

RE: 148.1869 148.1869.B.CVS Trenco 818 Soundside Rd Edenton, NC 27932

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.2 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 27 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	137519365	ae	6/21/2019	27	137519391	v10	6/21/2019
2	137519366	ag	6/21/2019				
3	137519367	be	6/21/2019				
4	137519368	bg	6/21/2019				
5	137519369	c1	6/21/2019				
6	137519370	се	6/21/2019				
7	137519371	cg	6/21/2019				
8	137519372	r1	6/21/2019				
9	137519373	re	6/21/2019				
10	137519374	t1	6/21/2019				
11	137519375	t1e	6/21/2019				
12	137519376	t2	6/21/2019				
13	137519377	t2a	6/21/2019				
14	137519378	t2e	6/21/2019				
15	137519379	t3	6/21/2019				
16	137519380	t4	6/21/2019				
17	137519381	t5	6/21/2019				
18	137519382	v1	6/21/2019				
19	137519383	v2	6/21/2019				
20	137519384	v3	6/21/2019				
21	137519385	v4	6/21/2019				
22	137519386	v5	6/21/2019				
23	137519387	v6	6/21/2019				
24	137519388	v7	6/21/2019				
25	137519389	v8	6/21/2019				
26	137519390	v9	6/21/2019				

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Truss Design Engineer's Name: Galinski, John

My license renewal date for the state of North Carolina is December 31, 2019

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the design for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Galinski, John

1			20-8-0					1
			20-8-0					
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.05	DEFL. Vert(LL) -0.	in (loc) .00 12	l/defl n/r	L/d 120	PLATES MT20	GRIP 244/190
ICDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.04 WB 0.04 Matrix-S	Horz(CT) 0.	.00 12 .00 12	n/r n/a	120 n/a	Weight: 97 lb	FT = 20%
LUMBER-	1	1	BRACING-				- 1	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD OTHERS 2x4 SP No.3

REACTIONS. All bearings 20-8-0.

Max Horz 2=-78(LC 13) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 20, 21, 22, 23, 17, 16, 15, 14, 12

Max Grav All reactions 250 lb or less at joint(s) 2, 19, 20, 21, 22, 23, 17, 16, 15, 14, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed;

MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-4-0, Exterior(2) 2-4-0 to 10-4-0, Corner(3) 10-4-0 to 13-4-0, Exterior(2) 13-4-0 to 21-6-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 20, 21, 22, 23, 17, 16, 15, 14, 12.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 1-5=-20

Continued on page 2

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	148.1869.B.CVS
					137519366
148.1869	AG	Common Girder	1	2	
				J	Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,			3.220 s No	v 16 2018 MiTek Industries, Inc. Fri Jun 21 06:20:15 2019 Page 2
		ID:0ckUA5	3Thu5GUj	fQqCaouP	yZBFs-E?xuvWW3Im2os9QGDDCKQ?tVQK?FtsLwILwPb6z48cE

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 7=-1428(B) 9=-457(B) 10=-457(B) 11=-457(B) 12=-1428(B) 13=-1428(B) 14=-1427(B) 15=-1427(B) 16=-1427(B) 17=-1433(B)

MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-1-8, Exterior(2) 2-1-8 to 7-10-0, Corner(3) 7-10-0 to 10-10-0, Exterior(2) 10-10-0 to 16-6-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 13, 14, 11, 10.

10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 8.

ENGINEERING BY REPACTO A MITEK Atfiliate 818 Soundside Road Edenton, NC 27932

Vert: 7=-1708(B) 9=-1708(B) 10=-1708(B) 11=-1708(B) 12=-1708(B) 13=-1708(B) 14=-1708(B)

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

June 21,2019

	7-3-15 7-3-15	<u>14-0-1</u> 6-8-2			21-4-0 7-3-15	-
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. DEF TC 0.38 Vert BC 0.62 Vert WB 0.21 Hor: Matrix-S	L. in (loc) (LL) -0.09 2-10 (CT) -0.20 2-10 c(CT) 0.05 6	l/defl L/d >999 240 >999 180 n/a n/a	PLATES GRIP MT20 244/190 Weight: 93 lb FT = 20%	%
I UMBER-		BRA	CING-			

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

- 2x4 SP No.3 WEBS REACTIONS. 2=903/0-3-8, 6=903/0-3-8 (lb/size)
- Max Horz 2=80(LC 16) Max Uplift 2=-124(LC 12), 6=-124(LC 13)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1670/216, 3-4=-1465/206, 4-5=-1465/206, 5-6=-1670/216

BOT CHORD 2-10=-207/1482, 8-10=-49/990, 6-8=-144/1482

4-8=-79/516, 5-8=-328/184, 4-10=-79/516, 3-10=-328/184 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 10-8-0, Exterior(2) 10-8-0 to 13-8-0, Interior(1) 13-8-0 to 22-2-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=124.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6. This connection is for uplift only and does not consider lateral forces.

