Exp.; er of min roof pad of 13.9 p re loads. d bearing.	er 15 1ive sf on					
REACTIONS	(lb/size) 2=7 6=7 10= Max Horiz 2=3 Max Uplift 2=-3 (LC Max Grav 2=9 (LC	75/2-10-1 79/2-10-1 75/2-10- 36 (LC 12 3 (LC 13 3 (LC 13 3 (LC 13 3 (LC 2) 1 (LC 2) 5 2), 7=91	10, 4=75/2-10-10, 10, 7=75/2-10-10, -10 2), 7=36 (LC 12) 2), 4=-6 (LC 14), 7= -6 (LC 14), 7= -6 (LC 14), 6=5 1 (LC 2), 10=91 (L ression/Maximum	3 9 91 1 C 2) 1	 Gable studs spaced at 4-0-0 oc. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 4, and 6. 									
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=102 Cat. II; Ex Exterior (2 vertical le forces & N	Tension 1-2=0/19, 2-3= 2-6=-15/41, 4-i 3-6=-34/0 ed roof live loads n. CE 7-10; Vult=13 3mph; TCDL=6.0j pp B; Enclosed; M 2) zone; cantileve ft and right expos VWFRS for reacti	=-51/32, -6=-15/4 s have be 30mph (3 psf; BCE 4WFRS er left an sed;C-C tions sho	3-4=-49/32, 4-5=0 1 een considered for 3-second gust) DL=6.0psf; h=25ft; (envelope) and C- d right exposed ; e for members and own; Lumber	0/19 1 1 C end	 This connect lateral force: This truss is International R802.10.2 a See Standar Detail for Cc consult qual OAD CASE(S) 	A signed in acco Residential Code nd referenced sta d Industry Piggyb innection to base fied building desig Standard	rdance wi e sections andard AN back Truss truss as a gner.	th the 2015 R502.11.1 a SI/TPI 1. a Connection pplicable, or	and			Manna Manna	THORTH ORTH	CAR SEAL 36322

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	V03	Valley	1	1	Job Reference (optional)	E14017244

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:56:06 ID:tkciJryDLh5z0Ima0SNDodzvqem-OiVZ6?xhltQ0W2uGw3WI9acwQsM26Jknq7DTo2zqCFd

Page: 1

2-2-13

3x4 =

Scale = 1:23.6

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/T	PI2014	CSI TC BC WB Matrix-P	0.01 0.02 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood shea 3-0-2 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=53/2-2-1 Max Horiz 1=-16 (LC Max Grav 1=63 (LC 2 (lb) - Maximum Comp Tension 1-2=-47/20, 2-3=-47/ 1-3=-3/25	athing directly applie applied or 10-0-0 oc 13, 3=53/2-2-13 9) 2), 3=63 (LC 2) pression/Maximum 20	7) * 3 3 4 or 8) A 5 5 9) T 1 1 1 1 5 5 6 6 6 6 7 7 7 7 7 8 7 7 8 7 8 7 7 8 7 8	This truss h on the botton 3-06-00 tall b chord and an All bearings a capacity of 5t Fhis truss is of nternational R802.10.2 ar D CASE(S)	as been designed f as been designed f o chord in all areas y 2-00-00 wide will y other members. are assumed to be 55 psi. designed in accorda Residential Code s d referenced stance Standard	for a live where a fit betw SP No.: ance wi sections dard AN	e load of 20.0 a rectangle een the botto 2 crushing th the 2015 R502.11.1 a SI/TPI 1.)psf om nd					
 I) Unbalancet this design. 2) Wind: ASC Vasd=103n Cat. II; Exp Exterior (2) vertical left forces & M DOL=1.60 3) Truss desi only. For s see Standa or consult of DOL=1.15 snow); Pf=: Plate DOL= Ct=1.10 5) Gable requ 6) Gable stud 	d roof live loads have l E 7-10; Vult=130mph mph; TCDL=6.0psf; BC sone; cantilever left a and right exposed;C-f WFRS for reactions sh plate grip DOL=1.33 igned for wind loads in ituds exposed to wind ard Industry Gable Enc qualified building desig E 7-10; Pr=20.0 psf (r Plate DOL=1.15); Pg= 13.9 psf (flat roof snow =1.15); Category II; Ex itres continuous botton s spaced at 4-0-0 oc.	(3-second gust) DL=6.0psf; h=25ft; S (envelope) and C-(nd right exposed; e C for members and nown; Lumber the plane of the true; (normal to the face) I Details as applicab per as per ANSI/TP oof live load: Lumbe :20.0 psf (ground :: Lumber DOL=1.15 p B; Fully Exp.; n chord bearing.	C and ss le, l 1. er								Contraction of the second seco	UN AND AND AND AND AND AND AND AND AND AN	CAR SEAL B6322

January 30,2020

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	V04A	Valley	1	1	Job Reference (optional)	E14017245

2-5-6

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:56:07 ID:cLYYsZf3izVPP9DARH0_80zvrvC-su3xJLyJWBYt8CTSUm2Xin85OGhGrmaw3ny0LUzqCFc

4-3-14

Page: 1

Scale = 1:25

Plate Offsets (X, Y): [3:0-2-11,0-1-4]

