

Trenco 818 Soundside Rd Edenton, NC 27932

Re: Furne Southeastern General Contractors

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carolina Structural Systems, LLC.

Pages or sheets covered by this seal: E14248049 thru E14248095

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

April 1,2020

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	1F01	Floor Supported Gable	1	1	Job Reference (optional)	E14248049

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:30 ID:8S?favPxHt9YoXpX9QL2OqzVQIL-u8TV3F_vJ42s946mnFYOQ_yksy3Jggb85tPhw4zV9K9

Page: 1

Scale = 1:31.8															
Loading TCLL TCDL BCLL BCDL		(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC20 ⁻	18/TPI2014	CSI TC BC WB Matrix-S	0.08 0.01 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 82 lb	GRIP 244/190 FT = 20%F, 11 ⁴	%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceili bracing. (size)	b.2(flat) b.2(flat)b.2(flat)b.2(flat)b.2(flat)b.2(flat)b.2(flat)b.2(flat)b.2(flat)b.2(athing directly applie cept end verticals. applied or 10-0-0 oc 0, 17=17-0-0, 21=17- 0, 20=17-0-0, 24=17- 0, 27=17-0-0, 28=17- 0, 30=17-0-0 C 1), 17=152 (LC 1), C 1), 21=147 (LC 1) C 1), 21=147 (LC 1) C 1), 23=146 (LC 1) C 1), 28=147 (LC 1) C 1), 28=151 (LC 1)	1 2 3 4 5 c 6 c 6 c 6 c 0-0, -0-0, -0-0, -0-0, -0-0, -0-0, -0, -	 All plates are Gable requird Truss to be f braced again Gable studs This truss is International R802.10.2 ar Recommend 10-00-00 oc (0.131" X 3") at their outer OAD CASE(S) 	e 1x3 MT20 unless es continuous bott ully sheathed from ist lateral moveme spaced at 1-4-0 or designed in accor Residential Code nd referenced star 2x6 strongbacks, and fastened to ea nails. Strongback ends or restrained Standard	s otherwis tom chorn o one fac ent (i.e. d c. dance wi sections nedard AN o n edge ach truss ks to be a d by othe	se indicated. d bearing. e or securely iagonal web). ith the 2018 R502.11.1 an (SI/TPI 1. e, spaced at with 3-10d attached to wa er means.	nd						
FORCES	(lb) - Maxi	imum Com	pression/Maximum											111	
TOP CHORD	16-31=-44 1-32=-26/ 4-5=-1/0, 8-9=-2/0, 12-13=-2/	4/0, 15-31= 0, 1-2=-1/0 5-6=-1/0, 6 9-10=-2/0, 0, 13-14	-44/0, 30-32=-26/0, 0, 2-3=-1/0, 3-4=-1/0, 3-7=-2/0, 7-8=-2/0, 10-11=-2/0, 11-12=- 2/0, 14-15=-2/0	, -2/0,							4	111	ORTH CA	ROLI	5
BOT CHORD	29-30=0/1 25-26=0/1 21-22=0/2	l, 28-29=0/ l, 24-25=0/ 2, 20-21=0/ 2 16-17-0/	20, 14 13 210 1, 27-28=0/1, 26-27 1, 23-24=0/1, 22-23 2, 19-20=0/2, 18-19	=0/1, =0/2, =0/2,							THUN I		SEA 0363	L 22	WILLIN .
WEBS NOTES	14-17=-13 11-20=-13 7-23=-133 4-27=-132 6-23=0/1	38/0, 13-18 33/0, 9-21= 3/0, 6-24=-` 2/0, 3-28=-`	– =133/0, 12-19=-134 -133/0, 8-22=-133/0 134/0, 5-26=-134/0, 137/0, 2-29=-119/0,	4/0,),							10.	in the second se	NGIN NC A. C	EER.	The second
													A	лп 1,2020	

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	1F02	Floor	5	1	Job Reference (optional)	E14248050

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:32 ID:CAwpflgP_BkCwTAD8G6z0JzVPR3-nvj?vd1QNJZIehPX05dKaq7GgZFPcR?k?VNu3rzV9K5

8-0-0	9-0-0 10-0-0	17-0-0
8-0-0	1-0-0 1-0-0	7-0-0

Scale = 1:37.2

Plate Offsets (X, Y): [15:0-1-8,Edge]

Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.73 0.77 0.25	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.23 0.05	(loc) 16-17 16-17 12	l/defl >999 >872 n/a	L/d 360 240 n/a	PLATES MT18HS MT20 Weight: 94 lb	GRIP 244/190 244/190 FT = 20%F, 1	1%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) *Ex No.1(flat) 2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.2(flat) Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly	xcept* 18-12:2x4 SP athing directly applie cept end verticals. applied or 10-0-0 oc	4) Recommen 10-00-00 or (0.131" X 3 at their oute LOAD CASE(S	d 2x6 strongbacks, c and fastened to ea ") nails. Strongback r ends or restrained) Standard	on edge ach truss s to be a d by othe	, spaced at with 3-10d attached to w or means.	valls						
REACTIONS	bracing. (size) 12=0-5-8, Max Grav 12=915 (L	21=0-5-8 .C 1), 21=915 (LC 1))										
FORCES	(Ib) - Maximum Com	pression/Maximum											
TOP CHORD	1ension 21-22=-38/0, 1-22=-3 11-23=-37/0, 1-2=-2/ 3-4=-2355/0, 4-5=-27 6-7=-2756/0, 7-8=-23 9-10=-1463/0, 10-11	38/0, 12-23=-38/0, /0, 2-3=-1463/0, 766/0, 5-6=-2766/0, 353/0, 8-9=-2353/0, =-2/0											
BOT CHORD	20-21=0/867, 19-20= 17-18=0/2683, 16-17 14-15=0/2684, 13-14	=0/2031, 18-19=0/26 7=0/2683, 15-16=0/2 4=0/2029, 12-13=0/8	83, 2766, 368									11111	
WEBS	5-16=-224/0, 6-15=-5 2-20=0/885, 3-20=-8 4-19=-475/0, 10-12= 9-13=-841/0, 9-14=0 7-15=-152/694, 4-17	522/89, 2-21=-1224/ 45/0, 3-19=0/483, -1225/0, 10-13=0/88 /481, 7-14=-515/0, =-45/102, 4-16=-181	0, 35, 1/467						4	ALL A	ORTHCA	ion in the second	
NOTES 1) Unbalance this design 2) All plates a 3) This truss Internation R802.10.2	ed floor live loads have n. are MT20 plates unless is designed in accorda nal Residential Code se and referenced standa	been considered for s otherwise indicated ince with the 2018 ections R502.11.1 ar ard ANSI/TPI 1.	r t.						THE AVEN	A A A A A A A A A A A A A A A A A A A	SEA 0363	L 22 EER.X	Munning.

- this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

G 111111111 April 1,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	1F03	Floor	6	1	Job Reference (optional)	E14248051

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:32

Page: 1

Carolina Structural Systems, LLC, Ether, NC - 27247,

8-0-0	9-0-0 10-0-0	17-0-0
8-0-0	₁₋₀₋₀ ₁₋₀₋₀	7-0-0

Scale = 1:38.9

Plate Offsets (X, Y): [15:0-1-8,Edge]

		1											
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00	TC	0.73	Vert(LL)	-0.17	16-17	>999	360	MT18HS	244/190	
TCDL	10.0	Lumber DOL	1.00	BC	0.77	Vert(CT)	-0.23	16-17	>872	240	MT20	244/190	
BCLL	0.0	Rep Stress Incr	YES	WB	0.25	Horz(CT)	0.05	12	n/a	n/a			
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 94 lb	FT = 20%F, 11%E	Ξ
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) *E: No.1(flat) 2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.2(flat) Structural wood shee 6-0-0 oc purlins, exc Rigid ceiling directly bracing.	xcept* 18-12:2x4 SP athing directly applied cept end verticals. applied or 10-0-0 oc	4) Recommend 10-00-00 oc (0.131" X 3") at their outer 5) CAUTION, D LOAD CASE(S) d or	2x6 strongbacks, o and fastened to eac nails. Strongbacks ends or restrained to o not erect truss bar Standard	n edge h truss to be a by othe ckward	, spaced at with 3-10d attached to wa r means. Is.	alls						
REACTIONS	(size) 12=0-5-8,	21=0-5-8											
FORCES	Max Glav 12=915 (L	.C I), 21=921 (LC I)											
FURCES	(ID) - Maximum Com Tension	pression/maximum											
TOP CHORD	1-21=-42/0, 12-22=- 1-2=0/0, 2-3=-1463/0 4-5=-2766/0, 5-6=-2 7-8=-2353/0, 8-9=-2 10-11=-2/0	38/0, 11-22=-37/0, 0, 3-4=-2355/0, 766/0, 6-7=-2756/0, 353/0, 9-10=-1463/0,											
BOT CHORD	20-21=0/868, 19-20= 17-18=0/2684, 16-17 14-15=0/2684, 13-14	=0/2031, 18-19=0/268 7=0/2684, 15-16=0/27 4=0/2029, 12-13=0/86	34, 766, 58									D	
WEBS	5-16=-224/0, 6-15=- 10-13=0/885, 9-13=- 7-14=-515/0, 7-15=- 2-20=0/884, 3-20=-8 4-19=-475/0, 4-17=-	522/89, 10-12=-1225 841/0, 9-14=0/481, 152/694, 2-21=-1228 44/0, 3-19=0/483, 45/102, 4-16=-181/46	/0, /0, 67						9	A.	ORTHOR	2 de la	7
NOTES											SEA	1 1 3	2
 Unbalance this design All plates a This truss Internation R802.10.2 	ed floor live loads have are MT20 plates unless is designed in accorda al Residential Code se and referenced standa	d						111111			EER. K I		

- All plates are MT20 plates unless otherwise indicated. 2)
- 3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

GI un unin April 1,2020

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	1F04	Floor Girder	1	1	Job Reference (optional)	E14248052

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:33 ID:S4Bd5uRMqk0dpll58CDzOuzVPOo-F5HO7z228dh9Gr_jZo8Z61fZdzl5LxQtE96SblzV9K4

April 1,2020

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 216 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	1F05	Floor	1	1	Job Reference (optional)	E14248053

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:33 ID:oPpykjGWgxnOgrrSyLzDyQzVPQJ-F5HO7z228dh9Gr_jZo8Z61faczkxLxAtE96SbIzV9K4

Scale = 1:23.3												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.14	Vert(LL)	-0.01	7-8	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.17	Vert(CT)	-0.02	7-8	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	7	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 41 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											

WEBS	2x4 SP No.2(flat)
OTHERS	2x4 SP No.2(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 7=0-5-8, 10= Mechanical
	Max Grav 7=354 (LC 1), 10=360 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	7-11=-52/0, 6-11=-52/0, 1-10=-55/0, 1-2=0/0,
	2-3=-425/0, 3-4=-425/0, 4-5=-425/0, 5-6=-2/0
BOT CHORD	9-10=0/293, 8-9=0/425, 7-8=0/292

WEBS NOTES

1) Unbalanced floor live loads have been considered for this design.

2-10=-414/0, 5-7=-410/0, 2-9=0/221, 5-8=0/222, 3-9=-117/0, 4-8=-118/0

Refer to girder(s) for truss to truss connections. 2)

- This truss is designed in accordance with the 2018 3) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

Page: 1

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	1F06	Floor	1	1	Job Reference (optional)	E14248054

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 08:48:22 ID:ohLNIXTAg9x_DSejSPnC80zVPQ2-oArSUen_aE0lp8WFwFlydqNlidWKYyhYEJiD1wzV9?d Page: 1

1-0-8 0-1-8 1-3-0 1.5x3 =1.5x3 u 3x3 = 1.5x3 u 3x3 🛛 3x3 = 2 3 4 5 6 4x4 = 1 13 φ 4x6 🛚 12 9 8 11 10 1.5x3 🛚 3x6 = 1.5x3 u 3x6 = 1.5x3 🛚

Scale =	1:27.3
---------	--------

Plate Offsets (X, Y): [1:0-2-7,Edge], [12:0-1-9,0-2-7]

1-6-0

TCLL 40.0 Plate Grip DOL 1.00 TC 0.11 Vert(LL) 0.00 7-8 >999 360 MT20 TCDL 40.0 Humber DOL 1.00 TC 0.40 Vert(CT) 0.04 7.8 >000 340	244/190
TCDL 10.0 Lumber DOL 1.00 IBC 0.10 Ven(CT) -0.01 7-8 >999 240	
BCLL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 12 n/a n/a	
BCDL 5.0 Code IRC2018/TPI2014 Matrix-S Weight: 42 lb	FT = 20%F, 11%E

LUMBER

LOWIDER	
TOP CHORD	2x4 SP No.2(flat)
BOT CHORD	2x4 SP No.2(flat)
WEBS	2x4 SP No.2(flat)
OTHERS	2x4 SP No.2(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	All bearings 2-9-0. except 7=0-5-8
(lb) -	Max Grav All reactions 250 (lb) or less at joint
	(s) 7, 11, 12 except 10=293 (LC 1)
FORCES	(lb) - Max. Comp./Max. Ten All forces 250
	(lb) or less except when shown.
NOTES	

- 1) Unbalanced floor live loads have been considered for this design.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
 Gable studs spaced at 1-4-0 oc.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	1F07	Floor	1	1	Job Reference (optional)	E14248055

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:34 ID:Lf?Qdh5stexqvCSfsGis6UzVPNx-jHrmKJ3gvwp0t?Zv7WfofFCjcN1_4N?1Tps?7kzV9K3

Page: 1

Scale = 1:23.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.32	Vert(LL)	-0.02	9-10	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.38	Vert(CT)	-0.03	9-10	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.01	7	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 47 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.2(flat)											
OTHERS	2x4 SP No.2(flat)											
BRACING												
TOP CHORD	Structural wood shea	athing directly appli	ed or									
	6-0-0 oc purlins, exc	cept end verticals.										
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	С									
	bracing.											
REACTIONS	(size) 7=0-5-8, 1	1= Mechanical										
	Max Grav 7=408 (LC	C 1), 11=414 (LC 1)										
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD	7-12=-56/0, 6-12=-56	6/0, 1-11=-31/0, 1-2	2=0/0,									
	2-3=-490/0, 3-4=-559	9/0, 4-5=-559/0, 5-6	5=-3/0									
BOT CHORD	10-11=0/374, 9-10=0	0/559, 8-9=0/559,										
WERS	7-8=0/350	01/0 2 10-0/172										
WEB3	5-8-0/314 4-8-131	/0 3-10-133/0										
	3-9=-114/10	/0, 0 10= 100/0,										
NOTES												
1) Unbalance	ed floor live loads have	been considered for	or									11.
this design).		-								11111	in the second se
2) Refer to gi	rder(s) for truss to trus	s connections.									TH UA	NOIL
3) This truss	is designed in accorda	ince with the 2018								A	ON JEG	Size Alle
Internation	al Residential Code se	ections R502.11.1 a	and						/	57	in the	N. Sin
R802 10 2	and referenced stands	ard ANSI/TPL1										1 NIMIN

R802.10.2 and referenced standard ANSI/TPI 1.
4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

Job	Trus	SS	Truss Type		Qty	Ply	Southeastern General Cont	tractors
Furne	1F0)8	Floor Girder			1	loh Poforonce (antion-1)	E14248056
Carolina Structur	al Systems, LLC, Ethe	er, NC - 27247,		Run: 8.33 S Mar 23	2020 Print: 8.3	330 S Mar 23	3 2020 MiTek Industries, Inc. Wed	d Apr 01 07:26:34 Page: 1
				ID:Vg8tlixdmXQd_Al	LdZPvkbqzVPI	KH-jHrmKJ3	gvwp0t?Zv7WfofFCjtN2y4Ny1Tp	s?7kzV9K3
						-3-0	0-6-0	
				1-2-6	0-8-6		-1-0	
	0-1-8			THA	422	3x6 FP	1-1-0	0-1-8
	H				3x3 =		3x3 =	H
				3x3 =	= 8x8		3x3 =	3x3 =
	1 2 29	3 4	5 6	7 8	3 9	10	11 12	13 14 30
1-6-0								
	27	26 25	24 23	22 22 21	0	19	18 17 16	\bigotimes
	3x3 =	20 20	3	M18 x6 FP	SHS 7x12 =	3x3 :	= 3x3 =	3x6 =
		<u>ع</u> ع	3-10-0 3-10-0				<u> </u>	
Scale = 1:32.5				· · · · ·			· · · · · · · · · · · · · · · · · · ·	
Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr 	2-0-0 1.00 1.00 NO	CSI TC BC WB	0.30 DEFL Vert(L 0.31 Vert(C 0.09 Horz(L) -0. CT) -0. CT) 0.	in (loc) l/defl L/d F 01 16-17 >999 360 M 02 16-17 >999 240 M 00 15 n/a n/a	PLATES GRIP MT20 244/190 M18SHS 244/190
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.2(flat) Structural wood s 6-0-0 oc purlins, Rigid ceiling direc bracing. (size) 15=0-5 23=8-1 26=8-1 Max Uplit 21=-15 Max Grav 15=383 21=10/ 24=149 26=15/ 28=17 (lb) - Maximum C Tension 28-29=-15/0, 1-29 14-30=-33/0, 1-29 4-59=-1/0, 5-6=-1/(8-9=0/238, 9-10= 11-12=-510/0, 12 27-28=0/1, 22-23 19-20=0/102, 18- 16-17=0/510, 15-	sheathing directly applied except end verticals. ttly applied or 10-0-0 oc i-8, 20=8-10-0, 21=8-10-(0-0, 24=8-10-0, 25=8-10 0-0, 27=8-10-0, 28=8-10 i6 (LC 4) 3 (LC 4), 20=1113 (LC 7) 4 (LC 3), 23=141 (LC 20) 9 (LC 19), 25=145 (LC 20) 2 (LC 3), 27=124 (LC 19) (LC 3) ompression/Maximum 9=-15/0, 15-30=-33/0, e-1/0, 2-3=-1/0, 3-4=-1/0, 0, 6-7=-1/0, 7-8=0/241, -317/0, 10-11=-317/0, -13=-446/0, 13-14=-2/0 =0/1, 25-26=0/1, 24-25=0 (19=0/510, 17-18=0/510, 16=0/341	 All plates are All plates are All plates are All plates are Truss to be ft braced again: Gable studs s Provide mech bearing plate joint 21. This truss is of International I R802.10.2 and 0. Recommend 10-00-00 oc a (0.131" X 3") at their outer CAUTION, Dr Use Simpson or equivalent (es) to back ft right, sloping Fill all nail hoil 12) In the LOAD of the truss at LOAD CASE(S) Dead + Floco Plate Increa Uniform Loa Vert: 15-2 Concentrate Vert: 8=-2 	MT20 plates unless 1.5x3 MT20 unless 1.5x3 MT20 unless 1.15x3 MT20 unless 1.1111 sheathed from or st lateral movement is spaced at 1-4-0 oc. nanical connection (b capable of withstance designed in accordar Residential Code set dreferenced standa 2x6 strongbacks, on and fastened to each nails. Strongbacks, on and fastened to each on the restrained by o not erect truss back 0.0 deg. down. les where hanger is in CASE(S) section, low re noted as front (F) Standard or Live (balanced): Lu ise=1.00 ads (lb/ft) 28=-10, 1-14=-100 ad Loads (lb) 270 (B)	otherwise in otherwise ind otherwise ind e face or se (i.e. diagonal y others) of i ding 156 lb u nce with the 2 ctions R502. rd ANSI/TPI edge, space truss with 3 o be attache y other mear kwards. (Single Cho oft end to con wed 0.0 deg n contact wit ads applied to or back (B).	dicated. dicated. curely web). itruss to plift at 2018 11.1 and 1. sd at 10d d to walls is. rd Girder) nect truss .to the h lumber. o the face se=1.00,	City of the second s	RTH CARO
NOTES 1) Unbalance this design	13-15=-480/0, 9-1 11-19=-306/0, 12 12-17=-122/58, 7 5-24=-136/0, 4-25 2-27=-113/0, 8-20 7-20=-321/0 d floor live loads ha	13=0/325, 13-10=0/156, -16=-107/0, 11-18=-50/13 -21=-92/165, 6-23=-127/0 5=-132/0, 3-26=-138/0, 0=-453/0, 9-20=-545/0, ave been considered for	30,),				THE REAL PROPERTY OF THE PARTY	036322 A. GILBER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	1F09	Floor Girder	1	1	Job Reference (optional)	E14248057