Structural wood sheathing directly applied or 4-1-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

	L					21-4-0						
	1					21-4-0						
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	0.00	12	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	0.00	13	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	12	n/a	n/a		
BCDL	10.0	Code IRC2015/TP	12014	Matri	x-S						Weight: 101 lb	FT = 20%
LUMBER	-					BRACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD OTHERS 2x4 SP No.3

REACTIONS. All bearings 21-4-0.

Max Horz 2=80(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 20, 21, 22, 23, 17, 16, 15, 14, 12

Max Grav All reactions 250 lb or less at joint(s) 2, 18, 20, 21, 22, 23, 17, 16, 15, 14, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed;

MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-1-8, Exterior(2) 2-1-8 to 10-8-0, Corner(3) 10-8-0 to 13-8-0, Exterior(2) 13-8-0 to 22-2-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 20, 21, 22, 23, 17, 16, 15, 14, 12.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	148.1869.B.CVS	
148.1869	cg	COMMON GIRDER	1	_	10	37519371
				3	Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,			8.220 s No	v 16 2018 MiTek Industries, Inc. Fri Jun 21 06:20:21 2019 P	Page 2
		ID:0	ckUA53Th	u5GUjfQq0	CaouPyZBFs-38I9Aabpucoyb4tQaUJkgG7YBl3kHbsp8HNjolz	z48c8

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 10=-1708(F) 13=-1459(F) 14=-1459(F) 15=-1459(F) 16=-1708(F) 17=-1708(F) 18=-1708(F) 19=-1708(F) 20=-1708(F) 21=-1708(F)

			6-0-0			6-0-0								
LOADING TCLL	(psf) 20.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC	0.50	DEFL. Vert(LL)	in -0.03	(loc) 2-6	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190		
TCDL BCLL	10.0 0.0	* Lumber DOL * Rep Stress Incr	1.15 YES	BC WB Motrix	0.41 0.11	Vert(CT) Horz(CT)	-0.07 0.01	4-6 4	>999 n/a	180 n/a	Weight: 44 lb	ET 20%		
BCDL	10.0	Code IRC2015/11	912014	wath	-5						weight: 44 lb	F1 = 20%		

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

REACTIONS. (lb/size) 2=530/0-3-8, 4=530/0-3-8 Max Horz 2=-48(LC 17) Max Uplift 2=-79(LC 12), 4=-79(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-737/133, 3-4=-737/133

BOT CHORD 2-6=-41/614, 4-6=-41/614

WEBS 3-6=0/283

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 6-0-0, Exterior(2) 6-0-0 to 9-0-0, Interior(1) 9-0-0 to 12-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces.

SEAL 28677 June 21,2019

Structural wood sheathing directly applied or 5-10-10 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

12-0-0 12-0-0												
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.18 BC 0.12 WB 0.07 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.01 0.00	(loc) 7 7 6	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 20%			
LUMBER-		1	BRACING-									

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD OTHERS

2x4 SP No.3

REACTIONS. All bearings 12-0-0. (lb) - Max Horz 2=-48(LC 13)

Max Uplift All uplift 100 lb or less at joint(s) 2, 6, 10, 8

Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9 except 10=325(LC 1), 8=325(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed;

MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-1-8, Exterior(2) 2-1-8 to 6-0-0, Corner(3) 6-0-0 to 9-0-0, Exterior(2) 9-0-0 to 12-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 7) will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6, 10, 8.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

