

Trenco

818 Soundside Rd Edenton, NC 27932

Re: 19-114808T

KEN DAWSON PLAN 1341

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Stock Building Supply.

Pages or sheets covered by this seal: T18803234 thru T18803248

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

December 4,2019

ORegan, Philip

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job Qty KEN DAWSON PLAN 1341 Truss Truss Type T18803234 19-114808T A01 Common Supported Gable Job Reference (optional) BMC (Middlesex, NC) Middlesex, NC - 27557, 8.240 s Jul 14 2019 MiTek Industries, Inc. Tue Dec 3 17:26:38 2019 Page 1 ID:9ohifRTVSugSpHSw?zcUgvyCcmY-Vs6RZTNtSGcodd2gl89XHX6DUCuRou3OmBQjRSyCcDF 10-4-0 20-8-0 21-6-8

Scale = 1:43.9 4x5 = G 2x4 || 2x4 || H 7.00 12 2x4 || 2x4 || 2x4 || 2x4 D 2x4 | 2x4 || C В 3x4 = W VU S Q P 0 2x4 2x4 2x4 || 2x4 2x4 2x4 || 2x4 || 2x4 || 3x4 2x4 20-8-0

LOADING (psf) SPACING-2-0-0 CSI DEFL. in (loc) I/defl L/d PLATES GRIP TCLL (roof) 20.0 Plate Grip DOL 1.00 TC 0.05 Vert(LL) -0.00n/r 120 MT20 244/190 Snow (Pf/Pg) 10.4/15.0 1.15 BC 0.04 Lumber DOL 0.00 Vert(CT) L n/r 120 TCDL 10.0 WB Rep Stress Incr YES 0.08 Horz(CT) 0.00 n/a n/a BCLL 0.0 Code IRC2015/TPI2014 Matrix-S Wind(LL) 0.00 n/r 90 Weight: 113 lb FT = 20%BCDL 10.0

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **OTHERS**

2x4 SP No.3

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. All bearings 20-8-0.

(lb) - Max Horz B=-138(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) B, S, T, V, W, Q, P, O, N Max Grav All reactions 250 lb or less at joint(s) B, R, S, T, V, W, Q, P, O, N, L

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pg=15.0 psf (ground snow); Pf=10.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10

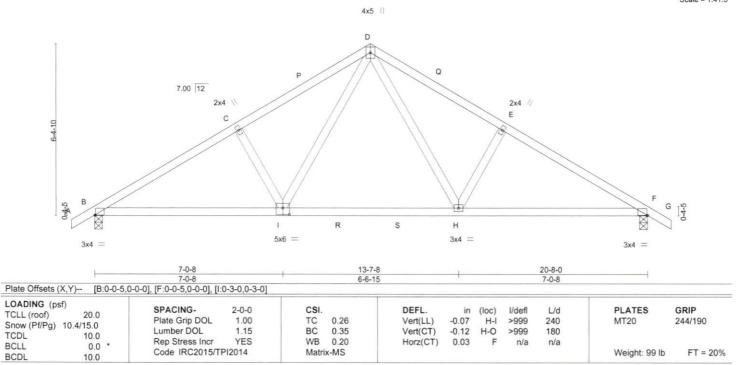
5) Unbalanced snow loads have been considered for this design.

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 10.4 psf on overhangs non-concurrent with other live loads
- 7) Gable requires continuous bottom chord bearing

8) Gable studs spaced at 2-0-0 oc.

- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, S, T, V, W, Q, P, O, N.

December 4,2019


MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MTele® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

KEN DAWSON PLAN 1341 Ply Job Truss Truss Type Qty T18803235 19-114808T . A02 Common Job Reference (optional) 8.240 s Jul 14 2019 MiTek Industries, Inc. Tue Dec 3 17:26:39 2019 Page 1 Middlesex, NC - 27557 BMC (Middlesex, NC), ID:9ohifRTVSugSpHSw?zcUgvyCcmY-_2gpnpOVDakfFndtJrgmqkfK0c9oXJWY_rAG_uyCcDE 21-6-8 20-8-0 10-4-0

Scale = 1:41.5

LUMBER-

TOP CHORD 2x4 SP 1650F 1.5E or 2x4 SP No.1 or 2x4 SP SS BOT CHORD 2x4 SP 1650F 1.5E or 2x4 SP No.1 or 2x4 SP SS

WEBS 2x4 SP No.3 BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 5-3-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(lb/size) B=664/0-3-8, F=664/0-3-8

Max Horz B=138(LC 13)

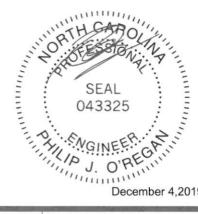
Max Uplift B=-57(LC 14), F=-57(LC 15) Max Grav B=879(LC 2), F=879(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

B-C=-1283/145, C-D=-1160/179, D-E=-1160/179, E-F=-1283/145

BOT CHORD B-I=-85/1118, H-I=0/721, F-H=-38/1072

WEBS D-H=-65/524, E-H=-309/152, D-I=-65/523, C-I=-309/152


NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pg=15.0 psf (ground snow); Pf=10.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 10.4 psf on overhangs non-concurrent with other live loads
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, F.

