

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 20-045195T

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Stock Building Supply.

Pages or sheets covered by this seal: T20252353 thru T20252385

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844



May 19,2020

Albani, Thomas

**IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

| Job        | Truss | Truss Type | Qty | Ply |                                   |       |
|------------|-------|------------|-----|-----|-----------------------------------|-------|
| 20-045195T | A     | Common     | 4   | 1   | T202:<br>Job Reference (optional) | 52353 |

12-0-0

5-9-9

BMC (Middlesex, NC), Middlesex, NC - 27557,

8-4-7

Scale = 1:57.3

Loading

TCLL (roof)

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:39 ID:W9AnQZGtFcED9wo4Og9LgJzF\_mW-pGKu3TbJvKQ9r\_xlQ4e5RhWBmB4JQ7ZrE?SA0jzEz4K

2x4 /

4

23-0-0

7-4-9

l/defl

>999

L/d

240

24-0-0

6-2-7

4x12 u

ě

5

3x8=

GRIP

244/190

24-0-0

1-0-0

PLATES

MT20

17-9-9

5-9-9

6

4x5=

in

-0.19

(loc)

6-7

5x6 = 3



Page: 1

0-4-7 ⊢⊢ 7 18 19 5x6= 3x8= 1-0-0 8-4-9 15-7-7 1-0-0 7-4-9 7-2-13 Plate Offsets (X, Y): [1:0-8-0,0-0-10], [1:0-0-4,Edge], [5:0-8-0,0-0-10], [5:0-0-4,Edge], [7:0-3-0,0-3-0] 2-0-0 CSI DEFL (psf) Spacing тс 20.0 Plate Grip DOL 1.00 0.58 Vert(LL) BC 0.65 Vert(CT) 10.0 Lumber DOL 1.15

12 8 Г 2x4 💊

2

6-2-7

6-2-7

4x12 ı

| TCDL                                                                                    | 10.0                                                                                                                                                          | Lumber DOL                                                                                                                            | 1.15       |                                                   | BC                                     | 0.65                        | Vert(CT)                          | -0.30       | 6-7 | >955 | 180        |                |          |         |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------|----------------------------------------|-----------------------------|-----------------------------------|-------------|-----|------|------------|----------------|----------|---------|
| BCLL                                                                                    | 0.0*                                                                                                                                                          | Rep Stress Incr                                                                                                                       | YES        |                                                   | WB                                     | 0.11                        | Horz(CT)                          | 0.03        | 5   | n/a  | n/a        |                |          |         |
| BCDL                                                                                    | 10.0                                                                                                                                                          | Code                                                                                                                                  | IRC20      | 015/TPI2014                                       | Matrix-MS                              |                             |                                   |             |     |      |            | Weight: 127 lb | FT = 20% |         |
| LUMBER                                                                                  | D 2x4 SP No.2                                                                                                                                                 |                                                                                                                                       |            | <ol> <li>* This truss<br/>on the botto</li> </ol> | has been design<br>m chord in all are  | ed for a live               | e load of 20.<br>a rectangle      | 0psf        |     |      |            |                |          |         |
| BOT CHOR                                                                                | D 2x4 SP No.2                                                                                                                                                 |                                                                                                                                       |            | 3-06-00 tall                                      | by 2-00-00 wide                        | will fit betw               | een the bott                      | om          |     |      |            |                |          |         |
| WEBS                                                                                    | 2x4 SP No.2 *Excep                                                                                                                                            | ot* 6-4,7-2:2x4 SP No                                                                                                                 | 0.3        | chord and a                                       | ny other membe                         | rs, with BC                 | DL = 10.0ps                       | f.          |     |      |            |                |          |         |
| WEDGE                                                                                   | Left: 2x10 SP 2250F<br>Right: 2x10 SP 2250                                                                                                                    | 1.9E or DSS or SS<br>)F 1.9E or DSS or S                                                                                              | s          | 5) Provide med<br>bearing plat                    | chanical connecti<br>e capable of with | ion (by othe<br>istanding 2 | ers) of truss<br>0 lb uplift at j | to<br>joint |     |      |            |                |          |         |
| BRACING                                                                                 |                                                                                                                                                               |                                                                                                                                       |            | 1 and 20 lb                                       | uplint at joint 5.                     |                             | th the 2015                       |             |     |      |            |                |          |         |
| TOP CHOR                                                                                | D Structural wood she<br>4-8-4 oc purlins.                                                                                                                    | athing directly applie                                                                                                                | ed or      | b) This truss is<br>Internationa                  | Residential Coc                        | de sections                 | R502.11.1 a                       | and         |     |      |            |                |          |         |
| BOT CHOR                                                                                | <ul> <li>Rigid ceiling directly<br/>bracing.</li> </ul>                                                                                                       | applied or 10-0-0 or                                                                                                                  | C          | LOAD CASE(S)                                      | Standard                               | andard AN                   | ISI/TPLT.                         |             |     |      |            |                |          |         |
| REACTION                                                                                | <ul> <li>S (size) 1=0-3-8, 8</li> <li>Max Horiz 1=155 (LC<br/>Max Uplift 1=-20 (LC<br/>Max Grav 1=960 (LC</li> </ul>                                          | 5=0-3-8<br>C 7)<br>C 10), 5=-20 (LC 11)<br>C 1), 5=960 (LC 1)                                                                         |            |                                                   |                                        |                             |                                   |             |     |      |            |                |          |         |
| FORCES                                                                                  | (lb) - Maximum Com<br>Tension                                                                                                                                 | pression/Maximum                                                                                                                      |            |                                                   |                                        |                             |                                   |             |     |      |            |                |          |         |
| TOP CHOR                                                                                | D 1-2=-1117/113, 2-3=<br>4-5=-1117/113                                                                                                                        | -985/164, 3-4=-985/                                                                                                                   | /164,      |                                                   |                                        |                             |                                   |             |     |      |            |                |          |         |
| BOT CHOR                                                                                | D 1-7=-108/931, 7-18=<br>6-19=0/643, 5-6=-12                                                                                                                  | =0/643, 18-19=0/643<br>2/848                                                                                                          | 8,         |                                                   |                                        |                             |                                   |             |     |      |            |                |          |         |
| WEBS                                                                                    | 3-6=-63/428, 4-6=-2<br>2-7=-248/161                                                                                                                           | 48/161, 3-7=-63/428                                                                                                                   | 3,         |                                                   |                                        |                             |                                   |             |     |      |            | 1111 C         | AD       |         |
| NOTES                                                                                   |                                                                                                                                                               |                                                                                                                                       |            |                                                   |                                        |                             |                                   |             |     |      |            | "atr           |          |         |
| 1) Unbalan<br>this desi                                                                 | ced roof live loads have gn.                                                                                                                                  | been considered for                                                                                                                   | r          |                                                   |                                        |                             |                                   |             |     |      | 11         | 20.000         | 310 V    | -       |
| <ol> <li>Wind: A<br/>Vasd=9<br/>II; Exp E<br/>and C-C<br/>exposed<br/>member</li> </ol> | SCE 7-10; Vult=115mph<br>Imph; TCDL=6.0psf; BC<br>;; Enclosed; MWFRS (er<br>Exterior (2) zone; cantil<br>1; end vertical left and rig<br>s and forces & MWFRS | (3-second gust)<br>DL=6.0psf; h=30ft; (<br>avelope) exterior zon<br>ever left and right<br>ght exposed;C-C for<br>for reactions shown | Cat.<br>ne |                                                   |                                        |                             |                                   |             |     |      | THE STREET | SE/<br>155     | AL<br>44 | WWWWWWW |

Lumber DOL=1.60 plate grip DOL=1.33 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.





| Job        | Truss | Truss Type             | Qty | Ply |                               |          |
|------------|-------|------------------------|-----|-----|-------------------------------|----------|
| 20-045195T | AG    | Common Supported Gable | 1   | 1   | T<br>Job Reference (optional) | 20252354 |

# Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:42

Page: 1

ID:luDBJeNX7NMykJ\_oP3pSXCzF\_mN-AD8n6BfSjs2SylpiDdEG8lD9mCws5L8aOHAxiwzEz4F 12-0-0 24-0-0 12-0-0 12-0-0 5x6= 7 2x4 🛛 2x4 🛚 6 8 12 8 Г 2x4 II 2x4 II 5 9 2x4 🛛 2x4 🛛 10 4 8-4-7 2x4 II 2x4 🛛 3 11 2x4 II 2x4 🛛 2 12 13 0-4-7 N ××××  $\times$  $\times$ \*\*\*\*\*  $\times$ 21 24 23 22 20 19 18 17 16 15 14 3x4= 3x4= 2x4 🛚 2x4 🛚 2x4 🛛 2x4 🛚 5x6= 2x4 🛚 2x4 🛚 2x4 🛛 2x4 🛛 2x4 🛛 2x4 🛚 1-0-0 24-0-0 1-0-0 23-0-0

## Scale = 1:57.3 Plate Offsets (X, Y): [21:0-3-0,0-3-0]

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                               |                                                                                                                                                | (psf)<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                         | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                              | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC201                         | 5/TPI2014                                                                                                                                                                                                                                                  | CSI<br>TC<br>BC<br>WB<br>Matrix-MS                                                                                                                                                                                                                                  | 0.12<br>0.11<br>0.28                                                                                                                 | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                              | in<br>n/a<br>n/a<br>0.00  | (loc)<br>-<br>-<br>14 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 148 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|-----------------------------|--------------------------|----------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural woo<br>10-0-0 oc pur<br>Rigid ceiling c<br>bracing.<br>(size) 14=<br>17=<br>20=<br>23= | od shea<br>lins.<br>directly<br>=22-0-0<br>=22-0-0<br>=22-0-0                                                                                                 | athing directly applied<br>applied or 6-0-0 oc<br>), 15=22-0-0, 16=22-(<br>), 18=22-0-0, 19=22-(<br>), 21=22-0-0, 22=22-(<br>), 24=22-0-0                                                                                                       | W<br>N<br>d or 1)<br>2)<br>0-0,<br>0-0,<br>0-0,                | EBS 7<br>4<br>5<br>7<br>7<br>8<br>7<br>8<br>7<br>8<br>8<br>8<br>9<br>7<br>8<br>1<br>9<br>7<br>8<br>1<br>9<br>7<br>8<br>1<br>9<br>7<br>8<br>1<br>9<br>7<br>8<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1 | 7-19=-229/41, 6-20<br>1-22=-125/59, 3-23<br>3-18=-135/58, 9-17<br>1-15=-135/88, 12-<br>roof live loads hav<br>7-10; Vult=115mp<br>1; TCDL=6.0psf; Bi-<br>closed; MWFRS (e<br>errior (2) zone; cani-<br>d vertical left and i<br>d forces & MWFRS                    | )=-134/5<br>3=-142/9<br>7=-121/6<br>-14=-151<br>e been c<br>h (3-sec<br>CDL=6.C<br>anvelope<br>tilever lei<br>right exp<br>S for rea | 8, 5-21=-122//<br>0, 2-24=-151//<br>8, 10-16=-125<br>/43<br>considered for<br>ond gust)<br>psf; h=30ft; C<br>) exterior zona<br>it and right<br>osed;C-C for<br>ctions shown; | 68,<br>74,<br>/57,<br>at. |                       |                             |                          |                                  |                                    |
|                                                                                              | Max Horiz 24-<br>Max Uplift 14-<br>16-<br>18-<br>21-<br>23-<br>Max Grav 14-<br>16-<br>18-<br>20-<br>22-<br>24-<br>24-                          | ==155 (L<br>==-44 (Lt<br>==-25 (Lt<br>==-33 (Lt<br>==-46 (Lt<br>==-99 (Lt<br>==172 (L<br>==172 (L<br>==174 (L<br>==174 (L<br>==172 (L<br>==172 (L<br>==172 (L | C 7)<br>C 10), 15=-94 (LC 11<br>C 11), 17=-46 (LC 11<br>C 11), 20=-33 (LC 10<br>C 10), 22=-24 (LC 10<br>C 10), 24=-62 (LC 6)<br>C 22), 15=187 (LC 1<br>C 22), 17=162 (LC 1<br>C 18), 19=269 (LC 2<br>C 17), 21=163 (LC 1<br>C 21), 23=204 (LC 1 | ), 3)<br>),<br>)), 4)<br>8), 5)<br>8), 5)<br>8), 6)<br>7), 7), | Lumber DOL<br>Truss design<br>only. For stu<br>see Standarc<br>or consult qu<br>Gable studs s<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottom<br>3-06-00 tall b<br>chord and an                                                      | =1.60 plate grip D<br>ned for wind loads<br>ds exposed to wind<br>l Industry Gable E<br>alified building des<br>spaced at 2-0-0 oc<br>s been designed fi<br>d nonconcurrent v<br>ias been designed<br>n chord in all areas<br>y 2-00-00 wide wi<br>y other members. | OL=1.33<br>in the pl<br>id (normand Detai<br>signer as<br>c.<br>or a 10.0<br>with any<br>for a live<br>s where a<br>ll fit betw      | ane of the trus<br>al to the face),<br>Is as applicab<br>per ANSI/TPI<br>psf bottom<br>other live load<br>bload of 20.0p<br>a rectangle<br>een the botton                     | e,<br>1.<br>s.<br>osf     |                       |                             |                          | WITH C                           | ADO                                |
| FORCES<br>TOP CHORD<br>BOT CHORD                                                             | (lb) - Maximur<br>Tension<br>1-2=-65/156, ;<br>4-5=-49/162, ;<br>7-8=-125/196<br>10-11=-24/14;<br>12-13=-65/16;<br>1-24=-120/78                | m Com<br>2-3=-69<br>5-6=-88<br>5, 8-9=-8<br>8, 11-1<br>4<br>5, 23-24                                                                                          | pression/Maximum<br>9/161, 3-4=-23/152,<br>3/175, 6-7=-125/196,<br>38/171, 9-10=-49/158<br>2=-70/158,<br>=-120/74,                                                                                                                              | 7)<br>3,<br>8)<br>9)                                           | Provide mech<br>bearing plate<br>20, 46 lb uplit<br>uplift at joint 2<br>18, 46 lb uplit<br>uplift at joint 1<br>Non Standard<br>This truss is o                                                                                                           | nanical connection<br>capable of withst<br>ft at joint 21, 24 lb<br>23, 62 lb uplift at jo<br>ft at joint 17, 25 lb<br>15 and 44 lb uplift<br>d bearing condition<br>designed in accorr                                                                             | i (by othe<br>anding 3<br>uplift at<br>bint 24, 3<br>uplift at<br>at joint 1<br>n. Revie<br>dance wi                                 | ers) of truss to<br>3 lb uplift at jo<br>joint 22, 99 lb<br>3 lb uplift at jc<br>joint 16, 94 lb<br>4.<br>w required.<br>th the 2015                                          | int<br>vint               |                       |                             | and and a second second  | SE/<br>155                       | AL 44                              |
|                                                                                              | 22-23=-120/7<br>20-21=-120/7<br>18-19=-120/7<br>16-17=-120/7<br>14-15=-120/7                                                                   | 24, 21-2<br>24, 19-2<br>24, 17-1<br>24, 15-1<br>24, 13-1                                                                                                      | 2=-120/74,<br>0=-120/74,<br>8=-120/74,<br>6=-120/74,<br>4=-120/74                                                                                                                                                                               | L                                                              | International<br>R802.10.2 ar<br>DAD CASE(S)                                                                                                                                                                                                               | Residential Code<br>nd referenced stan<br>Standard                                                                                                                                                                                                                  | sections<br>Idard AN                                                                                                                 | R502.11.1 an<br>SI/TPI 1.                                                                                                                                                     | d                         |                       |                             | and the                  | S MAS                            | VEEP. ALBANIN                      |

May 19,2020



| Job        | Truss | Truss Type | Qty | Ply |                          |      |
|------------|-------|------------|-----|-----|--------------------------|------|
| 20-045195T | В     | Common     | 10  | 1   | Job Reference (optional) | 2355 |

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:42 ID:6r14MLRfyv\_Eq4smCcPdEGzF\_mI-AD8n6BfSjs2SylpiDdEG8ID?vCk55NpaOHAxiwzEz4F



Scale = 1:63

| Plate Offsets (                                                                                                                                                | (X, Y): [1:0-0-13,Edge]                                                                                                                                                                                                                                                       | , [1:0-0-4,0-10-10],                                                                                                                                                                                               | [2:0-3-0,0-                            | 3-0], [4:0-3-0,0                                                                                                                                                                   | 0-3-0], [5:0-0-13,E0                                                                                                                                                                                                               | dge], [5:0                                                                                                        | -0-4,0-10-10]                                                                                                                                        | , [6:0-3-0                   | ,0-3-4],                 | [7:0-3-0                      | ,0-3-4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                                    |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|--------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                 | (psf)<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                         | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                 | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC201 | 5/TPI2014                                                                                                                                                                          | CSI<br>TC<br>BC<br>WB<br>Matrix-MS                                                                                                                                                                                                 | 0.75<br>0.87<br>0.18                                                                                              | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                             | in<br>-0.34<br>-0.51<br>0.04 | (loc)<br>6-7<br>6-7<br>5 | l/defl<br>>986<br>>651<br>n/a | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20<br>Weight: 145 lb | <b>GRIP</b><br>244/190<br>FT = 20% |        |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                                            | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.2 *Except<br>Left: 2x10 SP 2250F<br>Right: 2x10 SP 2250F<br>Structural wood shea<br>2-2-0 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 1=0-3-8, 5<br>Max Horiz 1=178 (LC<br>Max Uplift 1=-23 (LC<br>Max Grav 1=1107 (L | * 6-4,7-2:2x4 SP N<br>1.9E or DSS or SS<br>F 1.9E or DSS or S<br>athing directly applie<br>applied or 10-0-0 or<br>=0-3-8<br>; 7)<br>10), 5=-23 (LC 11)<br>C 1), 5=1107 (LC 1                                      | 4)<br>s 5)<br>s 6)<br>c LC             | * This truss I<br>on the bottor<br>3-06-00 tall I<br>chord and an<br>Provide mec<br>bearing plate<br>1 and 23 lb o<br>This truss is<br>International<br>R802.10.2 a<br>DAD CASE(S) | has been designed<br>in chord in all area<br>by 2-00-00 wide w<br>by other members<br>chanical connection<br>e capable of withst<br>uplift at joint 5.<br>designed in accor<br>Residential Code<br>ind referenced star<br>Standard | d for a liv<br>is where<br>ill fit betw<br>, with BC<br>n (by oth<br>anding 2<br>dance wi<br>sections<br>ndard AN | e load of 20.0<br>a rectangle<br>veen the bottc<br>DL = 10.0psf<br>ers) of truss tr<br>3 lb uplift at jo<br>th the 2015<br>R502.11.1 a<br>ISI/TPI 1. | ipsf<br>om<br>o<br>o<br>nt   |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                    |        |
| FORCES<br>TOP CHORD<br>BOT CHORD                                                                                                                               | (lb) - Maximum Com<br>Tension<br>1-2=-1336/132, 2-3=<br>3-4=-1192/192, 4-5=<br>1-7=-131/1127, 7-18<br>6-19=0/769, 5-6=-17                                                                                                                                                     | pression/Maximum<br>-1192/192,<br>-1336/132<br>=0/769, 18-19=0/76<br>/1020                                                                                                                                         | <b>3</b> 9,                            |                                                                                                                                                                                    |                                                                                                                                                                                                                                    |                                                                                                                   |                                                                                                                                                      |                              |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                    |        |
| WEBS                                                                                                                                                           | 3-6=-74/532, 4-6=-30<br>2-7=-304/187                                                                                                                                                                                                                                          | 04/187, 3-7=-74/532                                                                                                                                                                                                | 2,                                     |                                                                                                                                                                                    |                                                                                                                                                                                                                                    |                                                                                                                   |                                                                                                                                                      |                              |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | A.D.1111                           |        |
| NOTES<br>1) Unbalance<br>this design<br>2) Wind: ASC<br>Vasd=91n<br>II; Exp Bi<br>and C-C E<br>exposed ;<br>members<br>Lumber D<br>3) This truss<br>chord live | ed roof live loads have<br>n.<br>CE 7-10; Vult=115mph<br>nph; TCDL=6.0psf; BCI<br>Enclosed; MWFRS (en<br>Exterior (2) zone; cantile<br>end vertical left and rig<br>and forces & MWFRS 1<br>OL=1.60 plate grip DOI<br>has been designed for<br>load nonconcurrent wit         | been considered fo<br>(3-second gust)<br>DL=6.0psf; h=30ft; (<br>velope) exterior zor<br>aver left and right<br>iht exposed;C-C for<br>for reactions shown<br>L=1.33<br>a 10.0 psf bottom<br>ih any other live loa | r<br>Cat.<br>ne<br>;<br>;              |                                                                                                                                                                                    |                                                                                                                                                                                                                                    |                                                                                                                   |                                                                                                                                                      |                              |                          |                               | in a second seco | SEA<br>155<br>NGIN               | AL<br>44<br>NEER<br>ALBAN<br>May   | 19,202 |

Page: 1



| Job        | Truss | Truss Type | Qty | Ply |                                 |         |
|------------|-------|------------|-----|-----|---------------------------------|---------|
| 20-045195T | B1    | Common     | 8   | 1   | T20<br>Job Reference (optional) | )252356 |

# Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:43 ID:La3UFQYJqg7yQT2VE?3k59zF\_m9-eQi9KXg4UAAJZvOvnLIVgymANc5?qm8kcxvUENzEz4E



Scale = 1:65.6

Plate Offsets (X, Y): [1:0-0-13,Edge], [1:0-0-4,Edge], [2:0-3-0,0-3-0]

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                         | (psf)<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                     | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                  | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC2015    | 5/TPI2014                                                                                                                                                                              | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MS                                                                                                                                                                                            | 0.77<br>0.82<br>0.36                                                                                        | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                  | in<br>-0.10<br>-0.17<br>0.03            | (loc)<br>7-10<br>7-10<br>6 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PLATES<br>MT20<br>Weight: 179 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS                                                                            | 2x4 SP No.2<br>2x4 SP No.2 *Excep<br>2x4 SP No.3 *Excep<br>6-5:2x6 SP No.2<br>Left: 2x10 SP 22500<br>Structural wood she<br>2-2-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 1=0-3-8,<br>Max Horiz 1=188 (L<br>Max Uplift 1=-23 (L) | ot* 10-7,9-8:2x6 SP f<br>ot* 10-3,7-3:2x4 SP f<br>= 1.9E or DSS or SS<br>eathing directly applie<br>coept end verticals.<br>/ applied or 10-0-0 or<br>4-6<br>6=0-3-8<br>C 9)<br>C 10), 6=-16 (LC 11)                       | 4)<br>No.2<br>No.2, 5)<br>ed or 6)<br>C LC | * This truss h<br>on the bottom<br>3-06-00 tall b<br>chord and an<br>Provide mecl<br>bearing plate<br>6 and 23 lb u<br>This truss is i<br>International<br>R802.10.2 ar<br>DAD CASE(S) | as been designed<br>in chord in all areas<br>y 2-00-00 wide wil<br>y other members,<br>nanical connection<br>capable of withsta<br>plift at joint 1.<br>designed in accord<br>Residential Code s<br>and referenced stand<br>Standard | for a live<br>s where a<br>l fit betw<br>with BC<br>(by othe<br>anding 1<br>lance wi<br>sections<br>dard AN | e load of 20.<br>a rectangle<br>een the bott<br>DL = 10.0ps<br>ers) of truss<br>6 lb uplift at<br>th the 2015<br>R502.11.1 a<br>SI/TPI 1. | Opsf<br>.om<br>f.<br>to<br>joint<br>and |                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                    |
| FORCES                                                                                                                                                                                 | (lb) - Maximum Cor                                                                                                                                                                                                                                                        | npression/Maximum                                                                                                                                                                                                          | )                                          |                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                           |                                         |                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                    |
| TOP CHORD                                                                                                                                                                              | 1-2=-1314/127, 2-3<br>3-4=-1245/216, 4-5                                                                                                                                                                                                                                  | =-1210/210,<br>=-342/117. 5-6=-308                                                                                                                                                                                         | /96                                        |                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                           |                                         |                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                    |
| BOT CHORD                                                                                                                                                                              | 1-10=-130/1112, 9-<br>16-17=0/736, 8-17=<br>6-7=-7/1000                                                                                                                                                                                                                   | 10=0/701, 9-16=0/73<br>0/736, 7-8=0/695,                                                                                                                                                                                   | 6,                                         |                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                           |                                         |                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                    |
| WEBS                                                                                                                                                                                   | 2-10=-316/193, 3-1<br>4-7=-291/205, 4-6=                                                                                                                                                                                                                                  | 0=-94/559, 3-7=-96/6<br>-1051/3                                                                                                                                                                                            | 619,                                       |                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                           |                                         |                            |                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ORTHO                            | Shine -                            |
| NOTES                                                                                                                                                                                  |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                           |                                         |                            |                               | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | × 6                              | 3.7 -                              |
| <ol> <li>Unbalanc<br/>this desig</li> <li>Wind: AS</li> <li>Vasd=91r<br/>II; Exp B;<br/>and C-C E<br/>exposed ;<br/>members<br/>Lumber D</li> <li>This truss<br/>chord live</li> </ol> | ed roof live loads have<br>n.<br>CE 7-10; Vult=115mpi<br>nph; TCDL=6.0psf; B0<br>Enclosed; MWFRS (e<br>Exterior (2) zone; canti<br>end vertical left and r<br>and forces & MWFRS<br>OL=1.60 plate grip D0<br>has been designed for<br>had nonconcurrent w                 | been considered for<br>(3-second gust)<br>CDL=6.0psf; h=30ff; (<br>nvelope) exterior zor<br>lever left and right<br>ght exposed;C-C for<br>for reactions shown<br>DL=1.33<br>r a 10.0 psf bottom<br>ith any other live loa | r<br>Cat.<br>ne<br>;                       |                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                           |                                         |                            |                               | Commences of the second s | SE<br>155<br>MGII                | AL<br>AL<br>VEER. ALBANIN          |