June 21,2019

ENGINEERING BY ERENCO A MITek Atfiliate 818 Soundside Road Edenton, NC 27932

			43-8-0											
Plate Offsets (X,Y) [25:0-0-3,0-0-6], [25:0-0-6,0-5-7], [25:0-3-8,Edge], [33:0-2-0,0-1-8]														
LOADING (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) l/defl L/d TCLL 20.0 Plate Grip DOL 1.15 TC 0.10 Vert(LL) n/a - n/a 999 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 BC 0.04 Vert(CT) n/a - n/a 999 BCLL 0.0 * Rep Stress Incr YES WB 0.15 Matrix-S Horz(CT) 0.01 25 n/a n/a														
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP OTHERS 2x4 SP WEDGE Right: 2x4 SP No.3	No.2 No.2 No.3		BRACING- TOP CHOR BOT CHOR WEBS	D Stru D Rigi 1 Re	ctural wood d ceiling dir ow at midpt	sheathing di ectly applied	irectly applied or 6-0-0 or 10-0-0 oc bracing. 13-37, 12-38, 11-39, 14	oc purlins. I-36, 15-35						
Right: 2x4 SP No.3 REACTIONS. All bearings 43-8-0. (Ib) - Max Horz 1=186(LC 12) Max Uplift All uplift 100 lb or less at joint(s) 1, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 36, 35, 34, 32, 31, 30, 29, 28, 27, 26 Max Grav All reactions 250 lb or less at joint(s) 1, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 36, 35, 34, 32, 31, 30, 29, 28, 27, 26, 25														
FORCES. (lb) - Max. TOP CHORD 1-2=- 14-15	Comp./Max. Ten All forces 250 (lb) or 263/86, 10-11=-94/276, 11-12=-111/326 j=-111/329, 15-16=-94/279	less except when shown. , 12-13=-127/367, 13-14=	=-127/370,											
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) Exterior(2) 26-4-6 to DOL=1.60 3) Truss designed for v Gable End Details a 4) All plates are 2x4 MT 5) Gable requires conti 6) Gable studs spaced 7) This truss has been 8) * This truss has been 9) Provide mechanical 42, 43, 44, 45, 46, 4 	e loads have been considered for this de fult=130mph (3-second gust) Vasd=103r gable end zone and C-C Corner(3) 0-0- 43-8-0 zone;C-C for members and force vind loads in the plane of the truss only. s applicable, or consult qualified building T20 unless otherwise indicated. nuous bottom chord bearing. at 2-0-0 oc. designed for a 10.0 psf bottom chord liv n designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on t ottom chord and any other members. connection (by others) of truss to bearin 7, 36, 35, 34, 32, 31, 30, 29, 28, 27, 26.	sign. nph; TCDL=6.0psf; BCDL 0 to 4-4-6, Exterior(2) 4-4 as & MWFRS for reaction For studs exposed to wir designer as per ANSI/TF e load nonconcurrent with he bottom chord in all are g plate capable of withsta	L=6.0psf; h=25ft; C -6 to 22-0-0, Corne s shown; Lumber I nd (normal to the fa Pl 1. n any other live load as where a rectany anding 100 lb uplift	at. II; Exp E er(3) 22-0-0 DOL=1.60 p nce), see St ds. gle 3-6-0 ta at joint(s) 1	; Enclosed: to 26-4-6, late grip andard Indu II by 2-0-0 v , 38, 39, 40	ustry vide , 41,	A STATE OF S	SEAL 28677						

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Af 818 Soundside Road Edenton, NC 27932

