

Trenco 818 Soundside Rd Edenton, NC 27932

Re: Q-1901806-1 Phillips' Gable RF-Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Peak Truss Builders, LLC.

Pages or sheets covered by this seal: E13608382 thru E13608397

My license renewal date for the state of North Carolina is December 31, 2019.

North Carolina COA: C-0844

October 8,2019

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Phillips' Gable RF-Roof	
Q-1901806-1	T1	Roof Special	9	1	Job Reference (optional)	E13608382

Run: 8.32 E Sep 21 2019 Print: 8.320 E Sep 21 2019 MiTek Industries, Inc. Mon Oct 07 14:56:20 ID:PRw8xls_MPyoV2OdIGM493yXBN6-KFGd7NRhP8Vr5rkgx1qhOChx?rBqIE227xUvzhyVmkR

Page: 1

		010	12 11 0	2000	2010	20 11 0
0-:	3-8	6-4-0	6-4-0	7-4-0	5-4-0	4-3-8
Scale = 1:62.8						
Plate Offsets (X, Y): [2:0-4-14,Edg	ge], [11:0	-5-3,0-0-2]				

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2	015/TPI2014	CSI TC BC WB Matrix-MS	0.74 0.67 0.60	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.29 0.14	(loc) 15-16 15-16 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 164 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Left 2x6 2-6-0 Structura 2-2-0 oc Rigid cei bracing. (Ib/size)	No.1 No.3 SP No.2 2 Al wood shea purlins. ling directly 2=976/0-3 13=1957/	2-6-0, Right 2x6 SP athing directly applie applied or 6-0-0 oc 1-8, 11=-419/0-3-8, 0-3-8	No.2 ed or	 Wind: ASCE Vasd=95mp B=20ft; L=3 MWFRS (di 2-0-0, Interi to 17-11-8, cantilever le right expose for reactions DOL=1.60 * This truss on the botto 3-06-00 tall chord and a 	E 7-10; Vult=120; h; TCDL=6.0psf; Oft; eave=4ft; Ca rectional) and C- or (1) 2-0-0 to 14 Interior (1) 17-11 ff and right expo- ed;C-C for memb as shown; Lumber has been design m chord in all are by 2-00-00 wide ny other membe	mph (3-sec ; BCDL=6.0 t. II; Exp B; C Exterior I-11-8, Exte -8 to 30-11 sed; end v ers and for r DOL=1.60 need for a liv eas where will fit betw rs.	ond gust) Dpsf; h=30ft; Enclosed; (2) -1-0-0 to rior (2) 14-1 -0 zone; ertical left ar ces & MWFF plate grip e load of 20.0 a rectangle reen the botto	I-8 d SS Dpsf om					
	13=1957/0-3-8 Max Horiz 2=-167 (LC 9) Max Uplift 2=-162 (LC 11), 11=-444 (LC 20), 13=-143 (LC 11) Max Grav 2=976 (LC 1), 11=-60 (LC 11), 13=1957 (LC 1)				 All bearings capacity of 4 Bearing at je using ANSI/ designer sh 	 All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 								
TOP CHORD	(lb) - Ma: Tension 1-2=0/30	ximum Com), 2-3=-682/(pression/Maximum 0, 3-4=-2064/268,		 Provide meet bearing plat joint 2, 143 	 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 162 lb uplift at joint 2, 143 lb uplift at joint 13 and 444 lb uplift at joint 								
	1-2=0/30, 2-3=-682/0, 3-4=-2064/268, 4-25=-1440/168, 5-25=-1309/170, 5-6=-1294/188, 6-7=-988/182, 7-26=-994/167, 8-26=-1073/153, 8-9=-670/170, 9-10=0/1089, 10-11=-45/74, 11-12=0/30			 This truss is Internationa referenced 	11. ') This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.								CARO	
BOT CHORD	2-16=-12 14-15=0/	24/1782, 15- /541_13-14=	16=-149/1778, 965/59_11-13=-83	35/37	LOAD CASE(S)	Jotanuaru						4	ZA	JA.
WEBS	14-15=0/541, 13-14=-905/59, 11-13=-835/37 4-16=0/106, 4-15=-587/253, 6-15=-46/844, 8-15=0/432, 8-14=-634/97, 9-14=-16/1457, 9-13=-1558/171							THE P	03	SEAL 36322				
NOTES														

1) Unbalanced roof live loads have been considered for this design.

G The Green October 8,2019

С

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Phillips' Gable RF-Roof	
Q-1901806-1	T1A	Common	8	1	Job Reference (optional)	E13608383

Run: 8.32 E Sep 21 2019 Print: 8.320 E Sep 21 2019 MiTek Industries. Inc. Mon Oct 07 14:56:23 ID:Xfgd5NpTIBSN0R5r3Ql8?DyXBNA-gD4WA5VqEg77BccekaQs5FPpRsuSzaDnHDCfeuyVmkM

Page: 1

right exposed;C-C for members and forces & MWFRS

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

for reactions shown; Lumber DOL=1.60 plate grip

All bearings are assumed to be SPF No.2 crushing

This truss is designed in accordance with the 2015 International Building Code section 2306.1 and

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 182 lb uplift at

DOL=1.60

capacity of 425 psi.

LOAD CASE(S) Standard

joint 2 and 182 lb uplift at joint 10.

referenced standard ANSI/TPI 1.

3)

4)

5)

6)

BRACING

TCDL

BCLL

BCDL

TOP CHORD	Structural 3-6-8 oc p	wood sheathing directly applied or purlins.
BOT CHORD	Rigid ceili bracing.	ng directly applied or 10-0-0 oc
REACTIONS	(lb/size) Max Horiz	2=1257/0-3-8, 10=1257/0-3-8 2=-167 (I C 9)
	Max Horiz	2=-167 (LC 9)

	Max Uplift 2=-182 (LC 11), 10=-182 (LC 11)
	Max Grav 2=1291 (LC 16), 10=1291 (LC 17)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/30, 2-3=-656/0, 3-4=-1784/269, 4-23=-1661/305, 5-23=-1550/308, 5-6=-1538/326, 6-7=-1538/326, 7-24=-1551/308, 8-24=-1661/305, 8-9=-1784/269, 9-10=-538/0, 10-11=0/30
BOT CHORD	2-25=-168/1591, 25-26=-107/1591, 14-26=-107/1591, 14-27=0/1078, 13-27=0/1078, 13-28=0/1078, 12-28=0/1078, 12-29=-107/1468, 29-30=-107/1468, 10-30=-107/1468

WEBS 6-12=-90/746, 8-12=-388/219, 6-14=-90/746, 4-14=-388/219

NOTES

Unbalanced roof live loads have been considered for 1) this design.