		-												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.08	Vert(TL)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	4	n/a	n/a			
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MP									
BCDL	10.0											Weight: 18 lb	FT = 20%	
LUMBER			4)	TCLL: ASCE	7-10; Pr=20.0 ps	f (roof liv	e load: Lumb	er						
FOP CHORD	2x4 SP No.2			DOL=1.15 P	ate DOL=1.15); P	g=20.0 p	osf (ground							
BOT CHORD	2x4 SP No.2			snow); Pf=13	3.9 psf (flat roof sn	iow: Lum	ber DOL=1.1	5						
OTHERS	2x4 SP No.3			Plate DOL=1	.15); Category II;	Exp B; F	ully Exp.;							
NEDGE	Right: 2x4 SP No.3		-	Ct=1.10										
BRACING			5)	Gable require	es continuous bot	tom chor	d bearing.							
TOP CHORD	Structural wood shea	athing directly applie	dor 6)	* This truce h	spaceu al 4-0-0 0	u. I for a live	a load of 20 (Joef						
	4-3-14 oc purlins.		7)	on the bottor	n chord in all area	s whore	e luau ul 20.0	Jpsi						
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc		3-06-00 tall b	v 2-00-00 wide w	ill fit betw	leen the bott	om						
	bracing.			chord and ar	y other members									
REACTIONS	(lb/size) 1=61/4-5-	13, 3=43/4-5-13,	8)	All bearings	are assumed to be	e SP No.:	2 crushing							
	4=199/4-5	-13		capacity of 5	65 psi.		-							
		10)	9)	Provide mec	hanical connection	n (by othe	ers) of truss t	0						
	Max Oplint $3=-2$ (LC s	2), 4=-10 (LC 13) 2), 2=70 (LC 20), 4=	224	bearing plate	capable of withst	anding 2	lb uplift at jo	int 3						
		2), 3=70 (LC 29), 4=	234	and 16 lb up	ift at joint 4.									
OPCES	(lb) Maximum Com	prossion/Maximum	10) Beveled plate	e or shim required	to provid	de full bearing	g						
ONCES	Tension	pression/maximum		surface with	truss chord at join	t(s) 3.	al 4 - 0045							
	1-2=-72/65 2-3=-23/	44	11) This truss is	designed in accor	dance wi	Ith the 2015	nd						
BOT CHORD	1-4=-52/59, 3-4=-52/	/51		R802 10 2 a	d referenced star	sections inderd AN	K502.11.1 a SI/TPI 1	ina						
WEBS	2-4=-128/37				Ctandard		101/1111						111111	
NOTES				AD CASE(S)	Stanuaru							and and	CAD	
1) Unbalance	ed roof live loads have	been considered for										IN ATH	000 11	S
this design	n.										/	N.0/1	SSA: A	11
2) Wind: AS	CE 7-10; Vult=130mph	(3-second gust)									4	MUS	1111	0%
Vasd=103	mph; TCDL=6.0psf; B0	DL=6.0psf; h=25ft;									2			1.
Cat. II; Ex	p B; Enclosed; MWFRS	S (envelope) and C-0	2								-	· · · · ·	:	-
Exterior (2	zone; cantilever left a	and right exposed ; e	nd										SEAL :	
vertical lef	t and right exposed;C-	C for members and										01	36322	(B
torces & N	VIVVERS for reactions sh	nown; Lumber									-	:	:	1
DUL=1.60	plate grip DOL=1.33	the slope of the true									-			-
 Iruss des only For 	signed for wind loads in	i the plane of the trus	SS								S	· A. En	-cRix	3
See Stand	ard Industry Cable En	(normal to the face),	ام									A	JINES	S
or consult	and mousify Gable End	ner as ner ANSI/TP	11									MIC A	OUBEN	

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A. GI The Green January 30,2020

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	V05	Valley	1	1	Job Reference (optional)	E14017246

3-2-12

3-2-12

Carter Components (Sanford), Sanford, NC - 27332.

Loading

TCDL

BCLL

BCDL

WEBS

OTHERS

BRACING

FORCES

WEBS

NOTES

1)

2)

LUMBER

Run: 8.33 S. Jan 22 2020 Print: 8.330 S. Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:56:08 ID:n64aKFle7DAvXoZy5lhe8PzvrwM-K5dKWhzxHVgkmM2f2UZmF?hC9gwzaDh4HRiatxzqCFb

> 5-0-14 1-2-12

3-10-1

3x5 = 5x6 =

Page: 1

January 30,2020

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	V05B	Valley	1	1	Job Reference (optional)	E14017247

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:56:08 ID:AtJJLinDas6?w2cwIcSFiLzvsB6-K5dKWhzxHVgkmM2f2UZmF?hGMg2WaDI4HRiatxzqCFb

