

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 23574A 148.1869.D.EXT PORCH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I40646312 thru I40646365

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

March 17,2020

Garcia, Juan

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

20-8-0 Plate Offsets (X,Y)--[2:0-0-15,0-4-5], [2:0-0-0,0-0-12], [7:0-2-0,Edge], [12:Edge,0-0-12], [12:0-0-15,0-4-5] GRIP LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) l/defl L/d PLATES TCLL 20.0 Plate Grip DOL 1.15 тс 0.12 Vert(LL) 0.00 120 MT20 244/190 13 n/r TCDL 10.0 Lumber DOL 1.15 BC 0.08 Vert(CT) 0.01 13 n/r 120 BCLL 0.0 Rep Stress Incr YES WΒ 0.09 Horz(CT) 0.01 12 n/a n/a Code IRC2015/TPI2014 BCDL Weight: 123 lb FT = 20% 10.0 Matrix-S BRACING-LUMBER-TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD OTHERS 2x4 SP No.3 WEDGE

Left: 2x4 SP No.3 , Right: 2x4 SP No.3

REACTIONS. All bearings 20-8-0.

Max Horz 2=185(LC 11) (lb) -Max Uplift All uplift 100 lb or less at joint(s) 2, 18, 20, 21, 16, 15 except 22=-115(LC 12), 14=-114(LC 13) All reactions 250 lb or less at joint(s) 2, 18, 20, 21, 17, 16, 15, 12 except 22=281(LC 19), 14=279(LC Max Grav 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-1-8, Exterior(2) 2-1-8 to 10-4-0, Corner(3) 10-4-0 to 13-4-0, Exterior(2) 13-4-0 to 21-6-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc. 6)
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

March 17,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	148.1869.D.EXT PORCH	
						140646313
23574A	AG	COMMON GIRDER	1	2		
				Z	Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8.	330 s Mar	10 2020 MiTek Industries, Inc. Tue Mar 17 11:03:35 2020	Page 2
		ID:0ckL	A53Thu50	GUifQqCad	uPyZBFs-peDYwcZ80Pd 5VfDMubv?PbhRk6sR hlv58uHe	za2Yc

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-6=-60, 2-6=-20

Concentrated Loads (lb)

Vert: 8=-546(B) 15=-787(B) 16=-512(B) 17=-468(B) 18=-509(B) 19=-575(B) 20=-1494(B) 21=-1500(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 8) will fit between the bottom chord and any other members.

9) n/a

10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.

March 17,2020

📣 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	148.1869.D.EXT PORCH	
						I40646315
23574A	BG	COMMON GIRDER	1	2		
				–	Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8	.330 s Ma	10 2020 MiTek Industries, Inc. Tue Mar 17 11:03:37 2020	Page 2
		ID:0ckL	JA53Thu5	GUjfQqCa	puPyZBFs-m0KJKlbOY1uiKppcUJdN4qh_yYn8vrk2MPd?L>	Xza2Ya

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-6=-60, 1-5=-20

Concentrated Loads (lb)

Vert: 8=-1716(B) 14=-1716(B) 15=-1716(B) 16=-1716(B) 17=-3161(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	148.1869.D.EXT PORCH	
						140646316
23574A	CG	COMMON GIRDER	1	2		
				J	Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8.	330 s Mar	10 2020 MiTek Industries, Inc. Tue Mar 17 11:03:39 202	0 Page 2
		ID:0ck	UA53Thu	5GUifQaCa	aouPvZBFs-iPS3I cf4e8Qa7v bkfr9FmHSLOkNkYKpi650	Pza2YY

NOTES-

- 13) Use Simpson Strong-Tie LUS28 (6-SD9112 Girder, 4-SD9212 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 1-4-12 from the left end to 5-3-4 to connect truss(es) to front face of bottom chord.
- 14) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 7-3-4 from the left end to 13-3-4 to connect truss(es) to front face of bottom chord.
- 15) Use Simpson Strong-Tie HHUS28-2 (22-16d Girder, 4-16d Truss) or equivalent at 15-2-8 from the left end to connect truss(es) to front face of bottom chord.
- 16) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf) Vert: 1-4=-60, 4-7=-60, 6-12=-20
 - Concentrated Loads (lb)
 - Vert: 15=-1414(F) 16=-1414(F) 17=-1437(F) 18=-1716(F) 19=-1716(F) 20=-1716(F) 21=-1716(F) 22=-3443(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	5-8-	6 11-0-0		18-4-0	25-6-4	33-0-0	38-3-10	43-8-12
	5-8-	6 5-3-10	1	7-4-0	7-2-4	7-5-12	5-3-10	5-5-2
Plate Offsets	s (X,Y) [9	9:0-0-0,0-0-14]						
LOADING (F TCLL 2 TCDL 1 BCLL BCDL 1	psf) 20.0 0.0 0.0 * 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES 212014	CSI. TC 0.85 BC 0.49 WB 0.66 Matrix-MS	DEFL. Vert(LL) - Vert(CT) - Horz(CT)	in (loc) l/defl L/d 0.07 14-16 >999 240 0.17 14-16 >999 180 0.04 13 n/a n/a	PLATE MT20 Weight	ES GRIP 244/190 :: 230 lb FT = 20%
LUMBER- TOP CHORE BOT CHORE WEBS WEDGE Right: 2x4 Sf	D 2x4 SP I D 2x4 SP I 2x4 SP I P No.3	No.2 No.2 No.3			BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheath 2-0-0 oc purlins (6-0-0 r Rigid ceiling directly ap 6-0-0 oc bracing: 11-13 1 Row at midpt	ing directly applied of max.): 3-7. plied or 10-0-0 oc br. 3-14, 4-13	or 4-5-3 oc purlins, except racing, Except:

REACTIONS. (size) 1=0-3-8, 9=Mechanical, 13=0-3-8 Max Horz 1=94(LC 12) Max Uplift 1=-102(LC 12), 9=-106(LC 13), 13=-229(LC 9)

Max Grav 1=876(LC 23), 9=532(LC 24), 13=2140(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-1531/351, 2-3=-1080/290, 3-4=-562/219, 4-6=-24/678, 7-8=-339/140, 8-9=-783/191

BOT CHORD	1-17=-246/1311, 16-17=-246/1311, 14-16=-91/897, 13-14=-94/560, 11-13=-678/247,
	10-11=-102/640, 9-10=-102/640
WEBS	2-16=-469/199, 3-16=-21/424, 3-14=-455/99, 4-14=0/508, 4-13=-1471/302,
	6-13=-1099/348, 6-11=-222/1063, 7-11=-261/113, 8-11=-468/198

NOTES-

_

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=106

8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 13. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 17,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS ON TIPS REPREVED PAGE MIT-14/3 reference of the second secon fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L		7-0-6	13-8-0	19-6-4	25-6-4	30-4-0	36-11-10	43-8-	-12
1		7-0-6	6-7-10	5-10-4	6-0-0	4-9-12	6-7-10	6-9-	-2
Plate Offsets	(X,Y)	[9:0-0-0,0-0-14]							
LOADING (P TCLL 20 TCDL 10 BCLL (osf) 0.0 0.0 0.0 *	SPACING- Plate Grip DO Lumber DOL Rep Stress Ir	2-0-0 DL 1.15 1.15 hcr YES	CSI. TC 0.58 BC 0.56 WB 0.69	DEFL. Vert(LL) Vert(CT) - Horz(CT)	in (loc) l/defl 0.07 17-20 >999 0.15 17-20 >999 0.03 13 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
SCDL 10).0	Code IRC20	15/TPI2014	Matrix-MS				Weight: 244 lb	FT = 20%
-UMBER- FOP CHORD BOT CHORD	2x4 SP 2x4 SP	9 No.2 9 No.2			BRACING- TOP CHORD	Structural woo 2-0-0 oc purlir	od sheathing dired	ctly applied or 4-1-7	oc purlins, except
WEBS WEDGE	2x4 SP	9 No.3			BOT CHORD	Rigid ceiling d 6-0-0 oc braci	lirectly applied or ng: 13-14,11-13.	10-0-0 oc bracing,	Except:
Right: 2x4 SP	9 No.3				WEBS	1 Row at midp	ot 3-1	4, 6-13	
REACTIONS.	. (size Max H	e) 1=0-3-8, 9=Mec orz 1=116(LC 12)	chanical, 13=0-3-8						

Max Uplift 1=-120(LC 12), 9=-125(LC 13), 13=-136(LC 9) Max Grav 1=896(LC 23), 9=566(LC 24), 13=2102(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-1523/367, 2-3=-908/287, 3-4=-368/225, 4-6=-366/224, 8-9=-807/215 BOT CHORD 1-17=-245/1293, 16-17=-245/1293, 14-16=-67/718, 13-14=-514/222, 11-13=-514/222, 10-11=-114/651, 9-10=-114/651 WEBS 2-17=0/286, 2-16=-650/256, 3-16=-48/477, 3-14=-572/119, 4-14=-389/175, 6-14=-250/1235, 6-13=-1979/486, 6-11=-181/884, 7-11=-298/96, 8-11=-656/254, 8-10=0/288

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=125.

