

RE: B-73554 - Bar Site Information: Project Customer: Lot/Block: Model: Address: City: General Truss Engi Drawings Show Spo Design Code: IRC2 Wind Code: ASCE 7- Roof Load: 40.0 psf Mean Roof Height (fr	ton Project Name: S neering Criteria & Desig ecial Loading Condition 015/TPI2014 -10 Wind Speed: 120 mpl eet): 30	Subdivision: tate: gn Loads (Individual Tru s): Design Program n Design Method: Floor Load: N/A Exposure Categ	Trenco 818 Soundside Rd Edenton, NC 27932 ISS Design : MiTek 20/20 8.3 MWFRS (Envelope)/C-C hybrid T A psf	Wind ASCE 7-10
No.Seal#Tr1E13627514C.2E13627515J.G3E13627516J.G4E13627517J.G5J.GJ.G6E13627520J.G7E13627522J.G9E13627523P.E10E13627524P.E12E13627526P.E13E13627526P.E14E13627526P.E15E13627526P.E16E13627528T.G17E13627530T.G18E13627533T.G20E13627533T.G21E13627533T.G22E13627533T.G23E13627533T.G24E13627534T.G25E13627537T.G26E13627538T.G26E13627537T.G27E13627537T.G28E13627540T.129E13627543T.130E13627543T.131E13627544T.134E13627547T.134E13627547T.1	Date No. J01 $10/11/19$ 35 J01 $10/11/19$ 35 J1 $10/11/19$ 35 J2 $10/11/19$ 37 J3 $10/11/19$ 38 J4 $10/11/19$ 40 J6 $10/11/19$ 41 J7 $10/11/19$ 43 J01 $10/11/19$ 43 J01 $10/11/19$ 44 J02 $10/11/19$ 43 J03 $10/11/19$ 43 J04 $10/11/19$ 43 J03 $10/11/19$ 44 J04 $10/11/19$ 44 J05 $10/11/19$ 44 J04 $10/11/19$ 104 $10/11/19$ J05 $10/11/19$ 104 $10/11/19$ J05 $10/11/19$ 104 $10/11/19$ J05 $10/11/19$ 101 $10/11/19$ J07 $10/11/19$	Seal# Truss Name E13627548 T19 E136275548 T19 E13627550 T21 E13627555 T22 E13627553 T24 T25 E13627555 T26 E13627556 T27 E13627557 T28	Date 10/11/19 10/11/19 10/11/19 10/11/19 10/11/19 10/11/19 10/11/19 10/11/19	
The truss drawing(s) r Truss Engineering Co provided by Structural Truss Design Engin My license renewal da IMPORTANT NOTE that the engineer named is designs comply with ANSI shown (e.g., loads, suppor given to MiTek or TRENCO' TRENCO's customers file preparation of these design applicability of the design the building designer shou incorporate these designs	referenced above have been under my direct supervision I Building Components, LLO eer's Name: Gilbert, Eric ate for the state of North Car The seal on these truss compone s licensed in the jurisdiction(s) ider /TPI 1. These designs are based /TPI 1. These designs are based of the share shares and design O. Any project specific information reference purpose only, and was r ins. MiTek or TRENCO has not into parameters or the designs for any uld verify applicability of design par- into the overall building design per-	prepared by n based on the parameters C. rolina is December 31, 2019 ent designs is a certification tified and that the upon parameters n codes), which were n included is for MiTek's or not taken into account in the dependently verified the particular building. Before use, ameters and properly r ANSI/TPI 1, Chapter 2.	SEAL 036322 NGINEER	October 11,2019

Gilbert, Eric

		4-4-8	3-9-0
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Ippr	CSI. DEFL. in TC 0.22 Vert(LL) -0.0' BC 0.30 Vert(CT) -0.03 WB 0.18 Horz(CT) 0.02	n (loc) l/defl L/d PLATES GRIP 6 >999 360 MT20 244/190 5-6 >999 240 244/190 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP	5 fiva fiva Weight: 36 lb FT = 20%

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SF No.2 WEBS 2x4 SP No.2

WEBS 2x4 SP No.2

REACTIONS. (Ib/size) 2=452/0-4-9, 5=351/Mechanical Max Horz 2=73(LC 7) Max Uplift 2=-112(LC 4), 5=-52(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-732/87

BOT CHORD 2-6=-92/693, 5-6=-92/693 WEBS 3-5=-725/113

NOTES-

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 2=112.

6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 11 lb down and 10 lb up at 2-9-8, 11 lb down and 10 lb up at 2-9-8, and 37 lb down and 42 lb up at 5-7-7, and 37 lb down and 42 lb up at 5-7-7 on top chord, and 4 lb down at 2-9-8, 4 lb down at 2-9-8, and 21 lb down at 5-7-7, and 21 lb down at 5-7-7 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-60, 5-7=-20

Concentrated Loads (lb)

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

						1	1-1	0-15				
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	-0.00	7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	-0.00	7	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matrix	-MP						Weight: 8 lb	FT = 20%

```
LUMBER-
```

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (lb/size) 3=36/Mechanical, 2=172/0-3-8, 4=17/Mechanical Max Horz 2=39(LC 6) Max Uplift 3=-13(LC 10), 2=-63(LC 6) Max Grav 3=36(LC 1), 2=172(LC 1), 4=30(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-10-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

				3-10-15								
	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.18	Vert(LL)	-0.01	4-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(CT)	-0.02	4-7	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matri	x-MP						Weight: 14 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-10-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=95/Mechanical, 2=238/0-3-8, 4=48/Mechanical Max Horz 2=60(LC 6) Max Uplift 3=-37(LC 10), 2=-65(LC 6) Max Grav 3=95(LC 1), 2=238(LC 1), 4=68(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	ŀ	5-8-15 5-8-15								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/1	2-0-0 1.15 1.15 YES TPI2014	CSI. TC 0.47 BC 0.36 WB 0.00 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.10 0.00	(loc) 4-7 4-7 2	l/defl >999 >666 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%

```
LUMBER-
```