5-1-13

1x3 🛛

87

ğ

1x3 🛛

1x3 🛛 6 5

4 1x3 🛛

3

10

1x3 ш

1x3 🛛

11 2x4 🅢

12 12 Г 2

×

5-1-13

0-0-4

Scale = 1:46.7

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.05	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.02	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	/TDI2044	WB Matrix MD	0.03	Horiz(TL)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2015	/1912014	Matrix-MP							Weight: 33 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 5-1-9 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=32/5-1 8=36/5-1 10=92/5- Max Horiz 1=133 (L Max Uplift 1=-20 (LC (LC 11), 13), 10=- 13) Max Grav 1=99 (LC (LC 13), 24), 10=:	eathing directly applie y applied or 10-0-0 or -9, 6=9/5-1-9, 7=-1/5 -9, 9=84/5-1-9, 1-9, 11=95/5-1-9 C 13) C 11), 6=-8 (LC 13), 7 8=-10 (LC 13), 19=-36 46 (LC 13), 11=-12 (C 13), 6=13 (LC 24), 7 8=45 (LC 24), 9=109 121 (LC 24), 11=114	2) 3) ed or -1-9, 5) -1-9, 6) 7) 7=-1 (LC 8) 7=0 9) (LC (LC 40)	Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 PI Snow); Pf=13 Plate DOL=1 Ct=1.10 All plates are Gable require Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a: Capacity of 5 Bearing at jo using ANSI/T designer sho	hed for wind loads dds exposed to wind dl ndustry Gable E alified building des 7-10; Pr=20.0 psf ate DOL=1.15); Pg 3.9 psf (flat roof sn .15); Category II; E 1X3 MT20 unless es continuous bott spaced at 1-4-0 oc as been designed n chord in all areas by 2-00-00 wide will y other members. are assumed to be 65 psi. int(s) 6 considers p PI 1 angle to grain uld verify capacity	in the pl id (normand Details) signer as f (roof live g=20.0 p ow: Lum Exp B; F otherwis om chore c. I for a live s where II fit betw a SP No.: parallel t n formula	ane of the tru al to the face) Is as applicat per ANSI/TF e load: Lumbu sf (ground ber DOL=1.1 ully Exp.; se indicated. d bearing. e load of 20.0 a rectangle reen the botto 2 crushing o grain value a. Building ng surface.	nss), ole, ole, olt1. er 5 5 0psf om					
FORCES	24) (lb) - Maximum Cor Tension	npression/Maximum	,	bearing plate 7, 20 lb uplift	capable of withsta at joint 1, 8 lb upli	anding 1 ift at join	Ib uplift at joi 6, 46 lb uplif	int tat				unit H	CARO
TOP CHORD	1-2=-252/207, 2-3= 4-5=-44/34, 5-6=-12	-205/166, 3-4=-119/9 2/11)7, 11)	10 lb uplift at	joint 8.	dance wi	th the 2015					N'OR:	ESSIDE No
BOT CHORD	1-11=-48/50, 10-11 7-8=0/0	=0/0, 9-10=0/0, 8-9=0	0/0,	International R802 10 2 ar	Residential Code	sections	R502.11.1 a	nd			4	CLAC'	Ma
WEBS	3-10=-124/106, 2-1 5-8=-39/33	1=-85/60, 4-9=-108/9	^{00,} LO	AD CASE(S)	Standard						THE R		SEAL
NOTES 1) Wind: AS Vasd=100 Cat. II; Ex Exterior (2 vertical le forces & M DOL=1.60	CE 7-10; Vult=130mpl 3mph; TCDL=6.0psf; E qp B; Enclosed; MWFF 2) zone; cantilever left ff and right exposed;C MWFRS for reactions s 0 plate grip DOL=1.33	n (3-second gust) CDL=6.0psf; h=25ft; tS (envelope) and C- and right exposed ; e -C for members and shown; Lumber	C end								III III	C. S.N.	GINEER.

January 30,2020

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	V05C	Valley	1	1	Job Reference (optional)	E14017248

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:56:09 ID:cLYYsZf3izVPP9DARH0_80zvrvC-oHBik1zZ2oobNWdrbB4?nCDPC4LkJguDW5R7PNzqCFa Page: 1

Scale = 1:35.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MP	0.17 0.21 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 5-7-14 oc purlins. Rigid ceiling directly bracing. (lb/size) $1=114/5-7$ 5=-48/5-7 Max Horiz $1=69$ (LC Max Uplift $4=-25$ (LC 6=-19 (LC Max Grav $1=136$ (LC (LC 10), 6 (lb) - Maximum Com Tension $1-2=-145/73, 2-3=-4$	athing directly applied applied or 10-0-0 oc 7-14, 4=65/5-7-14, 14, 6=239/5-7-14 13) 13), 5=-89 (LC 28), 13), 28), 4=82 (LC 24), =299 (LC 24) pression/Maximum 7/53	4 d or 7 5=35 1 L) TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10) Gable require) Gable studs s) * This truss h on the bottom 3-06-00 tall b chord and an) All bearings a capacity of 50) Provide mect bearing plate 4, 19 Ib uplift 0) This truss is of International R802.10.2 ar CAD CASE(S) 	7-10; Pr=20.0 psf ate DOL=1.15); Pg .9 psf (flat roof snn .15); Category II; F es continuous bott spaced at 4-0-0 oc as been designed n chord in all areas y 2-00-00 wide wil y other members. are assumed to be 55 psi. nanical connection capable of withsta at joint 6 and 89 II designed in accorre Residential Code id referenced stam	(roof living g=20.0 pow: Lum Exp B; F oom chord : for a living s where : Il fit betw SP No.: (by othe anding 2 b uplift a Jance wi sections idard AN	e load: Lumbe s (ground ber DOL=1.1: ully Exp.; d bearing. e load of 20.0 a rectangle een the botto 2 crushing ers) of truss tt 5 lb uplift at jo t joint 5. th the 2015 R502.11.1 ai SI/TPI 1.	psf opint					
BOT CHORD WEBS NOTES 1) Unbalance this desigr 2) Wind: ASC Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & M DOL=1.60 3) Truss des only. For see Stand or consult	1-6=-78/131, 5-6=0// 2-6=-150/25, 3-5=-6 ed roof live loads have n. CE 7-10; Vult=130mph mph; TCDL=6.0psf; Bi p B; Enclosed; MWFR3) zone; cantilever left at t and right exposed; C- MWFRS for reactions s plate grip DOL=1.33 signed for wind loads in studs exposed to wind ard Industry Gable En- qualified building design	0, 4-5=0/0 9/58 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed ; e C for members and hown; Lumber n the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP	C nd ss le, l 1.								William	UN PARTIE	CARO SEAL B6322