CARO Man Internet COULONDANIA SEAL 036322 GI 111111111 October 8,2019

mmm

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIPS ON MICLODED MITER REPERIENCE PAGE mit-14/3 at 900, 1002/015 BEPORE 052. Design valid for use only with MITeR works connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Phillips' Gable RF-Roof	
Q-1901806-1	T1B	Roof Special	6	1	Job Reference (optional)	E13608384

Run: 8.32 E Sep 21 2019 Print: 8.320 E Sep 21 2019 MiTek Industries, Inc. Mon Oct 07 14:56:23 ID:?sE?ljq63VaEebg2d7pNXQyXBN9-gD4WA5VqEg77BccekaQs5FPjhst4zYGnHDCfeuyVmkM

Page: 1

Loading	(psf) S	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0 F	Plate Grip DOL	1.15		TC	1.00	Vert(LL)	-0.20	15-17	>999	240	MT20	244/190	
TCDL	10.0 L	umber DOL	1.15		BC	0.72	Vert(CT)	-0.52	15-17	>682	180			
BCLL	0.0* F	Rep Stress Incr	YES		WB	0.41	Horz(CT)	0.21	13	n/a	n/a			
BCDL	10.0 C	Code	IBC2015	/TPI2014	Matrix-MS							Weight: 207 lb	FT = 20%	
			2)	Wind: ASCE	7 10: \/ult_120mpl	h (2 aaa	and quat)							
	OVC CD No O		2)	Vasd-95mph	T = 10, $Vuit = 12011pi$	201 –6 (ona gusi)							
	2X0 OF NU.2 2x4 SP No 1 *Except* 1	10 9-2v4 SD No 2		B=20ft: L=30	ft: eave=4ft: Cat II	· Exp B·	Enclosed:							
BOTCHORD	15-16-2v6 SP No.2	10-0.244 SF NU.3,		MWFRS (dire	ectional) and C-C E	Exterior	(2) -1-0-0 to							
WEBS	2v4 SP No 3			2-0-0. Interio	(1) 2-0-0 to 14-11	-8. Exte	rior (2) 14-11	1-8						
SLIDER	Left 2x4 SP No 3 2-6	5-0		to 17-11-8, Ir	terior (1) 17-11-8 t	to 30-11	-0 zone;							
				cantilever left	and right exposed	d; end v	ertical left an	d						
	Structural wood sheath	ning directly applied		right exposed	I;C-C for members	and for	ces & MWFR	RS						
	except end verticals.	ing directly applied	',	for reactions	shown; Lumber D0	OL=1.60	plate grip							
BOT CHORD	Rigid ceiling directly ap	polied or 10-0-0 oc		DOL=1.60										
	bracing.		3)	* This truss h	as been designed	for a liv	e load of 20.0	Opsf						
REACTIONS	(lb/size) 2=1251/0-3-	8. 13=1260/0-3-8		on the botton	n chord in all areas	where	a rectangle							
	Max Horiz 2=178 (LC 1	0)		3-06-00 tall b	y 2-00-00 wide wil	I III Delw	een ine bollo	JIII						
	Max Uplift 2=-182 (LC	11), 13=-187 (LC 1	1) (1)		y other members.		2 cruebing							
FORCES	(lb) - Maximum Compre	ession/Maximum	γ -)	capacity of 42	25 psi.									
	Tension		5)	Provide mech	nanical connection	(by othe	ers) of truss t	0						
TOP CHORD	1-2=0/30, 2-3=-903/22,	, 3-4=-1581/266,	- /	bearing plate	capable of withsta	anding 1	82 lb uplift at							
	4-25=-1594/311, 5-25=	-1460/313,		joint 2 and 18	87 lb uplift at joint 1	3.								
	5-6=-1444/331, 6-7=-10	637/359,	6)	This truss is o	designed in accord	lance wi	th the 2015							
	7-26=-1652/343, 8-26=	=-1682/340,		International	Building Code sec	tion 230	6.1 and							
	8-9=-1790/275, 9-27=-2	2111/298,		referenced st	andard ANSI/TPI	1.								
	10-27=-2131/267, 10-1	11=-826/173,	LO	AD CASE(S)	Standard								11111111	
	2-20-1/1/1/1/23 10-20	120/100)06/1/133										"TH	CARO	1
BOTCHORD	18-19-0/40 17-18-0/8	90/1433, 7 8-1798/114										N' RI		11
	15-17=-123/1870. 10-1	15=-22/1568.										N OFF	SSIG	12
	15-16=-32/350, 14-16=	-93/356, 13-14=0/2	271								X	THE	1 this	11-
WEBS	4-19=-395/226, 6-19=-	100/553, 17-19=0/9	996,								1	19		
	6-17=-130/851, 9-17=-	576/149,										: 0	SEAL	: =
	11-14=-107/98, 10-14=	-482/105									=			; =
NOTES											Ξ	03	36322	8 E -
1) Unbalance	ed roof live loads have be	een considered for									-	1 N N	9	1 2
this desigr	۱.										-			
												3 SASNO	SINFER	13
												1,710	THE FL	1
														-

Scale = 1:77.3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

G minimum) October 8,2019

C

Job	Truss	Truss Type	Qty	Ply	Phillips' Gable RF-Roof	
Q-1901806-1	T1SE	Common Structural Gable	2	1	Job Reference (optional)	E13608385

14-11-8

Peak Truss Builders, LLC, New Hill, NC - 27562,

7-7-8

Run: 8.32 E Sep 21 2019 Print: 8.320 E Sep 21 2019 MiTek Industries, Inc. Mon Oct 07 14:56:24 ID:Xfgd5NpTIBSN0R5r3QI8?DyXBNA-8PeuNRVS_G_pmBqHIx5eTx?UGHmi1qxVtxDAKyVmkL

Page: 1 22-3-8 29-11-0 30-11-0 1-0-0 7-7-8 7-4-0

Plate Offsets ((X, Y): [2:0-4-15,0-0-2], [6	6:0-2-0,0-0-4], [10:0)-4-15,0-	-0-2]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) S 20.0 P 10.0 Lu 0.0* R 10.0 C	Spacing Plate Grip DOL umber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.55 0.50 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.28 0.03	(loc) 20-36 20-36 2	l/defl >999 >430 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 223 lb	GRIP 244/190 FT = 20%
					2 44 40/655 44	4E 40/6	E		0) Dr	ovido mo	ohonio		othere) of truce to
-UMBER FOP CHORD 3OT CHORD WEBS OTHERS SLIDER BRACING	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 2x4 SP No.3 Left 2x6 SP No.2 2-6- 2-6-0	-0, Right 2x6 SP No	o.2 W	EBS	2-44=-40/655, 44- 20-45=-40/655, 20 18-19=0/346, 17-1 16-47=0/346, 15-1 14-48=-47/382, 12 10-12=-47/382 6-16=-242/0, 8-16: 4-20=-434/222	45=-40/6 -46=0/34 8=0/346 6=-47/38 -49=-47/ -13=-47/ =-409/22	55, 16, 19-46=0/3 , 17-47=0/34 32, 15-48=-4 382, 382, 382, 3, 6-20=-41/2	346, 6, 7/382, 262,	8) Pr be joi lb joi 10 9) Th Int rel	aring plat aring plat nt 2, 124 uplift at jc nt 12, 135 is truss is ernationa erenced	chanica te capa Ib uplif pint 10, 5 lb upl 5 lb upl s design al Buildi standa	at connection (by able of withstandi t at joint 16, 68 lb 3 lb uplift at joint lift at joint 2 and 1 ned in accordanc ing Code section rd ANSI/TPI 1.	orners) of truss to ng 135 lb uplift at uplift at joint 20, 132 13, 49 lb uplift at 32 lb uplift at joint we with the 2015 2306.1 and
IOF CHORD	6-0-0 oc purlins.	ing unecity applied	N	OTES					LOAD	CASE(S) Star	ndard	
BOT CHORD	Rigid ceiling directly app	plied or 10-0-0 oc	1)	Unbalance	d roof live loads hav	e been o	considered fo	or					
WEBS	1 Row at midpt 6-1	16	2)	Wind: ASC	E 7-10: Vult=120mr	h (3-sec	ond aust)						
REACTIONS	(Ib/size) 2=683/29-11- 12=146/29-11 14=54/29-11 16=580/29-11 34=683/29-11 34=683/29-11 Max Horiz 2=-157 (LC 9 Max Uplift 2=-135 (LC 1 16=-124 (LC 34=-135 (LC 1 16=-124 (LC 34=-135 (LC 1 14=123 (LC 1 16=580 (LC 1 18=135 (LC 3) 16=580 (LC 1) 18=135 (LC 1) (LC 1) 18=135 (LC 1)	-0, 10=483/29-11-0 1-0, 13=-1/29-11-0 -0, 15=20/29-11-0 1-0, 17=66/29-110 -0, 20=464/29-11-0 1-0, 38=483/29-11-0 1), 34=-167 (LC 9) 11), 10=-132 (LC 1) 11), 13=-30 (LC 15) 15), 15=30 (LC 15) 15), 20=464 (LC 1) 15), 20=464 (LC 1) 15), 38=-483 (LC 1) 21), 13=52 (LC 15) 20=464 (LC 1) 21), 38=-483 (LC 1) 21), 38=-483 (LC 1) 22), 20=464 (LC 1) 23), 20=464 (LC 1) 24), 20=464 (LC 1) 25), 20=464 (LC 1) 25), 20=464 (LC 1) 26),),),), -0 1), 3) 11) , 4) , 5) , 6)	vasd=95m B=20ft; L=3 MWFRS (d 2-0-0, Inter to 17-11-8, cantilever I right expos for reaction DOL=1.60 Truss desi only. For s see Standa or consult o All plates a Gable stud * This truss on the botto 3-06-00 tall	pn; TCDL=6.0ps; B 30ft; eave=4ft; Cat. I irectional) and C-C ior (1) 2-0-0 to 14-1 Interior (1) 17-11-8 eft and right expose ed;C-C for member is shown; Lumber D gned for wind loads tuds exposed to wir rd Industry Gable E jualified building de re 2x4 MT20 unless is spaced at 2-0-0 o has been designed om chord in all area by 2-00-00 wide wi	CDL=6.1 I; Exp B Exterior 1-8, Extk to 30-11 d; end v s and for OL=1.60 in the pi dd (norm ind Deta signer as otherwi c. I for a liv s where	<pre>upsr; n=30ft; Enclosed; Enclosed; (2) -1-0-0 to prior (2) 14-1 -0 zone; ertical left ar ces & MWFF p plate grip ane of the tru al to the face Is as applica is per ANSI/Ti se indicated. e load of 20.1 a rectangle even the bott</pre>	1-8 nd RS), ble, PI 1. 0psf om			Marinin Marining	PRT PRT	CARO SSIC
TOP CHORD	Tension 1-2=0/30, 2-3=-545/0, 3 4-42=-591/226, 5-42=-5 5-6=-541/246, 6-7=-349 8-43=-398/233, 8-9=-38 9-10=-139/141, 10-11=(3-4=-598/189, 546/228, 9/254, 7-43=-354/2 85/196, 0/30	7) 35,	chord and a All bearing capacity of	any other members, s are assumed to be 425 psi.	with BC	DL = 10.0psi	r.			TUR.	Octob	GILBER

