

RE: 2167669_ofa - H&H/Venture/Lot11/NewHorizons/Lillingto

Site Information:

Project Customer: a and g residential Project Name: 2167669 Lot/Block: Subdivision: Model:

Address:

City:

State: nc

General Truss Engineering Criteria & Design Loads (Individual Truss Design **Drawings Show Special Loading Conditions):**

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Wind Speed: 130 mph Roof Load: 40.0 psf

Mean Roof Height (feet): 25

Design Program: MiTek 20/20 8.2 Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-10 Floor Load: N/A psf

Trenco

818 Soundside Rd

Edenton, NC 27932

Exposure Category: C

No.	Seal#	Truss Name	Date
1	139406664	A02	11/25/19
23	139406666	A03 A04	11/25/19
4	139406667		11/25/19
5	139406668	A06	11/25/19
7	139406670	A08	11/25/19
8	139406671	A09	11/25/19
9 10	139406672	A10 A11	11/25/19
11	139406674	A12	11/25/19
12	139406675	A13	11/25/19
14	139406677	A15	11/25/19
10	139406678	A16	11/25/19
10	139406679	A17 A18	11/25/19
18	139406681	C01	11/25/19
19	139406682	C02	11/25/19
21	139406684	H01	11/25/19
22	139406685	H02	11/25/19
23	139406687	⊓03 J01	11/25/19
25	139406688	JOIA	11/25/19
26	139406689	J02 1024	11/25/19
28	139406691	J03	11/25/19
29	139406692	JO3A	11/25/19
30	139406694	J04 J10	11/25/19

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters

Iruss Design Engineer's Name: Sevier, Scott My license renewal date for the state of North Carolina is December 31, 2019 **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building incorporate these designs and verify applicability of the design of the set of the should verify applicability of the design of the set of the should verify applicability of the design of the set of the should verify applicability of the design of the set of the design of the set of the should verify applicability of the design of the set of the should verify applicability of the design of the set of the incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

November 25,2019

Scale = 1:68.7

 	8-1-12	18-5-12	28-1	-10		37-11-0	
Plate Offsets (X,Y)	[2:0-0-0,0-0-14], [3:0-10-4,0	0-2-0]	5-1	14		3-3-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI2	2-0-0 CSI. 1.15 TC 0.74 1.15 BC 0.76 YES WB 0.74 2014 Matrix-AS	DEFL. in Vert(LL) -0.20 Vert(CT) -0.38 Horz(CT) -0.02 Wind(LL) 0.13	(loc) l/defl 12-14 >999 12-14 >577 2 n/a 14-17 >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 179 lb	GRIP 244/190 187/143 FT = 20%
LUMBER- TOP CHORD 2x4 SP 7-9: 2x6 BOT CHORD 2x4 SP WEBS 2x4 SP WEDGE Left: 2x4 SP No.3	No.2 *Except* 5 SP No.2 No.2 No.3		BRACING- TOP CHORD BOT CHORD	Structural wood 2-0-0 oc purlins Rigid ceiling dire	sheathing directl (6-0-0 max.): 3-7 ectly applied.	y applied, except	
REACTIONS. (Ib/size Max He Max Up Max Gr FORCES. (Ib) - Max. 0 TOP CHORD 2-3=-8 BOT CHORD 2-14= WEBS 4-14=	 b) 2=683/0-3-8, 12=1728/ orz 2=101(LC 16) b) bift 2=-233(LC 12), 12=-49/ rav 2=686(LC 23), 12=172 Comp./Max. Ten All force 870/393, 3-4=-692/451, 4-6/ 185/687, 10-12=-110/266 161/662, 4-12=-964/468, 1 	/0-3-8, 8=715/0-3-8 h1(LC 9), 8=-233(LC 13) (8(LC 1), 8=715(LC 1) h2 250 (lb) or less except when h3=-124/521, 6-7=-685/426, 7-8= , 8-10=-227/731 6-12=-1063/485, 6-10=-75/547	shown. 880/433				
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; Vi MWFRS (envelope) MWFRS for reactions 3) Provide adequate dra 4) All plates are MT20 p 5) This truss has been of 6) * This truss has been will fit between the b 7) Provide mechanical or joint 12 and 233 lb up 8) This truss design requires the sheetrock be applied 9) Graphical purlin representation 	loads have been consider ult=130mph (3-second gus gable end zone and C-C E s shown; Lumber DOL=1.6 ainage to prevent water po olates unless otherwise ind designed for a 10.0 psf bot n designed for a live load of ottom chord and any other connection (by others) of tr plift at joint 8. quires that a minimum of 7/ I directly to the bottom chor esentation does not depict	ed for this design. t) Vasd=103mph; TCDL=6.0ps xterior(2) zone; end vertical left 0 plate grip DOL=1.60 nding. icated. tom chord live load nonconcurr f 20.0psf on the bottom chord ir members. uss to bearing plate capable of 16" structural wood sheathing b rd. the size or the orientation of th	f; BCDL=6.0psf; h=25ft; Cat. II; and right exposed;C-C for men ent with any other live loads. n all areas where a rectangle 3-1 withstanding 233 lb uplift at joir be applied directly to the top cho e purlin along the top and/or bot	Exp C; Enclosed; ibers and forces 8 3-0 tall by 2-0-0 w it 2, 491 lb uplift a rd and 1/2" gypsu tom chord.	š, ide it .	ALL OF THE OF	CAROL ESSIS SEAL 44925

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	<u> </u>	<u>18-5-12</u> 8-4-0	27-9-4 9-3-8	<u> </u>
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 * Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.57 BC 0.81 WB 0.54 Matrix-AS	DEFL. in (loc) l/defl Vert(LL) -0.15 13-16 >999 Vert(CT) -0.35 13-16 >629 Horz(CT) 0.02 7 n/a Wind(LL) 0.16 13-16 >999	L/d PLATES GRIP 360 MT20 244/190 240 n/a 240 Weight: 206 lb FT = 20%

LUMBER-

TOP CHORD2x6 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD

BOT CHORD

WEBS

Structural wood sheathing directly applied, except 2-0-0 oc purlins (6-0-0 max.): 3-6. Rigid ceiling directly applied. 1 Row at midpt 3-11

REACTIONS. (Ib/size) 2=745/0-3-8, 11=1583/0-3-8, 7=787/0-3-8 Max Horz 2=120(LC 12) Max Uplift 2=-251(LC 12), 11=-410(LC 9), 7=-280(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-861/447, 3-4=-60/273, 4-6=-790/550, 6-7=-956/471

BOT CHORD 2-13=-212/700, 11-13=-214/694, 7-9=-236/784

WEBS 3-13=0/372, 3-11=-888/299, 4-11=-992/483, 4-9=-270/859

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 251 lb uplift at joint 2, 410 lb uplift at joint 11 and 280 lb uplift at joint 7.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

F	9-5-10 18-5-12 9-5-10 9-0-2		2		28 9-*	<u>3-5-6</u> 11-10			<u> </u>		
Plate Offsets	; (X,Y)	[4:0-4-0,0-1-15], [6:0-4-0,0-1-1	5], [12:0-4-0,0-4-0]								
LOADING (P TCLL 20 TCDL 10 BCLL 0 BCDL 10	osf) 0.0 0.0 0.0 * 0.0	SPACING- 2-0 Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr YE Code IRC2015/TPI2014	-0 CSI. 15 TC 15 BC 15 WB 4 Matrix	0.75 0.38 0.45 <-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.06 -0.12 0.01 0.04	(loc) 10-12 14-17 8 14-17	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 219 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	0 2x4 SP 0 2x6 SP 2x4 SP		BRACING- TOP CHOR BOT CHOR WEBS	RD RD	Structu 2-0-0 c Rigid c 1 Row	iral wood oc purlins eiling dire at midpt	sheathing c (10-0-0 ma ectly applied	directly applied, except x.): 4-6. I. 4-12. 6-12			
REACTIONS. (lb/size) 2=630/0-3-8, 12=1829/0-3-8, 8=678/0-3-8 Max Horz 2=-142(LC 13) Max Uplift 2=-203(LC 12), 12=-381(LC 9), 8=-229(LC 13) Max Grav 2=661(LC 23), 12=1829(LC 1), 8=708(LC 24)											
FORCES. (FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown.										