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:35 ID:wjh89b1fcbrJMhklin7DYwzVPPJ-jHrmKJ3gvwp0t?Zv7WfofFCk0N554N31Tps?7kzV9K3 Page: 1

Scale = 1:31.7

Plate Offsets (X, Y): [2:0-1-0,Edge]

_oa	ding	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCL	L	40.0	Plate Grip DOL	1.00	TC	0.23	Vert(LL)	0.00	5	>999	360	MT20	244/190	
TCC)L	10.0	Lumber DOL	1.00	BC	0.11	Vert(CT)	0.00	5	>999	240			
BCL	L	0.0	Rep Stress Incr	NO	WB	0.08	Horz(CT)	0.00	4	n/a	n/a			
BCE	DL	5.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 35 lb	FT = 20%F	, 11%E
				Lipiform Lo	nde (lb/ft)			-				-		
				Vort: 4.7	10 1 2 100									
		2x4 SP N0.2(IIal)		Concentrat	=-10, 1-3=-100									
		2x4 SP N0.2(flat)		Vort: 2										
		2x4 SP N0.2(flat)		ven. 2=-	200 (F)									
	IERO	284 SP 10.2(11at)												
	CING	o												
IOF	CHORD	Structural wood shea	athing directly applie	ed or										
		Pigid ceiling directly	applied or 10-0-0 or											
	ONORD	bracing.												
REA	CTIONS	(size) 4= Mecha	nical, 7=0-3-8											
	l	Max Grav 4=343 (LC	C 1), 7=300 (LC 1)											
FOR	CES	(lb) - Maximum Com Tension	pression/Maximum											
ΓOF	CHORD	7-8=-294/0, 1-8=-294 1-2=-222/0, 2-3=0/0	4/0, 3-4=-52/0,											
301	CHORD	6-7=0/13, 5-6=0/313	, 4-5=0/313											
NE	BS	2-5=0/6, 2-4=-422/0,	1-6=0/300, 2-6=-22	20/0										
ION	ES													
1)	Refer to gir	rder(s) for truss to trus	s connections.											
2)	This truss i	is designed in accorda	ince with the 2018											
	Internation	al Residential Code se	ections R502.11.1 a	nd								, in the second	in the	
	R802.10.2	and referenced standa	ard ANSI/TPI 1.									"TH CA	Rolly	
3)	Recommer	nd 2x6 strongbacks, or	n edge, spaced at								-	R	1	1,
	10-00-00 o	c and fastened to eac	h truss with 3-10d							/	1	FESS	107. V	11
	(0.131" X 3	3") nails. Strongbacks	to be attached to wa	alls						7		KP /	2 sin	
•	at their out	er ends or restrained t	by other means.									:x	· · · ·	1
+) -`	CAUTION,	Do not erect truss bac	ckwards.	1)						-		CEA	n i	=
))	Use Simps	son Strong-Tie THA422	2 (Single Chord Gird	ier)						=	:	SEA	- :	=
	or equivale	ent at 2-2-0 from the le	it end to connect tru	155							:	0363	22 :	-
2)		h lace of top chord.	in contact with lumb	oor						-			:	-
) 7)	riii ali fiali i In the LOA	DCASE(S) contion to	and contact with furnit											
)	of the trues	are noted as front (F)	or back (R)								- 1	N. ENO	-ER. X	3
~		Standard	or back (D).								1	S, GIN	EL. A	Nº I
		bor Live (balanced)	umbor Incroses 1 (n							1	CA -	IL BEIN	2 A A
)	Plate Incr	ease=1.00		JU,								11, A. G	IL IIII	
		0000-1.00										11111	in.	
												Ap	ril 1,2020	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

ENGINEERING BY EREPACTO A MITEK Atfiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	1F10	Floor Girder	1	1	Job Reference (optional)	E14248058

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:35 ID:?EFNjcS22YbiufAE3sjfobzVPNU-BUO8Ye4IgExtV986hDA1CSIvvmR8pq8AiTbYgAzV9K2 Page: 1

1-3-0 1-1-4 0-1-8 Н THA422 3x3 = 1.5x3 = 3x10 = 3x3 II 2 3 hт ŀφ 1-6-0 7 $\left|\right\rangle$ 6 5 3x3 = 3x3 = 3x6 = 3x8 = 2-1-8 3-9-8 2-1-8 1-8-0

1-6-0

Scale = 1:31.7

Plate Offsets (X, Y): [2:0-1-0,Edge]

L oading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 NO	CSI TC BC WB	0.22 0.13 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5 5 4	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190	
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 35 lb	FT = 20%F,	11%E
LUMBER FOP CHORD SOT CHORD WEBS DTHERS BRACING FOP CHORD SOT CHORD CHOR	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.2(flat) Structural wood shea 3-9-8 oc purlins, exx Rigid ceiling directly bracing. (size) 4= Mecha Max Grav 4=370 (LC (lb) - Maximum Com Tension 7-8=-321/0, 1-8=-32' 1-2=-251/0, 2-3=0/0 6-7=0/15, 5-6=0/348 2-5=0/5, 2-4=-464/0, rder(s) for truss to trus is designed in accorda all Residential Code se and referenced standi nd 2x6 strongbacks, ou co and fastened to eac 3") nails. Strongbacks ter ends or restrained H , Do not erect truss bat son Strong-Tie THA42/ ent at 2-1-8 from the le k face of top chord, sk g 0.0 deg. down. holes where hanger is D CASE(S) section, Ic s are noted as front (F) S) Standard	athing directly applie sept end verticals. applied or 10-0-0 oc nical, 7=0-3-8 2 1), 7=327 (LC 1) pression/Maximum 1/0, 3-4=-55/0, , 4-5=0/348 1-6=0/340, 2-6=-24 s connections. Ince with the 2018 actions R502.11.1 ar ard ANSI/TPI 1. n edge, spaced at h truss with 3-10d to be attached to wa by other means. ckwards. 2 (Single Chord Gird ft end to connect true ewed 0.0 deg.to the in contact with lumb ads applied to the fa o r back (B).	 Dead + Fl Plate Incre Uniform Li Vert: 4- Concentra Vert: 2= d or 8/0 alls er) ss ver. ace 	or Live (balanced) base=1.00 bads (lb/ft) 7=-10, 1-3=-100 ted Loads (lb) -314 (B)	: Lumber	Increase=1.C	10,				SEA 0363		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	1F11	Floor	10	1	Job Reference (optional)	E14248059

F

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:35 ID:peE4dzF?6099ZwAaSoMIWpzVPIa-BUO8Ye4IgExtV986hDA1CSlqkmFNpotAiTbYgAzV9K2

8-0-0	9-0-0 10-0-0	16-6-12
8-0-0	1-0-0 1-0-0	6-6-12

Scale = 1:37.2

Loading TCLL	(psf) 40.0	Spacing Plate Grip DOL	2-0-0 1.00	CSI TC 0.5	55	DEFL Vert(LL)	in -0.18	(loc) 15-16	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.00	BC 0.8	38	Vert(CT)	-0.24	15-16	>814	240		
BCLL	0.0	Rep Stress Incr	YES	WB 0.2	24	Horz(CT)	0.04	11	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 91 lb	FT = 20%F, 11%E
LUMBER			LOAD CASE(S)	Standard								
TOP CHORD	2x4 SP No.2(flat)		(-)									
BOT CHORD	2x4 SP No 2(flat) *F	xcept* 17-11·2x4 SP	,									
201 0110112	No 1(flat)											
WEBS	2x4 SP No 2(flat)											
OTHERS	2x4 SP No 2(flat)											
DRACING	2x+ 01 110.2(llat)											
BRACING	o , , , , , , ,											
TOP CHORD	6-0-0 oc purlins, exc	athing directly applie cept end verticals.	d or									
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc										
	bracing.											
REACTIONS	(size) 11= Mech	anical 20=0-5-8										
REACTIONS	Max Grav 11=897 (I	(C 1) 20=891 (I C 1)										
FORCES	(lb) Maximum Com	prossion/Maximum	·									
FUNCES	(ib) - Maximum Com	pression/maximum										
		20/0 10 11 12/0										
TOP CHORD	20-21=-30/0, 1-21=-	50/0, 10-11=-43/0,										
	1-2=-2/0, 2-3=-1417/	(0, 3-4=-2200/0, 0.0)										
	4-3=-2013/0, 3-0=-20	416/0, 0 - 1 = -2212/0,										
	10 20 0/944 19 10	410/0, 9-10=0/0	75									
BOT CHORD	19-20=0/044, 10-19=	=0/1903, 17-10=0/20	070, 0612									
	10-17=0/2575, 15-16	D=0/2575, 14-15=0/2	013, 047									
WERS	13-14=0/2013, 12-13 5 15- 197/0 6 14- 9	D=0/1900, 11-12=0/0	047 0									
WEDS	2 10 0/952 2 10 9	02/223, 2-20=-1191/	0,								THUR .	1111
	2-19=0/052, 5-19=-0 1-18=-117/0 9-11=-	1108/0 0-12-0/8/5									WHILL CA	Dall
	8-12-700/0 8-13-0	1130/0, 3-12=0/043,									DIFI ON	
	A-1648/133 A-15-	-231/126							/	~	On the SS	1. 1.2
NOTEO	4-10-40/100, 4-10-	-234/420							6	i	a filled	N: A
NULES	a di Alexan Di ya Tana da Tanzar	h	_						~		ion -	N. P.
1) Unbalance	ed floor live loads have	been considered to	r						-			
	l. inder(e) fer trues to true								=		SEA	L : =
2) Relefild g	inder(s) for truss to trus	is connections.							=	:	0262	aa : =
3) This truss	is designed in accorda	Ince with the 2018	ad						1		0303	ZZ : :
Deno 10 0	and referenced stand		la						-	6		1
4) Booommo	and 2v6 strenghosks of	alu ANGI/TETT.							5	2	1. A	all S
4) Recomme	oc and fastened to occ	h trues with 3-10d								-1	NGINI	EENAS
(0 131" Y	3") naile Stronghacke	to be attached to w	alle							11	710	The start of the s
at their ou	ter ands or restrained b	ov other means									AG	ILBUIN
	Do not erect trues ba	ckwards									11111	in the second seco
5, CAUTION		unulus.									Sec. 1111	C. K. States

April 1,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	1F12	Floor Supported Gable	1	1	Job Reference (optional)	E14248060

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:35 ID:3k3A8?4B4pNz6O?BmDG9oSzVRDS-BUO8Ye4IgExtV986hDA1CSIx1mSzprKAiTbYgAzV9K2

Page: 1

1-6-0

Scale = 1:21.5	5											
Loading TCLL TCDL BCLL BCDI	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2018/TP!2014	CSI TC BC WB 4 Matrix-P	0.08 0.01 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 47 lb	GRIP 244/190 FT = 20%F 11%F
	0.0	Couc	11(02010/11/201	i induix i							Weight: 47 ib	11 - 20/01, 11/02
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	 2x4 SP No.2(flat) Structural wood sh 6-0-0 cc purlins, e Rigid ceiling directl bracing. 	eathing directly applic xcept end verticals. y applied or 10-0-0 o	6) Recom 10-00-C (0.131" at their 7) CAUTIC LOAD CAS ed or	mend 2x6 strongbacks 0 oc and fastened to e X 3") nails. Strongba outer ends or restrain DN, Do not erect truss E(S) Standard	s, on edge each truss cks to be ed by othe backward	e, spaced at with 3-10d attached to w er means. Is.	ralls					
REACTIONS	(size) 9=8-11-(12=8-11 15=8-11 Max Grav 9=52 (LC 11=145 13=146 15=127), 10=8-11-0, 11=8-1 -0, 13=8-11-0, 14=8- -0, 16=8-11-0 C 1), 10=156 (LC 1), (LC 1), 12=147 (LC 1 (LC 1), 14=150 (LC 1 (LC 1), 14=150 (LC 1)	1-0, 11-0, I), I),									
FORCES	(lb) - Maximum Cor	mpression/Maximum										
TOP CHORD	16-17=-21/0, 1-17= 1-2=-1/0, 2-3=-1/0, 5-6=0/0, 6-7=0/0, 7	21/0, 8-9=-47/0, 3-4=0/0, 4-5=0/0, -8=0/0										
BOT CHORD	15-16=0/1, 14-15=(11-12=0/0, 10-11=(7-10=-142/0, 6-11= 4-13=-132/0, 3-14= 2, 12, 1/0	0/1, 13-14=0/1, 12-13 0/0, 9-10=0/0 -131/0, 5-12=-134/0, -137/0, 2-15=-115/0,	3=0/0, ,							A	WHTH CA	ROLLIN
NOTES 1) All plates 2) Gable red 3) Truss to l braced ag 4) Gable stu 5) This trus Internatio R802.10.	are 1.5x3 MT20 unles quires continuous bott be fully sheathed from gainst lateral movemen ids spaced at 1-4-0 oc s is designed in accord onal Residential Code : 2 and referenced stan	ss otherwise indicated om chord bearing. one face or securely nt (i.e. diagonal web) :. dance with the 2018 sections R502.11.1 a dard ANSI/TPI 1.	d. , and						Contraction of the second seco		SEA 0363	EER. HALL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

April 1,2020

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	1F13	Floor	6	1	Job Reference (optional)	E14248061

Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 YES		CSI TC BC WB	0.78 0.77 0.37	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.42 -0.57 0.10	(loc) 19-20 19-20 14	l/defl >654 >476 n/a	L/d 360 240 n/a	PLATES MT18HS MT20	GRIP 244/190 244/190	
BCDL	5.0	Code	IRC2018	3/TPI2014	Matrix-S		(0.)					Weight: 124 lb	FT = 20%F, 11%E	
LUMBER TOP CHORD	2x4 SP No.1(flat) *E (flat)	xcept* 9-13:2x4 SP	4) No.2	This truss is o International R802.10.2 ar	designed in accor Residential Code Id referenced star	dance wi sections ndard AN	th the 2018 R502.11.1 ar ISI/TPI 1.	nd						
BOT CHORD	2x4 SP No.1(flat) *E DSS(flat)	xcept* 22-14:2x4 SF	5)	Recommend 10-00-00 oc a	2x6 strongbacks, and fastened to ea	on edge ach truss	, spaced at with 3-10d							
OTHERS	2x4 SP No.2(flat) 2x4 SP No.2(flat)		10	at their outer	ends or restraine	d by othe	er means.	ans						
TOP CHORD	Structural wood she 5-1-10 oc purlins, e	athing directly applie xcept end verticals.	ed or		Clandard									
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	2											
REACTIONS	(size) 14=0-5-8, Max Grav 14=1240	26=0-5-8 (LC 1), 26=1240 (LC	; 1)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum												
TOP CHORD	26-27=-37/0, 1-27=- 13-28=-37/0, 1-2=-2 3-4=-3570/0, 4-5=-4 6-7=-5100/0, 7-8=-5 9-10=-4588/0, 10-11 11-12=-2081/0, 12-1	37/0, 14-28=-37/0, /0, 2-3=-2081/0, 590/0, 5-6=-5100/0, 100/0, 8-9=-4588/0, 1=-3569/0, 13=-2/0												
BOT CHORD	25-26=0/1193, 24-29 22-23=0/4209, 21-22 19-20=0/5100, 18-19	5=0/2942, 23-24=0/4 2=0/4209, 20-21=0/4 9=0/4931, 17-18=0/4	1209, 1931, 1209,								an'	OPTHESS	ROJULE	
WEBS	6-20=-329/36, 7-19= 2-25=0/1320, 3-25= 4-24=-925/0, 12-14= 11-15=-1280/0, 11-1 4-23=-28/41, 4-21=0 5-20=-203/666, 10-1 8-18=-548/0, 8-19=-	5-0/2542, 14-13-07 -343/41, 2-26=-168- -1281/0, 3-24=0/933 1684/0, 12-15=0/13 (6=0/931, 10-16=-92 0/552, 5-21=-537/0, 7=-26/46, 10-18=0/5 202/674	4/0, , 320, 8/0, 548,							Walnut West		SEA 0363	L 22	
NOTES											-	N. SNOW	ERIAS	
1) Unbalance this design	ed floor live loads have n.	e been considered fo	r								14	P/C A G	BERNIN	
 All plates a All plates a 	are MT20 plates unles are 1.5x3 MT20 unless	s otherwise indicated s otherwise indicated	d. I.									Ap	ril 1,2020	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1-6-0

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	A01	Common Supported Gable	2	1	Job Reference (optional)	E14248062

Run: 8.33 S. Mar 23 2020 Print: 8.330 S.Mar 23 2020 MiTek Industries. Inc. Wed Apr 01 07:26:36 ID:II_xO?5?3ob1tynVPeWx2yzVQw4-fgyWI_5wRY3k7JjIFxiGkgH6oAnWYHsKw7L6CczV9K1

Page: 1

R802.10.2 and referenced standard ANSI/TPI 1.

structural wood sheathing be applied directly to the top

chord and 1/2" gypsum sheetrock be applied directly to

10) This truss design requires that a minimum of 7/16"

- BOT CHORD 1-21=-54/85, 20-21=-49/84, 19-20=-49/84, 18-19=-49/84, 17-18=-49/84, 16-17=-49/84, 15-16=-49/84, 14-15=-49/84, 13-14=-49/84, 12-13=-49/84, 11-12=-49/84
- WEBS 6-16=-144/1, 5-17=-129/74, 4-19=-116/75, 3-20=-132/93, 7-15=-129/74, 8-14=-116/75, 9-13=-131/92, 2-21=-142/130, 10-12=-142/130

NOTES

FORCES

Loading

TCDI

BCLL

BCDL

WEBS

OTHERS

BRACING

LUMBER

Unbalanced roof live loads have been considered for 1) this design.