June 21,2019

	9-0-7	17-0-0	17-2-5	25-6-4	27-1-12	34-11-9		43-8-0	1
I	9-0-7	7-11-9	0-2-5	8-3-15	ከ-7-8	7-9-13	I	8-8-7	· · · · · · · · · · · · · · · · · · ·
Plate Offsets (X,Y) [4:0-4-0,Edge], [5:0-4-0,0-5-4],	[7:0-4-0,0-5-4], [10:)-0-13,Edge],	[12:0-3-11,0-2-0],	15:0-0-0,0-	2-12]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0- Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr YE Code IRC2015/TPI201	0 CSI 5 TC 5 BC S WB 4 Mat	0.87 0.73 0.62 rix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (lo -0.37 16- -0.66 16- 0.09	c) l/defl 18 >815 18 >462 10 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 311 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP 1-4: 2x4 BOT CHORD 2x6 SP 12-15: 2 WEBS 2x4 SP REACTIONS. (lb/size	No.2 *Except* 5 SP No.1 No.2 *Except* 2x6 SP DSS, 13-16: 2x4 SP No No.3) 2=1619/0-3-8, 10=1483/Me	o.2 chanical, 14=436/0-	3-8	BRACING TOP CHO BOT CHO WEBS JOINTS	- RD Str RD Rig 1 R 1 B	uctural wood id ceiling dir ow at midpt race at Jt(s)	d sheathing dire ectly applied oi 5-1 : 19	ectly applied. r 9-3-8 oc bracing. 9, 7-19	
Max Hc Max Up Max Gr FORCES. (lb) - Max. G TOP CHORD 2-20= 6-21= 9-23= BOT CHORD 2-18= 14-15 10-11 WEBS 3-18= 5 19=	rz 2=196(LC 12) lift2=-313(LC 12), 10=-190(LC av 2=1643(LC 25), 10=1499(L Comp./Max. Ten All forces 2 -3087/571, 3-20=-3011/592, 3 -397/156, 6-22=-480/163, 7-22 -2720/455, 10-23=-2805/434 -625/2755, 18-24=-373/2061, 366/2072, 13-14=-352/2065 =-351/2446 +24/263, 5-18=-207/876, 7-11 1705/469, 7, 10-1705/460, 7, 10-1705/460, 7, 10-1705/460, 7, 10-1705/460, 7, 10-1705/460, 7, 10-1705/460, 7, 10-1705/460, 7, 10-1705/460, 7, 10-1705/460, 7, 10-1705/460, 7, 10-1705/460, 7, 10-1705/460, 7, 10-1705/460, 7, 10-1705/460, 7, 10-1705/460, 7, 10-1705/460, 7, 10-1705/460, 7, 10-1705/400, 7, 10-1705/400, 7, 10-1705/400, 7, 10-1705/400, 7, 10-1705/400, 7, 10-1705/400, 7, 10-1705/400, 7, 10-1705/400, 7, 10-1705/400, 7, 10-1705/400, 7, 10-1705/400, 7, 10-1705/400, 7, 10-1705/400, 7, 10-1705/400, 7, 10-1705/400, 7, 10-1705/400, 7, 10-1705/400, 7, 10-1705	C 12), 14=-242(LC 1: C 2), 14=776(LC 24 50 (lb) or less excep -4=-2932/611, 4-5=- 2=-513/136, 7-8=-24 17-24=-373/2061, 11 , 13-25=-358/2053, 1=-264/788, 9-11=-4 12=, 477/604	3) t when shown 2814/646, 5-2 80/505, 8-9=-2 5-17=-373/206 12-25=-358/20 35/290, 5-16=	1=-479/129, 2664/469, 31, 15-16=-367/207 953, 11-12=-358/20 -41/336,	'3, 153,				

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 3-5-14, Interior(1) 3-5-14 to 22-0-0, Exterior(2) 22-0-0 to 26-4-6, Interior(1) 26-4-6 to 43-7-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4)* This trues has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 313 lb uplift at joint 2, 190 lb uplift at joint 10 and 242 lb uplift at joint 14.