TOP CHORD 2-3=-861/349, 3-4=-588/259, 4-5=-76/440, 5-6=-49/400, 6-7=-694/295, 7-8=-966/384

BOT CHORD 2-14=-273/712, 12-14=-29/315, 10-12=0/371, 8-10=-218/805

WEBS 3-14=-351/343, 4-14=-143/519, 4-12=-897/424, 5-12=-474/322, 6-12=-913/417, 6-10=-132/547, 7-10=-347/343

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 203 lb uplift at joint 2, 381 lb uplift at joint 12 and 229 lb uplift at joint 8.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

	9-5-10 9-5-10	18-5-12 9-0-2	21-1-8	25-1-8 4-0-0	27-11-10	37-11-0 9-11-6	
Plate Offsets (X,Y)	[3:0-3-0,0-3-4], [4:0-4-0,0-1-15], [6:0	-4-0,0-1-15], [7:0-3-0,0-3-4], [14:0-4-0,0-4-0]				
LOADING(psf)TCLL20.0TCDL10.0BCLL0.0BCDL10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.49 BC 0.39 WB 0.44 Matrix-AS	DEFL. Vert(LL) -0.1 Vert(CT) -0. Horz(CT) 0.1 Wind(LL) 0.1	in (loc) 07 14-16 15 10-26 01 2 06 10-26	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES MT20 Weight: 238 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x BOT CHORD 2x WEBS 2x	4 SP No.2 6 SP No.2 4 SP No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structu 2-0-0 o Rigid c 1 Row	ral wood sheathing dir c purlins (10-0-0 max.) eiling directly applied. 4 midot 4	ectly applied, except): 4-6. -14. 6-14. 17-18	
REACTIONS. (III M M M	o/size) 2=589/0-3-8, 14=1909/0-3-8, 8= ax Horz 2=-168(LC 13) ax Uplift 2=-203(LC 12), 14=-344(LC 12), ax Grav 2=635(LC 23), 14=1909(LC 1), 8	639/0-3-8 8=-237(LC 13) 3=682(LC 24)				,- ,	

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 2-3=-773/299, 3-4=-561/306, 4-5=-53/502, 5-6=-41/482, 6-7=-616/314, 7-8=-865/342
- BOT CHORD 2-16=-258/620, 14-16=-113/284, 8-10=-162/703
- WEBS 3-16=-411/400, 4-16=-301/685, 4-14=-875/442, 14-17=-922/443, 6-17=-885/432,
 - 6-18=-263/657, 10-18=-257/635, 7-10=-415/403, 5-14=-297/210

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 203 lb uplift at joint 2, 344 lb uplift at joint 14 and 237 lb uplift at joint 8.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

TREENCO A Mitek Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0.4.40					07.44.0			
├ ──	9-1-10	<u>18-5-12</u> 9-4-2	21-1-8	25-1-8	28-9-6	9-1-10			
Plate Offsets (X,Y)	[3:0-4-0.0-3-0]. [4:0-4-0.0-1-15]. [5:0-4-0	0.0-1-15]. [6:0-4-0.0-3-0]. [1	13:0-4-0.0-4-0]	4-0-0	5-1-14	5-1-10			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.58 BC 0.46 WB 0.95 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.09 13-15 -0.19 11-12 0.01 7 0.08 9-25	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES MT20 Weight: 235 lb	GRIP 244/190 FT = 20%		
LUMBER- TOP CHORD 2x4 SP No.2 BRACING- BOT CHORD 2x6 SP No.2 TOP CHORD Structural wood sheathing directly applied, except 2-0-0 oc purlins (10-0-0 max.): 4-5. WEBS 2x4 SP No.3 BOT CHORD Rigid ceiling directly applied. REACTIONS. (lb/size) 2=558/0-3-8, 13=2124/0-3-8, 7=656/0-3-8 Max Horz BOT CHORD Rigid ceiling directly applied. Max Uplift 2=-225(LC 12), 13=-182(LC 12), 7=-218(LC 13) Max Grav 2=011(LC 23), 13=2124(LC 1), 7=709(LC 24) How at midpt 4-13, 5-13, 16-17									
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-702/350, 3-4=-571/457, 4-5=0/525, 5-6=-812/358, 6-7=-945/250 BOT CHORD 2-15=-306/551, 13-15=-254/288, 12-13=-117/273, 11-12=-117/273, 9-11=-117/273, 7-9=-78/765 WEBS 3-15=-454/447, 4-15=-465/816, 4-13=-946/495, 13-16=-1041/409, 5-16=-1007/423, 5-17=-303/977, 9-17=-317/933, 6-9=-443/454									
NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-10; ¹ MW/ERS (envelope)	e loads have been considered for this de Vult=130mph (3-second gust) Vasd=103i Joshle and zone and C-C Exterior(2) zon	sign. nph; TCDL=6.0psf; BCDL= e: end vertical left and righ	=6.0psf; h=25ft; (Cat. II; Exp C; E	nclosed;				

MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members ar MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) 200.0lb AC unit load placed on the bottom chord, 23-1-8 from left end, supported at two points, 4-0-0 apart.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 225 lb uplift at joint 2, 182 lb uplift at joint 13 and 218 lb uplift at joint 7.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		8-10-10	1	18-5-12	20-7-8	24-7-8	1	29-0-6	1	37-11-0	1
		8-10-10	I	9-7-2	2-1-12	4-0-0	1	4-4-14	1	8-10-10	
Plate Offsets (X	(,Y)	[3:0-7-0,0-3-0], [4:0-9-4,0-2-	-12], [5:0-9-12,0-1-12]	, [6:0-7-0,0-3-0], [13	:0-4-0,0-4-0]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	7)))) *)	SPACING- 22 Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI2	2-0-0 CS 1.15 TC 1.15 BC YES WE 014 Ma	il. 0.75 0.43 3 0.49 ttrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.17 0.02 0.09	(loc) 13-15 11-12 7 15-22	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 244 lb	GRIP 244/190 187/143 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP 2x6 SP 2x4 SP 4-15,5-	No.2 No.2 No.3 *Except* 9: 2x4 SP No.2			BRACING- TOP CHOF BOT CHOF WEBS	RD RD	Structur 2-0-0 oc Rigid ce 1 Row a	al wood s c purlins (1 eiling direc at midpt	heathing dii 10-0-0 max. tly applied. 4	ectly applied, except): 4-5. -15, 4-13, 5-13, 5-9, 16	-17
REACTIONS	(lh/size	2=532/0-3-8 13=2209/	0-3-8 7=597/0-3-8								