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Phillips' Gable RF-Roof	
Q-1901806-1	Т2	Common	11	1	Job Reference (optional)	E13608386

Loading

TCDL

TCLL (roof)

Run: 8.32 E Sep 21 2019 Print: 8.320 E Sep 21 2019 MiTek Industries, Inc. Mon Oct 07 14:56:25 ID:PRw8xls_MPyoV2OdIGM493yXBN6-dbBGbmW4lHOrRwm0r?SKAgUEWgf?RVU4kXhmjnyVmkK

Page: 1

BCLL	0.0*	Rep Stress Incr	YES		WB	0.17	Horz(CT)	0.03	8	n/a	n/a			
BCDL	10.0	Code	IBC201	5/TPI2014	Matrix-MS							Weight: 120 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Left 2x6 SP No.2 2 2-6-0	2-6-0, Right 2x6 SP N	3) No.2 4)	* This truss h on the bottor 3-06-00 tall h chord and ar All bearings capacity of 4	has been design n chord in all arr by 2-00-00 wide by other membe are assumed to 25 psi.	ed for a live eas where will fit betw rs, with BC be SPF No	e load of 20.0 a rectangle veen the botto DL = 10.0psf. b.2 crushing	psf m						
BRACING TOP CHORD	Structural wood shea	athing directly applied	5) d or	Provide mec bearing plate joint 2 and 1	hanical connect capable of with 43 lb uplift at joi	ion (by othe Istanding 1 nt 8.	ers) of truss to 43 lb uplift at	0						
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	6)	This truss is International	designed in acc Building Code	ordance wi section 230	th the 2015 6.1 and							
REACTIONS	(lb/size) 2=937/0-3 Max Horiz 2=-125 (L0 Max Uplift 2=-143 (L0	-8, 8=937/0-3-8 C 9) C 11), 8=-143 (LC 11	L(orate referenced s	tandard ANSI/T Standard	PI 1.								
FORCES	(lb) - Maximum Com Tension	pression/Maximum	,											
TOP CHORD	1-2=0/30, 2-3=-412/0 4-21=-1094/218, 5-2 5-22=-1013/237, 6-2 6-7=-1188/191, 7-8=	0, 3-4=-1188/191, 1=-1013/237, 2=-1094/218, -389/0_8-9=0/30												
BOT CHORD	2-12=-90/1023, 11-1: 11-23=0/713, 23-24= 8-10=-63/979	2=-63/1023, =0/713, 10-24=0/713,	,									minin		
WEBS	5-10=-65/456, 6-10= 4-11=-264/157	-264/157, 5-11=-65/4	456,									N' ORTH	SSILA	14
NOTES												· · · · · · · ·	NZK	1'-
 Unbalance this design 	ed roof live loads have n.	been considered for									U	. 2	1 2	
 Wind: ASI Vasd=95n B=20ft; L= MWFRS (2-0-0, Inte to 13-11-6 cantilever right expo for reactio DOL=1.60 	CE 7-10; Vult=120mph mph; TCDL=6.0psf; BCI =22ft; eave=4ft; Cat. II; (directional) and C-C Ex erior (1) 2-0-0 to 10-11-1 8, Interior (1) 13-11-8 to r left and right exposed ; osed;C-C for members a pons shown; Lumber DOI 0	(3-second gust) DL=6.0psf; h=30ft; Exp B; Enclosed; tterior (2) -1-0-0 to 8, Exterior (2) 10-11- 22-11-0 zone; ; end vertical left and and forces & MWFRS L=1.60 plate grip	8 1 5								THURSDAY.	S 03 NG NG NG	EAL 6322	

October 8,2019

Job	Truss	Truss Type	Qty	Ply	Phillips' Gable RF-Roof	
Q-1901806-1	T2GE	Common Supported Gable	1	1	Job Reference (optional)	E13608387

7-3-12 7-2-11

Run: 8.32 E Sep 21 2019 Print: 8.320 E Sep 21 2019 MiTek Industries, Inc. Mon Oct 07 14:56:25 ID:3T6Fu2prXtKWPHWfWinvS?yXBNB-dbBGbmW4lHOrRwm0r?SKAgUIzgkdRWm4kXhmjnyVmkK -1-0-0 |-0-0 22-11-0 10-11-8 21-11-0 10-11-8 10-11-8 1-0-0 4x5= 8 7 9 12 7 Г 6 10 5 11 4 12 6x6 🎜 6x6 👟 3 13 2 14 q-10-p 15 \otimes 26 25 24 23 22 21 20 19 18 17 16 27

21-11-0

3x4 =

Scale -	1.50.2
Scale =	1.50.2

Plate Offsets (X, Y): [2:0-1-8,0-0-2], [14:0-1-8,0-3-10]