8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 13. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 17,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS ON TIPS REPREVED PAGE MIT-14/3 reference of the second secon fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	8-4-6	<u>16-4-0</u> 7-11-10	+	<u>25-6-4</u> 9-2-4	27-8-0	<u>35-7-10</u> 7-11-10	43-8-12 8-1-2	
Plate Offsets (X,Y)	[11:0-0-0,0-0-14], [13:0-2-2	8,0-3-0], [15:0-5-4,	0-3-0]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI	2-0-0 1.15 1.15 YES 2014	CSI. TC 0.68 BC 0.73 WB 0.68 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.24 14-15 -0.40 14-15 0.03 14) I/defl L/d 5 >999 240 5 >774 180 4 n/a n/a	PLATES MT20 Weight: 251 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP WEDGE Right: 2x4 SP No.3	9 No.2 9 No.2 9 No.3			BRACING- TOP CHOR BOT CHOR WEBS	D Struc exce 2-0-0 D Rigid 1 Ro	ctural wood sheathing c pt) oc purlins (6-0-0 max. d ceiling directly applied w at midpt	Jirectly applied or 4-5-14 of .): 5-7. J or 6-0-0 oc bracing. 5-15, 6-14, 7-14	oc purlins,
REACTIONS. (size Max H Max U Max G	e) 1=0-3-8, 14=(0-3-8 + H lorz 1=138(LC 12) lplift 1=-115(LC 12), 14=-1 Grav 1=851(LC 23), 14=228	H10A Simpson Str 18(LC 12), 11=-10 31(LC 1), 11=488(I	ong-Tie) (req. 0-3-9 7(LC 13) _C 24)), 11=Mechanical				
FORCES. (lb) - Max. TOP CHORD 1-2=- 8-10 BOT CHORD 1-16= WEBS 2-16= 7-14=	Comp./Max. Ten All forc -1428/333, 2-4=-1209/303,)=-434/175, 10-11=-666/19 =-265/1238, 15-16=-122/82 =-323/205, 4-16=-67/465, 4 =-1066/307, 7-13=-140/486	es 250 (lb) or less 4-5=-550/204, 5-6 7 28, 13-14=-431/284 1-15=-600/264, 6-1 6, 8-13=-605/254, 8	except when shown =-427/220, 6-7=-20, I, 11-12=-111/541 5=-136/817, 6-14=- 3-12=-59/493, 10-12	I. (690, 7-8=-20/536, 1247/343, =-323/208				
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) exposed;C-C for me 3) Provide adequate dr 4) This truss has been 5) * This truss has been will fit between the b 6) Refer to girder(s) for 7) Provide mechanical 11=107. 8) H10A Simpson Stron for uplift only and do 9) One H2.5A Simpsor connection is for upl 10) Graphical purlin rep 	e loads have been consider /ult=130mph (3-second gus gable end zone and C-C E mbers and forces & MWFF rainage to prevent water po designed for a 10.0 psf bo n designed for a live load c ootom chord and any other r truss to truss connections connection (by others) of t ng-Tie connectors recomm bes not consider lateral force n Strong-Tie connectors red lift only and does not conside presentation does not depi	red for this design. st) Vasd=103mph; xterior(2) zone; cc RS for reactions sh onding. ttom chord live loa of 20.0psf on the bo members, with BC rruss to bearing pla ended to connect res. commended to cor der lateral forces. ct the size or the o	TCDL=6.0psf; BCD intilever left and righ own; Lumber DOL= d nonconcurrent wito totom chord in all are CDL = 10.0psf. te capable of withsta truss to bearing wall inect truss to bearing rientation of the purl	L=6.0psf; h=25ft; C tt exposed ; end ver 1.60 plate grip DOL h any other live loar eas where a rectan anding 100 lb uplift s due to UPLIFT at g walls due to UPLI in along the top and	at. II; Exp B; tical left and =1.60 ds. gle 3-6-0 tall at joint(s) ex jt(s) 14. This FT at jt(s) 1. d/or bottom o	; Enclosed; d right l by 2-0-0 wide ccept (jt=lb) s connection is . This chord.	Marce Marce Marce Marce Marce Marce Marce	SEAL 27687

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

 	9-8-6	19-0-0	25-0-0	25-8-0	34-3-10	43-8-12				
Plate Offsets (X,Y)	[10:0-0-0,0-0-14]	0010	000	000	0110	002				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2- Plate Grip DOL 1. Lumber DOL 1. Rep Stress Incr Y Code IRC2015/TPI201	0-0 CSI. 15 TC 0.57 15 BC 0.88 ES WB 0.79 4 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.22 14-16 -0.35 14-16 0.03 13	l/defl L/d >999 240 >854 180 s n/a n/a	PLATES MT20 Weight: 241 lb	GRIP 244/190 FT = 20%			
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP WEDGE Right: 2x4 SP No.3 REACTIONS. (size Max Ho Max Up Max G	No.2 No.2 No.3 e) 1=0-3-8, 13=(0-3-8 + H10 prz 1=160(LC 12) plift 1=-112(LC 12), 13=-174(I rav 1=837(LC 23), 13=2291(L	A Simpson Strong-Tie) (req. 0-3-9) .C 12), 10=-103(LC 13) .C 2), 10=529(LC 24)	BRACING TOP CHOF BOT CHOF WEBS), 10=Mechanical	RD Struc excep 2-0-0 RD Rigid 6-0-0 1 Rov	tural wood sheathing o ot oc purlins (10-0-0 ma ceiling directly applied oc bracing: 11-13. v at midpt	directly applied or 4-3-12 x.): 5-6. d or 10-0-0 oc bracing, E 4-14, 5-13, 6-13, 7-13	oc purlins, Except:			
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1350/308, 2-4=-1089/270, 4-5=-291/161, 5-6=0/579, 6-7=-43/706, 7-9=-427/161, 9-10=-701/188 BOT CHORD 1-16=-267/1162, 14-16=-101/663, 13-14=-15/258, 10-11=-93/565 WEBS 2-16=-386/244, 4-16=-71/581, 4-14=-708/300, 5-14=-129/754, 5-13=-1192/276, 6-13=-628/178, 7-13=-711/301, 7-11=-69/571, 9-11=-380/243										
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) exposed;C-C for mer 3) Provide adequate dri: 4) This truss has been 4) This truss has been 6) Refer to girder(s) for 7) Provide mechanical of 10=103. 8) H10A Simpson Stror for uplift only and doo 9) One H2.5A Simpson connection is for upli 10) Graphical purlin rep 	loads have been considered ult=130mph (3-second gust) \ gable end zone and C-C Exte mbers and forces & MWFRS I ainage to prevent water pondi designed for a 10.0 psf botton designed for a live load of 20 ottom chord and any other me truss to truss connections. connection (by others) of truss ng-Tie connectors recommendes not consider lateral forces. Strong-Tie connectors recom ft only and does not consider presentation does not depict th	for this design. /asd=103mph; TCDL=6.0psf; BCDL rior(2) zone; cantilever left and right or reactions shown; Lumber DOL=1 ng. i chord live load nonconcurrent with 0.0psf on the bottom chord in all are imbers, with BCDL = 10.0psf. Is to bearing plate capable of withsta led to connect truss to bearing walks mended to connect truss to bearing lateral forces. the size or the orientation of the purli	=6.0psf; h=25ft; i exposed ; end vi .60 plate grip DC an any other live loa as where a rectain unding 100 lb uplif s due to UPLIFT a g walls due to UPLI n along the top an	Cat. II; Exp B; ertical left and JL=1.60 ads. ngle 3-6-0 tall ft at joint(s) ex at jt(s) 13. This LIFT at jt(s) 1. nd/or bottom c	Enclosed; right by 2-0-0 wide cept (jt=lb) s connection is This thord.	THE REAL STATE	SEAL 27687			