EACTIONS. (Ib/size) 2=532/0-3-8, 13=2209/0-3-8, 7=597/0-3-8 Max Horz 2=207(LC 12) Max Uplift 2=-221(LC 12), 13=-227(LC 12), 7=-216(LC 13) Max Grav 2=595(LC 23), 13=2209(LC 1), 7=656(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-650/307, 3-4=-664/588, 4-5=0/518, 5-6=-824/489, 6-7=-813/218

- BOT CHORD 2-15=-288/495, 13-15=-410/410, 12-13=-336/392, 11-12=-336/392, 9-11=-336/392, 7-9=-46/638
- WEBS 3-15=-568/556, 4-15=-696/1094, 4-13=-925/488, 13-16=-983/419, 5-16=-963/428, 5-17=-554/1240, 9-17=-564/1200, 6-9=-561/562

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) 200.0lb AC unit load placed on the bottom chord, 22-7-8 from left end, supported at two points, 4-0-0 apart.

- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 221 lb uplift at joint 2, 227 lb uplift at joint 13 and 216 lb uplift at joint 7.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

TREENCO AMITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) 200.0lb AC unit load placed on the bottom chord, 22-7-8 from left end, supported at two points, 4-0-0 apart.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 216 lb uplift at joint 2, 243 lb uplift at joint 12 and 231 lb uplift at joint 6.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 341 lb uplift at joint 2 and 302 lb uplift at joint 6.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	12-8-3	1	25-2-13	1	37-11-0			
	12-8-3		12-6-10		12-8-3			
Plate Offsets (X,Y)	[2:Edge,0-0-4], [3:0-5-0,0-4-8], [5:0-5-0,0-4-8], [6:0-0-0,0-0-4], [10:0-5-0,0-4-8]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.44 BC 0.84 WB 0.90 Matrix-AS	DEFL. in (loc) Vert(LL) -0.29 8-10 Vert(CT) -0.45 8-10 Horz(CT) 0.08 6 Wind(LL) 0.15 10-13	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES GRIP MT20 244/190 Weight: 242 lb FT = 20%			

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD2x6 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.3

REACTIONS. (lb/size) 2=1558/0-3-8, 6=1558/0-3-8 Max Horz 2=-221(LC 13) Max Uplift 2=-422(LC 12), 6=-422(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-2708/1183, 3-4=-2473/1164, 4-5=-2473/1164, 5-6=-2708/1183

BOT CHORD 2-10=-885/2375, 8-10=-387/1565, 6-8=-887/2374

WEBS 4-8=-364/1013, 5-8=-587/535, 4-10=-364/1013, 3-10=-587/535

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 422 lb uplift at joint 2 and 422 lb uplift at joint 6.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1	9-1-10	18-11-8	1	28-9-6	1	37-11-0	1
F	9-1-10	9-9-14		9-9-14	1	9-1-10	
Plate Offsets (X,Y)-	- [3:0-5-0,0-4-8], [4:0-3-0,0-3-0	, [5:0-3-0,0-3-0], [6:0-5-0,0-4-8]					
LOADING (psf)	SPACING- 2-)-0 CSI .	DEFL. i	n (loc) l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1	15 TC 0.37	Vert(LL) -0.1	7 11-13 >999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1	15 BC 0.89	Vert(CT) -0.40	0 11-13 >999	240	MT20HS	187/143
BCLL 0.0 *	Rep Stress Incr Y	ES WB 0.52	Horz(CT) 0.13	3 7 n/a	n/a		
BCDL 10.0	Code IRC2015/TPI20	4 Matrix-AS	Wind(LL) 0.13	3 13-16 >999	240	Weight: 230 lb	FT = 20%
LUMBER-			BRACING-				
TOP CHORD 2x6	SP No.2		TOP CHORD	Structural wood	sheathing directly a	pplied, except	
BOT CHORD 2x4	SP No 2 *Except*			2-0-0 oc purlins	(5-5-0 max): 4-5		

Rigid ceiling directly applied.

3-11, 6-11

1 Row at midpt

 BOT CHORD
 224 SP No.1
 BOT CHORD

 10-12: 2x4 SP No.1
 BOT CHORD

 WEBS
 2x4 SP No.3
 WEBS

 REACTIONS.
 (Ib/size)
 2=1558/0-3-8, 7=1558/0-3-8

Max Horz 2=211(LC 12) Max Uplift 2=-415(LC 12), 7=-415(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-2717/1143, 3-4=-1877/908, 4-5=-1612/925, 5-6=-1877/908, 6-7=-2717/1143

BOT CHORD 2-13=-857/2339, 11-13=-858/2337, 9-11=-860/2337, 7-9=-859/2339

WEBS 3-13=0/372, 3-11=-871/539, 4-11=-182/538, 5-11=-181/538, 6-11=-871/539, 6-9=0/372

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) All plates are MT20 plates unless otherwise indicated.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 415 lb uplift at joint 2 and 415 lb uplift at joint 7.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Max Uplift 2=-401(LC 12), 7=-401(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2715/1125, 3-4=-2052/957, 4-5=-1733/940, 5-6=-2053/957, 6-7=-2715/1124

- BOT CHORD 2-14=-846/2329, 12-14=-847/2328, 11-12=-457/1733, 9-11=-850/2328, 7-9=-849/2328
- WEBS 3-14=0/315, 3-12=-685/446, 4-12=-136/510, 5-11=-136/510, 6-11=-685/445, 6-9=0/315

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) All plates are MT20 plates unless otherwise indicated.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 401 lb uplift at joint 2 and 401 lb uplift at joint 7.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

TRENGINEERING BY AMITEK Atfiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	<u> </u>	14-1-12 14-1-12		23-9-4 9-7-8				<u> </u>	11-0 1-12	
Plate Offsets (X,	Y)	[2:1-0-0,0-2-0], [9:1-0-0,0-2-0], [11:0-5-0	,0-4-8], [12:0-5-0,0-4-8]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	*	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.60 BC 0.76 WB 0.57 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.21 -0.47 0.08 0.11	(loc) 12-15 12-15 9 12-15	l/defl >999 >965 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 250 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 22 BOT CHORD 22 WEBS 22 REACTIONS. (I	2x6 SP 2x6 SP 2x4 SP (Ib/size Max Ho Max Up	No.2 No.2 No.3 e) 2=1558/0-3-8, 9=1558/0-3-8 orz 2=-165(LC 13) plift 2=-373(LC 12), 9=-373(LC 13)		BRACING- TOP CHOR BOT CHOR WEBS	D D	Structu 2-0-0 o Rigid c 1 Row	iral wood s oc purlins (eiling dire at midpt	sheathing direct 4-0-14 max.): 5 ctly applied. 6-12	tly applied, except -6.	
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2747/1214, 3-5=-2305/989, 5-6=-1977/975, 6-8=-2308/992, 8-9=-2748/1214 BOT CHORD 2-12=-942/2426, 11-12=-556/1974, 9-11=-944/2426 WEBS 3-12=-495/433, 5-12=-56/584, 6-11=-58/583, 8-11=-493/432										
NOTES-										