May 19,2020

Page: 1

| Job        | Truss | Truss Type              | Qty | Ply |                                     |     |
|------------|-------|-------------------------|-----|-----|-------------------------------------|-----|
| 20-045195T | BG    | Common Structural Gable | 1   | 1   | T202523<br>Job Reference (optional) | 357 |

## Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:43 ID:TdPF7V6om62IYh8XUNPIV4zF\_IQ-eQi9KXg4UAAJZvOvnLIVgymDQc7NqfMkcxvUENzEz4E



|                | 1-0-0 | 8-11-15 | 16-10-1 | 22-10-4 | 24-8-4 27-8-0  |
|----------------|-------|---------|---------|---------|----------------|
| Scale = 1:70.2 | 1-0-0 | 7-11-15 | 7-10-3  | 6-0-3   | 1-10-0 2-11-12 |

| Plate Offsets (X, Y): | [1:0-8-0,0-0-10] | [1:0-0-4,Edge], | [2:0-3-0,0-3-0], | [6:0-3-0,0-3-0], | [19:0-3-0,0-3-0] |
|-----------------------|------------------|-----------------|------------------|------------------|------------------|
|-----------------------|------------------|-----------------|------------------|------------------|------------------|

|                                                                                                                         | -                                                                                                                                                                                      |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                       |                                                                                 |                               |                               |                            |                                         | ,                                                                               |         |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------|-------------------------------|----------------------------|-----------------------------------------|---------------------------------------------------------------------------------|---------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                          |                                                                                                                                                                                        | (psf)<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                       | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                       | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC2     | 015/TPI2014                                                                                                                                                                                                                                                                                                                                               | CSI<br>TC<br>BC<br>WB<br>Matrix-MS                                                                                                                                                                                                                                                                                                                                       | 0.57<br>0.67<br>0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                              | in<br>-0.06<br>-0.11<br>0.03                                                    | (loc)<br>19-20<br>20-34<br>13 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a   | <b>PLATES</b><br>MT20<br>Weight: 197 lb | <b>GRIP</b><br>244/190<br>FT = 20%                                              |         |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>JOINTS<br>REACTIONS | 2x4 SP N<br>2x4 SP N<br>2x4 SP N<br>2x4 SP N<br>Left: 2x10<br>Structural<br>4-8-9 oc  <br>Rigid ceil<br>bracing,<br>6-0-0 oc l<br>1 Brace a<br>22<br>(size)<br>Max Horiz<br>Max Uplift | 0.2<br>0.3 *Except<br>0.3 *Except<br>0 SP 2250F<br>I wood sheat<br>purlins.<br>ing directly<br>Except:<br>pracing: 12-<br>at Jt(s): 21,<br>1=0-3-8, 1<br>14=3-11-8<br>1=176 (LC<br>14=-73 (LC<br>14=00 (LC) | * 20-4,18-4:2x4 SP<br>* 19-4:2x4 SP No.2<br>1.9E or DSS or SS<br>athing directly applie<br>applied or 10-0-0 oc<br>13,11-12.<br>2=3-11-8, 13=3-11-<br>, 15=0-3-8, 32=0-3-<br>27), 32=176 (LC 7)<br>10), 12=-29 (LC 11)<br>C 11), 32=-26 (LC 12) | No.2<br>d or<br>;<br>8,<br>8<br>9,<br>0) | WEBS<br>NOTES<br>1) Unbalanced<br>this design.<br>2) Wind: ASCE<br>Vasd=91mp<br>II; Exp B; Er<br>and C-C Ext<br>exposed ; eu<br>members ar<br>Lumber DOI<br>3) Truss design                                                                                                                                                                               | 2-20=-282/172, 2<br>4-21=-146/549, 4<br>18-22=-95/149, 1<br>23-24=-2/165, 8-2<br>25-26=-961/28, 1<br>3-21=-126/50, 4<br>6-23=-139/75, 7-2<br>16-25=-87/5, 9-2(<br>10-12=-98/53<br>roof live loads ha<br>7-10; Vult=115m<br>h; TCDL=6.0psf;<br>iclosed; MWFRS<br>terior (2) zone; ca<br>nd vertical left and<br>d forces & MWFF<br>=1.60 plate grip<br>ined for wind load | 10-21=-101<br>-22=-114/<br>8-23=-46/<br>24=-12/15<br>3-26=-938<br>19=0/179,<br>24=0/72, 1<br>6=-183/84<br>ave been c<br>mph (3-sec<br>BCDL=6.0<br>(envelope<br>intilever lei<br>d right exp<br>RS for rea<br>DOL=1.33<br>Is in the pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /436,<br>187,<br>137,<br>7, 8-25=-102<br>//28,<br>5-22=-40/19<br>7-24=0/83,<br>14-26=-213<br>onsidered for<br>ond gust)<br>psf; h=30ft;<br>) exterior zoi<br>t and right<br>osed;C-C foi<br>ctions shown<br>ane of the fri                                                            | 27/31,<br>),<br>3/82,<br>or<br>Cat.<br>ne<br>r,<br>;<br>uss                     |                               |                               |                            |                                         |                                                                                 |         |
| FORCES<br>TOP CHORD<br>BOT CHORD                                                                                        | Max Grav<br>(lb) - Max<br>Tension<br>1-2=-115-<br>3-4=-926/<br>6-7=-761/<br>9-10=-10/<br>1-20=-13:<br>18-19=0/(<br>15-16=0/(<br>12-13=-9)                                              | 1=999 (LC<br>13=746 (L<br>15=329 (L<br>imum Com<br>4/117, 2-3=<br>/214, 4-5=-7<br>/120, 7-8=-8<br>/160, 10-11:<br>2/950, 20-3;<br>333, 17-18=<br>551, 14-15=<br>3/55, 11-12:                                | 21), 12=155 (LC 22)<br>C 1), 14=43 (LC 22)<br>C 1), 32=999 (LC 1)<br>pression/Maximum<br>-1024/178,<br>713/186, 5-6=-762/1<br>322/102, 8-9=-18/17<br>=-48/141<br>5=0/629, 19-35=0/6<br>0/551, 16-17=0/551<br>=-93/55                            | ,<br>65,<br>9,<br>29,<br>,               | <ol> <li>Truss desig<br/>only. For st<br/>see Standar<br/>or consult q</li> <li>Gable studs</li> <li>This truss h<br/>chord live lo</li> <li>* This truss<br/>on the botto<br/>3-06-00 tall<br/>chord and a</li> <li>Provide med<br/>bearing plat<br/>14, 29 lb up<br/>uplift at joint</li> <li>This truss is<br/>Internationa<br/>R802.10.2 a</li> </ol> | Ined for wind load<br>uds exposed to w<br>d Industry Gable<br>Jalified building dr<br>spaced at 2-0-0 d<br>as been designed<br>an onconcurrent<br>has been designed<br>m chord in all are<br>by 2-00-00 wide v<br>ny other members<br>chanical connection<br>that a joint 12, 26 I<br>1.<br>designed in accoo<br>I Residential Code<br>and referenced sta                | Is in the pl<br>ind (norma<br>End Detai<br>esigner as<br>oc.<br>I for a 10.C<br>t with any<br>ad for a live<br>do for a live | ane of the fri<br>al to the face<br>Is as applica<br>per ANSI/TI<br>per ANSI/TI<br>per bottom<br>other live load<br>a load of 20.0<br>a rectangle<br>een the botto<br>DL = 10.0psf<br>ers) of truss t<br>3 lb uplift at j<br>oint 1 and 20<br>th the 2015<br>R502.11.1 a<br>SI/TPI 1. | uss<br>able,<br>pl 1.<br>ads.<br>Opsf<br>om<br>f.<br>to<br>joint<br>6 lb<br>and |                               |                               | and an and a second second | SE/<br>155                              | AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>A | 19,2020 |

818 Soundside Road Edenton, NC 27932

Page: 1

| Job        | Truss | Truss Type              | Qty | Ply |                                       |
|------------|-------|-------------------------|-----|-----|---------------------------------------|
| 20-045195T | BG1   | Common Structural Gable | 1   | 1   | T20252358<br>Job Reference (optional) |

### Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:44 ID:bCos7B5bh?Fom8r5ktMIH9zF\_k9-eQi9KXg4UAAJZvOvnLIVgymHVcAtqpLkcxvUENzEz4E

![](_page_6_Figure_3.jpeg)

![](_page_6_Figure_4.jpeg)

![](_page_6_Figure_5.jpeg)

#### Scale = 1:70.1

|                                                                                     |                                                                                                                                                                                                                                                                                                                           |                                                                                                    |                                                                                                                     |                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                     | -                                                                                                                                      |                                       |                            |                               |                          |                |                        |      |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------|-------------------------------|--------------------------|----------------|------------------------|------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL                                              |                                                                                                                                                                                                                                                                                                                           | (psf)<br>20.0<br>10.0<br>0.0*                                                                      | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                                                   | 2-0-0<br>1.00<br>1.15<br>YES |                                                                                                                                       | CSI<br>TC<br>BC<br>WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.31<br>0.45<br>0.16                                                                                                | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                               | in<br>0.04<br>-0.06<br>0.01           | (loc)<br>32<br>31-32<br>17 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20 | <b>GRIP</b><br>244/190 |      |
| BCDL                                                                                |                                                                                                                                                                                                                                                                                                                           | 10.0                                                                                               | Code                                                                                                                | IRC2015                      | 5/TPI2014                                                                                                                             | Matrix-MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                     |                                                                                                                                        |                                       |                            |                               |                          | Weight: 235 lb | FT = 20%               |      |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>WEDGE<br>BRACING<br>TOP CHOPD | 2x4 SP N<br>2x4 SP N<br>2x4 SP N<br>No.3<br>2x4 SP N<br>Left: 2x10<br>Right: 2x <sup>2</sup>                                                                                                                                                                                                                              | 0.2<br>0.2 *Excep<br>0.3 *Excep<br>0 SP 2250F<br>10 SP 2250                                        | t* 29-5,23-13:2x4 SP<br>t* 26-9:2x4 SP No.2<br>1.9E or DSS or SS<br>F 1.9E or DSS or SS<br>athing directly applied  | WI                           | EBS 2<br>5<br>2<br>1<br>2<br>6<br>6<br>3<br>2<br>2<br>2<br>2<br>2                                                                     | 99-35=-297/7, 34-3<br>-36=-329/104, 29-<br>-37=-141/222, 37-<br>:3-38=-152/232, 2:<br>3-39=-43/113, 9-2<br>:7-34=-43/37, 7-35<br>:-36=-1/104, 30-36<br>:-32=-75/54, 2-33=<br>:5-37=-45/42, 11-3<br>:4-38=-127/72, 12-3<br>:4-38=-127/72, 12-38=-127/72, 12-38=-127/72, 12-38=-127/72, 12-38=-127/72, 12-38=-127/72, 12-38=-127/72, 12-38=-127/72, 12-38=-127/72, 12-38=-127/72, 12-38=-127/72, 12-38=-127/72, 12-38=-127/72, 12-38=-127/72, | 85=-268/<br>-36=-319<br>-38=-149<br>3-39=-2<br>26=-4/17<br>5=-158/6<br>5=0/100,<br>=-32/33,<br>88=-112/<br>-39=-197 | 6, 9-34=-275<br>9/99,<br>5/218,<br>1/135,<br>3, 8-34=-47/<br>4, 28-35=-14<br>4, 28-35=-14<br>4-31=0/87,<br>10-37=-52/3<br>64,<br>7/12, | 9/15,<br>52,<br>40/75,<br>8,          | LOAD                       | CASE(S)                       | Sta                      | ndard          |                        |      |
| TOP CHORD                                                                           | 6-0-0 oc j                                                                                                                                                                                                                                                                                                                | purlins.                                                                                           | atting directly applied                                                                                             | 01                           | 2                                                                                                                                     | 2-39=-249/17, 14-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -20=-18                                                                                                             | 1/23,                                                                                                                                  |                                       |                            |                               |                          |                |                        |      |
| BOT CHORD                                                                           | Rigid ceil<br>bracing.                                                                                                                                                                                                                                                                                                    | ing directly                                                                                       | applied or 10-0-0 oc                                                                                                | NC                           | DTES                                                                                                                                  | 5-19=-30/56, 16-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18=-00/3                                                                                                            | 0                                                                                                                                      |                                       |                            |                               |                          |                |                        |      |
| JOINTS                                                                              | 1 Brace a<br>37                                                                                                                                                                                                                                                                                                           | at Jt(s): 34,                                                                                      |                                                                                                                     | 1)                           | Unbalanced i<br>this design.                                                                                                          | roof live loads have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e been d                                                                                                            | considered fo                                                                                                                          | or                                    |                            |                               |                          |                |                        |      |
| REACTIONS                                                                           | (size)<br>Max Horiz<br>Max Uplift<br>Max Grav                                                                                                                                                                                                                                                                             | 1=0-3-8, 1<br>29=0-3-8<br>1=177 (LC<br>1=-59 (LC<br>1=540 (LC<br>21=452 (L                         | 7=0-3-8, 21=0-3-8,<br>2 7)<br>1 (0), 17=-53 (LC 11)<br>2 1), 17=533 (LC 1),<br>C 1), 29=688 (I C 1)                 | 2)                           | Wind: ASCE<br>Vasd=91mph<br>II; Exp B; End<br>and C-C Exte<br>exposed ; en<br>members and                                             | 7-10; Vult=115mp<br>; TCDL=6.0psf; Bi<br>closed; MWFRS (e<br>prior (2) zone; cant<br>d vertical left and i<br>d forces & MWFRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h (3-sec<br>CDL=6.(<br>envelope<br>tilever le<br>right exp<br>S for rea                                             | ond gust)<br>Opsf; h=30ft;<br>e) exterior zooft and right<br>osed;C-C fo<br>ctions showr                                               | Cat.<br>ne<br>r<br>ı;                 |                            |                               |                          |                |                        |      |
| FORCES                                                                              | (lb) - Max<br>Tension                                                                                                                                                                                                                                                                                                     | timum Com                                                                                          | pression/Maximum                                                                                                    | 3)                           | Truss design                                                                                                                          | =1.60 plate grip Do<br>ned for wind loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | in the pl                                                                                                           | ane of the tr                                                                                                                          | uss                                   |                            |                               |                          | , mining       |                        |      |
| TOP CHORD                                                                           | 1-2=-417/<br>4-5=-345/<br>7-8=-373/<br>10-11=-4<br>12-13=-4<br>14-15=-3<br>16-17=-4                                                                                                                                                                                                                                       | /65, 2-3=-42<br>/153, 5-6=-3<br>/230, 8-9=-3<br>98/212, 11-<br>04/148, 13-<br>70/109, 15-<br>10/41 | 24/93, 3-4=-394/134,<br>374/169, 6-7=-320/18<br>370/270, 9-10=-491/2<br>12=-468/168,<br>14=-411/131,<br>16=-431/69, | 6,<br>43, 4)<br>5)<br>6)     | only. For stu<br>see Standard<br>or consult qu<br>Gable studs s<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottom | as exposed to win<br>I Industry Gable E<br>alified building des<br>spaced at 2-0-0 oc<br>s been designed fr<br>d nonconcurrent v<br>as been designed<br>n chord in all areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ia (norm<br>nd Detai<br>signer as<br>c.<br>or a 10.0<br>vith any<br>for a liv                                       | a to the face<br>Is as applica<br>per ANSI/T<br>) psf bottom<br>other live loa<br>e load of 20.                                        | e),<br>Ible,<br>PI 1.<br>ads.<br>Opsf |                            |                               | in and a second          | NORTH C        | AL                     |      |
| BOT CHORD                                                                           | <ul> <li>1-33=-142/388, 32-33=-106/388,</li> <li>31-32=-106/388, 30-31=-106/388,</li> <li>29-30=-106/388, 28-29=-3/297,</li> <li>27-28=-3/297, 26-27=-3/297, 25-26=-2/300,</li> <li>24-25=-2/300, 23-24=-2/300, 22-23=0/308,</li> <li>21-22=0/308, 20-21=0/308, 19-20=0/308,</li> <li>18-19=0/308, 17-18=0/308</li> </ul> |                                                                                                    |                                                                                                                     |                              | 3-06-00 tall b<br>chord and an<br>Provide mech<br>bearing plate<br>1 and 53 lb u<br>This truss is of<br>International<br>R802.10.2 ar | y 2-00-00 wide wil<br>y other members.<br>nanical connection<br>capable of withsta<br>plift at joint 17.<br>designed in accord<br>Residential Code si<br>d referenced stan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ll fit betw<br>(by othe<br>anding 5<br>dance wi<br>sections                                                         | th the 2015<br>R502.11.1 a<br>SI/TPI 1.                                                                                                | om<br>to<br>joint<br>and              |                            |                               | 11111111111              | 155<br>NGII    | 44<br>VEER. ALBANIN    | HIG. |

May 19,2020

![](_page_6_Picture_10.jpeg)

| Job        | Truss | Truss Type   | Qty | Ply |                                |          |
|------------|-------|--------------|-----|-----|--------------------------------|----------|
| 20-045195T | С     | Roof Special | 11  | 1   | T2<br>Job Reference (optional) | 20252359 |

6-7-10

6-7-10

# Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:44

Page: 1 ID:gjN5gCW\_7x\_CJ6Ha5yyBXqzF\_iK-6cGXXtgiFUIAB3z5K2GkDAJLk0OeZ4Btrbf1mpzEz4D 37-0-0 12-11-13 18-6-0 24-0-3 30-4-6 6-4-2 5-6-3 5-6-3 6-4-2 6-7-11 5x6= 2x4 II 5x6= 3 4 5 

| 11-4-14                                                                                                                                                     | 3x4 II<br>0-6-C<br>12<br>4x5 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 <sup>12</sup><br>5x8 *<br>2                                                                                                                                                                                                                                                                                                          | 11<br>5x8 =<br>4<br>12                   |                 |                                           | 10<br>6x8 =          |                                                 |                              | 9 55                       | c8 =                          | 5x8                      | •                                | 3x4 II<br>7<br>8<br>4x5 z                | 0-0-13 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------|-------------------------------------------|----------------------|-------------------------------------------------|------------------------------|----------------------------|-------------------------------|--------------------------|----------------------------------|------------------------------------------|--------|
|                                                                                                                                                             | 0-3-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9-4-12                                                                                                                                                                                                                                                                                                                                 |                                          | 18-6            | -0                                        |                      | 27-7-4                                          | 4                            |                            |                               |                          | 36-8-8                           | 37-0-0                                   |        |
| Scale = 1:69                                                                                                                                                | 0-3-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9-1-4                                                                                                                                                                                                                                                                                                                                  |                                          | 9-1-            | -4                                        |                      | 9-1-4                                           |                              |                            |                               |                          | 9-1-4                            | 0-3-8                                    |        |
| Plate Offsets (                                                                                                                                             | (X, Y): [2:0-3-8,0-2-8],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [3:0-3-12,0-2-0], [5:0                                                                                                                                                                                                                                                                                                                 | 0-3-12,0-2-0                             | ], [6:0-3-8,0-2 | -8], [9:0-4-0,0-3                         | -4], [11:0-4         | 4-0,0-3-4]                                      |                              |                            |                               |                          |                                  | -                                        |        |
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                              | (psf)<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                     | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC2015/ | TPI2014         | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MS | 0.73<br>0.99<br>0.95 | <b>DEFL</b><br>Vert(LL)<br>Vert(CT)<br>Horz(CT) | in<br>-0.21<br>-0.50<br>0.35 | (loc)<br>9-10<br>9-10<br>8 | l/defl<br>>999<br>>889<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 222 lb | <b>GRIP</b><br>244/190<br>FT = 20%       |        |
| TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>WEBS<br>REACTIONS<br>FORCES<br>TOP CHORD                                                          | <ul> <li>A Construction of the purple of the size of t</li></ul> |                                                                                                                                                                                                                                                                                                                                        |                                          |                 |                                           |                      |                                                 |                              |                            |                               |                          |                                  |                                          |        |
| BOT CHORD<br>WEBS<br>1) Unbalance<br>this design<br>2) Wind: ASG<br>Vasd=91n<br>II; Exp B;<br>and C-CE<br>exposed ;<br>members<br>Lumber D<br>3) Provide ad | 5-6=-228/222, 6-7=<br>7-8=-227/99<br>11-12=-159/1811, 10<br>9-10=0/1909, 8-9=-3<br>2-11=-8/290, 3-11=-1<br>4-10=-363/123, 5-10<br>5-9=-107/282, 6-9=-4<br>6-8=-2374/71<br>ed roof live loads have in.<br>CE 7-10; Vult=115mph<br>nph; TCDL=6.0psf; BCI<br>Enclosed; MWFRS (en<br>Exterior (2) zone; cantilé<br>end vertical left and rig<br>and forces & MWFRS 1<br>OL=1.60 plate grip DOI<br>dequate drainage to pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -197/123, 1-12=-228<br>-197/123, 1-12=-228<br>)-11=-108/1909,<br>5/1811<br>104/236, 3-10=0/126<br>=-116/1261,<br>14/290, 2-12=-2374/<br>been considered for<br>(3-second gust)<br>DL=6.0psf; h=30ft; C<br>velope) exterior zone<br>sver left and right<br>ht exposed;C-C for<br>for reactions shown;<br>L=1.33<br>event water ponding. | 3/99,<br>51,<br>71,<br>Cat.<br>e         |                 |                                           |                      |                                                 |                              |                            |                               |                          | SEA<br>155<br>NGIN<br>MAS F      | AL<br>AL<br>AL<br>AL<br>BEER<br>AL<br>BA |        |

- 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Provide adequate drainage to prevent water ponding.