March 17,2020

TREERING BY A MITCH Affiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	7-5-13	14-6-15	21-8-0	22-4 ₁ 0 25-6-4	34-6-12	43-8-12	
I	7-5-13	7-1-1	7-1-1	0-8-0 3-2-4	9-0-8	9-2-0	
Plate Offsets (X,Y)-	- [6:0-2-12,0-4-0]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015	2-0-0 1.15 1.15 YES /TPI2014	CSI. TC 0.70 BC 0.69 WB 0.85 Matrix-MS	DEFL. i Vert(LL) -0.22 Vert(CT) -0.32 Horz(CT) 0.03	n (loc) I/defl L/d 2 11-13 >999 240 2 11-13 >685 180 5 10 n/a n/a	PLATES GRI MT20 244, Weight: 263 lb F⊺	P ′190 Г = 20%
LUMBER- TOP CHORD 2x6 SP No.2 *Except* 3-5,1-3: 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3				BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing dir 2-0-0 oc purlins (6-0-0 max.): Rigid ceiling directly applied o 1 Row at midpt 4	ectly applied or 3-6-8 oc pur 5-6. r 6-0-0 oc bracing. -14, 7-13, 6-13	lins, except

REACTIONS. (size) 1=0-3-8, 13=0-3-8, 10=Mechanical Max Horz 1=181(LC 12) Max Uplift 1=-152(LC 12), 13=-195(LC 13), 10=-89(LC 13) Max Grav 1=969(LC 23), 13=1979(LC 2), 10=595(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 1-2=-1647/370, 2-4=-1001/294, 4-5=-350/226, 5-6=-314/273, 6-7=0/396, 7-9=-621/237, 9-10=-800/211
- BOT CHORD $1\text{-}17\text{=-}331/1396, \, 16\text{-}17\text{=-}331/1396, \, 14\text{-}16\text{=-}146/813, \, 13\text{-}14\text{=-}15/279, \, 10\text{-}11\text{=-}99/676$ WEBS 2-17=0/303, 2-16=-667/254, 4-16=-29/537, 4-14=-876/317, 5-14=-173/734, 7-13=-700/337, 7-11=-152/691, 9-11=-436/269, 6-13=-1295/268

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 13. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 17,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

5x9 =

32-8-0

4x8 =

37-11-10

2x4 ||

43-4-12

4x4 =

	3-4-0 3-3-10	1-4-3	1-2	-15	1-4-3	3-3-10 3-	5-2
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/1	2-0-0 C: 1.15 TC 1.15 BC YES W Pl2014 M	SI. C 0.93 C 0.74 B 0.53 atrix-MS	DEFL. in Vert(LL) -0.24 Vert(CT) -0.49 Horz(CT) 0.13	(loc) l/defl L/d 13-14 >999 240 13-14 >999 180 9 n/a n/a	PLATES MT20 Weight: 263 lb	GRIP 244/190 FT = 20%
LUMBER- FOP CHORD 2x4 3-5 BOT CHORD 2x6 WEBS 2x4	SP No.2 *Except* 5-7: 2x4 SP No.1 5 SP No.2 SP No.3			BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing of except 2-0-0 oc purlins (2-2-0 max. Rigid ceiling directly applied 1 Row at midot	lirectly applied or 2-10-9): 3-7. I or 9-6-8 oc bracing. 4-16. 4-13. 6-11	oc purlins,

25-3-7

REACTIONS. (size) 1=Mechanical, 9=Mechanical Max Horz 1=-89(LC 13)

Max Uplift 1=-137(LC 9), 9=-137(LC 8) Max Grav 1=1736(LC 1), 9=1736(LC 1)

2x4 ||

10-8-0

4x6 =

5-4-6

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

5x9 =

18-0-9

2x4 ||

4x8 =

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=137, 9=137.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

4x6 =

March 17,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILER KETEKERICE FAGE MILETATION, INVERTIGATION AND INVERTI AND INVERTIGATION AND INVERTIGATION AND INVERTICAL AND IN fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1-2=-3224/706, 2-3=-2966/680, 3-4=-2585/647, 4-6=-3456/821, 6-7=-2594/650, 7-8=-2978/682, 8-9=-3264/715 BOT CHORD 1-17=-558/2819, 16-17=-558/2819, 14-16=-598/3454, 13-14=-598/3454, 11-13=-598/3456, 10-11=-566/2856, 9-10=-566/2856 WEBS 2-16=-260/168, 3-16=-128/924, 4-16=-1166/240, 4-14=0/293, 6-13=0/292, 6-11=-1157/238, 7-11=-129/930, 8-11=-283/171

F	6	i-8-6	13-4-0 6-7-10		21-8-0 8-4-0		30-0-0 8-4-0			36-7-10 6-7-10	43-4-	2
LOADING (psf TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	f) D D O * D	SPACING- Plate Grip DO Lumber DOL Rep Stress Ir Code IRC20	2-0-0 DL 1.15 . 1.15 nor YES 15/TPI2014	CSI. TC BC WB Matrix	0.97 0.66 0.52 ⊶MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.41 0.12	(loc) 13 11-13 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 266 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 DOP CHORD Structural wood sheathing directly applied, except 2-0-0 oc purlins (3-3-3 max.): 3-7. WEBS 2x4 SP No.3 BOT CHORD Rigid ceiling directly applied or 9-9-9 oc bracing. WEBS REACTIONS. (size) 1=Mechanical, 9=Mechanical Max Horz												
	Max Grav 1=1736(LC 1), 9=1736(LC 1)											
FORCES. (lb) TOP CHORD) - Max. (1-2=-3 7-8=-2 1-16	Comp./Max. Ten / 8228/726, 2-3=-276 2775/669, 8-9=-325 -560/2812, 15-16	All forces 250 (lb) or 8/668, 3-4=-2386/64 8/733 560/2812, 13-154/	less except 4, 4-6=-280	when shown. 1/712, 6-7=-2	391/645, 3 10-11567/28/	11					
WEBS	9-10= 9-10= 2-15=- 8-11=-	-567/2841 -478/223, 3-15=-12 -503/229	8/866, 4-15=-707/18	1, 6-11=-70	2/181, 7-11=-	128/870,	÷1,					
NOTES- 1) Unbalanced 2) Wind: ASCE MWFRS (en exposed;C-O 3) Provide adeo	roof live 7-10; Vu velope) g for men quate dra	loads have been co ult=130mph (3-secc gable end zone and nbers and forces & ainage to prevent w	onsidered for this dea ond gust) Vasd=103r I C-C Exterior(2) zon MWFRS for reaction ater ponding.	sign. nph; TCDL= e; cantilever is shown; Lu	6.0psf; BCDL left and right umber DOL=1	=6.0psf; h=25ft; C exposed ; end ve .60 plate grip DO	Cat. II; E: ertical lef L=1.60	xp B; Er it and rig	nclosed; ght			

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=135, 9=136.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 17,2020

