

RE: JobNumber2075761 - H&H/Aiken/Lot1/HiddenLakes/SpringLakeNC

Site Information:

Project Customer: **Project Name:** Lot/Block: Model: Address: City:

Subdivision:

Trenco 818 Soundside Rd Edenton, NC 27932

State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design **Drawings Show Special Loading Conditions):**

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Wind Speed: 130 mph Roof Load: 40.0 psf

Mean Roof Height (feet): 25

Design Program: MiTek 20/20 8.2 Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-10 Floor Load: N/A psf

Exposure Category: C

No.	Seal#	Truss Name	Date
1 2	138499903 138499904	A01 A02	9/13/19 9/13/19
3	138499905 138499906	A03 A04	9/13/19 9/13/19
5 6	138499907 138499908	A06 A07	9/13/19 9/13/19
8	138499909 138499910	A07A A08	9/13/19 9/13/19
9 10	I38499911 I38499912	B01 B02	9/13/19 9/13/19
11	138499913	B03 C01	9/13/19 9/13/19
13	138499915	C02	9/13/19 9/13/19
16	138499918	D01	9/13/19 9/13/19
18	138499920	D03	9/13/19 9/13/19
20	138499922	D04 D05	9/13/19
22 23	138499924	D00 D07	9/13/19
25	138499926	J02	9/13/19
26	138499928	.104	9/13/19

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters

Iruss Design Engineer's Name: Sevier, Scott My license renewal date for the state of North Carolina is December 31, 2019 **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any portion. the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-806/186, 4-5=-263/206
- BOT CHORD 8-9=-315/754, 7-8=-75/443, 6-7=-75/443, 5-6=-75/443
- WEBS 2-8=-335/396, 8-10=-97/658, 3-10=-83/676, 2-9=-797/0, 3-11=-735/163, 5-11=-796/125

NOTES- (9)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 12-10-4, Exterior(2) 12-10-4 to 15-10-4, Interior(1) 15-10-4 to 19-3-12 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) 200.0lb AC unit load placed on the bottom chord, 14-6-5 from left end, supported at two points, 5-0-0 apart.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 6) Bearings are assumed to be: Joint 9 User Defined crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 9=107.
- 9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSUTP11 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Insitute, 218 N. Lee Street, SUite 312, Alexandria, VA 22314.

- BOT CHORD 8-9=-385/1275, 6-8=-81/942, 5-6=-230/1332
- WEBS 2-8=-300/373, 3-8=-166/513, 3-6=-342/895, 4-6=-542/462, 2-9=-1306/351

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 13-7-4, Exterior(2) 13-7-4 to 16-7-4, Interior(1) 16-7-4 to 28-9-4 zone; cantilever right exposed ; end vertical right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are MT20 plates unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=271, 5=288.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- TOP CHORD
 2-3=-1333/436, 3-4=-1616/547, 4-5=-1716/423

 BOT CHORD
 9-10=-378/1280, 7-9=-74/946, 5-7=-217/1325
- WEBS 2-9=-300/373, 3-9=-166/513, 3-7=-339/890, 4-7=-544/458, 2-10=-1306/347

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 13-7-4, Exterior(2) 13-7-4 to 16-7-4, Interior(1) 16-7-4 to 29-8-11 zone; cantilever right exposed ; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are MT20 plates unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=271, 5=319.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