May 19,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

![](_page_7_Picture_9.jpeg)

| Job        | Truss | Truss Type   | Qty | Ply |                          |           |
|------------|-------|--------------|-----|-----|--------------------------|-----------|
| 20-045195T | CAP   | Roof Special | 10  | 1   | Job Reference (optional) | T20252360 |

#### Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:45 ID:EOIPhUCJIfQwP\_5CSVxj08zF\_dZ-aopvkDhK0nQ1pDYHumnzmNrdkQwUllb04FObIFzEz4C

Page: 1

Pa

![](_page_8_Figure_5.jpeg)

## Plate Offsets (X, Y): [2:0-2-0,Edge], [4:0-2-0,Edge]

| ,                             | ,                                          |                         |            |                |                    |            |                  |             |       |        |     |               |            |         |
|-------------------------------|--------------------------------------------|-------------------------|------------|----------------|--------------------|------------|------------------|-------------|-------|--------|-----|---------------|------------|---------|
| Loading                       | (psf)                                      | Spacing                 | 2-0-0      |                | csi                |            | DEFL             | in          | (loc) | l/defl | L/d | PLATES        | GRIP       |         |
| TCLL (roof)                   | 20.0                                       | Plate Grip DOL          | 1.00       |                | тс                 | 0.26       | Vert(LL)         | -0.02       | 6-13  | >999   | 240 | MT20          | 244/190    |         |
| TCDL                          | 10.0                                       | Lumber DOL              | 1.15       |                | BC                 | 0.25       | Vert(CT)         | -0.03       | 6-13  | >999   | 180 |               |            |         |
| BCLL                          | 0.0*                                       | Rep Stress Incr         | YES        |                | WB                 | 0.05       | Horz(CT)         | 0.00        | 2     | n/a    | n/a |               |            |         |
| BCDL                          | 10.0                                       | Code                    | IRC2015    | /TPI2014       | Matrix-MS          |            | - (- )           |             |       |        |     | Weight: 38 lb | FT = 20%   |         |
|                               |                                            | •                       | E)         | Drovido moo    |                    | n (hu otha | ra) of truca     | to          |       |        |     |               |            |         |
|                               |                                            |                         | 5)         | Provide med    | capable of withd   | n (by othe | 2 lb uplift of   | l0<br>ioint |       |        |     |               |            |         |
|                               | 2X4 SP No.2                                |                         |            | 2 32 lb unlift | at joint 4 and 23  | lanuny z   | 5 ID uplint at j | John        |       |        |     |               |            |         |
|                               | 2X4 SP N0.2                                |                         | 6)         | Z, 52 ib upint | docianod in accor  | donco wi   | t joint 2.       |             |       |        |     |               |            |         |
| NEDS                          | 2X4 3F NU.3                                |                         | 0)         | International  | Residential Code   | sections   | R502 11 1 2      | and         |       |        |     |               |            |         |
|                               | o                                          |                         |            | R802 10 2 ar   | nd referenced star | ndard AN   | SI/TPI 1         |             |       |        |     |               |            |         |
| I OP CHORD                    | Structural wood she                        | eathing directly applie | d or<br>7) | See Standar    | d Industry Piggyb  | ack Truss  | Connection       |             |       |        |     |               |            |         |
|                               | Digid coiling directly                     | (applied or 10.0.0 or   | , <i>'</i> | Detail for Co  | nnection to base t | russ as a  | pplicable, or    |             |       |        |     |               |            |         |
| SOT CHORD                     | bracing                                    |                         | ,          | consult qualit | ied building desig | gner.      |                  |             |       |        |     |               |            |         |
| REACTIONS                     | (size) 2=9-6-14                            | 4=0-3-8, 6=9-6-14,      | LO         | AD CASE(S)     | Standard           |            |                  |             |       |        |     |               |            |         |
|                               | 7=9-6-14                                   | , , ,                   |            |                |                    |            |                  |             |       |        |     |               |            |         |
|                               | Max Horiz 2=68 (LC                         | 9), 7=68 (LC 9)         |            |                |                    |            |                  |             |       |        |     |               |            |         |
|                               | Max Uplift 2=-23 (LC                       | C 10), 4=-32 (LC 11),   |            |                |                    |            |                  |             |       |        |     |               |            |         |
|                               | 7=-23 (L0                                  | C 10)                   |            |                |                    |            |                  |             |       |        |     |               |            |         |
|                               | Max Grav 2=238 (L                          | C 1), 4=238 (LC 1), 6   | i=347      |                |                    |            |                  |             |       |        |     |               |            |         |
|                               | (LC 1), 7                                  | =238 (LC 1)             |            |                |                    |            |                  |             |       |        |     |               |            |         |
| FORCES                        | (lb) - Maximum Con<br>Tension              | npression/Maximum       |            |                |                    |            |                  |             |       |        |     |               |            |         |
| TOP CHORD                     | 1-2=0/16, 2-3=-161,<br>4-5=0/16            | /67, 3-4=-161/67,       |            |                |                    |            |                  |             |       |        |     |               |            |         |
| BOT CHORD                     | 2-6=-20/86, 4-6=-2/                        | 86                      |            |                |                    |            |                  |             |       |        |     |               |            |         |
| NEBS                          | 3-6=-177/24                                |                         |            |                |                    |            |                  |             |       |        |     | IIIII         | UIII.      |         |
| NOTES                         |                                            |                         |            |                |                    |            |                  |             |       |        |     | I'''HC        | ARA        |         |
| 1) Unbalance                  | ed roof live loads have                    | e been considered for   |            |                |                    |            |                  |             |       |        |     | "ATT          |            | 1       |
| this desigr                   | ۱.                                         |                         |            |                |                    |            |                  |             |       |        | 5   | 0             | SAIN V     | 14      |
| <ol><li>Wind: ASC</li></ol>   | CE 7-10; Vult=115mpł                       | n (3-second gust)       |            |                |                    |            |                  |             |       |        | 2.  |               | 13.5       | 7 -     |
| Vasd=91m                      | nph; TCDL=6.0psf; BC                       | CDL=6.0psf; h=30ft; C   | Cat.       |                |                    |            |                  |             |       |        | -   |               |            | -       |
| II; Exp B; E                  | Enclosed; MWFRS (e                         | nvelope) exterior zon   | е          |                |                    |            |                  |             |       |        | Ξ   |               | A1 1       |         |
| and C-C E                     | xterior (2) zone; canti                    | lever left and right    |            |                |                    |            |                  |             |       |        |     | SE/           | AL :       | e 2 -   |
| exposed;                      | end ventical left and fi                   | for reactions shown     |            |                |                    |            |                  |             |       |        | =   | : 155         | 44 :       | 2       |
| Lumber D                      | $\Omega = 1.60 \text{ plate aria } \Omega$ | 101 reactions shown,    |            |                |                    |            |                  |             |       |        | 1   | •             |            |         |
| R) This trues                 | has been designed for                      | r = 10.0 nsf hottom     |            |                |                    |            |                  |             |       |        | 1   | A             |            |         |
| chord live                    | load nonconcurrent w                       | ith any other live load | ts.        |                |                    |            |                  |             |       |        | 2.1 | 2. SNO.       | FER. 2     | 13      |
| <ol> <li>This trus</li> </ol> | s has been designed                        | for a live load of 20.0 | psf        |                |                    |            |                  |             |       |        | 1   | O             | VEL OF     | 5       |
| on the bot                    | tom chord in all areas                     | where a rectangle       |            |                |                    |            |                  |             |       |        |     | MAC           | ALDIN      |         |
| 3-06-00 ta                    | ll by 2-00-00 wide will                    | fit between the botto   | m          |                |                    |            |                  |             |       |        |     | 1110          | ·          |         |
| chord and                     | any other members.                         |                         |            |                |                    |            |                  |             |       |        |     |               | Maria      | 10 0000 |
|                               |                                            |                         |            |                |                    |            |                  |             |       |        |     |               | B // O \ / |         |

![](_page_8_Picture_9.jpeg)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

ENGINEERING BY A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

| Job        | Truss | Truss Type | Qty | Ply |                                       |
|------------|-------|------------|-----|-----|---------------------------------------|
| 20-045195T | CAP1  | Нір        | 1   | 1   | T20252361<br>Job Reference (optional) |

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:45

ID:7ibmfUf8MKCXyq?VgUcdx9zF\_cz-aopvkDhK0nQ1pDYHumnzmNrfwQxMIIY04FObIFzEz4C

BMC (Middlesex, NC), Middlesex, NC - 27557,

#### 0-8-12<sub>1</sub> 10-3-10 2-10-11 6-8-3 9-6-14 0-8-12 0-8-12 2-10-11 2-10-11 3-9-8 5x6 = 5x6 = 12 8 Г 3 4 $\bowtie$ 2-3-6 2-4-15 2 5 6 6 4-4-6 1 ø 7 4x5 = 3x4 = 3x4 = 4-9-7 9-6-14 4-9-7 4-9-7

| Scale - | 1.27 9 |
|---------|--------|

## Plate Offsets (X, Y): [3:0-4-8,0-2-8], [4:0-4-8,0-2-8]

| Loading                                                                                                                                                                                                       |                                                                                                                                                                         | (psf)                                                                                                                                                   | Spacing                                                                                                                                                                                                                  | 2-0-0                               |                                                                                                                                                                                                                                                                                                                                                      | CSI                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                  | DEFL                                                                                                                                                                                                           | in                                             | (loc) | l/defl | L/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PLATES           | GRIP                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------|
| TCLL (roof)                                                                                                                                                                                                   |                                                                                                                                                                         | 20.0                                                                                                                                                    | Plate Grip DOL                                                                                                                                                                                                           | 1.00                                |                                                                                                                                                                                                                                                                                                                                                      | TC                                                                                                                                                                                                                                                                                                                                                            | 0.19                                                                                                                                                             | Vert(LL)                                                                                                                                                                                                       | -0.01                                          | 7-14  | >999   | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MT20             | 244/190                                             |
| TCDL                                                                                                                                                                                                          |                                                                                                                                                                         | 10.0                                                                                                                                                    | Lumber DOL                                                                                                                                                                                                               | 1.15                                |                                                                                                                                                                                                                                                                                                                                                      | BC                                                                                                                                                                                                                                                                                                                                                            | 0.19                                                                                                                                                             | Vert(CT)                                                                                                                                                                                                       | -0.02                                          | 7-14  | >999   | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                                     |
| BCLL                                                                                                                                                                                                          |                                                                                                                                                                         | 0.0^                                                                                                                                                    | Rep Stress Incr                                                                                                                                                                                                          | YES                                 |                                                                                                                                                                                                                                                                                                                                                      | WB                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                             | Horz(CT)                                                                                                                                                                                                       | 0.00                                           | 5     | n/a    | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                                     |
| BCDL                                                                                                                                                                                                          |                                                                                                                                                                         | 10.0                                                                                                                                                    | Code                                                                                                                                                                                                                     | IRC20                               | 15/TPI2014                                                                                                                                                                                                                                                                                                                                           | Matrix-MS                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                  |                                                                                                                                                                                                                |                                                |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weight: 40 lb    | FT = 20%                                            |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                                                                                                    | 2x4 SP N<br>2x4 SP N<br>2x4 SP N<br>Structura<br>6-0-0 oc<br>2-0-0 oc<br>Rigid ceil<br>bracing.<br>(size)<br>Max Horiz<br>Max Uplift<br>Max Grav                        | 0.2<br>0.3<br>I wood shea<br>purlins; exc<br>purlins: 3-4.<br>ing directly<br>2=9-6-14,<br>8=9-6-14<br>2=-16 (LC<br>2=-16 (LC<br>2=209 (LC<br>7=412 (LC | athing directly applied<br>ept<br>applied or 10-0-0 oc<br>5=0-3-8, 7=9-6-14,<br>8), 8=-44 (LC 8)<br>10), 5=-21 (LC 11),<br>10)<br>2 21), 5=209 (LC 22),<br>2 1), 8=209 (LC 21)                                           | 5<br>ior<br>7<br>8<br>9<br><b>L</b> | <ul> <li>* This truss h<br/>on the bottor<br/>3-06-00 tall b<br/>chord and ar</li> <li>Provide mec<br/>bearing plate<br/>2, 21 lb uplift</li> <li>This truss is<br/>International<br/>R802.10.2 ar</li> <li>See Standar<br/>Detail for Co<br/>consult quali</li> <li>Graphical pu<br/>or the orient<br/>bottom chorc</li> <li>OAD CASE(S)</li> </ul> | as been designed<br>in chord in all areas<br>by 2-00-00 wide will<br>y other members.<br>nanical connection<br>capable of withsta<br>at joint 5 and 16 lb<br>designed in accord<br>Residential Code s<br>dreferenced stand<br>d Industry Piggyban<br>nection to base tru-<br>fied building design<br>rlin representation<br>tion of the purlin al<br>Standard | for a liv<br>where<br>l fit betw<br>(by oth-<br>nding 1<br>o uplift a<br>lance wis<br>sections<br>dard AN<br>ck Truss<br>uss as a<br>ler.<br>does no<br>long the | e load of 20.<br>a rectangle<br>veen the bott<br>ers) of truss<br>6 lb uplift at j<br>t joint 2.<br>th the 2015<br>R502.11.1 a<br>ISI/TPI 1.<br>s Connection<br>upplicable, or<br>t depict the s<br>top and/or | Opsf<br>com<br>to<br>joint<br>and<br>r<br>size |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                     |
| FORCES                                                                                                                                                                                                        | (lb) - Max<br>Tension                                                                                                                                                   | timum Com                                                                                                                                               | pression/Maximum                                                                                                                                                                                                         |                                     |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |                                                                                                                                                                                                                |                                                |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                     |
| TOP CHORD                                                                                                                                                                                                     | 1-2=0/16<br>4-5=-141                                                                                                                                                    | , 2-3=-141/5<br>/56, 5-6=0/1                                                                                                                            | 56, 3-4=-13/48,<br>I6                                                                                                                                                                                                    |                                     |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |                                                                                                                                                                                                                |                                                |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                     |
| BOT CHORD                                                                                                                                                                                                     | 2-7=-24/1                                                                                                                                                               | 02, 5-7=0/1                                                                                                                                             | 102                                                                                                                                                                                                                      |                                     |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |                                                                                                                                                                                                                |                                                |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | UIII.                                               |
| WEBS                                                                                                                                                                                                          | 3-7=-204                                                                                                                                                                | /68, 4-7=-20                                                                                                                                            | 04/68                                                                                                                                                                                                                    |                                     |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |                                                                                                                                                                                                                |                                                |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | " LI C           | AD                                                  |
| NOTES                                                                                                                                                                                                         |                                                                                                                                                                         |                                                                                                                                                         |                                                                                                                                                                                                                          |                                     |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |                                                                                                                                                                                                                |                                                |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "atro            |                                                     |
| <ol> <li>Unbalance<br/>this design</li> <li>Wind: ASG<br/>Vasd=91r</li> <li>II; Exp B;<br/>and C-C E<br/>exposed ;<br/>members<br/>Lumber D</li> <li>Provide ar</li> <li>This truss<br/>chord live</li> </ol> | ed roof live<br>n.<br>CE 7-10; Vu<br>nph; TCDL=<br>Enclosed; N<br>Exterior (2) z<br>end vertica<br>and forces<br>OL=1.60 pla<br>dequate dra<br>has been d<br>load nonco | loads have<br>lt=115mph<br>6.0psf; BCI<br>WFRS (en<br>left and rig<br>& MWFRS (<br>ate grip DO<br>inage to pre-<br>lesigned for<br>ncurrent with        | (3-second gust)<br>DL=6.0psf; h=30ft; C.<br>velope) exterior zone<br>aver left and right<br>ht exposed;C-C for<br>for reactions shown;<br>L=1.33<br>avent water ponding.<br>a 10.0 psf bottom<br>th any other live load: | at.                                 |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |                                                                                                                                                                                                                |                                                |       |        | The second secon | SE<br>155<br>MAS | AL<br>44<br>VEEER. AL<br>A. ALBANNIN<br>May 19 2020 |
|                                                                                                                                                                                                               |                                                                                                                                                                         |                                                                                                                                                         |                                                                                                                                                                                                                          |                                     |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |                                                                                                                                                                                                                |                                                |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | iviay 19,2020                                       |

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

| Job        | Truss | Truss Type             | Qty | Ply |                                       |
|------------|-------|------------------------|-----|-----|---------------------------------------|
| 20-045195T | DG    | Common Supported Gable | 1   | 1   | T20252362<br>Job Reference (optional) |

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:46 ID:hIQMPWXoY93vuFd23mMC18zF\_ZG-2?NIyYiyn5ZuQN7USTIClbOqDpIe1B?AIv88rhzEz4B

Page: 1

![](_page_10_Figure_5.jpeg)

Scale = 1:38.6

| Loa<br>TCI<br>TCI<br>BCI<br>BCI                                                                                                                                                                                                                                                    | <b>ading</b><br>LL (roof)<br>DL<br>LL<br>DL                       |                                                                                      | (psf)<br>20.0<br>10.0<br>0.0*<br>10.0                                                                 | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                         | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC201 | 5/TPI2014                                                                                                                                                                                                                                          | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MS                                                                                                                                                                                        | 0.15<br>0.12<br>0.10                                                                               | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                     | in<br>n/a<br>n/a<br>0.00                  | (loc)<br>-<br>-<br>8 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 62 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| LUI<br>TOI<br>BO<br>OTI<br>BR<br>TOI<br>BO                                                                                                                                                                                                                                         | MBER<br>P CHORD<br>T CHORD<br>HERS<br>ACING<br>P CHORD<br>T CHORD | 2x4 SP N<br>2x4 SP N<br>2x4 SP N<br>Structura<br>10-0-0 oc<br>Rigid ceil<br>bracing. | o.2<br>o.2<br>o.3<br>I wood shea<br>: purlins.<br>ing directly                                        | athing directly applie<br>applied or 6-0-0 oc                                                                                                     | 3)<br>4)<br>d or 5)<br>6)              | <ul> <li>Truss design<br/>only. For stu<br/>see Standard<br/>or consult qu</li> <li>Gable studs si</li> <li>This truss ha<br/>chord live loa</li> <li>This truss h</li> <li>This truss h</li> <li>on the bottom</li> <li>3-06-00 tall b</li> </ul> | ed for wind loads i<br>ds exposed to winc<br>I Industry Gable En<br>alified building desi<br>spaced at 2-0-0 oc.<br>s been designed fo<br>d nonconcurrent w<br>as been designed fo<br>c hord in all areas<br>y 2-00-00 wide will | n the pl<br>d (norm<br>d Detai<br>gner as<br>r a 10.0<br>ith any<br>for a liv<br>where<br>fit betw | ane of the tru<br>al to the face<br>is as applical<br>per ANSI/TF<br>psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>reen the botto | uss<br>),<br>ble,<br>PI 1.<br>ds.<br>Dpsf |                      |                             |                          |                                 |                                    |
| RE                                                                                                                                                                                                                                                                                 | ACTIONS                                                           | (size)<br>Max Horiz<br>Max Uplift<br>Max Grav                                        | 8=11-0-0,<br>11=11-0-0<br>12=84 (LC<br>8=-26 (LC<br>11=-58 (LC<br>8=275 (LC<br>10=303 (L<br>12=275 (L | 9=11-0-0, 10=11-0-(<br>, 12=11-0-0<br>; 7)<br>11), 9=-57 (LC 11),<br>C 10), 12=-26 (LC 1;<br>; 22), 9=167 (LC 18)<br>C 1), 11=168 (LC 17<br>C 21) | 0,<br>7)<br>1)<br>, 8)<br>7), 9)       | chord and an<br>Provide mech<br>bearing plate<br>11, 26 lb uplit<br>uplift at joint 8<br>Non Standard<br>This truss is 6<br>International                                                                                                          | y other members.<br>nanical connection<br>capable of withstar<br>t at joint 12, 57 lb u<br>3.<br>d bearing condition<br>designed in accorda<br>Residential Code s                                                                | (by othe<br>nding 5<br>uplift at<br>. Revie<br>ance wither                                         | ers) of truss t<br>8 lb uplift at j<br>joint 9 and 26<br>w required.<br>th the 2015<br>R502.11.1 a                                                   | o<br>oint<br>3 lb                         |                      |                             |                          |                                 |                                    |
| FO                                                                                                                                                                                                                                                                                 | RCES                                                              | (lb) - Max<br>Tension                                                                | imum Com                                                                                              | pression/Maximum                                                                                                                                  | L                                      | R802.10.2 ar                                                                                                                                                                                                                                       | d referenced stand                                                                                                                                                                                                               | lard AN                                                                                            | SI/TPI 1.                                                                                                                                            |                                           |                      |                             |                          |                                 |                                    |
| то                                                                                                                                                                                                                                                                                 | P CHORD                                                           | 1-2=-24/1<br>4-5=0/164                                                               | 83, 2-3=0/1<br>4, 5-6=0/16                                                                            | 61, 3-4=0/165,<br>0, 6-7=-24/182                                                                                                                  |                                        |                                                                                                                                                                                                                                                    | otandard                                                                                                                                                                                                                         |                                                                                                    |                                                                                                                                                      |                                           |                      |                             |                          |                                 |                                    |
| BO                                                                                                                                                                                                                                                                                 | T CHORD                                                           | 1-12=-129<br>10-11=-12<br>7-8=-129/                                                  | 9/45, 11-12<br>29/44, 9-10<br>/44                                                                     | =-129/44,<br>=-129/44, 8-9=-129/-                                                                                                                 | 44,                                    |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                  |                                                                                                    |                                                                                                                                                      |                                           |                      |                             |                          |                                 | 11111                              |
| WE                                                                                                                                                                                                                                                                                 | BS                                                                | 4-10=-254<br>5-9=-132/                                                               | 4/0, 3-11=-1<br>/72, 6-8=-17                                                                          | 133/72, 2-12=-170/69<br>70/69                                                                                                                     | 9,                                     |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                  |                                                                                                    |                                                                                                                                                      |                                           |                      |                             |                          | "RTH C                          | A BOUL                             |
| <ol> <li>NOTES</li> <li>1) Unbalanced roof live loads have been considered for<br/>this design.</li> <li>2) Wind: ASCE 7-10; Vult=115mph (3-second gust)<br/>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat.<br/>II; Exp B; Enclosed; MWFRS (envelope) exterior zone</li> </ol> |                                                                   |                                                                                      |                                                                                                       |                                                                                                                                                   |                                        |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                  |                                                                                                    |                                                                                                                                                      |                                           |                      |                             | and the second second    | SE 155                          | AL 544                             |

![](_page_10_Picture_8.jpeg)

HOMAS A. A. 10000 May 19,2020

![](_page_10_Picture_11.jpeg)

| Job        | Truss | Truss Type   | Qty | Ply |                          |           |
|------------|-------|--------------|-----|-----|--------------------------|-----------|
| 20-045195T | E     | Roof Special | 5   | 1   | Job Reference (optional) | T20252363 |

#### Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:46 ID:mQ99NPBAzRfqgvs8OFoZPJzF\_Vr-2?NIyYiyn5ZuQN7USTIClbOovpCT15XAIv88rhzEz4B

Page: 1

![](_page_11_Figure_4.jpeg)

Scale = 1:50.6

# Plate Offsets (X, Y): [5:0-6-0,0-0-2], [5:0-0-4,Edge], [7:0-3-0,0-3-0]

|                                                    |                             | •                      |        |                 |                     |         |                |       |       |        |     |                |               |    |
|----------------------------------------------------|-----------------------------|------------------------|--------|-----------------|---------------------|---------|----------------|-------|-------|--------|-----|----------------|---------------|----|
| Loading                                            | (psf)                       | Spacing                | 2-0-0  |                 | csi                 |         | DEFL           | in    | (loc) | l/defl | L/d | PLATES         | GRIP          |    |
| TCLL (roof)                                        | 20.0                        | Plate Grip DOL         | 1.00   |                 | тс                  | 0.30    | Vert(LL)       | -0.09 | 7-8   | >998   | 240 | MT20           | 244/190       |    |
| TCDL                                               | 10.0                        | Lumber DOL             | 1.15   |                 | BC                  | 0.45    | Vert(CT)       | -0.19 | 7-8   | >503   | 180 |                |               |    |
| BCLL                                               | 0.0*                        | Rep Stress Incr        | YES    |                 | WB                  | 0.45    | Horz(CT)       | 0.00  | 5     | n/a    | n/a |                |               |    |
| BCDL                                               | 10.0                        | Code                   | IRC201 | 5/TPI2014       | Matrix-MS           |         |                |       |       |        |     | Weight: 116 lb | FT = 20%      |    |
|                                                    |                             | -                      | 5)     | Provide mech    | anical connection   | (by oth | are) of truce  | to    |       |        |     |                | -             |    |
|                                                    | 2v4 SP No 2                 |                        | 5)     | hearing plate   | canable of withsta  | ndina 7 | 2 lh unlift at | ioint |       |        |     |                |               |    |
|                                                    | 2x4 SF N0.2<br>2x4 SP No.2  |                        |        | 7 and 12 lb u   | plift at joint 5    | nung /  |                | joint |       |        |     |                |               |    |
| WEBS                                               | 2x4 SP No 3 *Excen          | t* 8-1·2x6 SP No 2     | 6)     | This truss is o | designed in accorda | ance wi | th the 2015    |       |       |        |     |                |               |    |
| WEDGE                                              | Right: 2x10 SP 2250         | F 1.9E or DSS or SS    | 5      | International   | Residential Code s  | ections | R502.11.1 a    | and   |       |        |     |                |               |    |
| BRACING                                            |                             |                        |        | R802.10.2 ar    | nd referenced stand | lard AN | SI/TPI 1.      |       |       |        |     |                |               |    |
| TOP CHORD                                          | Structural wood she         | athing directly applie | dor LC | DAD CASE(S)     | Standard            |         |                |       |       |        |     |                |               |    |
|                                                    | 6-0-0 oc purlins, exc       | cept end verticals.    |        | .,              |                     |         |                |       |       |        |     |                |               |    |
| BOT CHORD                                          | Rigid ceiling directly      | applied or 10-0-0 oc   |        |                 |                     |         |                |       |       |        |     |                |               |    |
|                                                    | bracing.                    |                        |        |                 |                     |         |                |       |       |        |     |                |               |    |
| REACTIONS                                          | (SIZE) 5=0-3-8, /           | (=0-3-8, 8=0-3-8       |        |                 |                     |         |                |       |       |        |     |                |               |    |
|                                                    | Max Horiz 8=-145 (L         |                        |        |                 |                     |         |                |       |       |        |     |                |               |    |
|                                                    |                             | 2 1 1), 7=-72 (LC 10)  | 220    |                 |                     |         |                |       |       |        |     |                |               |    |
|                                                    |                             | 5 1), 7=789 (LC 1), 8  | =330   |                 |                     |         |                |       |       |        |     |                |               |    |
| FORCES                                             | (lb) - Maximum Com          | pression/Maximum       |        |                 |                     |         |                |       |       |        |     |                |               |    |
| ONCES                                              | Tension                     |                        |        |                 |                     |         |                |       |       |        |     |                |               |    |
| TOP CHORD                                          | 1-2=-222/58, 2-3=-1         | 70/112, 3-4=-276/63    | ,      |                 |                     |         |                |       |       |        |     |                |               |    |
|                                                    | 4-5=-423/51, 1-8=-2         | 09/56                  |        |                 |                     |         |                |       |       |        |     |                |               |    |
| BOT CHORD                                          | 7-8=-35/194, 6-7=0/         | 145, 5-6=0/309         |        |                 |                     |         |                |       |       |        |     |                |               |    |
| WEBS                                               | 3-7=-470/61, 2-7=-2         | 76/147, 3-6=-41/282    | ,      |                 |                     |         |                |       |       |        |     |                |               |    |
|                                                    | 4-0=-209/134, 2-8=-         | 81/38                  |        |                 |                     |         |                |       |       |        |     |                | a line        |    |
| NOTES                                              |                             |                        |        |                 |                     |         |                |       |       |        |     | WITH C         | ARA           |    |
| <ol> <li>Unbalance</li> <li>this design</li> </ol> | ed roof live loads have     | been considered for    |        |                 |                     |         |                |       |       |        |     | CH CE          |               | 11 |
|                                                    | 1.<br>CE 7 10: \/ult_115mph | (2 second quist)       |        |                 |                     |         |                |       |       |        | S.  | N. STEE        |               | 12 |
| 2) Wind. ASC                                       | DE 7-10, Vuit=115mpn        | DI -6 Opef: b-30ft: C  | `ot    |                 |                     |         |                |       |       |        | 2   |                | est.          |    |
| II: Exp B: I                                       | Enclosed: MWERS (en         | velope) exterior zon   | ρ.     |                 |                     |         |                |       |       |        | -   | :55            | · · ·         | -  |
| and C-C E                                          | xterior (2) zone: cantil    | ever left and right    | 0      |                 |                     |         |                |       |       |        |     | : SE           | 41            |    |
| exposed ;                                          | end vertical left and rid   | ht exposed;C-C for     |        |                 |                     |         |                |       |       |        | 3   | 1.55           |               |    |
| members                                            | and forces & MWFRS          | for reactions shown;   |        |                 |                     |         |                |       |       |        | 2   | : 155          | 44 :          | 2  |
| Lumber D                                           | OL=1.60 plate grip DO       | L=1.33                 |        |                 |                     |         |                |       |       |        | 1   | 3. State 1997  |               | -  |
| <ol><li>This truss</li></ol>                       | has been designed for       | r a 10.0 psf bottom    |        |                 |                     |         |                |       |       |        | 3   | 2. 4.          |               | 13 |
| chord live                                         | load nonconcurrent wi       | th any other live load | ls.    |                 |                     |         |                |       |       |        | 1   | Y NGIN         | JEE           | 1  |
| 4) * This trus                                     | s has been designed f       | or a live load of 20.0 | psf    |                 |                     |         |                |       |       |        | 1   | An             | Br            | 5  |
| on the bot                                         | tom chord in all areas      | where a rectangle      |        |                 |                     |         |                |       |       |        |     | AS I           | A. AL         |    |
| 3-06-00 ta                                         | II by 2-00-00 wide will     | tit between the botto  | m      |                 |                     |         |                |       |       |        |     | 111111         | in the second |    |
| chord and                                          | any other members.          |                        |        |                 |                     |         |                |       |       |        |     |                |               |    |