818 Soundside Road Edenton, NC 27932

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. WARNING - Verify design parameters and KEAD NOTES ON THIS AND INCLUDED MITER KETERENCE PAGE MIT-14's rev. 10/04/2013 BETORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	L	8-0-6	16-0-0		21-8-0		27-4	1-0		35	-3-10		43-4-12		
	1	8-0-6	7-11-10	1	5-8-0		5-8	-0	1	7-1	1-10		8-1-2	1	
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Ind Code IRC201	2-0-0 L 1.15 1.15 cr YES 5/TPI2014	CSI. TC BC WB Matri	0.50 0.70 0.57 x-MS		DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.36 0.11	(loc) 15 15 11	l/defl >999 >999 n/a	L/d 240 180 n/a		PLATES MT20 Weight: 284 lb	GRIP 244/190 FT = 20%	6
LUMBER- TOP CHOR BOT CHOR WEBS	UMBER- OP CHORD 2x4 SP No.2 OT CHORD 2x6 SP No.2 VEBS 2x4 SP No.3 REACTIONS. (size) 1=Mechanical, 11=Mechanical Max Horz 1=-134(LC 13)							RD RD	Structu except 2-0-0 o Rigid c 1 Row	ral wood c purlins eiling dire at midpt	sheathing di (3-6-11 max ectly applied	irectly a): 5-7. or 9-4-6 6-16, 6-	pplied or 2-10-6 6 oc bracing. 14	oc purlins,	
REACTION	EACTIONS. (size) 1=Mechanical, 11=Mechanical Max Horz 1=-134(LC 13) Max Uplift 1=-161(LC 12), 11=-161(LC 13) Max Grav 1=1736(LC 1), 11=1736(LC 1)														
FORCES. TOP CHOR	ORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. OP CHORD 1-2=-3258/765, 2-4=-3049/736, 4-5=-2179/641, 6-7=-2182/642,														
BOT CHOR	D 1-18= 11-12	-610/2847, 16-18=-4 2=-616/2875	65/2533, 15-16=-3	46/2379, 14	-15=-346/237	9, 12-	-14=-468/254	45,							
WEBS	2-18= 6-15= 10-12	-259/190, 4-18=-27/3 0/260, 6-14=-460/124 =-267/192	880, 4-16=-511/234 8, 7-14=-154/840, 8	ŀ, 5-16=-154 3-14=-523/2	/840, 6-16=-4 37, 8-12=-32	464/12 /398,	28,								
NOTES- 1) Unbalana 2) Wind: AS MWFRS exposed 3) Provide a 4) This trus 5) * This tru will fit be 6) Refer to 7) Provide n 1=161, 1	ced roof live GCE 7-10; V (envelope) (C-C for mer adequate dra s has been ss has been tween the bo girder(s) for mechanical d 1=161.	loads have been cor ult=130mph (3-secon gable end zone and (mbers and forces & N ainage to prevent wa designed for a 10.0 p n designed for a live I ottom chord and any truss to truss connec connection (by others	nsidered for this de Id gust) Vasd=103r C-C Exterior(2) zor IWFRS for reaction ter ponding. sf bottom chord liv oad of 20.0psf on t other members, wittions. s) of truss to bearin	sign. nph; TCDL= ie; cantileve ns shown; Li e load nonco he bottom c th BCDL = 1 g plate capa	-6.0psf; BCDI r left and righ umber DOL= oncurrent with hord in all are 10.0psf. able of withsta	_=6.0p t expo 1.60 p n any eas wh anding	osf; h=25ft; (ised ; end ve late grip DO other live loa here a rectar g 100 lb uplif	Cat. II; E ertical le L=1.60 ids. igle 3-6 : at joint	Exp B; E ft and ri -0 tall b <u>r</u> t(s) exce	nclosed; ght y 2-0-0 w ept (jt=lb)	ide		NULL OF CE	CAR ESSIS	

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 17,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	9-4-6 9-4-6	18-8-0 9-3-10)	24-8-0 6-0-0	+	3	3-11-10 9-3-10		43-4-12 9-5-2	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 YES I2014	CSI. TC 0.74 BC 0.68 WB 0.29 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.42 0.11	(loc) 11-13 11-13 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 274 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x BOT CHORD 2x WEBS 2x	4 SP No.2 6 SP No.2 4 SP No.3			BRACING- TOP CHORI BOT CHORI WEBS	D	Structura except 2-0-0 oc Rigid cei 1 Row a	al wood s purlins (3 iling direc t midpt	heathing dire 3-0-7 max.): { tly applied or 4-'	octly applied or 2-10-0 5-6. • 9-3-11 oc bracing. 14. 6-14. 7-13	oc purlins,
REACTIONS. M M	(size) 1=Mechanical, 10=Me lax Horz 1=-156(LC 13) lax Uplift 1=-183(LC 12), 10=-1 lax Grav 1=1736(LC 1), 10=173	echanical 84(LC 13) 36(LC 1)							.,	
FORCES. (lb) - T TOP CHORD BOT CHORD WEBS	Max. Comp./Max. Ten All forc 1-2=-3238/783, 2-4=-2985/747, 7-9=-3006/752, 9-10=-3261/788 1-16=-614/2822, 14-16=-438/24 2-16=-323/226, 4-16=-41/490, 4 7-13=-648/283, 7-11=-46/508, §	es 250 (lb) or less e; 4-5=-2299/665, 5-6= 3 416, 13-14=-244/199 4-14=-637/281, 5-14= 9-11=-330/228	xcept when shown. =-1982/640, 6-7=-23 5, 11-13=-440/2424 =-119/682, 6-13=-11	06/666, , 10-11=-620/284 9/713,	5					
NOTES- 1) Unbalanced roc 2) Wind: ASCE 7- MW/ERS (anyel)	of live loads have been conside 10; Vult=130mph (3-second guants) able end cone and C-C F	red for this design. st) Vasd=103mph; T(Exterior(2) zone: can	CDL=6.0psf; BCDL=	=6.0psf; h=25ft; C	at. II; E	Exp B; En	closed;			

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=183, 10=184.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 17,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

March 17,2020

818 Soundside Road Edenton, NC 27932

📣 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	148.1869.D.EXT PORCH	
						140646327
23574A	HG1	HIP GIRDER	1	2		
				_	Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8.	330 s Mar	10 2020 MiTek Industries, Inc. Tue Mar 17 11:03:56 2020	Page 2

8.330 s Mar 10 2020 MiTek Industries, Inc. Tue Mar 17 11:03:56 2020 Page 2 ID:?V5uziKnVJbk9pKjzX0hsjzaQYs-ig_UKopJ3sH06kIF5oTqLrzFPCE3sYpqksjVWwza2YH

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-10=-60, 10-12=-60, 19-22=-20

Concentrated Loads (Ib)

Vert: 3=-95(F) 18=-59(F) 9=-95(F) 25=-95(F) 26=-95(F) 27=-95(F) 28=-95(F) 29=-95(F) 30=-95(F) 31=-95(F) 32=-95(F) 33=-95(F) 33

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	148.1869.D.EXT PORCH	
					140646	46328
23574A	HG6	Hip Girder	1	2		
				_	Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8.	330 s Mar	10 2020 MiTek Industries, Inc. Tue Mar 17 11:04:04 2020 Page 2	2

8.330 s Mar 10 2020 MiTek Industries, Inc. Tue Mar 17 11:04:04 2020 Page 2 ID:?V5uziKnVJbk9pKjzX0hsjzaQYs-TDTW?XwKBKHt4yNoZUcigXIeCQuwj6o0Z6fwoSza2Y9

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-7=-60, 7-9=-60, 19-22=-20

Concentrated Loads (lb)

Vert: 7=-95(B) 17=-205(B) 5=-95(B) 14=-59(B) 11=-59(B) 13=-59(B) 27=-95(B) 28=-95(B) 29=-95(B) 30=-95(B) 31=-95(B) 32=-95(B) 33=-95(B) 33=-95(B) 35=-95(B) 35=-95(B) 36=-95(B) 36=-95(B) 37=-95(B) 38=-95(B) 38=-95(B) 40=-216(B) 41=-216(B) 42=-160(B) 43=-59(B) 44=-59(B) 45=-59(B) 46=-59(B) 47=-59(B) 48=-59(B) 49=-59(B) 50=-59(B) 50=-59(B) 51=-59(B) 52=-59(B) 53=-59(B) 54=-59(B) 55=-59(B) 56=-59(B) 56=-59(B

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		Γ		6-0-0			1			
Plate Offsets (X,Y)	[2:0-0-8,0-0-5], [2:0-4-8,0-0-	11]								
LOADING (psf) TCLL 20.0	SPACING- 2 Plate Grip DOL	-0-0 1.15	CSI. TC 0.54	DEFL. Vert(LL)	in 0.09	(loc) 4-7	l/defl >781	L/d 240	PLATES MT20	GRIP 244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL Rep Stress Incr	1.15 YES	BC 0.43 WB 0.00	Vert(CT) Horz(CT)	-0.14 0.02	4-7 3	>526 n/a	180 n/a		
BCDL 10.0	Code IRC2015/TPI20)14	Matrix-MP						Weight: 22 lb	F1 = 20%

6-0-0

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE Left: 2x4 SP No.3 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Len. 2x4 SF IN

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=172(LC 12) Max Uplift 3=-106(LC 12), 2=-6(LC 12) Max Grav 3=168(LC 19), 2=294(LC 1), 4=111(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=106.

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

March 17,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3

2-0-0 oc purlins: 3-4. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=Mechanical Max Horz 2=166(LC 12) Max Uplift 4=-4(LC 8), 2=-10(LC 12), 5=-89(LC 12) Max Grav 4=9(LC 1), 2=294(LC 1), 5=236(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.

8) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.

9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 17,2020

818 Soundside Road Edenton, NC 27932

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REFERENCE FACE INTERCIPTION TO THE INTERCEPTION OF THE INTERCEPTION O fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

¹⁾ Unbalanced roof live loads have been considered for this design.

			<u>4-1-11</u> 4-1-11				<u>6-0-0</u> 1-10-5			
Plate Offsets (X,Y)	[2:0-0-8,0-0-5], [2:0-4-8,0-0-	·11]								
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC 0.34	Vert(LL)	0.12	6-9	>617	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC 0.70	Vert(CT)	-0.19	6-9	>375	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.04	Horz(CT)	0.13	4	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2	014	Matrix-MP						Weight: 26 lb	FT = 20%
LUMBER-				BRACING-						
TOP CHORD 2x4 SP	P No.2			TOP CHOP	RD	Structu	iral wood	sheathing di	rectly applied or 6-0-0	oc purlins, except

 IOP CHORD
 2x4 SP No.2
 IOP CHORD
 Structural wood sneatning directly applied of 6-0-0 oc purlins, except

 BOT CHORD
 2x4 SP No.2
 2-0-0 oc purlins: 3-4.

 WEBS
 2x4 SP No.3
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=Mechanical Max Horz 2=127(LC 12) Max Uplift 4=-24(LC 8), 2=-29(LC 12), 5=-38(LC 12) Max Grav 4=54(LC 1), 2=294(LC 1), 5=180(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
- One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This
 connection is for uplift only and does not consider lateral forces.
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 17,2020

TERGINEERING BY TEREENCO AMITEK Atfiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offse	ts (X Y)	[2.0.4.8 0.0.11] [2.0.0.8 0.0	-51 [3·0-3-	2-7 2-7 12 0-2-01	7-11 7-11		4-9- 2-2-	14 -3		6-0-0 1-2-2	—	
	ιs (Λ, Τ)	[2.0-4-0,0-0-11], [2.0-0-0,0-0	-5], [3.0-3-	-12,0-2-0]								
JADING	(psf)	SPACING- 2	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL	20.0	Plate Grip DOL	1.15	TC	0.51	Vert(LL)	0.07	8-11	>999	240	MT20	244/190
DL	10.0	Lumber DOL	1.15	BC	0.39	Vert(CT)	-0.12	8-11	>602	180		
LL	0.0 *	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.02	2	n/a	n/a		
CDL	10.0	Code IRC2015/TPI20	014	Matrix	-MP						Weight: 25 lb	FT = 20%
UMBER-	RD 2x4 SF	P No.2				BRACING- TOP CHOR	2D	Structu	ral wood	sheathing dired	ctly applied or 6-0-0	oc purlins, except

BOT CHORD

2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 8=Mechanical

Max Horz 2=106(LC 12) Max Uplift 2=-41(LC 12), 8=-64(LC 12) Max Grav 2=288(LC 1), 8=236(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) Refer to girder(s) for truss to truss connections.
- 7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 17,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

¹⁾ Unbalanced roof live loads have been considered for this design.

		1-1-1'	1 1 2-5-2		E E	6-0-0			
		1-1-1	1 1-3-7		3	-6-14			
Plate Offsets (X,Y)	[2:Edge,0-2-1], [2:0-4-8,0-0-	11], [2:0-0-8,0-0)-5], [3:0-2-0,0-2-3]						
LOADING (psf)	SPACING- 2	2-0-0	CSI.	DEFL.	in (loc) l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC 0.55	Vert(LL)	0.06 8-1	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC 0.42	Vert(CT) -	-0.11 8-1	>613	180		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.04	Horz(CT)	0.02	2 n/a	n/a		
BCDL 10.0	Code IRC2015/TPI20	014	Matrix-MP					Weight: 25 lb	FT = 20%
LUMBER-	P No 2	I	L	BRACING-) Struc	tural wood	sheathing di	rectly applied or 6-0-0	oc purlins except

BOT CHORD

2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3WEDGELeft: 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 8=Mechanical

Max Horz 2=106(LC 12) Max Uplift 2=-41(LC 12), 8=-64(LC 12) Max Grav 2=288(LC 1), 8=236(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) Refer to girder(s) for truss to truss connections.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This
 connection is for uplift only and does not consider lateral forces.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 17,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

¹⁾ Unbalanced roof live loads have been considered for this design.

			6-0-0						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.53 BC 0.42 WB 0.00 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (0.07 -0.13 0.00	(loc) 4-7 4-7 2	l/defl >999 >551 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=108(LC 12)

Max Uplift 3=-76(LC 12), 2=-43(LC 12) Max Grav 3=155(LC 1), 2=294(LC 1), 4=110(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 17,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

AN GARCI

March 17,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		3-	-0-0 -0-0			6-0-0 8-0-0			
late Offsets (X,Y)	[2:0-0-8,0-0-5], [2:0-4-8,0-0-1								
_OADING (psf)	SPACING- 2-	0-0 CSI.	DEFI	L. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1	.15 TC	0.12 Vert(LL) -0.01	7-8	>999	240	MT20	244/190
CDL 10.0	Lumber DOL 1	.15 BC	0.20 Vert(CT) -0.01	7-8	>999	180		
CLL 0.0 *	Rep Stress Incr	YES WB	0.09 Horz	(CT) 0.00	2	n/a	n/a		
3CDL 10.0	Code IRC2015/TPI20	14 Matri	ix-MP					Weight: 32 lb	FT = 20%
	P No.2		BRAC TOP	CING- CHORD	Structu	ral wood	sheathing dir	ectly applied or 6-0-0	oc purlins,

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3

REACTIONS. 5=Mechanical, 2=0-3-8, 6=Mechanical (size) Max Horz 2=96(LC 11) Max Uplift 5=-9(LC 12), 2=-52(LC 12), 6=-48(LC 12) Max Grav 5=16(LC 1), 2=294(LC 1), 6=218(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 5-11-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 6.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 17,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		\vdash		4-6-0 4-6-0				5-11-4 1-5-4	6-0 ₁ 0 0-0-12		
Plate Offsets (X,Y)	[2:0-0-8,0-0-5], [2:0-4-8,0-0	-11]									
LOADING(psf)TCLL20.0TCDL10.0BCLL0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.37 0.60 0.05	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.11 -0.17 0.10	(loc) 6-9 6-9 4	l/defl >645 >408 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2	2014	Matrix	(-MP						Weight: 26 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SP	No.2				BRACING- TOP CHOF	RD	Structu	ral wood :	sheathing dir	ectly applied or 6-0-0	oc purlins, except

BOT CHORD

2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 WEDGE
 Left: 2x4 SP No.3

REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=Mechanical Max Horz 2=136(LC 12) Max Uplift 4=-19(LC 8), 2=-25(LC 12), 5=-49(LC 12) Max Grav 4=43(LC 1), 2=294(LC 1), 5=191(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
- One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This
 connection is for uplift only and does not consider lateral forces.
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 17,2020

ENGINEERING BY EREPACED A MITEK Atfiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

¹⁾ Unbalanced roof live loads have been considered for this design.

Plate Off	sets (X,Y)	[3:0-2-0,0-2-8]		004		120				110		
	G (nsf)	SPACING-	2-0-0	CSI		DEEL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	-0.01	5-8	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.29	Vert(CT)	-0.01	5-8	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	912014	Matri	x-MP						Weight: 9 lb	FT = 20%
	,			I		PRACINC						

TOP CHORD

BOT CHORD

2-0-0 oc purlins: 3-4.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. 2=0-3-0, 5=Mechanical (size) Max Horz 2=30(LC 12) Max Uplift 2=-26(LC 12), 5=-30(LC 9)

Max Grav 2=153(LC 1), 5=86(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members. 6) Refer to girder(s) for truss to truss connections.