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 373 lb uplift at joint 2 and 373 lb uplift at joint 9.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MI lek Attil 818 Soundside Road Edenton, NC 27932

		12-1-12		-		25-9-4					37-11-0	
Plate Offset	ts (X,Y)	12-1-12 [10:0-5-0,0-4-8], [11:0-5-0),0-4-8]			13-7-8					12-1-12	
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matrix	0.63 0.95 0.32 <-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.38 -0.67 0.09 0.16	(loc) 10-11 10-11 8 10-11	l/defl >999 >680 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 216 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 REACTIONS. (Ib/size) 2=1569/0-3-8, 8=1569/0-3-8 Max Horz 2=145(LC 12) Max Uplift 2=-354(LC 12), 8=-354(LC 13)												
FORCES. TOP CHOR	(lb) - Max. D 2-3=-2 7-8=-2	Comp./Max. Ten All for 2784/1183, 3-4=-2422/99 2784/1183	ces 250 (lb) or l 2, 4-5=-2089/9	ess except 56, 5-6=-20	when shown. 89/956, 6-7=-	2422/992,						
BOT CHOR WEBS	1/-5=/2/04/1103 BOT CHORD 2-11=-926/2425, 10-11=-765/2355, 8-10=-929/2425 WEBS 3-11=-369/379, 4-11=-164/689, 5-11=-483/300, 5-10=-483/300, 6-10=-164/689, 7-10=-369/379											
NOTES-												
 Unbaland Wind: AS MWFRS MWFRS Provide a 	ced roof live SCE 7-10; V (envelope) for reaction adequate dra	loads have been conside ult=130mph (3-second gu gable end zone and C-C s shown; Lumber DOL=1 ainage to prevent water p	ered for this des ust) Vasd=103m Exterior(2) zone .60 plate grip D onding.	iign. iph; TCDL= e; end vertic OL=1.60	6.0psf; BCDL al left and rig	.=6.0psf; h=25ft; C ht exposed;C-C fc	at. II; E or mem	Exp C; E bers and	nclosed; d forces &			

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 354 lb uplift at joint 2 and 354 lb uplift at joint 8.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	<u>12-8-3</u>		25-2-13			37-11-0			
Plate Offsets (X,Y)	[2:0-8-0,0-0-4], [3:0-3-4,0-3-4], [6:0-3-4,0)-3-4], [7:0-8-0,0-0-4], [9:0-5-	-0,0-4-8]			.200			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.87 BC 0.81 WB 0.30 Matrix-AS	DEFL. ir Vert(LL) -0.17 Vert(CT) -0.38 Horz(CT) 0.09 Wind(LL) 0.21	n (loc) l/defl / 11-14 >999 0 11-14 >999 0 7 n/a 11-14 >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 212 lb	GRIP 244/190 187/143 FT = 20%		
LUMBER- BRACING- TOP CHORD 2x6 SP No.2 *Except* TOP CHORD 3-5,5-6: 2x4 SP No.1 TOP CHORD Structural wood sheathing directly applied, except BOT CHORD 2x6 SP No.2 BOT CHORD BOT CHORD 2x4 SP No.3 BOT CHORD Reactions. (lb/size) 2=1558/0-3-8, 7=1558/0-3-8 Max Horz 2=-121(LC 13) Max Uplift 2=-319(LC 12), 7=-319(LC 13) Max Uplift 2=-319(LC 12), 7=-319(LC 13)									
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2607/1036, 3-4=-2534/1068, 4-6=-2534/1068, 6-7=-2607/1036 BOT CHORD 2-11=-731/2260, 9-11=-988/2870, 7-9=-732/2260 WEBS 3-11=-73/718, 4-11=-545/360, 4-9=-545/360, 6-9=-73/718									
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) MWFRS for reaction 2) Provide adequate d	loads have been considered for this der ult=130mph (3-second gust) Vasd=103n gable end zone and C-C Exterior(2) zon s shown; Lumber DOL=1.60 plate grip D	sign. nph; TCDL=6.0psf; BCDL=6. e; end vertical left and right c OL=1.60	0psf; h=25ft; Cat. II; exposed;C-C for mer	Exp C; Enclosed; nbers and forces &	ż				

Provide adequate drainage to prevent water ponding.

4) All plates are MT20 plates unless otherwise indicated.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 319 lb uplift at joint 2 and 319 lb uplift at joint 7.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

TREENCO A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y)	12-8-3 12-8-3 [2:0-0-0,0-0-4], [3:0-6-10,Edge], [6:0-6-1	0,Edge], [7:0-0-0,0-0-4], [9:0	25-2-13 12-6-10)-5-0,0-4-8], [10	:0-5-0,	,0-4-8]			37-11-0 12-8-3	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.70 BC 0.82 WB 0.83 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.16 -0.40 0.11 0.21	(loc) 9-10 9-10 7 9-10	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 226 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SI BOT CHORD 2x6 SI WEBS 2x4 SI	P No.2 P No.2 P No.3	I	BRACING- TOP CHORI BOT CHORI	D	Structu 2-0-0 o Rigid c	iral wood oc purlins eiling dire	sheathing dire (3-2-12 max.) ectly applied.	ectly applied, except : 3-6.	
REACTIONS. (lb/size) 2=1558/0-3-8, 7=1558/0-3-8 Max Horz 2=-98(LC 13) Max Uplift 2=-359(LC 9), 7=-359(LC 8)									
FORCES. (lb) - Max TOP CHORD 2-3= BOT CHORD 2-10 WEBS 3-10	Comp./Max. Ten All forces 250 (lb) or -2754/1117, 3-4=-3126/1209, 4-6=-3126/ 846/2427, 9-10=-1346/3692, 7-9=-848/ 166/983, 4-10=-759/503, 4-9=-758/503	less except when shown. 1209, 6-7=-2756/1118 2430 , 6-9=-166/981							

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 359 lb uplift at joint 2 and 359 lb uplift at joint 7.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