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

January 30,2020

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	V06	Valley	1	1	Job Reference (optional)	E14017249

4-10-7

4-10-7

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:56:09 ID:n64aKFIe7DAvXoZy5lhe8PzvrwM-oHBik1zZ2oobNWdrbB4?nCDN44JXJfODW5R7PNzqCFa

6-4-14

1-6-7

4x4 =

Page: 1

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	V07	Valley	1	1	Job Reference (optional)	E14017250

5-1-6 5-1-6

Carter Components (Sanford), Sanford, NC - 27332,

5-1-10

7-0-0

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:56:09 ID:AtJJLinDas6?w2cwlcSFiLzvsB6-oHBik1zZ2oobNWdrbB4?nCDMT4IzJfDDW5R7PNzqCFa

> 6-11-14 <u>6-8-10</u> 1-7-4 0-3-4

> > 1x3 🛛

4x4 = 2 Page: 1

3 3-3-2 12 12 Г 1 *** 6 54 1x3 II 2x4 = 1x3 II 6-11-14 6-8-10 0-3-4 6-8-10

Scale = 1:41.2

Plate Offsets (X, Y): [1:0-0-10,0-1-0]

or consult qualified building designer as per ANSI/TPI 1.

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.34	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.39	Vert(TL)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.01	4	n/a	n/a			
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MP									
BCDL	10.0											Weight: 36 lb	FT = 20%	
LUMBER			4)	TCLL: ASCE	7-10; Pr=20.0	osf (roof liv	e load: Lumb	er						
TOP CHORD	2x4 SP No.2			DOL=1.15 P	late DOL=1.15);	Pg=20.0 p	sf (ground							
BOT CHORD	2x4 SP No.2			snow); Pf=13	3.9 psf (flat roof	snow: Lum	ber DOL=1.1	5						
WEBS	2x4 SP No.3			Plate DOL=1	.15); Category I	ll; Exp B; F	ully Exp.;							
OTHERS	2x4 SP No.3			Ct=1.10										
BRACING			5)	Gable require	es continuous b	ottom chor	d bearing.							
TOP CHORD	Structural wood shea	athing directly applie	dor 6)	Gable studs	spaced at 4-0-0	OC.								
	6-0-0 oc purlins.	0 7 11	7)	* This truss h	nas been design	ed for a live	e load of 20.0	Opsf						
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	;	on the bottor 3-06-00 tall b	n chord in all are by 2-00-00 wide	eas where will fit betw	a rectangle een the botto	om						
REACTIONS	(lb/size) 1=154/6-1	1-14, 4=137/6-11-14	⁴ , 8)	chord and ar All bearings	iy other membe are assumed to	rs. be SP No.:	2 crushing							
	0=-101/0- Max Hariz 1-105/10	11-14, 0=331/0-11-1 12)	4	capacity of 5	65 psi.									
		13) 13) 5- 210 (IC 24)	, 9)	Provide mec	hanical connect	ion (by othe	ers) of truss t	0						
	6=-45 (LC	13), 5=-219 (LC 24)),	bearing plate	capable of with	nstanding 3	5 lb uplift at j	oint						
	Max Gray 1-183 (LC	28) 4–170 (LC 24)		4, 45 lb uplift	at joint 6 and 2	19 lb uplift	at joint 5.							
	5=47 (LC	13), 6=414 (LC 24)	', 10) This truss is International	designed in acc Residential Cod	ordance wi	th the 2015 R502.11.1 a	nd						
FORCES	(lb) - Maximum Com	pression/Maximum		R802.10.2 a	nd referenced st	tandard AN	SI/TPI 1.							
TOP CHORD	1-2=-189/96 2-3=-4	6/52	LC	DAD CASE(S)	Standard									
BOT CHORD	1-6=-103/179 5-6=0	/0 4-5=0/0											111111	
WEBS	2-6=-189/60. 3-5=-69	9/57										, in the	CAD	
NOTES	,											- N'ATH	UARO,	11.
1) Unbalance	ed roof live loads have	been considered for									/	NON	-SSI	1º2
this design	n										L			N'I
2) Wind AS	CF 7-10 [.] Vult=130mph	(3-second gust)									4		I no	V
Vasd=103	Smph: TCDL=6.0psf: B0	CDL=6.0psf: h=25ft:									- 2			1 E
Cat. II: Ex	p B: Enclosed: MWFR	S (envelope) and C-	С								-	- i - i	SEAL	1 E
Exterior (2	2) zone; cantilever left a	and right exposed ; e	end									: 0	20222	: =
vertical lef	ft and right exposed;C-	C for members and									1	: 0.	00322	÷ =
forces & N	/WFRS for reactions sl	hown; Lumber									1			1 2
DOL=1.60) plate grip DOL=1.33											A.A.		1 3
Truss des	signed for wind loads in	the plane of the tru	SS									- Co NA	GINEE	2.5
only. For	studs exposed to wind	(normal to the face)	,									1110	DE	Nº C
see Stand	lard Industry Gable End	d Details as applicab	ole,									1, C A	GILD	1