LOAD CASE(S) Standard

SEAL 28677 June 21,2019

> TEREING BY AMITEK Atfiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty Ply	148.1869.B.CVS	137519377
148.1869	T2A	COMMON	3 1	1	
84 Components (Dunn).	Dunn. NC - 28334.		8.220 s N	Job Reference (optional Nov 16 2018 MiTek Industr	l) ies. Inc. Fri Jun 21 06:20:28 2019 Page 1
			ID:0ckUA53Thu5GUjfQqCa	ouPyZBFs-MVDoezgCFml	nyw9wmUSxNSlwmdaP5Qp7rltabYrz48c1
	7-4-3 14- 7-4-3 7-	10-3 17-0-0 22-0-0 6-0 2-1-13 5-0-0	<u></u>	7-6-0	7-0-3
			6x6 =		Scale = 1.85.6
		c oo 40	5		
T		6.00 12			
		8x8 = 20	21 8x8 ≈		
		4	6		
	4x8 📂		18 1 5x4	4x8 ≈	
-5-1	1.5x4 \\ 3			7	2x4 //
÷	2		. 12		8
	A.		72	N A	
	19		10-0-0		22
1 //					9
- 4 - 4					
° ₩ 4x6 =	17	23 16 15	14 ¹³ 12	24 11 10	4x6 =
	4x4 =	5x9 = 4x4 = 4x4	= 4x4 = 4x8 = 12-11-9	4x4 =	
		4x6	8x8 = 5x9 =	4x8 =	
		14-7-13	14-7-1	3	
i	9-0-7	17-0-0 17-2-5 25-	6-4 27-1-12	34-11-9	43-8-0
	9-0-7	7-11-9 0-2-5 8-3	-15 1-7-8	7-9-13	8-8-7
Plate Offsets (X,Y) [3:0-	-4-0,Edgej, [4:0-4-0,0-5-4], [6	<u>:0-4-0,0-5-4], [9:0-0-13,Edge], [11:0</u>	J-3-11,0-2-0], [14:0-0-0,0-2-12	2]	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)	l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.83	Vert(LL) -0.37 15-17	>815 240	MT20 244/190
ICDL 10.0 BCII 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	WB 0.60	Vert(CT) -0.66 15-17 Horz(CT) 0.08 9	>461 180 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S			Weight: 318 lb FT = 20%
LUMBER-			BRACING-		
TOP CHORD 2x6 SP No.	2 *Except*		TOP CHORD Structu	ural wood sheathing dired	ctly applied.
1-3: 2x4 SF	9 No.1		BOT CHORD Rigid o	ceiling directly applied or	9-3-2 oc bracing.
BOT CHORD 2x6 SP No.	2 *Except*		WEBS 1 Row	at midpt 4-1	8, 6-18
WEBS 2x4 SP No.	3			c a 0((3). 10	
	4 4504/0 0 0 0 4440/Marsh				
Max Horz	1=1531/0-3-8, 9=1448/Mech	anicai, 13=498/0-3-8			
Max Uplift	1=-291(LC 12), 9=-191(LC 12	2), 13=-256(LC 13)			
Max Grav	1=1575(LC 25), 9=1463(LC 2	2), 13=837(LC 24)			
FORCES. (lb) - Max. Com	np./Max. Ten All forces 250	(lb) or less except when shown.			
TOP CHORD 1-2=-3063	3/596, 2-4=-2908/650, 4-5=-4	74/148, 5-6=-509/153, 6-8=-2583/5	505,		
8-9=-2724 BOT CHORD 1-17632	1/456 1/2723 15-17372/2011 13	15367/2021 12-13342/2007	10-12358/2002		
9-10=-35	2/2374	13=-307/2021, 12-13=-342/2007,	10-12		
WEBS 2-17=-435	5/272, 4-17=-212/897, 6-10=-	254/757, 8-10=-436/290, 4-15=-71	/311,		
4-18=-166	59/466, 6-18=-1669/466, 6-12	2=-494/587			
NOTES-					
1) Unbalanced roof live load	ds have been considered for	this design.			
MWFRS (envelope) gabl	e end zone and C-C Exterior	(2) 0-1-12 to 3-1-12. Interior(1) 3-1-	-12 to 22-0-0. Exterior(2) 22-0	-nciosed,)-0 to 25-0-0.	MUULT
Interior(1) 25-0-0 to 43-7	-4 zone;C-C for members an	d forces & MWFRS for reactions sh	nown; Lumber DOL=1.60 plate	e grip	H CARO
DOL=1.60	anad for a 10.0 pcf bottom at	ord live load papeapeurrant with ar	w other live leads		NOR SERVICE
4) * This truss has been de	signed for a live load of 20.0p	sf on the bottom chord in all areas	where a rectangle 3-6-0 tall b	oy 2-0-0 wide	
will fit between the botton	m chord and any other memb	ers, with BCDL = 10.0psf.	5	-	STANCE S
 5) Refer to girder(s) for trus 6) Provide mechanical constant 	s to truss connections.	hearing plate capable of withstand	ing 100 lb unlift at joint(s) avo	ent (it=lh)	SFAL
1=291, 9=191.				-r- u/	20677
7) One RT7A USP connect	ors recommended to connect	truss to bearing walls due to UPLI	FT at jt(s) 13. This connection	n is for uplift	200//
only and does not consid	iei iaterai torces.				- 3 N
					NGINEER F
					YN INSIN
					L. GAL
					annun