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-8-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=147/Mechanical, 2=308/0-3-8, 4=73/Mechanical Max Horz 2=80(LC 6) Max Uplift 3=-57(LC 10), 2=-71(LC 6) Max Grav 3=147(LC 1), 2=308(LC 1), 4=104(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	+	6-1-8									
LOADING (psf)	SPACING- 2-0	0-0 CSI .		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL 20.0	Plate Grip DOL 1.	.15 TC	0.53	Vert(LL)	-0.05	4-7	>999	360	MT20	244/190	
TCDL 10.0	Lumber DOL 1.	.15 BC	0.40	Vert(CT)	-0.13	4-7	>568	240			
BCLL 0.0 *	Rep Stress Incr YI	ES WB	0.00	Horz(CT)	0.01	2	n/a	n/a			
BCDL 10.0	Code IRC2015/TPI201	14 Matrix	(-MP						Weight: 23 lb	FT = 20%	
									-		

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 4=232/Mechanical, 2=319/0-3-8 Max Horz 2=80(LC 9) Max Uplift 4=-42(LC 10), 2=-79(LC 6)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			6-1-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr. YES	CSI. TC 0.55 BC 0.44 WB 0.00	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.06 3-6 >999 360 MT20 244/190 Vert(CT) -0.14 3-6 >521 240 MT20 244/190	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP	Weight: 22 lb FT = 20%	
LUMBER-			BRACING-	

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

(lb/size) 1=239/0-3-8, 3=239/Mechanical REACTIONS. Max Horz 1=73(LC 9) Max Uplift 1=-33(LC 6), 3=-45(LC 10)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

				1		5-	10-15					
	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.50	Vert(LL)	-0.05	4-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.38	Vert(CT)	-0.12	4-7	>608	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	2	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matri	x-MP						Weight: 20 lb	FT = 20%

```
LUMBER-
```

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-10-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=152/Mechanical, 2=314/0-3-8, 4=75/Mechanical Max Horz 2=82(LC 6) Max Uplift 3=-59(LC 10), 2=-72(LC 6) Max Grav 3=152(LC 1), 2=314(LC 1), 4=107(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

⁵⁾ Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

	5-10-0 5-10-0											
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.49 BC 0.37 WB 0.00 Matrix-MP	DEFL. in (loc) //defl L/d PLATES GRIP Vert(LL) -0.05 4-7 >999 360 MT20 244/190 Vert(CT) -0.11 4-7 >635 240 MT20 244/190 Horz(CT) 0.00 2 n/a n/a Weight: 20 lb FT = 20	0%								

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-10-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=149/Mechanical, 2=311/0-3-8, 4=74/Mechanical Max Horz 2=81(LC 6) Max Uplift 3=-58(LC 10), 2=-72(LC 6) Max Grav 3=149(LC 1), 2=311(LC 1), 4=105(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


```
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
WEBS 3-6=-320/79
```

NOTES-

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 5=154.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

REACTIONS. (lb/size) 2=183/4-0-11, 4=183/4-0-11 Max Horz 2=-50(LC 8) Max Uplift 2=-18(LC 10), 4=-18(LC 11)

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

REACTIONS. (lb/size) 2=183/4-0-11, 4=183/4-0-11 Max Horz 2=-50(LC 8) Max Uplift 2=-18(LC 10), 4=-18(LC 11)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

REACTIONS. (lb/size) 2=183/4-0-11, 4=183/4-0-11 Max Horz 2=-50(LC 8) Max Uplift 2=-18(LC 10), 4=-18(LC 11)

REACTIONS. (lb/size) 2=459/4-0-11, 4=459/4-0-11 Max Horz 2=-125(LC 8) Max Uplift 2=-45(LC 10), 4=-45(LC 11)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-296/98, 3-4=-296/98

NOTES-

- 1) 2-ply truss to be connected together as follows:
- Top chords connected with 10d (0.131"x3") nails as follows: 2x4 1 row at 0-9-0 oc.
- Bottom chords connected with 10d (0.131"x3") nails as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safey Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

NOTES-

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

¹⁾ Unbalanced roof live loads have been considered for this design.

NOTES

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry

Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 12 except (jt=lb) 15=135, 11=133.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

¹⁾ Unbalanced roof live loads have been considered for this design.

BCDL	10.0	Code IRC2015/TPI2014	Matrix-MS			Weight: 283 lb	FI = 2
LUMBER	-			BRACING-			
TOP CHC	RD 2x4 SP	No.2		TOP CHORD	Structural wood sheathing dir	ectly applied or 6-0-0 o	c purlins,
BOT CHC	RD 2x4 SP	No.2			except end verticals, and 2-0-	-0 oc purlins (6-0-0 max	(.): 4-5 .
WEBS	2x4 SP	No.2		BOT CHORD	Rigid ceiling directly applied of	or 10-0-0 oc bracing.	
OTHERS	2x4 SP	No.2		WEBS	1 Row at midpt 4	-13, 5-13	

REACTIONS. All bearings 12-9-8 except (jt=length) 9=0-3-8.