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	V08	Valley	1	1	Job Reference (optional)	E14017251

6-2-7

6-2-7

Carter Components (Sanford), Sanford, NC - 27332,

Scale = 1:46 Loading

TCLL (roof)

TCDL

BCLL

BCDL

WEBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES 1)

2)

3)

TOP CHORD

BOT CHORD

this desian.

LUMBER

TOP CHORD

BOT CHORD

Snow (Pf/Pg)

Run: 8.33 S. Jan 22 2020 Print: 8.330 S. Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:56:09 ID:A_URH9kuSw7b?7lspABTtBzvryz-oHBik1zZ2oobNWdrbB4?nCDO44N?Jf2DW5R7PNzqCFa

1-6-70-3-4

4x4 =

8-0-2 7-8-14

Page: 1

818 Soundside Road Edenton, NC 27932

3 1x3 II 4 6-2-11 1x3 4-5-0 2 12 12 ∟ 1 ò 8 7 65 1x3 u 1x3 u 1x3 u 2x4 8-0-2 7-8-14 7-8-14 0-3-4 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) 20.0 Plate Grip DOL 1.15 TC 0.24 Vert(LL) n/a n/a 999 MT20 244/190 BC Lumber DOL 0.07 13 9/20 0 1 15 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.09 Horiz(TL) 0.00 5 n/a n/a 0.0* Code IRC2015/TPI2014 Matrix-MP 10.0 Weight: 45 lb FT = 20%TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground 2x4 SP No.2 2x4 SP No.2 snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; 2x4 SP No.3 Ct=1.10 2x4 SP No.2 *Except* 8-2:2x4 SP No.3 5) Gable requires continuous bottom chord bearing Gable studs spaced at 4-0-0 oc. 6) Structural wood sheathing directly applied or 7) * This truss has been designed for a live load of 20.0psf 6-0-0 oc purlins. on the bottom chord in all areas where a rectangle Rigid ceiling directly applied or 10-0-0 oc 3-06-00 tall by 2-00-00 wide will fit between the bottom bracing. chord and any other members. **REACTIONS** (lb/size) 1=32/8-0-2, 5=21/8-0-2, All bearings are assumed to be SP No.2 crushing 8) 6=17/8-0-2, 7=189/8-0-2, capacity of 565 psi. 8=270/8-0-2 9) Provide mechanical connection (by others) of truss to Max Horiz 1=136 (LC 13) bearing plate capable of withstanding 48 lb uplift at joint Max Uplift 1=-48 (LC 11), 6=-40 (LC 14), 1, 114 lb uplift at joint 8 and 40 lb uplift at joint 6. 8=-114 (LC 13) This truss is designed in accordance with the 2015 1=116 (LC 13), 5=23 (LC 24), 6=34 Max Grav International Residential Code sections R502 11 1 and (LC 25), 7=234 (LC 24), 8=347 (LC R802.10.2 and referenced standard ANSI/TPI 1. 24) LOAD CASE(S) Standard (lb) - Maximum Compression/Maximum Tension MULTH CALL 1-2=-243/223 2-3=-117/76 3-4=-44/49 1-8=-26/35, 7-8=0/0, 6-7=0/0, 5-6=0/0 3-7=-158/41, 2-8=-357/289, 4-6=-65/53 Unbalanced roof live loads have been considered for Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; SEAL Cat. II: Exp B; Enclosed; MWFRS (envelope) and C-C 36322 Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), G see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. January 30,2020

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	V08A	Valley	1	1	Job Reference (optional)	E14017252

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:56:10 ID:AtJJLinDas6?w2cwIcSFiLzvsB6-GTk4xN_Bp6wS?gC19vbEKQmZnTjT269NIIBgxpzqCFZ

Page: 1

8-3-14 8-0-10 6-5-6 1-7-40-3 6-5-6 4x5= 3 \uparrow 2x4 II 4 6-5-10 2x4 2 4-7-2 12 12 □ 0-0-4 \boxtimes 8 11 7 65 2x4 2x4 II 2x4 II 2x4 🛛 4 8-0-10 8-0-10