. 6	-1-12 8-7-1		8-5-5	8-7-	-1	6-1-12	
Plate Offsets (X,Y)	[3:0-4-0,0-1-15], [7:0-3-0,0-2-7]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.76 BC 0.95 WB 0.81 Matrix-MS	DEFL. ir Vert(LL) 0.54 Vert(CT) -0.63 Horz(CT) 0.13	n (loc) l/defl l 12-13 >844 3 12-13 >719 3 8 n/a	L/d 240 240 n/a	PLATES MT20 MT20HS Weight: 456 lb	GRIP 244/190 187/143 FT = 20%
LUMBER- TOP CHORD 2x4 2 3-5:: BOT CHORD 2x6 2 WEBS 2x4 2 REACTIONS. (lb/s Max	SP No.2 *Except* 2x6 SP No.1, 5-7: 2x6 SP No.2 SP No.2 SP No.2 ize) 2=2959/0-3-8, 8=2961/0-3-8 Horz 2=79(LC 12)		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood si 2-0-0 oc purlins (/ Rigid ceiling direc 1 Row at midpt	heathing directly a 4-6-8 max.): 3-7. ttly applied or 7-1- 6-10	applied or 5-0-5 c -13 oc bracing.	oc purlins, except
FORCES. (Ib) - Ma TOP CHORD 2-3 BOT CHORD 2-1 8-1 WEBS 3-1	x. Comp./Max. Ten All forces 250 (lt 3=-5583/2974, 3-4=-8876/5050, 4-6=-8 5=-2632/4922, 13-15=-2637/4906, 12 0=-2591/4930 5=0/527, 3-13=-2579/4311, 4-13=-115) or less except when shown. 372/5046, 6-7=-4853/2667, 7- 13=-4973/8869, 10-12=-4973 3/1086, 6-12=0/583, 6-10=-43	-8=-5591/2979 /8869, 352/2610,				
 NOTES- 1) 2-ply truss to be c Top chords conne Bottom chords con Webs connected a 2) All loads are cons ply connections ha 3) Unbalanced roof I 4) Wind: ASCE 7-10 MWFRS (envelop 5) Provide adequate 6) All plates are MT2 7) This truss has bee 8) * This truss has bee 	onnected together with 10d (0.131"x3" icted as follows: 2x4 - 1 row at 0-9-0 or nnected as follows: 2x6 - 2 rows stagg as follows: 2x4 - 1 row at 0-9-0 oc. idered equally applied to all plies, exce ave been provided to distribute only low ive loads have been considered for thi ; Vult=130mph (3-second gust) Vasd= e) gable end zone; end vertical left and drainage to prevent water ponding. 20 plates unless otherwise indicated. an designed for a 10.0 psf bottom chor een designed for a live load of 20.0psf	nails as follows: , 2x6 - 2 rows staggered at 0- red at 0-9-0 oc. pt if noted as front (F) or back ds noted as (F) or (B), unless a design. 03mph; TCDL=6.0psf; BCDL right exposed; Lumber DOL= d live load nonconcurrent with on the bottom chord in all area	-9-0 oc. (B) face in the LOAD (s otherwise indicated. =6.0psf; h=25ft; Cat. II; =1.60 plate grip DOL=1. any other live loads. as where a rectangle 3-	CASE(S) section. Pl Exp C; Enclosed; 60 6-0 tall by 2-0-0 wic	y to	2 col	CAROLINI ESSIO
 will fit between the 9) Provide mechanic at joint 8. 10) Graphical purlin 11) "NAILED" indication 	e bottom chord and any other members al connection (by others) of truss to be representation does not depict the size tes 3-10d (0.148"x3") or 3-12d (0.148"	aring plate capable of withstar or the orientation of the purlir 3.25") toe-nails per NDS guid	nding 1523 lb uplift at jo n along the top and/or b dlines.	bint 2 and 1525 lb up	olift	0 	GINEER
LOAD CASE(S) Sta 1) Dead + Roof Live	andard (balanced): Lumber Increase=1.15, Pl	ate Increase=1.15				in the	M. SEVININ

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

November 25,2019

Job	Truss	Truss Type	Qty	Ply	H&H/Venture/Lot11/NewHorizons/Lillingto	
						139406679
2167669_ofa	A17	Hip Girder	1	2		
				_	Job Reference (optional)	
Builders FirstSource, S	umter, SC - 29153,		8	.240 s Jul '	14 2019 MiTek Industries, Inc. Mon Nov 25 08:44:49 2019	Page 2

ID:be0DwDll4HqVt2cDPs6iUUyOt3D-6LbfH2SYhWXHgCRTFYYMZD2Fo4CCYVs3QPSzYYyFhiS

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-3=-60, 3-7=-60, 7-9=-60, 16-19=-20

Concentrated Loads (lb)

Vert: 3=-124(B) 5=-124(B) 7=-124(B) 14=-37(B) 15=-37(B) 10=-37(B) 11=-37(B) 22=-124(B) 23=-124(B) 24=-124(B) 25=-124(B) 26=-124(B) 27=-124(B) 28=-124(B) 30=-124(B) 30=-124(B) 31=-124(B) 32=-124(B) 32=-37(B) 32=-37(B) 32=-37(B) 32=-37(B) 32=-37(B) 42=-37(B) 42=-37(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

7) Load case(s) 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

9) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Continued on page 2

🛝 WARNING - Verifv design pa rameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