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

May 19,2020

![](_page_11_Picture_11.jpeg)

![](_page_11_Picture_12.jpeg)

| Job        | Truss | Truss Type   | Qty | Ply |                                       |  |
|------------|-------|--------------|-----|-----|---------------------------------------|--|
| 20-045195T | E1    | Roof Special | 3   | 1   | T20252364<br>Job Reference (optional) |  |

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:46 ID:4gmnpUiCI9XynGVMnj26WuzF\_Tt-2?NIyYiyn5ZuQN7USTICIbOIVpBB15YAIv88rhzEz4B

![](_page_12_Figure_3.jpeg)

#### Scale = 1:50.6

# Plate Offsets (X, Y): [5:0-0-4,Edge], [5:0-0-4,Edge], [7:0-3-0,0-3-0]

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                         |                                                                                              | (psf)<br>20.0<br>10.0<br>0.0*<br>10.0                                      | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                         | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC2015 | /TPI2014                                                                                                          | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MS                                                                                                   | 0.45<br>0.54<br>0.45                                  | <b>DEFL</b><br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                | in<br>-0.08<br>-0.12<br>0.02 | (loc)<br>6-7<br>6-7<br>5 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20<br>Weight: 114 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------|--------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD | 2x4 SP No<br>2x4 SP No<br>2x4 SP No<br>Right: 2x1<br>Structural<br>5-5-5 oc p<br>Rigid ceili | 0.2<br>0.3 *Except<br>0 SP 2250<br>wood shea<br>urlins, exc<br>ng directly | * 8-1:2x6 SP No.2<br>F 1.9E or DSS or SS<br>athing directly applied<br>ept end verticals.<br>applied or 10-0-0 oc | 5)<br>6)<br>For <b>LO</b>               | Provide mech<br>bearing plate<br>8 and 18 lb u<br>This truss is of<br>International<br>R802.10.2 ar<br>AD CASE(S) | nanical connection<br>capable of withsta<br>plift at joint 5.<br>Jesigned in accord<br>Residential Code s<br>d referenced stand<br>Standard | (by othe<br>nding 1<br>ance wi<br>sections<br>dard AN | ers) of truss t<br>1 lb uplift at j<br>th the 2015<br>R502.11.1 a<br>SI/TPI 1. | io<br>oint<br>ind            |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                    |
| REACTIONS                                                                              | bracing.<br>(size)<br>Max Horiz<br>Max Uplift<br>Max Grav                                    | 5=0-3-8, 8<br>8=-145 (LC<br>5=-18 (LC<br>5=833 (LC                         | =0-3-8<br>C 8)<br>11), 8=-11 (LC 10)<br>: 1), 8=749 (LC 1)                                                        |                                         |                                                                                                                   |                                                                                                                                             |                                                       |                                                                                |                              |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                    |
| FORCES                                                                                 | (lb) - Maxi<br>Tension                                                                       | mum Com                                                                    | pression/Maximum                                                                                                  |                                         |                                                                                                                   |                                                                                                                                             |                                                       |                                                                                |                              |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                    |
| TOP CHORD                                                                              | 1-2=-191/<br>4-5=-924/                                                                       | 60, 2-3=-82<br>98, 1-8=-18                                                 | 28/139, 3-4=-808/140<br>30/51                                                                                     | Ι,                                      |                                                                                                                   |                                                                                                                                             |                                                       |                                                                                |                              |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                    |
| BOT CHORD                                                                              | 7-8=-58/7<br>6-15=0/53                                                                       | 54, 7-14=0<br>2, 5-6=-8/6                                                  | /532, 14-15=0/532,<br>97                                                                                          |                                         |                                                                                                                   |                                                                                                                                             |                                                       |                                                                                |                              |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                    |
| WEBS                                                                                   | 3-7=-47/3<br>4-6=-207/                                                                       | 53, 2-7=-17<br>137, 2-8=-7                                                 | 77/142, 3-6=-55/326,<br>775/39                                                                                    |                                         |                                                                                                                   |                                                                                                                                             |                                                       |                                                                                |                              |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mu                               | 000                                |
| <ul> <li>NOTES</li> <li>1) Unbalance<br/>this design</li> <li>2) Wind: ASC</li> </ul>  | ed roof live le<br>n.<br>CE 7-10; Vul                                                        | bads have<br>t=115mph                                                      | been considered for<br>(3-second gust)                                                                            |                                         |                                                                                                                   |                                                                                                                                             |                                                       |                                                                                |                              |                          |                               | in the second se | OR OF S                          | AD WHITE                           |

- 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Contraction of the second The second second SEAL 15544 6 1AS A Α. 100000

# May 19,2020

Page: 1

![](_page_12_Picture_13.jpeg)

| Job        | Truss | Truss Type   | Qty | Ply |                                       |
|------------|-------|--------------|-----|-----|---------------------------------------|
| 20-045195T | E2    | Roof Special | 1   | 1   | T20252365<br>Job Reference (optional) |

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:46 ID:RO\_ntj40rFUb6QLjbYkiypzF\_1\_-2?NIyYiyn5ZuQN7USTICIbOIWpBz19sAIv88rhzEz4B

![](_page_13_Figure_3.jpeg)

Scale = 1:50.8

Plate Offsets (X, Y): [3:0-3-12,0-2-0], [5:0-0-8,Edge], [5:0-0-4,Edge], [7:0-3-0,0-3-0]

|                  |                            |                        | , 0     |                |                     |               |                |       |       |        |     |                |          |
|------------------|----------------------------|------------------------|---------|----------------|---------------------|---------------|----------------|-------|-------|--------|-----|----------------|----------|
| Loading          | (psf)                      | Spacing                | 2-0-0   |                | CSI                 |               | DEFL           | in    | (loc) | l/defl | L/d | PLATES         | GRIP     |
| TCLL (roof)      | 20.0                       | Plate Grip DOL         | 1.00    |                | TC                  | 0.45          | Vert(LL)       | -0.07 | 7-8   | >999   | 240 | MT20           | 244/190  |
| TCDL             | 10.0                       | Lumber DOL             | 1.15    |                | BC                  | 0.55          | Vert(CT)       | -0.14 | 7-8   | >999   | 180 |                |          |
| BCLL             | 0.0*                       | Rep Stress Incr        | YES     |                | WB                  | 0.24          | Horz(CT)       | 0.02  | 5     | n/a    | n/a |                |          |
| BCDL             | 10.0                       | Code                   | IRC2015 | 5/TPI2014      | Matrix-MS           |               |                | -     |       |        |     | Weight: 128 lb | FT = 20% |
| LUMBER           |                            |                        | 4)      | * This truss h | as been design      | ed for a live | e load of 20.  | .0psf |       |        |     |                |          |
| TOP CHORD        | 2x4 SP No.2                |                        |         | on the botton  | n chord in all are  | eas where a   | a rectangle    |       |       |        |     |                |          |
| BOT CHORD        | 2x4 SP No.2                |                        |         | 3-06-00 tall b | y 2-00-00 wide      | will fit betw | een the bot    | tom   |       |        |     |                |          |
| WEBS             | 2x4 SP No.3 *Except        | t* 2-8:2x4 SP No.2     |         | chord and ar   | y other member      | rs, with BCI  | DL = 10.0ps    | sf.   |       |        |     |                |          |
| WEDGE            | Right: 2x10 SP 2250        | F 1.9E or DSS or SS    | s 5)    | Provide mec    | hanical connecti    | on (by othe   | ers) of truss  | to    |       |        |     |                |          |
| BRACING          |                            |                        |         | bearing plate  | capable of with     | standing 6    | 7 lb uplift at | joint |       |        |     |                |          |
| TOP CHORD        | Structural wood shea       | athing directly applie | d or    | 8 and 15 lb u  | plift at joint 5.   |               |                |       |       |        |     |                |          |
|                  | 5-5-3 oc purlins, exc      | cept end verticals, an | nd 6)   | This truss is  | designed in acco    | ordance wi    | th the 2015    | et    |       |        |     |                |          |
|                  | 2-0-0 oc purlins (6-0-     | -0 max.): 1-3.         |         | International  | Residential Cod     | e sections    | K502.11.1      | and   |       |        |     |                |          |
| BOT CHORD        | Rigid ceiling directly     | applied or 10-0-0 oc   |         | Kou2.10.2 ar   | iu referenced st    | andard AN     | 51/1 P1 1.     |       |       |        |     |                |          |
|                  | bracing.                   |                        | 7)      | Graphical pu   | riin representatio  | on does no    | t depict the   | size  |       |        |     |                |          |
| WEBS             | 1 Row at midpt             | 2-8                    |         | bottom chore   | alion of the putlit | r along the   | top and/or     |       |       |        |     |                |          |
| REACTIONS        | (size) 5=0-3-8, 8          | 8=0-3-8                |         |                | Otau da ud          |               |                |       |       |        |     |                |          |
|                  | Max Horiz 8=-210 (L0       | C 8)                   | LO      | AD CASE(S)     | Standard            |               |                |       |       |        |     |                |          |
|                  | Max Uplift 5=-15 (LC       | 11), 8=-67 (LC 6)      |         |                |                     |               |                |       |       |        |     |                |          |
|                  | Max Grav 5=836 (LC         | C 1), 8=766 (LC 2)     |         |                |                     |               |                |       |       |        |     |                |          |
| FORCES           | (lb) - Maximum Com         | pression/Maximum       |         |                |                     |               |                |       |       |        |     |                |          |
|                  | Tension                    |                        |         |                |                     |               |                |       |       |        |     |                |          |
| TOP CHORD        | 1-8=-113/49, 1-2=-91       | 1/93, 2-3=-491/122,    |         |                |                     |               |                |       |       |        |     |                |          |
|                  | 3-4=-841/158, 4-5=-9       | 930/98                 |         |                |                     |               |                |       |       |        |     |                |          |
| BOT CHORD        | 8-14=-44/431, 14-15        | =-44/431, 7-15=-44/4   | 431,    |                |                     |               |                |       |       |        |     |                |          |
|                  | 7-16=0/528, 16-17=0        | )/528, 6-17=0/528,     |         |                |                     |               |                |       |       |        |     | , mm           | 11111    |
|                  | 5-6=-9/703                 |                        |         |                |                     |               |                |       |       |        |     | WH C           | ARA      |
| WEBS             | 3-7=-116/83, 3-6=-78       | 8/327, 4-6=-212/145    | ,       |                |                     |               |                |       |       |        |     | "All           | S III    |
|                  | 2-7=0/390, 2-8=-698        | /86                    |         |                |                     |               |                |       |       |        | 5   | 0              | A.V.     |
| NOTES            |                            |                        |         |                |                     |               |                |       |       |        | 2.  |                | 13.7 -   |
| 1) Wind: AS      | CE 7-10; Vult=115mph       | (3-second gust)        |         |                |                     |               |                |       |       |        | -   |                |          |
| Vasd=91n         | nph; TCDL=6.0psf; BCI      | DL=6.0psf; h=30ft; C   | at.     |                |                     |               |                |       |       |        | -   | : 05           | AL : E   |
| II; Exp B;       | Enclosed; MWFRS (en        | velope) exterior zon   | е       |                |                     |               |                |       |       |        | Ξ   | SE.            | AL : E   |
| and C-C E        | exterior (2) zone; cantile | ever left and right    |         |                |                     |               |                |       |       |        | =   | 155            | 44 : =   |
| exposed;         | end vertical left and rig  | int exposed;C-C for    |         |                |                     |               |                |       |       |        | -   | : 100          | 1 5      |
|                  | OI -1 60 plate grip DO     | I =1 33                |         |                |                     |               |                |       |       |        | 1   | 100            | 1. 2     |
| 2) Provide or    | doguato drainago to pre    |                        |         |                |                     |               |                |       |       |        | 5.1 | A. EN-         | CR. NS   |
| 2) FIUVILLE $a($ | bac been designed for      | a 10.0 pcf bottom      | •       |                |                     |               |                |       |       |        | 1   | YO GIN         | VEF      |
| chord live       | load popconcurrent wit     | a 10.0 psi bollom      | le le   |                |                     |               |                |       |       |        |     | MAG            | NB       |
| choru live       | Ioau nonconcurrent wit     |                        | 13.     |                |                     |               |                |       |       |        |     | ILAS I         | A. Marin |
|                  |                            |                        |         |                |                     |               |                |       |       |        |     |                | mm.      |

May 19,2020

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

| Job        | Truss | Truss Type   | Qty | Ply |                                       |
|------------|-------|--------------|-----|-----|---------------------------------------|
| 20-045195T | E3    | Roof Special | 1   | 1   | T20252366<br>Job Reference (optional) |

#### Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:47 ID:2duxy8f7Y?Xnso0xPdbyvwzF\_0E-WBxg9ujbYPhl2Whg0BpRroxr?DTWmaMJXYthN8zEz4A

![](_page_14_Figure_3.jpeg)

#### Scale = 1:55.5

## Plate Offsets (X, Y): [2:0-3-12,0-2-0], [4:0-0-4,Edge], [4:0-0-4,Edge], [5:0-4-0,0-3-0]

| L <b>oading</b><br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                    | (psf)<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                     | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                         | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC201               | 5/TPI2014                                                                                                                                                                                                                                  | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MS                                                                                                                                                                                                                                    | 0.79<br>0.79<br>0.35                                                                                                                 | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                      | in<br>-0.43<br>-0.68<br>0.02                   | (loc)<br>5-6<br>5-6<br>4 | l/defl<br>>552<br>>352<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 117 lb | <b>GRIP</b><br>244/190<br>FT = 20% |            |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------|-------------------------------|--------------------------|----------------------------------|------------------------------------|------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS               | 2x4 SP No.2<br>2x4 SP 1650F 1.5E<br>SP SS *Except* 5-4<br>2x4 SP No.2 *Except<br>Right: 2x10 SP 2250<br>Structural wood she<br>5-4-10 oc purlins, e<br>2-0-0 oc purlins, (6-0<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 4=0-3-8, (<br>Max Horiz 6=-249 (L<br>Max Uplift 4=-17 (LC | or 2x4 SP No.1 or 2<br>2x4 SP No.2<br>t* 5-3:2x4 SP No.3<br>)F 1.9E or DSS or S<br>athing directly applie<br>xcept end verticals,<br>-0 max.): 1-2.<br>applied or 10-0-0 or<br>1-6, 2-6<br>5=0-3-8<br>C 8)<br>2 11), 6=-69 (LC 6) | 4)<br>x4<br>5)<br>S<br>ed or 6)<br>and<br>c 7)<br>LC | * This truss h<br>on the bottom<br>3-06-00 tall b<br>chord and an<br>Provide mech<br>bearing plate<br>6 and 17 lb u<br>This truss is of<br>International<br>R802.10.2 ar<br>Graphical pui<br>or the orienta<br>bottom chord<br>DAD CASE(S) | as been designed<br>n chord in all areas<br>y 2-00-00 wide wi<br>y other members,<br>nanical connectior<br>capable of withsta<br>plift at joint 4.<br>designed in accord<br>Residential Code<br>d referenced stan<br>rlin representation<br>tion of the purlin a<br>Standard | for a live<br>s where s<br>Il fit betw<br>with BC<br>(by othe<br>anding 6<br>dance wi<br>sections<br>dard AN<br>does no<br>along the | e load of 20.<br>a rectangle<br>een the bott<br>DL = 10.0ps<br>ers) of truss 9<br>9 lb uplift at 1<br>th the 2015<br>R502.11.1 a<br>SI/TPI 1.<br>t depict the s<br>top and/or | Opsf<br>om<br>f.<br>to<br>joint<br>and<br>size |                          |                               |                          |                                  |                                    |            |
|                                                                                                                           | Max Grav 4=836 (Lo                                                                                                                                                                                                                                                                                        | C 1), 6=764 (LC 2)                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                               |                                                |                          |                               |                          |                                  |                                    |            |
| FURCES                                                                                                                    | Tension                                                                                                                                                                                                                                                                                                   | pression/maximum                                                                                                                                                                                                                  |                                                      |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                               |                                                |                          |                               |                          |                                  |                                    |            |
| TOP CHORD                                                                                                                 | 1-6=-209/74, 1-2=-1<br>3-4=-921/107                                                                                                                                                                                                                                                                       | 13/111, 2-3=-737/13                                                                                                                                                                                                               | 32,                                                  |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                               |                                                |                          |                               |                          |                                  |                                    |            |
| BOT CHORD                                                                                                                 | 6-12=0/454, 12-13=<br>4-5=-4/691                                                                                                                                                                                                                                                                          | 0/454, 5-13=0/454,                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                               |                                                |                          |                               |                          |                                  |                                    |            |
| NEBS                                                                                                                      | 2-6=-617/75, 2-5=-1                                                                                                                                                                                                                                                                                       | 3/538, 3-5=-270/171                                                                                                                                                                                                               | 1                                                    |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                               |                                                |                          |                               |                          | "aTH U                           | TO THE                             |            |
| NOTES                                                                                                                     |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                   |                                                      |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                               |                                                |                          |                               | 3                        | O'.EES                           | SOLV'                              | 5          |
| <ol> <li>Wind: ASC<br/>Vasd=91m</li> <li>II; Exp B; E</li> <li>and C-C E</li> <li>exposed ;</li> <li>members a</li> </ol> | CE 7-10; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>Exterior (2) zone; cantil<br>end vertical left and ri<br>and forces & MWFRS                                                                                                                                                        | (3-second gust)<br>DL=6.0psf; h=30ft; (<br>avelope) exterior zor<br>ever left and right<br>ght exposed;C-C for<br>for reactions shown                                                                                             | Cat.<br>ne                                           |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                               |                                                |                          |                               | in the second            | SE/<br>155                       | AL<br>44                           | Markan III |

Lumber DOL=1.60 plate grip DOL=1.33 Provide adequate drainage to prevent water ponding. 2) 3) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

THOMAS A. AL ଚ 

# May 19,2020

Page: 1

![](_page_14_Picture_12.jpeg)

| Job        | Truss | Truss Type   | Qty | Ply |                                   |      |
|------------|-------|--------------|-----|-----|-----------------------------------|------|
| 20-045195T | E4    | Roof Special | 1   | 1   | T2025<br>Job Reference (optional) | 2367 |

12-6-2

BMC (Middlesex, NC), Middlesex, NC - 27557,

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:47 ID:smFCCBku8rIxajT5luiM8BzF\_08-WBxg9ujbYPhl2Whg0BpRroxuhDRema2JXYthN8zEz4A

20-0-0

Page: 1

7-1-0 7-5-14

![](_page_15_Figure_5.jpeg)

#### Scale = 1:61.5

# Plate Offsets (X, Y): [2:0-3-12,0-2-0], [3:0-3-0,0-3-0], [4:0-0-4, Edge], [4:0-0-4, Edge], [5:0-4-0, Edge]

5-5-3

5-5-3

5x6=

2

3x6 🛛

1

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                              | (psf)<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                            | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                         | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC201                      | 5/TPI2014                                                                                                                                                                                                                                 | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MS                                                                                                                                                                                                                                   | 0.62<br>0.91<br>0.37                                                                                                                           | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                | in<br>-0.44<br>-0.70<br>0.02                    | (loc)<br>5-6<br>5-6<br>4 | l/defl<br>>537<br>>342<br>n/a | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20<br>Weight: 122 lb | <b>GRIP</b><br>244/190<br>FT = 20% |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|---------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS                                                 | 2x4 SP No.2<br>2x4 SP 1650F 1.5E<br>SP SS *Except* 5-/<br>2x4 SP No.2 *Exce<br>Right: 2x10 SP 225<br>Structural wood sh<br>4-8-7 oc purlins, e<br>2-0-0 oc purlins (6-<br>Rigid ceiling directl<br>bracing.<br>1 Row at midpt<br>(size) 4=0-3-8,<br>Max Horiz 6=-289 (I<br>Max Grav 4=859 (I<br>(b) - Maximum Co | E or 2x4 SP No.1 or 2<br>4:2x4 SP No.2<br>9pt* 5-3:2x4 SP No.3<br>50F 1.9E or DSS or 5<br>eathing directly appli<br>xcept end verticals, a<br>0-0 max.): 1-2.<br>y applied or 10-0-0 c<br>1-6, 2-6<br>6=0-3-8<br>LC 8)<br>C 11), 6=-70 (LC 6)<br>.C 18), 6=807 (LC 18<br>moression/Maximum | 4)<br>2x4<br>5)<br>SS<br>ied or 6)<br>and 7)<br>DC 7)<br>L( | * This truss h<br>on the bottom<br>3-06-00 tall b<br>chord and an<br>Provide mech<br>bearing plate<br>6 and 16 lb u<br>This truss is a<br>International<br>R802.10.2 ar<br>Graphical pui<br>or the orienta<br>bottom chord<br>DAD CASE(S) | as been designed<br>n chord in all area<br>y 2-00-00 wide wi<br>y other members,<br>nanical connection<br>capable of withst<br>plift at joint 4.<br>designed in accor<br>Residential Code<br>d referenced star<br>flin representation<br>tition of the purlin a<br>Standard | I for a live<br>s where a<br>ill fit betw,<br>with BC<br>h (by othe<br>anding 7<br>dance wi<br>sections<br>indard AN<br>a does nc<br>along the | e load of 20.<br>a rectangle<br>een the bott<br>DL = 10.0ps<br>ers) of truss<br>0 lb uplift at<br>th the 2015<br>R502.11.1 a<br>SI/TPI 1.<br>t depict the<br>top and/or | Opsf<br>fom<br>f.<br>to<br>joint<br>and<br>size |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                    |         |
| TOP CHORD                                                                                                                                                   | Tension<br>1-6=-140/64, 1-2=-                                                                                                                                                                                                                                                                                    | 125/128, 2-3=-818/1                                                                                                                                                                                                                                                                        | 69,                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                                |                                                                                                                                                                         |                                                 |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                    |         |
| BOT CHORD                                                                                                                                                   | 3-4=-946/103<br>6-12=-17/377, 12-1<br>5-14=0/731 14-15:                                                                                                                                                                                                                                                          | 3=-17/377, 5-13=-17<br>=0/731_4-15=0/731                                                                                                                                                                                                                                                   | 7/377,                                                      |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                                |                                                                                                                                                                         |                                                 |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | annun (                          |                                    |         |
| WEBS                                                                                                                                                        | 2-6=-658/95. 2-5=-                                                                                                                                                                                                                                                                                               | 74/739. 3-5=-356/20                                                                                                                                                                                                                                                                        | 3                                                           |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                                |                                                                                                                                                                         |                                                 |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TH U                             | ROW                                | 55      |
| NOTES                                                                                                                                                       | , 20                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                            | -                                                           |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                                |                                                                                                                                                                         |                                                 |                          |                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Oning                            | in the                             | 11      |
| <ol> <li>Wind: ASC<br/>Vasd=91n<br/>II; Exp B; I<br/>and C-C E<br/>exposed;<br/>Lumber Di</li> <li>Provide ac</li> <li>This truss<br/>chord live</li> </ol> | CE 7-10; Vult=115mp<br>pph; TCDL=6.0psf; B<br>Enclosed; MWFRS (e<br>ixterior (2) zone; cant<br>end vertical left and I<br>and forces & MWFRS<br>OL=1.60 plate grip D<br>dequate drainage to p<br>has been designed fi<br>load nonconcurrent v                                                                    | h (3-second gust)<br>CDL=6.0psf; h=30ft;<br>envelope) exterior zo<br>tilever left and right<br>right exposed;C-C fo<br>S for reactions shown<br>OL=1.33<br>orevent water pondin<br>or a 10.0 psf bottom<br>with any other live loa                                                         | Cat.<br>ine<br>in<br>n;<br>ig.<br>ads.                      |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                                |                                                                                                                                                                         |                                                 |                          |                               | and a second sec | SE/<br>155<br>NGINAS /           | AL<br>44<br>NEER<br>ALBAN<br>May   | 19,2020 |
|                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                            |                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                                |                                                                                                                                                                         |                                                 |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | ,                                  |         |

