Department of Environment, Health and Natural Resources Division of Environmental Health On-Site Wastewater Section Sheet: Property ID: Lot #: File #:

Code:

SOIL/SITE EVALUATION for ON-SITE WASTEWATER SYSTEM

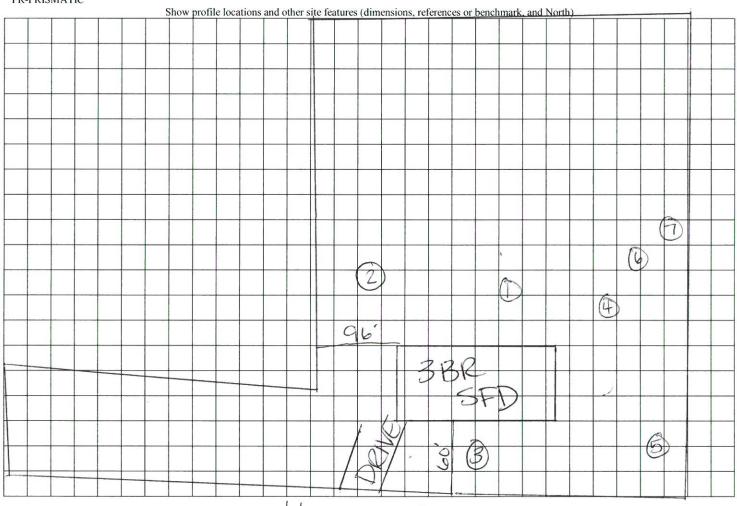
Owner: Ap	plicant: Linda	John	1500		
Address: Proposed Facility: SF	Date	Evaluated:	214119		
Proposed Facility: SI-	D 42 x 36 Desig	gn Flow (.192	19): 360GPD	Property Size:	
Location of Site: HO	NEV KO Prope	erty Recorded	d:		
Water Supply:	🔀 Public 🗌 I	ndividual	☐ Well	☐ Spring	☐ Other
Evaluation Method:	Auger Boring	☐ Pit	☐ Cu	t	
Type of Wastewater:	X Sewage	☐ Indu	istrial Process	☐ Mixed	

Profile Pro				Asemage			10000					
Texture Mineralogy Color Depth (IN.) Class Horiz & LTAR 1,2,3 55 29. \$\neq 12"\$ BK \$\infty\$ SCL Fr \$\infty\$ SEXP \$\infty\$ SSSP \$\land{10}\text{PCh} \rangle 12"\$ 45 \$\infty\$ 25% 0-32" BK \$\infty\$ SCL Fr \$\infty\$ SEXP \$\infty\$ SSSP 32 +	R O F I L	.1940			PROFILE FACTORS .1942 Soil .1943 .1956 .1944				(2) (2) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4			
45 R 25% 0-32" BK SICL FI SEXP SSSP 104R6 212 45 R 25% 0-32" BK SICL FI SEXP SSSP 104R6 1 32" 0.3 6 L 25% 0-30" BK SICL FI SEXP SSSP 104R6 1 30" 0.3 7 L 25% 0-26" BK SICL FI SEXP SSSP				Texture	Mineralogy		C	olor	Depth (IN.)		Horiz	& LTAR
32+ 10YR6/1 32" 0.3 6 L 251. 0-30" BK SICL Fi SEXP SSSP 30+ 10YR6/1 30" 0.3 7 L 251. 0-26" BK SICL FI SEXP SSSP	1,2,3	SS 29.	∠ 12"	BK SICL	Fr SE	ΣXρ	555P	104R6/1	Z 1Z"			UN
32+ 104R6/1 32" 0.3 6 L 251. 0-30" BK SICL Fi SEXP SSSP 30+ 104R6/1 30" 0.3 7 L 251. 0-26" BK SICL FI SEXP SSSP	4,5	R 25%	0-32"	BK SICL	Fi SE	χp	555p	•				UN ->PS
30+ 10 YR6/1 30" 0.3 7 L 25% 0-26 BK SCL F1 SXP SSSP			32 +					104R6/1	32"	40.00		
30+ 10 yr6/1 30" 0.3 7 L 25% 0-26" BK SiCL Fi sexp 555p	6	L 251.	0-35	BKSICL	Fi St	ΧYC	555p					1101-58
			30+		12 3			104R6/1	30"			
	7	L 25%	0-26	BKSCL	F1 &	Χp	555p					
					4	,	\	104R611	26"			
								1996				
					~					1 4 5 To Topo		
								TIME				

Description	Initial System	Repair System	Other Factors (.1946): Site Classification (.1948): POVISIONAL SUTABLE
Available Space (.1945)	V		Evaluated By: Gotto NV Act a M
System Type(s)	251.Rea	75% Red	Others Present:
Site LTAR	0.3	0.3	

COMMENTS: ____

LANDSCAPE POSITIONS	<u>GROUP</u>	<u>TEXTURES</u>	. <u>1955 LTAR</u>	CONSISTENCE MOIST	WET
R-RIDGE S-SHOULDER SLOPE L-LINEAR SLOPE	Ī	S-SAND LS-LOAMY SAND	1.2 - 0.8	VFR-VERY FRIABLE FR-FRIABLE	NS-NON-STICKY SS-SLIGHTY STICKY
FS-FOOT SLOPE N-NOSE SLOPE H-HEAD SLOPE	II	SL-SANDY LOAM L-LOAM	0.8 - 0.6	FI-FIRM VFI-VERY FIRM EFI-EXTREMELY FIRM	S-STICKY VS-VERY STICKY NP-NON-PLASTIC
CC-CONCLAVE SLOPE CV-CONVEX SLOPE T-TERRACE FP-FLOOD PLAN	III	SI-SILT SIL-SILT LOAM CL-CLAY LOAM SCL-SANDY CLAY LOAM	0.6 - 0.3		SP-SLIGHTLY STICKY P-PLASTIC VP-VERY PLASTIC


IV SIC-SILTY CLAY 0.4 - 0.1 C-CLAY

SC-SANDY CLAY

STRUCTURE
SG-SINGLE GRAIN
M- MASSIVE
CR-CRUMB
GR-GRANULAR
SBK-SUBANGULAR BLOCKY
ABK-ANGULAR BLOCKY
PL-PLATY
PR-PRISMATIC

MINERALOGY SLIGHTLY EXPANSIVE

EXPANSIVE

Hoover Rd