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

ENGINEERING BY ERENCED A Mitek Affiliate 818 Soundside Road Edenton, NC 27932

June 21,2019

0-7-1																				25	0-7-1
	4x8 48	47	46	45	44	43	42 40 41	39	38	37	36	35	34	32 31 33	30	29	28	27	26	4x8	
							3x6 =							3x6 =							
										43-4-0											
										43-4-0											

Plate Offsets (X,Y)	[1:0-0-3,0-0-6], [1:0-0-6,0-5-7], [1:0-3-8,	Edge], [25:0-0-3,0-0-6], [2	25:0-0-6,0-5-7], [25:0-3-6	3,Edge], [3	33:0-2-0,0-1-8], [41:0-	-2-0,0-1-8]	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.10 BC 0.04 WB 0.15 Matrix-S	DEFL. ii Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.07	n (loc) a - a - 25	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20 Weight: 315 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP OTHERS 2x4 SP WEDGE Left: 2x4 SP No.3, Righ	No.2 No.2 No.3 It: 2x4 SP No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structur Rigid ce 1 Row a	ral wood sheathing dir eiling directly applied o at midpt 1	rectly applied or 6-0-0 or 10-0-0 oc bracing. I3-37, 12-38, 11-39, 14	oc purlins. I-36, 15-35
REACTIONS. All be (lb) - Max He Max Uj Max G	arings 43-4-0. orz 1=186(LC 12) plift All uplift 100 lb or less at joint(s) 1 30, 29, 28, 27, 26 rav All reactions 250 lb or less at joint(32, 31, 30, 29, 28, 27, 26, 25	38, 39, 40, 42, 43, 44, 45 s) 1, 37, 38, 39, 40, 42, 4	5, 46, 47, 48, 36, 35, 34, 3, 44, 45, 46, 47, 48, 36	32, 31, , 35, 34,			

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-276/89, 10-11=-93/275, 11-12=-111/325, 12-13=-126/366, 13-14=-126/369, 14-15=-111/328, 15-16=-93/278

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) 0-0-0 to 4-4-0, Exterior(2) 4-4-0 to 21-8-0, Corner(3) 21-8-0 to 26-0-0, Exterior(2) 26-0-0 to 43-4-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry
- Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 36, 35, 34, 32, 31, 30, 29, 28, 27, 26.

THE REAL SOL Mananana and Andrewsky and And SEAL 28677 L. GAL June 21,2019

	9-0-7	17-8-2	1	22-0-0	26-3-14	1	37-	10-4	43-8-12	44-0-0
	9-0-7	8-7-11	1	4-3-14	4-3-14		11	-6-6	5-10-8	0-3-4
Plate Offsets (X,	Y) [7:0-3-6,0-2-1]									
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	* Rep Stress Incr Code IRC2015/TP	2-0-0 C 1.15 Tr 1.15 B YES W I2014 M	SI. C 0.83 C 0.65 /B 0.95 atrix-S		DEFL. Vert(LL) Vert(CT) Horz(CT)	in (lo -0.15 15-1 -0.29 15-1 0.07	oc) l/defl 17 >999 17 >999 12 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 275 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2 BOT CHORD 2 WEBS 2	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3				BRACING- TOP CHORE BOT CHORE WEBS) Stru) Rig 6-0 2 R	uctural wood jid ceiling dire I-0 oc bracing Rows at 1/3 pt	sheathing dire ectly applied or : 10-12. is 7-	ectly applied or 2-2-0 c r 10-0-0 oc bracing, E 12	oc purlins. Except:
REACTIONS.	(lb/size) 2=1549/0-3-8, 12=190 Max Horz 2=-191(LC 17)	00/0-3-8, 10=170/0-3-8								

Max Uplift 2=-211(LC 12), 12=-242(LC 13), 10=-18(LC 13)

Max Grav 2=1549(LC 1), 12=1953(LC 2), 10=208(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2792/358, 3-5=-2636/403, 5-6=-1936/359, 6-7=-1677/318

BOT CHORD 2-17=-409/2433, 15-17=-225/1905, 14-15=-28/1316, 12-14=-29/1383

WEBS 3-17=-373/236, 5-17=-136/687, 5-15=-729/319, 7-14=-127/257, 7-12=-1927/194, 6-15=-216/978, 6-14=-116/422, 9-12=-475/284

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 22-0-0, Exterior(2) 22-0-0 to 26-4-13, Interior(1) 26-4-13 to 44-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=211.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12 and 10. This connection is for uplift only and does not consider lateral forces.