December 4,2019

Marning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Qty Ply KEN DAWSON PLAN 1341 T18803236 19-114808T A03 Common Structural Gable 1 Job Reference (optional) BMC (Middlesex, NC) Middlesex NC - 27557 8.240 s Jul 14 2019 MiTek Industries, Inc. Tue Dec 3 17:26:41 2019 Page 1 19-9-15 27-7-8 26-9-0 6-5-7 Scale = 1:57.9 2x4 = 4x5 7.00 12 D 2x4 || 2x4 || AQ 2x4 || AF 2x4 || 2x4 || 2x4 || 5x6 / 5x6 > E 2x4 || 11 2x4 2x4 || 2x4 || 2x4 112x4 2x4 2x4 G 80 AS 2x4 || 2x4 2x4 || 5x8 2x4 || 2x4 || 5x8 = 3x6 = 17-8-2 20-7-8 26-9-0 9-0-14 [B:0-3-3,0-1-8], [C:0-3-0,0-3-4], [D:0-2-0,0-0-0], [E:0-3-0,0-3-4], [F:0-3-3,0-1-8], [K:0-4-0,0-3-0], [L:0-4-0,0-3-0] Plate Offsets (X,Y)--LOADING (psf) SPACING-DEFL PLATES GRIP 2-0-0 L/d 20.0 TCLL (roof) Plate Grip DOL 1.00 TC 0.62 Vert(LL) -0.23 >999 240 244/190 K-L MT20 Snow (Pf/Pg) 10.4/15.0 1.15 BC 0.85 Vert(CT) -0.38 K-L >647 180 Lumber DOL TCDI 100 Rep Stress Inci YES WB 0.27 Horz(CT) 0.05 AM n/a n/a BCLL 0.0 Code IRC2015/TPI2014 Matrix-MS Weight: 198 lb FT = 20% BCDL 10.0

LUMBER-

OTHERS

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **WEBS**

2x4 SP No.3 2x4 SP No.3 BRACING-TOP CHORD **BOT CHORD**

Structural wood sheathing directly applied or 3-10-3 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 6-5-0 except (jt=length) B=0-3-8, J=0-3-8.

(lb) - Max Horz B=175(LC 13)

Max Uplift All uplift 100 lb or less at joint(s) B, H, F, J except I=-251(LC 2)

Max Grav All reactions 250 lb or less at joint(s) I, H except B=1078(LC 2), F=940(LC 29), J=303(LC 2), F=686(LC

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD B-C=-1604/191, C-D=-1469/235, D-E=-1376/237, E-F=-1528/193

BOT CHORD B-L=-120/1456, K-L=0/911, J-K=-63/1234, I-J=-63/1234, H-I=-63/1234, F-H=-63/1234

WEBS D-K=-92/576, E-K=-376/201, D-L=-82/730, C-L=-403/200

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pg=15.0 psf (ground snow); Pf=10.4 psf (flat
- roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 10.4 psf on overhangs non-concurrent with other live loads.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, H, F, J, F except (jt=lb) I=251

December 4,2019

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design, Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Qty KEN DAWSON PLAN 1341 Truss Truss Type T18803237 19-114808T . A04 Common Job Reference (optional) 8.240 s Jul 14 2019 MiTek Industries, Inc. Tue Dec 3 17:26:42 2019 Page 1 BMC (Middlesex, NC), Middlesex, NC - 27557, ID:9ohifRTVSugSpHSw?zcUgvyCcmY-OdLyPrQOVV6E6ELS_zDTSNHmUqAgkXy_hpOwaDyCcDB 13-4-8 6-5-7 20-8-0 7-3-8 Scale = 1:49.5 4x5 = D 7.00 12 5x6 / 5x6 > C E 10-14 G Н 3x8 = 5x6 = 2x4 || 6-7-10 [B:0-2-0,0-1-10], [C:0-3-0,0-3-4], [E:Edge,0-1-12], [H:0-3-0,0-3-0] Plate Offsets (X,Y)--LOADING (psf) SPACING-2-0-0 DEFL. in (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.00 TC 0.63 Vert(LL) -0.06 H-K >999 240 MT20 244/190 Snow (Pf/Pg) 10.4/15.0 1.15 BC 0.41 Vert(CT) -0.14 H-K >999 180 Lumber DOL TCDL 10.0 WB 0.73 Horz(CT) 0.02 Rep Stress Incr YES n/a n/a BCLL 0.0 Code IRC2015/TPI2014 FT = 20% Matrix-MS Weight: 113 lb BCDL 10.0

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP 1650F 1.5E or 2x4 SP No.1 or 2x4 SP SS **BOT CHORD** 2x4 SP 1650F 1.5E or 2x4 SP No.1 or 2x4 SP SS

WEBS 2x4 SP No.3

(lb/size) B=660/0-3-8, F=623/0-4-0

Max Horz B=134(LC 11)

Max Grav B=874(LC 2), F=820(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD B-C=-1246/115, C-D=-681/126, D-E=-692/115, E-F=-757/115

BOT CHORD B-H=-131/1004, G-H=-132/1001

WEBS C-H=0/290, C-G=-606/134, D-G=0/321, E-G=-4/525

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) interior zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pg=15.0 psf (ground snow); Pf=10.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 10.4 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Structural wood sheathing directly applied or 5-0-15 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

December 4,2019

Marking - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design, Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

B.240 s Jul 14 2019 Millek Industries, Inc. Tue Dec 3 17:26:43 2019 Page 1 ID:9ohifRTVSugSpHSw?zcUgvyCcmY-spvKcAR0GpE5kOweYhki_ap2oDbnT7F7vT8U7fyCcDA

8 17-7-8 20-11-0 8 17-7-8 3-3-8

4x5 = 7.00 12 2x4 || 2x4 L 2x4 || 2x4 3x4 / M 2x4 || G 2x4 2x4 || F 2x4 || B D 2x4 || C 3x4 WV 11 S R 0 P N 3x4 = 2x4 || 2x4 |

20-11-0 20-11-0

LOADING (psf TCLL (roof) Snow (Pf/Pg) TCDL BCLL	20.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.15 YES	CSI. TC BC WB	0.14 0.09 0.15	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 0.00 -0.00	(loc) A A N	I/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code IRC2015/Ti	PI2014	Matri	x-S	Wind(LL)	-0.00	Α	n/r	90	Weight: 166 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS 1 Row at midpt M-N, K-P, J-Q, L-O

REACTIONS. All bearings 20-11-0.