Edenton, NC 27932

SEAL

036322

G minin April 1,2020 11111111111

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

the bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	A02	Common	9	1	Job Reference (optional)	E14248063

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:36 ID:GTG?mnrOK9de07QitVAoNDzVQxh-fgyWI_5wRY3k7JjIFxiGkgHwHAbZYHTKw7L6CczV9K1

Page: 1

Scale = 1:48.4

Plate Offsets (X, Y): [7:0-3-0,0-3-0]

Loading TCLL (r TCDL BCLL BCLL BCDL	g oof)		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-AS	0.88 0.82 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.22 0.02	(loc) 7-8 7-8 6	l/defl >999 >918 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 71 lb	GRIP 244/190 FT = 20%	
LUMBE TOP CH BOT CH WEBS BRACIN TOP CH BOT CH REACT	ir Hord Hord Hord Hord Hord Hord Ions	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wo Rigid ceiling of (size) 6=0 Max Horiz 8=0 Max Uplift 6=0 Max Grav 6=0	od shea directly a 0-5-8, 8 -74 (LC -25 (LC 373 (LC	thing directly applie applied. =0-5-8 9) 11), 8=-53 (LC 11) 18), 8=873 (LC 19)	4) 5) d. 6) LO	Provide mech bearing plate 8 and 25 lb u This truss is of International R802.10.2 ar This truss des structural woo chord and 1/2 the bottom ch PAD CASE(S)	anical connection capable of withsta bliff at joint 6. lesigned in accord Residential Code s d referenced stanc sign requires that a d sheathing be ap d' gypsum sheetroo ord. Standard	(by othe nding 5 ance wi ections dard AN minimu plied di ck be ap	ers) of truss t 3 lb uplift at j th the 2018 R502.11.1 a SI/TPI 1. Jum of 7/16" rectly to the t oplied directly	to oint ind top / to						
FORCE	S	(lb) - Maximu Tension	m Comp	pression/Maximum												
TOP CH	IORD	1-2=-682/84, 3-16=-755/13 17-18=-767/1	2-15=-8 0, 3-17= 07 4-18	74/89, 15-16=-767/ 755/130, 3=-874/89_4-5=-681	107, I/0											
BOT CH	IORD	1-8=-22/704,	8-19=0/	704, 7-19=0/704,	.,.											
WERS		3-7-0/399 2-	8648	313 4-6648/313												
NOTES		07-0/000,2	0= 010/													
1) Unb	alance	d roof live load	s have l	peen considered for												
this 2) Win Vas B=4 MW 3-0- 12-5 and exp read DOI 3) * Th on t 3-06 cho	design. d: ASC d=99mp I5ft; L=2 IFRS (d -0, Inter 9-0, Inter 9-0, Inter ossed;C- ctions sl L=1.60 his truss he botto 6-00 tall rd and a	E 7-16; Vult=1: ph; TCDL=6.0p 24ft; eave=4ft; lirectional) and ior (1) 3-0-0 to arior (1) 12-9-0 xposed ; end v -C for member: hown; Lumber s has been des om chord in all l by 2-00-00 wi any other mem	25mph osf; BCI Cat. II; I C-C Ex 9-9-0, I to 19-6 ertical le s and fo DOL=1 igned fo areas v de will f bers, w	(3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; terior(2E) 0-0-0 to Exterior(2R) 9-9-0 tc 0 zone; cantilever I oft and right rces & MWFRS for .60 plate grip or a live load of 20.0 where a rectangle t between the botto th BCDL = 10.0psf.) eft psf m							Manna		SEA 0363	RO L 22 EEER HLBER ril 1,2020	A. Manual and and a start of the start of th

April 1,2020

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	A03	Common	9	1	Job Reference (optional)	E14248064

Scale = 1:43.6

Plate Offsets (X, Y): [5:Edge,0-1-8], [6:0-3-0,0-3-0]

		1											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.88	Vert(LL)	-0.13	6-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.82	Vert(CT)	-0.23	6-7	>878	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.09	Horz(CT)	0.02	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI	2014	Matrix-AS							Weight: 68 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Except Structural wood sheat except end verticals. Rigid ceiling directly (size) 5=0-5-8, 7 Max Horiz 7=92 (LC	t* 5-4:2x6 SP No.2 athing directly applied applied. '=0-5-8 10)	4) Pro bea 5 a 5) This Inte 4, R8(6) This stru cho the	vide mech aring plate nd 53 lb u s truss is o rnational D2.10.2 an s truss des actural woo ord and 1/2 bottom ch	anical connection of capable of withstar plift at joint 7. designed in accorda Residential Code so d referenced stand sign requires that a sign sequires that a of sheathing be ap " gypsum sheetroc ord.	(by othe nding 2 ance wi ections ard AN minimu plied di k be ap	ers) of truss 1 lb uplift at th the 2018 R502.11.1 i SI/TPI 1. um of 7/16" rectly to the oplied directl	to joint and top y to					
	Max Uplift 5=-21 (LC Max Grav 5=747 (LC	11), 7=-53 (LC 11) 17), 7=873 (LC 19)	LOAD	CASE(S)	Standard								
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-684/88, 2-11=-{ 11-12=-768/125, 3-1 3-13=-755/145, 13-1 4-14=-872/117, 4-5=	875/107, 2=-755/148, 4=-768/122, -585/150											
BOT CHORD	1-7=-22/705, 7-15=-5 6-16=-54/705, 5-16=	54/705, 6-15=-54/705 -54/705	5,										
WEBS	3-6=0/400, 2-7=-644	/326											
NOTES												minin	UIII.
 Unbalance this design 	ed roof live loads have	been considered for										TH CA	Rollin
 Wind: ASC Vasd=99m B=45ft; L= MWFRS ((3-0-0, Inte 12-9-0, Int and right e exposed;C reactions s DOL=1.60 * This trus 	CE 7-16; Vult=125mph nph; TCDL=6.0psf; BCI :24ft; eave=4ft; Cat. II; directional) and C-C Ex rrior (1) 3-0-0 to 9-9-0, i terior (1) 12-9-0 to 18-0 exposed ; end vertical II C-C for members and fc shown; Lumber DOL=1	(3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; teterior(2E) 0-0-0 to Exterior(2R) 9-9-0 to -4 zone; cantilever le eft and right prces & MWFRS for 1.60 plate grip	oft							Contraction of the second		SEA 0363	L 22 EER A
on the bott 3-06-00 ta chord and	tom chord in all areas v Ill by 2-00-00 wide will f any other members, w	where a rectangle fit between the bottor rith BCDL = 10.0psf.	n								11	CA. G	ILBE

818 Soundside Road Edenton, NC 27932

April 1,2020

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	A04	Common	8	1	Job Reference (optional)	E14248065

Run: 8.33 S. Mar 23 2020 Print: 8.330 S.Mar 23 2020 MiTek Industries. Inc. Wed Apr 01 07:26:37

Page: 1

TOP CHORD 1-2=-641/90, 2-12=-824/106, 12-13=-716/124, 3-13=-704/147, 3-14=-713/145, 14-15=-717/123, 4-15=-821/119, 4-5=-561/147 BOT CHORD 1-8=-22/660, 7-8=-62/660, 7-16=-62/660, 6-16=-62/660, 6-17=-62/660, 5-17=-62/660 WEBS 3-6=0/379, 2-8=-630/333

NOTES

Loading

TCDL

BCLL

BCDL

WEBS

BRACING

FORCES

LUMBER

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=125mph (3-second gust) 2) Vasd=99mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 9-9-0, Exterior(2R) 9-9-0 to 12-9-0, Interior (1) 12-9-0 to 17-6-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

VIIIIIIIIIII SEAL 036322 G mm April 1,2020

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	B01	Common Supported Gable	1	1	Job Reference (optional)	E14248066

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:37 ID:kOlyPJeM5Ecv5fBdx8t1krzVQxx-7sWuyK5ZCrBbkSIUoeDVHtqAMa0EHjET9n4fk3zV9K0

Page: 1

Scale = 1:44.8

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-AS	0.54 0.47 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.01	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 114 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural Rigid ceili (size) Max Horiz Max Uplift Max Grav	5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	athing directly applie applied. 0, 13=22-11-0, 0, 15=22-11-0, 0, 17=22-11-0, 0, 20=22-11-0, 0 C 11), 13=-137 (LC 1 C 11), 15=-10 (LC 1 C 11), 15=-10 (LC 1 C 23), 13=122 (LC 2 C 23), 15=161 (LC 1) C 22), 21=-30 (LC 2 C 2), 17=161 (LC 1) C 22), 20=122 (LC 2)	1) 2) ed. 3) 23), 1), 1), 1), 11) 5) 22), 5) 1), 22), 5) 1), 23), 23),	 Unbalanced r this design. Wind: ASCE Vasd=99mph B=45ft; L=25i MWFRS (dire 3-0-0, Exterior 15-8-8, Exter left and right exposed;C-C reactions shot DOL=1.60 Truss design only. For stu see Standard or consult qui All plates are Gable studs s This truss h on the bottom 3-06-00 tall b chord and an 	roof live loads have 7-16; Vult=125mph ; TCDL=6.0psf; BC ft; eave=2ft; Cat. II; cetional) and C-C C or(2N) 3-0-0 to 12-8 ior(2N) 15-8-8 to 25 exposed ; end vertii for members and fi for members and fi mm; Lumber DOL= while the the the the the milling building desig 2x4 MT20 unless of spaced at 2-0-0 oc. as been designed fi chord in all areas y 2-00-00 wide will y other members.	been of (3-sec DL=6.(Exp B; s, Cor 5-5-0 zz cal left n the pl l (norm: d Detai gner as therwis or a live where fit betw	considered fc ond gust) lps; h=25ft; Enclosed; Enclosed; El; 0-0-0 to ner(3R) 12-8 one; cantileve and right MWFRS fo ate grip ane of the true and to the face is as applica e indicated. e load of 20.1 a rectangle reen the bott	or 8-8 to er r uss e), ble, PI 1. 0psf om						
FORCES TOP CHORD BOT CHORD	(lb) - Maxi Tension 1-2=-61/4 4-28=0/36 6-7=0/406 1-21=-363 19-20=-36 19-20=-36 19-20=-36 19-18=-36 13-14=-36 13-14=-36 11-12=-36	37, 2-3=-1: 8, 5-28=0/ 9, 7-29=0/4 8, 9-10=-11 3/78, 20-21 33/77, 18-1 33/77, 16-1 53/77, 14-1 53/77, 12-1 53/77	pression/Maximum 1/377, 3-4=0/408, 402, 5-6=0/400, 02, 8-29=0/368, /377, 10-11=-60/437 =-363/77, 9=-363/77, 5=-363/77, 5=-363/77, 3=-363/77,	7 8) 7 9) 10	bearing plate 17, 14 lb uplif uplift at joint 2 14, 137 lb up Non Standard This truss is of International R802.10.2 ar D) This truss dei structural woo chord and 1/2 the bottom ch	capable of withstar it at joint 19, 137 lb 21, 10 lb uplift at joint 13 and 30 d bearing condition. designed in accorda Residential Code so d referenced stand sign requires that a od sheathing be app " gypsum sheetroc ord.	nding 1 uplift a nt 15, 1 0 lb upl Revie ance wi ections lard AN minim plied di k be ap	o lb uplift at j t joint 20, 30 4 lb uplift at ift at joint 12 w required. w required. th the 2018 R502.11.1 a SI/TPI 1. um of 7/16" rectly to the opplied directly	top y to		Contraction of the second s	A. I.	SEA	L 22	· Vanning
WEBS NOTES	6-16=-346 3-20=-62/ 8-14=-155	6/15, 5-17= 40, 2-21=-3 5/61, 9-13=	-127/94, 4-19=-155/ 374/117, 7-15=-127/ -62/40, 10-12=-374/	/61, L /94, /117	OAD CASE(S)	Standard					3		A. G.	ILBERTING	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

April 1,2020

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	B02	Common	6	1	Job Reference (optional)	E14248067

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:38 Page: 1 ID:YC04qlhohyf77WfSp3zW1BzVQzA-7sWuyK5ZCrBbkSIUoeDVHtq6fazOHhfT9n4fk3zV9K0 1-4-12 1-4-12 |25-5-0 | 1-4-12 12-8-8 18-10-15 6-6-1 24-0-4 5-1-5 6-2-7 6-2-7 5-1-5 4-9-13 4x6 u 4 12 4 Г 4-9-13 t 21 22 3x4 🚅 3x4 🕿 3 5 T 2x4 🛛 2x4 🛛 20 23 2 6 -2-0 -2-0 Þ 0-9-0 \boxtimes \boxtimes 12 11 10 9 13 8 3x6 = 2x4 🛛 3x6= 3x8 = 2x4 🛚 2x4 🛚 2x4 🛛 3x6 =

Scale = 1:48.3

4-8-13

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-AS	0.78 0.65 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.39 0.04	(loc) 9-10 9-10 8	l/defl >999 >693 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 110 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP DSS 2x4 SP No.2 Structural wood shea Rigid ceiling directly (size) 8=0-5-8, 1 Max Horiz 13=41 (LC Max Uplift 8=-33 (LC Max Uplift 8=-33 (LC (lb) - Maximum Com	athing directly applied applied. 3=0-5-8 : 10) 11), 13=-60 (LC 11) C 1), 13=1017 (LC 1) pression/Maximum	3) 4) 5) 6)	* This truss h on the bottom 3-06-00 tall b chord and an Provide mect bearing plate 13 and 33 b This truss is of International R802.10.2 an This truss dee structural woo chord and 1/2	as been designed f o chord in all areas y 2-00-00 wide will y other members. anical connection of capable of withstar uplift at joint 8. designed in accorda Residential Code so d referenced stand sign requires that a pod sheathing be app? " avosum sheetroop	or a live where a fit betw (by othe ance wi ections lard AN minimu plied di k be at	e load of 20.0 a rectangle een the botto ers) of truss t 0 lb uplift at j th the 2018 R502.11.1 a SI/TPI 1. um of 7/16" rectly to the t polied directly	opsf om oint nd op					
TOP CHORD	Tension 1-2=-1384/109, 2-20: 3-20=-1524/179, 3-2 4-21=-1275/201, 4-2: 5-22=-1324/188, 5-2: 6-23=-1555/161, 6-7:	=-1555/161, 1=-1324/188, 2=-1275/201, 3=-1524/179, =-1384/109	LO	the bottom ch AD CASE(S)	2 gypsum sneetroc lord. Standard	к ре а	ppiled directly	10					
BOT CHORD	1-13=-116/1398, 12- 11-12=-120/1398, 10 9-10=-116/1398, 8-9 7-8=-116/1398 3-12=-73/97, 3-10=-2	13=-120/1398, I-11=-120/1398, =-116/1398, 292/49, 4-10=0/369,											
NOTES 1) Unbalance this design 2) Wind: AS(Vasd=99m B=45ft; L= MWFRS (3-0-0, Inte 15-8-8, Int and right e exposed;C reactions s DOL=1.60	6-8=-601/179 ed roof live loads have n. CE 7-16; Vult=125mph nph; TCDL=6.0psf; BCI 225ft; eave=4ft; Cat. II; directional) and C-C Ex erior (1) 3-0-0 to 12-8-8, terior (1) 3-0-0 to 12-8-8, terior (1) 15-8-8 to 25-5 exposed ; end vertical li C-C for members and for shown; Lumber DOL=1	been considered for (3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; tterior(2E) 0-0-0 to Exterior(2R) 12-8-8 t -0 zone; cantilever lef eft and right prces & MWFRS for .60 plate grip	o t							Contraction of the second seco		SEA 0363	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

April 1,2020

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	C01	Common Supported Gable	1	1	Job Reference (optional)	E14248068

Run: 8.33 S. Mar 23 2020 Print: 8.330 S.Mar 23 2020 MiTek Industries. Inc. Wed Apr 01 07:26:38 ID:cmn1k3SNbCdaDg2xh1V8JazVQrk-b34HAg6Bz9JSMcthMMkkp5NSM_T70BicORqDGVzV9K? Page: 1

2-16=-135/125, 8-10=-135/125 NOTES 1) Unbalanced roof live loads have been considered for

6-12=-128/91 7-11=-122/101

this design.

Loading

TCDI

BCLL

BCDL

WEBS

OTHERS

BRACING

FORCES

WEBS

LUMBER

TCLL (roof)

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for use only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	C02	Common	10	1	Job Reference (optional)	E14248069

7-7-0

Carolina Structural Systems, LLC, Ether, NC - 27247,

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:38 ID:J9Kyir9KFrb_L_CJH_4WLWzVQs6-b34HAg6Bz9JSMcthMMkkp5NLj_N50BZcORqDGVzV9K?