SEAL 28677

June 21,2019

	8-8-7	17-4-2	21-8-0	25-11-14	28-10-7	37-6-4	43-4-12	43 ₁ 8-0
	8-8-7	8-7-11	4-3-14	4-3-14	2-10-9	8-7-13	5-10-8	0-3-4
Plate Offsets ()	K,Y) [6:0-3-6,0-2-1]							
LOADING (psi TCLL 20. TCDL 10. BCLL 0. BCDL 10.	f) SPACING- 0 Plate Grip DOL 0 Lumber DOL 0 * Rep Stress Incr 0 Code IRC2015/	2-0-0 CSI. 1.15 TC 1.15 BC YES WB TPI2014 Matu	0.82 0.61 0.93 ix-S	DEFL. in Vert(LL) -0.15 Vert(CT) -0.27 Horz(CT) 0.07	n (loc) 5 14-16 7 14-16 7 11	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 272 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD	2x4 SP No.2 *Except* 1-3: 2x4 SP No.1 2x6 SP No.2 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD WEBS	Structur Rigid ce 6-0-0 oc 2 Rows	ral wood sheathing directl eiling directly applied or 11 c bracing: 9-11.	y applied or 2-2-0 c D-0-0 oc bracing, E	c purlins. Except:

REACTIONS. (lb/size) 1=1479/Mechanical, 11=1870/0-3-8, 9=188/0-3-8 Max Horz 1=-198(LC 17) Max Uplift 1=-187(LC 12), 11=-242(LC 13), 9=-19(LC 13) Max Grav 1=1479(LC 1), 11=1929(LC 2), 9=219(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-2734/345, 2-4=-2594/408, 4-5=-1926/361, 5-6=-1681/317

BOT CHORD 1-16=-396/2368, 14-16=-221/1889, 13-14=-28/1315, 11-13=-30/1390

- WEBS 2-16=-348/239, 4-16=-144/661, 4-14=-705/314, 8-11=-475/284, 5-14=-212/961,
 - 5-13=-117/432, 6-13=-134/257, 6-11=-1890/194

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-0-12 to 4-5-2, Interior(1) 4-5-2 to 21-8-0, Exterior(2) 21-8-0 to 26-0-6, Interior(1) 26-0-6 to 44-6-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=187.

7) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 11 and 9. This connection is for uplift only and does not consider lateral forces.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=203, 9=203.

Plate Offsets (X,Y)	[4:0-0-0,0-0-0]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.18 BC 0.11 WB 0.05 Matrix-S	DEFL. in (loc) I/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 5 n/a n/a	PLATES GRIP MT20 244/190 Weight: 51 lb FT = 20%
LUMBER- TOP CHORD 2x4 S	P No.2		BRACING- TOP CHORD Structural wood sheathing dire	ectly applied or 6-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

REACTIONS. All bearings 15-3-3.

(lb) - Max Horz 1=-48(LC 13)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 8, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=288(LC 1), 8=327(LC 23), 6=327(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-9-1 to 3-7-10, Interior(1) 3-7-10 to 7-7-10, Exterior(2) 7-7-10 to 10-7-10, Interior(1) 10-7-10 to 14-6-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 8, 6.

REACTIONS. 1=158/10-5-10, 3=158/10-5-10, 4=401/10-5-10 (lb/size) Max Horz 1=-31(LC 17) Max Uplift 1=-33(LC 12), 3=-38(LC 13), 4=-21(LC 12) Max Grav 1=161(LC 23), 3=161(LC 24), 4=401(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-4=-270/126WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-9-1 to 3-9-1, Interior(1) 3-9-1 to 5-2-13, Exterior(2) 5-2-13 to 8-2-13, Interior(1) 8-2-13 to 9-8-9 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

0- 0-	q-10 0-10		<u>5-8-0</u> 5-7-6				
Plate Offsets (X,Y)	[2:0-2-0,Edge]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.07 BC 0.22 WB 0.00 Matrix-P	DEFL. Vert(LL) r Vert(CT) r Horz(CT) 0.	in (loc) l/defl n/a - n/a n/a - n/a 00 3 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

REACTIONS. (lb/size) 1=166/5-6-13, 3=166/5-6-13 Max Horz 1=15(LC 12) Max Uplift 1=-20(LC 12), 3=-20(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 5-8-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-4=-264/126

NOTES-

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-9-1 to 3-9-1, Interior(1) 3-9-1 to 5-1-10, Exterior(2) 5-1-10 to 8-1-10, Interior(1) 8-1-10 to 9-6-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

¹⁾ Unbalanced roof live loads have been considered for this design.