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

8) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 2-4-0 oc purlins, except

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 17,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

11	IM	RF	R-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-4-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-0, 4=Mechanical

Max Horz 2=58(LC 12)

Max Uplift 3=-30(LC 12), 2=-26(LC 12) Max Grav 3=54(LC 1), 2=153(LC 1), 4=40(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

March 17,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

REACTIONS. 3=Mechanical, 2=0-3-8, 4=Mechanical (size)

Max Horz 2=58(LC 12)

Max Uplift 3=-30(LC 12), 2=-26(LC 12) Max Grav 3=54(LC 1), 2=153(LC 1), 4=40(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Structural wood sheathing directly applied or 2-4-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

March 17,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. 10/03/2013 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		1-2-	1-2-10 1-1-6					-0		
Plate Offsets (X,Y)	[3:0-2-0,0-2-8]									
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.23 BC 0.30 WB 0.00 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (lo -0.01 5 -0.01 5 0.00	ic) l/defl i-8 >999 i-8 >999 2 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%		
LUMBER- TOP CHORD 2x4 SF	P No.2	1	BRACING- TOP CHOR	D Stru	uctural wood	sheathing dir	rectly applied or 2-4-	0 oc purlins, except		

BOT CHORD

2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. 2=0-3-8, 5=Mechanical (size) Max Horz 2=28(LC 12) Max Uplift 2=-34(LC 12), 5=-28(LC 8) Max Grav 2=153(LC 1), 5=87(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members. 6) Refer to girder(s) for truss to truss connections.

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

8) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 17,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0-0-4 7-9	-10	17-4-9 9-6-15	26-9-12	2	<u>33-5-3</u> 6-7-7	40-2	-3 7-	<u>3-0-0</u>
Plate Offsets (X,Y)	[3:0-3-0,0-2-4], [10:0-3	6-0,0-2-4]			011		· ·	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015	2-0-0 1.15 1.15 YES /TPI2014	CSI. TC 0.81 BC 0.86 WB 0.74 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.15 20-23 -0.31 18-20 0.05 16	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 220	GRIP 244/190 Ib FT = 20%
LUMBER- TOP CHORD 2x4 S 1-3,10 BOT CHORD 2x4 S WEBS 2x4 S REACTIONS. (siz Max h Max 0 Max 0	P No.2 *Except*)-12: 2x4 SP No.1 P No.2 P No.3 ze) 2=0-3-0, 16=(0-3-6 Horz 2=-61(LC 13) Uplift 2=-123(LC 8), 16= Grav 2=947(LC 23), 16=	3 + H10A Simpsor 380(LC 8), 11=-1 =2337(LC 1), 11=€	n Strong-Tie) (req. 0-3-11 12(LC 13) 579(LC 24)	BRACING- TOP CHORI BOT CHORI WEBS I), 11=0-3-8	0 Structu 2-0-0 o 0 Rigid ca 4-7-10 1 Row a	ral wood sheathir c purlins (4-4-3 m eiling directly app oc bracing: 14-16 at midpt	ng directly applied or 2-2 hax.): 3-10. lied or 10-0-0 oc bracing ;. 5-16	2-0 oc purlins, except g, Except:
FORCES. (lb) - Max TOP CHORD 2-3= 9-10 BOT CHORD 2-20 11-1 WEBS 3-20 7-14	Comp./Max. Ten All 1668/356, 3-4=-1475/3)=-827/251, 10-11=-960)=-217/1466, 18-20=-25 3=-103/831)=0/314, 4-18=-586/226, !=-363/1788, 9-14=-704,	forces 250 (lb) or 873, 4-5=-1047/25 /226 1/1451, 16-18=-82 , 5-18=-51/840, 5- /243, 9-13=-121/6	less except when shown. 2, 5-7=-182/1390, 7-9=-20 2/463, 14-16=-1390/339, 1 16=-2057/444, 7-16=-118 57	63/147, 13-14=-2/263, 99/339,				
 No les- 1) Unbalanced roof liv 2) Wind: ASCE 7-10; MWFRS (envelope exposed;C-C for m 3) Provide adequate of 4) All plates are 3x6 M 5) This truss has beer 6) * This truss has beer 6) * This truss has beer 7) H10A Simpson Stra for uplift only and d 8) One H2.5A Simpso connection is for up 9) Graphical purlin rep 	ve loads have been cons Vult=130mph (3-second) gable end zone and C- embers and forces & MV drainage to prevent wate /T20 unless otherwise in n designed for a 10.0 ps en designed for a 10.0 ps en designed for a 10.0 ps en designed for a 110.0 ps obttom chord and any o ong-Tie connectors reco loes not consider lateral on Strong-Tie connectors plift only and does not des presentation does not des	sidered for this des I gust) Vasd=103n -C Exterior(2) zon WFRS for reaction er ponding. Indicated. f bottom chord live ad of 20.0psf on th ther members. Immended to com forces. s recommended to onsider lateral force epict the size or th	sign. hph; TCDL=6.0psf; BCDL e; cantilever left and right s shown; Lumber DOL=1 e load nonconcurrent with he bottom chord in all area nect truss to bearing walls o connect truss to bearing es. e orientation of the purlin	=6.0psf; h=25ft; C. exposed ; end ver .60 plate grip DOL any other live load as where a rectang due to UPLIFT at walls due to UPLI along the top and/	at. II; Exp B; E; tical left and rij =1.60 ls. le 3-6-0 tall by jt(s) 16. This c FT at jt(s) 2 an pr bottom chor	nclosed; ght / 2-0-0 wide connection is id 11. This rd.	HIN STATISTICS	SEAL 27687

March 17,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0-4-4	J-4-	13	12-3-9		19-9-4		20-9-12		34-3-0)	4	2-1-5	40-0-0
	0-0-4	5-4-	-9	6-10-12	I	7-5-11		7-0-8		7-11-1	0	7	′-9-14	5-4-13
Plate Offse	ets (X,	Y) [[3:0-2-12,0	0-0-12], [7:0-3-8	3,0-2-0], [10:0-	2-12,0-0-12]								
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 10.0	*	SP/ Plat Lun Rep Coo	ACING- te Grip DOL nber DOL o Stress Incr de IRC2015/TF	2-0-0 1.15 1.15 YES 12014	CSI. TC BC WB Matrix	0.80 0.79 0.88 x-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.42 0.08	(loc) 18-20 18-20 16	l/defl >999 >774 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 250 I	GRIP 244/190 b FT = 20%
LUMBER-	RD 2	2x6 SP 1-3.10-1	No.2 *Exc 12: 2x4 SF	cept* 2 No.2				BRACING- TOP CHOF	RD	Structu 2-0-0 o	ral wood s	sheathing dir 4-1-5 max.):	ectly applied or 3-9- 3-10.	4 oc purlins, except
BOT CHO WEBS	RD 2	2x4 SP 2x4 SP 7-14,10	No.2 No.3 *Exc -14: 2x4 S	cept* SP No.2				BOT CHOF WEBS	RD	Rigid c 8-7-10 4-0-0 c 1 Row	eiling dire oc bracing oc bracing: at midpt	ctly applied c g: 18-20 14-16. 4	-18, 10-14	Except:
REACTIO	NS.	(size	e) 2=0-3-	-0, 16=(0-3-8 +	H10A Simpso	n Strong-Tie) (req. 0-3	3-10), 11=0-3-8		2 Rows	s at 1/3 pts	5 5	-16	

24 0 0

Max Horz 2=-42(LC 17) Max Uplift 2=-142(LC 8), 16=-398(LC 8), 11=-96(LC 9) Max Grav 2=963(LC 23), 16=2292(LC 1), 11=697(LC 24) FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1952/397, 3-4=-2593/570, 4-5=-1265/308, 5-7=-291/1799, 7-9=-877/227, 9-10=-882/231, 10-11=-1268/257 BOT CHORD 2-21=-286/1765, 20-21=-290/1755, 18-20=-459/2588, 16-18=-200/1265, 14-16=-1799/396, 13-14=-169/1121, 11-13=-164/1132 WEBS 3-21=0/265, 3-20=-212/977, 4-18=-1385/270, 5-18=0/558, 5-16=-3169/616, 7-16=-1236/360, 7-14=-533/2733, 9-14=-475/227, 10-14=-274/47, 10-13=0/289

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 16. This connection is for uplift only and does not consider lateral forces.

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 11. This connection is for uplift only and does not consider lateral forces.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 17,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only with MiTek oconnectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 2214.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	148.1869.D.EXT PORCH				
					140	0646344			
23574A	PG3	Jack-Open Girder	1	1					
					Job Reference (optional)				
84 Components (Dunn),	Dunn, NC - 28334,		8.	330 s Mar	10 2020 MiTek Industries, Inc. Tue Mar 17 11:04:21 2020 Pa	ige 2			
		ID:0ckUA	ID:0ckUA53Thu5GUjfQqCaouPyZBFs-TU?xZL7?BYQTcaA33YPhs6VWsHj?CjjWUFHKuzza2Xu						

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-12=-60, 26-29=-20, 12-14=-60

Concentrated Loads (lb)

Vert: 3=-1(B) 5=-1(B) 19=-7(B) 8=-1(B) 12=-1(B) 25=-7(B) 15=-7(B) 10=-1(B) 17=-7(B) 11=-1(B) 16=-7(B) 9=-1(B) 4=-1(B) 24=-7(B) 21=-7(B) 7=-1(B) 6=-1(B) 23=-7(B) 32=-1(B) 33=-1(B) 33=-1(B) 35=-1(B) 35=-

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=167.