(lb) - Max Horz 19=-261(LC 8)

Max Uplift All uplift 100 b or less at joint(s) 19, 9, 11, 18 except 13=-154(LC 10), 11=-102(LC 3) Max Grav All reactions 250 lb or less at joint(s) 11, 12, 14, 15, 16, 17, 18 except 13=887(LC 1), 19=379(LC 21), 9=676(LC 22)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 5-6=-408/193, 6-7=-355/168, 2-19=-278/220, 7-9=-377/204
- BOT CHORD 12-13=-12/260, 11-12=-12/260, 10-11=-12/260, 9-10=0/328
- WEBS 3-13=-279/228, 4-13=-305/85, 5-13=-466/51, 5-10=-66/447, 6-10=-267/220, 6-9=-302/35

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.

6) Gable studs spaced at 2-0-0 oc.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 19, 9, 18 except (jt=lb) 13=154, 11=102.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

TH CAS ORTH ALTER DAY DAY DAY MALLININI, SEAL 036322 GI minum October 11,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A Millek / 818 Soundside Road

Edenton, NC 27932

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

SEAL 036322 October 11,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

October 11,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

Plate Offsets (X,Y)-- [8:0-1-8,Edge], [11:0-3-4,0-1-12]

LOADING (ps	sf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20	0.0	Plate Grip DOL	1.15	TC	0.16	Vert(LL)	-0.01	17	n/r	180	MT20	244/190
TCDL 10	0.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	-0.01	17	n/r	120		
BCLL 0).0 *	Rep Stress Incr	YES	WB	0.18	Horz(CT)	0.01	18	n/a	n/a		
BCDL 10	0.0	Code IRC2015/TI	PI2014	Matri	x-R	Wind(LL)	0.00	17	n/r	120	Weight: 212 lb	FT = 20%
LUMBER-						BRACING						
TOP CHORD	2x4 SP	No.2				TOP CHOP	RD	Structu	ral wood	sheathing di	rectly applied or 6-0-0 c	oc purlins,
BOT CHORD	2x4 SP	No.2						except	end verti	cals, and 2-0)-0 oc purlins (6-0-0 ma	x.): 8-11.
WEBS	2x4 SP	No.2				BOT CHOP	RD	Rigid c	eiling dire	ectly applied	or 6-0-0 oc bracing.	,
OTHERS	2x4 SP	No.2				WEBS		1 Row	at midpt		11-24. 10-25. 9-26. 7-27	7. 12-22

REACTIONS. All bearings 24-7-0.

Max Horz 32=-262(LC 8) (lb) -

> Max Uplift All uplift 100 lb or less at joint(s) 25, 26, 27, 29, 30, 22, 21, 20 except 32=-270(LC 6), 18=-104(LC 7), 28=-119(LC 10), 31=-267(LC 10), 19=-182(LC 11)

Max Grav All reactions 250 lb or less at joint(s) 18, 25, 26, 27, 28, 29, 30, 22, 21, 20, 19 except 32=340(LC 7), 24=252(LC 19), 31=286(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-255/238, 6-7=-228/294, 11-12=-245/311

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right
- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 8) Gable studs spaced at 2-0-0 oc
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 26, 27, 29, 30, 22, 21, 20 except (jt=lb) 32=270, 18=104, 28=119, 31=267, 19=182.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Barton	
B-73554	T07	Roof Special Girder	1	1	E'	13627536
					Job Reference (optional)	
Structural Building Compone	ants LLC Albemarle NC	- 28001	8	320 e Aug	28 2019 MiTek Industries Inc. Thu Oct 10 18:02:48 2019 P	2 ane

ID:3DOp8_T8JDUctKIX_OIqplyUu2D-pHm_oSq?xISs1tz4v9kaFUQiViuQ78o5DHCIBTyUkjb

NOTES-

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 129 lb down and 90 lb up at 29-3-4, 129 lb down and 69 lb up at 31-3-4, 129 lb down and 69 lb up at 33-3-4, 129 lb down and 69 lb up at 33-3-4, 129 lb down and 69 lb up at 35-3-4, and 129 lb down and 69 lb up at 37-3-4, and 129 lb down and 69 lb up at 39-4-0 on top chord, and 506 lb down and 150 lb up at 5-10-0, 183 lb down and 70 lb up at 7-3-4, 183 lb down and 70 lb up at 13-3-4, 183 lb down and 70 lb up at 13-3-4, 183 lb down and 70 lb up at 13-3-4, 183 lb down and 70 lb up at 13-3-4, 183 lb down and 70 lb up at 13-3-4, 183 lb down and 70 lb up at 13-3-4, 183 lb down and 70 lb up at 13-3-4, 183 lb down and 70 lb up at 13-3-4, 183 lb down and 70 lb up at 21-3-4, 183 lb down and 70 lb up at 23-3-4, 183 lb down and 70 lb up at 23-3-4, 183 lb down and 70 lb up at 23-3-4, 183 lb down and 70 lb up at 23-3-4, 183 lb down and 70 lb up at 23-3-4, 183 lb down and 70 lb up at 23-3-4, 183 lb down and 70 lb up at 33-3-4, 65 lb down at 31-3-4, 65 lb down at 31-3-4, 65 lb down at 31-3-4, 65 lb down at 37-3-4, and 376 lb down and 72 lb up at 39-3-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-7=-60, 7-11=-60, 11-14=-60, 14-17=-60, 16-71=-20

Concentrated Loads (lb)

Vert: 14=-89(F) 28=-183(F) 21=-54(F) 20=-54(F) 13=-89(F) 19=-376(F) 23=-54(F) 12=-89(F) 76=-89(F) 77=-89(F) 78=-89(F) 79=-506(F) 80=-183(F) 81=-183(F) 82=-183(F) 83=-183(F) 83=-183(F) 84=-183(F) 86=-183(F) 88=-183(F) 89=-183(F) 90=-183(F) 91=-54(F) 92=-54(F) 92=-54(