(lb) - Max Horz B=319(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) N, Q, R, S, T, U, V, X, O

Max Grav All reactions 250 lb or less at joint(s) N, B, P, Q, R, S, T, U, V, O except X=291(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD B-C=-326/247

NOTES-

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pg=15.0 psf (ground snow); Pf=10.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 10.4 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) N, Q, R, S, T, U, V, X, O.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) B.

December 4,2019

Scale = 1:66.9

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job KEN DAWSON PLAN 1341 Truss Truss Type Qty Ply T18803239 19-114808T . A06 Common 5 1 Job Reference (optional) BMC (Middlesex, NC), Middlesex, NC - 27557, 8.240 s Jul 14 2019 MiTek Industries, Inc. Tue Dec 3 17:26:44 2019 Page 1 ID:9ohifRTVSugSpHSw?zcUgvyCcmY-K0TiqWSe16MxLYVq6OFxXoMAidrVCZ0H87t1f6yCcD9 11-10-14 17-7-8 6-2-3 20-11-0 3-3-8 Scale: 3/16"=1" 5x8 = 7.00 12 F 2x4 5x6 = D 2x4 \\ C H 0 M N G 3x4 = 5x8 3x4 = 3x4 / 16-2-12 16-4-8 20-11-0 Plate Offsets (X,Y)-- [B:0-2-4,0-1-8], [D:0-3-0,0-3-0], [I:0-4-0,0-3-0]

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 10.4/15.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.33 BC 0.45 WB 0.24	(/	c) I/defl I-I >999 -L >976 H n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MS				Weight: 141 lb	FT = 20

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP 1650F 1.5E or 2x4 SP No.1 or 2x4 SP SS **BOT CHORD** 2x4 SP 1650F 1.5E or 2x4 SP No.1 or 2x4 SP SS

WEBS 2x4 SP No.3

(lb/size) B=490/0-3-8, H=808/0-3-8 REACTIONS.

Max Horz B=218(LC 14) Max Uplift H=-14(LC 14)

Max Grav B=674(LC 32), H=1178(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD B-C=-834/0, C-D=-671/3 **BOT CHORD** B-I=-165/692, H-I=-75/270

WEBS C-I=-328/146, D-I=-31/584, D-H=-635/176, E-H=-429/98

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) interior zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pg=15.0 psf (ground snow); Pf=10.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 10.4 psf on overhangs non-concurrent with other live loads
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) H.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

D-H, E-H, F-G

Rigid ceiling directly applied or 6-0-0 oc bracing.

except end verticals.

1 Row at midpt

December 4,2019

20%

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MT ek® connectors. This design is based only upon parameters and properly incorporate this design in the overall building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Compone. Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Qty KEN DAWSON PLAN 1341 Truss Truss Type T18803240 19-114808T A07 Common 5 | Job Reference (optional) 8.240 s Jul 14 2019 MiTek Industries, Inc. Tue Dec 3 17:26:45 2019 Page 1 BMC (Middlesex, NC), Middlesex, NC - 27557, ID:9ohifRTVSugSpHSw?zcUgvyCcmY-oC151sSGoQUozi40g6nA4?vLj1BRxwgQNndaBYyCcD8 11-10-14 17-7-8 20-11-0 3-3-8 5-8-10

Scale: 3/16"=1"

Structural wood sheathing directly applied or 5-1-14 oc purlins,

F-G, E-G

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals

1 Row at midpt

5x6 =

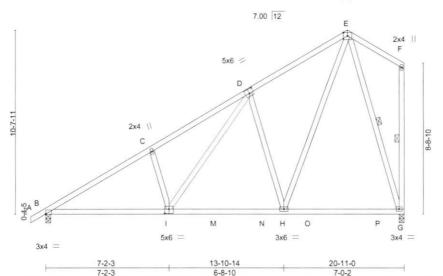


Plate Offsets (X,Y)-- [B:Edge,0-0-4], [D:0-3-0,0-3-0], [I:0-3-0,0-3-0]

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 10.4/15.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.31 BC 0.40 WB 0.60	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.17 0.02	(loc) G-H G-H G	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Code IRC2015/TPI2014	Matrix-MS						Weight: 140 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP 1650F 1.5E or 2x4 SP No.1 or 2x4 SP SS BOT CHORD 2x4 SP 1650F 1.5E or 2x4 SP No.1 or 2x4 SP SS

WEBS 2x4 SP No.3

REACTIONS. (lb/size) B=668/0-3-8, G=631/0-3-8

Max Horz B=218(LC 14) Max Uplift G=-11(LC 14)

Max Grav B=888(LC 28), G=943(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD B-C=-1285/36, C-D=-1237/108, D-E=-695/113

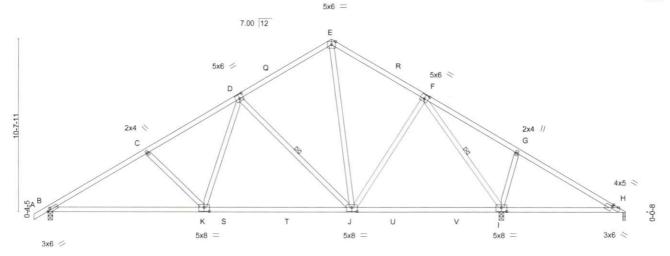
BOT CHORD B-I=-221/1146, H-I=-131/721

WEBS C-I=-329/151, D-I=-86/600, D-H=-595/200, E-H=-107/905, E-G=-813/131

NOTES-

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) interior zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pg=15.0 psf (ground snow); Pf=10.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 10.4 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) G.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.


Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Ply KEN DAWSON PLAN 1341 Truss Truss Type Qty T18803241 19-114808T . A08 3 Common Job Reference (optional) BMC (Middlesex, NC) Middlesex, NC - 27557 8.240 s Jul 14 2019 MiTek Industries, Inc. Tue Dec 3 17:26:46 2019 Page 1 ID:9ohifRTVSugSpHSw?zcUgvyCcmY-GObTFCTuZkcfbsfDDpIPcDRUIRU0gNnacRM8k_yCcD7 11-10-14 17-7-8 23-4-2 5-8-10 29-0-13 35-9-8

Scale = 1:68.7

18-10-11 [B:0-2-3,0-1-8], [D:0-3-0,0-3-0], [F:0-3-0,0-3-0], [H:0-4-3,0-1-8], [H:0-4-3,Edge], [I:0-4-0,0-3-0], [J:0-4-0,0-3-0], [K:0-4-0,0-3-0] Plate Offsets (X,Y)-LOADING (psf SPACING-2-0-0 **PLATES** GRIP (loc) I/def L/d TCLL (roof) 20.0 Plate Grip DOL 1.00 TC 0.42 Vert(LL) -0.19 >999 240 MT20 244/190 Snow (Pf/Pg) 10.4/15.0 -0.36 Lumber DOL 1.15 BC 0.64 Vert(CT) K-N >940 180 TCDI 10.0 Rep Stress Incr YES WB 0.61 Horz(CT) 0.04 Н n/a n/a BCLL 0.0 Code IRC2015/TPI2014 Weight: 192 lb FT = 20% BCDL 10.0

BRACING-

WEBS

TOP CHORD

BOT CHORD

28-1-4

6-0-0 oc bracing: H-I. 1 Row at midpt

LUMBER-

TOP CHORD 2x4 SP 1650F 1.5E or 2x4 SP No.1 or 2x4 SP SS 2x4 SP 1650F 1.5E or 2x4 SP No.1 or 2x4 SP SS

BOT CHORD WEBS 2x4 SP No.3

REACTIONS. (lb/size) B=830/0-3-8, I=1368/0-3-8, H=8/0-2-0

Max Horz B=181(LC 13) Max Uplift H=-47(LC 32)

Max Grav B=1105(LC 28), I=1807(LC 29), H=63(LC 33)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD B-C=-1685/180, C-D=-1471/177, D-E=-744/177, E-F=-817/186, F-G=-26/623,

G-H=-100/540

BOT CHORD B-K=-75/1539, J-K=0/1135, I-J=0/445, H-I=-406/135

WEBS C-K=-345/146, D-K=0/548, D-J=-707/158, E-J=-66/430, F-J=0/435, F-I=-1517/163,

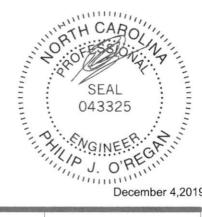
G-I=-348/157

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) interior zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pg=15.0 psf (ground snow); Pf=10.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10

4) Unbalanced snow loads have been considered for this design.


5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 10.4 psf on overhangs non-concurrent with other live loads

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) H.

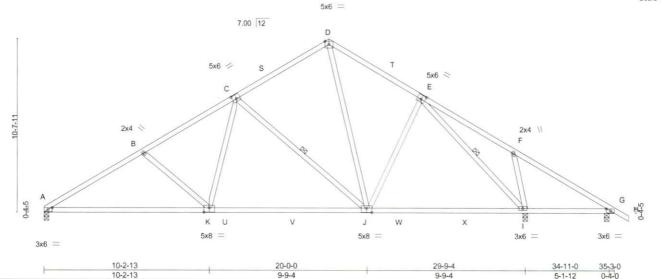
9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) H.

35-9-8

Structural wood sheathing directly applied or 4-4-10 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

December 4,2019


🗼 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MtTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type			Qty	Ply	KEN DAWSON PLAN	1341		
									T1	8803242
19-114808T	A09	Common			5	1	0000 00000			
							Job Reference (options	al)		
BMC (Middlesex, NC),	Middlesex, NC - 2755	7,				8.240 s Ju	I 14 2019 MiTek Industr	ies, Inc. Tue Dec 3	17:26:48 2019 P	age 1
				ID:9ohif	RTVSugS	pHSw?zcl	UgvyCcmY-DniDguV95l	LsNq9pbLEKtheXqW	E8D8HHt3lrFoty(CcD5
	6-2-3	11-10-14	17-7-8	1	23-4-2	1	29-0-13	35-3-0	36-1-8	
	6-2-3	5-8-10	5-8-10		5-8-10		5-8-10	6-2-3	0-10-8	

Scale = 1:68.4

FT = 20%

[A:0-3-3,0-1-8], [C:0-3-0,0-3-0], [E:0-3-0,0-3-0], [G:0-3-3,0-1-8], [J:0-4-0,0-3-4], [K:0-4-0,0-3-4] Plate Offsets (X,Y)--LOADING (psf) SPACING-2-0-0 CSI. DEFL in (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.00 TC 0.40 -0.22 Vert(LL) I-J >999 240 MT20 244/190

BRACING-

WEBS

TOP CHORD

BOT CHORD

Snow (Pf/Pg) 10.4/15.0 0.72 Lumber DOL 1.15 BC Vert(CT) -0.44 >805 K-N 180 TCDL 10.0 Rep Stress Incr YES WB 0.61 Horz(CT) 0.05 n/a n/a BCLL 0.0 Code IRC2015/TPI2014 Matrix-MS Weight: 194 lb BCDL 10.0

LUMBER-TOP CHORD 2x4 SP 1650F 1.5E or 2x4 SP No.1 or 2x4 SP SS **BOT CHORD**

2x4 SP 1650F 1.5E or 2x4 SP No.1 or 2x4 SP SS

WEBS 2x4 SP No.3

REACTIONS.