13-9-4

Page: 1

15-2-0 1-4-12

Scale = 1:44.6

3)

4)

DOL=1.60

and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for

reactions shown; Lumber DOL=1.60 plate grip

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle

Loa	ding	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCL	L (roof)	20.0	Plate Grip DOL	1.00		TC	0.57	Vert(LL)	-0.04	7	>999	240	MT20	244/190
TCE	DL	10.0	Lumber DOL	1.15		BC	0.43	Vert(CT)	-0.08	7	>999	180		
BCL	_L	0.0*	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.01	6	n/a	n/a		
BCE	DL	10.0	Code	IRC2018/TF	PI2014	Matrix-AS							Weight: 56 lb	FT = 20%
LUN	IBER			5) Tr	nis truss is o	designed in accor	rdance wit	h the 2018						
TOF	P CHORD	2x4 SP No.2		In	ternational	Residential Code	esections	R502.11.1 a	nd					
BOT	r Chord	2x4 SP No.2		R	802.10.2 an	d referenced star	ndard AN	SI/TPI 1.						
WE	BS	2x4 SP No.2		6) Th	nis truss des	sign requires that	t a minimu	im of 7/16"						
BRA	ACING			st	ructural woo	od sheathing be a	applied di	ectly to the t	ор					
TOF	P CHORD	Structural wood shea	thing directly applie	d. ch	nord and 1/2	2" gypsum sheetr	ock be ap	plied directly	/ to					
BOT	r Chord	Rigid ceiling directly	applied.	th	e bottom cr	iora.								
REA	ACTIONS	(size) 6=0-5-8, 8	=0-5-8	LOAD	CASE(S)	Standard								
		Max Horiz 8=-58 (LC	9)											
		Max Uplift 6=-19 (LC	11), 8=-47 (LC 11)											
		Max Grav 6=607 (LC	1), 8=607 (LC 1)											
FOF	RCES	(lb) - Maximum Com	pression/Maximum											
		Tension												
TOF	P CHORD	1-2=-348/53, 2-15=-5	524/93, 15-16=-438/	106,										
		3-16=-427/122, 3-17	=-427/122,											
D 07		17-18=-438/106, 4-18	8=-524/93, 4-5=-348	5/0										
BOI	CHORD	1-8=-6/382, 7-8=-6/3	82, 6-7=-6/382,											
	DC	5-b=-b/382	1252 1 6 150/252											
VVE	5 3	3-7=0/101, 2-0=-430/	252, 4-0=-450/252											
NO	IES													
1)	Unbalance	ed roof live loads have l	been considered for											
2)	this design). 25 7 40: Vult 425mmh	(2 cocord such)											
2)	Vood 00m	DE 7-16; Vuit=125mpn	(3-second gust)										minin	11111
	vasu=990 R_45ft·1 _	24ft: eave=4ft: Cat_II:	Evo B: Enclosed:										N'TH CA	Rollin
	MWFRS (directional) and C-C Fx	terior(2F) 0-0-0 to									N	R	
	3-0-0. Inte	rior (1) 3-0-0 to 7-7-0	Exterior(2R) 7-7-0 to									5	FES	Divis
	10-7-0, Int	erior (1) 10-7-0 to 15-2	-0 zone; cantilever le	eft								ŨĎ		LAN

GI minim

SEAL

036322

ALL COMPANY

Hammer N.

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	D01	Roof Special Supported Gable	1	1	Job Reference (optional)	E14248070

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:39 ID:y_BMQ4EjtN3AHnT5XGdXVazVQmr-b34HAg6Bz9JSMcthMMkkp5NSJ_S9097cORqDGVzV9K? Page: 1

April 1,2020

818 Soundside Road Edenton, NC 27932

Plate Offsets (X, Y): [11:0-2-10,0-2-4]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-AS	0.08 0.11 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 19	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 196 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea Rigid ceiling directly 1 Row at midpt (size) 19=27-11 23=27-11 32=27-11 32=27-11 34=27-11 Max Horiz 34=166 (L 21=-23 (L) 23=-34 (L) 23=-34 (L) 33=-49 (L) 33=-49 (L)	athing directly applied applied. 11-25 0, 20=27-11-0, 0, 22=27-11-0, 0, 24=27-11-0, 0, 26=27-11-0, 0, 33=27-11-0, 0, 33=27-11-0, 0, 33=27-11-0, 0 C 10) C 8), 20=-57 (LC 11), C 11), 22=-30 (LC 11) C 11), 22=-30 (LC 11) C 11), 24=-16 (LC 11) C 11), 28=-23 (LC 11) C 11), 30=-19 (LC 11) C 11), 32=-17 (LC 11) C 8), 34=-27 (LC 7)	TOP CHORD BOT CHORD WEBS	$\begin{array}{l} 1-2=-104/110,\ 2-3=-\\ 4-5=-80/103,\ 5-6=-6\\ 7-8=-69/144,\ 8-9=-8\\ 10-11=-123/267,\ 11\\ 12-13=-108/229,\ 13\\ 14-15=-54/106,\ 15-1\\ 16-17=-60/103,\ 17-1\\ 1-34=-99/104,\ 33-34\\ 32-33=-75/102,\ 31-3\\ 30-31=-75/102,\ 27-2\\ 26-27=-75/102,\ 27-2\\ 26-27=-75/102,\ 27-2\\ 26-27=-75/105,\ 23-2\\ 22-23=-75/105,\ 21-2\\ 20-21=-75/105,\ 19-2\\ 11-25=-204/59,\ 10-2\\ 9-28=-117/75,\ 8-29=\\ 5-31=-119/70,\ 4-32=\\ 12-24=-123/67,\ 13-2\\ 14-22=-122/83,\ 15-2\\ 16-20=-130/112,\ 17-2\\ -34=-128/103\\ \end{array}$	112/12 9/97, 6 7/185, 12=-12 14=-8(6=-30/ 8=-105(8=-105(8=-75/ 12=-72/ 12=-	0, 3-4=-84/108 -7=-52/102, 9-10=-106/229 29/279,)/166, 86, 5/95 02, 102, 102, 102, 102, 102, 105, 105, 105, 105, 105, 105, 105, 105	3, 3 9, 45 6 7 7 70, 8 9 9) Tru only see or c or lall p on ti 3-00c choio	ss desig . For st Standar onsult q blates ar le studs is truss he botto 5-00 tall c' and a a vide med ring plat 23 lb up t at joint 57 lb up t at joint 57 lb up t at joint Standa truss is rationa 2.10.2 a	Ined fc uds ex ualified e 2x4 i space has be m choo by 2-0 ny oth chanicc e capa ifft at jc 23, 30 ifft at jc 23, 30 ifft at jc 34. I Resic and ref	r wind loads in the sposed to wind (n stry Gable End D d building designed MT20 unless other dat 2-0-0 oc. Seen designed for rd in all areas who -0-00 wide will fit for members. The second dat 2-0-0 oc. Second data 2-0-0-0 oc. Second data 2-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	e plane of the truss ormal to the face), betails as applicable, er as per ANSI/TPI 1. erwise indicated. a live load of 20.0psf iere a rectangle between the bottom others) of truss to ng 10 lb uplift at joint ft at joint 29, 19 lb 31, 17 lb uplift at joint ft at joint 24, 34 lb 22, 23 lb uplift at joint ft at joint 19 and 27 lb Review required. we with the 2018 jons R502.11.1 and d ANSI/TPI 1.
FORCES	Max Grav 19=195 (L 21=168 (L 23=162 (L 25=188 (L 28=157 (L 30=160 (L 32=168 (L 34=229 (L (lb) - Maximum Com Tension	C 16), 20=183 (LC 17 C 23), 22=163 (LC 17 C 17), 24=163 (LC 22 C 11), 26=174 (LC 22 C 22), 29=160 (LC 1) C 22), 31=158 (LC 1) C 22), 33=183 (LC 16 C 17) pression/Maximum	 r), this design r), 2) Wind: ASC 3), Vasd=99m 2), B=45ft; L=2 , MWFRS (c , 3-3-1, Externation of the second secon	E 7-16; Vult=125mph ph; TCDL=6.0psf; BC 30ft; eave=2ft; Cat. II; irrectional) and C-C C rior(2N) 3-3-1 to 17-4 Exterior(2N) 20-5-5 to nt exposed ; end vertii -C for members and hown; Lumber DOL=	(3-sec DL=6.0 Exp B; orner(3 -13, Cc 30-5-0 cal left orces & 1.60 pla	ond gust) Dpsf; h=25ft; Enclosed; E) 0-0-0 to prner(3R) 17-4- zone; cantilev and right MWFRS for ate grip	-13 er		Granner		SEA 0363	EER. KI

	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne D01	Roof Special S	Supported Gable 1	1	Job Reference (optional)	E14248070

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:39 ID:y_BMQ4EjtN3AHnT5XGdXVazVQmr-b34HAg6Bz9JSMcthMMkkp5NSJ_S9097cORqDGVzV9K? Page: 2

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	D02	Roof Special	7	1	Job Reference (optional)	E14248071

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:39 ID:0xQdpgnNh0UzQaS487UxnmzVQq0-4FefN07pkTRI_mRtw3FzMIvXOOdrlRPmc5ZmpxzV9K_ Page: 1

Plate Offsets (X, Y): [6:0-3-6,0-2-0]

Scale = 1:67.6

1)

this design.

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.44	Vert(LL)	-0.10	14-15	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.78	Vert(CT)	-0.24	14-15	>999	180			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.85	Horz(CT)	0.05	10	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-AS							Weight: 174 lb	FT = 20%	
			2) Wind ASC	= 7-16 [.] Vult=125r	mph (3-sec	ond aust)							

Vasd=99mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;

LUMBER		
TOP CHORD	2x4 SP No	b.2
BOT CHORD	2x4 SP No	b.2
WEBS	2x4 SP No	0.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied.
BOT CHORD	Riaid ceili	ng directly applied.
WEBS	1 Row at I	midpt 7-12, 5-12
REACTIONS	(size)	10=0-5-8, 15=0-5-8
	Max Horiz	15=166 (LC 10)
	Max Uplift	10=-40 (LC 11), 15=-67 (LC 11)
	Max Grav	10=1316 (LC 17), 15=1332 (LC 16)
FORCES	(lb) - Maxi	mum Compression/Maximum
	Tension	
TOP CHORD	1-2=-304/2	28, 2-22=-373/0, 3-22=-318/0,
	3-4=-1620)/110, 4-5=-1555/126,
	5-23=-112	23/151, 6-23=-1057/168,
	6-24=-111	7/158, 7-24=-1225/136,
	7-25=-130	05/96, 8-25=-1422/76, 8-9=-54/28
BOT CHORD	1-15=0/27	4, 14-15=-37/1528, 14-26=0/1410,
	26-27=0/1	410, 13-27=0/1410, 12-13=0/1410,
	11-12=-2/	1137, 10-11=0/43, 9-10=0/43
WEBS	6-12=-21/	783, 7-12=-310/92, 7-11=-137/90,
	8-11=-46/	1143, 8-10=-1183/150,
	2-15=-253	8/152, 3-15=-1398/159,
	3-14=-101	/87, 5-14=0/352, 5-12=-601/84
NOTES		

Unbalanced roof live loads have been considered for

B=45ft; L=30ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0 to 3-0-8, Interior (1) 3-0-8 to 17-4-13, Exterior(2R) 17-4-13 to 20-5-5, Interior (1) 20-5-5 to 30-5-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle

- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 10 and 67 lb uplift at joint 15.
 5) This truss is designed in accordance with the 2018
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 This truss design requires that a minimum of 7/16"
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

3)

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	D03	Monopitch Supported Gable	1	1	Job Reference (optional)	E14248072

Scale = 1:47.9

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26.39 ID:8wxoRH_cHQtNjIC?9Hk40fzVQlt-4FefN07pkTRI_mRtw3FzMlvXbOgTldtmc5ZmpxzV9K_ Page: 1

GRIP

I CLL (roof)		20.0	Plate Grip DOL	1.00		IC	0.43	Vert(LL)	n/a	-	n/a	999	M120	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.61	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.11	Horiz(TL)	0.00	10	n/a	n/a		
BCDL		10.0	Code	IRC2018	3/TPI2014	Matrix-AS							Weight: 95 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural except end Rigid ceilin 1 Row at r (size) Max Horiz Max Uplift Max Grav	2.2 2.2 2.2 2.2 wood sheat d verticals. ng directly midpt 10=13-10- 12=13-10- 16=13-10- 16=247 (L 10=-59 (L- 15=-261 (l 10=56 (LC 10=56 (LC	athing directly applie applied. 9-10 	1) d, 2) 3) 4) 5) 1), 6)	Wind: ASCE Vasd=99mp B=45ft; L=2- MWFRS (dii 3-1-8, Exteri left and righi exposed;C- reactions sh DOL=1.60 Truss desig only. For st see Standar or consult qi All plates ar Gable studs * This truss on the botto 3-06-00 tall chord and a Provide med	7-16; Vult=125; h; TCDL=6.0ps; lift; eave=2ft; Ca ectional) and C- or(2N) 3-1-8 to cr(2N) 3-1-8 to cor(2N) 3-1-8 to cor members a own; Lumber DC ned for wind loar uds exposed to v d Industry Gable ualified building of e 2x4 MT20 unle spaced at 2-0-0 has been design m chord in all are oy 2-00-00 wide ny other membe chanical connect	nph (3-sec BCDL=6.0 t. II; Exp B; C Corner(3 (4-11-12 zc vertical left nd forces 8 DL=1.60 pla ds in the pl vind (normation End Detail designer as ss otherwist oc. ed for a live eas where a will fit betworks.	ond gust) psf; h=25ft; Enclosed; E) 0-0-0 to ne; cantileve and right MWFRS for te grip ane of the tru al to the face) s as applicat per ANSI/TF e indicated. e load of 20.0 a rectangle een the botto	r ss ole, ole, ol 1. psf on					

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 59 lb uplift at joint 10, 5 lb uplift at joint 11, 17 lb uplift at joint 12, 28 lb uplift at joint 13 and 261 lb uplift at joint 15.

7) Non Standard bearing condition. Review required.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

14=230 (LC 1), 15=27 (LC 9),

16=608 (LC 17)

1-16=-198/415, 15-16=-111/128,

14-15=-111/128, 13-14=-111/128,

12-13=-111/128, 11-12=-111/128,

8-11=-140/128, 7-12=-118/111,

6-13=-113/103, 4-14=-152/77, 3-15=-108/305, 2-16=-321/52

Tension

9-10=-36/60

10-11=-111/128

(lb) - Maximum Compression/Maximum

1-2=-394/218, 2-3=-439/209, 3-4=-292/179,

4-5=-262/157, 5-6=-258/167, 6-7=-206/149,

7-20=-156/122, 8-20=-146/138, 8-9=-95/98,

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	E01	Common Supported Gable	1	1	Job Reference (optional)	E14248073

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:40 ID:m7WIgnDKnFUkGnyzQBpJY8zVQSC-YRC1bM8RUmZ9bw03UnmCvWSn1n9RU4cvrIJJKOzV9Jz

Page: 1

		1-4-12	10-9-0 9-4-4			<u>20-1-12</u> 9-4-12	21-6-0 1-4-4
				4x5 :			
	0-6-4	3 1 2 1 2 3 x4= 25 24	⁶ ¹² 5 4 23 22 21 3x4=	7 6 0 0 0 0 19	8	9 10 10 7 16	11 12 13 15 14 3x4 =
Scale = 1:47.3		1-3-0 1-3-0 1-3-0 0-1-12		<u>20-1-1:</u> 18-9-0	2		21-6-0 1-4-4
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018/TPI2014	CSI TC 0.07 BC 0.05 WB 0.08 Matrix-AS	DEFLinVert(LL)n/aVert(TL)n/aHoriz(TL)0.00	(loc) l/defl L/d - n/a 999 - n/a 999 14 n/a n/a	PLATES GRIP MT20 244/190 Weight: 112 lb FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood sheat Rigid ceiling directly (size) 14=19-0-8 20=19-0-8 24=19-0-8 24=19-0-8 Max Horiz 25=-82 (Li Max Uplift 14=-20 (Li 16=-16 (Li 21=-20 (Li 24=-22 (Li Max Grav 14=174 (L 16=171 (L 18=169 (Li 20=169 (Li 23=172 (Li 23=172 (Li 25=179 (Li	athing directly applied applied. 3, 15=19-0-8, 16=19-0 3, 18=19-0-8, 19=19-0 3, 21=19-0-8, 23=19-0 3, 21=19-0-8, 23=19-0 C 8), 15=-32 (LC 11) C 11), 17=-21 (LC 11 C 11), 23=-19 (LC 11 C 11), 23=-19 (LC 11 C 23), 15=137 (LC 1 C 23), 15=137 (LC 1 C 23), 15=137 (LC 1 C 23), 19=189 (LC 1 C 22), 21=156 (LC 1 L C 22), 24=138 (LC 1 L C 22), 24=138 (LC 1 L C 22), 24=138 (LC 1	NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=99mpl B=45ft; L=24 d. 2-9-0, Exter 0-8, left and right 0-8, left and right 0-8, exposed;C-C reactions she DOL=1.60 3) Truss desig only. For stu see Standar or consult qu 1), 4) All plates are 7), 6) * This truss f), on the bottor 3, -06-00 tall f , chord and ar 6), 7) Provide mec bearing plate	roof live loads have been of 7-16; Vult=125mph (3-sec h; TCDL=6.0psf; BCDL=6.0 4ft; eave=2ft; Cat. II; Exp B; rectional) and C-C Corner(3 for(2N) 2-9-0 to 10-9-0, Cor rior(2N) 13-9-0 to 21-6-0 zc t exposed ; end vertical left C for members and forces & own; Lumber DOL=1.60 pla unde for wind loads in the pl uds exposed to wind (norm: d Industry Gable End Detai Jalified building designer as e 2x4 MT20 unless otherwis spaced at 2-0-0 oc. has been designed for a liv m chord in all areas where by 2-00-00 wide will fit betw ny other members. chanical connection (by oth e capable of withstanding 1	considered for ond gust) Dpsf; h=25ft; Enclosed; BE) 0-0-0 to ner(3R) 10-9-0 to one; cantilever and right & MWFRS for ate grip ane of the truss al to the face), Is as applicable, per ANSI/TPI 1. se indicated. e load of 20.0psf a rectangle yeen the bottom ers) of truss to 6 lb uplift at joint		
FORCES	(lb) - Maximum Com Tension	pression/Maximum	20, 20 lb upl	e capable of withstanding 1 lift at joint 21, 19 lb uplift at 24, 15 lb uplift at joint 18, 2	ioint 23, 22 lb		TH CARO
TOP CHORD BOT CHORD WEBS	1-2=-86/85, 2-3=-40/ 4-5=-33/77, 5-6=-51/ 7-8=-69/139, 8-9=-5 10-11=-14/77, 11-12 1-25=-63/87, 24-25= 22-23=-57/85, 21-22 19-20=-57/85, 18-19 16-17=-57/85, 15-16 13-14=-57/85 7-19=-150/1, 6-20=-7 4 22=-150/1, 6-20=-7 2 2 2 4	/83, 3-4=-22/83, /98, 6-7=-69/139, 1/98, 9-10=-33/71, =-36/77, 12-13=-83/7 -57/85, 23-24=-57/85 =-57/85, 23-24=-57/8 =-57/85, 17-18=-57/8 =-57/85, 14-15=-57/8 129/67, 5-21=-117/71	apint at joint 17, 16 lb upl uplift at joint 8) Non Standar 78 9) This truss is 5, International 85, R802.10.2 at 85, Chord and 1/ 1, the bottom c	25, 15 to up int at joint 16, 32 lb uplift at 25 and 20 lb uplift at joint 1 rd bearing condition. Revie designed in accordance wi I Residential Code sections and referenced standard AN esign requires that a minimi pood sheathing be applied di (2" gypsum sheetrock be ap chord.	the second secon	C. Walter Branch	SEAL 036322
	4-23=-126/72, 3-24= 9-17=-117/71, 10-16 11-15=-100/70, 2-25	=-100/08, 8-18=-129/6 =-126/72, =-109/94, 12-14=-10	17/93	Standard			April 1,2020