May 19,2020

![](_page_15_Picture_12.jpeg)

| Job        | Truss | Truss Type   | Qty | Ply |                                       |
|------------|-------|--------------|-----|-----|---------------------------------------|
| 20-045195T | E5    | Roof Special | 1   | 1   | T20252368<br>Job Reference (optional) |

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:47 ID:e7JVbMSvEzjZ9nURinFC1ezF\_?D-WBxg9ujbYPhl2Whg0BpRroxrpDR0mZsJXYthN8zEz4A

Page: 1

![](_page_16_Figure_3.jpeg)

#### Scale = 1:67.8

# Plate Offsets (X, Y): [2:0-3-12,0-2-0], [3:0-4-0,0-3-0], [4:0-0-4, Edge], [4:0-0-4, Edge], [5:0-4-0, Edge]

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                             | (psf)<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                     | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                    | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC2015 | 5/TPI2014                                                                                                                                                                                                                                      | CSI<br>TC<br>BC<br>WB<br>Matrix-MS                                                                                                                                                                                                                                                          | 0.80<br>0.95<br>0.45                                                                                                       | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                            | in<br>-0.46<br>-0.71<br>0.01 | (loc)<br>5-6<br>5-6<br>4 | l/defl<br>>522<br>>335<br>n/a | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20<br>Weight: 129 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS                                                                         | 2x4 SP No.2<br>2x4 SP 1650F 1.5E c<br>SP SS *Except* 5-4:2<br>2x4 SP No.2 *Except<br>Right: 2x10 SP 2250<br>Structural wood sheat<br>2-2-0 oc purlins, exc<br>2-0-0 oc purlins (6-0-<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 4=0-3-8, 6<br>Max Horiz 6=-328 (LC<br>Max Uplift 4=-11 (LC<br>Max Grav 4=874 (LC<br>(Ib) - Maximum Comp<br>Tension | or 2x4 SP No.1 or 2x4<br>2x4 SP No.2<br>* 5-3:2x4 SP No.3<br>F 1.9E or DSS or SS<br>athing directly applied<br>cept end verticals, and<br>0 max.): 1-2.<br>applied or 2-2-0 oc<br>1-6, 2-6<br>=0-3-8<br>C 8)<br>11), 6=-72 (LC 6)<br>: 18), 6=881 (LC 18)<br>pression/Maximum                | 4)<br>5)<br>or 6)<br>7)<br>LO           | * This truss h<br>on the bottom<br>3-06-00 tall by<br>chord and any<br>Provide mech<br>bearing plate<br>6 and 11 lb up<br>This truss is of<br>International 1<br>R802.10.2 an<br>Graphical pur<br>or the orienta<br>bottom chord<br>AD CASE(S) | as been designed f<br>a chord in all areas<br>y 2-00-00 wide will<br>y other members, y<br>lanical connection<br>capable of withstan<br>blift at joint 4.<br>lesigned in accorda<br>Residential Code s<br>d referenced stand<br>lin representation of<br>tion of the purlin all<br>Standard | for a live<br>where a<br>fit betw<br>with BC<br>(by othe<br>nding 7<br>ance wi<br>ections<br>lard AN<br>does no<br>ong the | e load of 20.0<br>a rectangle<br>een the bottc<br>DL = 10.0psf.<br>ers) of truss tr<br>2 lb uplift at jo<br>th the 2015<br>R502.11.1 a<br>SI/TPI 1.<br>t depict the s<br>top and/or | Opsf<br>o<br>ooint<br>nd     |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                    |
| TOP CHORD                                                                                                                                                                  | 1-6=-73/70, 1-2=-140<br>3-4=-984/98                                                                                                                                                                                                                                                                                                                                       | )/147, 2-3=-890/219,                                                                                                                                                                                                                                                                         |                                         |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                             |                                                                                                                            |                                                                                                                                                                                     |                              |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                    |
| BOT CHORD<br>WEBS<br>NOTES<br>1) Wind: ASC<br>Vasd=91m<br>II; Exp B; f<br>and C-C E<br>exposed ;<br>members :<br>Lumber D0<br>2) Provide ac<br>3) This truss<br>chord live | 6-12=-49/303, 12-13<br>6-12=-49/303, 12-13<br>5-14=0/759, 14-15=0<br>2-6=-729/127, 3-5=-4<br>CE 7-10; Vult=115mph<br>nph; TCDL=6.0psf; BCI<br>Enclosed; MWFRS (enclosed);<br>end vertical left and rig<br>and forces & MWFRS for<br>DL=1.60 plate grip DOI<br>dequate drainage to pre-<br>has been designed for<br>load nonconcurrent wit                                 | =-49/303, 5-13=-49/3<br>//759, 4-15=0/759<br>143/244, 2-5=-149/93<br>(3-second gust)<br>DL=6.0psf; h=30ft; Ca<br>velope) exterior zone<br>ever left and right<br>ht exposed;C-C for<br>for reactions shown;<br>L=1.33<br>event water ponding.<br>a 10.0 psf bottom<br>h any other live loads | 03,<br>2<br>at.                         |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                             |                                                                                                                            |                                                                                                                                                                                     |                              |                          |                               | and the second s | SEA<br>155<br>NGIN<br>AS A       | AL ALBANING                        |

![](_page_16_Picture_9.jpeg)

Minimiter A.

May 19,2020

| Job        | Truss | Truss Type   | Qty | Ply |                                       |
|------------|-------|--------------|-----|-----|---------------------------------------|
| 20-045195T | E6    | Roof Special | 1   | 1   | T20252369<br>Job Reference (optional) |

# ID:mii7b3Qj9sw4NEA?yHCBqjzEzzy-\_NV2NEjDJipcggGsZuKgN0T\_kdmvUztTmCdFvazEz49 1-5-3 10-6-2 20-0-0 -9-1-0 9-5-14 1-5-3 8x8 🕿 4x5 u 1 2 M 1<u>2</u> 18 6x8 💊 3

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:48

4x12 u

À ø

4x5: 20-0-0 **4**⊤

6 12 513 14 4x12= 5x8= 9-11-5 19-0-0 9-11-5 9-0-11 Plate Offsets (X, Y): [2:0-3-0,Edge], [3:0-4-0,Edge], [4:0-0-4,Edge], [4:0-0-4,Edge], [5:0-4-0,0-3-4]

12-9-0

#### Scale = 1:78.9

|                                                              | () ( ) [ ] ]                                                                                                                           | [                                                                                                       | - ,                           | J/L                                                                                                                                                                                                            | -1/11                                                                                                                                                                                         |                                                                                                                 |                                                                                                                                     |                              |                          |                               |                          |                |                        |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|-------------------------------|--------------------------|----------------|------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL                       | (psf)<br>20.0<br>10.0<br>0.0*                                                                                                          | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                                       | 2-0-0<br>1.00<br>1.15<br>YES  |                                                                                                                                                                                                                | CSI<br>TC<br>BC<br>WB                                                                                                                                                                         | 0.92<br>0.90<br>0.59                                                                                            | <b>DEFL</b><br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                     | in<br>-0.25<br>-0.50<br>0.02 | (loc)<br>5-6<br>5-6<br>4 | l/defl<br>>958<br>>475<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20 | <b>GRIP</b><br>244/190 |
| BCDL                                                         | 10.0                                                                                                                                   | Code                                                                                                    | IRC201                        | 5/TPI2014                                                                                                                                                                                                      | Matrix-MS                                                                                                                                                                                     | -                                                                                                               |                                                                                                                                     |                              |                          |                               |                          | Weight: 132 lb | FT = 20%               |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING | 2x4 SP No.2 *Excep<br>1.5E or 2x4 SP No.1<br>2x4 SP No.2<br>2x4 SP No.2 *Excep<br>2.0E or 2x4 SP DSS<br>SP No.3<br>Right: 2x10 SP 2250 | t* 2-3:2x4 SP 1650F<br>or 2x4 SP SS<br>t* 6-1:2x4 SP 2400F<br>or 2x4 SP M 31, 5-<br>IF 1.9E or DSS or S | = 4)<br>= 5)<br>3:2x4<br>S 6) | <ul> <li>* This truss I<br/>on the bottor</li> <li>3-06-00 tall I<br/>chord and ar</li> <li>Provide mec</li> <li>bearing plate</li> <li>joint 6 and 1</li> <li>This truss is</li> <li>International</li> </ul> | has been designe<br>m chord in all are-<br>by 2-00-00 wide w<br>ny other members<br>thanical connection<br>a capable of withs<br>lb uplift at joint 4<br>designed in acco<br>Residential Codd | ed for a liv<br>as where<br>will fit betw<br>s, with BC<br>on (by oth<br>standing 1<br>ordance wi<br>e sections | e load of 20.0<br>a rectangle<br>eeen the botto<br>DL = 10.0psf<br>ers) of truss t<br>06 lb uplift at<br>th the 2015<br>R502.11.1 a | Opsf<br>om<br>o              |                          |                               |                          |                |                        |
| TOP CHORD                                                    | Structural wood sheat<br>2-2-0 oc purlins, exc<br>2-0-0 oc purlins (6-0-                                                               | athing directly applie<br>cept end verticals, a<br>-0 max.): 1-2.                                       | ed or<br>Ind 7)               | Graphical pu<br>or the orienta                                                                                                                                                                                 | nd referenced sta<br>Irlin representatio<br>ation of the purlin                                                                                                                               | on does no<br>along the                                                                                         | t depict the s<br>top and/or                                                                                                        | size                         |                          |                               |                          |                |                        |
| BOT CHORD                                                    | Rigid ceiling directly<br>bracing.                                                                                                     | applied or 10-0-0 or                                                                                    | C L                           | bottom chore<br>OAD CASE(S)                                                                                                                                                                                    | d.<br>Standard                                                                                                                                                                                |                                                                                                                 |                                                                                                                                     |                              |                          |                               |                          |                |                        |
| WEBS                                                         | 1 Row at midpt                                                                                                                         | 2-6, 3-6                                                                                                |                               |                                                                                                                                                                                                                |                                                                                                                                                                                               |                                                                                                                 |                                                                                                                                     |                              |                          |                               |                          |                |                        |
| REACTIONS                                                    | (size) 4=0-3-8, 6<br>Max Horiz 6=-367 (L<br>Max Uplift 4=-1 (LC<br>Max Grav 4=881 (LC                                                  | 6=0-3-8<br>C 8)<br>11), 6=-106 (LC 11)<br>C 18), 6=862 (LC 18                                           | )                             |                                                                                                                                                                                                                |                                                                                                                                                                                               |                                                                                                                 |                                                                                                                                     |                              |                          |                               |                          |                |                        |
| FORCES                                                       | (lb) - Maximum Com<br>Tension                                                                                                          | pression/Maximum                                                                                        |                               |                                                                                                                                                                                                                |                                                                                                                                                                                               |                                                                                                                 |                                                                                                                                     |                              |                          |                               |                          |                |                        |
| TOP CHORD                                                    | 1-6=-124/160, 1-2=-<br>3-4=-1012/92                                                                                                    | 160/168, 2-3=-301/1                                                                                     | 128,                          |                                                                                                                                                                                                                |                                                                                                                                                                                               |                                                                                                                 |                                                                                                                                     |                              |                          |                               |                          |                | AD                     |
| BOT CHORD                                                    | 6-12=0/808, 5-12=0/<br>13-14=0/776, 4-14=0                                                                                             | /808, 5-13=0/776,<br>0/776                                                                              |                               |                                                                                                                                                                                                                |                                                                                                                                                                                               |                                                                                                                 |                                                                                                                                     |                              |                          |                               | 3                        | RTHO           | PINE                   |
| WEBS                                                         | 2-6=-446/218, 3-6=-9                                                                                                                   | 918/193, 3-5=0/459                                                                                      |                               |                                                                                                                                                                                                                |                                                                                                                                                                                               |                                                                                                                 |                                                                                                                                     |                              |                          |                               | 5.                       | 2.00           | No. 7 -                |
| NOTES                                                        |                                                                                                                                        |                                                                                                         |                               |                                                                                                                                                                                                                |                                                                                                                                                                                               |                                                                                                                 |                                                                                                                                     |                              |                          |                               | 5                        |                | est: 3                 |
| 1) Wind: ASC<br>Vasd=91n<br>II: Exp B: I                     | CE 7-10; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed: MWERS (en                                                                    | (3-second gust)<br>DL=6.0psf; h=30ft; (<br>velope) exterior zon                                         | Cat.                          |                                                                                                                                                                                                                |                                                                                                                                                                                               |                                                                                                                 |                                                                                                                                     |                              |                          |                               |                          | SE             | AL                     |

- 1 and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Provide adequate drainage to prevent water ponding. 2) 3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

THE STATE 15544 8 AS A Α. 100000 May 19,2020

Page: 1

![](_page_17_Picture_12.jpeg)

| Job        | Truss | Truss Type   | Qty | Ply |                                       |
|------------|-------|--------------|-----|-----|---------------------------------------|
| 20-045195T | E7    | Roof Special | 2   | 1   | T20252370<br>Job Reference (optional) |

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:48 ID:EisnVr3KwrUhdD9??C8OwhzEzz8-\_NV2NEjDJipcggGsZuKgN0T4GdqfU18TmCdFvazEz49

![](_page_18_Figure_3.jpeg)

![](_page_18_Figure_4.jpeg)

Scale = 1:92.8

# Plate Offsets (X, Y): [3:0-3-0,0-3-0], [4:0-0-8,Edge], [4:0-0-4,Edge]

| <b>Loading</b><br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                               | (psf)<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                            | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                 | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC201  | 5/TPI2014                                                                                                                                                                          | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MS                                                                                                                                                                     | 0.56<br>0.66<br>0.38                                                                                 | <b>DEFL</b><br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                  | in<br>-0.10<br>-0.19<br>0.01 | (loc)<br>5-13<br>5-13<br>4 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>PLATES</b><br>MT20<br>Weight: 154 lb | <b>GRIP</b><br>244/190<br>FT = 20%                                              |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS                         | 2x4 SP No.2<br>2x6 SP No.2 *Except<br>2x4 SP No.2 *Except<br>2.0E or 2x4 SP DSS<br>SP No.3<br>Right: 2x10 SP 2250<br>Structural wood shea<br>5-8-13 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 4=0-3-8, 8<br>Max Horiz 8=-390 (Lt<br>Max Uplift 8=-130 (Lt | t* 5-4:2x4 SP No.2<br>t* 8-1:2x4 SP 2400F<br>or 2x4 SP M 31, 3-5<br>F 1.9E or DSS or S3<br>athing directly applie<br>xcept end verticals.<br>applied or 10-0-0 oc<br>1-8, 2-8<br>3=0-3-8<br>C 6)<br>C 11) | 3)<br>5:2x4 4)<br>S 5)<br>vd or<br>; LC | * This truss h<br>on the bottom<br>3-06-00 tall b<br>chord and an<br>Provide mech<br>bearing plate<br>joint 8.<br>This truss is of<br>International<br>R802.10.2 ar<br>DAD CASE(S) | as been designed<br>a chord in all areas<br>y 2-00-00 wide will<br>y other members,<br>anical connection<br>capable of withsta<br>designed in accord.<br>Residential Code s<br>d referenced stand<br>Standard | for a live<br>where a<br>fit betw<br>with BC<br>(by othe<br>nding 1<br>ance wi<br>ections<br>dard AN | e load of 20.0<br>a rectangle<br>een the botto<br>DL = 10.0psf<br>ers) of truss tr<br>30 lb uplift at<br>th the 2015<br>R502.11.1 a<br>SI/TPI 1. | )psf<br>om<br>o              |                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                 |
| FORCES                                                                                                                              | (Ib) - Maximum Com<br>Tension                                                                                                                                                                                                                                                                    | pression/Maximum                                                                                                                                                                                          |                                         |                                                                                                                                                                                    |                                                                                                                                                                                                               |                                                                                                      |                                                                                                                                                  |                              |                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                 |
| TOP CHORD                                                                                                                           | 1-8=-175/72, 1-2=-23<br>3-4=-932/95                                                                                                                                                                                                                                                              | 33/142, 2-3=-772/12                                                                                                                                                                                       | 8,                                      |                                                                                                                                                                                    |                                                                                                                                                                                                               |                                                                                                      |                                                                                                                                                  |                              |                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                 |
| BOT CHORD                                                                                                                           | 7-8=-1/479, 7-14=-1/<br>6-15=-1/479, 5-6=-1                                                                                                                                                                                                                                                      | /479, 14-15=-1/479,<br>0/441, 4-5=0/722                                                                                                                                                                   |                                         |                                                                                                                                                                                    |                                                                                                                                                                                                               |                                                                                                      |                                                                                                                                                  |                              |                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                 |
| WEBS                                                                                                                                | 2-8=-703/195, 2-5=-3                                                                                                                                                                                                                                                                             | 36/519, 3-5=-290/16                                                                                                                                                                                       | 8                                       |                                                                                                                                                                                    |                                                                                                                                                                                                               |                                                                                                      |                                                                                                                                                  |                              |                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "ATH U                                  |                                                                                 |
| NOTES<br>1) Wind: ASC<br>Vasd=91m<br>II; Exp B; I<br>and C-C E<br>exposed;<br>members :<br>Lumber D(<br>2) This truss<br>chord live | CE 7-10; Vult=115mph<br>hph; TCDL=6.0psf; BCI<br>Enclosed; MWFRS (en<br>xterior (2) zone; cantile<br>end vertical left and rig<br>and forces & MWFRS i<br>DL=1.60 plate grip DO<br>has been designed for<br>load nonconcurrent wit                                                               | (3-second gust)<br>DL=6.0psf; h=30ft; C<br>velope) exterior zon<br>ever left and right<br>ght exposed;C-C for<br>for reactions shown;<br>L=1.33<br>• a 10.0 psf bottom<br>th any other live load          | Cat.<br>e<br>ds.                        |                                                                                                                                                                                    |                                                                                                                                                                                                               |                                                                                                      |                                                                                                                                                  |                              |                            |                               | The second secon | SEA<br>155<br>MGIN<br>MAS A             | AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>A |

> A. A. May 19,2020

Page: 1

![](_page_18_Picture_11.jpeg)

| Job        | Truss | Truss Type              | Qty | Ply |                          |
|------------|-------|-------------------------|-----|-----|--------------------------|
| 20-045195T | EG    | Common Structural Gable | 1   | 1   | Job Reference (optional) |

#### Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:48 ID:vjrai4GU3mPtSB3\_fQP3J3zEzwI-\_NV2NEjDJipcggGsZuKgN0T8qdtZU1GTmCdFvazEz49

![](_page_19_Figure_3.jpeg)

Page: 1

![](_page_19_Figure_5.jpeg)

| Scale | - 1 | 1.28 | 2 |
|-------|-----|------|---|

Plate Offsets (X, Y): [1:0-0-7,Edge], [1:0-0-4,Edge], [11:0-6-0,0-0-2], [11:0-0-4,Edge], [17:0-3-0,0-3-0]

| <b>Loading</b><br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                       | (psf)<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                               | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC2015                          | 5/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.27<br>0.48<br>0.37                                                                                                                                                                                                           | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                        | in<br>-0.02<br>-0.04<br>0.01                                                                   | (loc)<br>12-13<br>12-33<br>11 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20<br>Weight: 151 lb | <b>GRIP</b><br>244/190<br>FT = 20% |                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|-----------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>JOINTS<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>2x4 SP No.3<br>2x4 SP No.3<br>Left: 2x10 SP 2250F<br>Right: 2x10 SP 2250F<br>Structural wood shea<br>6-0-0 oc purlins.<br>Rigid ceiling directly a<br>bracing.<br>1 Brace at Jt(s): 21,<br>23<br>(size) 1=0-3-8, 1<br>Max Horiz 1=134 (LC<br>Max Grav 1=547 (LC<br>14=512 (LI<br>(lb) - Maximum Comp<br>Tension<br>1-2=-465/40, 2-3=-46<br>4-5=-374/106, 5-6=-3<br>7-8=-464/160, 8-9=-5<br>10-11=-596/89<br>1-19=-93/387, 18-19= | 1.9E or DSS or SS<br>F 1.9E or DSS or SS<br>athing directly applied<br>applied or 10-0-0 oc<br>1=0-3-8, 14=0-3-8<br>; 7)<br>10), 11=-36 (LC 11)<br>; 1), 11=620 (LC 1),<br>C 1)<br>pression/Maximum<br>57/76, 3-4=-386/93,<br>329/136, 6-7=-402/17<br>500/139, 9-10=-466/1<br>=-47/387, | 1)<br>2)<br>d or 3)<br>4)<br>5)<br>6)<br>7)<br>75, 8)<br>103, LC | Unbalanced r<br>this design.<br>Wind: ASCE<br>Vasd=91mph<br>II; Exp B; End<br>and C-C Exte<br>exposed ; end<br>members and<br>Lumber DOL<br>Truss design<br>only. For stu<br>see Standard<br>or consult qu<br>Gable studs s<br>This truss has<br>chord live loa<br>* This truss has<br>chord and an<br>Provide mech<br>bearing plate<br>1 and 36 lb u<br>This truss is a<br>International<br>R802.10.2 ar | oof live loads have<br>7-10; Vult=115mph<br>; TCDL=6.0psf; BC<br>; dosed; MWFRS (er<br>rior (2) zone; cantil<br>d vertical left and rig<br>f forces & MWFRS<br>=1.60 plate grip DC<br>ted for wind loads ir<br>ds exposed to wind<br>Industry Gable En-<br>alified building designed<br>spaced at 2-0-0 oc.<br>s been designed for<br>d nonconcurrent wi<br>as been designed for<br>the cond in all areas<br>y 2-00-00 wide will<br>y other members.<br>nanical connection (<br>capable of withstar<br>plift at joint 11.<br>Jesigned in accorda<br>Residential Code sid<br>d referenced stand<br>Standard | been c<br>(3-secc<br>DL=6.C<br>Vvelope<br>ever lei<br>ght exp<br>for rea:<br>out_12,32<br>d Detai<br>gner as<br>r a 10.C<br>th any<br>or a live<br>where :<br>fit betw<br>(by oth<br>hading 1<br>ance wi<br>ecctions<br>ard AN | onsidered fc<br>ond gust)<br>psf; h=30ft;<br>) exterior zor<br>t and right<br>osed;C-C for<br>tions showr<br>ane of the tru<br>al to the face<br>is as applica<br>per ANSI/Ti<br>psf bottom<br>other live load<br>e load of 20.1<br>a rectangle<br>een the bott<br>ers) of truss i<br>D buplift at j<br>th the 2015<br>R502.11.1 a<br>SI/TPI 1. | or<br>Cat.<br>ne<br>r<br>;<br>uss<br>),<br>ble,<br>PI 1.<br>ods.<br>0psf<br>oom<br>to<br>ioint |                               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INTH C                           |                                    |                       |
| WEBS                                                                                                                                                        | 17-18=-47/387, 16-1<br>14-15=0/220, 13-14=<br>11-12=0/431<br>4-22=-216/81, 16-22:<br>16-21=-102/191, 7-2<br>7-23=-89/394, 12-23:<br>12-20=-239/131, 10-2<br>9-20=-137/49, 7-13=:<br>15-21=-245/45, 5-22:<br>3-18=0/68, 2-19=-64/                                                                                                                                                                                                                                              | 7=-47/387, 15-16=0/<br>:0/220, 12-13=0/217,<br>=-269/90,<br>1=-110/174,<br>=-76/379,<br>20=-118/87,<br>-161/20, 6-21=-210/5<br>=0/85, 17-22=0/128,<br>/48, 8-23=-18/14                                                                                                                  | 220, C                                                           | AD CASE(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                |                               |                               | and the second s | SE/<br>155<br>MAS                | AL<br>44                           | and the second second |

May 19,2020

![](_page_19_Picture_10.jpeg)

| Job        | Truss | Truss Type | Qty | Ply |                          |          |
|------------|-------|------------|-----|-----|--------------------------|----------|
| 20-045195T | F     | Common     | 3   | 1   | Job Reference (optional) | 20252372 |

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:49 ID:a6hqVQEgDLUW2UBMLErqYxzEzv2-Ta3Qaakr40xSlqr27bsvwD0Gl1CuDSHc?sMoR0zEz48

![](_page_20_Figure_3.jpeg)