3x6 II

			-											
Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.05	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
		10.0	Lumber DOL	1.15		BC	0.02	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.09	Horz(CT)	0.00	14	n/a	n/a		
BCDL		10.0	Code	IBC20	15/TPI2014	Matrix-MS							Weight: 136 lb	F1 = 20%
L UMBER TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N	o.1 o.1		T	OP CHORD	1-2=0/30, 2-3=-53/8 4-5=-89/70, 5-6=-80 7-8=-129/153, 8-9=-	1, 3-4= /62, 6- 129/15	-96/84, 7=-94/109, 3, 9-10=-94/10)9,	8) All b cap 9) Pro	bearings acity of 4 vide med	are as 125 psi chanica	sumed to be SPI al connection (by	F No.2 crushing others) of truss to
OTHERS SLIDER	2x4 SP N Left 2x6 S	o.3 SP No.2 1	I-0-8, Right 2x6 SP I	No.2		10-11=-59/62, 11-12 13-14=-53/63, 14-19	2=-54/2 5=0/30	5, 12-13=-62/4	41, -	bea 2, 3	ring plat 9 lb uplif	e capa t at joii	ble of withstandin ht 22, 45 lb uplift	ng 35 lb uplift at joint at joint 23, 42 lb
BRACING	1-0-8			E	SOT CHORD	2-27=-60/97, 26-27= 24-25=-60/97, 23-24 21, 22 - 60/97, 20, 20	=-60/97 4=-60/9	, 25-26=-60/97 7, 22-23=-60/9 7, 10, 20-, 60/9	/, 97, 97	upli 27,	it at joint 39 lb up	25, 44	bint 20, 45 lb uplift bint 20, 45 lb uplift	t at joint 19, 42 lb
TOP CHORD	Structura 6-0-0 oc p	l wood shea ourlins.	athing directly applie	d or		21-22=-60/97, 20-2 18-19=-60/97, 17-18 14-16=-60/97	3=-60/9 3=-60/9	7, 19-20=-60/9 7, 16-17=-60/9	97, 97,	upii 16 a 10) Thie	and 35 lb	uplift	at joint 2.	e with the 2015
BOT CHORD	Rigid ceil bracing.	ing directly	applied or 10-0-0 oc	° v	VEBS	8-21=-101/30, 7-22= 5-25=-119/66, 4-26=	=-128/6 =-123/6	3, 6-23=-119/6 9. 3-27=-102/7	69, 75.	Inte Inte	rnationa	l Buildi tanda	ng Code section	2306.1 and
REACTIONS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					9-20=-128/63, 10-19=-119/69, 11-18=-119/66, LOAD CASE(S) Standard 12-17=-123/69, 13-16=-105/75 Ilanced roof live loads have been considered for lesign. : ASCE 7-10; Vult=120mph (3-second gust) =95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Ift; L=22ft; eave=2ft; Cat. II; Exp B; Enclosed; IRS (directional) and C-C Corner (3) 1-0-0 to I, Exterior (2) 2-0-0 to 10-11-8, Corner (3) 10-11-8 -11-8, Exterior (2) 13-11-8 to 22-11-0 zone; lever left and right exposed ; end vertical left and exposed;C-C for members and forces & MWFRS iactions shown; Lumber DOL=1.60 plate grip								CAROL
FORCES	Max Grav (Ib) - Max Tension	2=153 (LC 16=117 (L 18=159 (L 20=168 (L 22=168 (L 25=159 (L 32=125 (L imum Com	C 17), 14=125 (LC 1) C 17), 17=164 (LC 2 C 21), 19=159 (LC 1 C 21), 21=133 (LC 1 C 20), 23=159 (LC 2 C 20), 26=164 (LC 2 C 16), 28=153 (LC 1 C 1) pression/Maximum), 21), 3 16), 16), 4 1), 5 20), 4 17), 5 7	 DOL=1.60 Truss desig only. For st see Standar or consult q All plates ar Gable requi Gable studs * This truss on the botto 3-06-00 tall 	ned for wind loads i uds exposed to wind d Industry Gable En ualified building desi e 2x4 MT20 unless (res continuous botto spaced at 2-0-0 oc. has been designed i m chord in all areas by 2-00-00 wide will	n the pl I (norm d Detai gner as otherwis m chor for a liv where fit betw	ane of the trus al to the face), Is as applicabl per ANSI/TPI se indicated. d bearing. e load of 20.0p a rectangle reen the bottor	e, 1. osf			Contraction of the second		SEAL 36322 SINEER GILBER

October 8,2019

818 Soundside Road Edenton, NC 27932 Page: 1

3x6 II

Job	Truss	Truss Type	Qty	Ply	Phillips' Gable RF-Roof	
Q-1901806-1	V1	Valley	1	1	Job Reference (optional)	E13608388

Run: 8.32 E Sep 21 2019 Print: 8.320 E Sep 21 2019 MiTek Industries, Inc. Mon Oct 07 14:56:26 ID:?sE?ljq63VaEebg2d7pNXQyXBN9-5oleo6XiWbWi34LDPj_Zju1S943FA_YEzAQKFDyVmkJ

Page: 1

Scale = 1:41.6

Plate Offsets (X, Y): [5:0-2-0,Edge]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.09 0.12 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 84 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceili bracing. (Ib/size) Max Horiz Max Uplift Max Grav	5.1 5.3 wood shea purlins. ng directly 1=145/19- 10=307/15 12=235/15 14=81/19- 1=-97 (LC 10=-56 (LI 12=-15 (LI 14=-51 (LI 12=306 (LI 12=306 (LI 14=86 (LC	athing directly applie applied or 10-0-0 oc 3-1-10, 11=79/19-1-10 3-1-10, 11=79/19-1-1 3-1-10, 13=236/19-1- 19) C 11), 11=-51 (LC 1 ⁺ C 11), 13=-17 (LC 1 ⁺ C 11), 15=-54 (LC 1 ⁺) C 11), 15=-54 (LC 1 ⁺) C 17), 13=314 (LC 1 C 20), 15=301 (LC 1 ⁺)	ed or 5. 10, -10, 10 1), 1), 1), 1), 5)	 Wind: ASCE Vasd=95mpl B=20ft; L=22 MWFRS (dir 3-0-7, Interic 12-7-4, Interiand right exp exposed; C-C reactions shi DOL=1.60 Truss desig only. For stu- see Standario or consult qu All plates are 5) Gable requiri Gable studs 7) * This truss I on the bottor 3-06-00 tall I chord and arians 	7-10; Vult=120r n; TCDL=6.0psf; ft; eave=4ft; Ca ectional) and C- r (1) 3-0-7 to 9- or (1) 12-7-4 to oosed ; end verti c for members a own; Lumber DC hed for wind loar ds exposed to v d Industry Gable alified building of a 1x3 MT20 unle es continuous b spaced at 2-0-0 nas been design n chord in all are by 2-00-00 wide y other member	mph (3-sec BCDL=6.0 t. II; Exp B; C Exterior 1 7-4, Exterior 19-2-1 zon cal left and nd forces & DL=1.60 pla ds in the play wind (norma ds in the play wind (norma ds in the play wind (norma ds end Detai designer as ses otherwis ottom chord oc. ed for a live eas where a will fit betw rs, with BC	ond gust) psf; h=30ft; Enclosed; 2) 0-0-7 to r (2) 9-7-4 to e; cantilever l right MWFRS for te grip ane of the tru al to the face) s as applicat be and of 20.00 a rectangle een the bottc DL = 10.0psf. 2 crusbing	left , , ole, , l 1. opsf om						
TOP CHORD	(ID) - Maxi Tension 1-21=-216 3-22=-95/ 5-6=-113/ 7-8=-113/	6/46, 2-21= 11, 4-22=-4 58, 6-23=-4 9 8-24=-8	-84/63, 2-3=-118/17, 49/17, 4-5=-114/58, 41/18, 7-23=-93/12, 3/62 9-24=-100/45	,	capacity of 4 9) Provide mec bearing plate 13, 51 lb upl uplift at joint	25 psi. hanical connecti capable of with ft at joint 14, 54 12, 51 lb uplift a	ion (by othe istanding 1 Ib uplift at j it joint 11 au	ers) of truss to 7 lb uplift at jo oint 15, 15 lb nd 56 lb uplift	o pint tat			4	I I ORTH	CARO	
BOT CHORD WEBS	1-16=-63/ 14-15=-63 12-13=-63 10-11=-63 4-13=-162 6-12=-160	206, 15-16 3/117, 13-1 3/117, 11-1 3/117, 9-10 2/59, 3-14= 0/56, 7-11=	=-63/117, 4=-63/117, 2=-63/117, =-63/117 -85/68, 2-15=-191/79 -84/68, 8-10=-194/80	9, 0	10) This truss is International referenced s	designed in acc Building Code s tandard ANSI/TI Standard	ordance wi section 230 PI 1.	th the 2015 6.1 and				Contraction of the second	0.	SEAL 36322	
NOTES 1) Unbalance this design	ed roof live le n.	oads have	been considered for										RAIC A	GILBER	