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	E02	Common	13	1	Job Reference (optional)	E14248074

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:40 ID:V31Wihq4yw5c2bzzSgHQfuzVQWb-YRC1bM8RUmZ9bw03UnmCvWSZZnyMU2pvrIJJKOzV9Jz

Scale = 1:62.4

Plate Offsets (X, Y): [1:0-0-15,0-1-8], [5:0-2-0,Edge], [9:0-0-15,0-1-8]

Loa TCL TCE BCL BCE	i ding .L (roof) DL .L DL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-AS	0.99 0.89 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.50 0.02	(loc) 11-12 11-12 10	l/defl >787 >452 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 95 lb	GRIP 244/190 FT = 20%	, 0
LUN TOF BOT WEI BR/ TOF BOT RE/	ABER CHORD CHORD BS ACING CHORD CHORD CHORD ACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea Rigid ceiling directly (size) 10=0-5-8, Max Horiz 14=-82 (LC Max Uplift 10=-28 (LC Max Grav 10=965 (L)	athing directly applie applied. 14=0-5-8 C 9) C 11), 14=-55 (LC 1 C 18), 14=965 (LC -	4) ed. 1) 7) 19) 7)	 * This truss h on the botton 3-06-00 tall b chord and an Provide meci bearing plate 14 and 28 lb This truss is International R802.10.2 an This truss de structural wo 	as been designed n chord in all areas by 2-00-00 wide wil y other members, hanical connection o capable of withsta uplift at joint 10. designed in accord Residential Code nd referenced stan sign requires that od sheathing be a	for a live s where a l fit betw with BC (by othe anding 5 dance wi sections dard AN a minimu polied di	e load of 20.0 a rectangle een the botto DL = 10.0psf ers) of truss t 5 lb uplift at j th the 2018 R502.11.1 a SI/TPI 1. um of 7/16"	Opsf om : :o oint und						
FOF	RCES	(lb) - Maximum Comp Tension	pression/Maximum		chord and 1/2	2" gypsum sheetro	ck be ap	plied directly	/ to						
ΓOF	P CHORD	1-2=-762/37, 2-21=-1 3-22=-799/147, 4-22= 5-6=-39/581, 6-23=-7 7-24=-910/107, 8-24=	017/81, 3-21=-910/ =-745/160, 4-5=-39/ 745/160, 7-23=-799/ =-1017/81, 8-9=-762	/107, L /581, /147, 2/0	OAD CASE(S)	Standard									
301	r Chord	1-14=-10/811, 13-14= 12-25=-10/811, 25-26 11-26=-10/811, 10-1	=-10/811, 12-13=-1(6=-10/811, 1=-10/811, 9-10=-1(0/811, 0/811											
NEI	BS	2-14=-663/197, 8-10= 7-11=0/283, 4-6=-144	=-663/197, 3-12=0/2 44/214	283,									min	111 <u>1</u> ,	
NOT	TES												WHILL CA	Dall	
I)	Unbalance	ed roof live loads have l	been considered for	r								15	alf	OL!	117
<u>2</u>)	this design Wind: ASC Vasd=99n B=45ft; L= MWFRS (3-0-0, Inte 13-9-0, Inte and right e	n. CE 7-16; Vult=125mph nph; TCDL=6.0psf; BCI -24ft; eave=4ft; Cat. II; I directional) and C-C Ex prior (1) 3-0-0 to 10-9-0, terior (1) 3-9-0 to 21-6 exposed : end vertical le	(3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; terior(2E) 0-0-0 to Exterior(2R) 10-9-0 -0 zone; cantilever I aft and right	0 to left							William	in the second seco	SEA 0363	1071 L 22	and the second second

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

818 Soundside Road Edenton, NC 27932 Page: 1

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	E03	Common	4	1	Job Reference (optional)	E14248075

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:41 ID:eBU?q0DCtFaHLHG3hKrOp8zVQUo-YRC1bM8RUmZ9bw03UnmCvWSZynyXU2WvrIJJKOzV9Jz

Page: 1

Scale = 1:62.4

DOL=1.60

Plate Offsets (X, Y): [1:0-3-0,0-2-0], [5:0-2-0,Edge], [12:0-3-4,0-3-0]

Loa	iding	(psf)	Spacing	2-0-0		CSI	0.07	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
	L (1001) ב-	20.0	Fiale Grip DOL	1.00			0.97	Vert(CT)	-0.30	13	>/00	100	101120	244/190
DCL		10.0	Ron Stross Incr	VES			0.00		-0.47	13	>400 n/o	n/o		
DOL		10.0	Codo	1000010		Motrix AS	0.22	11012(01)	0.10	1	11/a	n/a	Woight: 07 lb	ET _ 200/
BUL	JL	10.0	Code	IRC2018	/1912014	Matrix-AS							weight: 97 lb	FT = 20%
LUN TOF BOT WEI SLII BRA TOF BOT	MBER CHORD CHORD BS DGE DER ACING CHORD CHORD ACTIONS	2x4 SP No.2 *Exce 2x4 SP No.2 2x4 SP No.2 Right: 2x4 SP No.3 Left 2x8 SP No.2 Structural wood sh Rigid ceiling directt (size) 1= Mech	pt* 5-9:2x4 SP No.1 1-10-13 eathing directly applied y applied. anical, 10=0-5-8	3) 4) 5) ed. 6)	* This truss h on the bottom 3-06-00 tall b chord and an Refer to girde Provide mech bearing plate 1 and 29 lb u This truss is d International R802.10.2 ar	as been designed f n chord in all areas y 2-00-00 wide will y other members, v er(s) for truss to trus anical connection capable of withstau plift at joint 10. designed in accorda Residential Code s d referenced stand	for a live where a fit betw with BC ss conn (by othe nding 2 ance wi ections dard AN	e load of 20. a rectangle een the bott DL = 10.0psi ections. ers) of truss i 5 lb uplift at j th the 2018 R502.11.1 a SI/TPI 1.	Opsf om f. to joint and					
FOF	RCES	Max Horiz 1=-78 (L Max Uplift 1=-25 (L Max Grav 1=852 (I (Ib) - Maximum Co Tension	C 9) C 11), 10=-29 (LC 11 C 16), 10=977 (LC 18 mpression/Maximum) 8)	This truss de structural wo chord and 1/2 the bottom ch	sign requires that a od sheathing be ap 2" gypsum sheetroo hord.	n minimu plied di ok be ap	um of 7/16" rectly to the p pplied directly	top y to					
TOF	P CHORD	1-2=-95/240, 2-21= 3-21=-967/129, 3-2 4-22=-785/181, 4-5 6-23=-792/180, 7-2 7-24=-966/129, 8-2	1050/118, -2=-839/169, -=-63/661, 5-6=-66/65 -3=-846/167, -4=-1074/103, 8-9=-75	4, 99/5	AD CASE(S)	Standard								
BOT	T CHORD	1-13=-56/858, 12-1 12-25=-26/861, 25 11-26=-27/855, 10	3=-41/773, 26=-26/858, 11=-26/858, 9-10=-26	6/858									WAH CA	BO
VVE	BS	8-10=-705/213, 3-1 4-6=-1577/270	3=0/314, 7-11=0/302	,								A.	OR	ANT .
NO	TES											in	10	1 host
1)	Unbalance	ed roof live loads hav	e been considered for										:0	K. I.
	this design	۱.									-		0.54	1 1 1
2)	Wind: ASC Vasd=99m B=45ft; L=: MWFRS (c 3-0-0, Intel 12-6-8, Intel and right e exposed;C reactions s DOL=1.60	CE 7-16; Vult=125mp ph; TCDL=6.0psf; B :24ft; eave=4ft; Cat. I directional) and C-C trior (1) 3-0-0 to 9-6-6 erior (1) 12-6-8 to 20 exposed ; end vertica -C for members and shown; Lumber DOL=	h (3-second gust) CDL=6.0psf; h=25ft; l; Exp B; Enclosed; Exterior(2E) 0-0-0 to , Exterior(2R) 9-6-8 tc -3-8 zone; cantilever I left and right forces & MWFRS for =1.60 plate grip	o left							1111111		SEA 0363	EER.KI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

April 1,2020

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	E04	Common Girder	1	2	Job Reference (optional)	E14248076

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:41 ID:q76YmMMQ7wPCdAHoJPK3q9zVQDq-0emPoi83F4h0D4bF1UHRRj?mzBHBDSX34P2tsqzV9Jy

Scale = 1:51.5

Plate Offsets (X, Y): [1:0-1-4,0-0-12], [1:0-2-5,Edge], [1:0-7-4,0-0-3], [8:0-4-0,0-4-8]

		_												
Loading	(psf)		Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0		Plate Grip DOL	1.00		TC	0.89	Vert(LL)	-0.11	8-10	>999	240	MT20	244/190
TCDL	10.0		Lumber DOL	1.15		BC	0.92	Vert(CT)	-0.22	8-10	>999	180		
BCLL	0.0	*	Rep Stress Incr	NO		WB	0.42	Horz(CT)	0.05	6	n/a	n/a		
BCDL	10.0		Code	IRC20	18/TPI2014	Matrix-MS							Weight: 245 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x6 SP DSS *Exc 2x4 SP No.2 Left: 2x8 SP No.2 Right 2x8 SP No.3 Structural wood s 3-5-2 oc purlins. Rigid ceiling direct bracing. (size) 1=0-5-1 Max Horiz 1=78 (I Max Uplift 1=-330 	ept* 2 2 heat ttly a 3, 6= _C 6 (LC	9-6:2x6 SP No.1 1-9-10 thing directly applied applied or 10-0-0 oc =0-5-8 :) : 7), 6=-269 (LC 7)	2 1 or 4 5	 All loads are except if note CASE(S) sec provided to d unless othern Unbalanced it this design. Wind: ASCE Vasd=99mph B=45ft; L=24 MWFRS (dirr end vertical l plate grip DC) * This truss h on the bottom 	considered equally d as front (F) or ba ttion. Ply to ply com istribute only loads vise indicated. roof live loads have 7-16; Vult=125mph n; TCDL=6.0psf; BC ft; eave=4ft; Cat. II; actional); cantilever eft and right expose VL=1.60 as been designed f n chord in all areas	applied ck (B) f nections noted a been c (3-sec DL=6.0 Exp B; left and cd; Lum for a live where	to all plies, ace in the LC s have been as (F) or (B), considered for ond gust) 0psf; h=25ft; Enclosed; d right expose ber DOL=1.6 e load of 20.0 a rectangle	DAD r ed ; 0 Dpsf	Cc	oncentra Vert: 20 23=-724 27=-724	ted Loa =-945 + - (B), 2 - (B)	ads (lb) (B), 21=-724 (B), 4=-724 (B), 25=-7	22=-729 (B), 724 (B), 26=-724 (B),
FORCES	(lb) - Maximum C Tension	omp	ression/Maximum	6	3-06-00 tall b chord and an) Provide mecl	y 2-00-00 wide will y other members. nanical connection	fit betw (by othe	een the botto	om					
TOP CHORD	1-2=-5074/537, 2 3-4=-4332/413, 4 5-62906/183	-3=-4 -5=-{	4333/412, 5401/392,	-	bearing plate joint 6 and 33	capable of withstan 30 lb uplift at joint 1.	nding 2	69 lb uplift at						
BOT CHORD	0 - 2-30-4424, 9-10=-434/4424, 21-22=-434/4424, 8-23=-305/4718, 24-25=-305/4718, 6-27=-305/4718,	10-2 9-21 , 8-2 23-2 , 7-2 26-2	0=-434/4424, =-434/4424, 2=-434/4424, 4=-305/4718, 5=-305/4718, 7=-305/4718,	, 8 9	 International R802.10.2 ar Use Simpsor SD9212 Trus from the left bottom chord Use Simpsor 	Residential Code s and referenced stand a Strong-Tie LUS26 is, Single Ply Girde end to connect truss b Strong-Tie LUS24	ections lard AN (4-SD r) or eq s(es) to	R502.11.1 a SI/TPI 1. 0112 Girder, 4 uivalent at 5- back face of 0112 Girder, 4	nd 4- 3-4 2-		4		ORTH CA	ROL
WEBS	2-10=-167/637, 2 3-8=-280/3439, 4	-8=- 8=-	720/196, 1058/47, 4-7=-6/978		SD9212 Trus at 2-0-0 oc m	s, Single Ply Girde	r) or eq 4 from t	uivalent spac he left end to	ed				SEA	
NOTES					19-3-4 to cor	nect truss(es) to ba	ack face	e of bottom			=	:	0262	22 : =
 2-ply trus (0.131"x3 Top chord oc. Bottom cl staggered Web cont 	s to be connected to ") nails as follows: ds connected as follo hords connected as follo hords connected as follows: 2x nected as follows: 2x	geth ows: follov 4 - 1	er with 10d 2x4 - 1 row at 0-9-0 ws: 2x6 - 2 rows 1 row at 0-9-0 oc.	1 L 1	chord. 0) Fill all nail ho OAD CASE(S)) Dead + Roc Plate Increa Uniform Loa Vert: 1-3:	les where hanger is Standard of Live (balanced): L ise=1.00 ads (lb/ft) =-60, 3-6=-60, 11-1:	s in con ₋umber 5=-20	tact with luml	ber. 15,		1115.	A MARTINE AND A	A. G	EER. KINN

April 1,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	G01	Common Structural Gable	2	1	Job Reference (optional)	E14248077

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:42 ID:e?3HXSqCtw?2z6gtAYFLNuzVQU?-0emPoi83F4h0D4bF1UHRRj?zqBVqDYi34P2tsqzV9Jy

Page: 1

Scale = 1:34.1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-AS	0.06 0.04 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 11-12 11-12 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 43 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea Rigid ceiling directly (size) 8=0-3-8, 9 11=7-8-0, Max Horiz 12=-39 (LI Max Uplift 8=-23 (LC 11=-9 (LC Max Grav 8=176 (LC 10=211 (L 12=176 (L	athing directly applied applied. =7-8-0, 10=7-8-0, 12=7-8-0 C 9) 12), 9=-24 (LC 11), 8), 12=-46 (LC 11) 23), 9=148 (LC 17), C 1), 11=149 (LC 16 C 22)	3) 4) 5) 1. 6) 7)), 8)	Truss design only. For stu see Standard or consult qu All plates are Gable studs s * This truss h on the bottom 3-06-00 tall b chord and an Provide mech bearing plate 12, 9 lb uplift uplift at joint a This truss is of International R802.10.2 ar	ted for wind loads in ds exposed to wind I Industry Gable En alified building desi 2x4 MT20 unless of spaced at 2-0-0 oc. as been designed for chord in all areas y 2-00-00 wide will y other members. nanical connection 1 capable of withstar at joint 11, 24 lb up 3. designed in accorda Residential Code so de referenced stand	n the pl (norma d Detai gner as otherwis or a live where a fit betw (by othe nding 4 dift at jo ance wi ections ard AN	ane of the tru al to the face) Is as applicat per ANSI/TF se indicated. e load of 20.0 a rectangle een the bottc ors) of truss to 6 lb uplift at jo int 9 and 23 l th the 2018 R502.11.1 at SI/TPI 1.	ss , ole, l1 1. psf om oint b					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	9)	This truss de structural wo	sign requires that a od sheathing be ap	minim plied di	um of 7/16" rectly to the to	ор					
TOP CHORD	1-2=-74/79, 2-19=-34 3-4=-23/80, 4-5=-23/ 6-20=-34/50, 6-7=-73	4/51, 3-19=-26/77, 80, 5-20=-25/77, 3/79	LO	chord and 1/2 the bottom ch AD CASE(S)	2" gypsum sheetroo hord. Standard	k be ap	plied directly	to					
BOT CHORD	1-12=-52/74, 11-12= 9-10=-51/73, 8-9=-5	-51/73, 10-11=-51/73 1/73, 7-8=-51/73	3,	(-)									1
WEBS	2-12=-112/104, 4-10 3-11=-112/113, 5-9=	=-165/44, 6-8=-112/1 -112/113	03,									"TH CA	RO
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=997 B=45ft; L= MWFRS (3-1-0, Inte and right exposed;(reactions DOI: 4.00	ed roof live loads have D. CE 7-16; Vult=125mph mph; TCDL=6.0psf; BCI -24ft; eave=4ft; Cat. II; directional) and C-C Ex- prior (1) 3-1-0 to 5-1-0, I erior (1) 8-1-0 to 10-2-0 exposed ; end vertical li- C-C for members and for shown; Lumber DOL=1	been considered for (3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; tterior(2E) 0-0-0 to Exterior(2R) 5-1-0 to zone; cantilever left eft and right prces & MWFRS for .60 plate grip								Contraction .		SEA 0363	L 22 BERTIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

GI 1111111 April 1,2020

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	G02	Common	2	1	Job Reference (optional)	E14248078

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:42 ID:AMZITkEu539NQBhDczL5DszVQTU-UqJn029h0OptrEASbBog_xX4Wbnoy?bCJ3oQOGzV9Jx Page: 1

Scale = 1:41.7

Plate Offsets (X, Y): [3:0-2-0,Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-AS	0.26 0.25 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.05 0.00	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea Rigid ceiling directly (size) 6=0-5-8, 7 Max Horiz 7=-39 (LC Max Uplift 6=-11 (LC Max Grav 6=407 (LC	athing directly applied applied. '=0-5-8 9) 11), 7=-42 (LC 11) 2 1), 7=407 (LC 1)	5) This truss is Internationa R802.10.2 a 6) This truss de structural we d. chord and 1. the bottom of LOAD CASE(S)	designed in accord Residential Code 3 nd referenced stan esign requires that a od sheathing be ap (2" gypsum sheetro hord. Standard	lance wi sections dard AN a minimu oplied di ck be ap	th the 2018 R502.11.1 ar SI/TPI 1. Jun of 7/16" rectly to the to oplied directly	nd op to					
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD	Tension DP CHORD 1-2=-150/58, 2-14=-239/96, 14-15=-220/97, 3-15=-174/112, 3-16=-174/112, 16-17=-220/97, 4-17=-239/96, 4-5=-150/0											
BOT CHORD WEBS	1-7=-4/156, 6-7=-4/1 2-7=-269/280, 4-6=-2	56, 5-6=-4/156 269/280										
 NOTES Unbalanced this design. Wind: ASCI Vasd=99mp B=45ft; L=2 MWFRS (d 3-0-0, Interi and right exeposed;C- reactions sl DOL=1.60 * This truss on the bottd 3-06-00 tall chord and a Provide me bearing pla 7 and 11 lb 	d roof live loads have E 7-16; Vult=125mph bh; TCDL=6.0psf; BCI 24ft; eave=4ft; Cat. II; irectional) and C-C Ex ior (1) 3-0-0 to 5-1-0, 1 ior (1) 8-1-0 to 10-2-0 qosed ; end vertical lu C for members and for hown; Lumber DOL=1 has been designed for om chord in all areas v by 2-00-00 wide will f any other members. ichanical connection (I te capable of withstan uplift at joint 6.	been considered for (3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; tterior(2E) 0-0-0 to Exterior(2R) 5-1-0 to zone; cantilever left eft and right prces & MWFRS for .60 plate grip or a live load of 20.0p where a rectangle fit between the bottor by others) of truss to iding 42 lb uplift at jo	osf n int						Withhar		SEA 0363	EER. Human