Scale = 1:50.6

## Plate Offsets (X, Y): [5:0-0-4,Edge], [5:0-0-4,Edge], [7:0-3-0,0-3-0]

| <b>Loadi</b><br>ICLL<br>ICDL<br>BCLL<br>BCDL                                       | <b>ng</b><br>(roof)                                                                                                                                           | (psf)<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                               | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                             | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC2015 | ;/TPI2014                                                                                                        | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MS                                                                                                       | 0.45<br>0.54<br>0.45                                | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                         | in<br>-0.08<br>-0.12<br>0.02 | (loc)<br>6-7<br>6-7<br>5 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20<br>Weight: 114 lb | <b>GRIP</b><br>244/190<br>FT = 20% |                        |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------|------------------------------|--------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|------------------------|
| LUMB<br>TOP C<br>BOT C<br>WEBS<br>WEDG<br>BRAC<br>TOP C<br>BOT C<br>REAC           | ER<br>CHORD<br>CHORD<br>SE<br>ING<br>CHORD<br>CHORD<br>TIONS                                                                                                  | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3 *Except<br>Right: 2x10 SP 22501<br>Structural wood shea<br>5-5-5 oc purlins, exc<br>Rigid ceiling directly a<br>bracing.<br>(size) 5=0-3-8, 8<br>Max Horiz 8=-145 (LC<br>Max Uplift 5=-18 (LC                                                                                                             | * 8-1:2x6 SP No.2<br>F 1.9E or DSS or SS<br>athing directly applie<br>æpt end verticals.<br>applied or 10-0-0 oc<br>=0-3-8<br>C 8)<br>11), 8=-11 (LC 10)                                                                                       | 5)<br>6)<br>d or <b>LO</b>              | Provide mech<br>bearing plate<br>8 and 18 lb u<br>This truss is o<br>International<br>R802.10.2 an<br>AD CASE(S) | aanical connection (<br>capable of withstar<br>olift at joint 5.<br>designed in accorda<br>Residential Code s<br>d referenced stand<br>Standard | (by othe<br>nding 1<br>ance wi<br>ections<br>ard AN | ers) of truss tr<br>1 lb uplift at jr<br>th the 2015<br>R502.11.1 a<br>SI/TPI 1. | o<br>pint<br>nd              |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                    |                        |
| FORC                                                                               | <b>es</b><br>Hord                                                                                                                                             | Max Grav 5=833 (LC<br>(lb) - Maximum Comp<br>Tension<br>1-2=-191/60, 2-3=-82                                                                                                                                                                                                                                                                        | 28/139, 3-4=-808/14                                                                                                                                                                                                                            | D,                                      |                                                                                                                  |                                                                                                                                                 |                                                     |                                                                                  |                              |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                    |                        |
| BOT C                                                                              | HORD                                                                                                                                                          | 4-5=-924/98, 1-8=-18<br>7-8=-58/754, 7-14=0/<br>6-15=0/532, 5-6=-8/6<br>3-7=-47/353, 2-7=-17<br>4-6=-207/137 2-8=-7                                                                                                                                                                                                                                 | 30/51<br>/532, 14-15=0/532,<br>397<br>77/142, 3-6=-55/326,<br>774/39                                                                                                                                                                           |                                         |                                                                                                                  |                                                                                                                                                 |                                                     |                                                                                  |                              |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                    |                        |
| IOTE:<br>) Ur<br>thi<br>?) Wi<br>?) Wi<br>Ran<br>ex<br>Eu<br>S) Th<br>ch<br>4) * T | S<br>abalance<br>is desigr<br>ind: ASC<br>asd=91m<br>Exp B; I<br>d C-C E<br>posed;<br>posed;<br>embers a<br>mber D<br>d<br>is truss<br>ord live<br>This trust | ad roof live loads have l<br>DE 7-10; Vult=115mph<br>ph; TCDL=6.0psf; BCI<br>Enclosed; MWFRS (envi-<br>ixterior (2) zone; cantile<br>end vertical left and rig<br>and forces & MWFRS f<br>OL=1.60 plate grip DOI<br>has been designed for<br>load nonconcurrent wit<br>s has been designed for<br>load nonconcurrent wit<br>s has been designed for | (3-second gust)<br>DL=6.0psf; h=30ft; C<br>velope) exterior zone<br>ever left and right<br>hit exposed;C-C for<br>for reactions shown;<br>L=1.33<br>a 10.0 psf bottom<br>h any other live load<br>or a live load of 20.0p<br>where a rectangle | at.<br>e                                |                                                                                                                  |                                                                                                                                                 |                                                     |                                                                                  |                              |                          |                               | and the second s | SE/<br>155                       | AL<br>AL<br>AL<br>EEFR<br>BANN     | A MANDER DE LA COMPANY |

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

A Α. (1111111) May 19,2020

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

![](_page_20_Picture_12.jpeg)

AS

| Job        | Truss | Truss Type   | Qty | Ply |                                       |
|------------|-------|--------------|-----|-----|---------------------------------------|
| 20-045195T | F1    | Roof Special | 5   | 1   | T20252373<br>Job Reference (optional) |

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:49 ID:LBDiJok0KFnZ5xOQp2bgFozEzuO-Ta3Qaakr40xSIqr27bsvwD0I31EaDVKc?sMoR0zEz48

Page: 1

![](_page_21_Figure_5.jpeg)

## Scale = 1:54.2 Plate Offsets (X, Y): [7:0-6-0,0-0-2], [7:0-0-4,Edge], [12:0-4-12,Edge]

| Loading              | (psf)                         | Spacing                 | 2-0-0   |                 | csi                  |            | DEFL             | in    | (loc) | l/defl | L/d | PLATES         | GRIP     |     |
|----------------------|-------------------------------|-------------------------|---------|-----------------|----------------------|------------|------------------|-------|-------|--------|-----|----------------|----------|-----|
| TCLL (roof)          | 20.0                          | Plate Grip DOL          | 1.00    |                 | тс                   | 0.37       | Vert(LL)         | -0.04 | 9-10  | >999   | 240 | MT20           | 244/190  |     |
| TCDL                 | 10.0                          | Lumber DOL              | 1.15    |                 | BC                   | 0.43       | Vert(CT)         | -0.09 | 9-10  | >999   | 180 |                |          |     |
| BCLL                 | 0.0                           | * Rep Stress Incr       | YES     |                 | WB                   | 0.32       | Horz(CT)         | 0.05  | 7     | n/a    | n/a |                |          |     |
| BCDL                 | 10.0                          | Code                    | IRC2015 | 5/TPI2014       | Matrix-MS            |            |                  |       |       |        |     | Weight: 119 lb | FT = 20% |     |
|                      |                               |                         | 4)      | * This trues h  | as been designed     | for a live | a load of 20 l   | Onef  |       |        |     |                |          |     |
|                      | 2 2 × 4 SP No 2               |                         | -1)     | on the botton   | n chord in all areas | where      | a rectangle      | opsi  |       |        |     |                |          |     |
|                      | ) 2x4 SP No 2                 |                         |         | 3-06-00 tall b  | v 2-00-00 wide wil   | l fit betw | een the bott     | om    |       |        |     |                |          |     |
| WEBS                 | 2x4 SP No 3 *Evo              | ent* 13-1-2v6 SP No     | 2       | chord and an    | v other members.     |            |                  |       |       |        |     |                |          |     |
| WEDGE                | Right: 2x10 SP 22             | 250F 1 9F or DSS or S   | -<br>   | Provide mech    | nanical connection   | (by othe   | ers) of truss    | to    |       |        |     |                |          |     |
|                      |                               |                         | ,       | bearing plate   | capable of withsta   | nding 1    | 1 lb uplift at j | oint  |       |        |     |                |          |     |
|                      | Structural wood s             | heathing directly appli | ied or  | 13 and 18 lb    | uplift at joint 7.   |            |                  |       |       |        |     |                |          |     |
|                      | 4-11-14 oc purlins            | s. except end verticals | s. 6)   | This truss is o | designed in accord   | lance wi   | th the 2015      |       |       |        |     |                |          |     |
| BOT CHORE            | Rigid ceiling direct          | tly applied or 10-0-0 c | DC      | International   | Residential Code s   | sections   | R502.11.1 a      | and   |       |        |     |                |          |     |
|                      | bracing.                      | ., .,                   |         | R802.10.2 ar    | nd referenced stand  | dard AN    | SI/TPI 1.        |       |       |        |     |                |          |     |
| REACTIONS            | (size) 7=0-3-8                | 8, 13=0-3-8             | LC      | DAD CASE(S)     | Standard             |            |                  |       |       |        |     |                |          |     |
|                      | Max Horiz 13=-14              | 5 (LC 8)                |         |                 |                      |            |                  |       |       |        |     |                |          |     |
|                      | Max Uplift 7=-18 (            | LC 11), 13=-11 (LC 10   | 0)      |                 |                      |            |                  |       |       |        |     |                |          |     |
|                      | Max Grav 7=833                | (LC 1), 13=749 (LC 1)   | ,       |                 |                      |            |                  |       |       |        |     |                |          |     |
| FORCES               | (lb) - Maximum C              | ompression/Maximum      | 1       |                 |                      |            |                  |       |       |        |     |                |          |     |
|                      | Tension                       |                         |         |                 |                      |            |                  |       |       |        |     |                |          |     |
| TOP CHORE            | 0 1-2=-786/63, 2-3=           | -1187/88, 3-4=-822/1    | 00,     |                 |                      |            |                  |       |       |        |     |                |          |     |
|                      | 4-5=-823/100, 5-6             | 6=-1206/90, 6-7=-837/   | 70,     |                 |                      |            |                  |       |       |        |     |                |          |     |
|                      | 1-13=-719/57                  |                         |         |                 |                      |            |                  |       |       |        |     |                |          |     |
| BOT CHORE            | 0 12-13=-120/167,             | 11-12=-61/738,          |         |                 |                      |            |                  |       |       |        |     |                |          |     |
|                      | 10-11=-79/1018,               | 9-10=-13/1030, 8-9=-5   | 5/714,  |                 |                      |            |                  |       |       |        |     |                |          |     |
|                      | 7-8=-4/605                    |                         |         |                 |                      |            |                  |       |       |        |     | MILLIN         | 11111    |     |
| WEBS                 | 2-12=-582/41, 2-1             | 1=-32/534, 3-11=0/20    | )2,     |                 |                      |            |                  |       |       |        |     | "TH C          | ARA      |     |
|                      | 3-10=-465/138, 4              | -10=-7/511, 5-10=-472   | 2/118,  |                 |                      |            |                  |       |       |        |     | R              |          | 1   |
|                      | 5-9=0/201, 6-9=-1             | //579, 6-8=-466/8,      |         |                 |                      |            |                  |       |       |        | 5   | O'iFES         | SOV      | 24  |
|                      | 1-12=-7/599                   |                         |         |                 |                      |            |                  |       |       |        |     | 7.002          | 12: 7    | 1.2 |
| NOTES                | <b></b>                       |                         |         |                 |                      |            |                  |       |       |        | 3   |                | - × ·    | 3   |
| i) Unbalan           | ceu root live loads ha        | ve been considered fo   | ונ      |                 |                      |            |                  |       |       |        | -   | : 00           | AL 1     | =   |
|                      | JII.<br>SCE 7 10: \/ult_115m  | ph (2 cocond quet)      |         |                 |                      |            |                  |       |       |        |     | : 35/          | AL I     | =   |
| Vacd-01              | mph: $TCDI = 6 0 pcf \cdot I$ |                         | Cat     |                 |                      |            |                  |       |       |        | 2   | : 155          | 44 :     | -   |
| Vasu=91<br>II: Exp R | · Enclosed: MWFRS             | (envelope) exterior zo  | ne      |                 |                      |            |                  |       |       |        | 1   | 1              |          | -   |
| and C-C              | Exterior (2) zone: ca         | ntilever left and right |         |                 |                      |            |                  |       |       |        | 1   | A              |          | 3   |
| exposed              | : end vertical left and       | right exposed:C-C fo    | r       |                 |                      |            |                  |       |       |        | 11  | 2. SNO.        | FER. 2   | 18  |
| members              | s and forces & MWFF           | RS for reactions shown  | ז;      |                 |                      |            |                  |       |       |        | 1   | O              | EL OF    | 5   |
| Lumber I             | DOL=1.60 plate grip I         | DOL=1.33                |         |                 |                      |            |                  |       |       |        | 1   | MAC            | ALDIN    |     |
| 3) This trus         | s has been designed           | for a 10.0 psf bottom   |         |                 |                      |            |                  |       |       |        |     | 1110 1         | 1        |     |
| chord live           | e load nonconcurrent          | with any other live loa | ads.    |                 |                      |            |                  |       |       |        |     | 2000           | nnn.     |     |

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

May 19,2020

![](_page_21_Picture_10.jpeg)

| Job        | Truss | Truss Type   | Qty | Ply |                          |
|------------|-------|--------------|-----|-----|--------------------------|
| 20-045195T | F2    | Roof Special | 1   | 1   | Job Reference (optional) |

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:50 ID:98FGLnyJNAdBrQ?JC8rHMAzEzoy-xmdoowITrK3Jv\_QFhJN8TRZMsRX8yxxIDW6M\_TzEz47

Page: 1

![](_page_22_Figure_4.jpeg)

Scale = 1:58.1

Plate Offsets (X, Y): [2:0-5-8,0-1-12], [4:0-0-8,Edge], [4:0-0-4,Edge]

|                                                    |                                            |                                     |         | -                              |                                              |                        |                              |       |       |        |     |                |          |    |
|----------------------------------------------------|--------------------------------------------|-------------------------------------|---------|--------------------------------|----------------------------------------------|------------------------|------------------------------|-------|-------|--------|-----|----------------|----------|----|
| Loading                                            | (psf)                                      | Spacing                             | 2-0-0   |                                | CSI                                          |                        | DEFL                         | in    | (loc) | l/defl | L/d | PLATES         | GRIP     |    |
| TCLL (roof)                                        | 20.0                                       | Plate Grip DOL                      | 1.00    |                                | тс                                           | 0.81                   | Vert(LL)                     | -0.08 | 5-13  | >999   | 240 | MT20           | 244/190  |    |
| TCDL                                               | 10.0                                       | Lumber DOL                          | 1.15    |                                | BC                                           | 0.60                   | Vert(CT)                     | -0.15 | 5-13  | >999   | 180 |                |          |    |
| BCLL                                               | 0.0*                                       | Rep Stress Incr                     | YES     |                                | WB                                           | 0.36                   | Horz(CT)                     | 0.01  | 4     | n/a    | n/a |                |          |    |
| BCDL                                               | 10.0                                       | Code                                | IRC2015 | /TPI2014                       | Matrix-MS                                    |                        |                              |       |       |        |     | Weight: 142 lb | FT = 20% |    |
|                                                    |                                            |                                     | 4)      | * This truss h                 | as been designed                             | d for a live           | load of 20 (                 | Onsf  |       |        |     |                |          |    |
|                                                    | 2x4 SP 1650F 1 5E (                        | or 2x4 SP No 1 or 2x                | ·/      | on the botton                  | n chord in all area                          | s where a              | a rectangle                  | 0001  |       |        |     |                |          |    |
|                                                    | SP SS *Except* 2-4                         | 2x4 SP No 2                         | 17      | 3-06-00 tall b                 | ov 2-00-00 wide w                            | ill fit betw           | een the bott                 | om    |       |        |     |                |          |    |
| BOT CHORD                                          | 2x6 SP No.2 *Except                        | t* 5-4:2x4 SP No.2                  |         | chord and an                   | y other members,                             | , with BC              | DL = 10.0pst                 | f.    |       |        |     |                |          |    |
| WEBS                                               | 2x4 SP No.3 *Except                        | t* 8-2:2x4 SP No.2                  | 5)      | Provide mec                    | hanical connection                           | n (by othe             | ers) of truss t              | to    |       |        |     |                |          |    |
| WEDGE                                              | Right: 2x10 SP 2250                        | F 1.9E or DSS or SS                 | S       | bearing plate                  | capable of withst                            | tanding 6              | 7 lb uplift at j             | joint |       |        |     |                |          |    |
| BRACING                                            | 0                                          |                                     |         | 8 and 17 lb u                  | ıplift at joint 4.                           |                        |                              |       |       |        |     |                |          |    |
| TOP CHORD                                          | Structural wood shea                       | athing directly applie              | dor 6)  | This truss is                  | designed in accor                            | dance wi               | th the 2015                  |       |       |        |     |                |          |    |
|                                                    | 5-7-8 oc purlins, exc                      | cept end verticals, ar              | nd      | International                  | Residential Code                             | sections               | R502.11.1 a                  | and   |       |        |     |                |          |    |
|                                                    | 2-0-0 oc purlins (6-0                      | -0 max.): 1-2.                      |         | R802.10.2 ar                   | nd referenced star                           | ndard AN               | SI/TPI 1.                    |       |       |        |     |                |          |    |
| BOT CHORD                                          | Rigid ceiling directly<br>bracing.         | applied or 10-0-0 oc                | ; 7)    | Graphical pu<br>or the orienta | rlin representation<br>ation of the purlin a | n does no<br>along the | t depict the s<br>top and/or | size  |       |        |     |                |          |    |
| WEBS                                               | 1 Row at midpt                             | 1-8, 2-8                            |         | bottom chord                   | i.                                           |                        |                              |       |       |        |     |                |          |    |
| REACTIONS                                          | (size) 4=0-3-8 8                           | 3=0-3-8                             | LO      | AD CASE(S)                     | Standard                                     |                        |                              |       |       |        |     |                |          |    |
|                                                    | Max Horiz 8=-226 (L                        | C 6)                                |         |                                |                                              |                        |                              |       |       |        |     |                |          |    |
|                                                    | Max Uplift 4=-17 (LC                       | 11). 8=-67 (LC 6)                   |         |                                |                                              |                        |                              |       |       |        |     |                |          |    |
|                                                    | Max Grav 4=836 (LC                         | C 1), 8=752 (LC 1)                  |         |                                |                                              |                        |                              |       |       |        |     |                |          |    |
| FORCES                                             | (lb) - Maximum Com                         | pression/Maximum                    |         |                                |                                              |                        |                              |       |       |        |     |                |          |    |
|                                                    | 1_8244/82 1_29                             | 7/101 2-3722/120                    |         |                                |                                              |                        |                              |       |       |        |     |                |          |    |
|                                                    | 3-4=-913/111                               | 7/101, 2-3-722/120                  | ,       |                                |                                              |                        |                              |       |       |        |     |                |          |    |
| BOT CHORD                                          | 7-8=0/486, 7-14=0/4<br>6-15=0/486, 5-6=0/4 | 86, 14-15=0/486,<br>51, 4-5=-11/689 |         |                                |                                              |                        |                              |       |       |        |     |                | AD       |    |
| WEBS                                               | 2-8=-610/63, 2-5=0/4                       | 452, 3-5=-246/151                   |         |                                |                                              |                        |                              |       |       |        |     | "aTH U         |          |    |
| NOTES                                              |                                            |                                     |         |                                |                                              |                        |                              |       |       |        | S   | OTES           | Spin All |    |
| 1) Wind: AS                                        | CE 7-10; Vult=115mph                       | (3-second gust)                     |         |                                |                                              |                        |                              |       |       |        | 2.  |                | No. 7 -  |    |
| Vasd=91n                                           | nph; TCDL=6.0psf; BC                       | DL=6.0psf; h=30ft; C                | Cat.    |                                |                                              |                        |                              |       |       |        | -   |                | e Kin    | 2  |
| II; Exp B;                                         | Enclosed; MWFRS (en                        | velope) exterior zon                | е       |                                |                                              |                        |                              |       |       |        | -   | : 05           |          | 1  |
| and C-C E                                          | Exterior (2) zone; cantile                 | ever left and right                 |         |                                |                                              |                        |                              |       |       |        |     | : SE           | AL :     | 3  |
| exposed ;                                          | end vertical left and rig                  | pht exposed;C-C for                 |         |                                |                                              |                        |                              |       |       |        |     | 155            | 44       | Ξ. |
| members                                            | and forces & MWFRS                         | for reactions shown;                |         |                                |                                              |                        |                              |       |       |        | -   | : 100          | an fil   | 5  |
| Cumper D                                           | OL=1.60 plate grip DO                      | L=1.33                              |         |                                |                                              |                        |                              |       |       |        | 1   | 200 - C        |          | -  |
| <ol> <li>Provide al</li> <li>This truck</li> </ol> | bac been designed for                      | event water ponding                 | •       |                                |                                              |                        |                              |       |       |        | 2.1 | 2. ENG         | -cR. NS  |    |
| chord live                                         | load nonconcurrent wit                     | th any other live load              | łe      |                                |                                              |                        |                              |       |       |        | 1   | YO WGIN        | VEE AN   |    |
|                                                    |                                            |                                     |         |                                |                                              |                        |                              |       |       |        | -   | 1, MAG         | ALDIN    |    |
|                                                    |                                            |                                     |         |                                |                                              |                        |                              |       |       |        |     | 11,701         | 4        |    |
|                                                    |                                            |                                     |         |                                |                                              |                        |                              |       |       |        |     | 201111         | IIIII.   |    |

May 19,2020

![](_page_22_Picture_10.jpeg)

| Job        | Truss | Truss Type   | Qty | Ply |                                       |
|------------|-------|--------------|-----|-----|---------------------------------------|
| 20-045195T | F3    | Roof Special | 1   | 1   | T20252375<br>Job Reference (optional) |

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:50 ID:LLW7wovsmRazpZXUKElp3qzEznj-xmdoowITrK3Jv\_QFhJN8TRZPNRX3yxTIDW6M\_TzEz47

Page: 1

![](_page_23_Figure_4.jpeg)

Scale = 1:64.2

# Plate Offsets (X, Y): [2:0-3-12,0-2-0], [3:0-3-0,0-3-0], [4:0-0-8,Edge], [4:0-0-4,Edge]

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL                                                                                                                                                                                                                                                                                       | (psf)<br>20.0<br>10.0<br>0.0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-0-0<br>1.00<br>1.15<br>YES                                   |                                                                                                                                                                                                                                            | CSI<br>TC<br>BC<br>WB                                                                                                                                                                                                                                                              | 0.59<br>0.60<br>0.33                                                                                                             | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                  | in<br>-0.08<br>-0.15<br>0.01        | (loc)<br>5-13<br>5-13<br>4 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20 | <b>GRIP</b><br>244/190                     |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------|-------------------------------|--------------------------|----------------|--------------------------------------------|--------|
| BCDL                                                                                                                                                                                                                                                                                                                         | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IRC2015                                                        | 5/TPI2014                                                                                                                                                                                                                                  | Matrix-MS                                                                                                                                                                                                                                                                          |                                                                                                                                  |                                                                                                                                           | -                                   |                            |                               |                          | Weight: 146 lb | FT = 20%                                   |        |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Wind: AS(<br>Vasd=91n<br>II; Exp B; I<br>and C-C<br>exposed ;<br>members<br>Lumber D<br>2) Provide ad<br>3) This truss<br>chord live | 2x4 SP No.2<br>2x6 SP No.2 *Excep<br>2x4 SP No.2 *Excep<br>Right: 2x10 SP 2250<br>Structural wood shea<br>5-6-6 oc purlins, exc<br>2-0-0 oc purlins (6-0<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 4-0-3-8, &<br>Max Horiz 8=-265 (LI<br>Max Uplift 4=-18 (LC<br>Max Grav 4=836 (LC<br>(Ib) - Maximum Com<br>Tension<br>1-8=-179/68, 1-2=-10<br>3-4=-907/107<br>7-8=-3/391, 5-6=-11<br>2-8=-599/81, 2-5=-43<br>CE 7-10; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (en<br>exterior (2) zone; cantil<br>end vertical left and rig<br>and forces & MWFRS<br>OL=1.60 plate grip DO<br>dequate drainage to pro<br>has been designed for<br>load nonconcurrent with | <ul> <li>* 5-4:2x4 SP No.2</li> <li>* 5-3:2x4 SP No.3</li> <li>F 1.9E or DSS or SS athing directly applie cept end verticals, ar -0 max.): 1-2.</li> <li>applied or 10-0-0 oc</li> <li>1-8, 2-8</li> <li>B=0-3-8</li> <li>C 6)</li> <li>11), 8=-68 (LC 6)</li> <li>C 1), 8=760 (LC 2)</li> <li>pression/Maximum</li> <li>D7/115, 2-3=-726/14</li> <li>'391, 14-15=-3/391, 3/354, 4-5=0/681</li> <li>3/3561, 3-5=-321/182</li> <li>(3-second gust)</li> <li>DL=6.0psf; h=30ft; C velope) exterior zon-ever left and right hit exposed; C-C for for reactions shown; L=1.33</li> <li>event water ponding a 10.0 psf bottom th any other live loace</li> </ul> | 4)<br>s 5)<br>id or 6)<br>; 7)<br>LC<br>9,<br>Cat.<br>e<br>ds. | * This truss h<br>on the bottom<br>3-06-00 tall b<br>chord and an<br>Provide mech<br>bearing plate<br>8 and 18 lb u<br>This truss is of<br>International<br>R802.10.2 an<br>Graphical pur<br>or the orienta<br>bottom chord<br>DAD CASE(S) | as been designed<br>o chord in all areas<br>y 2-00-00 wide will<br>y other members,<br>nanical connection<br>capable of withsta-<br>plift at joint 4.<br>Jesigned in accord<br>Residential Code s<br>d referenced stand<br>lin representation<br>tion of the purlin al<br>Standard | for a live<br>where a<br>l fit betw<br>with BC<br>(by othe<br>anding 6<br>lance wi<br>sections<br>dard AN<br>does no<br>long the | a load of 20.<br>a rectangle<br>een the bott<br>DL = 10.0ps<br>ers) of truss<br>8 lb uplift at<br>SI/TPI 1.<br>t depict the<br>top and/or | Opsf<br>for<br>joint<br>and<br>size |                            |                               |                          | SE/<br>155     | AL<br>AL<br>AL<br>AL<br>AL<br>BA<br>May 19 | 9,2020 |
|                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                    |                                                                                                                                  |                                                                                                                                           |                                     |                            |                               |                          |                |                                            |        |

- 2) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.