(lb/size) A=894/0-3-8, I=1135/0-3-8, G=150/0-3-8

Max Horz A=-224(LC 12)

Max Uplift A=-73(LC 14), I=-29(LC 15), G=-64(LC 15) Max Grav A=1179(LC 28), I=1546(LC 29), G=256(LC 33)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD A-B=-1916/227, B-C=-1670/213, C-D=-939/211, D-E=-1089/239

BOT CHORD A-K=-195/1775, J-K=-73/1376, I-J=0/853

WEBS

B-K=-363/163, C-K=0/553, C-J=-765/177, D-J=-113/683, E-I=-1328/14, F-I=-429/219

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pg=15.0 psf (ground snow); Pf=10.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 10.4 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, I, G.

Structural wood sheathing directly applied or 3-11-14 oc purlins.

C-J, E-I

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

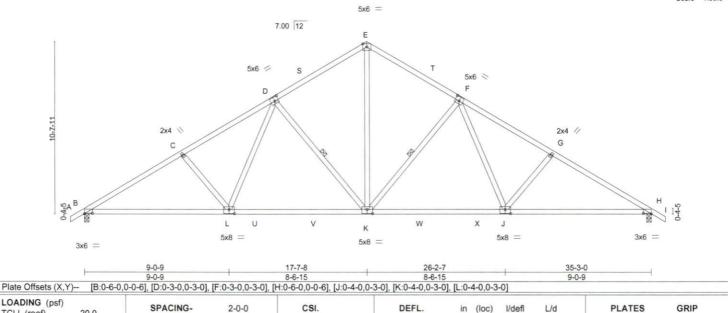
6-0-0 oc bracing: G-I.

1 Row at midpt

December 4,2019

🔌 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AIST/PH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



Job	Truss	Truss Type			Qty	Ply	KEN DAWSON PLAN	1341		
		200			- 2				T18	8803243
19-114808T	A10	Common			2	1				
1.5							Job Reference (option	al)		
BMC (Middlesex, NC),	Middlesex, NC - 27557,					8.240 s J	ul 14 2019 MiTek Industr	ries, Inc. Tue Dec 3	17:26:49 2019 Pa	age 1
				ID:9ohif	RTVSugS	SpHSw?ze	cUgvyCcmY-hzGbtEWns	f_ESJOovyr6Er30heV	Wmtmf0IPboKJyC	cD4
-0 ₋ 10-8	6-2-3	11-10-14	17-7-8	1	23-4-2		29-0-13	35-3-0	36-1-8	
0-10-8	6-2-3	5-8-10	5-8-10		5-8-10		5-8-10	6-2-3	0-10-8	

Scale = 1:68.9

244/190

FT = 20%

LUMBER-

TCLL (roof)

TCDL

BCLL

BCDL

Snow (Pf/Pg) 10.4/15.0

TOP CHORD 2x4 SP 1650F 1.5E or 2x4 SP No.1 or 2x4 SP SS 2x4 SP 1650F 1.5E or 2x4 SP No.1 or 2x4 SP SS **BOT CHORD**

WEBS 2x4 SP No.3

20.0

10.0

00

10.0

BRACING-TOP CHORD

Vert(LL)

Vert(CT)

Horz(CT)

-0.20

-0.35

0.09

J-K

J-K

>999

>999

n/a

BOT CHORD WEBS

Structural wood sheathing directly applied or 3-7-11 oc purlins.

240

180

n/a

MT20

Weight: 192 lb

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt F-K, D-K

REACTIONS.

(lb/size) B=1107/0-3-8, H=1107/0-3-8

Max Horz B=-227(LC 12)

Max Uplift B=-88(LC 14), H=-88(LC 15) Max Grav B=1462(LC 2), H=1463(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD B-C=-2370/252, C-D=-2190/264, D-E=-1519/265, E-F=-1519/265, F-G=-2190/264,

Plate Grip DOL

Rep Stress Incr

Code IRC2015/TPI2014

Lumber DOL

1.00

1.15

YES

TC

BC

WB

Matrix-MS

0.37

0.63

0.48

G-H=-2371/252

BOT CHORD B-L=-187/2162, K-L=-78/1743, J-K=-24/1627, H-J=-119/2000

WEBS E-K=-151/1164, F-K=-673/189, F-J=-22/556, G-J=-333/159, D-K=-673/189, D-L=-22/556,

C-L=-333/159

NOTES-

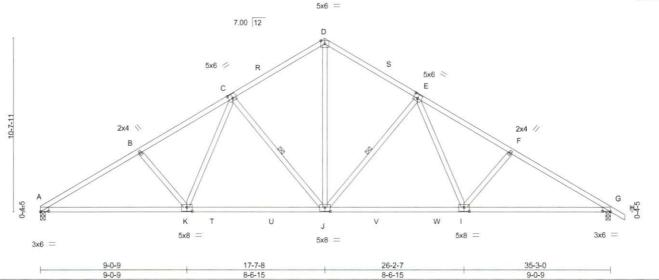
- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber
- DOL=1.60 plate grip DOL=1.33
 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pg=15.0 psf (ground snow); Pf=10.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 10.4 psf on overhangs non-concurrent with other live loads.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 7) *This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, H.


December 4,2019

🚵 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MTTek® connectors. This design is based only upon parameters and now, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH Quality Criteria, DSB-89 and BCSI Building Competer Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type		Qty	Ply	KEN DAWSON PLAN 1341		
					122			T18803244
19-114808T	A11	Common		4	1	tana series e e e		7
						Job Reference (optional)		
BMC (Middlesex, NC),	Middlesex, NC - 27557,				8.240 s Ju	I 14 2019 MiTek Industries, I	nc. Tue Dec 31	7:26:51 2019 Page 1
			ID:9ohifR	TVSugSph	HSw?zcUg	vyCcmY-dMOMIwX1OGEyho	XA0MtaJG9LyS	BCLg8Jlj4vPCyCcD2
Ľ	6-2-3	11-10-14	17-7-8	23-4-2	1 5	29-0-13	35-3-0	36-1-8
	6-2-3	5-8-10	5-8-10	5-8-10		5-8-10	6-2-3	0-10-8