"munnin October 8,2019

Job	Truss	Truss Type	Qty	Ply	Phillips' Gable RF-Roof	
Q-1901806-1	V2	Valley	1	1	Job Reference (optional)	E13608389

BCLL

BCDL

1)

2)

Run: 8.32 E Sep 21 2019 Print: 8.320 E Sep 21 2019 MiTek Industries, Inc. Mon Oct 07 14:56:26 ID:T2oNW3rkqoi5GIFEBrKc4eyXBN8-5oleo6XiWbWi34LDPj_Zju1R4430Az2EzAQKFDyVmkJ

818 Soundside Road Edenton, NC 27932

Page: 1

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Phillips' Gable RF-Roof	
Q-1901806-1	V3	Valley	1	1	Job Reference (optional)	E13608390

Run: 8.32 E Sep 21 2019 Print: 8.320 E Sep 21 2019 MiTek Industries, Inc. Mon Oct 07 14:56:27 ID:T2oNW3rkqoi5GIFEBrKc4eyXBN8-Z_J10SYKHveZgEwPzQVoF5Za6TMevPDNCqAtnfyVmkI

Page: 1

11-1-1.0

11-1-10

Scale = 1:31.4				1											
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.26 0.24 0.16	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 38 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structura 10-0-0 oc Rigid ceil bracing. (Ib/size) Max Horiz Max Uplift Max Grav	o.1 o.1 o.3 I wood shea purlins. ing directly 1=24/11-1 4=838/11- 1=-56 (LC 1=-38 (LC 4=-132 (L 1=73 (LC (LC 1)	athing directly applie applied or 6-0-0 oc 1-10, 3=29/11-1-10, -1-10 : 9) : 21), 3=-34 (LC 20), C 11) 20), 3=78 (LC 21), 4	4 5 6 9 9 9 9 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9) Gable requin) Gable studs) * This truss on the botto 3-06-00 tall) All bearings capacity of 4) Provide med bearing platt 1, 34 lb uplif) This truss is Internationa referenced s 	res continuous b spaced at 4-0-C has been desigr m chord in all ar by 2-00-00 wide ny other membe are assumed to 425 psi. chanical connect e capable of witi t at joint 3 and 1 designed in acc I Building Code standard ANSI/T Standard	oottom chord) oc. hed for a live eas where a will fit betw ors. be SPF No tion (by othe hstanding 3 32 lb uplift cordance wi section 230 PI 1.	d bearing. e load of 20.6 a rectangle een the botto a.2 crushing ers) of truss t 8 lb uplift at j at joint 4. th the 2015 6.1 and	Dpsf om o oint						
FORCES TOP CHORD BOT CHORD	(lb) - Max Tension 1-9=-77/3 2-11=-61/ 1-4=-312/	imum Com 336, 9-10=- /418, 11-12 /115, 3-4=∹	pression/Maximum 65/349, 2-10=-63/42 !=-63/340, 3-12=-74, 305/113	27, /327											
WEBS NOTES 1) Unbalanc: this design 2) Wind: ASt Vasd=95r B=20ft; L= MWFRS (3-0-7, Inte 8-7-4, Inte and right (exposed; reactions	2-4=-649/ ed roof live I n. CE 7-10; Vu nph; TCDL= 20ft; eave= (directional) erior (1) 3-0- erior (1) 8-7- exposed ; er 2-C for merr shown; Lurr	/161 lt=120mph :6.0psf; BC 4ft; Cat. II; and C-C E: 7 to 5-7-4, 4 to 11-2-1 nd vertical I hobers and fu	been considered for (3-second gust) DL=6.0psf; h=30ft; Exp B; Enclosed; xterior (2) 0-0-7 to Exterior (2) 5-7-4 to zone; cantilever left eft and right orces & MWFRS for 1.60 plate grip	r t								Winnin	ORTHOR OF	CARO SEAL 36322	

DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932

C

A. GI A. GILLIN

October 8,2019

Job	Truss	Truss Type	Qty	Ply	Phillips' Gable RF-Roof	
Q-1901806-1	V4	Valley	1	1	Job Reference (optional)	E13608391

Run: 8.32 E Sep 21 2019 Print: 8.320 E Sep 21 2019 MiTek Industries, Inc. Mon Oct 07 14:56:27 ID:T2oNW3rkqoi5GIFEBrKc4eyXBN8-Z_J10SYKHveZgEwPzQVoF5ZdaTOZvQhNCqAtnfyVmkI

7-1-10

Scale	=	1:25.4
-------	---	--------

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.11 0.11 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Structural wood she 7-1-10 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=50/7-1- 4=467/7- Max Horiz 1=-35 (LC Max Uplift 1=-2 (LC (LC 11) Max Grav 1=73 (LC (LC 1)	4 5 6 7 8 9 =-66 4=467	 Gable require Gable studs Gable studs This truss hotton 3-06-00 tall b chord and an All bearings a capacity of 4 Provide mecibearing plate 1, 2 lb uplift a This truss is International referenced st 	es continuous be spaced at 4-0-0 has been design in chord in all are y 2-00-00 wide by other member are assumed to 25 psi. hanical connecti e capable of with at joint 3 and 66 designed in acc Building Code s tandard ANSI/Tf Standard	bitom chor oc. ed for a liv as where will fit betw 's. be SPF No on (by oth standing 2 Ib uplift at ordance w ection 230 Pl 1.	d bearing. e load of 20.0 a rectangle veen the botto o.2 crushing ers) of truss to l b uplift at joi joint 4. th the 2015 16.1 and	0psf om o nt						
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-9=-70/38, 1-9=-59 2-10=-23/203, 2-11= 3-12=-66/35, 3-12=- 1-4=-160/66, 3-4=-1	/41, 1-10=-35/173, =-21/196, 3-11=-33/1 78/31 55/65	66,										
WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=95r B=20ft; L: MWFRS 0 3-0-7, Into 6-7-4, Into	2-4=-320//4 eed roof live loads have n. CE 7-10; Vult=120mph mph; TCDL=6.0psf; BC =20ft; eave=4ft; Cat. II; (directional) and C-C E erior (1) 3-0-7 to 3-7-4, erior (1) 6-7-4 to 7-2-1	been considered fo (3-second gust) DL=6.0psf; h=30ft; Exp B; Enclosed; xterior (2) 0-0-7 to Exterior (2) 3-7-4 to cone; cantilever left	and								Contraction of the second seco	NUN ATH	SEAL

Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Phillips' Gable RF-Roof	
Q-1901806-1	V6	Valley	1	1	Job Reference (optional)	E13608392

8-0-11 7-9-0

3x4=

27-6-10

3x4 👟

October 8,2019

818 Soundside Road Edenton, NC 27932

-

Scale = 1:54.3		
Plate Offsets (X, Y):	[7:0-2-0 Edge] [20:0-1-12 0-1-8]	

H

3x4 🦼

Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.13	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.13	Horiz(TL)	0.01	13	n/a	n/a		
BCDL		10.0	Code	IBC20	15/TPI2014	Matrix-MS	_						Weight: 146 lb	FT = 20%
	0.4 05 1	1- 4		E	BOT CHORD	1-24=-113/229, 2	23-24=-113	B/179,		9) Prov	/ide me	chanica	al connection (by	others) of truss to
TOP CHORD	2x4 SP N	10.1				22-23=-113/179,	10 20- 11	2/179,		21	20 lb ur	lift of id	bie of withstandi	t at joint 22 51 lb
	204 50 1	10.1 Io 2				18-19=-113/179	17-18=-11	3/179		unlif	t at ioin	t 24 64	1 lb unlift at ioint 1	17.38 lb unlift at joint
UTHERS	2X4 5P N	10.3				16-17=-113/179	15-16=-11	3/179		16	41 lh ur	lift at id	pint 15 and 53 lb	unlift at joint 14
BRACING	<u>.</u>					14-15=-113/179	13-14=-11	3/179		10) This	truss is	s desia	ned in accordance	e with the 2015
TOP CHORD	Structura	al wood she	athing directly applied	dor \	VEBS	6-19=-161/39 5-	21=-109/8	0 4-22=-130/	65	Inte	rnationa	al Buildi	ing Code section	2306.1 and
	6-0-0 oc	puriins.		•		3-23=-90/63, 2-2	24=-199/80	. 8-18=-159/3	6.	refe	renced	standa	rd ANSI/TPI 1.	
BOT CHORD	Rigid cei bracing.	ling directly	applied or 10-0-0 oc			9-17=-110/81, 10 12-14=-202/82	0-16=-130/	65, 11-15=-88	8/63,	LOAD	ASE(S) Star	ndard	
REACTIONS	(lb/size)	1=150/27	-6-10, 13=153/27-6-1	0,										
		14=319/2	7-6-10, 15=93/27-6-1	0,		d roof live loade b	ava baan a	onsidered for						
		16=183/2	7-6-10, 17=128/27-6-	·10, '	this design		ave been (
		18=229/2	7-6-10, 19=231/27-6-	·10,	Wind ASC	E 7-10: \/ult=120r	nnh (3-coc	and quet)						
		21=128/2	7-6-10, 22=182/27-6-	·10, -	Vasd-95m	nh: TCDI -6 0nsf	BCDI -6 (nef: h=30ft						
	Mary 11 and -	23=96/27	-6-10, 24=31 <i>3/21-</i> 6-1	0	B=20ft I =	Enclosed:								
	Max Horiz	1=141 (LC			MWFRS (c	lirectional) and C-	C Exterior	(2) 0-0-7 to						
	Max Uplift	14=-53 (L	C 11), 15=-41 (LC 11	I),	3-0-7. Inter	ior (1) 3-0-7 to 13	-9-12. Exte	rior (2) 13-9-1	2					
		10=-38 (L 21_ 62 (L	C 11), 17=-04 (LC 11 C 11) 22- 28 (LC 11	I), I)	to 16-9-12,	Interior (1) 16-9-1	12 to 27-7-	1 zone; cantile	ever					
		21=-03 (L 22= 42 (L	C 11), 22=-30 (LC 11 C 11), 24= 51 (LC 11),)	left and rig	ht exposed ; end v	ertical left	and right						
	Max Grav	23=-42 (L 1_150 /l (C TT), 24=-51 (LC TT C 1) 13-153 (LC 1))	exposed;C	-C for members a	nd forces &	MWFRS for						
		14-319 (1	(10, 10 = 100) (10 17)		reactions s	hown; Lumber DC	DL=1.60 pla	ate grip						
		16=186 (L	C 17) 17=133 (I C 2	, (1)	DOL=1.60									
		18=298 (I	C 17) 19=310 (I C 1	6) 3) Truss des	igned for wind load	ds in the pl	ane of the true	SS				I''TH	CARO
		21=132 (L	_C 20), 22=187 (LC 1	6).	only. For s	studs exposed to v	vind (norma	al to the face)	,				N'Al'	
		23=98 (LC	C 20), 24=313 (LC 1)	- //	see Standa	ard Industry Gable	End Detai	ls as applicab	le,			/	S.O'.	San
FORCES	(lb) - May	kimum Com	pression/Maximum		or consult	qualified building o	designer as	per ANSI/TP	11.				ALC V	Ma
I ONOLO	Tension			4	 All plates a 	re 1x3 MT20 unle	ss otherwis	se indicated.				-	:0	K .
	1-29=-23	5/100 2-29	-154/118 2-3136	/53 5	Gable requ	ires continuous be	ottom chor	d bearing.				-	1 1	
	3-4=-115	44 4-5=-1	10/29 5-30=-95/38	,00, 6	Gable stud	s spaced at 2-0-0	OC.						: 5	SEAL :
	6-30=-52	/43 6-7=-1	10/76 7-8=-110/76	7	* This truss	s has been design	ed for a liv	e load of 20.0	psf			=	03	6322
	8-31=-54	/45. 9-31=-	90/40, 9-10=-99/12,		on the bott	om chord in all are	eas where	a rectangle				-		0522
	10-11=-1	02/28, 11-1	2=-124/51,		3-06-00 tal	1 by 2-00-00 wide	will fit betw	een the botto	m					
	12-32=-1	54/118, 13-	-32=-166/100		chord and	any other member	rs, with BC	DL = 10.0pst.					·	air :
				8) All bearings are assumed to be SPF No.2 crushing									2 Sp . NO	SINEE ON
					capacity of	425 psi.							1210	all in
													In A	GILD
													1111	un u

Job	Truss	Truss Type	Qty	Ply	Phillips' Gable RF-Roof	
Q-1901806-1	V7	Valley	1	1	Job Reference (optional)	E13608393

Run: 8.32 E Sep 21 2019 Print: 8.320 E Sep 21 2019 MiTek Industries, Inc. Mon Oct 07 14:56:28 ID:xEMmjPsMb6qytvqQIYrrcryXBN7-1AtPDoZy2CmQIOVbW801oJ6nYtjPermWQUvQJ5yVmkH

Scale = 1:49

Plate Offsets (X, Y): [12:0-1-12,0-1-8]