WEBS 2-11=-330/471, 11-13=-115/593, 3-13=-101/645, 3-14=-288/1080, 7-14=-299/1017, 4-7=-623/541, 2-12=-1654/214

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 13-7-4, Exterior(2) 13-7-4 to 16-7-4, Interior(1) 16-7-4 to 29-8-11 zone; cantilever right exposed ; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) 200.0lb AC unit load placed on the bottom chord, 14-6-5 from left end, supported at two points, 5-0-0 apart.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=217, 5=273.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty Ply	H&H/Aiken/Lot1/HiddenLake	es/SpringLakeNC
JobNumber2075761	B01	ATTIC	1	1	138499911
Builders First Source,	Sumter SC		8.240 s J	Job Reference (optional) Jul 14 2019 MiTek Industries, In	c. Thu Sep 12 07:59:45 2019 Page 1
		ID:h9 6-0-12 8-7-10 10-0-8 11-5 0.0 12 2.0 14 4.414 4.41	G7FShkwdXsXwp5Z	Zi0SNOzktn2-JhPyl0esNqeX8lY <u>20-1-0</u> <u>20-11-8</u> 0.12	5pZh3daz_MX1XaL7t6VMwPZyeRGy
		0-0-12 2-0-14 1-4-14 1-4-1	14 2-0-14	6-0-12 0-10-6	0
		4x6 =	=		Scale = 1.72.1
	Ţ	4x8 = 4 3 $12.00 12$	4x8 =		
	11-6-10		8-2-4		
	6x8 =			$6x8 =$ $78\begin{bmatrix}7\\8\\9\\9\\9\end{bmatrix}\begin{bmatrix}7\\2\\9\\9\end{bmatrix}$	lọ.
	14				
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 14 \\ 3x6 \\ - \\ 4x12 \\ - \\ 12 \end{array} $	9	
		4.	хо —		
		6-0-12 9-0-8 11-0-8 6-0-12 2-11-12 2-0-0	+ 14-0-4 + 2-11-12 +	20-1-0 6-0-12	
Plate Offsets (X,Y)	1:Edge,0-1-12], [4:0-3-0,Edge],	[7:0-3-8,0-1-12], [20:0-2-0,Edge], [21:0-1-8,0-1	<u>1-12], [22:0-2-0,Ed</u>	ige], [23:0-1-8,0-1-12]	
TCLL 20.0	Plate Grip DOL 1.15	TC 0.86 Vert(LI	L) -0.12 15-17	>999 360	MT20 244/190
ICDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.61 Vert(C WB 0.35 Horz(C	CT) -0.23 15-17 CT) 0.03 9	>999 240 n/a n/a	
			LL) 0.17 18	>999 240	FI = 20%
TOP CHORD 2x6 SP	No.2 *Except*	TOP C	HORD Struct	tural wood sheathing directly a	applied or 4-10-14 oc purlins,
BOT CHORD 2x4 SP	2-23: 2x4 SP No.2 No.2	BOT C	HORD Rigid	ceiling directly applied or 9-0-	13 oc bracing. Except:
WEBS 2x4 SP 6-10,2-	No.3 ^Except^ 18: 2x6 SP No.2, 3-5,1-19,7-9: 2	x4 SP No.2	5-7-0 (oc bracing: 12-17	
REACTIONS. (Ib/size Max Ho Max Up Max Go) 19=1013/0-5-8, 9=1068/0-5- orz 19=-407(LC 10) olift 19=-22(LC 13), 9=-29(LC 12 rav 19=1184(LC 21), 9=1216(LC	8 2) 2 20)			
FORCES. (lb) - Max.	Comp./Max. Ten All forces 25(1287/85, 2-3=-737/236, 3-4=-11)) (lb) or less except when shown. 8/435 4-5=-119/433 5-6=-736/234 6-7=-1291	1/92		
1-19= BOT CHORD 18-19	=-1131/121, 7-9=-1164/176 =-402/547 16-18=0/1826 14-16	S=0/1826 10-14=0/1826 9-10=-165/337	.,,		
WEBS 10-12	=-457/383, 13-15=-1098/0, 12-1 -0/339, 6-12-0/547, 17-185/3	3=-467/404 29 2-17-0/536 3-51454/508 1-18-0/714			
7-10=	-17/694, 15-18=-1199/210, 10-1	3=-1206/187			
NOTES- (11) 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) Exterior(2) 13-0-8 to & MWFRS for reactive 3) All plates are 2x4 MT 4) This truss has been will fit between the but 6) Ceiling dead load (5. 7) Bottom chord live load 8) All bearings are assu	loads have been considered for ult=130mph (3-second gust) Vas gable end zone and C-C Corner 20-10-1 zone; cantilever left and ons shown; Lumber DOL=1.60 p '20 unless otherwise indicated. designed for a 10.0 psf bottom c in designed for a live load of 20.0 ottom chord and any other memil 0 psf) on member(s). 2-3, 5-6, 3 id (40.0 psf) and additional botto med to be User Defined crushin	this design. sd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=2 (3) 0-1-9 to 3-1-9, Exterior(2) 3-1-9 to 10-0-8, i right exposed ; end vertical left and right expo late grip DOL=1.60 hord live load nonconcurrent with any other liv psf on the bottom chord in all areas where a re- bers. -5; Wall dead load (5.0psf) on member(s).6-1: m chord dead load (5.0 psf) applied only to ro o capacity of 565 psi.	25ft; Cat. II; Exp C; I Corner(3) 10-0-8 to osed;C-C for memb /e loads. ectangle 3-6-0 tall t 2, 2-17 pom. 15-17, 13-15,	Enclosed; o 13-0-8, bers and forces by 2-0-0 wide 12-13	SEAL 044925
 Provide mechanical 10) Attic room checked 11) This manufactured particular building is 	connection (by others) of truss to for L/360 deflection. truss is designed as an individua s the responsibility of the building	bearing plate capable of withstanding 100 lb al building component. The suitability and use g designer per ANSI TPI 1 as referenced by th	uplift at joint(s) 19, of this component the building code.	, 9.	CONGINEER HELIN
					September 13 2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria**, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss systems, see ANSUPPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MWFRS (envelope) gable end zone and C-C Exterior(2) -0-9-1 to 2-2-15, Interior(1) 2-2-15 to 8-1-12, Exterior(2) 8-1-12 to 11-1-12, Interior(1) 11-1-12 to 17-0-9 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=160, 4=160.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=140, 3=141.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Aiken/Lot1/HiddenLakes/SpringLakeNC	
						I38499917
JobNumber2075761	C04	Common Girder	1	2		
				_	Job Reference (optional)	
Builders First Source,	Sumter SC		8	.240 s Jul	14 2019 MiTek Industries, Inc. Thu Sep 12 07:59:51 2019	Page 2
		ID:h9G	7FShkwd	(sXwp5Zi0	SNOzktn2-8rmDY4jdygOgsh?FApoTtrD5Ey3g_2alURpFc	DyeRGs