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	G03	Common Girder	1	2	Job Reference (optional)	E14248079

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:42 ID:m2P2PXPgoMwO5KmvRvbNnpzVQTG-UqJn029h0OptrEASbBog_xX7jblEyzoCJ3oQOGzV9Jx

4x8 🛛

Page: 1

Scale = 1:32.3

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC2018	/TPI2014	CSI TC BC WB Matrix-MP	0.12 0.35 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.01	(loc) 6-9 6-9 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 92 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 2: BOT CHORD 2: WEBS 2: SLIDER LA BRACING TOP CHORD S BOT CHORD R BOT CHORD R BOT CHORD R BOT CHORD R BOT CHORD 1 FORCES (I TOP CHORD 1 4 BOT CHORD 1 6 WEBS 3 NOTES 1) 2-ply truss to (0.131"x3") na Top chords co oc. Bottom chord staggered at (Web connecta 2) All loads are of except if note CASE(S) sect provided to di unless otherw 3) Unbalanced r this design.	x4 SP No.2 x6 SP No.2 x4 SP No.2 eft 2x8 SP No.2 1 o.2 1-9-12 tructural wood shea -0-0 oc purlins. tigid ceiling directly racing. ze 1=0-5-8, 5 x4 Horiz 1=-30 (LC x Uplift 1=-65 (LC x Grav 1=1475 (L b) - Maximum Comp ension -2=-1188/23, 2-3=-1 -5=-1059/17 -15=-48/1412, 5-16 -6=-49/1339 be connected toget ails as follows: connected as follows s connected as follows s connected as follows s connected as follows as fornt (F) or bact tion. Ply to ply conn stribute only loads r <i>i</i> se indicated. oof live loads have	-9-12, Right 2x8 SP athing directly applied applied or 10-0-0 oc =0-5-8 24) 7), 5=-68 (LC 7) C 2), 5=1536 (LC 2) pression/Maximum 1621/99, 3-4=-1620/9 =-48/1412, =-48/1412 her with 10d : 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, k (B) face in the LOA ections have been toted as (F) or (B), been considered for	4) 1 or 6) 7) 8) 9, 9) LO 1)	Wind: ASCE Vasd=99mph B=45ft; L=24 MWFRS (dire end vertical le plate grip DO * This truss h on the bottor 3-06-00 tall b chord and an Provide mech bearing plate 1 and 68 lb uµ This truss is of International R802.10.2 an Use Simpson Truss, Single oc max. starti connect truss Fill all nail hol AD CASE(S) Dead + Roo Plate Increa Uniform Loa Vert: 1-3= Concentrate Vert: 6=-7	7-16; Vult=125m; ; TCDL=6.0psf; E t; eave=4ft; Cat. ; ctional); cantileve dft and right expo: L=1.60 as been designed on chord in all area y 2-00-00 wide w y other members nanical connection capable of withst plift at joint 5. designed in accor Residential Code d referenced star Strong-Tie LUS2 Ply Girder) or eq ng at 2-0-4 from 1 (es) to back face les where hanger Standard f Live (balanced) se=1.00 ds (lb/ft) -60, 3-5=-60, 7-1 d Loads (lb) '32 (B), 15=-732	ph (3-sec 3CDL=6.0 II; Exp B; er left and sed; Lum d for a live is where a ill fit betw n (by othe tanding 6: dance wii sections ndard AN 26 (4-10d uivalent s the left er of bottom · is in com : Lumber I1=-20 (B), 16=-7	ond gust) psf; h=25ft; Enclosed; I right expose ber DOL=1.6 e load of 20.0 a rectangle een the botto ers) of truss t 5 lb uplift at j th the 2018 R502.11.1 a SI/TPI 1. Girder, 4-10 paced at 2-0 d to 6-0-4 to a chord. tact with lumi Increase=1.7	ed; 0 ppsf om opint nd d-0 ber.				SEA 0363	L EER. E.L.BER	and an and a second second

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

April 1,2020

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	G04	Common Girder	1	1	Job Reference (optional)	E14248080

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:42 ID:I7N5m?bj1Hx60o__NGu7RBzVQT0-UqJn029h0OptrEASbBog_xX6xboAy?4CJ3oQOGzV9Jx

Scale = 1:35.5

_oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.00	тс	0.17	Vert(LL)	-0.01	5	>999	240	MT20	244/190	
FCDL	10.0	Lumber DOL	1.15	BC	0.16	Vert(CT)	-0.02	5	>999	180			
BCLL	0.0*	Rep Stress Incr	NO	WB	0.02	Horz(CT)	0.00	4	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MR							Weight: 39 lb	FT = 20%	
						-							

LOWBER	LUMBER	2
--------	--------	---

TOP CHORD	2x4 SP No.2
BOT CHORD	2x6 SP No.2
WEBS	2x8 SP No.2 *Except* 5-2:2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 4=0-5-8, 6=0-5-8
	Max Horiz 6=-54 (LC 5)
	Max Grav 4=336 (LC 1), 6=352 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-285/15, 2-3=-285/15, 1-6=-221/26,
	3-4=-221/26
BOT CHORD	6-7=0/208, 5-7=0/208, 5-8=0/208, 8-9=0/208,
	4-9=0/208

WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

2-5=-1/75

- Wind: ASCE 7-16; Vult=125mph (3-second gust) 2) Vasd=99mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 * This truss has been designed for a live load of 20.0psf
- 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

"NAILED" indicates 3-10d (0.148"x3") or 3-12d 5) (0.148"x3.25") toe-nails per NDS guidlines.

6) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, 1)

Plate Increase=1.00

Uniform Loads (lb/ft)

Vert: 1-2=-60, 2-3=-60, 4-6=-20 Concentrated Loads (lb)

Vert: 6=-32 (B), 7=-28 (B), 8=-28 (B), 9=-28 (B)

Page: 1

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	H01	Half Hip Girder	1	1	Job Reference (optional)	E14248081

818 Soundside Road Edenton, NC 27932

Job	Truss	JSS Truss Type Qty Pt		Ply	Southeastern General Contractors	
Furne	H02	Half Hip	1	1	Job Reference (optional)	E14248082

Scale = 1:41.2 Plate Offsets (X, Y): [7:0-1-12,0-1-8]

4-1-8

Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.15		CSI TC BC	0.56 0.32	DEFL Vert(LL) Vert(CT)	in -0.03 -0.08	(loc) 7-8 7-8	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.25	Horz(CT)	0.01	6	n/a	n/a			
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-AS							Weight: 107 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=99M B=45ft; L= MWFRS (c 3-0-0, Inter 11-5-7, Intu and right e exposed;C reactions s DOL=1.60 3) Provide ad	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she except end verticals (5-4-10 max.): 3-5. Rigid ceiling directly (size) $6=$ Mecha Max Horiz 10=118 (I Max Upliff $6=$ -97 (LC Max Grav $6=$ -97 (LC Max Grav $6=$ -97 (LC (b) - Maximum Com Tension 1-2=-119/40, 2-14=- 3-15=-936/111, 15-11 16-17=-938/111, 4-14 4-18=-937/110, 5-16 1-10=-8/141, 9-10=- 7-8=-144/833, 6-7=- 2-10=-793/190, 2-8= 5-7=-133/1027, 3-7= ad roof live loads have 1.2E 7-16; Vult=125mph rph; TCDL=6.0psf; BC 24ft; eave=4ft; Cat. II; directional) and C-C E rior (1) 3-0-0 to 7-2-8, erior (1) 11-5-7 to 20- 'xxposed; end vertical I -C for members and f shown; Lumber DOL='	athing directly applie , and 2-0-0 oc purlin: applied. inical, 10=0-5-8 .C 10) 2 (1), 10=53 (LC 11) C 1), 10=864 (LC 22) pression/Maximum 1006/62, 3-14=-928/ 6=-937/111, 7=-939/111, 9=937/110, 5-6=-68 166/213, 8-9=-166/2 36/65 33/705, 3-8=0/80, 30/202, 4-7=-442/1 been considered for (3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; xterior(2E) 0-0-0 to Exterior(2E)	4) 4) 5) 6) 7) 8) 9) 1/129 LO 1/129 LO 5) 69	* This truss h on the botton 3-06-00 tall b chord and an Refer to girdæ Provide med bearing plate 6 and 53 lb u This truss is s International R802.10.2 ar This truss de structural wo chord and 1/2 the bottom chord AD CASE(S)	as been designed n chord in all area by 2-00-00 wide will y other members. er(s) for truss to tri hanical connection capable of withst plift at joint 10. designed in accorr Residential Code nd referenced star sign requires that od sheathing be a 2" gypsum sheetro hord. Thin representation ation of the purlin a J. Standard	I for a live s where a II fit betw uss conn h (by othe anding 9 dance wis sections dard AN a minimu pplied di ock be ap	e load of 20.1 a rectangle een the bott ections. ers) of truss i 7 lb uplift at j th the 2018 R502.11.1 a SI/TPI 1. um of 7/16" rectly to the pplied directly t depict the s top and/or	Opsf om to joint and top y to size				SEA 0363	L 22 L BEERING	and the second sec

April 1,2020

TRENGINEERING BY A MITEK Affiliate
818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	H03	Half Hip	1	1	Job Reference (optional)	E14248083

Page: 1

Scale = 1:46.4

Plate Offsets (X, Y): [3:0-3-0,0-0-12], [7:0-2-0,0-1-8]

														_
Loading TCLL (roof) TCDL BCLL BCDI	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.15 YES	8/TEI2014	CSI TC BC WB Matrix-AS	0.40 0.41 0.29	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.08 0.02	(loc) 7-9 9-10 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea except end verticals, (6-0-0 max.): 3-5. Rigid ceiling directly (size) 6= Mechai Max Horiz 10=150 (L Max Upliff 6=-94 (LC Max Cray, 6=-749 (C	athing directly applied and 2-0-0 oc purlins applied. nical, 10=0-5-8 C 10) 8), 10=-50 (LC 11) 2-21, 10=-89 (C 1)	4) 4) 4, 6) 5 7) 8)	* This truss h on the bottom 3-06-00 tall b chord and an Refer to girde Provide mech bearing plate 6 and 50 lb u This truss is c International R802.10.2 an This truss det structural woo	as been designed f a chord in all areas y 2-00-00 wide will y other members. r(s) for truss to trus nanical connection (capable of withstar plift at joint 10. designed in accorda Residential Code so d referenced stand sign requires that a pd sheathing be app	or a live where a fit betw ss conn (by othe nding 9 ance wi ections ard AN minimu plied di	e load of 20.0 a rectangle een the botto ections. ers) of truss t 4 lb uplift at j th the 2018 R502.11.1 a SI/TPI 1. um of 7/16" rectly to the t	Dpsf om o oint nd				weight: 116 ib	<u>F1 = 20%</u>	
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Comp Tension 1-14=-129/158, 2-14 3-15=-891/102, 3-16 16-17=-668/115, 4-1 4-18=-668/114, 5-18 1-10=-44/142, 9-10= 7-8=-151/750, 6-7=-4	=-110/3, 2-15=-900/ =-668/115, 7=-670/115, =-668/114, 5-6=-694 -238/812, 8-9=-151/ 47/69	9) 78, 1/120 750,	chord and 1/2 the bottom ch Graphical pur or the orienta bottom chord DAD CASE(S)	" gypsum sheetroc iord. lin representation c tion of the purlin ald Standard	k be ap loes no ong the	oplied directly t depict the s top and/or	∕ to size						
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=99m B=45ft; L= MWFRS (i 3-0-0, Inte 13-5-7, Inte and right e exposed;C reactions s DOL=1.60 3) Provide ac	3-7=-120/49, 4-7=-37 ad roof live loads have b. CE 7-16; Vult=125mph mph; TCDL=6.0psf; BCI -24ft; eave=4ft; Cat. II; directional) and C-C Ex rior (1) 3-0-0 to 9-2-8, I erior (1) 3-0-0 to 9-2-8, I cerior (1) 3-5-7 to 20-1 cerior (1) 3-5-7 to 20-1 cerior (1) 13-5-7 to 20-1 dequate drainage to pre-	76/147, 2-10=-958/2: been considered for (3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; terior(2E) 0-0-0 to Exterior(2R) 9-2-8 to -4 zone; cantilever le eft and right prces & MWFRS for .60 plate grip	22 eft							With the		SEA 0363	ROLL 22 ER HUIL	

April 1,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	H04	Common	5	1	Job Reference (optional)	E14248084

Run: 8.33 S. Mar 23 2020 Print: 8.330 S. Mar 23 2020 MiTek Industries. Inc. Wed Apr 01 07:26:44 ID:lpjNWdAuTw0iqejatbfEdOzVQLp-QDRYQjByY?3b4XKqjcr83MdFUPJBQpIVmNHXT9zV9Jv

Page: 1

BOT CHORD 1-10=-68/764, 9-10=-110/764, 8-9=-110/764, 7-8=-113/799 WEBS 4-8=0/313, 5-8=-209/128, 2-10=-640/269, 3-8=-164/106, 5-7=-692/145

5-17=-238/41, 6-17=-319/27, 6-7=-252/59

NOTES

FORCES

Loading

TCDL

BCLL

BCDL

WEBS

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=125mph (3-second gust) 2) Vasd=99mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 10-9-0, Exterior(2R) 10-9-0 to 13-9-0, Interior (1) 13-9-0 to 20-1-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

ORTH 11111111111 SEAL 036322 G mm April 1,2020

> 818 Soundside Road Edenton, NC 27932

📣 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	H05	Monopitch	10	1	Job Reference (optional)	E14248085

12 6 Г

1-5-12

1-5-12

2-7-12

0-6-4

Carolina Structural Systems, LLC, Ether, NC - 27247,

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:44 ID:2?aGMIFabGJd5pLnswnA?9zVQN0-QDRYQjByY?3b4XKqjcr83MdT9PVuQvMVmNHXT9zV9Jv

0-3-8

10 2x4 u 2-4-4 2 9 ि

2x4 🛚

3

4-3-0

2-9-4

Scale = 1:32

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.12	Vert(LL)	0.00	4-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.08	Vert(CT)	0.00	4-5	>999	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.03	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/	TPI2014	Matrix-AS							Weight: 17 lb	FT = 20%
	2×4 SP No 2		6)	This truss is	designed in acco	ordance wi	th the 2018 R502 11 1 a	und					
POT CHORD	2x4 SP No.2			R802 10 2 ar	nd referenced st	andard AN	SI/TPI 1	inu					
WEBS	2x4 SP No 2		7)	This truss de	sign requires the	at a minimi	um of 7/16"						
BRACING			• ,	structural wo	od sheathing be	applied di	rectly to the	top					
TOP CHORD	Structural wood sheat	athing directly applie	ed,	chord and 1/2 the bottom cl	2" gypsum sheet nord.	trock be ap	plied directly	/ to					
BOT CHORD	Rigid ceiling directly	applied.	LOA	AD CASE(S)	Standard								
REACTIONS	(size) 4=0-1-8, 5 Max Horiz 5=71 (LC Max Uplift 4=-27 (LC Max Grav 4=82 (LC	i=0-5-8 10) 8), 5=-38 (LC 11) 16), 5=257 (LC 1)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-9=-148/78, 2-9=-14 3-10=-69/58, 3-4=-79	44/84, 2-10=-76/49, 9/92											
BOT CHORD	1-11=-77/139, 5-11=	-77/139, 4-5=-36/39											
WEBS	2-5=-182/187												
NOTES													
1) Wind: AS Vasd=99r B=45ft; L=	CE 7-16; Vult=125mph nph; TCDL=6.0psf; BCI =24ft; eave=4ft; Cat. II; (directional) and C-C Ex	(3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed;											

- 1) and C-C Exterior(2E) 3-0-0, Interior (1) 3-0-0 to 4-1-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2)
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 3) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to 4) bearing plate at joint(s) 4.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 38 lb uplift at joint 5 and 27 lb uplift at joint 4.