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	7-4-2	14-4-12	23-1-14	29-9-4	33-0-4	37-4-0	45-2-0		
Plate Offsets (X,Y)	[11:0-4-0,0-2-3]			• • •					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC 0.85 BC 0.86 WB 0.56 Matrix-MS	DEFL. in Vert(LL) -0.25 Vert(CT) -0.36 Horz(CT) 0.02	(loc) l/defl 18-20 >905 18-20 >623 2 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 257 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP SLIDER Left 2x4	No.2 No.2 No.3 4 SP No.3 -H 2-6-0			BRACING- TOP CHORD Structural wood sheathing directly applied or 5-2-3 oc purlins, except 2-0-0 oc purlins (10-0-0 max.): 10-11. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 20-21.					
SLIDER Left 2x4 SF N0.3 - 12 -0-0 0-0-0 Oc blacking: 20-21. WEBS 1 Row at midpt 6-20, 7-20, 8-20 REACTIONS. All bearings 0-3-8. (lb) - Max Horz 2=-259(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 2 except 20=-143(LC 10), 15=-175(LC 11), 12=-138(LC 7) Max Grav All reactions 250 lb or less at joint(s) except 2=566(LC 21), 20=1777(LC 17), 15=1298(LC 22), 12=468(LC 1)									
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.									

- TOP CHORD 2-4=-454/86, 4-6=-418/150, 6-7=0/358, 7-8=-57/260, 8-10=-512/122, 10-11=-38/519, 11-12=-442/172
- BOT CHORD 2-21=-125/471, 18-20=0/375, 17-18=0/351, 15-17=-2/346, 14-15=-90/349, 12-14=-87/360
- WEBS 4-21=-296/178, 6-21=-117/571, 6-20=-605/245, 7-20=-511/0, 8-20=-664/208, 8-18=0/329, 10-15=-1124/192, 11-15=-1021/203, 11-14=0/299

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-00 between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 20=143, 15=175, 12=138.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

ORT Anna anna anna WITTER BUILD SEAL 036322 G minum October 11,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	7-4-2	14-4-12	22-7-14	28-9-4	33-0-4	35-4-0	45-2-0	
	7-4-2	7-0-10	8-3-2	6-1-6	4-3-0	2-3-12	9-10-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/T	2-0-0 1.15 1.15 YES Pl2014	CSI. D TC 0.72 V BC 0.77 V WB 0.65 H Matrix-MS H H	EFL. in (lo ert(LL) -0.19 18- ert(CT) -0.33 14- orz(CT) 0.01	0c) l/defl 20 >999 28 >445 2 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 266 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP SLIDER Left 2x	No.2 No.2 No.3 4 SP No.3 -H 2-6-0		B Tr B	RACING- DP CHORD Str 2-C DT CHORD Rig 6-C EBS 1 F	uctural wood)-0 oc purlins gid ceiling dir)-0 oc bracin Row at midpt	d sheathing diru s (10-0-0 max.) ectly applied o g: 20-21,14-15 6-	ectly applied or 6-0-0 c : 9-10. r 10-0-0 oc bracing, E 20. 7-20. 8-20	c purlins, except

REACTIONS. All bearings 0-3-8.

(lb) - Max Horz 2=-261(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 2 except 20=-135(LC 10), 15=-210(LC 11), 12=-118(LC 7) Max Grav All reactions 250 lb or less at joint(s) except 2=566(LC 21), 20=1740(LC 17), 15=1389(LC 22),

12=414(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-4=-455/94, 4-6=-420/158, 6-7=0/357, 7-8=-56/255, 8-9=-428/116, 9-10=-70/586, 11-12=-441/179
- BOT CHORD
 2-21=-127/477, 18-20=0/320, 17-18=0/270, 15-17=0/267, 12-14=-112/404

 WEBS
 4-21=-295/177, 6-21=-116/575, 6-20=-609/245, 7-20=-500/0, 8-20=-602/184,
- 8-18=0/302, 9-15=-1065/180, 10-15=-865/158, 10-14=0/441, 11-14=-514/197

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 20=135, 15=210, 12=118.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

ENGINEERING BY REALCO A MiTek Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	8-1-12	16-6-8	26-9-4	31-4-0	39-2-4	45-2-0	
	8-1-12	8-4-12	10-2-12	4-6-12	7-10-4	5-11-12	1
Plate Offsets (X,Y)	[9:0-3-0,Edge]						
LOADING(psf)TCLL20.0TCDL10.0BCLL0.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.82 BC 0.92 WB 0.65	DEFL. i Vert(LL) -0.3 Vert(CT) -0.6 Horz(CT) 0.0	n (loc) l/defl 9 17-18 >967 5 17-18 >575 3 2 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MS				Weight: 265 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP 16-19: WEBS 2x4 SP SLIDER Left 2x4	² No.2 No.2 *Except* 2x4 SP No.1 ¹ No.3 4 SP No.3 -H 2-6-0		BRACING- TOP CHORD BOT CHORD WEBS	Structural woo 2-0-0 oc purlin Rigid ceiling di 1 Row at midp	d sheathing dire s (4-1-2 max.): s rectly applied or 	actly applied or 3-8-6 c 9-10. r 2-2-0 oc bracing. 20, 8-18	oc purlins, except
REACTIONS. All be (lb) - Max Hi Max Uj Max G	earings 0-3-8. orz 2=-266(LC 8) plift All uplift 100 lb or less at joint rav All reactions 250 lb or less at	s) 12 except 2=-130(LC 24), 2 oint(s) 12 except 2=318(LC 2	20=-143(LC 10), 14=-22 :1), 20=2084(LC 17), 14	1(LC 11) =1749(LC 1)			
FORCES. (lb) - Max. TOP CHORD 2-4=- 10-1	Comp./Max. Ten All forces 250 (I 435/456, 4-6=0/532, 6-7=-809/247, 1=-1355/267 11-12=-129/877	b) or less except when shown 7-8=-816/250, 8-9=-2153/444	4, 9-10=-1789/322,				
BOT CHORD 2-20= WEBS 4-20= 8-17= 11-14	-334/258, 18-20=29/339, 17-18=0 -337/176, 6-20=-1636/224, 6-18=- -251/1346, 9-17=-1368/332, 10-17 I=-1749/397	/1085, 15-17=-90/1233, 12-14 5/756, 7-18=-162/569, 8-18=- =-57/816, 10-15=-405/89, 11-	l=-773/180 -817/276, 15=-84/1255,				
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) exposed;C-C for me	e loads have been considered for th 'ult=120mph (3-second gust) Vasd= gable end zone and C-C Exterior(2 mbers and forces & MWFRS for rea	s design. 95mph; TCDL=5.0psf; BCDL=) zone; cantilever left and righ ctions shown; Lumber DOL≕	=5.0psf; h=30ft; Cat. II; l t exposed ; end vertical 1.60 plate grip DOL=1.6	Exp B; Enclosed; left and right 0		111111 11111	CAP

Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 2=130, 20=143, 14=221.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	8-1-12	8-4-12		1	9-2-12	3-6-	12		9-10-4	5-11-12	—
Plate Offsets (X,Y)	[9:0-3-0,Edge]										
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC 0 BC 0 WB 0).96).79).70	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.24 -0.44 0.03	(loc) 18-19 18-19 15	l/defl >999 >854 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI	2014	Matrix-N	ИS						Weight: 270 lb	FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S 16-20 WEBS 2x4 S SLIDER Left 2 REACTIONS. All (lb) - Max Max	SP No.2 SP No.2 *Except*): 2x4 SP No.1 SP No.3 2x4 SP No.3 -H 2-6-0 bearings 0-3-8. Horz 2=-269(LC 8) Uplift All uplift 100 lb or less Grav All reactions 250 lb or	s at joint(s) 2 exce r less at joint(s) 13	ept 21=-14 3 except 2=	4(LC 10), 1 =334(LC 21	BRACING- TOP CHORI BOT CHORI WEBS 3=-103(LC 7), 15= 1), 21=2038(LC 17	D D =-202(L), 15=1	Structu 2-0-0 o Rigid cr 1 Row : .C 11) 1698(LC	ral wood s c purlins (eiling dire at midpt	sheathing dirr (4-5-13 max.) ctly applied o 6-	ectly applied or 2-2-0 c): 9-10. or 5-7-14 oc bracing. -21, 8-19	oc purlins, except
FORCES. (lb) - Ma TOP CHORD 2-4	x. Comp./Max. Ten All force =-429/401, 4-6=0/475, 6-7=-8 -121494/298, 12-13107/7	es 250 (lb) or less 324/256, 7-8=-818 749	except wh 3/262, 8-9=	hen shown. =-1946/447,	, 9-10=-1625/329,						
BOT CHORD 2-2 13-	1=-290/266, 19-21=-30/370, 15=-645/163	43 18-19=0/1059, 17	/-18=-98/13	352, 15-17=	=-126/624,						
WEBS 4-2 8-1	1=-332/176, 6-21=-1585/230 8=-265/1236, 9-18=-1212/31	, 6-19=-15/724, 7 0, 10-18=-44/528	-19=-179/5 , 12-17=0/8	597, 8-19=-8 875, 12-15=	830/281, =-1902/446						
NOTES- 1) Unbalanced roof li 2) Wind: ASCE 7-10; MWFRS (envelop exposed;C-C for n 3) Provide adequate	ve loads have been consider Vult=120mph (3-second gus a) gable end zone and C-C E embers and forces & MWFR drainage to prevent water po	ed for this design t) Vasd=95mph; xterior(2) zone; ca S for reactions sh nding.	TCDL=5.0p antilever le nown; Lum	psf; BCDL= eft and right aber DOL=1	5.0psf; h=30ft; Ca exposed ; end ver .60 plate grip DOL	t. II; Ex tical le .=1.60	p B; En ft and ri	closed; ght		IN ATH	CARO

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 21=144, 13=103, 15=202.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Vernannun warming, SEAL 036322 G minim October 11,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-TOP CHORD

BOT CHORD

WEBS

н	LIM	RE	P-	

LUMBER-		
TOP CHORD	2x4 SP No.2	
BOT CHORD	2x4 SP No.2	
WEBS	2x4 SP No.3	
SLIDER	Left 2x4 SP No.3 -H 2-6-0	

Structural wood sheathing directly applied or 4-3-9 oc purlins, except 2-0-0 oc purlins (4-9-13 max.): 9-10. Rigid ceiling directly applied or 6-0-0 oc bracing. 1 Row at midpt 6-23, 8-21

REACTIONS. All bearings 0-3-8.