Scale = 1:68.4

[A:0-6-0,0-0-6], [C:0-3-0,0-3-0], [E:0-3-0,0-3-0], [G:0-6-0,0-0-6], [I:0-4-0,0-3-0], [J:0-4-0,0-3-0], [K:0-4-0,0-3-0] Plate Offsets (X,Y)--

TCLL (roof) Snow (Pf/Pg) TCDL	20.0 10.4/15.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.15 YES	CSI. TC BC WB	0.39 0.63 0.48	Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.35 0.09	(loc) I-J G	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 * 10.0	Code IRC2015/Ti		5.555	x-MS	11012(01)	0.00		1110	100	Weight: 191 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP 1650F 1.5E or 2x4 SP No.1 or 2x4 SP SS **BOT CHORD** 2x4 SP 1650F 1.5E or 2x4 SP No.1 or 2x4 SP SS

WEBS 2x4 SP No.3 BRACING-TOP CHORD

BOT CHORD WEBS

Structural wood sheathing directly applied or 3-7-5 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt E-J, C-J

REACTIONS.

(lb/size) A=1071/0-3-8, G=1108/0-3-8

Max Horz A=-224(LC 12)

Max Uplift A=-73(LC 14), G=-88(LC 15) Max Grav A=1409(LC 2), G=1463(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD A-B=-2375/256, B-C=-2194/268, C-D=-1520/266, D-E=-1520/266, E-F=-2191/265,

F-G=-2371/253

A-K=-190/2167, J-K=-79/1745, I-J=-25/1629, G-I=-120/2001 **BOT CHORD**

WEBS D-J=-151/1165, E-J=-673/189, E-I=-22/556, F-I=-333/159, C-J=-675/190, C-K=-24/560,

B-K=-336/160

NOTES-

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber
- DOL=1.60 plate grip DOL=1.33

 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pg=15.0 psf (ground snow); Pf=10.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10

 4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 10.4 psf on overhangs non-concurrent with other live loads.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, G.

December 4,2019

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MTTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, arection and bracing of trusses and truss systems, see MSVITPH10aality Criteria, DSB-89 and BCSI Building Composition available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

KEN DAWSON PLAN 1341 Job Truss Type Qty Ply Truss T18803245 19-114808T . A12 Common Supported Gable 1 Job Reference (optional) 8.240 s Jul 14 2019 MiTek Industries, Inc. Tue Dec 3 17:26:52 2019 Page 1 BMC (Middlesex, NC). Middlesex, NC - 27557, ID:9ohifRTVSugSpHSw?zcUgvyCcmY-5YykVFYf9aMpJn6Na4PpsUhaRsfn4CSS_NpSxeyCcD1 35-3-0 36-1-8

Scale = 1:77.3

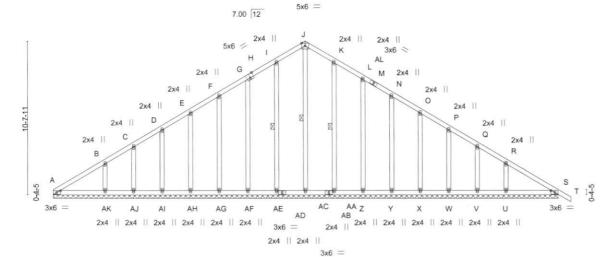


Plate Offsets (X,Y)-- [A:0-3-3,0-1-8], [G:0-2-0,0-0-0], [H:0-0-0,0-1-12], [H:0-3-0,Edge], [S:0-3-3,0-1-8]

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 10.4/15.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.15	CSI. TC 0.15 BC 0.10	DEFL. Vert(LL) Vert(CT)	in 0.00 0.01	(loc) T T	l/defl n/r n/r	L/d 120 120	PLATES MT20	GRIP 244/190
BCLL 0.0 *	Rep Stress Incr YES	WB 0.15	Horz(CT)	0.01	S	n/a	n/a	W-i-bt 040 lb	FT - 200/
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL)	0.00	5	n/r	90	Weight: 243 lb	FT = 20%

35-3-0

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

OTHERS 2x4 SP No.3 BRACING-TOP CHORD

BOT CHORD WEBS

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

J-AC, I-AE, K-AA

REACTIONS. All bearings 35-3-0.

(lb) - Max Horz A=-224(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) A, AE, AF, AG, AH, AI, AJ, AK, AA, Z, Y, X, W, V, U

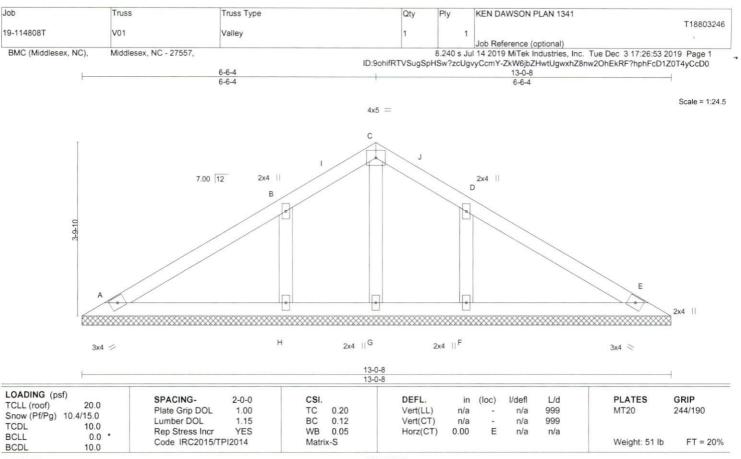
Max Grav All reactions 250 lb or less at joint(s) A, AC, AE, AF, AG, AH, AI, AJ, AA, Z, Y, X, W, V, S except

AK=304(LC 28), U=290(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pg=15.0 psf (ground snow); Pf=10.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 10.4 psf on overhangs non-concurrent with other live loads
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A. AE. AF. AG. AH, AI, AJ, AK, AA, Z, Y, X, W, V, U.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) A, S.