044925

S

Job	Truss	Truss Type	Qtv	Plv	H&H/Venture/Lat11/NewHarizons/Lillingto	
	11000		Galy	,	nan w vontaro, zot ny vow lonzono, zimingto	139406680
2167669_ofa	A18	Hip Girder	1	1	Job Reference (optional)	
Builders FirstSource, St	umter, SC - 29153,		8.	.240 s Jul	14 2019 MiTek Industries, Inc. Mon Nov 25 08:44:50 2019	Page 2
LOAD CASE(S) Standard Uniform Loads (plf) Vert: 1-3=-60, 3-	8=-60, 8-10=-60, 18-21=-20	ID:DeoL	JWDII4HqV	t2cDPs6I	UUYOt3D-aX91 VN I ASqt8HLUtoF 3D6KD I QUCUH_VDT3CVV	∔_у⊦пк
Concentrated Loads (lb) Vert: 8=-124(F)	11=-37(F) 12=-37(F) 24=-124	4(F) 25=-124(F) 26=-124(F) 27=-124(F) 28=-12	4(F) 29=-	124(F) 3′	1=-37(F) 32=-37(F) 33=-37(F) 34=-37(F) 35=-161(F)	
30=-103(F) 4) Dead + 0.6 MWFRS Win Uniform Loads (plf) Vert: 1-2=21, 2-3 Horz: 1-2=-33, 2 Drag: 3-4=1 7-8	d (Pos. Internal) Left: Lumbe 3=3, 3-8=40, 8-9=20, 9-10=1 -3=-15, 8-9=32, 9-10=24 -1	r Increase=1.60, Plate Increase=1.60 2, 18-30=-12, 14-30=96(F=108), 14-21=-12				
Concentrated Loads (lb) Vert: 8=163(F) 1 36=52(F)	1=-18(F) 12=-18(F) 24=150(F) 25=150(F) 26=150(F) 27=150(F) 28=150(F)	29=150(F	F) 31=-18	(F) 32=-18(F) 33=-18(F) 34=-18(F) 35=89(F)	
5) Dead + 0.6 MWFRS Win Uniform Loads (plf)	d (Pos. Internal) Right: Lumb	er Increase=1.60, Plate Increase=1.60				
Vert: 1-2=12, 2-3 Horz: 1-2=-24, 2 Drag: 3-4=1, 7-8 Concentrated Loads (lb)	3=20, 3-8=40, 8-9=3, 9-10=2 -3=-32, 8-9=15, 9-10=33 =-1	1, 18-30=-12, 14-30=96(F=108), 14-21=-12				
Vert: 8=173(F) 1 36=52(F)	1=-18(F) 12=-18(F) 24=150(F) 25=150(F) 26=150(F) 27=150(F) 28=150(F)	29=150(F	F) 31=-18	(F) 32=-18(F) 33=-18(F) 34=-18(F) 35=89(F)	
Uniform Loads (plf) Vert: 1-2=-12, 2-	3=-20, 3-8=17, 8-9=-3, 9-10=	=4, 18-30=-20, 14-30=88(F=108), 14-21=-20				
Horz: 1-2=-8, 2-3 Drag: 3-4=0, 7-8 Concentrated Loads (lb) Vert: 8=191(F) 1	3=-0, 8-9=17, 9-10=24 =-0 1=-10(F) 12=-10(F) 24=178(F) 25=178(F) 26=178(F) 27=178(F) 28=178(F)	29=178(F	⁻) 31=-10	(F) 32=-10(F) 33=-10(F) 34=-10(F) 35=97(F)	
36=60(F) 7) Dead + 0.6 MWFRS Win Uniform Loads (olf)	d (Neg. Internal) Right: Lumb	per Increase=1.60, Plate Increase=1.60				
Vert: 1-2=4, 2-3= Horz: 1-2=-24, 2 Drag: 3-4=0, 7-8	=-3, 3-8=17, 8-9=-20, 9-10=- -3=-17, 8-9=0, 9-10=8 =-0	12, 18-30=-20, 14-30=88(F=108), 14-21=-20				
Vert: 8=201(F) 1 36=60(F)	1=-10(F) 12=-10(F) 24=178(F) 25=178(F) 26=178(F) 27=178(F) 28=178(F)	29=178(F	F) 31=-10	(F) 32=-10(F) 33=-10(F) 34=-10(F) 35=97(F)	
8) Dead + 0.6 MWFRS Win Uniform Loads (plf)	d (Pos. Internal) 1st Parallel:	Lumber Increase=1.60, Plate Increase=1.60				
Horz: 1-2=-45, 2 Drag: 3-4=0, 7-8 Concentrated Loads (lb)	-3=-52, 8-9=30, 9-10=22 =-0	10, 10 00- 12, 14 00-00(1-100), 14 21- 12				
Vert: 8=180(F) 1 36=52(F)	1=-18(F) 12=-18(F) 24=180(F) 25=180(F) 26=180(F) 27=180(F) 28=180(F)	29=180(F	⁻) 31=-18	(F) 32=-18(F) 33=-18(F) 34=-18(F) 35=89(F)	
Uniform Loads (plf) Vert: 1-2=10, 2-3 Horz: 1-2=-22, 2	3=18, 3-8=18, 8-9=40, 9-10= -3=-30, 8-9=52, 9-10=45	33, 18-30=-12, 14-30=96(F=108), 14-21=-12				
Drag: 3-4=0, 7-8 Concentrated Loads (lb)			00 400/5	-	(E) 00 40(E)	
33=-18(F) 34=-1 10) Dead + 0.6 MWFRS Wi	8(F) 35=89(F) 36=52(F) nd (Pos. Internal) 3rd Paralle	e): Lumber Increase=1.60, Plate Increase=1.60	29=180(F	-) 31=-18	(F) 32=-18(F)	
Uniform Loads (plf) Vert: 1-2=33, 2 Horz: 1-2=-45, Drag: 3-4=0, 7-	-3=40, 3-8=18, 8-9=18, 9-10 2-3=-52, 8-9=30, 9-10=22 8=-0	=10, 18-30=-12, 14-30=96(F=108), 14-21=-12				
Concentrated Loads (lb Vert: 8=180(F) 33=-18(F) 34=-) 11=-18(F) 12=-18(F) 24=18(18(F) 35=89(F) 36=52(F)	0(F) 25=180(F) 26=180(F) 27=180(F) 28=180(F)	5) 29=180	(F) 31=-1	8(F) 32=-18(F)	
11) Dead + 0.6 MWFRS Wi Uniform Loads (plf) Vert: 1-2=10, 2 Horz: 1-2=-22	nd (Pos. Internal) 4th Paralle -3=18, 3-8=18, 8-9=40, 9-10 2-3=-30, 8-9=52, 9-10=45	l: Lumber Increase=1.60, Plate Increase=1.60 =33, 18-30=-12, 14-30=96(F=108), 14-21=-12				
Drag: 3-4=0, 7- Concentrated Loads (lb Vert: 8=166(F)	8=-0) 11=-18(F) 12=-18(F) 24=18(0(F) 25=180(F) 26=180(F) 27=180(F) 28=180(F) 29=180	(F) 31=-1	8(F) 32=-18(F)	
33=-18(F) 34=- 12) Dead + 0.6 MWFRS Wi Uniform Loads (plf)	18(F) 35=89(F) 36=52(F) nd (Neg. Internal) 1st Paralle	I: Lumber Increase=1.60, Plate Increase=1.60				
Vent: 1-2=25, 2 Horz: 1-2=-45, Drag: 3-4=0, 7-	-3=17, 3-6=-3, 8-9=-5, 9-10= 2-3=-37, 8-9=15, 9-10=22 8=-0	z, 10-30=-20, 14-30=06(F=108), 14-21=-20				