818 Soundside Road Edenton, NC 27932

| Job        | Truss | Truss Type   | Qty | Ply |                                       |
|------------|-------|--------------|-----|-----|---------------------------------------|
| 20-045195T | F4    | Roof Special | 1   | 1   | T20252376<br>Job Reference (optional) |

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:50 ID:quje\_CyoWsPm8n60MII\_YzzEzmN-xmdoowITrK3Jv\_QFhJN8TRZOzRXwyxflDW6M\_TzEz47

Page: 1

![](_page_24_Figure_4.jpeg)

#### Scale = 1:70.3

## Plate Offsets (X, Y): [2:0-3-12,0-2-0], [3:0-3-0,0-3-4], [4:0-0-8,Edge], [4:0-0-4,Edge]

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                   | (psf)<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                          | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                               | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC2015 | 5/TPI2014                                                                                                                                                                | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MS                                                                                                                                                                              | 0.68<br>0.61<br>0.38                                                                         | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                | in<br>-0.08<br>-0.16<br>0.01           | (loc)<br>5-13<br>5-13<br>4 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 153 lb | <b>GRIP</b><br>244/190<br>FT = 20% |  |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------|-------------------------------|--------------------------|----------------------------------|------------------------------------|--|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD                                        | 2x4 SP No.2<br>2x6 SP No.2 *Excep<br>2x4 SP No.2 *Excep<br>Right: 2x10 SP 2250<br>Structural wood she<br>4-3-12 oc purlins, e<br>2-0-0 oc purlins (6-0                         | t* 5-4:2x4 SP No.2<br>t* 5-3:2x4 SP No.3<br>F 1.9E or DSS or SS<br>athing directly applie<br>xcept end verticals, a<br>-0 max.): 1-2.            | 4)<br>5 5)<br>d or<br>and 6)            | * This truss h<br>on the botton<br>3-06-00 tall b<br>chord and an<br>Provide mech<br>bearing plate<br>8 and 15 lb u<br>This truss is of<br>International<br>8802 10 2 ar | as been designed<br>n chord in all areas<br>y 2-00-00 wide will<br>y other members,<br>nanical connection<br>capable of withsta<br>plift at joint 4.<br>designed in accord<br>Residential Code s<br>or referenced stam | for a live<br>where<br>I fit betw<br>with BC<br>(by othe<br>inding 7<br>ance wis<br>sections | e load of 20.<br>a rectangle<br>een the bott<br>DL = 10.0ps<br>ers) of truss<br>0 lb uplift at<br>th the 2015<br>R502.11.1 a<br>SUTPL 1 | Opsf<br>om<br>f.<br>to<br>joint<br>and |                            |                               |                          |                                  |                                    |  |
| BOT CHORD<br>WEBS<br>REACTIONS                                                                                   | Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 4=0-3-8, 8<br>Max Horiz 8=-304 (L<br>Max Uplift 4=-15 (LC<br>Max Grav 4=864 (LC                                 | applied or 10-0-0 oc<br>1-8, 2-8<br>3=0-3-8<br>C 6)<br>: 11), 8=-70 (LC 6)<br>C 18), 8=827 (LC 18)                                               | . 7)<br>LC                              | Graphical pur<br>or the orienta<br>bottom chord<br>DAD CASE(S)                                                                                                           | rlin representation<br>tion of the purlin al<br>Standard                                                                                                                                                               | does no                                                                                      | t depict the stop and/or                                                                                                                | size                                   |                            |                               |                          |                                  |                                    |  |
| FORCES                                                                                                           | (lb) - Maximum Com<br>Tension                                                                                                                                                  | pression/Maximum                                                                                                                                 |                                         |                                                                                                                                                                          |                                                                                                                                                                                                                        |                                                                                              |                                                                                                                                         |                                        |                            |                               |                          |                                  |                                    |  |
| TOP CHORD                                                                                                        | 1-8=-105/63, 1-2=-1<br>3-4=-927/103                                                                                                                                            | 21/131, 2-3=-822/19                                                                                                                              | 1,                                      |                                                                                                                                                                          |                                                                                                                                                                                                                        |                                                                                              |                                                                                                                                         |                                        |                            |                               |                          |                                  |                                    |  |
| BOT CHORD                                                                                                        | 7-8=-29/328, 7-14=-<br>6-15=-29/328, 5-6=-<br>16-17=0/720, 4-17=0                                                                                                              | 29/328, 14-15=-29/3<br>38/291, 5-16=0/720,<br>)/720                                                                                              | 28,                                     |                                                                                                                                                                          |                                                                                                                                                                                                                        |                                                                                              |                                                                                                                                         |                                        |                            |                               |                          |                                  |                                    |  |
| WEBS                                                                                                             | 2-8=-673/110, 2-5=-                                                                                                                                                            | 112/793, 3-5=-403/2                                                                                                                              | 18                                      |                                                                                                                                                                          |                                                                                                                                                                                                                        |                                                                                              |                                                                                                                                         |                                        |                            |                               |                          | "ath of                          |                                    |  |
|                                                                                                                  |                                                                                                                                                                                | (0                                                                                                                                               |                                         |                                                                                                                                                                          |                                                                                                                                                                                                                        |                                                                                              |                                                                                                                                         |                                        |                            |                               | E.                       | S. FER                           | D. Vin                             |  |
| <ol> <li>Wind: ASC<br/>Vasd=91n<br/>II; Exp B; I<br/>and C-C E<br/>exposed ;<br/>members<br/>Lumber D</li> </ol> | CE 7-10; Vult=115mph<br>pph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>Exterior (2) zone; cantil<br>end vertical left and rig<br>and forces & MWFRS<br>OL = 1.60 plate grip DO | (3-second gust)<br>DL=6.0psf; h=30ft; C<br>velope) exterior zone<br>ever left and right<br>ght exposed;C-C for<br>for reactions shown;<br>L=1.33 | Cat.<br>e                               |                                                                                                                                                                          |                                                                                                                                                                                                                        |                                                                                              |                                                                                                                                         |                                        |                            |                               | Contraction of the       | SE/<br>155                       | AL<br>44                           |  |

- Lumber DOL=1.60 plate grip DOL=1.33 Provide adequate drainage to prevent water ponding. 2) 3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

![](_page_24_Figure_10.jpeg)

May 19,2020

![](_page_24_Picture_12.jpeg)

| Job        | Truss | Truss Type   | Qty | Ply |                                       |
|------------|-------|--------------|-----|-----|---------------------------------------|
| 20-045195T | F5    | Roof Special | 1   | 1   | T20252377<br>Job Reference (optional) |

#### Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:51 ID:B0kyZQfFJBAmYSO77PK2lizEzkA-PyBA?Gm5cdBAX8?RF0uN?e5V9qsJhM9vSArvWvzEz46

Page: 1

![](_page_25_Figure_4.jpeg)

## Scale = 1:76.5 Plate Offsets (X, Y): [2:0-5-12,0-2-0], [3:0-4-0,0-3-4], [4:0-0-8,Edge], [4:0-0-4,Edge]

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                   | (psf)<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                 | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                              | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC2015/   | /TPI2014                                                                                                                                                                                                                                  | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MS                                                                                                                                                                                                                                          | 0.91<br>0.67<br>0.49                                                                                                            | <b>DEFL</b><br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                  | in<br>-0.08<br>-0.17<br>0.01             | (loc)<br>5-13<br>5-13<br>4 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | <b>PLATES</b><br>MT20<br>Weight: 160 lb | <b>GRIP</b><br>244/190<br>FT = 20% |            |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------|-------------------------------|--------------------------|-----------------------------------------|------------------------------------|------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS      | 2x4 SP No.2<br>2x6 SP No.2 *Excep<br>2x4 SP No.2 *Excep<br>Right: 2x10 SP 2250<br>Structural wood she<br>except end verticals,<br>(6-0-0 max.): 1-2.<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 4=0-3-8, 8<br>Max Horiz 8=-344 (L<br>Max Uplift 4=-8 (LC<br>Max Grav 4=872 (LC | t* 5-4:2x4 SP No.2<br>t* 5-3:2x4 SP No.3<br>IF 1.9E or DSS or SS<br>athing directly applied<br>, and 2-0-0 oc purlins<br>applied or 10-0-0 oc<br>1-8, 2-8, 2-5<br>3=0-3-8<br>C 6)<br>11), 8=-85 (LC 11)<br>C 18), 8=911 (LC 18) | 4)<br>5)<br><sup>1</sup> , 6)<br>7)<br>LOA | * This truss h<br>on the bottom<br>3-06-00 tall b<br>chord and an<br>Provide mech<br>bearing plate<br>8 and 8 lb up<br>This truss is of<br>International<br>R802.10.2 ar<br>Graphical pui<br>or the orienta<br>bottom chord<br>AD CASE(S) | as been designed<br>in chord in all areas<br>y 2-00-00 wide will<br>y other members,<br>nanical connection<br>capable of withsta<br>lift at joint 4.<br>designed in accord<br>Residential Code is<br>ad referenced stan<br>flin representation<br>tion of the purlin a<br>Standard | for a live<br>s where<br>I fit betw<br>with BC<br>(by oth<br>anding 8<br>Jance wi<br>sections<br>dard AN<br>does no<br>long the | e load of 20.0<br>a rectangle<br>een the botto<br>DL = 10.0psf<br>ers) of truss t<br>5 lb uplift at j<br>th the 2015<br>R502.11.1 a<br>SI/TPI 1.<br>t depict the s<br>top and/or | Opsf<br>c.<br>oo<br>ooint<br>und<br>size |                            |                               |                          |                                         |                                    |            |
| FORCES                                                                                                           | (lb) - Maximum Com<br>Tension                                                                                                                                                                                                                                                                         | pression/Maximum                                                                                                                                                                                                                |                                            |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                    |                                                                                                                                 |                                                                                                                                                                                  |                                          |                            |                               |                          |                                         |                                    |            |
| TOP CHORD                                                                                                        | 1-8=-57/83, 1-2=-13<br>3-4=-964/98                                                                                                                                                                                                                                                                    | 7/150, 2-3=-902/246,                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                    |                                                                                                                                 |                                                                                                                                                                                  |                                          |                            |                               |                          |                                         |                                    |            |
| BOT CHORD                                                                                                        | 7-8=-76/263, 7-14=-<br>5-6=-93/227, 5-15=0<br>4-16=0/744                                                                                                                                                                                                                                              | 76/263, 6-14=-76/263<br>)/744, 15-16=0/744,                                                                                                                                                                                     | 3,                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                    |                                                                                                                                 |                                                                                                                                                                                  |                                          |                            |                               |                          |                                         |                                    |            |
| WEBS                                                                                                             | 2-8=-784/148, 2-5=-                                                                                                                                                                                                                                                                                   | 195/997, 3-5=-494/26                                                                                                                                                                                                            | 63                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                    |                                                                                                                                 |                                                                                                                                                                                  |                                          |                            |                               |                          | "THU                                    | ANON!!!                            |            |
| NOTES                                                                                                            |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                 |                                            |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                    |                                                                                                                                 |                                                                                                                                                                                  |                                          |                            |                               | 3                        | OTIES                                   | SOVN                               | 14         |
| <ol> <li>Wind: ASC<br/>Vasd=91n<br/>II; Exp B; I<br/>and C-C E<br/>exposed ;<br/>members<br/>Lumber D</li> </ol> | CE 7-10; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (en<br>Exterior (2) zone; cantiil<br>end vertical left and rig<br>and forces & MWFRS<br>OL=1.60 plate grip DO                                                                                                                         | (3-second gust)<br>DL=6.0psf; h=30ft; C<br>ivelope) exterior zonce<br>ever left and right<br>ght exposed;C-C for<br>for reactions shown;<br>L=1.33                                                                              | at.                                        |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                    |                                                                                                                                 |                                                                                                                                                                                  |                                          |                            |                               | Summer Street            | SE/<br>155                              | AL<br>44                           | Man Martin |

Provide adequate drainage to prevent water ponding. 2) 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

![](_page_25_Figure_8.jpeg)

May 19,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

| Job        | Truss | Truss Type   | Qty | Ply |                                       |
|------------|-------|--------------|-----|-----|---------------------------------------|
| 20-045195T | F6    | Roof Special | 1   | 1   | T20252378<br>Job Reference (optional) |

Scale = 1:83.6

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:51 ID:1tNUWbnesGMogVrxRMUJupzEzhQ-PyBA?Gm5cdBAX8?RF0uN?e5a3qtGhO6vSArvWvzEz46

![](_page_26_Figure_3.jpeg)

![](_page_26_Figure_4.jpeg)

Plate Offsets (X, Y): [2:0-4-4,0-2-4], [3:0-3-0,0-3-4], [5:0-0-8,Edge], [5:0-0-4,Edge]

| Loading                                                                                                                          | (psf)                                                                                                                                                                                                                                                                                                        | Spacing                                                                                                                                                                   | 2-0-0                              |                                                                                                                                                                                                                                                          | CSI                                                                                                                                                                                                                                                                                       |                                                                                                                                                           | DEFL                                                                                                                                                                                                             | in                           | (loc) | l/defl | L/d                                                                                                             | PLATES         | GRIP         |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------|--------|-----------------------------------------------------------------------------------------------------------------|----------------|--------------|
| TCLL (roof)                                                                                                                      | 20.0                                                                                                                                                                                                                                                                                                         | Plate Grip DOL                                                                                                                                                            | 1.00                               |                                                                                                                                                                                                                                                          | TC                                                                                                                                                                                                                                                                                        | 0.59                                                                                                                                                      | Vert(LL)                                                                                                                                                                                                         | -0.08                        | 6-15  | >999   | 240                                                                                                             | MT20           | 244/190      |
| TCDL                                                                                                                             | 10.0                                                                                                                                                                                                                                                                                                         | Lumber DOL                                                                                                                                                                | 1.15                               |                                                                                                                                                                                                                                                          | BC                                                                                                                                                                                                                                                                                        | 0.61                                                                                                                                                      | Vert(CT)                                                                                                                                                                                                         | -0.15                        | 6-15  | >999   | 180                                                                                                             |                |              |
| BCLL                                                                                                                             | 0.0*                                                                                                                                                                                                                                                                                                         | Rep Stress Incr                                                                                                                                                           | YES                                |                                                                                                                                                                                                                                                          | WB                                                                                                                                                                                                                                                                                        | 0.36                                                                                                                                                      | Horz(CT)                                                                                                                                                                                                         | 0.01                         | 5     | n/a    | n/a                                                                                                             |                |              |
| BCDL                                                                                                                             | 10.0                                                                                                                                                                                                                                                                                                         | Code                                                                                                                                                                      | IRC2015                            | 5/TPI2014                                                                                                                                                                                                                                                | Matrix-MS                                                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                                                                                                                  |                              |       |        |                                                                                                                 | Weight: 164 lb | FT = 20%     |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS                      | 2x4 SP No.2<br>2x6 SP No.2 *Except<br>2x4 SP No.2 *Except<br>9-2:2x6 SP No.2<br>Right: 2x10 SP 2250<br>Structural wood shea<br>5-9-6 oc purlins, exc<br>2-0-0 oc purlins, exc<br>2-0-0 oc purlins (10-0<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 5=0-3-8, 9<br>Max Horiz 9=-333 (L0 | * 6-5:2x4 SP No.2<br>* 4-6:2x4 SP No.3,<br>F 1.9E or DSS or SS<br>athing directly applie<br>ept<br>0-0 max.): 1-2.<br>applied or 10-0-0 oc<br>3-9, 2-9<br>=0-3-8<br>C 11) | 4)<br>5)<br>6)<br>d or<br>7)<br>8) | This truss ha<br>chord live loa<br>* This truss h<br>on the botton<br>3-06-00 tall b<br>chord and an<br>Provide mecl<br>bearing plate<br>joint 9.<br>This truss is of<br>International<br>R802.10.2 ar<br>Graphical pu<br>or the orienta<br>bottom chord | s been designed for<br>d nonconcurrent w<br>as been designed<br>n chord in all areas<br>y 2-00-00 wide wil<br>y other members,<br>nanical connection<br>capable of withsta<br>designed in accord<br>Residential Code s<br>d referenced stan<br>fin representation<br>tion of the purlin a | or a 10.0<br>ith any<br>for a live<br>s where<br>I fit betw<br>with BC<br>(by othe<br>anding 1<br>lance wis<br>sections<br>dard AN<br>does no<br>long the | psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>reen the botto<br>DL = 10.0psf<br>ers) of truss t<br>86 lb uplift at<br>th the 2015<br>R502.11.1 a<br>SI/TPI 1.<br>t depict the s<br>top and/or | ds.<br>)psf<br>om<br>o<br>nd |       |        |                                                                                                                 |                |              |
| FORCES                                                                                                                           | Max Uplift 9=-186 (LC<br>Max Grav 5=829 (LC<br>(Ib) - Maximum Com<br>Tension                                                                                                                                                                                                                                 | C 11)<br>: 1), 9=875 (LC 18)<br>pression/Maximum                                                                                                                          | LC                                 | AD CASE(S)                                                                                                                                                                                                                                               | Standard                                                                                                                                                                                                                                                                                  |                                                                                                                                                           |                                                                                                                                                                                                                  |                              |       |        |                                                                                                                 |                |              |
| TOP CHORD<br>BOT CHORD                                                                                                           | 1-2=0/0, 2-3=-144/67<br>9-10=0/0, 8-9=0/446<br>16-17=0/446, 7-17=0<br>5-6=0/665                                                                                                                                                                                                                              | 7, 3-4=-718/0, 4-5=-8<br>8-16=0/446,<br>/446, 6-7=0/410,                                                                                                                  | 891/0                              |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                           |                                                                                                                                                           |                                                                                                                                                                                                                  |                              |       |        |                                                                                                                 | WITH C         | ARO          |
| WEBS                                                                                                                             | 3-9=-693/207, 3-6=-2<br>2-9=-183/88                                                                                                                                                                                                                                                                          | 26/504, 4-6=-267/16                                                                                                                                                       | 3,                                 |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                           |                                                                                                                                                           |                                                                                                                                                                                                                  |                              |       |        | 3                                                                                                               | OR             | JAN'S        |
| NOTES                                                                                                                            |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                           |                                    |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                           |                                                                                                                                                           |                                                                                                                                                                                                                  |                              |       |        | 2.                                                                                                              | 2.00           | 13. 7 ·      |
| <ol> <li>Unbalanc<br/>this desig</li> <li>Wind: AS</li> </ol>                                                                    | ed roof live loads have<br>n.<br>CE 7 10: \/ult=115mpb                                                                                                                                                                                                                                                       | been considered for                                                                                                                                                       |                                    |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                           |                                                                                                                                                           |                                                                                                                                                                                                                  |                              |       |        | 1111                                                                                                            | SE             |              |
| <ol> <li>Wind: AS<br/>Vasd=91r<br/>II; Exp B;<br/>and C-C F<br/>exposed ;<br/>members<br/>Lumber D</li> <li>Provide a</li> </ol> | mph; TCDL=6.0ps; BCI<br>Enclosed; MWFRS (en<br>Exterior (2) zone; cantile<br>end vertical left and rig<br>and forces & MWFRS 1<br>00L=1.60 plate grip DOI<br>dequate drainage to pre                                                                                                                         | (3-second gust)<br>DL=6.0psf; h=30ft; C<br>velope) exterior zone<br>ever left and right<br>ht exposed;C-C for<br>for reactions shown;<br>_=1.33<br>event water ponding.   | at.<br>Ə                           |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                           |                                                                                                                                                           |                                                                                                                                                                                                                  |                              |       |        | A DAVID AND A D |                | 44<br>NEERAM |

## May 19,2020

![](_page_26_Picture_8.jpeg)

| Job        | Truss | Truss Type             | Qty | Ply |                          |           |
|------------|-------|------------------------|-----|-----|--------------------------|-----------|
| 20-045195T | FG    | Common Supported Gable | 1   | 1   | Job Reference (optional) | T20252379 |

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:52 ID:QYSeERvQe1Pz9OjaBd7MUjzEzeh-PyBA?Gm5cdBAX8?RF0uN?e5h\_q?uhQAvSArvWvzEz46

![](_page_27_Figure_4.jpeg)

![](_page_27_Figure_5.jpeg)

Scale = 1:51.4

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                       | (psf)<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                             | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                       | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC20                                                   | 015/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                     | CSI<br>TC<br>BC<br>WB<br>Matrix-MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15<br>0.12<br>0.23                                                                                                                                                                                                                                                               | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                                                                                                                                                                                | in<br>n/a<br>n/a<br>0.00                                                         | (loc)<br>-<br>-<br>12 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20<br>Weight: 119 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SP No.2<br>2x4 SP No.2<br>2x6 SP No.2<br>2x4 SP No.3<br>Structural wood sh<br>10-0-0 oc purlins,<br>Rigid ceiling directl<br>bracing.<br>(size) 12=19-0<br>15=19-0<br>18=19-0<br>22=-184<br>Max Uplift 12=-21 (<br>14=-37 (<br>20=-31 (<br>22=-184<br>Max Grav 12=274<br>14=173<br>16=286<br>18=164<br>21=287 | Eathing directly applied<br>except end verticals.<br>y applied or 6-0-0 oc<br>0, 13=19-0-0, 14=19-<br>0, 16=19-0-0, 17=19-<br>0, 20=19-0-0, 21=19-<br>0<br>(LC 8)<br>LC 11), 13=-60 (LC 11<br>LC 11), 13=-60 (LC 11<br>LC 10), 18=-43 (LC 10<br>(LC 8)<br>LC 10), 13=123 (LC 16<br>LC 1), 13=123 (LC 18<br>LC 1), 15=171 (LC 18<br>LC 1), 15=171 (LC 18<br>LC 20), 17=175 (LC 1<br>LC 17), 20=159 (LC 2<br>LC 17), 22=117 (LC 7 | d or<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>),<br>),<br>),<br>),<br>),<br>7),<br>7),<br>7), | <ul> <li>WEBS 6</li> <li>NOTES</li> <li>1) Unbalanced this design.</li> <li>2) Wind: ASCE Vasd=91mph II; Exp B; En and C-C Exta exposed; en members an Lumber DOL</li> <li>3) Truss design only. For stu see Standard or consult qu</li> <li>4) Gable studes</li> <li>5) This truss ha chord live loa</li> <li>6) * This truss ho on the bottor 3-06-00 tall b chord and ar</li> <li>7) Provide meci</li> </ul> | S-16=-245/0, 5-17<br>3-20=-121/61, 2-2<br>3-14=-125/64, 9-1<br>roof live loads ha<br>7-10; Vult=115m<br>; TCDL=6.0psf; f<br>closed; MWFRS i<br>end for wind load:<br>d vertical left and<br>d forces & MWFR<br>=1.60 plate grip<br>hed for wind load:<br>ds exposed to wid<br>alified building d<br>spaced at 2-0-00<br>s been designed<br>an onconcurrent<br>has been designed<br>be an onconcurrent<br>has been designed<br>an onconcurrent<br>has been designed<br>an onconcurrent<br>has been designed<br>an onconcurrent<br>has been designed<br>be an onconcurrent<br>has been designed<br>be an onconcurrent<br>has been designed<br>be an onconcurrent<br>has been designed<br>be an onconcurrent<br>has be an onconcurent<br>has be an on | =-136/62<br>1=-172/8<br>3=-106/7<br>ve been of<br>ph (3-sec<br>3CDL=6.0<br>(envelope<br>display=0.5<br>so for rea<br>DOL=1.33<br>s in the pl<br>nd (norm:<br>End Detai<br>signer as<br>so for a 10.0<br>with any<br>d for a live<br>as where<br>vill fit betw<br>so not be the sec | , 4-18=-121/6<br>2, 7-15=-133,<br>2, 10-12=-17<br>considered for<br>ond gust)<br>ppsf; h=30ft; (<br>) exterior zom<br>ft and right<br>osed;C-C for<br>ctions shown;<br>ane of the tru<br>al to the face)<br>Is as applicat<br>per ANSI/TF<br>ppsf bottom<br>other live load<br>e load of 20.0<br>a rectangle<br>reen the bottoc | 66,<br>(60,<br>1/59<br>Cat.<br>e<br>Ss<br>,<br>ble,<br>21 1.<br>ds.<br>psf<br>om |                       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | und C                            | AP-111                             |
| FORCES<br>TOP CHORD<br>BOT CHORD                                                                     | (lb) - Maximum Cor<br>Tension<br>1-22=-74/127, 1-2=<br>3-4=-40/177, 4-5=-<br>6-7=-84/183, 7-8=-<br>9-10=0/123, 10-11:<br>21-22=-103/47, 10-<br>13-20=-103/47, 16-<br>15-16=-103/47, 12-<br>15-16=-103/47, 12-<br>11-12=-103/47                                                                                    | npression/Maximum<br>-103/222, 2-3=-64/18;<br>45/189, 5-6=-84/188,<br>45/165, 8-9=-5/140,<br>27/155<br>21=-103/47,<br>19=-103/47,<br>15=-103/47,<br>13=-103/47,<br>13=-103/47,                                                                                                                                                                                                                                                  | 2,                                                                                      | bearing plate<br>joint 22, 37 lk<br>lb uplift at joi<br>joint 15, 37 lk<br>21 lb uplift at<br>8) Non Standar<br>9) This truss is<br>International<br>R802.10.2 ar<br>LOAD CASE(S)                                                                                                                                                                                                                               | capable of withs<br>o uplift at joint 17,<br>nt 20, 93 lb uplift<br>o uplift at joint 14,<br>joint 12.<br>d bearing conditii<br>designed in accoo<br>Residential Code<br>of referenced sta<br>Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tanding 1<br>43 lb upl<br>at joint 21<br>60 lb upl<br>on. Revie<br>rdance wi<br>sections<br>ndard AN                                                                                                                                                                               | 84 lb uplift at<br>ift at joint 18,<br>, 37 lb uplift a<br>fift at joint 13 a<br>w required.<br>th the 2015<br>R502.11.1 at<br>SI/TPI 1.                                                                                                                                                                                        | 31<br>at<br>and                                                                  |                       |                             | The second secon | SEA<br>155<br>NGIN               | AL AL BAUTIN                       |

May 19,2020

![](_page_27_Picture_10.jpeg)

| Job        | Truss | Truss Type  | Qty | Ply |                          |     |
|------------|-------|-------------|-----|-----|--------------------------|-----|
| 20-045195T | G     | Jack-Closed | 12  | 1   | Job Reference (optional) | 380 |

Loading

TCDL

BCLL

BCDL

WEBS

WEBS NOTES

2)

3)

WEDGE

Run: 8.33 S. Mar 23 2020 Print: 8.330 S. Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:52 ID:GljJ0h38ADHwzVAkzxJZZmzEzac-t9kZCcnjMxJ19ladokPcYseohEEoQs\_2hqbS2LzEz45

Page: 1

![](_page_28_Figure_4.jpeg)

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 4 and 29 lb uplift at joint 1.