December 4,2019

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design valid for use only with Mi lek® connectors. This design is based only upon parameters shown, and its for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Comp. Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **OTHERS** 2x4 SP No.3 BRACING-

TOP CHORD **BOT CHORD**

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 13-0-8

(lb) - Max Horz A=-74(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) A, E, G, H, F

Max Grav All reactions 250 lb or less at joint(s) A, E, G except H=343(LC 27), F=343(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pg=15.0 psf (ground snow); Pf=10.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, E, G, H, F.

December 4,2019

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MTele® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component
Safety Information. available from Truss Plate Institute. 218 N Lee Street Suite 42 Assayand; A2 2314. fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Joh KEN DAWSON PLAN 1341 Truss Truss Type Qty T18803247 19-114808T . V02 Valley 1 Job Reference (optional) 8.240 s Jul 14 2019 MiTek Industries, Inc. Tue Dec 3 17:26:54 2019 Page 1 BMC (Middlesex, NC) Middlesex, NC - 27557 ID:9ohifRTVSugSpHSw?zcUgvyCcmY-1x4UwxZwhBdXY4GlhVRHxvnuXfKJY8dlRglZ0XyCcD? 9-0-8 4-6-4 Scale = 1:18.4 4x5 = 7.00 12 20-0 0-0-4

					9-0-1	1		0-0-7				
LOADING (psf TCLL (roof) Snow (Pf/Pg) TCDL BCLL	20.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.15 YES	CSI. TC BC WB	0.30 0.16 0.04	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - C	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code IRC2015/TR	PI2014	Matri	x-P						Weight: 30 lb	FT = 20%

9-0-1

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **OTHERS** 2x4 SP No.3

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

2x4 >

9-0-8

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(lb/size) A=123/8-11-10, C=123/8-11-10, D=238/8-11-10

Max Horz A=-49(LC 10)

2x4 /

Max Uplift A=-26(LC 14), C=-32(LC 15)

Max Grav A=166(LC 2), C=166(LC 2), D=304(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pg=15.0 psf (ground snow); Pf=10.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.

December 4,2019

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designs. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/THI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Qty Ply KEN DAWSON PLAN 1341 T18803248 19-114808T V03 Valley 1 | Job Reference (optional) 8.240 s Jul 14 2019 MiTek Industries, Inc. Tue Dec 3 17:26:55 2019 Page 1 BMC (Middlesex, NC) Middlesex, NC - 27557, ID:9ohifRTVSugSpHSw?zcUgvyCcmY-W7ds8HaYRVIOAErxFCyWU6J6z3f?GbZvgK26YzyCcD_ 2-6-4 5-0-8 3x4 = Scale = 1:11.8 В 7.00 12 C 0-0-4 0-0-4 2x4 > 0-0-7 Plate Offsets (X,Y)-- [B:0-2-0,Edge] LOADING (psf) SPACING-PLATES GRIP 2-0-0 CSI. DEFL. in I/defl L/d (loc) TCLL (roof) 20.0 Plate Grip DOL 1.00 244/190 TC 0.07 Vert(LL) n/a n/a 999 MT20 Snow (Pf/Pg) 10.4/15.0 1.15 BC 0.19 Vert(CT) 999 Lumber DOL n/a n/a TCDI 100 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 C n/a n/a BCLL 0.0 Code IRC2015/TPI2014 Matrix-P Weight: 14 lb FT = 20% BCDL 10.0

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 5-0-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD

REACTIONS. (lb/size) A=120/4-11-10, C=120/4-11-10

Max Horz A=24(LC 11)

Max Uplift A=-8(LC 14), C=-8(LC 15)

Max Grav A=158(LC 2), C=158(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1) Unbalanced roof live loads have been considered for this design.

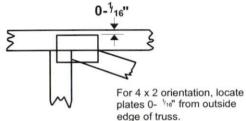
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pg=15.0 psf (ground snow); Pf=10.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.

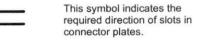
December 4,2019

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


Symbols


PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.

Dimensions are in ft-in-sixteenths. Apply plates to both sides of truss and fully embed teeth.

^{*} Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

4 x 4

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

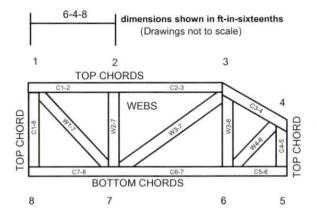
LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur. Min size shown is for crushing only.

Industry Standards:


ANSI/TPI1: National Design Specification for Metal Plate Connected Wood Truss Construction.

DSB-89: 'BCSI: Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate

Connected Wood Trusses.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 10/03/2015

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.

JOB NAME: KEN DAWSON HOMES

MODEL: PLAN 1341 GARAGE LEFT

ORDER ESTIMATE

ORDER # 19-114808T

PAGE 1

DATE

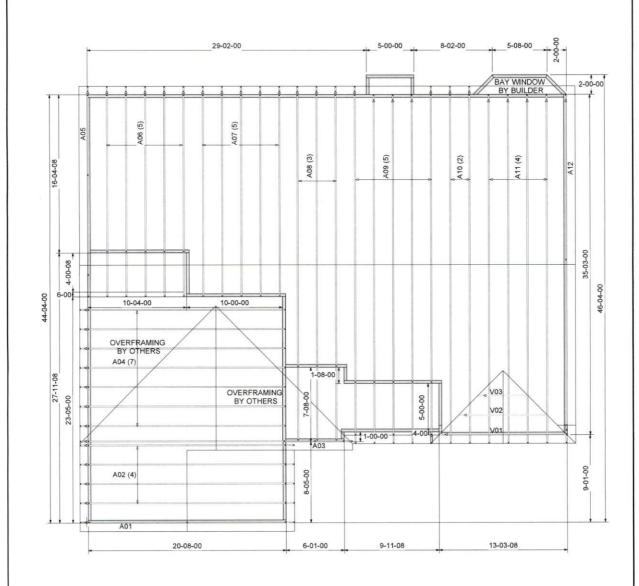
12/03/19

DESIGNER: LISA SCHICHTEL

DELIVERY INSTRUCTIONS:ELEVATION DRAWING NEEDED PRIOR TO

MANUFACTURE OF ANY TRUSSES

TAG: ROOF TRUSSES


LOT#:

SUBDIV:

ROOF TRUSSES LOADING TCLL-TCDL-BCLL-BCDL STRESS INCR. 20.0.10.0.0.0.10.0 1.15 ROOF TRUSS SPACING: 24.0 IN. O.C. (TYP.)