Loading TCLL (roof)	(psf) 20.0 10.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.16	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190	
BCH	0.0	* Rep Stress Incr	YES		WB	0.14	Horiz(TL)	0.00	7	n/a	999 n/a			
BCDL	10.0	Code	IBC2015	5/TPI2014	Matrix-MS	0.20		0.00	·	1.04		Weight: 100 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Structural wood sl 6-0-0 oc purlins. Rigid ceiling direc	neathing directly applie	2) ed or	Wind: ASCE Vasd=95mph B=20ft; L=24 MWFRS (dire 3-0-7, Interior to 14-9-12, Ir left and right exposed;C-C	7-10; Vult=120mph ; TCDL=6.0psf; BC ft; eave=4f; Cat. II; ectional) and C-C E r (1) 3-0-7 to 11-9-7 terior (1) 14-9-12 t exposed ; end verti for members and	n (3-sec CDL=6.0 ; Exp B; Exterior 12, Exterior 12, Exter	ond gust) Opsf; h=30ft; Enclosed; (2) 0-0-7 to erior (2) 11-9- 1 zone; cantile and right & MWFRS for	12 ever				weight: 100 ib	<u>F1 = 20%</u>	
REACTIONS	bracing. (lb/size) 1=105// 8=345/ 10=328 13=340 Max Horiz 1=-120 Max Uplift 8=-82 (11=-94 Max Grav 1=113 (8=345 (10=446	23-6-10, 7=109/23-6-1 23-6-10, 9=326/23-6-1 /23-6-10, 11=331/23-6 /23-6-10 (LC 9) LC 11), 9=-92 (LC 11), (LC 11), 13=-81 (LC 1 (LC 17), 7=110 (LC 21 LC 1), 9=384 (LC 17), (LC 16), 11=388 (LC	0, 3) -10, 4) 1) 6)), 7) 16),	reactions sho DOL=1.60 Truss design only. For stu see Standarc or consult qu All plates are Gable require Gable studs s * This truss h on the bottom	wn; Lumber DOL= ned for wind loads i ds exposed to wind I Industry Gable En alified building desi 1x3 MT20 unless es continuous botto spaced at 4-0-0 oc. as been designed n chord in all areas w 2 00 00 wide wild	1.60 pla in the pl d (norm nd Detai igner as otherwise orm chor for a liv where	ate grip ane of the tru al to the face) Is as applicat s per ANSI/TF se indicated. d bearing. e load of 20.0 a rectangle was the better	ss ble, PI 1.						
FORCES	13=340 (Ib) - Maximum Co Tension	(LC 1) pmpression/Maximum	8)	chord and an All bearings a	y other members, v are assumed to be	with BC SPF No	DL = 10.0psf. DL = crushing							
TOP CHORD	1-18=-165/105, 2- 3-19=-89/114, 4-1 5-20=-90/114, 5-6 7-21=-62/74	18=-47/142, 2-3=-67/1 9=-67/136, 4-20=-68/1 =-35/89, 6-21=-46/106	26, 9) 36, 5,	Provide mech bearing plate 11, 81 lb uplit	25 psi. nanical connection capable of withsta ft at joint 13, 92 lb u	(by oth nding 9 uplift at	ers) of truss to 4 lb uplift at jo joint 9 and 82	o pint ! Ib				NI ORTH	CARO	
BOT CHORD	1-13=-88/148, 12- 10-11=-88/84, 9-1 7-8=-88/84	13=-88/84, 11-12=-88/ 0=-88/84, 8-9=-88/84,	/84, 10) This truss is International referenced st	designed in accorda Building Code sect andard ANSI/TPI 1	ance wi tion 230	th the 2015 6.1 and				14	SA .	FAL	
WEBS	4-10=-245/0, 3-11 5-9=-258/142, 6-8	=-262/144, 2-13=-235/ =-239/120	^{/119,} LC	AD CASE(S)	Standard						- 8	03	6322	1 E
NOTES 1) Unbalance this desigr	ed roof live loads ha	ve been considered for	r								1111	A EN	ER. A	

C

GINE A. GILBE

A. GILBIN October 8,2019

Page: 1

Job	Truss	Truss Type	Qty	Ply	Phillips' Gable RF-Roof	
Q-1901806-1	V8	Valley	1	1	Job Reference (optional)	E13608394

Run: 8.32 E Sep 21 2019 Print: 8.320 E Sep 21 2019 MiTek Industries. Inc. Mon Oct 07 14:56:29 ID:xEMmjPsMb6qytvqQIYrrcryXBN7-VNRnR8ZapWuHwX4o4rXGLWewKH2YNIRgf8f_sYyVmkG

Page: 1

bracing. **REACTIONS** (lb/size) 1=76/19-6-10, 5=80/19-6-10, 6=478/19-6-10, 7=456/19-6-10, 8=475/19-6-10 Max Horiz 1=-100 (LC 9) Max Uplift 6=-124 (LC 11), 8=-124 (LC 11) Max Grav 1=103 (LC 20), 5=105 (LC 21),

6=496 (LC 17), 7=536 (LC 16), 8=492 (LC 16) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-14=-116/257, 2-14=-62/333, 2-15=0/180,

- 3-15=0/290, 3-16=0/285, 4-16=0/178, 4-17=-61/331, 5-17=-74/242 BOT CHORD 1-9=-245/112, 8-9=-245/112, 8-18=-245/112, 7-18=-245/112, 7-19=-244/112, 6-19=-244/112 5-6=-244/112 WEBS 3-7=-421/20, 2-8=-333/165, 4-6=-334/165
- NOTES

TCDI

BCLL

BCDL

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-10; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-7 to 3-0-7, Interior (1) 3-0-7 to 9-9-12, Exterior (2) 9-9-12 to 12-9-12, Interior (1) 12-9-12 to 19-7-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60

chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 124 lb uplift at joint 8 and 124 lb uplift at joint 6. This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

7)

8)

9)

Job	Truss	Truss Type	Qty	Ply	Phillips' Gable RF-Roof	
Q-1901806-1	V9	Valley	1	1	Job Reference (optional)	E13608395

Scale = 1:37.1

Run: 8.32 E Sep 21 2019 Print: 8.320 E Sep 21 2019 MiTek Industries, Inc. Mon Oct 07 14:56:29

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.16	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.08	Vert(TL)	n/a	-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.10	Horiz(TL)	0.00	5	n/a	n/a			
BCDL		10.0	Code	IBC201	5/TPI2014	Matrix-MS							Weight: 59 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 cc p Rigid ceil bracing. (Ib/size)	0.1 0.3 I wood shea purlins. ing directly 1=92/15-6 6=360/15-	athing directly applie applied or 6-0-0 oc 5-10, 5=97/15-6-10, -6-10, 7=336/15-6-11	3) d or 5) 6) 0, 7)	Truss desig only. For stu see Standard or consult qu Gable requir Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar All bearings i	ned for wind loads uds exposed to wind d Industry Gable E- lalified building des es continuous bott spaced at 4-0-0 oc has been designed n chord in all areas by 2-00-00 wide will by other members. are assumed to be	in the pl d (norm nd Detai signer as om chor c. for a liv s where I fit betw SPF No	ane of the tru al to the face Is as applicat per ANSI/TF d bearing. e load of 20.0 a rectangle reen the botto 0.2 crushing	iss), ble, PI 1. 0psf pm						
	Max Horiz Max Uplift Max Grav	8=359/15- 1=-79 (LC 5=-1 (LC (LC 11) 1=96 (LC (LC 21), 7	20), 5=99 (LC 21), 6 39) 11), 6=-94 (LC 11), 8 20), 5=99 (LC 21), 6 =336 (LC 1), 8=365	8) 3=-95 =366 (LC	capacity of 4 Provide mec bearing plate 5, 95 lb uplift This truss is International referenced s	25 psi. hanical connection capable of withsta at joint 8 and 94 ll designed in accord Building Code sec tandard ANSI/TPI	(by othe anding 1 b uplift a lance wi tion 230 1.	ers) of truss to Ib uplift at joint t joint 6. th the 2015 6.1 and	o int						
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	L	DAD CASE(S)	Standard									
TOP CHORD	1-13=-122 3-14=-5/1 4-16=-15/	2/86, 2-13= 11, 3-15=-7 /113, 5-16=	-16/139, 2-14=-29/5 7/103, 4-15=-29/56, -30/67	4,											
BOT CHORD	1-8=-82/1 5-6=-81/5	15, 7-8=-82 5	2/55, 6-7=-81/55,										I''TH	CARO	
WEBS	3-7=-266/	/15, 2-8=-20	65/132, 4-6=-263/13	1									NR	in the second second	1
NOTES													A S STE	- Start	2
1) Unbalance	ed roof live l	oads have	been considered for									4	DQ1		4.
 Wind: ASC Vasd=95n B=20ft; L= MWFRS (3-0-7, Inte 10-9-12, Inte 10-9-12, Inte exposed;C reactions DOL=1.60 	CE 7-10; Vu nph; TCDL= -20ft; eave= directional) erior (1) 3-0- nterior (1) 10 ght exposed C-C for merr shown; Lurr	It=120mph 6.0psf; BC 4ft; Cat. II; and C-C E 7 to 7-9-12 0-9-12 to 1 ; end vertion bers and for ber DOL=1	(3-second gust) DL=6.0psf; h=30ft; Exp B; Enclosed; terior (2) 0-0-7 to , Exterior (2) 7-9-12 5-7-1 zone; cantileve cal left and right prces & MWFRS for 1.60 plate grip	to er								THE DESCRIPTION OF THE DESCRIPTO	C. S.N.C. A	SEAL 36322 GINEER GILBER	Channell Channell