Continued on page 3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Venture/Lot11/NewHorizons/Lillingto	
2167669 of a	A18	Hin Girder	1	1		139406680
2107003_018			1		Job Reference (optional)	
Builders FirstSource, S	Sumter, SC - 29153,			3.240 s Jul	14 2019 MiTek Industries, Inc. Mon Nov 25 08:44:50	2019 Page 3
		ID:be	DwDll4Hq	Vt2cDPs6il	JUyOt3D-aX91VNTASqf8HL0foF3b6RbTqUcDH_VDf	3CW4_yFhiR
LOAD CASE(S) Standard						
Concentrated Loads (I	h)					
Vert: 8=208(F) 11=-10(F) 12=-10(F) 24=20	8(F) 25=208(F) 26=208(F) 27=208(F) 28=208	(F) 29=208	B(F) 31=-1	0(F) 32=-10(F) 33=-10(F) 34=-10(F) 35=97(F)	
36=60(F)	,		(.) == ==			
13) Dead + 0.6 MWFRS W	/ind (Neg. Internal) 2nd Paral	el: Lumber Increase=1.60, Plate Increase=1.6	60			
Uniform Loads (plf)						
Vert: 1-2=2, 2	-3=-5, 3-8=-5, 8-9=17, 9-10=2	25, 18-30=-20, 14-30=88(F=108), 14-21=-20				
Horz: 1-2=-22	, 2-3=-15, 8-9=37, 9-10=45					
Drag: 3-4=0, 7	(-8=-0					
Vort: 9-104/E	0) \ 11_ 10(E\ 12_ 10(E\ 24_20	9(E) 25-209(E) 26-209(E) 27-209(E) 29-209	(E) 20-200	D(E) 21_ 1	0(E) 22- 10(E) 22- 10(E) 24- 10(E) 25-07(E)	
36=60(F)) 11=-10(F) 12=-10(F) 24=20	6(F) 23=206(F) 20=206(F) 27=206(F) 20=206	(F) 29=200	S(F) = -1	0(F) 32 = 10(F) 33 = 10(F) 34 = 10(F) 35 = 37(F)	
15) Dead + 0.75 Roof Live	(bal.) + 0.75(0.6 MWFRS W	nd (Neg. Int) Left): Lumber Increase=1.60. Pla	te Increas	e=1.60		
Uniform Loads (plf)						
Vert: 1-2=-44,	2-3=-50, 3-8=-22, 8-9=-37, 9	-10=-32, 18-30=-20, 14-30=61(F=81), 14-21=	-20			
Horz: 1-2=-6,	2-3=-0, 8-9=13, 9-10=18					
Drag: 3-4=0, 7	7-8=-0					
Concentrated Loads (b)		(E) 00 400			
Vert: 8=137(F) 11=-10(F) 12=-10(F) 24=12	8(F) 25=128(F) 26=128(F) 27=128(F) 28=128	(F) 29=128	3(F) 31=-1	U(F) 32=-10(F) 33=-10(F) 34=-10(F) 35=63(F)	
16) Dead + 0 75 Roof Live	(bal) + 0.75(0.6 MWERS Wi	nd (Neg. Int) Right): Lumber Increase=1.60. F	late Increa	ase=1.60		
Uniform Loads (plf)		na (Neg. m.) Night). Eamber merease=1.00, 1		30-1.00		
Vert: 1-2=-32,	2-3=-37, 3-8=-22, 8-9=-50, 9	-10=-44, 18-30=-20, 14-30=61(F=81), 14-21=	-20			
Horz: 1-2=-18	, 2-3=-13, 8-9=0, 9-10=6					
Drag: 3-4=0, 7	7-8=-0					
Concentrated Loads (I	b)					
Vert: 8=145(F) 11=-10(F) 12=-10(F) 24=12	8(F) 25=128(F) 26=128(F) 27=128(F) 28=128	(F) 29=128	3(F) 31=-1	0(F) 32=-10(F) 33=-10(F) 34=-10(F) 35=63(F)	
36=38(F)		nd (Neg. Int) 1 at Darollel); Lumber Increase 1	60 Bloto	Inoronon	1.60	
Liniform Loads (olf)	(bal.) + 0.75(0.6 MWFRS W	nu (Neg. Int) 1st Parallel). Lumber increase=	.00, Plate	increase=	1.00	
Vert: 1-2=-17	2-3=-22 3-8=-39 8-9=-39 9	-10=-33 18-30=-20 14-30=61(F=81) 14-21=	-20			
Horz: 1-2=-33	. 2-3=-28. 8-9=11. 9-10=17		20			
Drag: 3-4=0, 7	7-8=-0					
Concentrated Loads (b)					
Vert: 8=150(F) 11=-10(F) 12=-10(F) 24=15	0(F) 25=150(F) 26=150(F) 27=150(F) 28=150	(F) 29=150	D(F) 31=-1	0(F) 32=-10(F) 33=-10(F) 34=-10(F) 35=63(F)	
36=38(F)					4.00	
18) Dead + 0.75 Roof Live	(bal.) + 0.75(0.6 MWFRS W	nd (Neg. Int) 2nd Parallel): Lumber Increase=	1.60, Plate	Increase=	=1.60	
Vert: 1-233	2-339 3-839 8-922 0	-1017 18-3020 14-30-61(E-81) 14-21-	.20			
Horz: 1-2=-17	2-3=-11 8-9=28 9-10=33	10-11, 10 00-20, 14 00-01(1-01), 14 21-	20			
Drag: 3-4=0, 7	7-8=-0					
Concentrated Loads (I	b)					
Vert: 8=140(F) 11=-10(F) 12=-10(F) 24=15	0(F) 25=150(F) 26=150(F) 27=150(F) 28=150	(F) 29=150	D(F) 31=-1	0(F) 32=-10(F) 33=-10(F) 34=-10(F) 35=63(F)	
36=38(F)						

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent onlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affil 818 Soundside Road Edenton, NC 27932

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Scale = 1:22.5

November 25,2019

818 Soundside Road Edenton, NC 27932

	5-0- 5-0-	<u>5-0-0</u> 5-0-0		<u> </u>		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2015/TPI2014	CSI. TC 0.56 BC 0.24 WB 0.05 Matrix-MS	DEFL. in Vert(LL) 0.03 Vert(CT) -0.03 Horz(CT) 0.01	(loc) l/defl L/d 7-10 >999 240 7-10 >999 240 5 n/a n/a	PLATES MT20 Weight: 49 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP 3-4: 2x4 BOT CHORD 2x4 SP WEBS 2x4 SP	No.2 *Except* ↓ SP No.2 No.2 No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing 2-0-0 oc purlins (5-10-15 m Rigid ceiling directly applied	directly applied or 6-0-0 nax.): 3-4. d or 9-7-8 oc bracing.	oc purlins, except
REACTIONS. (Ib/size Max Ho Max Up) 2=445/0-3-0, 5=445/0-3-0 orz 2=33(LC 8) Diff 2=-254(LC 5), 5=-254(LC 4)					
FORCES. (lb) - Max. TOP CHORD 2-3=-6 BOT CHORD 2-7=-3	Comp./Max. Ten All forces 250 (lb) or 550/433, 3-4=-677/467, 4-5=-650/433 376/575, 5-7=-364/575	less except when shown.				
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; Vu MWFRS (envelope) (DOL=1.60 3) Provide adequate dra 4) This truss has been will fit between the be 6) Provide mechanical (2=254, 5=254. 7) Graphical purlin reprr 8) "NAILED" indicates 3 9) In the LOAD CASE(S) Stand 1) Dead + Roof Live (ba Uniform Loads (plf) Vert: 1-3=-61 Concentrated Loads Vert: 16=-2(1)	loads have been considered for this de ult=130mph (3-second gust) Vasd=103r yable end zone; end vertical left and rig ainage to prevent water ponding. Jesigned for a 10.0 psf bottom chord livi- i designed for a live load of 20.0psf on t ottom chord and any other members. connection (by others) of truss to bearin esentation does not depict the size or th i-10d (0.148"x3") or 3-12d (0.148"x3.25' s) section, loads applied to the face of th lard alanced): Lumber Increase=1.15, Plate I 0, 3-4=-60, 4-6=-60, 8-11=-20 (lb) B) 17=-2(B) 18=-2(B) 19=-2(B)	sign. nph; TCDL=6.0psf; BCDL=6 nt exposed; porch left and rig e load nonconcurrent with ar he bottom chord in all areas g plate capable of withstand e orientation of the purlin ak () toe-nails per NDS guidline le truss are noted as front (F ncrease=1.15	8.0psf; h=25ft; Cat. II; I ght exposed; Lumber I ny other live loads. where a rectangle 3-6 ling 100 lb uplift at join ong the top and/or bot rs. F) or back (B).	Exp C; Enclosed; DOL=1.60 plate grip ;-0 tall by 2-0-0 wide t(s) except (jt=lb) tom chord.	Hind Contraction	SEAL 044925