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 1 and 11. This connection is for uplift only and does not consider lateral forces.

March 17,2020

818 Soundside Road Edenton, NC 27932

📣 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1, 11, and 9. This connection is for uplift only and does not consider lateral forces.

March 17,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	<u>9-5-2</u> 9-5-2	+	21-8-0 12-2-14	20	3-10-7 7-2-7	+ 33-1 5-0	0-14)-7	36-0-1337-6-4	43-4-1	2 43-8-0 3 0-3-4
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 YES 1/2014	CSI. TC 0.85 BC 0.83 WB 0.70 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.24 14-16 -0.43 14-16 0.05 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PI M	ATES T20 eight: 264 lb	GRIP 244/190 FT = 20%

```
LUMBER-
```

TOP CHORD 2x4 SP No.2 2x6 SP No.2 BOT CHORD WEBS 2x4 SP No.3

BRACING-TOP CHORD BOT CHORD WEBS

Structural wood sheathing directly applied or 3-1-9 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing. 1 Row at midpt 4-14, 6-14, 6-12

REACTIONS. (size) 1=Mechanical, 11=0-3-8, 9=0-3-8 Max Horz 1=-202(LC 13) Max Uplift 1=-183(LC 12), 11=-240(LC 13), 9=-214(LC 26) Max Grav 1=1434(LC 1), 11=2214(LC 1), 9=55(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-2584/627, 2-4=-2393/647, 4-5=-1427/479, 5-6=-1429/482, 6-8=-742/207,

8-9-198/864

BOT CHORD $1 \text{-} 16 \text{=} \text{-} 440/2246, \, 14 \text{-} 16 \text{=} \text{-} 245/1715, \, 12 \text{-} 14 \text{=} \text{-} 108/1126, \, 11 \text{-} 12 \text{=} \text{-} 700/250, \, 9 \text{-} 11 \text{=} \text{-} 700/250$ WFBS 2-16=-369/259, 4-16=-113/681, 4-14=-776/360, 5-14=-223/882, 6-12=-1044/331, 8-11=-2131/540, 8-12=-216/1684

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 4) will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=183

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 11 and 9. This connection is for uplift only and does not consider lateral forces.

8) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

March 17,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right
- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

March 17,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 2234.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

March 17,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

March 17,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (size) 1=8-11-0, 3=8-11-0, 4=8-11-0 Max Horz 1=68(LC 9) Max Uplift 1=-40(LC 12), 3=-49(LC 13) Max Grav 1=178(LC 1), 3=178(LC 1), 4=304(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed;

- MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right
- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

SEAL 27687

March 17,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0-0 <u>-6</u> 0-0-6	6-	- <u>2-12</u> 5-2-6					
		C 51	DEEL in	(100)	l/dofl	L /d		CBIR
TCLL 20.0	Plate Grip DOL 1.15	TC 0.21	Vert(LL) n/a	(100)	n/a	999	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.12	Vert(CT) n/a	-	n/a	999		
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.03 Matrix-P	Horz(CT) 0.00	3	n/a	n/a	Weight: 21 lb	FT = 20%
LUMBER-			BRACING-					

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.3 2x4 SP No.3 BOT CHORD

2x4 SP No.3 OTHERS REACTIONS.

(size) 1=6-2-0, 3=6-2-0, 4=6-2-0 Max Horz 1=-43(LC 8) Max Uplift 1=-25(LC 12), 3=-31(LC 13) Max Grav 1=113(LC 1), 3=113(LC 1), 4=196(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed;

- MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right
- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

March 17.20 The second se AN GARC

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 17,2020

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. 10/03/2013 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.3 2x4 SP No.3 BOT CHORD

REACTIONS. 1=3-4-4, 3=3-4-4 (size) Max Horz 1=20(LC 11) Max Uplift 1=-11(LC 12), 3=-11(LC 13) Max Grav 1=98(LC 1), 3=98(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed;

- MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right
- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

SEA 2768 WGINES March 17,20° The second secon AN GARCIE

Structural wood sheathing directly applied or 3-5-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 17,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

				8-4-4								
LOADING (ps	sf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20	0.0	Plate Grip DOL	1.15	TC	0.35	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL 10	0.0	Lumber DOL	1.15	BC	0.15	Vert(CT)	n/a	-	n/a	999		
BCLL 0).0 *	Rep Stress Incr	YES	WB	0.06	Horz(CT)	-0.00	5	n/a	n/a		
BCDL 10	0.0	Code IRC2015/TF	912014	Matri	x-P						Weight: 38 lb	FT = 20%
LUMBER-				•		BRACING						

LUMBER-

 TOP CHORD
 2x4 SP No.3

 BOT CHORD
 2x4 SP No.3

 WEBS
 2x4 SP No.3

 OTHERS
 2x4 SP No.3

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 8-3-14.

(lb) - Max Horz 1=137(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 6 except 7=-138(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6 except 7=340(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-7=-275/191

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

March 17,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			6-10-4						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Peop Strass Incr. YES	CSI. TC 0.69 BC 0.28 WB 0.05	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	HORZ(CT)	0.00	4	n/a	n/a	Weight: 28 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x4 SP No.3

 BOT CHORD
 2x4 SP No.3

 WEBS
 2x4 SP No.3

 OTHERS
 2x4 SP No.3

REACTIONS. (size) 1=6-9-14, 4=6-9-14, 5=6-9-14

Max Horz 1=100(LC 9)

Max Uplift 1=-28(LC 12), 4=-33(LC 8), 5=-3(LC 12)

Max Grav 1=173(LC 1), 4=61(LC 20), 5=295(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Structural wood sheathing directly applied or 6-10-4 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

March 17,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

5-4-4										
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI. TC 0.29 BC 0.12	DEFL. Vert(LL) Vert(CT)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TF	912014	Matrix-P	Horz(CT)	0.00	4	n/a	n/a	Weight: 20 lb	FT = 20%
LUMBER-				BRACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.3 2x4 SP No.3 BOT CHORD 2x4 SP No.3 WEBS OTHERS 2x4 SP No.3

REACTIONS. (size) 1=5-3-14, 4=5-3-14, 5=5-3-14

Max Horz 1=62(LC 9)

Max Uplift 1=-22(LC 12), 4=-29(LC 13), 5=-1(LC 12) Max Grav 1=116(LC 1), 4=68(LC 20), 5=211(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Structural wood sheathing directly applied or 5-4-4 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

March 17,2020

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. 10/03/2013 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2x4 1/

2x4

Structural wood sheathing directly applied or 3-10-4 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

	0-Q ₁ 6 0-0-6	<u>3-10-4</u> 3-9-14	
Plate Offsets (X,Y)	[2:0-2-0,Edge]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. DEFL. in (loc) TC 0.07 Vert(LL) n/a - BC 0.19 Vert(CT) n/a - WB 0.00 Horz(CT) 0.00 3 Matrix-P Image: Comparison of the second	I/defl L/d PLATES GRIP n/a 999 MT20 244/190 n/a 999 MT20 244/190 n/a n/a Weight: 11 lb FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3

REACTIONS. 1=3-9-14, 3=3-9-14 (size) Max Horz 1=25(LC 9) Max Uplift 1=-13(LC 12), 3=-13(LC 13) Max Grav 1=123(LC 1), 3=123(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed;

- MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right
- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