Scale = 1:47

Loading FCLL (roof) Snow (Pf/Pg) FCDL BCLL BCDL	(ps 20. 13.9/20. 10. 0. 10.	f) Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.24 0.12 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS DTHERS BRACING TOP CHORD 30T CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 *E> Structural wood 6-0-0 cc purlins. Rigid ceiling dire bracing. (Ib/size) 1=44/ 6=24/ 8=27? Max Horiz 1=14 Max Uplift 1=-40 8=-11	ccept* 8-2:2x4 SP No. sheathing directly app ctly applied or 10-0-0 8-3-14, 5=19/8-3-14, 8-3-14, 7=189/8-3-14, //8-3-14 (LC 13) (LC 11), 6=-80 (LC 15 7 (LC 13)	3) 3 4) lied or 0C 5) 6) 7) 9), 8)	Truss design only. For stu see Standarc or consult qu TCLL: ASCE DOL=1.15 PI snow); Pf=13 Plate DOL=1 Ct=1.10 Gable require Gable studs s * This truss h on the botton 3-06-00 tall b chord and an All bearings a	hed for wind load ds exposed to d Industry Gabl alified building 7-10; Pr=20.0 ate DOL=1.15) 3.9 psf (flat roof .15); Category es continuous the spaced at 4-0-0- las been design n chord in all an y 2-00-00 wide y other member are assumed to 65 pei	ads in the pl wind (norma- e End Detai designer as psf (roof liv, ; Pg=20.0 p snow: Lum II; Exp B; F pottom chorn 0 oc. ned for a liv, reas where e will fit betw ers, with BC b be SP No	ane of the tr ane of the tr a to the face is as applica is per ANSI/T e load: Lumb ber DOL=1.' ully Exp.; d bearing. e load of 20. a rectangle reen the bott DL = 10.0ps 2 crushing	uss e), ble, PI 1. ber 15 0psf tom						

capacity of 565 psi.

1=117 (LC 13), 5=71 (LC 19), 6=34

(LC 29), 7=308 (LC 24), 8=376 (LC

Max Grav

Tension

5-6=0/0

DOL=1.60 plate grip DOL=1.33

FORCES

WEBS

NOTES

2)

TOP CHORD

BOT CHORD

this design.

24)

1) Unbalanced roof live loads have been considered for

Wind: ASCE 7-10; Vult=130mph (3-second gust)

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;

Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber

(lb) - Maximum Compression/Maximum

1-2=-238/218, 2-3=-118/77, 3-4=-46/51

3-7=-160/38, 2-8=-354/284, 4-6=-68/55

1-8=-34/50, 8-11=0/0, 7-11=0/0, 6-7=0/0,

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 1, 117 lb uplift at joint 8 and 80 lb uplift at joint 6.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	V09	Valley	1	1	Job Reference (optional)	E14017253

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:56:10 ID:A_URH9kuSw7b?7IspABTtBzvryz-GTk4xN_Bp6wS?gC19vbEKQmZDTi0254NIIBgxpzqCFZ

Page: 1

Scale = 1:51.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.22	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.14	Vert(TL)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES	WB	0.17	Horiz(TL)	0.00	5	n/a	n/a			
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MSH									
BCDL	10.0										Weight: 56 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2	 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult gualified building designer as per ANSI/TPI 1. 											

- OTHERS 2x4 SP No.2 *Except* 8-2:2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (lb/size) 1=89/9-4-2, 5=12/9-4-2, 6=16/9-4-2, 7=201/9-4-2, 8=303/9-4-2 Max Horiz 1=172 (LC 13) Max Uplift 1=-12 (LC 11), 6=-119 (LC 19), 7=-11 (LC 13), 8=-123 (LC 13) Max Grav 1=132 (LC 26), 5=89 (LC 19), 6=29 (LC 29), 7=348 (LC 24), 8=433 (LC 24) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-250/227, 2-3=-113/98, 3-4=-22/50 BOT CHORD 1-8=-66/108, 8-11=0/0, 7-11=0/0, 6-7=0/0, 5-6=0/0
- WEBS 3-7=-191/78, 2-8=-349/272, 4-6=-38/26
- NOTES
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber
- DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow): Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 6)
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi. 9) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 12 lb uplift at joint 1, 11 lb uplift at joint 7, 123 lb uplift at joint 8 and 119 lb uplift at joint 6.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	V10	Valley	1	1	Job Reference (optional)	E14017254

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries, Inc. Thu Jan 30 09:56:11 ID:A_URH9kuSw7b?7lspABTtBzvryz-kglS9j?qaQ2ldpnDjc6TsdJjvt1wnYUW_PwEUFzqCFY

Page: 1

10-8-2 8-10-7 8-10-7 0-3-4 4x4= 3 Æ 1x3 🛛 4 1x3 I 2 8-10-11 X 7-1-0 12 12 Г 0-0-7 1 8 65 7 1x3 🛛 1x3 🛛 3x4 🥠 1x3 🛛 10-8-2 || 0-3-4 10-4-14 10-4-14