(lb) - Max Horz 2=-271(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 2, 14 except 23=-138(LC 10), 16=-220(LC 11)

Max Grav All reactions 250 lb or less at joint(s) 14 except 2=338(LC 21), 23=2007(LC 17), 16=1688(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-4=-417/377, 4-6=0/451, 6-7=-815/261, 7-8=-797/270, 8-9=-1728/424, 9-10=-1440/315,
- 10-11=-1426/313, 11-13=-1328/276, 13-14=-95/621

 BOT CHORD
 2-23=-271/266, 21-23=-32/377, 20-21=0/1005, 19-20=-80/1307, 17-19=-118/1205, 14-16=-537/145

 WEBS
 4-23=-330/176, 6-23=-1545/225, 6-21=-10/699, 7-21=-191/596, 8-21=-822/274, 8-20=-255/1117, 9-20=-1053/283, 10-20=-28/384, 11-17=-443/143, 13-17=-208/1518,

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

13-16=-1540/351

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14 except (jt=lb) 23=138, 16=220.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		8-1-12	16-6-8		23-9-4	25-4-0	31-8-10	39-2-4	45-2-	-0
	1	8-1-12	8-4-12		7-2-12	1-6-12	6-4-10	7-5-10	5-11-	12
LOADING (ps TCLL 20. TCDL 10. BCLL 0	sf) .0 .0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC 0.85 BC 0.91 WB 0.58		DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.22 20-22 -0.30 20-22	l/defl L/d >999 360 >999 240	PLATES MT20	GRIP 244/190
BCDL 10.	.0	Code IRC2015/T	PI2014	Matrix-MS		11012(01)	0.01 10	nia nia	Weight: 275 lb	FT = 20%
LUMBER-					·	BRACING-	_			
TOP CHORD BOT CHORD	2x4 SP 2x4 SP	No.2 No.2				TOP CHORE	D Structura 2-0-0 oc	al wood sheathing dir purlins (4-8-8 max.):	ectly applied or 2-2-0 8-9.	oc purlins, except
WEBS SLIDER	2x4 SP Left 2x4	4 SP No.3 -H 2-6-0				BOT CHORE	D Rigid cei 6-0-0 oc	ling directly applied of bracing: 2-22,13-15.	r 10-0-0 oc bracing,	Except:
						WEBS	1 Row at	t midpt 6	-22 8-20	

REACTIONS. All bearings 0-3-8.

(lb) - Max Horz 2=-274(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 2, 13 except 22=-135(LC 10), 15=-206(LC 11)

Max Grav All reactions 250 lb or less at joint(s) 13 except 2=367(LC 21), 22=1934(LC 17), 15=1662(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-417/282, 4-6=-51/365, 6-7=-844/276, 7-8=-874/259, 8-9=-1357/341,

9-10=-1426/331, 10-12=-1511/327, 12-13=-68/549

- BOT CHORD 2-22=-195/267, 20-22=-36/424, 19-20=-76/1363, 18-19=-75/1298, 16-18=-153/1374, 13-15=-461/123
- WEBS 4-22=-326/177, 6-22=-1462/214, 6-20=-13/666, 7-20=-144/534, 8-20=-984/294, 9-19=-50/343, 10-16=-302/123, 12-16=-123/1212, 12-15=-1618/375

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are 3x5 MT20 unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 13 except (it=lb) 22=135. 15=206.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	8-1-12	8-4-12		6-2-12	0-6-12	7-0-10	8-9-10	5-11-12	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 CS 1.15 TC 1.15 BC YES WE 2014 Ma	I. 0.75 0.84 3 0.58 trix-MS		DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.23 20-22 -0.32 20-22 0.04 15	l/defl L/d >999 360 >999 240 n/a n/a	PLATES MT20 Weight: 270 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP SLIDER Left 2x4	No.2 No.2 No.3 I SP No.3 -H 2-6-0				BRACING- TOP CHOR BOT CHOR	2D Structu except 2-0-0 o 2D Rigid c	ral wood sheathing diru c purlins (4-11-9 max.) eiling directly applied o	ectly applied or 3-10-1 : 8-9. r 10-0-0 oc bracing,	4 oc purlins, Except:

WEBS

1 Row at midpt

6-22, 8-20, 10-18

REACTIONS. All bearings 0-3-8. (lb) - Max Horz 2=-276(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 2, 13 except 22=-142(LC 10), 15=-198(LC 11)

Max Grav All reactions 250 lb or less at joint(s) 13 except 2=374(LC 21), 22=1931(LC 17), 15=1665(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-412/269, 4-6=-63/365, 6-7=-847/284, 7-8=-853/274, 8-9=-1231/339,

9-10=-1363/328, 10-12=-1588/350, 12-13=-72/578

BOT CHORD	2-22=-185/266, 20-22=-33/426, 19-20=-51/1245, 18-19=-51/1242, 16-18=-162/1442
	15-16=-110/530, 13-15=-476/129
WEBS	4-22=-324/177, 6-22=-1453/219, 6-20=-12/653, 7-20=-173/563, 8-20=-936/293,

9-18=-33/258, 10-18=-332/162, 12-16=-56/979, 12-15=-1756/416

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 13 except (jt=lb) 22=142, 15=198.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	8-1-12		<u>16-6-8</u> 8-4-12	22-2-8		29-7-10 7-5-2		<u>39-2-4</u> 9-6-10	45-2-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPl2	2-0-0 1.15 1.15 YES 014	CSI. TC 0. BC 0. WB 0. Matrix-N	.81 .79 .56 IS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.23 18-20 -0.33 14-16 0.04 14	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 263 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP	' No.2				BRACING- TOP CHOF	D Structu	ıral wood	sheathing dire	ectly applied or 3-7-7 c	oc purlins.

	EXTON NO.E
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
SLIDER	Left 2x4 SP No.3 -H 2-6-0

TOP CHORD BOT CHORD WEBS

Structural wood sheathing directly applied or 3-7-7 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing. 1 Row at midpt 6-20, 8-18, 9-17

REACTIONS. All bearings 0-3-8.