	<u> </u>	5-0-0 5-0-0			10-0-0 5-0-0			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IPC2015/TPI2014	CSI. TC 0.17 BC 0.21 WB 0.04 Motiv AS	DEFL. in Vert(LL) 0.03 Vert(CT) -0.02 Horz(CT) 0.01	(loc) l 7-13 ⇒ 7-10 ⇒ 5	l/defl L/d >999 240 >999 240 n/a n/a	PLATES MT20	GRIP 244/190	
LUMBER- TOP CHORD 2x6 S 3-4: 2 BOT CHORD 2x4 S WEBS 2x4 S	P No.2 *Except* x4 SP No.2 P No.2 P No.2 P No.3		BRACING- TOP CHORD BOT CHORD	Structural 2-0-0 oc p Rigid ceili	I wood sheathing dire purlins (6-0-0 max.): 3 ing directly applied.	ectly applied, except 3-4.	11-20/0	
REACTIONS. (lb/size) 2=441/0-3-0, 5=441/0-3-0 Max Horz 2=55(LC 12) Max Uplift 2=-175(LC 9), 5=-175(LC 8)								
FORCES.(lb) - MaxTOP CHORD2-3=BOT CHORD2-7=	. Comp./Max. Ten All forces 250 -521/696, 3-4=-453/745, 4-5=-521/ -518/430, 5-7=-519/430	(lb) or less except when shown. 695						
NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-10; MWFRS (envelope for members and fo 3) Provide adequate of 4) This truss has been 5) * This truss has been	e loads have been considered for t Vult=130mph (3-second gust) Vasd) gable end zone and C-C Exterior(rces & MWFRS for reactions show Irainage to prevent water ponding. In designed for a 10.0 psf bottom cho in designed for a live load of 20 0ps	his design. =103mph; TCDL=6.0psf; BCDL= 2) zone; end vertical left and right n; Lumber DOL=1.60 plate grip D prd live load nonconcurrent with a sf on the bottom chord in all areas	6.0psf; h=25ft; Cat. II; I t exposed; porch left ar)OL=1.60 any other live loads.	Exp C; End nd right exp	closed; posed;C-C 2-0-0 wide			

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=175, 5=175.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=146, 4=146.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Flate Off	Sets (A, I)	[2.0-0-0,0-0-4]			
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATE	S GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.28	Vert(LL) -0.04 4-7 >999 360 MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.29	Vert(CT) -0.08 4-7 >874 240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.01 3 n/a n/a	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0.04 4-7 >999 240 Weight	28 lb FT = 20%

LUMBER-

TOP CHORD2x6 SP No.2BOT CHORD2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied. Rigid ceiling directly applied.

REACTIONS. (lb/size) 3=184/Mechanical, 2=287/0-3-8, 4=57/Mechanical Max Horz 2=174(LC 12) Max Uplift 3=-145(LC 12), 2=-66(LC 12) Max Grav 3=184(LC 1), 2=287(LC 1), 4=96(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 3=145.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied. Rigid ceiling directly applied.

REACTIONS. (lb/size) 1=243/0-3-8, 2=186/Mechanical, 3=57/Mechanical Max Horz 1=159(LC 12) Max Uplift 1=-42(LC 12), 2=-146(LC 12) Max Grav 1=243(LC 1), 2=186(LC 1), 3=96(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 2=146.
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADIN	G (psf)	SPACING- 2-0-	0 CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.1	5 TC	0.27	Vert(LL)	-0.05	5-8	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1.1	5 BC	0.35	Vert(CT)	-0.10	5-8	>701	240		
BCLL	0.0 *	Rep Stress Incr YE	S WB	0.06	Horz(CT)	0.01	2	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matr	ix-AS	Wind(LL)	0.03	5-8	>999	240	Weight: 29 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied.

LUMBER-

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 WEDGE
 Left: 2x4 SP No.3

REACTIONS. (lb/size) 2=296/0-3-8, 5=181/Mechanical, 4=56/Mechanical Max Horz 2=131(LC 11) Max Uplift 2=-97(LC 12), 5=-43(LC 12), 4=-37(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5, 4.

 This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

10) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

Structural wood sheathing directly applied, except end verticals, and

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTPI1 Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-

TOP CHORD

BOT CHORD

2-0-0 oc purlins: 2-3.

Rigid ceiling directly applied.

LUMBER-

WEBS

WEDGE Left: 2x4 SP No.3 REACTIONS.

BOT CHORD

TOP CHORD 2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

Max Uplift 1=-55(LC 12), 4=-56(LC 12), 3=-37(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

(lb/size) 1=240/0-3-8, 4=184/Mechanical, 3=56/Mechanical

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

Max Horz 1=109(LC 12)

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4, 3.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord 10) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

Structural wood sheathing directly applied, except end verticals, and

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	2-1-12			4-0-0	1	
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. Di TC 0.32 Ve BC 0.17 Ve	EFL. in (loc) ert(LL) -0.01 5-8 ert(CT) -0.03 5-8) I/defl L/d 8 >999 360 8 >999 240	PLATES GRIP MT20 244/1	90
BCLL 0.0 * BCDL 10.0	Rep Stress Incr NO Code IRC2015/TPI2014	WB 0.07 Ho Matrix-MP W	orz(CT) 0.00 4 ind(LL) 0.01 5-8	4 n/a n/a 8 >999 240	Weight: 33 lb FT	= 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=299/0-3-8, 5=123/Mechanical, 4=116/Mechanical Max Horz 2=76(LC 8) Max Uplift 2=-117(LC 8), 5=-24(LC 5), 4=-81(LC 4) Max Grav 2=299(LC 1), 5=142(LC 3), 4=116(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-251/140

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60

Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4 except (jt=lb) 2=117.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

9) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

 Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 5-6=-20

Concentrated Loads (lb)

Vert: 10=-2(F) 11=-2(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	<u>2-1-12</u> 2-1-12		<u>6-1-12</u> 4-0-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2015/TPI2014	CSI. TC 0.32 BC 0.17 WB 0.07 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 4-7 >999 360 Vert(CT) -0.03 4-7 >999 240 Horz(CT) 0.00 3 n/a n/a Wind(LL) 0.01 4-7 >999 240	PLATES GRIP MT20 244/190 Weight: 31 lb FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins: 2-3. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 1=250/0-3-8, 4=128/Mechanical, 3=116/Mechanical Max Horz 1=64(LC 7) Max Uplift 1=-98(LC 8), 4=-28(LC 5), 3=-81(LC 4) Max Grav 1=250(LC 1), 4=144(LC 3), 3=116(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-256/147

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope) gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4, 3.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

9) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 4-5=-20 Concentrated Loads (lb)

Vert: 7=-8(F) 9=-2(F) 10=-2(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING	(psf)	SPACING- 2-0-	·0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.1	5	TC	0.06	Vert(LL)	-0.00	7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1.1	5	BC	0.04	Vert(CT)	-0.00	4-7	>999	240		
BCLL	0.0 *	Rep Stress Incr YE	S	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014		Matrix-MP		Wind(LL)	0.00	7	>999	240	Weight: 8 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (Ib/size) 3=51/Mechanical, 2=147/0-3-8, 4=22/Mechanical Max Horz 2=74(LC 12) Max Uplift 3=-46(LC 12), 2=-44(LC 12) Max Grav 3=51(LC 1), 2=147(LC 1), 4=37(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

Structural wood sheathing directly applied or 2-1-12 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Left: 2x4 SP No.3

REACTIONS. (Ib/size) 3=48/Mechanical, 2=144/0-3-0, 4=20/Mechanical Max Horz 2=71(LC 12) Max Uplift 3=-44(LC 12), 2=-43(LC 12), 4=-16(LC 9) Max Grav 3=48(LC 1), 2=144(LC 1), 4=36(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