Scale = 1:61.7

Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.28	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pa)	1	3.9/20.0	Lumber DOL	1.15		BC	0.23	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.16	Horiz(TL)	0.00	8	n/a	n/a		
BCLL		0.0*	Code	IRC20	015/TPI2014	Matrix-MSH		- ()						
BCDL		10.0											Weight: 67 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	IMBER 4) TCLL: DP CHORD 2x4 SP No.2 snow); EBS 2x4 SP No.2 Plate THERS 2x4 SP No.2 *Except* 8-2:2x4 SP No.3 Ct=1.1 CACING Structural wood sheathing directly applied or 6-0-0 cc purlins. 6 DT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 3-06-0 EBS 1 Row at midpt 3-7 EACTIONS (lb/size) 1=131/10-8-2, 5=-5/10-8-2, 6=46/10-8-2, 7=170/10-8-2, 8=368/10-8-2 9) Max Horiz 1=207 (LC 13) Nat Uplift 5=-9 (LC 2), 6=-108 (LC 19), 7=-2 (LC 13), 8=-151 (LC 13) 10) Max Grav 1=179 (LC 26), 5=84 (LC 19), 6=58 (LC 2), 7=314 (LC 24), 8=533 (LC 24) LOAD CAS DRCES (lb) - Maximum Compression/Maximum Tension LOAD CAS					27-10; Pr=20.0 psf late DDL=1.15); Pg 3.9 psf (flat roof snc .15); Category II; E es continuous botto spaced at 4-0-0 oc has been designed n chord in all areas by 2-00-00 wide will yo other members, are assumed to be 65 psi. hanical connection e capable of withsta at joint 7, 151 lb up 6. designed in accord Residential Code sho nd referenced stan Standard	(roof liv j=20.0 p bw: Lum Exp B; F om chor for a liv s where I fit betwee I fit betwee SP No. (by othe anding 9 lift at joi lance wis sections dard AN	e load: Lumb sf (ground ber DOL=1.1 ully Exp.; d bearing. e load of 20.0 a rectangle recen the bott DL = 10.0psf 2 crushing ers) of truss t lb uplift at jo nt 8 and 108 th the 2015 R502.11.1 a SI/TPI 1.	Der 15 Opsf om f. to int Ib				Weight. Of ib	
FORCES	(lb) - Max Tension	kimum Com	pression/Maximum		()									
TOP CHORD	1-2=-281	/257, 2-3=-	118/90, 3-4=-25/48										, united	CAD
BOT CHORD	1-8=-91/	159, 7-8=0/0	0, 6-7=0/0, 5-6=0/0										"TH	UARO
WEBS	3-7=-175	/64, 2-8=-40	05/307, 4-6=-41/29										N ON	a Do Mila
NOTES												L	1200	The
1) Unbalance	ed roof live	loads have	been considered for	r								11	:2	
 Wind: AS Vasd=100 Cat. II; Ex Exterior (MWFRS grip DOLa Truss de only. For see Stand or consul 	CE 7-10; VU 3mph; TCDI vp B; Enclos 2) zone;C-C for reactions =1.33 signed for w studs expo dard Industr t qualified bu	ult=130mph =6.0psf; BC ed; MWFRS for membe s shown; Lu vind loads ir sed to wind y Gable End uilding desig	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- rs and forces & mber DOL=1.60 plat the plane of the tru (normal to the face) d Details as applicat gner as per ANS/ITP	C te ss , ble, Pl 1.								THE DESIGNATION OF THE DESIGNATI	OS AND AND AND AND AND AND AND AND AND AND	SEAL 36322 GINEER KANNA

January 30,2020

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	
20010096	V12	Valley	1	1	Job Reference (optional)	E14017255

Run: 8.33 S Jan 22 2020 Print: 8.330 S Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:56:11 ID:NilkKbzlyTvK8sxiP7ChXWzvs8H-kgIS9j?qaQ2ldpnDjc6TsdJkft2GnXdW_PwEUFzqCFY

Page: 1

Casla	4.07 5
Scale =	: 1:07.5

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MSH	0.24 0.14 0.21	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 80 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Except* Structural wood sheat 6-0-0 oc purlins. Rigid ceiling directly a	10-2:2x4 SP No.3 thing directly applied	3) 4) or	Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1. Ct=1.10	ed for wind loads i ds exposed to wind I Industry Gable Er alified building des 7-10; Pr=20.0 psf ate DOL=1.15); Pg .9 psf (flat roof snc .15); Category II; E	n the pl d (norm d Detai gner as (roof liv =20.0 p w: Lum xp B; F	ane of the trus al to the face), Is as applicab per ANSI/TP e load: Lumbe sf (ground ber DOL=1.15 ully Exp.;	ss le, l 1. r					

- 5) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 6)
- 4-8, 5-7 1=44/12-0-2, 6=16/12-0-2, 7=10/12-0-2, 8=203/12-0-2, 9=296/12-0-2, 10=231/12-0-2 Max Horiz 1=243 (LC 13) 8) Max Uplift 1=-80 (LC 11), 7=-126 (LC 19), capacity of 565 psi. 8=-8 (LC 13), 9=-137 (LC 13), 9) 10=-73 (LC 13)
- Max Grav 1=204 (LC 13), 6=94 (LC 19), 7=28 (LC 29), 8=352 (LC 24), 9=452 (LC 24), 10=278 (LC 24) (lb) - Maximum Compression/Maximum

FORCES Tension

REACTIONS (lb/size)

bracing.