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 1-5=-20

Concentrated Loads (lb)

Vert: 8=-747(B) 7=-747(B) 6=-897(B) 9=-747(B) 10=-747(B) 11=-747(B) 12=-897(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (lb/size) 7=605/0-5-8, 8=539/Mechanical Max Horz 7=463(LC 12) Max Uplift 8=-421(LC 12) Max Grav 7=605(LC 1), 8=635(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-7=-748/412, 2-3=-1829/865, 3-4=-265/0, 5-8=-746/421

BOT CHORD 6-7=-680/731, 5-6=-1302/2188

WEBS 2-6=-561/1374, 3-5=-1753/1046

NOTES- (8)

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 13-8-4 zone; cantilever left exposed; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.

6) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=421.

8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-		BRACING-		
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing di	rectly applied or 6-0-0 oc purlins,
BOT CHORD	2x4 SP No.2		except end verticals.	
WEBS	2x4 SP No.3 *Except*	BOT CHORD	Rigid ceiling directly applied	or 10-0-0 oc bracing, Except:
	4-7: 2x4 SP No.2		8-0-4 oc bracing: 8-9.	
		WEBS	1 Row at midpt 4	-7, 3-7
REACTIONS	(lb/size) 9=602/0-5-8 6=522/0-3-0			

EACTIONS. (lb/size) 9=602/0-5-8, 6=522/0-3-0 Max Horz 9=452(LC 12) Max Uplift 9=-9(LC 12), 6=-386(LC 12) Max Grav 9=602(LC 1), 6=656(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-513/0, 2-9=-552/67

BOT CHORD 8-9=-521/527, 7-8=-291/496

WEBS 3-8=-2/271, 3-7=-679/400, 2-8=-32/359

NOTES- (6)

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 13-3-4 zone; cantilever left exposed; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

4) Bearings are assumed to be: Joint 9 User Defined crushing capacity of 565 psi.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9 except (jt=lb) 6=386.

6) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, 2x4 SP No.2 BOT CHORD except end verticals. WEBS 2x4 SP No.3 *Except* BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. 4-7: 2x4 SP No.2 WEBS 1 Row at midpt 4-7, 3-9

REACTIONS. (lb/size) 15=602/0-5-8, 6=522/0-3-0 Max Horz 15=452(LC 12) Max Uplift 15=-9(LC 12), 6=-386(LC 12) Max Grav 15=602(LC 1), 6=610(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-572/15, 7-9=-725/436, 13-15=-585/51, 2-13=-541/99

BOT CHORD 14-15=-300/203, 12-13=-759/830, 11-12=-759/830, 10-11=-342/573, 9-10=-342/573

WEBS 2-11=-260/423, 3-11=-43/289, 3-9=-738/442, 13-14=-227/335

NOTES- (6)

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 13-3-4 zone; cantilever left exposed; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Bearings are assumed to be: Joint 15 User Defined crushing capacity of 565 psi.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15 except (jt=lb) 6=386.

6) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offset	ts (X,Y)	[17:0-3-8,0-3-0]									
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 C 1.15 T(1.15 B YES W Pl2014 M	SI. C 0.26 C 0.10 B 0.28 atrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.00 -0.00	(loc) 1 2 11	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 119 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHOR BOT CHOR WEBS	2x4 SI 2x4 SI 2x4 SI 2x4 SI 10-11:	 No.2 No.2 No.3 *Except* 2x4 SP No.2 No.2 			BRACING- TOP CHOR BOT CHOR	D D	Structura except e Rigid ce 6-0-0 oc	al wood s and vertic iling direct bracing:	sheathing dire als. ctly applied of 17-18.	ectly applied or 6-0-0 o r 10-0-0 oc bracing, E	c purlins, Except:
OTHERS	2x4 SI	P No.3			WEBS		1 Row a	t midpt	10)-11, 9-12	

REACTIONS. All bearings 13-5-0. (lb) - Max Horz 18=452(LC

Max Horz 18=452(LC 12) Max Uplift All uplift 100 lb or less at joint(s) 11 except 18=-347(LC 10), 12=-103(LC 12), 13=-104(LC 12),

14=-103(LC 12), 15=-101(LC 12), 16=-111(LC 12), 17=-777(LC 12) Max Grav All reactions 250 lb or less at joint(s) 11, 12, 13, 14, 15, 16 except 18=938(LC 12), 17=417(LC 10)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 2-18=-996/758, 2-3=-524/442, 3-4=-464/380, 4-5=-375/306, 5-7=-293/240
- BOT CHORD 17-18=-512/416
- WEBS 2-17=-758/934

NOTES- (11)

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-1-8, Exterior(2) 2-1-8 to 13-3-4 zone; cantilever left exposed; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

6) Gable studs spaced at 2-0-0 oc.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11 except (jt=lb) 18=347, 12=103, 13=104, 14=103, 15=101, 16=111, 17=777.
- 11) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	[2.0 0 0,Edge], [0.0 4 0,0 0 0]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.58 BC 0.43 WB 0.28 Matrix-S	DEFL. Vert(LL) -0 Vert(CT) -0 Horz(CT) -0 Wind(LL) 0	in (loc) 0.04 5-6 0.09 5-6 0.01 5 0.01 6	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES GRIP MT20 244/190 Weight: 96 lb FT = 20%
LUMBER- TOP CHORD 2x4 S	P No.2		BRACING- TOP CHORD	Structu	Iral wood sheathing dir	rectly applied or 6-0-0 oc purlins,

TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,			
BOT CHORD	2x4 SP No.2		except end verticals.			
WEBS	2x4 SP No.3 *Except*	BOT CHORD	Rigid ceiling directly applied or 8-0-12 oc bracing.			
	4-5: 2x4 SP No.2	WEBS	1 Row at midpt 4-5, 3-5			

REACTIONS. (lb/size) 5=524/Mechanical, 7=590/0-5-8 Max Horz 7=453(LC 12) Max Uplift 5=-405(LC 12) Max Grav 5=663(LC 19), 7=590(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-491/0, 2-7=-531/55
- BOT CHORD 6-7=-527/535. 5-6=-276/469
- WEBS 3-6=0/253, 3-5=-653/385, 2-6=-67/351

NOTES-(7)

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 13-3-12 zone; cantilever left exposed ; end vertical left exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=405.

7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.79 BC 0.38	DEFL. in (loc) l/defl L/d Vert(LL) -0.04 9-10 >999 360 Vert(CT) -0.08 9-10 >999 240	PLATES GRIP MT20 244/190
BCLL 0.0 *	Rep Stress Incr YES	WB 0.27	Horz(CT) 0.05 6 n/a n/a	Weight: 106 lb FT = 20%
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.07 10-11 >999 240	

LUMBER-		BRACING-	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,
BOT CHORD	2x4 SP No.2		except end verticals.
WEBS	2x4 SP No.3 *Except*	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
	4-6: 2x4 SP No.2	WEBS	1 Row at midpt 4-6, 3-8