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	H06	Monopitch	10	1	Job Reference (optional)	E14248086

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:45 ID:nv_kifd9Co8gD4uevopNUizVQJx-uP?we3CaJJCSihv1GKMNcZ9dnorv9Mae?104?bzV9Ju

Scale = 1:32.5

Loading	(psf)	Spacing	2-0-0		CSI	0.12	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
	20.0		1.00		BC	0.13	Vert(CT)	-0.00	4-5	>999	180	101120	244/190
BCU	0.0*	Ren Stress Incr	VES		WB	0.10	Horz(CT)	0.01	4-J	>333 n/a	n/a		
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-AS	0.00	11012(01)	0.00		n/a	n, a	Weight: 18 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2		6) 7)	This truss is International R802.10.2 at This truss de	designed in acco Residential Cod nd referenced sta sign requires that	ordance wi e sections andard AN at a minimu applied di	th the 2018 R502.11.1 a SI/TPI 1. um of 7/16" rectly to the	and					
TOP CHORD	Structural wood sheat except end verticals.	athing directly applie	ed,	chord and 1/ the bottom cl	2" gypsum sheet nord.	trock be ap	plied directly	y to					
BOT CHORD	Rigid ceiling directly	applied.	LO	AD CASE(S)	Standard								
REACTIONS	(size) 4=0-1-8, 5 Max Horiz 5=75 (LC Max Uplift 4=-26 (LC Max Grav 4=94 (LC	5=0-5-8 10) 8), 5=-38 (LC 11) 16), 5=264 (LC 1)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-158/89, 2-9=-82 3-4=-86/100	2/52, 3-9=-76/63,											
BOT CHORD	1-5=-82/145, 4-5=-38	8/41											
WEBS	2-5=-192/197												
NOTES		(0											
 Wind: AS Vasd=99r B=45ft; L: MWFRS 3-0-0, Integright expo 	CE /-16; VUIT=125mph mph; TCDL=6.0psf; BCI =24ft; eave=4ft; Cat. II; (directional) and C-C Ex erior (1) 3-0-0 to 4-4-4 z sed : end vertical left at	(3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; kterior(2E) 0-0-0 to cone; cantilever left a nd right exposed C-	and C									TH CA	RO

Lumber DOL=1.60 plate grip DOL=1.60 * This truss has been designed for a live load of 20.0psf 2) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

for members and forces & MWFRS for reactions shown;

- 3) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to 4) bearing plate at joint(s) 4.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 38 lb uplift at joint 5 and 26 lb uplift at joint 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Page: 1

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	J01	Jack-Open	2	1	Job Reference (optional)	E14248087

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:45 ID:n0CkfTg_mpUr14YruhSDsFzVQQL-uP?we3CaJJCSihv1GKMNcZ9eBor_9Mke?104?bzV9Ju

Page: 1

1-5-12	3-1-7
1-5-12	1-7-11

Scale = 1:30

(ps 20. 10.) Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.15	CSI TC BC	0.10 0.09	DEFL Vert(LL) Vert(CT)	in 0.00 0.00	(loc) 4-5 4-5	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
0.)* Rep Stress Incr	YES	WB	0.02	Horz(CT)	-0.01	3	n/a	n/a		FT 000/
10.	Code	IRC2018/1PI2014	4 Matrix-MP							Weight: 11 lb	FT = 20%
2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood 3-1-7 oc purlins.	sheathing directly app	5) This tru Internat R802.1 LOAD CAS	ss is designed in acco ional Residential Cod 0.2 and referenced sta E(S) Standard	ordance wi e sections andard AN	ith the 2018 ; R502.11.1 a ISI/TPI 1.	and					
bracing.		00									
(size) 3= Me 5=0-5 Max Horiz 5=41 Max Uplift 3=-17 (LC 1 Max Grav 3=23 (LC 1)	chanical, 4= Mechani 8 LC 11) (LC 11), 4=-11 (LC 1) LC 16), 4=9 (LC 9), 5	ical,), 5=-23 i=237									
(lb) - Maximum (Tension 1-2=-90/41, 2-3= 1-5=-37/90, 4-5= 2-5=-148/136 CE 7-16; Vult=125r ph; TCDL=6.0psf; 24ft; eave=4ft; Ca directional) and C- left and right expo sed;C-C for memb rs shown; Lumber s has been design om chord in all ard ll by 2-00-00 wide any other membe rder(s) for truss to echanical connect	ampression/Maximum -34/12 0/0 BCDL=6.0psf; h=25fi II; Exp B; Enclosed; C Exterior(2E) zone; ed; end vertical left a ers and forces & MWF DOL=1.60 plate grip ed for a live load of 20 as where a rectangle will fit between the bo s. truss connections. on (by others) of truss	m t; and =RS 0.0psf tittom						Withhere		ORTH CA OFESS SEA 0363	ROLA L
	(psf 20.0 10.0 0.0 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood s 3-1-7 oc purlins. Rigid ceiling direct bracing. (size) $3=$ Me 5=0-5- Max Horiz $5=41$ (Max Uplift $3=-17$ (LC 11 Max Grav $3=23$ (LC 11) Max Grav $3=23$ (LC 11) (Ib) - Maximum C Tension 1-2=-90/41, 2-3= 1-5=-37/90, 4-5= 2-5=-148/136 E 7-16; Vult=125m ph; TCDL=6.0psf; 24ft; eave=4ft; Cat irrectional) and C-C eft and right expose ed; C-C for member is shown; Lumber is ab been designed on chord in all are I by 2-00-00 wide v any other member der(s) for truss to bechanical connection	(psf) Spacing 20.0 Plate Grip DOL 10.0 Unuber DOL 0.0* Rep Stress Incr 10.0 Code 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood sheathing directly applied or 10-0-0 bracing. Size) 3= Mechanical, 4= Mechan 5=0-5-8 Max Horiz 5=41 (LC 11) Max Uplift 3=-17 (LC 11), 4=-11 (LC 1 (LC 11) Max Grav 3=23 (LC 16), 4=9 (LC 9), 5 (LC 1) (lb) - Maximum Compression/Maximu Tension 1-2=-90/41, 2-3=-34/12 1-5=-37/90, 4-5=0/0 2-5=-148/136 E 7-16; Vult=125mph (3-second gust) ph; TCDL=6.0psf; BCDL=6.0psf; h=25f 24ft; eave=4ft; Cat. II; Exp B; Enclosed; iirectional) and C-C Exterior(2E) zone; et and right exposed ; end vertical left is is shown; Lumber DOL=1.60 plate grip sha been designed for a live load of 20 or order in all areas where a rectangle l by 2-00-00 wide will fit between the bc	(psf) 20.0 10.0 10.0 10.0Spacing Plate Grip DOL 1.00 Lumber DOL Rep Stress Incr YES Code2-0-0 1.00 Lumber DOL Rep Stress Incr YES Code2x4 SP No.2 2x4 SP No.25)This tru Internat R802.10 LoAD CASStructural wood sheathing directly applied or 3-1-7 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.5)Structural wood sheathing directly applied or 10-0-0 oc bracing.3=Max Horiz5=41 (LC 11) Max Uplift 3=-17 (LC 11), 4=-11 (LC 1), 5=-23 (LC 1)Max Grav3=23 (LC 16), 4=9 (LC 9), 5=237 (LC 1)(lb) - Maximum Compression/Maximum Tension 1-2=-90/41, 2-3=-34/12 1-5=-37/90, 4-5=0/0 2-5=-148/136E 7-16; Vult=125mph (3-second gust) ph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 24ft; eave=4ft; Cat. II; Exp B; Enclosed; lirectional) and C-C Exterior(2E) zone; eft and right exposed ; end vertical left and ed;C-C for members and forces & MWFRS is shown; Lumber DOL=1.60 plate gripa bas been designed for a live load of 20.0psf or chord in all areas where a rectangle I by 2-00-00 wide will fit between the bottom any other members. rder(s) for truss to truss connections. schanical connection (by others) of truss to truss to truss connections. schanical connection (by others) of truss to trues to truss to truss to truss to truss to truss to truss to tr	$\begin{array}{ c c c c c } \hline (psf) & Spacing & 2-0-0 & CSI \\ \hline 20.0 & Plate Grip DOL & 1.00 & BC \\ \hline Plate Grip DOL & 1.15 & BC & WB \\ \hline 10.0 & Cote & IRC2018/TP12014 & Matrix-MP \\ \hline 2x4 SP No.2 & S) & This truss is designed in accos \\ Lumber DOL & 1.15 & Rep Stress Incr & YES & Matrix-MP \\ \hline 2x4 SP No.2 & S) & This truss is designed in accos \\ LoAD CASE(S) & Standard \\ Structural wood sheathing directly applied or \\ 3-1-7 oc purlins. \\ Rigid ceiling directly applied or 10-0-0 oc \\ bracing. \\ (size) & 3 = Mechanical, 4 = Mechanical, \\ 5=0-5-8 & Max Horiz 5=41 (LC 11) \\ Max Uplift & 3=-17 (LC 11), 4=-11 (LC 1), 5=-23 \\ (LC 1) & Maximum Compression/Maximum \\ Tension \\ 1-2=-90/41, 2-33-4/12 \\ 1-5=-37/90, 4-5=0/0 \\ 2-5=-148/136 & E 7-16; Vult=125mph (3-second gust) \\ ph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; \\ 24ft; eave=4ft; Cat. II; Exp B; Enclosed; \\ irrectional) and C-C Exterior(ZE) zone; \\ eft and right exposed ; end vertical left and ed; C-C for members and forces & MWFRS \\ is shown; Lumber DOL=1.60 plate grip \\ s has been designed for a live load of 20.0psf \\ om chord in all areas where a rectangle \\ lb y 2-00-00 wide will fit between the bottom \\ any other members. \\ totagenetic for truss to truss connections. \\ schanical connection (by others) of truss to the path is in the fit $	(psf) 20.0 10.0Spacing Plate Grip DOL Lumber DOL 0.0"2-0-0 TC TC 0.0 0.0"CSI TC TC 0.09 WB 0.02 Matrix-MP2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.25)This truss is designed in accordance w International Residential Code sections R802.10.2 and referenced standard AN LOAD CASE(S)Structural wood sheathing directly applied or 3-1-7 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.5)Structural wood sheathing directly applied or 3-1-7 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.5)(size) 12=90(41, 2-3e-34)3Mechanical, 4= Mechanical, 4= 4=9 (LC 9), 5=237 (LC 1)(b) - Maximum Compression/Maximum Tension 1-2=-90(41, 2-3=-34/12 1-2=-90(41, 2-3=-34/12 1-2=-9	$ \begin{array}{ c c c c } \hline (psf) \\ 20.0 \\ 10.0$	(pst) 20.0 10.0 10.0 10.0 10.0 10.0 10.0 Spacing Plate Grip DOL Lumber DOL Code 2-0.0 1.00 1.00 CSI TC 0.01 BC Matrix-MP DEFL N C BC Matrix-MP in Vert(CT) 0.00 2x4 SP No.2 2x4 SP No.2 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 2x4 SP No.2 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 2x4 SP No.2 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 2x4 SP No.2 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 2x4 SP No.2 3 Mechanical, 5 50 -5-8 5=41 (LC 11) Max Horiz 5=41 (LC 11) 4= Mechanical, 5 50-5-8 5=41 (LC 11) Max Grav 3=23 (LC 16), 4=9 (LC 9), 5=237 (LC 11) (LC 11) 4= Mechanical, 5 1:2=-90/41, 2-3=-34/12 1-5=-37/90, 4-5=00 1:2=-90/41, 2-3=-34/12 1-5=-37/90, 4-5=00 1:5=-37/90, 4-5=00 2-5=-148/136 E 7-16; Vult=125mph (3-second gust) ph; TCDL=6.0pst; BcDL=6	(psf) Spacing 2-0-0 CSI DEFL in (loc) 10.0 Lumber DOL 1.15 BC 0.09 Vert(CT) 0.00 4-5 10.0 Rep Stress Incr YES WB 0.02 Vert(CT) 0.00 4-5 2x4 SP No.2 Spaceing YES WB Matrix-MP Whether 2018 Her 2018 2x4 SP No.2 Spaceing Spaceing	(psf) Spacing 2-0-0 CSI TC 0.10 10.0 Lumber DOL 1.05 BC 0.09 Vert(LL) 0.00 4-5 >999 10.0 Rep Stress Incr YES Matrix-MP 0.00 Her (CT) 0.00 4-5 >999 2x4 SP No.2 Stress Incr YES Matrix-MP 0.00 Hor (CT) -0.01 3 n/a 2x4 SP No.2 Stress Incr YES No.2 Stress Incr No.2 Stress Incr No.2 No.2	(psf) Spacing 2-0-0 CSi DEFL in (loc) l/deft L/d 0.00 10.0 Rep Stress Incr TC 0.10 BC 0.00 4-5 >999 180 0.0 Rep Stress Incr VES 0.00 4-5 >999 180 224 SP No.2 Code IRC2018/TPI2014 WB Matrix-MP 0.02 Horz(CT) 0.01 3 n/a n/a 224 SP No.2 Structural wood sheathing directly applied or 3-1.7 Cp Units. RE02.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 3-1.7 Cp Units. LOAD CASE(S) Standard Structural wood sheathing directly applied or 3-1.7 Standard Standard Standard Structural wood sheathing directly applied or 10-0-0 c braining. Standard Standard Structural wood sheathing directly applied or 10-0-10 c 5-37400 5-237 Standard 12-=90/41, 2-3=-34/12 -3-37300, 4-5=000 <td>(pst) Spacing 2-0-0 CSI 0.10 DEFL in (loc) I/deft L/d 0.0 Lumber DOL 1.15 BC 0.00 4-5 >999 240 0.0 Lumber DOL 1.15 BC 0.00 Horz(CT) 0.00 4-5 >999 100 2x4 SP No.2 Code IRC2018/TPI2014 Marix-MP 0.02 Horz(CT) -0.01 3 n/a n/a 2x4 SP No.2 Code International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 3-1-7 to c purlins. R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 3-1-7 to c purlins. Standard Standard Standard Structural wood sheathing directly applied or 3-1-7 to c purlins. Standard Standard Standard Structural wood sheathing directly applied or 3-1-7 to c purlins. Standard Standard Standard Structural wood sheathing directly applied or 3-2-3 Standa</td>	(pst) Spacing 2-0-0 CSI 0.10 DEFL in (loc) I/deft L/d 0.0 Lumber DOL 1.15 BC 0.00 4-5 >999 240 0.0 Lumber DOL 1.15 BC 0.00 Horz(CT) 0.00 4-5 >999 100 2x4 SP No.2 Code IRC2018/TPI2014 Marix-MP 0.02 Horz(CT) -0.01 3 n/a n/a 2x4 SP No.2 Code International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 3-1-7 to c purlins. R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 3-1-7 to c purlins. Standard Standard Standard Structural wood sheathing directly applied or 3-1-7 to c purlins. Standard Standard Standard Structural wood sheathing directly applied or 3-1-7 to c purlins. Standard Standard Standard Structural wood sheathing directly applied or 3-2-3 Standa

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	J02	Diagonal Hip Girder	1	1	Job Reference (optional)	E14248088

6-11-6 5-1-7

1-9-15 1-9-15

Carolina Structural Systems, LLC, Ether, NC - 27247,

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:45 ID:8FX3G_xnaaFkgSE4AJrNmtzVQQ?-uP?we3CaJJCSihv1GKMNcZ9Z9oqU9MXe?104?bzV9Ju

7-2-14

Page: 1

818 Soundside Road Edenton, NC 27932

Scale = 1:43.6

Plate Offsets (X, Y): [3:0-2-14,0-0-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf 20.0 10.0 0.0 10.0	Sp Pl Lu * Re Co	pacing late Grip DOL umber DOL ep Stress Incr ode	2-0-0 1.00 1.15 NO IRC2	018/TPI2014	CSI TC BC WB Matrix-MP	0.42 0.19 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.05 0.02	(loc) 5-6 5-6 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=99n B=45ft; L= MWFRS (i end vertica plate grip 1 2) * This trus on the bot 3-06-00 ta chord and 3) Refer to gi 4) Provide m bearing pli 6 and 40 I	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood s 6-0-0 oc purlins. Rigid ceiling direc bracing. (size) 3= Me 6=0-7- Max Horiz 6=66 (Max Uplift 3=-40 Max Grav 3=130 (LC 1) (lb) - Maximum C Tension 1-2=-74/48, 2-10 1-6=-24/66, 6-11: 2-6=-322/101, 3- CE 7-16; Vult=125m mph; TCDL=6.0psf; =24ft; eave=4ft; Cat directional); cantiled al left and right exp DOL=1.60 ss has been designed tom chord in all are all by 2-00-00 wide v any other member irder(s) for truss to nechanical connection tate capable of withs b uplift at joint 3.	heathin ttly app 12 C 7) C 7) C 7) C 7), C	ng directly applied blied or 10-0-0 oc al, 5= Mechanical 6=-36 (LC 7) , 5=63 (LC 24), 6= ssion/Maximum 3-10=-22/33 -11=0/0, 4-5=0/0 second gust) -6.0psf; h=25ft; 0 B; Enclosed; and right exposed; umber DOL=1.60 live load of 20.0p re a rectangle etween the bottor connections. others) of truss to g 36 lb uplift at joi	d or , =377 d;) osf n int	 5) This truss is International R802.10.2 at 6) Gap between diagonal or v 7) "NAILED" int (0.148"x3.25 8) In the LOAD of the truss a LOAD CASE(3) 1) Dead + Root Plate Increa Uniform Loot Vert: 1-3 	designed in accorc Residential Code and referenced stam h inside of top chor vertical web shall n dicates 3-10d (0.14 ") toe-nails per ND CASE(S) section, are noted as front (i Standard of Live (balanced): ase=1.00 ads (lb/ft) =-60, 4-7=-20	lance wi sections dard AN d bearin bt excee 8"x3") or S guidlir loads ap F) or bac Lumber	th the 2018 R502.11.1 a SI/TPI 1. g and first d 0.500in. r2-12d nes. uplied to the f k (B). Increase=1.	nd face 15,		And the second se		SEA 0363	L 22 FERFERENTING ril 1,2020	
Design va a truss sy building c	NING - Verify design par alid for use only with MiT ystem. Before use, the bu design. Bracing indicated	ek® conr ilding de	and READ NOTES ON nectors. This design is esigner must verify the event buckling of indivi	N THIS A s based c applicat idual trus	ND INCLUDED MITER only upon parameters a vility of design parame is web and/or chord m	REFERENCE PAGE M shown, and is for an ind ters and properly incorp embers only. Additiona	II-7473 rev ividual buil orate this o I temporar	t. 10/03/2015 BE ding component design into the o	FORE USE. , not verall t bracing						

besign valid for use only with with with exercising is based only upon parameters shown, and is for an individual point point, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	J03	Jack-Open	4	1	Job Reference (optional)	E14248089

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:45 ID:YI9LmOZKt3L7ShM6sIo6?LzVQQU-uP?we3CaJJCSihv1GKMNcZ9dKorS9MYe?104?bzV9Ju

Scale = 1:31.5

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-AS	0.16 0.13 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 -0.02	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural Rigid ceili (size) Max Horiz Max Uplift Max Grav	0.2 0.2 wood sheat ng directly - 3= Mechan 5=0-5-8 5=69 (LC - 3=-38 (LC 3=91 (LC (LC 1)	athing directly applied applied. nical, 4= Mechanical 11) 11), 5=-14 (LC 11) 1), 4=36 (LC 9), 5=20	5) 6) 1. , LC 39	This truss is of International R802.10.2 an This truss des structural woo chord and 1/2 the bottom ch DAD CASE(S)	designed in accord Residential Code s d referenced stand sign requires that a od sheathing be ap " gypsum sheetro ford. Standard	ance wi sections dard AN a minimi oplied di ck be ap	th the 2018 R502.11.1 a SI/TPI 1. um of 7/16" rectly to the t pplied directly	nd op to					
FORCES	(lb) - Maxi Tension	mum Com	pression/Maximum											
TOP CHORD	1-9=-166/ 3-10=-56/	63, 2-9=-16 35	60/73, 2-10=-67/19,											
BOT CHORD WEBS	1-11=-61/ 2-5=-226/	144, 5-11≕ 208	-61/144, 4-5=0/0											
NOTES														
1) Wind: ASC Vasd=99m B=45ft; L= MWFRS (r 3-0-0, Inte and right c exposed;C reactions s DOL =1 60	CE 7-16; Vul nph; TCDL= -24ft; eave= directional) a rrior (1) 3-0-(exposed ; en C-C for mem shown; Lum	t=125mph 5.0psf; BCI 4ft; Cat. II; I and C-C Ex 0 to 5-1-12 d vertical le bers and fo ber DOL=1	(3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; terior(2E) 0-0-0 to zone; cantilever left and right prces & MWFRS for .60 plate grip								G	The second se	ORTH CA	BQUART.
2) * This trus on the bot 3-06-00 ta	tom chord in 100000000000000000000000000000000000	designed fo all areas v) wide will f	or a live load of 20.0p vhere a rectangle it between the bottor	osf n							111111		SEA 0363	L 22
 3) Refer to gi 4) Provide m bearing pla 3 and 14 ll 	irder(s) for t echanical co ate capable b uplift at joi	russ to trus onnection (I of withstan nt 5.	es connections. by others) of truss to ding 38 lb uplift at joi	nt								in the second se	A CNGIN	ERRATION

- chord and any other members.
- 3) Refer to girder(s) for truss to truss connections. 4) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 38 lb uplift at joint 3 and 14 lb uplift at joint 5.