(lb) - Max Horz 2=-278(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 2, 12 except 20=-134(LC 10), 14=-191(LC 11)

Max Grav All reactions 250 lb or less at joint(s) 12 except 2=373(LC 21), 20=1886(LC 17), 14=1651(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-4=-406/257, 4-6=-62/341, 6-7=-834/287, 7-8=-835/282, 8-9=-1265/320, 9-11=-1611/358, 11-12=-66/565
- BOT CHORD 2-20=-175/276, 18-20=-39/435, 17-18=-33/1166, 16-17=-162/1461, 14-16=-149/679, 12-14=-461/124
- WEBS 4-20=-321/176, 6-20=-1416/228, 6-18=-19/630, 7-18=-188/571, 8-18=-922/292, 8-17=-46/400, 9-17=-437/176, 11-16=-15/843, 11-14=-1812/434

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12 except (jt=lb) 20=134, 14=191.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 13 except (jt=lb) 24=146, 15=213.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

October 11,2019

ENGINEERING BY EREPACED A MITEK Atfillate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y)	[19:0-2-8,0-2-12], [22:0-5-8,0-4-0]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.91 BC 0.94 WB 0.68 Matrix-MS	DEFL. ii Vert(LL) -0.08 Vert(CT) -0.20 Horz(CT) 0.06	n (loc) l/defl 3 20-21 >999 0 20-21 >999 6 15 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 285 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI 6-23,9 WEBS 2x4 SI SLIDER Left 2x REACTIONS. All b	P No.2 P No.2 *Except* -18: 2x4 SP No.3 P No.3 e4 SP No.3 -H 2-6-0 earings 0-3-8.		BRACING- TOP CHORDStructural wood sheathing directly applied, except 2-0-0 oc purlins (4-5-15 max.): 8-9.BOT CHORDRigid ceiling directly applied or 6-0-0 oc bracing. WEBS1 Row at midpt8-21					
(lb) - Max H Max U Max C	Horz 2=-273(LC 8) Jplift All uplift 100 lb or less at joint(s) 2 Grav All reactions 250 lb or less at joint	13 except 24=-147(LC 10) s) 13 except 2=299(LC 21)), 15=-213(LC 11) , 24=1829(LC 1), 15= ⁻	1669(LC 1)				
FORCES. (lb) - Max. TOP CHORD 2-4= 9-10 BOT CHORD BOT CHORD 6-22 13-1 WEBS 4-24 8-21 12-1 12-1	Comp./Max. Ten All forces 250 (lb) or -449/351, 4-6=-306/94, 6-7=-802/251, 7- =-1573/342, 10-12=-1412/313, 12-13=-8 =-1092/214, 21-22=-36/295, 20-21=-90/ 5=-530/135 =-1375/226, 22-24=-1036/294, 4-22=-92 =-1137/305, 8-20=0/279, 8-19=-263/35, 7=-144/1279, 12-15=-1598/371	less except when shown. 8=-819/237, 8-9=-1432/347 2/628 (493, 19-20=-92/1489, 9-19 /1213, 6-21=-50/666, 7-21= 17-19=-154/1173, 10-17=-5	7,)=-47/305, :-107/457, :17/155,					

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 13 except (jt=lb) 24=147, 15=213.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	L	8-1-12	10-6-0	16-6-8	20-9-4	25-7-4	27-9-8	33-	4-5	39-2-4	45-2-0	
		8-1-12	2-4-4	6-0-8	4-2-12	4-10-0	2-2-4	5-6	-13	5-9-15	5-11-12	
Plate Offsets (X,	Y) [2	22:0-5-12,0-4-0], [25:0-5	5-8,0-4-0]									
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	*	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matrix	0.87 0.52 0.90 (-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.22 0.05	(loc) 22-23 22-23 17	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 295 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2 BOT CHORD 2 6 WEBS 2 SLIDER L	2x4 SP 2x4 SP 3-26,10- 2x4 SP .eft 2x4	No.2 No.2 *Except* -21: 2x4 SP No.3 No.3 -SP No.3 -H 2-6-0				BRACING TOP CHC BOT CHC WEBS)- DRD DRD	Structu 2-0-0 o Rigid c 1 Row 1 Row	aral wood ac purlins eiling dire at midpt at midpt	sheathing di (3-6-1 max.) ctly applied { {	rectly applied or 4-7-8 o : 9-11. or 6-0-0 oc bracing. Ex 6-25 3-24	oc purlins, except
REACTIONS. All bearings 0-3-8. (lb) - Max Horz 2=-271(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 15 except 2=-212(LC 22), 27=-166(LC 10), 17=-218(LC 11) Max Grav All reactions 250 lb or less at joint(s) 2, 15 except 27=2013(LC 1), 17=1667(LC 1)												
FORCES. (ib) - TOP CHORD BOT CHORD WEBS	Max. 0 2-4=-4 10-11= 2-27=- 19-20= 4-27=- 8-23=- 12-19=	Comp./Max. Ten All for 127/593, 6-7=-667/219, 7 1550/326, 11-12=-125 -442/227, 6-25=-1250/25 -88/976, 17-19=-562/15 -1426/233, 25-27=-1301, -112/706, 20-22=-45/122 511/149, 14-19=-242/1	rces 250 (lb) or 7-8=-633/235, { 3/285, 12-14=- 54, 24-25=-175 37, 15-17=-562 /356, 4-25=-98 45, 11-22=-81/1 1649, 14-17=-1	less except 3-9=-1078/25 1085/241, 14 /267, 23-24= /137 /1255, 6-24= 1001, 11-20= 492/338, 10-	when shown. i3, 9-10=-881/ i-15=-87/657 i0/901, 22-23= i-68/771, 7-24 i-624/45, 12-2 23=-987/232,	/168, =-101/1589, !=-138/400, !0=0/252, 8-24=-870/240						

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15 except (jt=lb) 2=212, 27=166, 17=218.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