SE 276 WGINE March 17,200 The second se AN GARCIE

March 17,2020

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. 10/03/2013 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0-010			42-10-13					
Plate Offsets (X,Y)	[3:0-3-0,0-2-4], [9:0-3-0,0-2-4]		42-10-3					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.23 BC 0.07 WB 0.08 Matrix-S	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 200 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x6 SP OTHERS 2x4 SP	No.2 No.2 No.3	·	BRACING- TOP CHORD BOT CHORD	Structura 2-0-0 oc Rigid cei	al wood s ; purlins (iling direc	sheathing dire 6-0-0 max.): 3 ctly applied or	ectly applied or 6-0-0 c 3-9. · 10-0-0 oc bracing.	oc purlins, except
REACTIONS. All be (lb) - Max He Max Up Max G FORCES. (lb) - Max. WEBS 8-14=	earings 42-9-10. orz 1=59(LC 12) plift All uplift 100 lb or less at joint(s) 1 13) rav All reactions 250 lb or less at joint(17=323(LC 23), 18=315(LC 1), 20= Comp./Max. Ten All forces 250 (lb) or -261/116, 4-20=-261/116, 2-22=-284/18	I, 13, 14, 16, 17, 18, 20, 2 ⁻ s) 1, 11 except 13=278(LC 343(LC 24), 21=278(LC 23 less except when shown. 2, 10-12=-284/182	1 except 22=-114(LC 12 C 24), 14=343(LC 23), 1 3), 22=393(LC 23), 12=3	2), 12=-11: 6=315(LC 393(LC 24	3(LC ; 1), ŧ)			
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) exposed;C-C for mei 3) Provide adequate dr 4) All plates are 2x4 MT 5) Gable requires contii 6) This truss has been will fit between the b 8) n/a	e loads have been considered for this de ult=130mph (3-second gust) Vasd=103r gable end zone and C-C Exterior(2) zor mbers and forces & MWFRS for reaction ainage to prevent water ponding. T20 unless otherwise indicated. nuous bottom chord bearing. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on t ottom chord and any other members.	sign. nph; TCDL=6.0psf; BCDL= e; cantilever left and right is shown; Lumber DOL=1. e load nonconcurrent with he bottom chord in all area	=6.0psf; h=25ft; Cat. II; I exposed ; end vertical le .60 plate grip DOL=1.60 any other live loads. as where a rectangle 3-6	Exp B; En əft and rigi ' 3-0 tall by	iclosed; iht 2-0-0 wir	de	NUNORTH	CAROL

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 17,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTPI1 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			38-1-3					1
Plate Offsets (X,Y)	[3:0-3-0,0-2-4], [9:0-3-0,0-2-4]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.52 BC 0.32 WB 0.09 Matrix-S	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.01	(loc) 1 - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 145 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S OTHERS 2x4 S	P No.2 P No.2 P No.3		BRACING- TOP CHORD BOT CHORD	Structu 2-0-0 o Rigid c	ral wood s c purlins (eiling dire	sheathing dire 10-0-0 max.) ctly applied o	ectly applied or 6-0-0 o : 3-9. r 6-0-0 oc bracing.	oc purlins, except

38-1-3

REACTIONS. All bearings 38-1-3.

(lb) - Max Horz 1=61(LC 12)

 Max Uplift
 All uplift 100 lb or less at joint(s) 1, 11, 16, 17, 19, 15, 13 except 20=-134(LC 12), 12=-131(LC 13)
 Max Grav
 All reactions 250 lb or less at joint(s) 1, 11 except 16=312(LC 24), 17=339(LC 23), 19=267(LC 24), 20=522(LC 1), 15=339(LC 24), 13=267(LC 23), 12=522(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

WEBS 5-17=-252/120, 2-20=-380/224, 7-15=-252/120, 10-12=-380/224

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) All plates are 1.5x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) n/a

9) n/a

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 17,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

						33-3-10						1	
Plate Offs	ets (X,Y)	[4:0-2-0,0-2-11], [8:0-2-0	,0-2-11]										
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TI	2-0-0 1.15 1.15 YES PI2014	CSI. TC (BC (WB (Matrix-S).20).13).07 S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 127 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2				BRACING- TOP CHOR	D	Structur 2-0-0 o	ral wood c purlins	sheathing dir (6-0-0 max.):	ectly applied or 6-0-0 c 4-8.	oc purlins, except			

33-3-10

TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except
BOT CHORD	2x4 SP No.2		2-0-0 oc purlins (6-0-0 max.): 4-8.
OTHERS	2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 33-3-10.

(lb) - Max Horz 1=61(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 16, 17, 19, 15, 13 except 20=-103(LC 12), 12=-105(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 11 except 16=320(LC 1), 17=325(LC 24), 19=296(LC 1), 20=360(LC 23), 15=325(LC 23), 13=296(LC 1), 12=360(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-20=-265/171, 10-12=-265/171

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) All plates are 1.5x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 7) will fit between the bottom chord and any other members.

8) n/a

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 17,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

I			28-6-0		
Plate Offsets (X,Y)	[3:0-2-0,0-2-11], [7:0-2-0,0-2-11]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.39 BC 0.24 WB 0.08 Matrix-S	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	n (loc) l/defl L/d a - n/a 999 a - n/a 999 D 9 n/a n/a	PLATES GRIP MT20 244/190 Weight: 106 lb FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S OTHERS 2x4 S	P No.2 P No.2 P No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d 2-0-0 oc purlins (10-0-0 max Rigid ceiling directly applied	rectly applied or 6-0-0 oc purlins, except .): 3-7. or 6-0-0 oc bracing.

28-6-0

REACTIONS. All bearings 28-6-0.

(lb) - Max Horz 1=61(LC 16)

Max Uplift All uplift 100 lb or less at joint(s) 1, 9, 13, 14, 11 except 15=-123(LC 12), 10=-122(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 9 except 13=348(LC 24), 14=273(LC 23), 15=461(LC 23), 11=273(LC 24), 10=461(LC 24)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

WEBS 5-13=-260/125, 2-15=-335/203, 8-10=-335/203

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) All plates are 1.5x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) n/a

9) n/a

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 17,2020

ENGINEERING BY AMITEK Affiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			23-8-6		
			23-8-6		
Plate Offsets (X,Y)	[4:0-2-0,0-2-11], [6:0-2-0,0-2-11]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.16 BC 0.11 WB 0.06 Matrix-S	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	n (loc) l/defl L/d n - n/a 999 n - n/a 999 9 n/a n/a	PLATES GRIP MT20 244/190 Weight: 86 lb FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S OTHERS 2x4 S	P No.2 P No.2 P No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire 2-0-0 oc purlins (6-0-0 max.): - Rigid ceiling directly applied o	ectly applied or 6-0-0 oc purlins, except 4-6. 10-0-0 oc bracing.

REACTIONS. All bearings 23-8-6. (lb) - Max Horz 1=61(LC 16)

Max Uplift All uplift 100 lb or less at joint(s) 12, 13, 14, 11, 10

Max Grav All reactions 250 lb or less at joint(s) 1, 9 except 12=288(LC 1), 13=303(LC 23), 14=318(LC 1), 11=303(LC 24), 10=318(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.

8) n/a

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 17,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0-0 <u>-10</u> 0-0-10		18-10-13 18-10-3	<u>3</u> 3						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.28 BC 0.17 WB 0.07 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (I n/a n/a 0.00	loc) l/ - - 5	/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 20%
LUMBER-			BRACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

REACTIONS. All bearings 18-9-10.

(lb) - Max Horz 1=-61(LC 17)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 9=-117(LC 12), 6=-117(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 8 except 9=424(LC 23), 6=424(LC 24)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 WEBS
 2-9=-313/192, 4-6=-313/192

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 17,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-TOP CHORD

BOT CHORD

LU	MB	ER-
----	----	-----

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD OTHERS

2x4 SP No.3

REACTIONS. 1=14-0-0, 3=14-0-0, 4=14-0-0 (size) Max Horz 1=-44(LC 17) Max Uplift 1=-46(LC 12), 3=-54(LC 13), 4=-30(LC 12) Max Grav 1=227(LC 23), 3=227(LC 24), 4=564(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-4=-380/188 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

March 17,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0-0 <u>-10</u> 0-0-10			<u>9-3-10</u> <u>9-3-0</u>							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.21 BC 0.15 WB 0.05 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%	
LUMBER-			BRACING-							

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD OTHERS

2x4 SP No.3

REACTIONS. 1=9-2-6, 3=9-2-6, 4=9-2-6 (size) Max Horz 1=27(LC 12) Max Uplift 1=-29(LC 12), 3=-33(LC 13), 4=-19(LC 12) Max Grav 1=140(LC 23), 3=140(LC 24), 4=349(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed;

- MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right
- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

The Real of the second NORT The second se SEAL 7687 AN GARC Min Gran

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 17,2020

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. 10/03/2013 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