818 Soundside Road Edenton, NC 27932

G minim April 1,2020

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	J03A	Jack-Open	4	1	Job Reference (optional)	E14248090

4-0-0

Carolina Structural Systems, LLC, Ether, NC - 27247,

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:46 ID:I7N5m?bj1Hx60o__NGu7RBzVQT0-MbZIrPCC4cKJKrUDq1tc8ninSCBHupMoDhmeX1zV9Jt

Page: 1

12 6 Г 2 5 3x6 ш 3-1-8 3-1-8 1 1-1-8 4 3

2x4 II

4-0-0	

Scale = 1:23.9													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-AS	0.20 0.09 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 3-4 3-4 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SI BOT CHORD 2x4 SI BOT CHORD 2x4 SI WEBS 2x4 SI BRACING TOP CHORD Struct excep BOT CHORD Rigid REACTIONS (size) Max Ho Max Up Max Gr FORCES (lb) - N Tensio	 No.2 No.2 No.2 No.2 No.2 ural wood she t end verticals ceiling directly 1 = Mechanic Mechanic viriz 1 =-154 (L av 1=138 (LG (LC 10), 4 	athing directly applie applied. al, 4= Mechanical C 16), 4=144 (LC 1) C 1), 2=-33 (LC 11) C 1), 2=90 (LC 1), 3= 48 (LC 1) apression/Maximum	7) 8) ed, 9) II, 3= LO =30	This truss is International R802.10.2 ar This truss de structural wo chord and 1/ the bottom cl Gap between diagonal or v AD CASE(S)	designed in accord Residential Code nd referenced stan usign requires that od sheathing be a 2" gypsum sheetro hord. n inside of top choi vertical web shall n Standard	dance wi sections idard AN a minimu pplied di ock be ap rd bearin ot excee	th the 2018 R502.11.1 a SI/TPI 1. Jm of 7/16" rectly to the t oplied directly g and first d 0.500in.	top / to					
TOP CHORD 1-4=0. BOT CHORD 3-4=0. NOTES	/0, 1-5=-62/20 /0	, 2-5=-46/30											
 Wind: ASCE 7-16; Vasd=99mph; TCI B=45ft; L=24ft; ea MWFRS (direction 3-1-12, Interior (1) and right exposed exposed;C-C for n reactions shown; I DOL=1.60 * This truss has be on the bottom cho 3-06-00 tall by 2-0 chord and any oth 3) Refer to girder(s) f Provide mechanic bearing plate capa 1 and 33 lb uplift a Non Standard bea 	Vult=125mph DL=6.0psf; BC ve=4ft; Cat. II; al) and C-C E 3-1-12 to 3-1' ; end vertical hembers and f .umber DOL=' en designed f di n all areas 0-00 wide will er members. or truss to trua al connection (bble of withstar t joint 2. ring condition.	(3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; xterior(2E) 0-1-12 to 1-4 zone; cantilever I left and right orces & MWFRS for 1.60 plate grip or a live load of 20.0 where a rectangle fit between the botto ss connections. (by others) of truss to hding 23 Ib uplift at jo Review required.	left Ipsf om Dint							W THINK		SEA 0363	L 22 EEERER AL

April 1,2020

- 1 and 33 lb uplift at joint 2.
- 6) Non Standard bearing condition. Review required.

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	K01	Roof Special	2	1	Job Reference (optional)	E14248091

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:46 ID:NQLWaju?8obTkth8Kw32Z_zVP?g-MbZIrPCC4cKJKrUDq1tc8niodCA0upjoDhmeX1zV9Jt

Scale = 1:29.9

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-AS	0.19 0.17 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 0.00 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x6 SP No.2 *Except Structural wood sheat except end verticals. Rigid ceiling directly (size) 4=0-1-8, 5 Max Horiz 5=54 (LC Max Uplift 4=-20 (LC Max Grav 4=34 (LC	* 2-5:2x4 SP No.2 athing directly applied =0-7-12 10) 8), 5=-61 (LC 11) 18), 5=322 (LC 1)	5) 6) ¹ , 7) LO	Provide mech bearing plate 5 and 20 lb u This truss is of International R802.10.2 ar This truss dee structural woo chord and 1/2 the bottom ch AD CASE(S)	hanical connection capable of withsta plift at joint 4. designed in accord Residential Code s d referenced stan- sign requires that a od sheathing be ap 2" gypsum sheetro hord. Standard	(by oth anding 6 dance wi sections dard AN a minim oplied di ck be ap	ers) of truss t 1 lb uplift at ju th the 2018 R502.11.1 a SI/TPI 1. Jum of 7/16" rectly to the t oplied directly	o oint nd op (to					
FORCES	(lb) - Maximum Com Tension 1-2=-127/63, 2-9=-49	pression/Maximum											
BOT CHORD WEBS	3-4=-47/41 1-5=-57/124, 4-5=-28 2-5=-208/238	3/30											
NOTES 1) Wind: AS(Vasd=99n B=45ft; L=	CE 7-16; Vult=125mph nph; TCDL=6.0psf; BCI =24ft; eave=4ft; Cat. II;	(3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed;											

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.

Page: 1

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	K02	Monopitch	8	1	Job Reference (optional)	E14248092

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:46 ID:VOaaAXeq5LySiea5c0B7CYzVP0?-MbZIrPCC4cKJKrUDq1tc8nipxCBEupxoDhmeX1zV9Jt

Page: 1

Scale = 1:30

Loading TCLL (roof) TCDL BCLL BCDI	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.10 0.09 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%	
DODL	10.0	0000	11(02010/11/2014	Matrix IVI							Weight. 14 lb	11 = 2070	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea 3-3-0 oc purlins, exc Rigid ceiling directly bracing	athing directly applie sept end verticals. applied or 10-0-0 or	6) This trus Internati R802.10 LOAD CASE	s is designed in acco onal Residential Cod .2 and referenced sta E(S) Standard	ordance wi e sections andard AN	th the 2018 R502.11.1 ar SI/TPI 1.	nd						
REACTIONS	(size) 4=0-1-8, 5 Max Horiz 5=55 (LC Max Uplift 4=-30 (LC Max Grav 4=31 (LC	i=0-5-8 10) 8), 5=-43 (LC 11) 9), 5=237 (LC 1)											
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-112/64, 2-3=-51 1-5=-59/111, 4-5=-28 2-5=-149/153	pression/Maximum 1/40, 3-4=-49/49 8/31											
 Wind: ASC Vasd=99m B=45ft; L=/ MWFRS (d cantilever l right expos for reaction DOL=1.60 * This truss on the bott 3-06-00 tal chord and a Bearing at using ANS designer sh Provide me bearing pla Frovide me bearing pla and 30 lb 	E 7-16; Vult=125mph ph; TCDL=6.0psf; BCI 24ft; eave=4ft; Cat. II; directional) and C-C Ex left and right exposed ; edd;C-C for members a hs shown; Lumber DOI s has been designed for om chord in all areas v I by 2-00-00 wide will f any other members. joint(s) 4 considers pa lotter angle to grain f hould verify capacity o echanical connection (1) ate capable of withstan o uplift at joint 4.	(3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; terior(2E) zone; ; end vertical left an and forces & MWFR L=1.60 plate grip or a live load of 20.0 where a rectangle fit between the botto trallel to grain value formula. Building f bearing surface. by others) of truss to ding 43 lb uplift at ju	d S Ipsf om o o o						An HILLIN.		SEA 0363	L 22 EEFRERENTING ILBERTING OTIL 1,2020	Name and Andrews

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	V01	Valley	1	1	Job Reference (optional)	E14248093

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:46 ID:xggWGaQZTO72EFwu2W0WBrzVQve-MbZIrPCC4cKJKrUDq1tc8nik8CAlupOoDhmeX1zV9Jt

Scale = 1:38.3

Loadin	a		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (r	roof)		20.0	Plate Grin DOI	1 00		TC	0.41	Vert(LL)	n/a		n/a	999	MT20	244/190	
			10.0		1 15		BC	0.10	Vort(TL)	n/a	_	n/a	000		210,000	
			10.0*	Bon Stroop Inor	VES			0.13		0.00	5	n/a	555			
			0.0		I E O			0.06		0.00	5	n/a	n/a			
BCDL			10.0	Code	IRC20	8/1912014	Matrix-S							vveight: 66 lb	FT = 20%	
UMBE	R				3	Truss desig	ned for wind load	ls in the pl	ane of the tru	ISS						
TOP CH	HORD	2x4 SP N	0.2			only. For stu	ds exposed to w	ind (norma	al to the face).						
	HORD	2x4 SP N	0.2			see Standard	Industry Gable	End Detai	ls as applical	ole.						
	s	2x4 SP N	0.2			or consult au	alified building d	esigner as	per ANSI/TF	ข 1.						
		2410110	0.2		4	Gable require	es continuous bo	ttom chore	bearing.							
	NG	0		a de la constitució d	5	Gable studs	spaced at 6-0-0	00								
I OP CF	HORD	Structural	wood sne	athing directly applied	aor e	* This truss h	as been designe	ed for a live	load of 20 ()nsf						
		6-0-0 oc p	ourlins.		0	on the botton	n chord in all are	as where a	a rectangle	poi						
BOT CH	HORD	Rigid ceili bracing.	ing directly	applied or 10-0-0 oc		3-06-00 tall b	by 2-00-00 wide v	will fit betw	een the botto	om						
REACT	IONS	(size)	1=20-3-8,	5=20-3-8, 6=20-3-8,	7	Provide mec	hanical connection	s. an (hv athe	ers) of truss t	0						
			7=20-3-8,	9=20-3-8		bearing plate	capable of withs	standing 3	B lb uplift at i	oint						
		Max Horiz	1=-30 (LC	9)		9 and 38 lb u	plift at joint 6.		,							
		Max Uplift	6=-38 (LC	11), 9=-38 (LC 11)	8	This truss is	designed in acco	ordance wi	th the 2018							
		Max Grav	1=71 (LC	1), 5=71 (LC 1), 6=4	54	International	Residential Code	e sections	R502 11 1 a	nd						
			(LC 23), 7	=454 (LC 1), 9=454	(LC	R802.10.2 ar	nd referenced sta	andard AN	SI/TPI 1.	na						
			22)		1	DAD CASE(S)	Standard									
FORCE	s	(lb) - Max	imum Com	pression/Maximum	-	0/10 0/102(0)	otandara									
		Tension														
TOP CH	HORD	1-2=-41/3	9, 2-10=-8	0/59, 3-10=-31/71,												
		3-11=-31/	69, 4-11=-	80/57, 4-5=-30/36												
BOT CH	HORD	1-9=-5/24	, 8-9=-5/24	, 7-8=-5/24, 6-7=-5/2	24,											
		5-6=-5/24														
NEBS		3-7=-326/	106, 2-9=-	353/150, 4-6=-353/1	50										111.	
NOTES	5													1111 01	- 11, in	
1) Unt	balance	ed roof live l	oads have	been considered for										I'TH UF	ROUL	
this	desiar	ו. ו.											- N	A	The last	1
2) Wir	nd ASC	 CE 7-16 [.] Vu	lt=125mph	(3-second gust)									1	FESS	De V	11
Vas	sd=99m	DD 7 TCDI =	6 Onsf [.] BC	DI = 6 0 psf h = 25 ft								7		KP 1		4
B=4	45ft I =	24ft: eave=	4ft: Cat II:	Exp B: Enclosed:										:x	× .	-
MW	VFRS (directional)	and C-C E	cterior(2E) 0-11-5 to										CEA	r 1.	1
4-2	-8 Inte	rior (1) 4-2-	8 to 10-2-8	Exterior(2R) 10-2-8	to									SEA	L :	-
13-	2-8 Int	erior (1) 13-	2-8 to 19-5	5-11 zone: cantilever	left									0363	22 :	-
and	d riaht e	exposed : er	nd vertical I	eft and right								-			:	5
exp	osed C	C-C for mem	bers and fo	prces & MWFRS for										1 .		1
rea	ctions s	shown: Lum	ber DOL=1	.60 plate grip								S	1	·	air	2
DO	L=1.60)											25	S VGIN	EFILA	
20													11	710	TOE N	
														A G	ILD	

April 1,2020

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

GI 11111111

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors	
Furne	V02	Valley	1	1	Job Reference (optional)	E14248094

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:47 ID:I_6Y9LW0H2TH14pBKQdcqqzVQuE-MbZIrPCC4cKJKrUDq1tc8nihRC8EupYoDhmeX1zV9Jt

818 Soundside Road Edenton, NC 27932

Scale = 1:28.5

Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.15 VES	CSI TC BC	0.58 0.28	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a	(loc) - - 3	l/defl n/a n/a	L/d 999 999 p/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S	0.00	110112(112)	0.00	0	n/a	n/a	Weight: 44 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=14-3-8, Max Horiz 1=-20 (LC Max Uplift 1=-15 (LC (LC 11) Max Grav 1=-221 (LC	athing directly applied applied or 10-0-0 oc 3=14-3-8, 4=14-3-8 2 9) 2 11), 3=-15 (LC 11), C 22), 3=221 (LC 23)	 5) Gable stu 6) * This true on the bo 3-06-00 ta chord and d or 7) Provide n bearing p 1, 15 lb u 8) This truss Internatio R802.10.3 4=-4 	ds spaced at 6-0-0 c ss has been designe tom chord in all area all by 2-00-00 wide w l any other members nechanical connectio late capable of withs olifit at joint 3 and 4 ll is designed in acco nal Residential Code 2 and referenced sta (S) Standard	oc. d for a liv/ as where vill fit betw s, n (by oth tanding 1 o uplift at rdance wi e sections ndard AN	e load of 20.0 a rectangle reen the botto 5 lb uplift at jc joint 4. th the 2018 R502.11.1 ar SI/TPI 1.	opsf om o o o int					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-5=-79/37, 2-5=-23, 3-6=-79/33 1-4=0/24, 3-4=0/24 2-4=-392/189	/51, 2-6=-17/46,										
NOTES	2-4=-392/109											
 NOTES Unbalance this design Wind: ASC Vasd=99m B=45ft; L= MWFRS (3-11-5, Int 10-2-8, Int and right e exposed;C reactions s DOL=1.60 Truss des only. For s see Stand or consult Gable require 	ed roof live loads have CE 7-16; Vult=125mph hph; TCDL=6.0psf; BC .24ft; eave=4ft; Cat. II; directional) and C-C E; terior (1) 3-11-5 to 7-2- terior (1) 3-11-5 to 7-2- terior (1) 10-2-8 to 13-5 exposed ; end vertical I C-C for members and fr shown; Lumber DOL=' signed for wind loads ir studs exposed to wind ard Industry Gable En qualified building designities continuous botton	been considered for (3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; xterior(2E) 0-11-5 to 8. Exterior(2R) 7-2-8 5-11 zone; cantilever left and right orces & MWFRS for 1.60 plate grip n the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP m chord bearing.	to left ss le, 1.						Continue		SEA 0363	EER. 1.100 11.000

Job	Truss	Truss Type	Qty	Ply	Southeastern General Contractors					
Furne	V03	Valley	1	1	Job Reference (optional)	E14248095				

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Wed Apr 01 07:26:47 ID:I_6Y9LW0H2TH14pBKQdcqqzVQuE-rn7g3IDqrwSAx?3POIOrh_Fy8cSSdGbxSKVB4UzV9Js

8-3-8

0-10-7

818 Soundside Road Edenton, NC 27932

4-1-12 7-5-1 4-1-12 3-3-5

8-3-8

Scale = 1:21.8

Plate Offsets (X, Y): [2:0-2-0),Edge]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018/	/TPI2014	CSI TC BC WB Matrix-P	0.20 0.41 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING TOP CHORD Structural wo 6-0-0 oc purli BOT CHORD Rigid ceiling w bracing. REACTIONS (size) 1= Max Horiz 1= Max Uplift 1= Max Uplift 1= Max Grav 1= FORCES (lb) - Maximu Tension TOP CHORD 1-2=-332/266 BOT CHORD 1-3=-225/290 NOTES 1) Unbalanced roof live load this design. 2) Wind: ASCE 7-16; Vult=1 Vasd=99mph; TCDL=6.0] B=45ft; L=24ft; eave=4ft; MWFRS (directional) and cantilever left and right ex- right exposed;C-C for me for reactions shown; Lum DOL=1.60 3) Truss designed for wind only. For studs exposed see Standard Industry Ga- or consult qualified buildir 4) Gable requires continuou 5) Gable studs spaced at 2- 6) * This truss has been des- on the bottom chord in all 3-06-00 tall by 2-00-00 w chord and any other merr	bod shea ins. directly a =8-3-8, 3= -11 (LC 9 (LC 1 -261 (LC um Comp 6, 2-3=-3 0 ds have b 125mph (psf; BCD Cat. II; E d C-C Exi xposed ; mbers a ber DOL loads in to wind (able End ng desig is bottom -0-0 oc. signed fo l areas w ide will fin nbers.	thing directly applied applied or 10-0-0 oc =8-3-8 9) 1), 3=-9 (LC 11) 1), 3=261 (LC 1) oression/Maximum 32/275 been considered for (3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; terior(2E) zone; end vertical left and nd forces & MWFRS .=1.60 plate grip the plane of the trus (normal to the face), Details as applicable ner as per ANSI/TPI o chord bearing. r a live load of 20.0p there a rectangle t between the bottom	7) 8) I or LO, S s e, 1. sf n	Provide mech bearing plate and 9 lb uplift This truss is of International R802.10.2 an AD CASE(S)	nanical connection capable of withsta at joint 3. Jesigned in accord Residential Code s d referenced stand Standard	(by othe anding 9 lance wi sections dard AN	ers) of truss to Ib uplift at join th the 2018 R502.11.1 ar SI/TPI 1.	ont 1 nd				SEA 0363	L 22 EFERING MURICINA STILL 22 STILL STILL 22 STILL ST