RT 0 WWWWWWW SEAL 036322 G minum October 11,2019

818 Soundside Road Edenton, NC 27932

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	8-1-12	10-6-0	16-6-8	1	25-7-4	29-9-	-8		39-2-4	45-2-0	
	8-1-12	2-4-4	6-0-8	<u>'</u>	9-0-12	4-2-4	4		9-4-12	5-11-12	
Plate Offsets (X,Y)	[17:0-5-14,0-2-0], [21:0-	5-8,0-4-0]									
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/7	2-0-0 1.15 1.15 YES TPI2014	CSI. TC BC WB Matrix	0.89 0.87 0.82 x-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.39 -0.65 0.07	(loc) 19-20 19-20 15	l/defl >956 >579 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 284 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 *Except* 6-22,9-18: 2x4 SP No.3, 19-21: 2x4 SP No.1 WEBS 2x4 SP No.3 SLIDER Left 2x4 SP No.3 -H 2-6-0					BRACING- TOP CHOR BOT CHOR WEBS	RD RD	Structural wood sheathing directly applied or 2-2-0 oc purlins, except 2-0-0 oc purlins (4-11-13 max.): 9-10. Rigid ceiling directly applied or 6-0-0 oc bracing. Except: 1 Row at midpt 6-21 1 Row at midpt 8-20, 10-15				
(Ib) - Max H Max U Max C	Fainings 0-3-8. Horz 2=-268(LC 8) Jplift All uplift 100 lb or Grav All reactions 250 ll	less at joint(s) 1 b or less at joint	3 except 2=- (s) 2, 13 exce	219(LC 24), : ept 23=2045	23=-141(LC 10), 1 (LC 17), 15=1573(5=-247 LC 1)	(LC 11)				
FORCES. (lb) - Max. TOP CHORD 2-4= 10-1:	. Comp./Max. Ten All fo -426/603, 6-7=-741/232, 2=-295/257, 12-13=-206.	orces 250 (lb) or 7-8=-723/246, 8 /516	less except 3-9=-2265/46	when shown 61, 9-10=-13	n. 19/287,						
BOT CHORD 2-23 13-1	2-23=-450/196, 6-21=-1324/207, 19-20=0/1042, 9-19=-712/251, 15-17=-79/1303, 13-15=-411/257										
WEBS 4-23 8-20 10-1	3=-1499/222, 21-23=-1356/291, 4-21=-89/1319, 6-20=-35/897, 7-20=-148/474,)=-886/266, 8-19=-276/1590, 17-19=-84/1984, 9-17=-974/97, 10-17=0/465, 15=-1352/46, 12-15=-930/462										
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; \	e loads have been consi /ult=120mph (3-second	dered for this de gust) Vasd=95m	sign. ph; TCDL=5	i.0psf; BCDL	=5.0psf; h=30ft; Ca	at. II; Ex	kp B; En	closed;		um	

- MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0
- between the bottom chord and any other members, with BCDL = 10.0psf.
 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13 except (jt=lb) 2=219, 23=141, 15=247.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. ENGINEERING BY EREENCO AMITEK Atfiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affiliate B18 Soundside Road Edenton, NC 27932

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

15 BEFORE USE. onent, not the overall manent bracing the CSI Building Component 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 3x4 MT20 unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 54 lb uplift at joint 2, 126 lb uplift at joint 17 and 111 lb uplift at joint 12.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 3x4 MT20 unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 56 lb uplift at joint 2, 123 lb uplift at joint 18 and 135 lb uplift at joint 12.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		4-11-4			3-7	7-0	0-0-3		
Plate Offsets (X,Y)	[2:0-4-8,0-1-8]								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.22 BC 0.26 WB 0.22 Matrix-MP	DEFL. ir Vert(LL) -0.02 Vert(CT) -0.04 Horz(CT) 0.01	i (loc) l/defl 6-8 >999 6-8 >999 5 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 44 lb	GRIP 244/190 FT = 20%		
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x6 SP WEBS 2x4 SP REACTIONS. (lb/size Max H Max U	No.2 No.2 No.3 e) 2=470/0-4-9, 5=694/0-3-13 orz 2=75(LC 5) plift 2=-115(LC 4), 5=-95(LC 8)	-	BRACING- TOP CHORD BOT CHORD	Structural wood except end vert Rigid ceiling dir	d sheathing direct ticals. rectly applied or 1	tly applied or 6-0-0 0-0-0 oc bracing.	oc purlins,		
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-6=- WEBS 3-5=-	Comp./Max. Ten All forces 250 (lb) or 734/89, 4-5=-295/133 93/703, 5-6=-93/703 741/115	less except when shown							
BOT CHORD 2-6=-93703, 5-6=-93/703 3-5=-741/115 NOTES- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) "This truss has been designed for a 10.0 psf bottom chord in all areas with a clearance greater than 6-0.0 between the bottom chord and any other members. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 115 lb uplift at joint 2 and 95 lb uplift at joint 5. 5) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 11 lb down and 66 lb up at 8-4-11, and 111 lb down and 66 lb up at 8-4-11 on top chord, and 4 lb down at 2-9-8, 21 lb down at 66 lb up at 8-4-17, and 72 lb down at 4-11 on top chord, and 4 lb down at 2-9-8, 21 lb down at 66 bu pat 8-4-11, and 111 b down and 60 lb up at 8-4-11 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 6) In the LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 4=-210(FE-99, B=-111) 5=-118(FE-57, B=-61) 10=-20(FE-10, B=-10) 11=-3(FE-2, B=-2) 12=-39(FE-19, B=-19) Vert: 4=-210(FE-99, B=-111) 5=-118(FE-57, B=-61) 10=-20(FE-10, B=-10) 11=-3(FE-2, B=-2) 12=-39(FE-19, B=-19)									

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

October 11,2019