REACTIONS. (lb/size) 6=526/Mechanical, 14=589/0-5-8 Max Horz 14=452(LC 12) Max Uplift 6=-402(LC 12) Max Grav 6=617(LC 19), 14=589(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-544/0, 6-8=-695/419, 12-14=-572/43, 2-12=-519/86

BOT CHORD 13-14=-289/178, 11-12=-771/852, 10-11=-771/852, 9-10=-324/542, 8-9=-324/542

WEBS 2-10=-314/453, 3-10=-21/266, 3-8=-703/423, 12-13=-199/323

NOTES- (7)

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 13-3-4 zone; cantilever left exposed; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=402.

7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0-6-8 0-6-8

Plate Offsets (X,Y)	[2:0-4-0,0-1-9]							
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.65	Vert(LL) -0.07	2-5	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.49	Vert(CT) -0.14	2-5	>509	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00		n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.17	2-5	>412	240	Weight: 30 lb	FT = 20%
		Ividuix-i		2-5	2412	240	Weight. 50 lb	11=

LUMBER-

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
OTHERS	2x4 SP No.3
SLIDER	Left 2x6 SP No.2 2-11-9

TOP CHORD Structural wood sheathing directly applied or 5-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. (lb/size) 2=289/0-3-0, 5=229/0-1-8 Max Horz 2=89(LC 12) Max Uplift 2=-192(LC 8), 5=-166(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-9-12 zone; cantilever left exposed ; end vertical left exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=192, 5=166.
- 9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

ORT Contraction of the second MULLIUM III SEAL 044925 S M munn September 13,2019

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILER KETEKERICE FAGE MILETATION, INVERTIGATION AND INVERTI AND INVERTIGATION AND INVERTIGATION AND INVERTICALIA AND fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			6-8 6-8 ∣									
Plate Offs	sets (X,Y)	[2:0-4-0,0-1-9], [5:Edge,0)-1-14]									
	6 (psf)	SPACING-	2-0-0	CSI.	0.65	DEFL.	in 0.07	(loc)	l/defl	L/d	PLATES	GRIP
TCDL	10.0 0.0 *	Lumber DOL Rep Stress Incr	1.15 1.15 YES	BC WB	0.03 0.49 0.00	Vert(CT) Horz(CT)	-0.07 -0.14 0.00	2-5 2-5	>509 >509 n/a	240 n/a	INIT20	244/190
BCDL	10.0	Code IRC2015/TI	PI2014	Matri	k-P	Wind(LL)	0.17	2-5	>412	240	Weight: 29 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 Left 2x6 SP No.2 2-11-9 SLIDER

BRACING-TOP CHORD Structural wood sheathing directly applied or 5-11-8 oc purlins, except end verticals. BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. (lb/size) 2=289/0-3-0, 5=229/0-1-8 Max Horz 2=89(LC 12) Max Uplift 2=-192(LC 8), 5=-166(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-9-12 zone; cantilever left exposed ; end vertical left exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=192, 5=166.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-14's rev. Towards BEFORE OSE. Design valid for use only with MiTeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) All bearings are assumed to be User Defined crushing capacity of 565 psi.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2, 7 except (jt=lb) 8=161.

9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. TREENCO A MITEK Attiliate 818 Soundside Road

Edenton, NC 27932

	I		8-6-0	1
			8-6-0	
Plate Offsets (X,Y)	[2:0-2-9,0-0-2], [3:0-3-8,Edge], [4:Edge	,0-3-8]		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl	L/d PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.74	Vert(LL) 0.17 2-4 >580 2	240 MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.43	Vert(CT) -0.13 2-4 >776 2	240
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 4 n/a	n/a
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S		Weight: 38 lb FT = 20%
LUMBER-			BRACING-	
TOP CHORD 2x4 SP No.1			TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,	

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.2WEBS2x4 SP No.3

 WEBS
 2x4 SP No.3

 REACTIONS.
 (lb/size)
 4=328/0-5-8, 2=360/0-3-0

 Max Horz
 2=152(LC 12)

Max Uplift 4=-244(LC 8), 2=-220(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (6)

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-4-8 to 2-7-8, Interior(1) 2-7-8 to 8-4-4 zone; cantilever left exposed; end vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearings are assumed to be: , Joint 4 User Defined crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=244, 2=220.
- 6) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