May 19,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

![](_page_28_Picture_9.jpeg)

Þ

| Job        | Truss | Truss Type          | Qty | Ply |                          |           |
|------------|-------|---------------------|-----|-----|--------------------------|-----------|
| 20-045195T | G1    | Roof Special Girder | 1   | 2   | Job Reference (optional) | T20252381 |

![](_page_29_Figure_2.jpeg)

Page: 1

![](_page_29_Figure_4.jpeg)

2-10-7

![](_page_29_Figure_6.jpeg)

![](_page_29_Figure_7.jpeg)

Scale = 1:32.1

|                                                      |             |                                    | i                                             |         |                |                       |                      |                 |          |       |        |     |               |             |
|------------------------------------------------------|-------------|------------------------------------|-----------------------------------------------|---------|----------------|-----------------------|----------------------|-----------------|----------|-------|--------|-----|---------------|-------------|
| Load                                                 | lina        | (psf)                              | Spacing                                       | 2-0-0   |                | csi                   |                      | DEFL            | in       | (loc) | l/defl | L/d | PLATES        | GRIP        |
| TCLL                                                 | (roof)      | 20.0                               | Plate Grip DOL                                | 1.00    |                | тс                    | 0.17                 | Vert(LL)        | -0.02    | 4-5   | >999   | 240 | MT20          | 244/190     |
| TCD                                                  | L           | 10.0                               | Lumber DOL                                    | 1.15    |                | BC                    | 0.30                 | Vert(CT)        | -0.03    | 4-5   | >999   | 180 |               |             |
| BCLL                                                 | _           | 0.0*                               | Rep Stress Incr                               | NO      |                | WB                    | 0.21                 | Horz(CT)        | 0.01     | 4     | n/a    | n/a |               |             |
| BCD                                                  | L           | 10.0                               | Code                                          | IRC201  | 5/TPI2014      | Matrix-MS             |                      | . ,             |          |       |        |     | Weight: 99 lb | FT = 20%    |
| LUM                                                  | BER         | · ·                                |                                               | 5)      | * This truss h | as been designed      | for a liv            | e load of 20.0  | )psf     |       |        |     |               |             |
| TOP                                                  | CHORD       | 2x4 SP No.2                        |                                               |         | on the bottor  | n chord in all areas  | where                | a rectangle     |          |       |        |     |               |             |
| BOT                                                  | CHORD       | 2x6 SP No.2                        |                                               |         | 3-06-00 tall t | y 2-00-00 wide will   | fit betw             | een the botto   | om       |       |        |     |               |             |
| WEB                                                  | S           | 2x4 SP No.3                        |                                               | 6)      | Chord and an   | ly other members.     |                      | octions         |          |       |        |     |               |             |
| BRA                                                  | CING        |                                    |                                               | . 7)    | This trues is  | designed in accord    | ance wi              | ith the 2015    |          |       |        |     |               |             |
| TOP                                                  | CHORD       | 6-0-0 oc purlins, exc              | athing directly applie<br>cept end verticals. | d or '' | International  | Residential Code s    | ections              | R502.11.1 a     | nd       |       |        |     |               |             |
| BOT                                                  | CHORD       | Rigid ceiling directly<br>bracing. | applied or 10-0-0 oc                          | 8)      | Hanger(s) or   | other connection d    | levice(s             | ) shall be      |          |       |        |     |               |             |
| REA                                                  | CTIONS      | (size) 1=0-3-8, 4                  | l= Mechanical                                 |         | provided suff  | ICIENT to Support co  | oncentra             | ted load(s) 3   | 10<br>15 |       |        |     |               |             |
|                                                      |             | Max Horiz 1=78 (LC                 | 5)                                            |         | down at 7-0    | -0-12, 310 10 00WN    | al 5-0-<br>/// at 0. | -12, and $3101$ | un<br>m  |       |        |     |               |             |
|                                                      |             | Max Grav 1=986 (LC                 | C 1), 4=1045 (LC 1)                           |         | chord The      | lesign/selection of   | such co              | nnection dev    | ice      |       |        |     |               |             |
| FOR                                                  | CES         | (lb) - Maximum Com                 | pression/Maximum                              |         | (s) is the res | oonsibility of others |                      |                 |          |       |        |     |               |             |
| TOP                                                  |             |                                    | 6/6 2 /- 109/20                               | LC      | DAD CASE(S)    | Standard              |                      |                 |          |       |        |     |               |             |
| BOT                                                  | CHORD       | 1-10-0/1657 10-11-                 | -0/1657 5-11-0/165                            | , 1)    | Dead + Roo     | of Live (balanced): I | Lumber               | Increase=1.1    | 15,      |       |        |     |               |             |
| 001                                                  | ONORD       | 5-12=0/1657 12-13=                 | =0/1657, 3 11=0/165<br>=0/1657, 4-13=0/165    | 7       | Plate Increa   | ise=1.00              |                      |                 |          |       |        |     |               |             |
| WEB                                                  | S           | 2-4=-1704/0. 2-5=0/7               | 731                                           |         | Uniform Loa    | ads (ID/ft)           |                      |                 |          |       |        |     |               |             |
| NOT                                                  | -           | ,                                  |                                               |         | Vert: 1-3      | =-60, 1-4=-20         |                      |                 |          |       |        |     |               |             |
| 1) 2                                                 | -nlv truss  | s to be connected toget            | her with 10d                                  |         | Vort: 10-      | 210 (E) 11- 210 (     | (E) 12_              | 210 (E) 12      | 212      |       |        |     |               |             |
| ., _                                                 | 0 131"x3'   | ") nails as follows:               |                                               |         | (E)            | -310 (F), 11=-310 (   | (Γ), ΙΖ=             | -310 (F), 13=   | -312     |       |        |     |               |             |
| Ť                                                    | op chord    | ls connected as follows            | : 2x4 - 1 row at 0-9-0                        | 0       | (1)            |                       |                      |                 |          |       |        |     |               |             |
| C                                                    |             |                                    |                                               |         |                |                       |                      |                 |          |       |        |     |               | Um.         |
| E                                                    | Bottom ch   | ords connected as follo            | ows: 2x6 - 2 rows                             |         |                |                       |                      |                 |          |       |        |     | W'ILC         | AD          |
| S                                                    | taggered    | at 0-9-0 oc.                       |                                               |         |                |                       |                      |                 |          |       |        |     | "aTH U        | 200111      |
| V                                                    | Veb conn    | ected as follows: 2x4 -            | 1 row at 0-9-0 oc.                            |         |                |                       |                      |                 |          |       |        | ~   | OFFE          | STO ALL     |
| 2) A                                                 | All loads a | are considered equally             | applied to all plies,                         |         |                |                       |                      |                 |          |       |        | 3.  | 2.0           | Ni. 7 -     |
| e                                                    | except if n | noted as front (F) or bac          | ck (B) face in the LO                         | AD      |                |                       |                      |                 |          |       |        | -   |               | est: 2      |
|                                                      | ASE(S)      | section. Ply to ply conn           | nections have been                            |         |                |                       |                      |                 |          |       |        | -   | 1             | 1 N E       |
| 4                                                    | nloss oth   | o ulstribute only loads i          | noted as (F) of (B),                          |         |                |                       |                      |                 |          |       |        | -   | : SE          | AL : =      |
| 3) V                                                 | Vind: AS(   | CF 7-10: Vult=115mph               | (3-second dust)                               |         |                |                       |                      |                 |          |       |        |     | 155           | 344 E       |
| ۰, ۱                                                 | /asd=91n    | nph: TCDL=6.0psf: BC               | DL=6.0psf: h=30ft: C                          | at.     |                |                       |                      |                 |          |       |        | -   | : 100         |             |
| II; Exp B; Enclosed; MWFRS (envelope) exterior zone: |             |                                    |                                               |         |                |                       |                      |                 |          |       |        | 1   | A             | 1. 2        |
| С                                                    | antilever   | left and right exposed             | ; end vertical left and                       | ł       |                |                       |                      |                 |          |       |        | 5.  | 2. ENG        | - CRINI     |
| ri                                                   | ight expo   | sed; Lumber DOL=1.60               | 0 plate grip DOL=1.3                          | 3       |                |                       |                      |                 |          |       |        | 1   | GINGIN        | VEEDAN      |
| 4) T                                                 | his truss   | has been designed for              | a 10.0 psf bottom                             |         |                |                       |                      |                 |          |       |        |     | 1, MAG        | ALDIN       |
| С                                                    | nord live   | load nonconcurrent wit             | th any other live load                        | IS.     |                |                       |                      |                 |          |       |        |     | 1110          | A           |
|                                                      |             |                                    |                                               |         |                |                       |                      |                 |          |       |        |     | 2000          | May 40 0000 |

A. AL May 19,2020

![](_page_29_Picture_13.jpeg)

![](_page_29_Picture_14.jpeg)

| Job        | Truss | Truss Type  | Qty | Ply |                          |          |
|------------|-------|-------------|-----|-----|--------------------------|----------|
| 20-045195T | н     | Jack-Closed | 18  | 1   | Job Reference (optional) | 20252382 |

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:52 ID:OH4ePKLJ?ONKy796mSZu00zEzNK-I9kZCcnjMxJ19ladokPcYsemtECWQq22hqbS2LzEz45

Page: 1

![](_page_30_Figure_4.jpeg)

| Job        | Truss | Truss Type                  | Qty | Ply |                          |           |
|------------|-------|-----------------------------|-----|-----|--------------------------|-----------|
| 20-045195T | HG    | Jack-Closed Supported Gable | 2   | 1   | Job Reference (optional) | T20252383 |

2)

3)

Run: 8.33 S. Mar 23 2020 Print: 8.330 S. Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:53 ID:VnMZ8mVTxN0U07fc1hlx1lzEzN7-LLIxQynL7FRumR9qMRwr43AqoeWM9MdCvUK0bozEz44

Page: 1

![](_page_31_Figure_4.jpeg)

![](_page_31_Picture_5.jpeg)

| Job        | Truss | Truss Type | Qty | Ply |                                       |
|------------|-------|------------|-----|-----|---------------------------------------|
| 20-045195T | I     | Common     | 10  | 1   | T20252384<br>Job Reference (optional) |

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:53 ID:jPNGq5J\_JfEZrnOBdPSLRgzEzJV-LLIxQynL7FRumR9qMRwr43A?fef49M8CvUK0bozEz44

Page: 1

![](_page_32_Figure_5.jpeg)

![](_page_32_Figure_6.jpeg)

Scale = 1:37.9

## Plate Offsets (X, Y): [1:0-0-7,0-0-2], [1:0-0-4,Edge], [3:0-0-7,0-0-2], [3:0-0-4,Edge]

|                                  |                                                                      | 1                      | . ,    | , [           | 1                  |             |                |       |       |        |     |               |                                          |   |
|----------------------------------|----------------------------------------------------------------------|------------------------|--------|---------------|--------------------|-------------|----------------|-------|-------|--------|-----|---------------|------------------------------------------|---|
| Loading                          | (psf)                                                                | Spacing                | 2-0-0  |               | csi                |             | DEFL           | in    | (loc) | l/defl | L/d | PLATES        | GRIP                                     |   |
| TCLL (roof)                      | 20.0                                                                 | Plate Grip DOL         | 1.00   |               | тс                 | 0.27        | Vert(LL)       | 0.02  | 4-9   | >999   | 240 | MT20          | 244/190                                  |   |
| TCDL                             | 10.0                                                                 | Lumber DOL             | 1.15   |               | BC                 | 0.20        | Vert(CT)       | -0.03 | 4-9   | >999   | 180 |               |                                          |   |
| BCLL                             | 0.0*                                                                 | Rep Stress Incr        | YES    |               | WB                 | 0.07        | Horz(CT)       | 0.00  | 3     | n/a    | n/a |               |                                          |   |
| BCDL                             | 10.0                                                                 | Code                   | IRC201 | 5/TPI2014     | Matrix-MS          |             |                |       |       |        |     | Weight: 56 lb | FT = 20%                                 |   |
|                                  |                                                                      |                        |        |               |                    |             |                |       | -     |        |     | , v           |                                          |   |
| LUMBER                           |                                                                      |                        | 5)     | Provide mec   | hanical connection | on (by othe | ers) of truss  | to    |       |        |     |               |                                          |   |
| TOP CHORD                        | 2x4 SP No.2                                                          |                        |        | bearing plate | capable of with    | standing 1  | 1 lb uplift at | joint |       |        |     |               |                                          |   |
| BOT CHORD                        | 2x4 SP No.2                                                          |                        |        | 1 and 11 lb u | plift at joint 3.  |             |                |       |       |        |     |               |                                          |   |
| WEBS                             | 2x4 SP No.3                                                          |                        | 6)     | This truss is | designed in acco   | ordance wi  | th the 2015    |       |       |        |     |               |                                          |   |
| WEDGE                            | Left: 2x10 SP 2250F                                                  | 1.9E or DSS or SS      | _      | International | Residential Cod    | e sections  | R502.11.1 a    | and   |       |        |     |               |                                          |   |
|                                  | Right: 2x10 SP 2250                                                  | IF 1.9E or DSS or SS   | 5      | R802.10.2 ar  | nd referenced sta  | andard AN   | SI/TPI 1.      |       |       |        |     |               |                                          |   |
| BRACING                          |                                                                      |                        | LC     | DAD CASE(S)   | Standard           |             |                |       |       |        |     |               |                                          |   |
| TOP CHORD                        | D Structural wood sheathing directly applied or<br>6-0-0 oc purlins. |                        |        |               |                    |             |                |       |       |        |     |               |                                          |   |
| BOT CHORD                        | Rigid ceiling directly<br>bracing.                                   | applied or 10-0-0 oc   |        |               |                    |             |                |       |       |        |     |               |                                          |   |
| REACTIONS                        | (size) 1=0-3-8, 3                                                    | 3=0-3-8                |        |               |                    |             |                |       |       |        |     |               |                                          |   |
|                                  | Max Horiz 1=-81 (LC                                                  | ; 8)                   |        |               |                    |             |                |       |       |        |     |               |                                          |   |
|                                  | Max Uplift 1=-11 (LC                                                 | : 10), 3=-11 (LC 11)   |        |               |                    |             |                |       |       |        |     |               |                                          |   |
|                                  | Max Grav 1=500 (LC                                                   | C 1), 3=500 (LC 1)     |        |               |                    |             |                |       |       |        |     |               |                                          |   |
| FORCES                           | (lb) - Maximum Com<br>Tension                                        | pression/Maximum       |        |               |                    |             |                |       |       |        |     |               |                                          |   |
| TOP CHORD                        | 1-2=-419/71, 2-3=-4                                                  | 19/71                  |        |               |                    |             |                |       |       |        |     |               |                                          |   |
| BOT CHORD                        | 1-4=-63/279, 3-4=0/2                                                 | 279                    |        |               |                    |             |                |       |       |        |     |               |                                          |   |
| WEBS                             | 2-4=0/196                                                            |                        |        |               |                    |             |                |       |       |        |     |               |                                          |   |
| NOTES                            |                                                                      |                        |        |               |                    |             |                |       |       |        |     |               |                                          |   |
| 1) Unbalance                     | ed roof live loads have                                              | been considered for    |        |               |                    |             |                |       |       |        |     | , mm          | 11111                                    |   |
| this design                      | າ.                                                                   |                        |        |               |                    |             |                |       |       |        |     | I''THC        | ARA                                      |   |
| 2) Wind: ASC                     | CE 7-10; Vult=115mph                                                 | (3-second gust)        |        |               |                    |             |                |       |       |        |     | "all          |                                          |   |
| Vasd=91m                         | nph; TCDL=6.0psf; BC                                                 | DL=6.0psf; h=30ft; C   | at.    |               |                    |             |                |       |       |        | 3   | 0'15          | STOLA                                    |   |
| II; Exp B; E                     | Enclosed; MWFRS (en                                                  | velope) exterior zon   | е      |               |                    |             |                |       |       |        | 2.  | 200           | 1.7%                                     |   |
| and C-C E                        | Exterior (2) zone; cantile                                           | ever left and right    |        |               |                    |             |                |       |       |        | -   |               | OK: 1                                    | 2 |
| exposed ;                        | end vertical left and rig                                            | ght exposed;C-C for    |        |               |                    |             |                |       |       |        | -   |               |                                          | 1 |
| members                          | and forces & MWFRS                                                   | for reactions shown;   |        |               |                    |             |                |       |       |        |     | : SE          | AL :                                     | Ξ |
| Lumber D                         | OL=1.60 plate grip DO                                                | L=1.33                 |        |               |                    |             |                |       |       |        |     | 155           | :11                                      | = |
| 3) This truss                    | has been designed for                                                | r a 10.0 psf bottom    |        |               |                    |             |                |       |       |        | 2   | : 150         |                                          | - |
| chord live                       | load nonconcurrent with                                              | th any other live load | ls.    |               |                    |             |                |       |       |        | =   | 1. C          | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -  | - |
| <ol><li>4) * This trus</li></ol> | s has been designed for                                              | or a live load of 20.0 | psf    |               |                    |             |                |       |       |        | 3   | 2.2           | ains                                     |   |
| on the bot                       | tom chord in all areas                                               | where a rectangle      |        |               |                    |             |                |       |       |        | 1   | NGI           | VEENSY                                   |   |
| 3-06-00 ta                       | II by 2-00-00 wide will                                              | fit between the botto  | m      |               |                    |             |                |       |       |        | 1   | Un            | Bris                                     |   |
| chord and                        | any other members.                                                   |                        |        |               |                    |             |                |       |       |        |     | AS            | A ALIN                                   |   |
|                                  |                                                                      |                        |        |               |                    |             |                |       |       |        |     | 11111         | un u |   |
|                                  |                                                                      |                        |        |               |                    |             |                |       |       |        |     |               | 1111                                     |   |

May 19,2020

![](_page_32_Picture_12.jpeg)

| Job        | Truss | Truss Type             | Qty | Ply |                          |         |
|------------|-------|------------------------|-----|-----|--------------------------|---------|
| 20-045195T | IG    | Common Supported Gable | 2   | 1   | Job Reference (optional) | )252385 |

Run: 8.33 S Mar 23 2020 Print: 8.330 S Mar 23 2020 MiTek Industries, Inc. Tue May 19 10:27:53 ID:XZIX59OluV?iZirLzfZlhxzEzJP-LLIxQynL7FRumR9qMRwr43A2pehd9MxCvUK0bozEz44 Page: 1

![](_page_33_Figure_4.jpeg)

1-0-0

11-6-0

#### Scale = 1:37.9

| Loa<br>TCL<br>TCE<br>BCL<br>BCE                      | ding<br>.L (roof)<br>DL<br>.L<br>DL |                                                                                                                                       | (psf)<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                 | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                    | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC2015                                                                                                                                                                                                                           | 5/TPI2014                                                                                                                                                                                                                                                                                                                         | CSI<br>TC<br>BC<br>WB<br>Matrix-MS                                                                                                                      | 0.13<br>0.10<br>0.09                                                                                                                                                                                     | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL) | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>8 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 59 lb | <b>GRIP</b><br>244/190<br>FT = 20% |   |
|------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|---|
| -UN<br>FOF<br>301<br>201<br>301<br>301<br>301<br>301 | ACTIONS                             | 2x4 SP N<br>2x4 SP N<br>2x4 SP N<br>Structura<br>10-0-0 oc<br>Rigid ceil<br>bracing.<br>(size)<br>Max Horiz<br>Max Uplift<br>Max Grav | 0.2<br>0.2<br>0.3<br>wood shea<br>purlins.<br>ing directly<br>8=10-6-0,<br>11=10-6-0<br>12=-81 (L0<br>8=-23 (LC<br>11=-59 (L0<br>8=251 (L0<br>10=282 (L<br>10=2251 (L | athing directly applied<br>applied or 6-0-0 oc<br>9=10-6-0, 10=10-6-0<br>0, 12=10-6-0<br>C 6)<br>10), 9=-58 (LC 11),<br>C 10), 12=-25 (LC 11<br>; 22), 9=171 (LC 18),<br>C 1), 11=172 (LC 17<br>C 21) | Gable studs a<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottom<br>3-06-00 tall b<br>chord and an<br>Provide mech<br>bearing plate<br>11, 25 lb upli<br>uplift at joint a<br>Non Standard<br>This truss is a<br>International<br>R802.10.2 ar | spaced at 2-0-0 oc<br>s been designed fi<br>d nonconcurrent v<br>as been designed<br>n chord in all areas<br>y 2-00-00 wide wil<br>y other members.<br>anical connection<br>capable of withsta<br>ft at joint 12, 58 lb<br>3.<br>d bearing condition<br>designed in accorc<br>Residential Code<br>and referenced stan<br>Standard | 2.<br>or a 10.0<br>vith any<br>for a live<br>s where<br>Il fit betw<br>(by othe<br>anding 5<br>uplift at<br>n. Revie<br>dance wi<br>sections<br>dard AN | ) psf bottom<br>other live load<br>e load of 20.0<br>a rectangle<br>reen the botto<br>ers) of truss tr<br>9 lb uplift at jo<br>joint 9 and 23<br>w required.<br>th the 2015<br>R502.11.1 at<br>SI/TPI 1. | ds.<br>)psf<br>om<br>oint<br>3 lb         |                          |                      |                             |                          |                                 |                                    |   |
| -OF                                                  | RCES                                | (lb) - Max<br>Tension                                                                                                                 | imum Com                                                                                                                                                              | pression/Maximum                                                                                                                                                                                      |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                         |                                                                                                                                                                                                          |                                           |                          |                      |                             |                          |                                 |                                    |   |
| ΓOF                                                  | P CHORD                             | 1-2=-24/1<br>4-5=-4/15                                                                                                                | 64, 2-3=0/1<br>0, 5-6=0/14                                                                                                                                            | 147, 3-4=-4/151,<br>46, 6-7=-23/163                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                         |                                                                                                                                                                                                          |                                           |                          |                      |                             |                          |                                 |                                    |   |
| 301                                                  | CHORD                               | 1-12=-110<br>9-10=-110                                                                                                                | 6/43, 11-12<br>5/42, 8-9=-´                                                                                                                                           | =-115/42, 10-11=-11<br>115/42, 7-8=-115/42                                                                                                                                                            | 5/42,                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                         |                                                                                                                                                                                                          |                                           |                          |                      |                             |                          |                                 | 11                                 |   |
| NEI                                                  | BS                                  | 4-10=-23<br>5-9=-134/                                                                                                                 | 5/0, 3-11=- <sup>-</sup><br>73, 6-8=-15                                                                                                                               | 135/73, 2-12=-156/65<br>56/65                                                                                                                                                                         | 5,                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                         |                                                                                                                                                                                                          |                                           |                          |                      |                             |                          | "TH C                           | AROUN                              |   |
| 101                                                  | TES                                 |                                                                                                                                       |                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                         |                                                                                                                                                                                                          |                                           |                          |                      |                             | 5                        | OR                              | Sid. MALL                          |   |
| I)                                                   | Unbalance                           | ed roof live l                                                                                                                        | oads have                                                                                                                                                             | been considered for                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                         |                                                                                                                                                                                                          |                                           |                          |                      |                             | 5.                       | 2                               | This 7 -                           |   |
|                                                      | this design                         | 1.                                                                                                                                    | 1. 44 Fac. 1                                                                                                                                                          | (0                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                         |                                                                                                                                                                                                          |                                           |                          |                      |                             | -                        |                                 | E Y: ?                             | 1 |
| <u>(</u> )                                           | wind: ASC                           | ∠E 7-10; Vu                                                                                                                           | it=115mph                                                                                                                                                             | (3-second gust)                                                                                                                                                                                       |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                         |                                                                                                                                                                                                          |                                           |                          |                      |                             | 2                        |                                 |                                    | - |

2) Wind: ASCE 7-10; Vult=115mpn (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. SEAL 15544 May 19,2020

![](_page_33_Picture_12.jpeg)

![](_page_34_Figure_0.jpeg)