1 Row at midpt

- TOP CHORD 1-2=-423/365, 2-3=-268/236, 3-4=-114/95, 4-5=-23/49
- BOT CHORD 1-10=-53/64, 9-10=0/0, 8-9=0/0, 7-8=0/0, 6-7=0/0
- WEBS 4-8=-186/67, 3-9=-367/289, 2-10=-263/201, 5-7=-38/27

NOTES

WEBS

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SP No.2 crushing Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 80 lb uplift at joint 1, 8 lb uplift at joint 8, 137 lb uplift at joint 9, 73 lb uplift at joint 10 and 126 lb uplift at joint 7. 10) This truss is designed in accordance with the 2015
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	GARY ROBINSON / 4 PBC	E14017256
20010096	V13	Valley	1	1	Job Reference (optional)	

11-6-7

11-6-7

Carter Components (Sanford), Sanford, NC - 27332.

TCDL

BCLL

BCDL

WEBS

WEBS

WEBS

NOTES

1)

2)

Run: 8.33 S. Jan 22 2020 Print: 8.330 S. Jan 22 2020 MiTek Industries. Inc. Thu Jan 30 09:56:12 ID:NilkKbzlyTvK8sxiP7ChXWzvs8H-kgIS9j?qaQ2ldpnDjc6TsdJkot2jnW?W_PwEUFzqCFY

13-4-2 13-0-14

1-6-7^Ĥ

0-3-4 4x4= 4

Page: 1

MALITICA I

1x3 II 5 1x3 3 မု 0-6-6 1x3 2 1<u>2</u> 12 0-0-7 1013 9 8 76 1x3 II 3x4 🖌 1x3 u 1x3 u 1x3 u 13-4-2 || 0-3-4 13-0-14 13-0-14 Scale = 1:73.6 Loading Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) Plate Grip DOL TCLL (roof) 20.0 1.15 тс 0.23 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf/Pg) BC 13 9/20 0 Lumber DOL 1 15 0.18 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.32 Horiz(TL) 0.00 10 n/a n/a 0.0* Code IRC2015/TPI2014 Matrix-MSH 10.0 Weight: 93 lb FT = 20%Truss designed for wind loads in the plane of the truss LUMBER 3) only. For studs exposed to wind (normal to the face), TOP CHORD 2x4 SP No.2 2x4 SP No.2 see Standard Industry Gable End Details as applicable, BOT CHORD or consult qualified building designer as per ANSI/TPI 1. 2x4 SP No.2 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber OTHERS 2x4 SP No.2 *Except* 10-2:2x4 SP No.3 DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground BRACING snow): Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 TOP CHORD Structural wood sheathing directly applied or Plate DOL=1.15); Category II; Exp B; Fully Exp.; 6-0-0 oc purlins. Ct=1.10 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc 5) Gable requires continuous bottom chord bearing. bracing. Gable studs spaced at 4-0-0 oc. 6) 1 Row at midpt 4-8, 5-7 * This truss has been designed for a live load of 20.0psf 7) **REACTIONS** (lb/size) 1=93/13-4-2 6=18/13-4-2 on the bottom chord in all areas where a rectangle 7=6/13-4-2, 8=208/13-4-2, 3-06-00 tall by 2-00-00 wide will fit between the bottom 9=285/13-4-2, 10=281/13-4-2 chord and any other members, with BCDL = 10.0psf. Max Horiz 1=279 (LC 13) All bearings are assumed to be SP No.2 crushing 8) Max Uplift 1=-53 (LC 11), 7=-98 (LC 19), capacity of 565 psi. 8=-10 (LC 13), 9=-134 (LC 13), 9) Provide mechanical connection (by others) of truss to 10=-100 (LC 13) bearing plate capable of withstanding 53 lb uplift at joint Max Grav 1=225 (LC 13), 6=76 (LC 19), 7=25 1, 10 lb uplift at joint 8, 134 lb uplift at joint 9, 100 lb (LC 29), 8=340 (LC 24), 9=506 (LC uplift at joint 10 and 98 lb uplift at joint 7. 24), 10=395 (LC 24) 10) This truss is designed in accordance with the 2015 FORCES International Residential Code sections R502.11.1 and (lb) - Maximum Compression/Maximum Tension R802.10.2 and referenced standard ANSI/TPI 1. TOP CHORD 1-2=-444/387, 2-3=-262/230, 3-4=-113/96, LOAD CASE(S) Standard 4-5=-22/49 BOT CHORD 1-10=-77/121, 10-13=0/0, 9-13=0/0, 8-9=0/0, 7-8=0/0, 6-7=0/0 Vannonnen 4-8=-187/66, 3-9=-358/280, 2-10=-302/223, 5-7=-38/26 SEAL 036322 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone;C-C for members and forces & GI MWFRS for reactions shown; Lumber DOL=1.60 plate minum grip DOL=1.33 January 30,2020 🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being real of the set only water the building designer must verify the subject of building designer much the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. 818 Soundside Road Edenton, NC 27932