2x4 ⋍

2x4 🗢

Structural wood sheathing directly applied or 5-5-10 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

		0-0-10 0-0-10				5-5-10 5-5-0						
Plate Offs	ets (X,Y)	[2:0-2-0,Edge]										
	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.20	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matri	x-P						Weight: 14 lb	FT = 20%

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (lb/size) 1=158/5-4-6, 3=158/5-4-6 Max Horz 1=14(LC 12) Max Uplift 1=-19(LC 12), 3=-19(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) Non Standard bearing condition. Review required.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.34 BC 0.24 WB 0.06 Matrix-S	DEFL. in (loc) l/defl Vert(LL) n/a - n/a Vert(CT) n/a - n/a Horz(CT) 0.00 3 n/a	L/d 999 999 n/a	PLATES GRIP MT20 244/190 Weight: 35 lb FT = 20%
LUMBER-			BRACING.		

```
LUMBER-
```

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3 OTHERS

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 1=172/11-3-10, 3=173/11-3-10, 4=439/11-3-10 (lb/size) Max Horz 1=34(LC 16) Max Uplift 1=-36(LC 12), 3=-42(LC 13), 4=-23(LC 12) Max Grav 1=176(LC 23), 3=177(LC 24), 4=439(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-4=-295/130

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-9-1 to 3-9-1, Interior(1) 3-9-1 to 5-7-13, Exterior(2) 5-7-13 to 8-7-13, Interior(1) 8-7-13 to 10-6-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

2x4 ⋍

2x4 🗢

—			<u>6-5-6</u> 6-5-6				<u>6-6-</u> 0 0-0-10
Plate Offsets (X,Y) [2:0-2-0,Edge]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.11 BC 0.32 WB 0.00 Matrix-P	DEFL. Vert(LL) r Vert(CT) r Horz(CT) 0.	in (loc) l/defl n/a - n/a n/a - n/a 00 3 n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190 FT = 20%
LUMBER-	No.2		BRACING- TOP CHORD	Structural wood	I sheathing dir	rectly applied or 6-0-0) oc purlins.

REACTIONS. (lb/size) 1=200/6-4-13, 3=200/6-4-13 Max Horz 1=18(LC 16) Max Uplift 1=-24(LC 12), 3=-24(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 8, 6.

			<u>11-2-13</u> 11-2-13	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.34 BC 0.23 WB 0.06 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a Weight: 35 lb FT = 20%	
LUMBER-			BRACING-	

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3 OTHERS

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 1=171/11-2-13, 3=171/11-2-13, 4=435/11-2-13 (lb/size) Max Horz 1=-34(LC 13) Max Uplift 1=-36(LC 12), 3=-42(LC 13), 4=-23(LC 12) Max Grav 1=175(LC 23), 3=175(LC 24), 4=435(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-4=-293/130

NOTES-

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-9-1 to 3-9-1, Interior(1) 3-9-1 to 5-7-6, Exterior(2) 5-7-6 to 8-7-6, Interior(1) 8-7-6 to 10-5-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

LUMBER-

¹⁾ Unbalanced roof live loads have been considered for this design.

2x4 ⋍

2x4 🗢

H			<u>6-4-10</u> 6-4-10	<u>6-</u> 5-3 0-0-9
Plate Offsets (X,Y) [2	2:0-2-0,Edge]			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.11	Vert(LL) n/a - n/a 999	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.31	Vert(CT) n/a - n/a 999	
CLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 3 n/a n/a	
CDL 10.0	Code IRC2015/TPI2014	Matrix-P		Weight: 17 lb FT = 20%
UMBER-			BRACING-	·
OP CHORD 2x4 SP	No.2		TOP CHORD Structural wood sheath	ning directly applied or 6-0-0 oc purlins.
3OT CHORD 2x4 SP	No.2		BOT CHORD Rigid ceiling directly ap	oplied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 1=197/6-4-0, 3=197/6-4-0 Max Horz 1=-17(LC 13) Max Uplift 1=-24(LC 12), 3=-24(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