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

October 8,2019

Job	Truss	Truss Type	Qty	Ply	Phillips' Gable RF-Roof	
Q-1901806-1	V10	Valley	1	1	Job Reference (optional)	E13608396

Run: 8.32 E Sep 21 2019 Print: 8.320 E Sep 21 2019 MiTek Industries, Inc. Mon Oct 07 14:56:30 ID:xEMmjPsMb6qytvqQIYrrcryXBN7-zZ?9eUaDaq08Xhf_eY2VtkB5_hO36mjpuoOXO_yVmkF

Page: 1

11-6-1₀

3x4 👟

11-6-10

Scale = 1:32														
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.29 0.25 0.17	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP N 2x4 SP N 2x4 SP N Structura 10-0-0 oc Rigid ceil bracing. (Ib/size) Max Horiz Max Uplift Max Grav 	o.1 o.3 l wood she purlins. ing directly 1=17/11-6 4=884/11 1=-58 (LC 1=-44 (LC 4=-141 (L 1=71 (LC 1)	athing directly applied applied or 6-0-0 oc 5-10, 3=23/11-6-10, -6-10 : 9) : 21), 3=-41 (LC 20), C 11) 20), 3=75 (LC 21), 4	d or =884	 Gable requir Gable studs * This truss I on the bottoo 3-06-00 tall I chord and ai All bearings capacity of 4 Provide mec bearing plata 1, 41 lb uplif This truss is International referenced s LOAD CASE(S) 	res continuous b spaced at 4-0-(has been desigr m chord in all ar by 2-00-00 wide ny other membe are assumed to 425 psi. chanical connec e capable of witi f at joint 3 and 1 designed in acc I Building Code standard ANSI/T Standard	bottom chor o oc. ned for a liv reas where a will fit betw ers. b be SPF No tion (by oth hstanding 4 141 lb uplift cordance w section 230 TPI 1.	d bearing. e load of 20.0 a rectangle veen the botto b.2 crushing ers) of truss t 4 lb uplift at j at joint 4. ith the 2015 16.1 and	Dpsf om oo oint					
FORCES	(lb) - Max Tension	imum Corr	pression/Maximum											
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=950 B=20ft; L:	1-9=-84/3 3-10=-82 1-4=-335 2-4=-689 ced roof live jn. iCE 7-10; Vu mph; TCDL= =20ft; eave=	973, 2-9=-7 /358 /123, 3-4=- /172 loads have lt=120mph :6.0psf; BC 4ft; Cat. II;	0/457, 2-10=-67/448, 328/121 been considered for (3-second gust) DL=6.0psf; h=30ft; Exp B; Enclosed;	,								4	UNITH ORTH	CAROL 1
3-0-7, Inte	(directional) erior (1) 3-0-	and C-C E 7 to 5-9-12	tenor (2) 0-0-7 to	to								111	$\sim 10^{-1}$	SFAL

- 8-9-12, Interior (1) 8-9-12 to 11-7-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Phillips' Gable RF-Roof	
Q-1901806-1	V11	Valley	1	1	Job Reference (optional)	E13608397

Run: 8.32 E Sep 21 2019 Print: 8.320 E Sep 21 2019 MiTek Industries, Inc. Mon Oct 07 14:56:30 ID:xEMmjPsMb6qytvqQIYrrcryXBN7-zZ?9eUaDaq08Xhf_eY2VtkB8ZhQ36nJpuoOXO_yVmkF

7-6-10

7.-6-10

2x4 🦻

Scale = 1:25.9

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.12	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.13	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	TRICOLA	WB	0.07	Horiz(TL)	0.00	3	n/a	n/a		ET 000/
BCDL	10.0	Code	IBC201	/TPI2014	Matrix-MP							Weight: 25 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Structural wood shea 7-6-10 oc purlins. Rigid ceiling directly bracing. (Ib/size) 1=47/7-6- 4=505/7-6 Max Horiz 1=37 (LC Max Uplift 1=-2 (LC 2 (LC 11)	athing directly applie applied or 6-0-0 oc 10, 3=52/7-6-10, -10 20, 3=-1 (LC 11), 4=	5) 6) ad or 7) 8) 9) =-74 LC	Gable studs s * This truss h on the botton 3-06-00 tall b chord and an All bearings a capacity of 42 Provide mect bearing plate 1, 1 lb uplift a This truss is of International referenced st DAD CASE(S)	spaced at 4-0-0 oc. as been designed in chord in all areas y 2-00-00 wide will y other members. are assumed to be 25 psi. anical connection capable of withsta t joint 3 and 74 lb u designed in accord. Building Code sect andard ANSI/TPI 1 Standard	for a live where fit betw SPF No (by othe nding 2 uplift at ance wition 230	e load of 20.0 a rectangle even the botto .2 crushing ers) of truss to ib uplift at joi joint 4. th the 2015 6.1 and	psf om o nt					
	Max Grav 1=73 (LC) (LC 1)	20), 3=77 (LC 21), 4	=505										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-9=-69/195, 2-9=-28 3-10=-38/187	8/227, 2-10=-26/219	,										
BOT CHORD WEBS	1-4=-179/71, 3-4=-17 2-4=-352/80	73/70											
NOTES													MILLO.
1) Unbalance	ed roof live loads have	been considered for										and the	CAD
this design	n.											"'aTH	0000
2) Wind: AS	CE 7-10; Vult=120mph	(3-second gust)										0	Setter V'
Vasd=95n B=20ft: L=	npn; TCDL=6.0pst; BCI =20ft: eave=4ft: Cat_II:	DL=6.0pst; n=30tt; Exp B: Enclosed:									6	A CONTRACT	his
MWFRS (directional) and C-C E	(terior (2) 0-0-7 to									<	.0	1 4 6
3-0-7, Inte	erior (1) 3-0-7 to 3-9-12	Exterior (2) 3-9-12	to								-	· · · · ·	SEAL : E
6-6-9, Inte	erior (1) 6-6-9 to 7-7-1 z	one; cantilever left a	and								= =		
for membr	seu; end vertical left al	nu right exposed;C-0	wn.								1	. 03	50322 : =
Lumber D	OL=1.60 plate grip DO	L=1.60	••••										1 - E -
3) Truss des	signed for wind loads in	the plane of the tru	SS								5	· A. En	Rix S
only. For	studs exposed to wind	(normal to the face)	, 									The Alexander	INEF CR.

- 6-6-9, Interior (1) 6-6-9 to 7-7-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3)
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.4) Gable requires continuous bottom chord bearing.

GI minim October 8,2019