KOOF IKUSSE	TION	20.0,10.0,0.0,	10.0	1.15		01 111	000017	CING. 24.	0 111. 0.0.	(,				
PROFILE	QTY	PIT	СН	TYPE	BASE	O/A	LUM	BER	HEEL	HEIGHT			CANTILEVER	
11101122	PLY	TOP	BOT	ID	SPAN	SPAN	TOP	BOT	LEFT	RIGHT	LEFT	RIGHT	LEFT	RIGHT
	1	7.00	0.00	COMMON A01	20-08-00	20-08-00	2 X 4	2 X 4	00-04-05	00-04-05	00-10-08	00-10-08		
	4	7.00	0.00	COMMON A02	20-08-00	20-08-00	2x4	2x4	00-04-05	00-04-05	00-10-08	00-10-08		
	1	7.00	0.00	COMMON A03	26-09-00	26-09-00	2 X 4	2 X 4	00-04-05	00-04-05	00-10-08	00-10-08		
	7	7.00	0.00	COMMON A04	20-08-00	20-08-00	2x4	2x4	00-04-05	03-10-14	00-10-08			
	1	7.00	0.00	COMMON A05	20-11-00	20-11-00	2 X 4	2 X 4	00-04-05	08-08-10	00-10-08			
	5	7.00	0.00	COMMON A06	20-11-00	20-11-00	2x4	2x4	00-04-05	08-08-10	00-10-08			04-06-08
M	5	7.00	0.00	COMMON A07	20-11-00	20-11-00	2x4	2x4	00-04-05	08-08-10	00-10-08		,	
	3	7.00	0.00	COMMON A08	35-09-08	35-09-08	2x4	2x4	00-04-05	00-00-08	00-10-08			
	5	7.00	0.00	COMMON A09	35-03-00	35-03-00	2x4	2x4	00-04-05	00-04-05		00-10-08		00-04-00
	2	7.00	0.00	COMMON A10	35-03-00	35-03-00	2x4	2x4	00-04-05	00-04-05	00-10-08	00-10-08		
	4	7.00	0.00	COMMON A11	35-03-00	35-03-00	2x4	2x4	00-04-05	00-04-05		00-10-08		
	1	7.00	0.00	COMMON A12	35-03-00	35-03-00	2 X 4	2 X 4	00-04-05	00-04-05		00-10-08		
	1	7.00	0.00	VALLEY V01	13-00-08	13-00-08	2 X 4	2 X 4	00-00-00	00-00-00				
	1	7.00	0.00	VALLEY V02	08-11-10	08-11-10	2 X 4	2 X 4	00-00-04	00-00-04				
	1	7.00	0.00	VALLEY V03	04-11-10	04-11-10	2 X 4	2 X 4	00-00-04	00-00-04				

NOTES:

- 1) TRUSS SPACING 24" o/c UNLESS NOTED OTHERWISE.
 2) SEE ENGINEERED TRUSS DRAWINGS FOR NOTES AND REQUIRED BRACING OF TRUSS WEBS IN ADDITION TO BCSI-B1 SUMMARY SHEET FOR 2) SEE ENGINEERED TRUSS DRAWINGS FOR NOTES AND REQUIRED BRACING OF TRUSS WEBS IN ADDITION HANDLING, INSTALLING AND BRACING.

 3) FOLLOW SIMPSONS INSTALLATION RECOMMENDATIONS FOR HANGER CONNECTIONS.

 4) VERIFY ALL BUILDING DIMENSIONS PRIOR TO TRUSS ERECTION.

 5) EXTERIOR DIMENSIONS ARE FROM OUT TO OUT OF SHEATHING UNLESS NOTED OTHERWISE.

 6) DO NOT CUT, DRILL OR ALTER TRUSS WITH OUT CONSULTING A REGISTERED PROFESSIONAL ENGINEER.

 7) ATTIC ACCESS MUST BE PLACED BETWEEN TRUSSES.

- 7) AT ITC ACCESS MUST BE PLACED BETWEEN TRUSSES.

 8) BUILDER IS RESPONSIBLE FOR PROVIDING ADEQUATE BEARING TO SUPPORT TRUSS REACTIONS.

 9) DIMENSIONS ARE IN FEET-INCHES-SIXTEENTHS.

 10)NO HANGERS ARE REQUIRED FOR SMALL, OPEN-ENDED TRUSSES. INSTEAD, USE 3 NAILS IN BOTH THE TOP AND BOTTOM CHORDS.

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building design, it is the building design at the specification of the building design, it is the building design at the structure can support the entire roof or floor truss system. See engineered drawings for required lateral bracing and other information for each trust design identified on the placement drawing. The building designer is responsible for permanent bracing of the roof and floor system and for the everall structure. For general guidance regarding bracing, consult the BCSI-BI SUMMARY SHEET, provided by BMC. THE BUILDER I CALTIONED to seek professional arivies or follow the bracing guidelines of BCSI-BI White installing the trusses in order to prevent toppling or demanding of hadequirely beared trusses.